1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16
17 #ifdef CONFIG_QOS_CTRL
18 #include <linux/sched/qos_ctrl.h>
19 #endif
20
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/capability.h>
24 #include <linux/completion.h>
25 #include <linux/personality.h>
26 #include <linux/tty.h>
27 #include <linux/iocontext.h>
28 #include <linux/key.h>
29 #include <linux/cpu.h>
30 #include <linux/acct.h>
31 #include <linux/tsacct_kern.h>
32 #include <linux/file.h>
33 #include <linux/fdtable.h>
34 #include <linux/freezer.h>
35 #include <linux/binfmts.h>
36 #include <linux/nsproxy.h>
37 #include <linux/pid_namespace.h>
38 #include <linux/ptrace.h>
39 #include <linux/profile.h>
40 #include <linux/mount.h>
41 #include <linux/proc_fs.h>
42 #include <linux/kthread.h>
43 #include <linux/mempolicy.h>
44 #include <linux/taskstats_kern.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroup.h>
47 #include <linux/syscalls.h>
48 #include <linux/signal.h>
49 #include <linux/posix-timers.h>
50 #include <linux/cn_proc.h>
51 #include <linux/mutex.h>
52 #include <linux/futex.h>
53 #include <linux/pipe_fs_i.h>
54 #include <linux/audit.h> /* for audit_free() */
55 #include <linux/resource.h>
56 #include <linux/blkdev.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/tracehook.h>
59 #include <linux/fs_struct.h>
60 #include <linux/init_task.h>
61 #include <linux/perf_event.h>
62 #include <trace/events/sched.h>
63 #include <linux/hw_breakpoint.h>
64 #include <linux/oom.h>
65 #include <linux/writeback.h>
66 #include <linux/shm.h>
67 #include <linux/kcov.h>
68 #include <linux/random.h>
69 #include <linux/rcuwait.h>
70 #include <linux/compat.h>
71 #include <linux/io_uring.h>
72 #include <linux/sysfs.h>
73
74 #include <linux/uaccess.h>
75 #include <asm/unistd.h>
76 #include <asm/mmu_context.h>
77
78 #include <linux/hck/lite_hck_ced.h>
79 #include <linux/hck/lite_hck_jit_memory.h>
80
81 /*
82 * The default value should be high enough to not crash a system that randomly
83 * crashes its kernel from time to time, but low enough to at least not permit
84 * overflowing 32-bit refcounts or the ldsem writer count.
85 */
86 static unsigned int oops_limit = 10000;
87
88 #ifdef CONFIG_SYSCTL
89 static struct ctl_table kern_exit_table[] = {
90 {
91 .procname = "oops_limit",
92 .data = &oops_limit,
93 .maxlen = sizeof(oops_limit),
94 .mode = 0644,
95 .proc_handler = proc_douintvec,
96 },
97 { }
98 };
99
kernel_exit_sysctls_init(void)100 static __init int kernel_exit_sysctls_init(void)
101 {
102 register_sysctl_init("kernel", kern_exit_table);
103 return 0;
104 }
105 late_initcall(kernel_exit_sysctls_init);
106 #endif
107
108 static atomic_t oops_count = ATOMIC_INIT(0);
109
110 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)111 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
112 char *page)
113 {
114 return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
115 }
116
117 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
118
kernel_exit_sysfs_init(void)119 static __init int kernel_exit_sysfs_init(void)
120 {
121 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
122 return 0;
123 }
124 late_initcall(kernel_exit_sysfs_init);
125 #endif
126
__unhash_process(struct task_struct * p,bool group_dead)127 static void __unhash_process(struct task_struct *p, bool group_dead)
128 {
129 nr_threads--;
130 detach_pid(p, PIDTYPE_PID);
131 if (group_dead) {
132 detach_pid(p, PIDTYPE_TGID);
133 detach_pid(p, PIDTYPE_PGID);
134 detach_pid(p, PIDTYPE_SID);
135
136 list_del_rcu(&p->tasks);
137 list_del_init(&p->sibling);
138 __this_cpu_dec(process_counts);
139 }
140 list_del_rcu(&p->thread_group);
141 list_del_rcu(&p->thread_node);
142 }
143
144 /*
145 * This function expects the tasklist_lock write-locked.
146 */
__exit_signal(struct task_struct * tsk)147 static void __exit_signal(struct task_struct *tsk)
148 {
149 struct signal_struct *sig = tsk->signal;
150 bool group_dead = thread_group_leader(tsk);
151 struct sighand_struct *sighand;
152 struct tty_struct *tty;
153 u64 utime, stime;
154
155 sighand = rcu_dereference_check(tsk->sighand,
156 lockdep_tasklist_lock_is_held());
157 spin_lock(&sighand->siglock);
158
159 #ifdef CONFIG_POSIX_TIMERS
160 posix_cpu_timers_exit(tsk);
161 if (group_dead)
162 posix_cpu_timers_exit_group(tsk);
163 #endif
164
165 if (group_dead) {
166 tty = sig->tty;
167 sig->tty = NULL;
168 } else {
169 /*
170 * If there is any task waiting for the group exit
171 * then notify it:
172 */
173 if (sig->notify_count > 0 && !--sig->notify_count)
174 wake_up_process(sig->group_exit_task);
175
176 if (tsk == sig->curr_target)
177 sig->curr_target = next_thread(tsk);
178 }
179
180 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
181 sizeof(unsigned long long));
182
183 /*
184 * Accumulate here the counters for all threads as they die. We could
185 * skip the group leader because it is the last user of signal_struct,
186 * but we want to avoid the race with thread_group_cputime() which can
187 * see the empty ->thread_head list.
188 */
189 task_cputime(tsk, &utime, &stime);
190 write_seqlock(&sig->stats_lock);
191 sig->utime += utime;
192 sig->stime += stime;
193 sig->gtime += task_gtime(tsk);
194 sig->min_flt += tsk->min_flt;
195 sig->maj_flt += tsk->maj_flt;
196 sig->nvcsw += tsk->nvcsw;
197 sig->nivcsw += tsk->nivcsw;
198 sig->inblock += task_io_get_inblock(tsk);
199 sig->oublock += task_io_get_oublock(tsk);
200 task_io_accounting_add(&sig->ioac, &tsk->ioac);
201 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
202 sig->nr_threads--;
203 __unhash_process(tsk, group_dead);
204 write_sequnlock(&sig->stats_lock);
205
206 /*
207 * Do this under ->siglock, we can race with another thread
208 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
209 */
210 flush_sigqueue(&tsk->pending);
211 tsk->sighand = NULL;
212 spin_unlock(&sighand->siglock);
213
214 __cleanup_sighand(sighand);
215 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
216 if (group_dead) {
217 flush_sigqueue(&sig->shared_pending);
218 tty_kref_put(tty);
219 }
220 }
221
delayed_put_task_struct(struct rcu_head * rhp)222 static void delayed_put_task_struct(struct rcu_head *rhp)
223 {
224 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
225
226 perf_event_delayed_put(tsk);
227 trace_sched_process_free(tsk);
228 put_task_struct(tsk);
229 }
230
put_task_struct_rcu_user(struct task_struct * task)231 void put_task_struct_rcu_user(struct task_struct *task)
232 {
233 if (refcount_dec_and_test(&task->rcu_users))
234 call_rcu(&task->rcu, delayed_put_task_struct);
235 }
236
release_task(struct task_struct * p)237 void release_task(struct task_struct *p)
238 {
239 struct task_struct *leader;
240 struct pid *thread_pid;
241 int zap_leader;
242 repeat:
243 /* don't need to get the RCU readlock here - the process is dead and
244 * can't be modifying its own credentials. But shut RCU-lockdep up */
245 rcu_read_lock();
246 atomic_dec(&__task_cred(p)->user->processes);
247 rcu_read_unlock();
248
249 cgroup_release(p);
250
251 write_lock_irq(&tasklist_lock);
252 ptrace_release_task(p);
253 thread_pid = get_pid(p->thread_pid);
254 __exit_signal(p);
255
256 /*
257 * If we are the last non-leader member of the thread
258 * group, and the leader is zombie, then notify the
259 * group leader's parent process. (if it wants notification.)
260 */
261 zap_leader = 0;
262 leader = p->group_leader;
263 if (leader != p && thread_group_empty(leader)
264 && leader->exit_state == EXIT_ZOMBIE) {
265 /*
266 * If we were the last child thread and the leader has
267 * exited already, and the leader's parent ignores SIGCHLD,
268 * then we are the one who should release the leader.
269 */
270 zap_leader = do_notify_parent(leader, leader->exit_signal);
271 if (zap_leader)
272 leader->exit_state = EXIT_DEAD;
273 }
274
275 write_unlock_irq(&tasklist_lock);
276 seccomp_filter_release(p);
277 proc_flush_pid(thread_pid);
278 put_pid(thread_pid);
279 release_thread(p);
280 put_task_struct_rcu_user(p);
281
282 p = leader;
283 if (unlikely(zap_leader))
284 goto repeat;
285 }
286
rcuwait_wake_up(struct rcuwait * w)287 int rcuwait_wake_up(struct rcuwait *w)
288 {
289 int ret = 0;
290 struct task_struct *task;
291
292 rcu_read_lock();
293
294 /*
295 * Order condition vs @task, such that everything prior to the load
296 * of @task is visible. This is the condition as to why the user called
297 * rcuwait_wake() in the first place. Pairs with set_current_state()
298 * barrier (A) in rcuwait_wait_event().
299 *
300 * WAIT WAKE
301 * [S] tsk = current [S] cond = true
302 * MB (A) MB (B)
303 * [L] cond [L] tsk
304 */
305 smp_mb(); /* (B) */
306
307 task = rcu_dereference(w->task);
308 if (task)
309 ret = wake_up_process(task);
310 rcu_read_unlock();
311
312 return ret;
313 }
314 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
315
316 /*
317 * Determine if a process group is "orphaned", according to the POSIX
318 * definition in 2.2.2.52. Orphaned process groups are not to be affected
319 * by terminal-generated stop signals. Newly orphaned process groups are
320 * to receive a SIGHUP and a SIGCONT.
321 *
322 * "I ask you, have you ever known what it is to be an orphan?"
323 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)324 static int will_become_orphaned_pgrp(struct pid *pgrp,
325 struct task_struct *ignored_task)
326 {
327 struct task_struct *p;
328
329 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
330 if ((p == ignored_task) ||
331 (p->exit_state && thread_group_empty(p)) ||
332 is_global_init(p->real_parent))
333 continue;
334
335 if (task_pgrp(p->real_parent) != pgrp &&
336 task_session(p->real_parent) == task_session(p))
337 return 0;
338 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
339
340 return 1;
341 }
342
is_current_pgrp_orphaned(void)343 int is_current_pgrp_orphaned(void)
344 {
345 int retval;
346
347 read_lock(&tasklist_lock);
348 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
349 read_unlock(&tasklist_lock);
350
351 return retval;
352 }
353
has_stopped_jobs(struct pid * pgrp)354 static bool has_stopped_jobs(struct pid *pgrp)
355 {
356 struct task_struct *p;
357
358 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
359 if (p->signal->flags & SIGNAL_STOP_STOPPED)
360 return true;
361 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
362
363 return false;
364 }
365
366 /*
367 * Check to see if any process groups have become orphaned as
368 * a result of our exiting, and if they have any stopped jobs,
369 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
370 */
371 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)372 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
373 {
374 struct pid *pgrp = task_pgrp(tsk);
375 struct task_struct *ignored_task = tsk;
376
377 if (!parent)
378 /* exit: our father is in a different pgrp than
379 * we are and we were the only connection outside.
380 */
381 parent = tsk->real_parent;
382 else
383 /* reparent: our child is in a different pgrp than
384 * we are, and it was the only connection outside.
385 */
386 ignored_task = NULL;
387
388 if (task_pgrp(parent) != pgrp &&
389 task_session(parent) == task_session(tsk) &&
390 will_become_orphaned_pgrp(pgrp, ignored_task) &&
391 has_stopped_jobs(pgrp)) {
392 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
393 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
394 }
395 }
396
397 #ifdef CONFIG_MEMCG
398 /*
399 * A task is exiting. If it owned this mm, find a new owner for the mm.
400 */
mm_update_next_owner(struct mm_struct * mm)401 void mm_update_next_owner(struct mm_struct *mm)
402 {
403 struct task_struct *c, *g, *p = current;
404
405 retry:
406 /*
407 * If the exiting or execing task is not the owner, it's
408 * someone else's problem.
409 */
410 if (mm->owner != p)
411 return;
412 /*
413 * The current owner is exiting/execing and there are no other
414 * candidates. Do not leave the mm pointing to a possibly
415 * freed task structure.
416 */
417 if (atomic_read(&mm->mm_users) <= 1) {
418 WRITE_ONCE(mm->owner, NULL);
419 return;
420 }
421
422 read_lock(&tasklist_lock);
423 /*
424 * Search in the children
425 */
426 list_for_each_entry(c, &p->children, sibling) {
427 if (c->mm == mm)
428 goto assign_new_owner;
429 }
430
431 /*
432 * Search in the siblings
433 */
434 list_for_each_entry(c, &p->real_parent->children, sibling) {
435 if (c->mm == mm)
436 goto assign_new_owner;
437 }
438
439 /*
440 * Search through everything else, we should not get here often.
441 */
442 for_each_process(g) {
443 if (g->flags & PF_KTHREAD)
444 continue;
445 for_each_thread(g, c) {
446 if (c->mm == mm)
447 goto assign_new_owner;
448 if (c->mm)
449 break;
450 }
451 }
452 read_unlock(&tasklist_lock);
453 /*
454 * We found no owner yet mm_users > 1: this implies that we are
455 * most likely racing with swapoff (try_to_unuse()) or /proc or
456 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
457 */
458 WRITE_ONCE(mm->owner, NULL);
459 return;
460
461 assign_new_owner:
462 BUG_ON(c == p);
463 get_task_struct(c);
464 /*
465 * The task_lock protects c->mm from changing.
466 * We always want mm->owner->mm == mm
467 */
468 task_lock(c);
469 /*
470 * Delay read_unlock() till we have the task_lock()
471 * to ensure that c does not slip away underneath us
472 */
473 read_unlock(&tasklist_lock);
474 if (c->mm != mm) {
475 task_unlock(c);
476 put_task_struct(c);
477 goto retry;
478 }
479 WRITE_ONCE(mm->owner, c);
480 task_unlock(c);
481 put_task_struct(c);
482 }
483 #endif /* CONFIG_MEMCG */
484
485 /*
486 * Turn us into a lazy TLB process if we
487 * aren't already..
488 */
exit_mm(void)489 static void exit_mm(void)
490 {
491 struct mm_struct *mm = current->mm;
492 struct core_state *core_state;
493
494 exit_mm_release(current, mm);
495 if (!mm)
496 return;
497 sync_mm_rss(mm);
498 /*
499 * Serialize with any possible pending coredump.
500 * We must hold mmap_lock around checking core_state
501 * and clearing tsk->mm. The core-inducing thread
502 * will increment ->nr_threads for each thread in the
503 * group with ->mm != NULL.
504 */
505 mmap_read_lock(mm);
506 core_state = mm->core_state;
507 if (core_state) {
508 struct core_thread self;
509
510 mmap_read_unlock(mm);
511
512 self.task = current;
513 if (self.task->flags & PF_SIGNALED)
514 self.next = xchg(&core_state->dumper.next, &self);
515 else
516 self.task = NULL;
517 /*
518 * Implies mb(), the result of xchg() must be visible
519 * to core_state->dumper.
520 */
521 if (atomic_dec_and_test(&core_state->nr_threads))
522 complete(&core_state->startup);
523
524 for (;;) {
525 set_current_state(TASK_UNINTERRUPTIBLE);
526 if (!self.task) /* see coredump_finish() */
527 break;
528 freezable_schedule();
529 }
530 __set_current_state(TASK_RUNNING);
531 mmap_read_lock(mm);
532 }
533 mmgrab(mm);
534 BUG_ON(mm != current->active_mm);
535 /* more a memory barrier than a real lock */
536 task_lock(current);
537 current->mm = NULL;
538 mmap_read_unlock(mm);
539 enter_lazy_tlb(mm, current);
540 task_unlock(current);
541 mm_update_next_owner(mm);
542 mmput(mm);
543 if (test_thread_flag(TIF_MEMDIE))
544 exit_oom_victim();
545 }
546
find_alive_thread(struct task_struct * p)547 static struct task_struct *find_alive_thread(struct task_struct *p)
548 {
549 struct task_struct *t;
550
551 for_each_thread(p, t) {
552 if (!(t->flags & PF_EXITING))
553 return t;
554 }
555 return NULL;
556 }
557
find_child_reaper(struct task_struct * father,struct list_head * dead)558 static struct task_struct *find_child_reaper(struct task_struct *father,
559 struct list_head *dead)
560 __releases(&tasklist_lock)
561 __acquires(&tasklist_lock)
562 {
563 struct pid_namespace *pid_ns = task_active_pid_ns(father);
564 struct task_struct *reaper = pid_ns->child_reaper;
565 struct task_struct *p, *n;
566
567 if (likely(reaper != father))
568 return reaper;
569
570 reaper = find_alive_thread(father);
571 if (reaper) {
572 pid_ns->child_reaper = reaper;
573 return reaper;
574 }
575
576 write_unlock_irq(&tasklist_lock);
577
578 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
579 list_del_init(&p->ptrace_entry);
580 release_task(p);
581 }
582
583 zap_pid_ns_processes(pid_ns);
584 write_lock_irq(&tasklist_lock);
585
586 return father;
587 }
588
589 /*
590 * When we die, we re-parent all our children, and try to:
591 * 1. give them to another thread in our thread group, if such a member exists
592 * 2. give it to the first ancestor process which prctl'd itself as a
593 * child_subreaper for its children (like a service manager)
594 * 3. give it to the init process (PID 1) in our pid namespace
595 */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)596 static struct task_struct *find_new_reaper(struct task_struct *father,
597 struct task_struct *child_reaper)
598 {
599 struct task_struct *thread, *reaper;
600
601 thread = find_alive_thread(father);
602 if (thread)
603 return thread;
604
605 if (father->signal->has_child_subreaper) {
606 unsigned int ns_level = task_pid(father)->level;
607 /*
608 * Find the first ->is_child_subreaper ancestor in our pid_ns.
609 * We can't check reaper != child_reaper to ensure we do not
610 * cross the namespaces, the exiting parent could be injected
611 * by setns() + fork().
612 * We check pid->level, this is slightly more efficient than
613 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
614 */
615 for (reaper = father->real_parent;
616 task_pid(reaper)->level == ns_level;
617 reaper = reaper->real_parent) {
618 if (reaper == &init_task)
619 break;
620 if (!reaper->signal->is_child_subreaper)
621 continue;
622 thread = find_alive_thread(reaper);
623 if (thread)
624 return thread;
625 }
626 }
627
628 return child_reaper;
629 }
630
631 /*
632 * Any that need to be release_task'd are put on the @dead list.
633 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)634 static void reparent_leader(struct task_struct *father, struct task_struct *p,
635 struct list_head *dead)
636 {
637 if (unlikely(p->exit_state == EXIT_DEAD))
638 return;
639
640 /* We don't want people slaying init. */
641 p->exit_signal = SIGCHLD;
642
643 /* If it has exited notify the new parent about this child's death. */
644 if (!p->ptrace &&
645 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
646 if (do_notify_parent(p, p->exit_signal)) {
647 p->exit_state = EXIT_DEAD;
648 list_add(&p->ptrace_entry, dead);
649 }
650 }
651
652 kill_orphaned_pgrp(p, father);
653 }
654
655 /*
656 * This does two things:
657 *
658 * A. Make init inherit all the child processes
659 * B. Check to see if any process groups have become orphaned
660 * as a result of our exiting, and if they have any stopped
661 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
662 */
forget_original_parent(struct task_struct * father,struct list_head * dead)663 static void forget_original_parent(struct task_struct *father,
664 struct list_head *dead)
665 {
666 struct task_struct *p, *t, *reaper;
667
668 if (unlikely(!list_empty(&father->ptraced)))
669 exit_ptrace(father, dead);
670
671 /* Can drop and reacquire tasklist_lock */
672 reaper = find_child_reaper(father, dead);
673 if (list_empty(&father->children))
674 return;
675
676 reaper = find_new_reaper(father, reaper);
677 list_for_each_entry(p, &father->children, sibling) {
678 for_each_thread(p, t) {
679 RCU_INIT_POINTER(t->real_parent, reaper);
680 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
681 if (likely(!t->ptrace))
682 t->parent = t->real_parent;
683 if (t->pdeath_signal)
684 group_send_sig_info(t->pdeath_signal,
685 SEND_SIG_NOINFO, t,
686 PIDTYPE_TGID);
687 }
688 /*
689 * If this is a threaded reparent there is no need to
690 * notify anyone anything has happened.
691 */
692 if (!same_thread_group(reaper, father))
693 reparent_leader(father, p, dead);
694 }
695 list_splice_tail_init(&father->children, &reaper->children);
696 }
697
698 /*
699 * Send signals to all our closest relatives so that they know
700 * to properly mourn us..
701 */
exit_notify(struct task_struct * tsk,int group_dead)702 static void exit_notify(struct task_struct *tsk, int group_dead)
703 {
704 bool autoreap;
705 struct task_struct *p, *n;
706 LIST_HEAD(dead);
707
708 write_lock_irq(&tasklist_lock);
709 forget_original_parent(tsk, &dead);
710
711 if (group_dead)
712 kill_orphaned_pgrp(tsk->group_leader, NULL);
713
714 tsk->exit_state = EXIT_ZOMBIE;
715 if (unlikely(tsk->ptrace)) {
716 int sig = thread_group_leader(tsk) &&
717 thread_group_empty(tsk) &&
718 !ptrace_reparented(tsk) ?
719 tsk->exit_signal : SIGCHLD;
720 autoreap = do_notify_parent(tsk, sig);
721 } else if (thread_group_leader(tsk)) {
722 autoreap = thread_group_empty(tsk) &&
723 do_notify_parent(tsk, tsk->exit_signal);
724 } else {
725 autoreap = true;
726 }
727
728 if (autoreap) {
729 tsk->exit_state = EXIT_DEAD;
730 list_add(&tsk->ptrace_entry, &dead);
731 }
732
733 /* mt-exec, de_thread() is waiting for group leader */
734 if (unlikely(tsk->signal->notify_count < 0))
735 wake_up_process(tsk->signal->group_exit_task);
736 write_unlock_irq(&tasklist_lock);
737
738 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
739 list_del_init(&p->ptrace_entry);
740 release_task(p);
741 }
742 }
743
744 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)745 static void check_stack_usage(void)
746 {
747 static DEFINE_SPINLOCK(low_water_lock);
748 static int lowest_to_date = THREAD_SIZE;
749 unsigned long free;
750
751 free = stack_not_used(current);
752
753 if (free >= lowest_to_date)
754 return;
755
756 spin_lock(&low_water_lock);
757 if (free < lowest_to_date) {
758 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
759 current->comm, task_pid_nr(current), free);
760 lowest_to_date = free;
761 }
762 spin_unlock(&low_water_lock);
763 }
764 #else
check_stack_usage(void)765 static inline void check_stack_usage(void) {}
766 #endif
767
do_exit(long code)768 void __noreturn do_exit(long code)
769 {
770 struct task_struct *tsk = current;
771 int group_dead;
772
773 CALL_HCK_LITE_HOOK(exit_jit_memory_lhck, current);
774
775 /*
776 * We can get here from a kernel oops, sometimes with preemption off.
777 * Start by checking for critical errors.
778 * Then fix up important state like USER_DS and preemption.
779 * Then do everything else.
780 */
781
782 WARN_ON(blk_needs_flush_plug(tsk));
783
784 if (unlikely(in_interrupt()))
785 panic("Aiee, killing interrupt handler!");
786 if (unlikely(!tsk->pid))
787 panic("Attempted to kill the idle task!");
788
789 /*
790 * If do_exit is called because this processes oopsed, it's possible
791 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
792 * continuing. Amongst other possible reasons, this is to prevent
793 * mm_release()->clear_child_tid() from writing to a user-controlled
794 * kernel address.
795 */
796 force_uaccess_begin();
797
798 if (unlikely(in_atomic())) {
799 pr_info("note: %s[%d] exited with preempt_count %d\n",
800 current->comm, task_pid_nr(current),
801 preempt_count());
802 preempt_count_set(PREEMPT_ENABLED);
803 }
804
805 profile_task_exit(tsk);
806 kcov_task_exit(tsk);
807
808 ptrace_event(PTRACE_EVENT_EXIT, code);
809
810 validate_creds_for_do_exit(tsk);
811
812 /*
813 * We're taking recursive faults here in do_exit. Safest is to just
814 * leave this task alone and wait for reboot.
815 */
816 if (unlikely(tsk->flags & PF_EXITING)) {
817 pr_alert("Fixing recursive fault but reboot is needed!\n");
818 futex_exit_recursive(tsk);
819 set_current_state(TASK_UNINTERRUPTIBLE);
820 schedule();
821 }
822
823 io_uring_files_cancel();
824 exit_signals(tsk); /* sets PF_EXITING */
825 sched_exit(tsk);
826
827 #ifdef CONFIG_QOS_CTRL
828 sched_exit_qos_list(tsk);
829 #endif
830
831 /* sync mm's RSS info before statistics gathering */
832 if (tsk->mm)
833 sync_mm_rss(tsk->mm);
834 acct_update_integrals(tsk);
835 group_dead = atomic_dec_and_test(&tsk->signal->live);
836 if (group_dead) {
837 /*
838 * If the last thread of global init has exited, panic
839 * immediately to get a useable coredump.
840 */
841 if (unlikely(is_global_init(tsk)))
842 panic("Attempted to kill init! exitcode=0x%08x\n",
843 tsk->signal->group_exit_code ?: (int)code);
844
845 #ifdef CONFIG_POSIX_TIMERS
846 hrtimer_cancel(&tsk->signal->real_timer);
847 exit_itimers(tsk);
848 #endif
849 if (tsk->mm)
850 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
851 }
852 acct_collect(code, group_dead);
853 if (group_dead)
854 tty_audit_exit();
855 audit_free(tsk);
856
857 tsk->exit_code = code;
858 taskstats_exit(tsk, group_dead);
859
860 /*
861 * Since sampling can touch ->mm, make sure to stop everything before we
862 * tear it down.
863 *
864 * Also flushes inherited counters to the parent - before the parent
865 * gets woken up by child-exit notifications.
866 */
867 perf_event_exit_task(tsk);
868
869 exit_mm();
870
871 if (group_dead)
872 acct_process();
873 trace_sched_process_exit(tsk);
874
875 exit_sem(tsk);
876 exit_shm(tsk);
877 exit_files(tsk);
878 exit_fs(tsk);
879 if (group_dead)
880 disassociate_ctty(1);
881 exit_task_namespaces(tsk);
882 exit_task_work(tsk);
883 exit_thread(tsk);
884
885 sched_autogroup_exit_task(tsk);
886 cgroup_exit(tsk);
887
888 /*
889 * FIXME: do that only when needed, using sched_exit tracepoint
890 */
891 flush_ptrace_hw_breakpoint(tsk);
892
893 exit_tasks_rcu_start();
894 exit_notify(tsk, group_dead);
895 CALL_HCK_LITE_HOOK(ced_exit_lhck, tsk);
896 proc_exit_connector(tsk);
897 mpol_put_task_policy(tsk);
898 #ifdef CONFIG_FUTEX
899 if (unlikely(current->pi_state_cache))
900 kfree(current->pi_state_cache);
901 #endif
902 /*
903 * Make sure we are holding no locks:
904 */
905 debug_check_no_locks_held();
906
907 if (tsk->io_context)
908 exit_io_context(tsk);
909
910 if (tsk->splice_pipe)
911 free_pipe_info(tsk->splice_pipe);
912
913 if (tsk->task_frag.page)
914 put_page(tsk->task_frag.page);
915
916 validate_creds_for_do_exit(tsk);
917
918 check_stack_usage();
919 preempt_disable();
920 if (tsk->nr_dirtied)
921 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
922 exit_rcu();
923 exit_tasks_rcu_finish();
924
925 lockdep_free_task(tsk);
926 do_task_dead();
927 }
928 EXPORT_SYMBOL_GPL(do_exit);
929
make_task_dead(int signr)930 void __noreturn make_task_dead(int signr)
931 {
932 /*
933 * Take the task off the cpu after something catastrophic has
934 * happened.
935 */
936 unsigned int limit;
937
938 /*
939 * Every time the system oopses, if the oops happens while a reference
940 * to an object was held, the reference leaks.
941 * If the oops doesn't also leak memory, repeated oopsing can cause
942 * reference counters to wrap around (if they're not using refcount_t).
943 * This means that repeated oopsing can make unexploitable-looking bugs
944 * exploitable through repeated oopsing.
945 * To make sure this can't happen, place an upper bound on how often the
946 * kernel may oops without panic().
947 */
948 limit = READ_ONCE(oops_limit);
949 if (atomic_inc_return(&oops_count) >= limit && limit)
950 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
951
952 do_exit(signr);
953 }
954
complete_and_exit(struct completion * comp,long code)955 void complete_and_exit(struct completion *comp, long code)
956 {
957 if (comp)
958 complete(comp);
959
960 do_exit(code);
961 }
962 EXPORT_SYMBOL(complete_and_exit);
963
SYSCALL_DEFINE1(exit,int,error_code)964 SYSCALL_DEFINE1(exit, int, error_code)
965 {
966 do_exit((error_code&0xff)<<8);
967 }
968
969 /*
970 * Take down every thread in the group. This is called by fatal signals
971 * as well as by sys_exit_group (below).
972 */
973 void
do_group_exit(int exit_code)974 do_group_exit(int exit_code)
975 {
976 struct signal_struct *sig = current->signal;
977
978 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
979
980 if (signal_group_exit(sig))
981 exit_code = sig->group_exit_code;
982 else if (!thread_group_empty(current)) {
983 struct sighand_struct *const sighand = current->sighand;
984
985 spin_lock_irq(&sighand->siglock);
986 if (signal_group_exit(sig))
987 /* Another thread got here before we took the lock. */
988 exit_code = sig->group_exit_code;
989 else {
990 sig->group_exit_code = exit_code;
991 sig->flags = SIGNAL_GROUP_EXIT;
992 zap_other_threads(current);
993 }
994 spin_unlock_irq(&sighand->siglock);
995 }
996
997 do_exit(exit_code);
998 /* NOTREACHED */
999 }
1000
1001 /*
1002 * this kills every thread in the thread group. Note that any externally
1003 * wait4()-ing process will get the correct exit code - even if this
1004 * thread is not the thread group leader.
1005 */
SYSCALL_DEFINE1(exit_group,int,error_code)1006 SYSCALL_DEFINE1(exit_group, int, error_code)
1007 {
1008 do_group_exit((error_code & 0xff) << 8);
1009 /* NOTREACHED */
1010 return 0;
1011 }
1012
1013 struct waitid_info {
1014 pid_t pid;
1015 uid_t uid;
1016 int status;
1017 int cause;
1018 };
1019
1020 struct wait_opts {
1021 enum pid_type wo_type;
1022 int wo_flags;
1023 struct pid *wo_pid;
1024
1025 struct waitid_info *wo_info;
1026 int wo_stat;
1027 struct rusage *wo_rusage;
1028
1029 wait_queue_entry_t child_wait;
1030 int notask_error;
1031 };
1032
eligible_pid(struct wait_opts * wo,struct task_struct * p)1033 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1034 {
1035 return wo->wo_type == PIDTYPE_MAX ||
1036 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1037 }
1038
1039 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1040 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1041 {
1042 if (!eligible_pid(wo, p))
1043 return 0;
1044
1045 /*
1046 * Wait for all children (clone and not) if __WALL is set or
1047 * if it is traced by us.
1048 */
1049 if (ptrace || (wo->wo_flags & __WALL))
1050 return 1;
1051
1052 /*
1053 * Otherwise, wait for clone children *only* if __WCLONE is set;
1054 * otherwise, wait for non-clone children *only*.
1055 *
1056 * Note: a "clone" child here is one that reports to its parent
1057 * using a signal other than SIGCHLD, or a non-leader thread which
1058 * we can only see if it is traced by us.
1059 */
1060 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1061 return 0;
1062
1063 return 1;
1064 }
1065
1066 /*
1067 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1068 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1069 * the lock and this task is uninteresting. If we return nonzero, we have
1070 * released the lock and the system call should return.
1071 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1072 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1073 {
1074 int state, status;
1075 pid_t pid = task_pid_vnr(p);
1076 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1077 struct waitid_info *infop;
1078
1079 if (!likely(wo->wo_flags & WEXITED))
1080 return 0;
1081
1082 if (unlikely(wo->wo_flags & WNOWAIT)) {
1083 status = p->exit_code;
1084 get_task_struct(p);
1085 read_unlock(&tasklist_lock);
1086 sched_annotate_sleep();
1087 if (wo->wo_rusage)
1088 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1089 put_task_struct(p);
1090 goto out_info;
1091 }
1092 /*
1093 * Move the task's state to DEAD/TRACE, only one thread can do this.
1094 */
1095 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1096 EXIT_TRACE : EXIT_DEAD;
1097 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1098 return 0;
1099 /*
1100 * We own this thread, nobody else can reap it.
1101 */
1102 read_unlock(&tasklist_lock);
1103 sched_annotate_sleep();
1104
1105 /*
1106 * Check thread_group_leader() to exclude the traced sub-threads.
1107 */
1108 if (state == EXIT_DEAD && thread_group_leader(p)) {
1109 struct signal_struct *sig = p->signal;
1110 struct signal_struct *psig = current->signal;
1111 unsigned long maxrss;
1112 u64 tgutime, tgstime;
1113
1114 /*
1115 * The resource counters for the group leader are in its
1116 * own task_struct. Those for dead threads in the group
1117 * are in its signal_struct, as are those for the child
1118 * processes it has previously reaped. All these
1119 * accumulate in the parent's signal_struct c* fields.
1120 *
1121 * We don't bother to take a lock here to protect these
1122 * p->signal fields because the whole thread group is dead
1123 * and nobody can change them.
1124 *
1125 * psig->stats_lock also protects us from our sub-theads
1126 * which can reap other children at the same time. Until
1127 * we change k_getrusage()-like users to rely on this lock
1128 * we have to take ->siglock as well.
1129 *
1130 * We use thread_group_cputime_adjusted() to get times for
1131 * the thread group, which consolidates times for all threads
1132 * in the group including the group leader.
1133 */
1134 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1135 spin_lock_irq(¤t->sighand->siglock);
1136 write_seqlock(&psig->stats_lock);
1137 psig->cutime += tgutime + sig->cutime;
1138 psig->cstime += tgstime + sig->cstime;
1139 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1140 psig->cmin_flt +=
1141 p->min_flt + sig->min_flt + sig->cmin_flt;
1142 psig->cmaj_flt +=
1143 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1144 psig->cnvcsw +=
1145 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1146 psig->cnivcsw +=
1147 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1148 psig->cinblock +=
1149 task_io_get_inblock(p) +
1150 sig->inblock + sig->cinblock;
1151 psig->coublock +=
1152 task_io_get_oublock(p) +
1153 sig->oublock + sig->coublock;
1154 maxrss = max(sig->maxrss, sig->cmaxrss);
1155 if (psig->cmaxrss < maxrss)
1156 psig->cmaxrss = maxrss;
1157 task_io_accounting_add(&psig->ioac, &p->ioac);
1158 task_io_accounting_add(&psig->ioac, &sig->ioac);
1159 write_sequnlock(&psig->stats_lock);
1160 spin_unlock_irq(¤t->sighand->siglock);
1161 }
1162
1163 if (wo->wo_rusage)
1164 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1165 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1166 ? p->signal->group_exit_code : p->exit_code;
1167 wo->wo_stat = status;
1168
1169 if (state == EXIT_TRACE) {
1170 write_lock_irq(&tasklist_lock);
1171 /* We dropped tasklist, ptracer could die and untrace */
1172 ptrace_unlink(p);
1173
1174 /* If parent wants a zombie, don't release it now */
1175 state = EXIT_ZOMBIE;
1176 if (do_notify_parent(p, p->exit_signal))
1177 state = EXIT_DEAD;
1178 p->exit_state = state;
1179 write_unlock_irq(&tasklist_lock);
1180 }
1181 if (state == EXIT_DEAD)
1182 release_task(p);
1183
1184 out_info:
1185 infop = wo->wo_info;
1186 if (infop) {
1187 if ((status & 0x7f) == 0) {
1188 infop->cause = CLD_EXITED;
1189 infop->status = status >> 8;
1190 } else {
1191 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1192 infop->status = status & 0x7f;
1193 }
1194 infop->pid = pid;
1195 infop->uid = uid;
1196 }
1197
1198 return pid;
1199 }
1200
task_stopped_code(struct task_struct * p,bool ptrace)1201 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1202 {
1203 if (ptrace) {
1204 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1205 return &p->exit_code;
1206 } else {
1207 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1208 return &p->signal->group_exit_code;
1209 }
1210 return NULL;
1211 }
1212
1213 /**
1214 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1215 * @wo: wait options
1216 * @ptrace: is the wait for ptrace
1217 * @p: task to wait for
1218 *
1219 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1220 *
1221 * CONTEXT:
1222 * read_lock(&tasklist_lock), which is released if return value is
1223 * non-zero. Also, grabs and releases @p->sighand->siglock.
1224 *
1225 * RETURNS:
1226 * 0 if wait condition didn't exist and search for other wait conditions
1227 * should continue. Non-zero return, -errno on failure and @p's pid on
1228 * success, implies that tasklist_lock is released and wait condition
1229 * search should terminate.
1230 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1231 static int wait_task_stopped(struct wait_opts *wo,
1232 int ptrace, struct task_struct *p)
1233 {
1234 struct waitid_info *infop;
1235 int exit_code, *p_code, why;
1236 uid_t uid = 0; /* unneeded, required by compiler */
1237 pid_t pid;
1238
1239 /*
1240 * Traditionally we see ptrace'd stopped tasks regardless of options.
1241 */
1242 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1243 return 0;
1244
1245 if (!task_stopped_code(p, ptrace))
1246 return 0;
1247
1248 exit_code = 0;
1249 spin_lock_irq(&p->sighand->siglock);
1250
1251 p_code = task_stopped_code(p, ptrace);
1252 if (unlikely(!p_code))
1253 goto unlock_sig;
1254
1255 exit_code = *p_code;
1256 if (!exit_code)
1257 goto unlock_sig;
1258
1259 if (!unlikely(wo->wo_flags & WNOWAIT))
1260 *p_code = 0;
1261
1262 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1263 unlock_sig:
1264 spin_unlock_irq(&p->sighand->siglock);
1265 if (!exit_code)
1266 return 0;
1267
1268 /*
1269 * Now we are pretty sure this task is interesting.
1270 * Make sure it doesn't get reaped out from under us while we
1271 * give up the lock and then examine it below. We don't want to
1272 * keep holding onto the tasklist_lock while we call getrusage and
1273 * possibly take page faults for user memory.
1274 */
1275 get_task_struct(p);
1276 pid = task_pid_vnr(p);
1277 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1278 read_unlock(&tasklist_lock);
1279 sched_annotate_sleep();
1280 if (wo->wo_rusage)
1281 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1282 put_task_struct(p);
1283
1284 if (likely(!(wo->wo_flags & WNOWAIT)))
1285 wo->wo_stat = (exit_code << 8) | 0x7f;
1286
1287 infop = wo->wo_info;
1288 if (infop) {
1289 infop->cause = why;
1290 infop->status = exit_code;
1291 infop->pid = pid;
1292 infop->uid = uid;
1293 }
1294 return pid;
1295 }
1296
1297 /*
1298 * Handle do_wait work for one task in a live, non-stopped state.
1299 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1300 * the lock and this task is uninteresting. If we return nonzero, we have
1301 * released the lock and the system call should return.
1302 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1303 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1304 {
1305 struct waitid_info *infop;
1306 pid_t pid;
1307 uid_t uid;
1308
1309 if (!unlikely(wo->wo_flags & WCONTINUED))
1310 return 0;
1311
1312 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1313 return 0;
1314
1315 spin_lock_irq(&p->sighand->siglock);
1316 /* Re-check with the lock held. */
1317 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1318 spin_unlock_irq(&p->sighand->siglock);
1319 return 0;
1320 }
1321 if (!unlikely(wo->wo_flags & WNOWAIT))
1322 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1323 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1324 spin_unlock_irq(&p->sighand->siglock);
1325
1326 pid = task_pid_vnr(p);
1327 get_task_struct(p);
1328 read_unlock(&tasklist_lock);
1329 sched_annotate_sleep();
1330 if (wo->wo_rusage)
1331 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1332 put_task_struct(p);
1333
1334 infop = wo->wo_info;
1335 if (!infop) {
1336 wo->wo_stat = 0xffff;
1337 } else {
1338 infop->cause = CLD_CONTINUED;
1339 infop->pid = pid;
1340 infop->uid = uid;
1341 infop->status = SIGCONT;
1342 }
1343 return pid;
1344 }
1345
1346 /*
1347 * Consider @p for a wait by @parent.
1348 *
1349 * -ECHILD should be in ->notask_error before the first call.
1350 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1351 * Returns zero if the search for a child should continue;
1352 * then ->notask_error is 0 if @p is an eligible child,
1353 * or still -ECHILD.
1354 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1355 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1356 struct task_struct *p)
1357 {
1358 /*
1359 * We can race with wait_task_zombie() from another thread.
1360 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1361 * can't confuse the checks below.
1362 */
1363 int exit_state = READ_ONCE(p->exit_state);
1364 int ret;
1365
1366 if (unlikely(exit_state == EXIT_DEAD))
1367 return 0;
1368
1369 ret = eligible_child(wo, ptrace, p);
1370 if (!ret)
1371 return ret;
1372
1373 if (unlikely(exit_state == EXIT_TRACE)) {
1374 /*
1375 * ptrace == 0 means we are the natural parent. In this case
1376 * we should clear notask_error, debugger will notify us.
1377 */
1378 if (likely(!ptrace))
1379 wo->notask_error = 0;
1380 return 0;
1381 }
1382
1383 if (likely(!ptrace) && unlikely(p->ptrace)) {
1384 /*
1385 * If it is traced by its real parent's group, just pretend
1386 * the caller is ptrace_do_wait() and reap this child if it
1387 * is zombie.
1388 *
1389 * This also hides group stop state from real parent; otherwise
1390 * a single stop can be reported twice as group and ptrace stop.
1391 * If a ptracer wants to distinguish these two events for its
1392 * own children it should create a separate process which takes
1393 * the role of real parent.
1394 */
1395 if (!ptrace_reparented(p))
1396 ptrace = 1;
1397 }
1398
1399 /* slay zombie? */
1400 if (exit_state == EXIT_ZOMBIE) {
1401 /* we don't reap group leaders with subthreads */
1402 if (!delay_group_leader(p)) {
1403 /*
1404 * A zombie ptracee is only visible to its ptracer.
1405 * Notification and reaping will be cascaded to the
1406 * real parent when the ptracer detaches.
1407 */
1408 if (unlikely(ptrace) || likely(!p->ptrace))
1409 return wait_task_zombie(wo, p);
1410 }
1411
1412 /*
1413 * Allow access to stopped/continued state via zombie by
1414 * falling through. Clearing of notask_error is complex.
1415 *
1416 * When !@ptrace:
1417 *
1418 * If WEXITED is set, notask_error should naturally be
1419 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1420 * so, if there are live subthreads, there are events to
1421 * wait for. If all subthreads are dead, it's still safe
1422 * to clear - this function will be called again in finite
1423 * amount time once all the subthreads are released and
1424 * will then return without clearing.
1425 *
1426 * When @ptrace:
1427 *
1428 * Stopped state is per-task and thus can't change once the
1429 * target task dies. Only continued and exited can happen.
1430 * Clear notask_error if WCONTINUED | WEXITED.
1431 */
1432 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1433 wo->notask_error = 0;
1434 } else {
1435 /*
1436 * @p is alive and it's gonna stop, continue or exit, so
1437 * there always is something to wait for.
1438 */
1439 wo->notask_error = 0;
1440 }
1441
1442 /*
1443 * Wait for stopped. Depending on @ptrace, different stopped state
1444 * is used and the two don't interact with each other.
1445 */
1446 ret = wait_task_stopped(wo, ptrace, p);
1447 if (ret)
1448 return ret;
1449
1450 /*
1451 * Wait for continued. There's only one continued state and the
1452 * ptracer can consume it which can confuse the real parent. Don't
1453 * use WCONTINUED from ptracer. You don't need or want it.
1454 */
1455 return wait_task_continued(wo, p);
1456 }
1457
1458 /*
1459 * Do the work of do_wait() for one thread in the group, @tsk.
1460 *
1461 * -ECHILD should be in ->notask_error before the first call.
1462 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1463 * Returns zero if the search for a child should continue; then
1464 * ->notask_error is 0 if there were any eligible children,
1465 * or still -ECHILD.
1466 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1467 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1468 {
1469 struct task_struct *p;
1470
1471 list_for_each_entry(p, &tsk->children, sibling) {
1472 int ret = wait_consider_task(wo, 0, p);
1473
1474 if (ret)
1475 return ret;
1476 }
1477
1478 return 0;
1479 }
1480
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1481 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1482 {
1483 struct task_struct *p;
1484
1485 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1486 int ret = wait_consider_task(wo, 1, p);
1487
1488 if (ret)
1489 return ret;
1490 }
1491
1492 return 0;
1493 }
1494
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1495 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1496 int sync, void *key)
1497 {
1498 struct wait_opts *wo = container_of(wait, struct wait_opts,
1499 child_wait);
1500 struct task_struct *p = key;
1501
1502 if (!eligible_pid(wo, p))
1503 return 0;
1504
1505 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1506 return 0;
1507
1508 return default_wake_function(wait, mode, sync, key);
1509 }
1510
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1511 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1512 {
1513 __wake_up_sync_key(&parent->signal->wait_chldexit,
1514 TASK_INTERRUPTIBLE, p);
1515 }
1516
do_wait(struct wait_opts * wo)1517 static long do_wait(struct wait_opts *wo)
1518 {
1519 struct task_struct *tsk;
1520 int retval;
1521
1522 trace_sched_process_wait(wo->wo_pid);
1523
1524 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1525 wo->child_wait.private = current;
1526 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1527 repeat:
1528 /*
1529 * If there is nothing that can match our criteria, just get out.
1530 * We will clear ->notask_error to zero if we see any child that
1531 * might later match our criteria, even if we are not able to reap
1532 * it yet.
1533 */
1534 wo->notask_error = -ECHILD;
1535 if ((wo->wo_type < PIDTYPE_MAX) &&
1536 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1537 goto notask;
1538
1539 set_current_state(TASK_INTERRUPTIBLE);
1540 read_lock(&tasklist_lock);
1541 tsk = current;
1542 do {
1543 retval = do_wait_thread(wo, tsk);
1544 if (retval)
1545 goto end;
1546
1547 retval = ptrace_do_wait(wo, tsk);
1548 if (retval)
1549 goto end;
1550
1551 if (wo->wo_flags & __WNOTHREAD)
1552 break;
1553 } while_each_thread(current, tsk);
1554 read_unlock(&tasklist_lock);
1555
1556 notask:
1557 retval = wo->notask_error;
1558 if (!retval && !(wo->wo_flags & WNOHANG)) {
1559 retval = -ERESTARTSYS;
1560 if (!signal_pending(current)) {
1561 schedule();
1562 goto repeat;
1563 }
1564 }
1565 end:
1566 __set_current_state(TASK_RUNNING);
1567 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1568 return retval;
1569 }
1570
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1571 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1572 int options, struct rusage *ru)
1573 {
1574 struct wait_opts wo;
1575 struct pid *pid = NULL;
1576 enum pid_type type;
1577 long ret;
1578 unsigned int f_flags = 0;
1579
1580 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1581 __WNOTHREAD|__WCLONE|__WALL))
1582 return -EINVAL;
1583 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1584 return -EINVAL;
1585
1586 switch (which) {
1587 case P_ALL:
1588 type = PIDTYPE_MAX;
1589 break;
1590 case P_PID:
1591 type = PIDTYPE_PID;
1592 if (upid <= 0)
1593 return -EINVAL;
1594
1595 pid = find_get_pid(upid);
1596 break;
1597 case P_PGID:
1598 type = PIDTYPE_PGID;
1599 if (upid < 0)
1600 return -EINVAL;
1601
1602 if (upid)
1603 pid = find_get_pid(upid);
1604 else
1605 pid = get_task_pid(current, PIDTYPE_PGID);
1606 break;
1607 case P_PIDFD:
1608 type = PIDTYPE_PID;
1609 if (upid < 0)
1610 return -EINVAL;
1611
1612 pid = pidfd_get_pid(upid, &f_flags);
1613 if (IS_ERR(pid))
1614 return PTR_ERR(pid);
1615
1616 break;
1617 default:
1618 return -EINVAL;
1619 }
1620
1621 wo.wo_type = type;
1622 wo.wo_pid = pid;
1623 wo.wo_flags = options;
1624 wo.wo_info = infop;
1625 wo.wo_rusage = ru;
1626 if (f_flags & O_NONBLOCK)
1627 wo.wo_flags |= WNOHANG;
1628
1629 ret = do_wait(&wo);
1630 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1631 ret = -EAGAIN;
1632
1633 put_pid(pid);
1634 return ret;
1635 }
1636
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1637 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1638 infop, int, options, struct rusage __user *, ru)
1639 {
1640 struct rusage r;
1641 struct waitid_info info = {.status = 0};
1642 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1643 int signo = 0;
1644
1645 if (err > 0) {
1646 signo = SIGCHLD;
1647 err = 0;
1648 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1649 return -EFAULT;
1650 }
1651 if (!infop)
1652 return err;
1653
1654 if (!user_write_access_begin(infop, sizeof(*infop)))
1655 return -EFAULT;
1656
1657 unsafe_put_user(signo, &infop->si_signo, Efault);
1658 unsafe_put_user(0, &infop->si_errno, Efault);
1659 unsafe_put_user(info.cause, &infop->si_code, Efault);
1660 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1661 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1662 unsafe_put_user(info.status, &infop->si_status, Efault);
1663 user_write_access_end();
1664 return err;
1665 Efault:
1666 user_write_access_end();
1667 return -EFAULT;
1668 }
1669
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1670 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1671 struct rusage *ru)
1672 {
1673 struct wait_opts wo;
1674 struct pid *pid = NULL;
1675 enum pid_type type;
1676 long ret;
1677
1678 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1679 __WNOTHREAD|__WCLONE|__WALL))
1680 return -EINVAL;
1681
1682 /* -INT_MIN is not defined */
1683 if (upid == INT_MIN)
1684 return -ESRCH;
1685
1686 if (upid == -1)
1687 type = PIDTYPE_MAX;
1688 else if (upid < 0) {
1689 type = PIDTYPE_PGID;
1690 pid = find_get_pid(-upid);
1691 } else if (upid == 0) {
1692 type = PIDTYPE_PGID;
1693 pid = get_task_pid(current, PIDTYPE_PGID);
1694 } else /* upid > 0 */ {
1695 type = PIDTYPE_PID;
1696 pid = find_get_pid(upid);
1697 }
1698
1699 wo.wo_type = type;
1700 wo.wo_pid = pid;
1701 wo.wo_flags = options | WEXITED;
1702 wo.wo_info = NULL;
1703 wo.wo_stat = 0;
1704 wo.wo_rusage = ru;
1705 ret = do_wait(&wo);
1706 put_pid(pid);
1707 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1708 ret = -EFAULT;
1709
1710 return ret;
1711 }
1712
kernel_wait(pid_t pid,int * stat)1713 int kernel_wait(pid_t pid, int *stat)
1714 {
1715 struct wait_opts wo = {
1716 .wo_type = PIDTYPE_PID,
1717 .wo_pid = find_get_pid(pid),
1718 .wo_flags = WEXITED,
1719 };
1720 int ret;
1721
1722 ret = do_wait(&wo);
1723 if (ret > 0 && wo.wo_stat)
1724 *stat = wo.wo_stat;
1725 put_pid(wo.wo_pid);
1726 return ret;
1727 }
1728
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1729 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1730 int, options, struct rusage __user *, ru)
1731 {
1732 struct rusage r;
1733 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1734
1735 if (err > 0) {
1736 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1737 return -EFAULT;
1738 }
1739 return err;
1740 }
1741
1742 #ifdef __ARCH_WANT_SYS_WAITPID
1743
1744 /*
1745 * sys_waitpid() remains for compatibility. waitpid() should be
1746 * implemented by calling sys_wait4() from libc.a.
1747 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1748 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1749 {
1750 return kernel_wait4(pid, stat_addr, options, NULL);
1751 }
1752
1753 #endif
1754
1755 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1756 COMPAT_SYSCALL_DEFINE4(wait4,
1757 compat_pid_t, pid,
1758 compat_uint_t __user *, stat_addr,
1759 int, options,
1760 struct compat_rusage __user *, ru)
1761 {
1762 struct rusage r;
1763 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1764 if (err > 0) {
1765 if (ru && put_compat_rusage(&r, ru))
1766 return -EFAULT;
1767 }
1768 return err;
1769 }
1770
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1771 COMPAT_SYSCALL_DEFINE5(waitid,
1772 int, which, compat_pid_t, pid,
1773 struct compat_siginfo __user *, infop, int, options,
1774 struct compat_rusage __user *, uru)
1775 {
1776 struct rusage ru;
1777 struct waitid_info info = {.status = 0};
1778 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1779 int signo = 0;
1780 if (err > 0) {
1781 signo = SIGCHLD;
1782 err = 0;
1783 if (uru) {
1784 /* kernel_waitid() overwrites everything in ru */
1785 if (COMPAT_USE_64BIT_TIME)
1786 err = copy_to_user(uru, &ru, sizeof(ru));
1787 else
1788 err = put_compat_rusage(&ru, uru);
1789 if (err)
1790 return -EFAULT;
1791 }
1792 }
1793
1794 if (!infop)
1795 return err;
1796
1797 if (!user_write_access_begin(infop, sizeof(*infop)))
1798 return -EFAULT;
1799
1800 unsafe_put_user(signo, &infop->si_signo, Efault);
1801 unsafe_put_user(0, &infop->si_errno, Efault);
1802 unsafe_put_user(info.cause, &infop->si_code, Efault);
1803 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1804 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1805 unsafe_put_user(info.status, &infop->si_status, Efault);
1806 user_write_access_end();
1807 return err;
1808 Efault:
1809 user_write_access_end();
1810 return -EFAULT;
1811 }
1812 #endif
1813
1814 /**
1815 * thread_group_exited - check that a thread group has exited
1816 * @pid: tgid of thread group to be checked.
1817 *
1818 * Test if the thread group represented by tgid has exited (all
1819 * threads are zombies, dead or completely gone).
1820 *
1821 * Return: true if the thread group has exited. false otherwise.
1822 */
thread_group_exited(struct pid * pid)1823 bool thread_group_exited(struct pid *pid)
1824 {
1825 struct task_struct *task;
1826 bool exited;
1827
1828 rcu_read_lock();
1829 task = pid_task(pid, PIDTYPE_PID);
1830 exited = !task ||
1831 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1832 rcu_read_unlock();
1833
1834 return exited;
1835 }
1836 EXPORT_SYMBOL(thread_group_exited);
1837
abort(void)1838 __weak void abort(void)
1839 {
1840 BUG();
1841
1842 /* if that doesn't kill us, halt */
1843 panic("Oops failed to kill thread");
1844 }
1845 EXPORT_SYMBOL(abort);
1846