• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_META_H
12 #define EIGEN_META_H
13 
14 #if defined(__CUDA_ARCH__)
15 #include <cfloat>
16 #include <math_constants.h>
17 #endif
18 
19 #if EIGEN_COMP_ICC>=1600 &&  __cplusplus >= 201103L
20 #include <cstdint>
21 #endif
22 
23 namespace Eigen {
24 
25 typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex;
26 
27 /**
28  * \brief The Index type as used for the API.
29  * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE.
30  * \sa \blank \ref TopicPreprocessorDirectives, StorageIndex.
31  */
32 
33 typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Index;
34 
35 namespace internal {
36 
37 /** \internal
38   * \file Meta.h
39   * This file contains generic metaprogramming classes which are not specifically related to Eigen.
40   * \note In case you wonder, yes we're aware that Boost already provides all these features,
41   * we however don't want to add a dependency to Boost.
42   */
43 
44 // Only recent versions of ICC complain about using ptrdiff_t to hold pointers,
45 // and older versions do not provide *intptr_t types.
46 #if EIGEN_COMP_ICC>=1600 &&  __cplusplus >= 201103L
47 typedef std::intptr_t  IntPtr;
48 typedef std::uintptr_t UIntPtr;
49 #else
50 typedef std::ptrdiff_t IntPtr;
51 typedef std::size_t UIntPtr;
52 #endif
53 
54 struct true_type {  enum { value = 1 }; };
55 struct false_type { enum { value = 0 }; };
56 
57 template<bool Condition, typename Then, typename Else>
58 struct conditional { typedef Then type; };
59 
60 template<typename Then, typename Else>
61 struct conditional <false, Then, Else> { typedef Else type; };
62 
63 template<typename T, typename U> struct is_same { enum { value = 0 }; };
64 template<typename T> struct is_same<T,T> { enum { value = 1 }; };
65 
66 template<typename T> struct remove_reference { typedef T type; };
67 template<typename T> struct remove_reference<T&> { typedef T type; };
68 
69 template<typename T> struct remove_pointer { typedef T type; };
70 template<typename T> struct remove_pointer<T*> { typedef T type; };
71 template<typename T> struct remove_pointer<T*const> { typedef T type; };
72 
73 template <class T> struct remove_const { typedef T type; };
74 template <class T> struct remove_const<const T> { typedef T type; };
75 template <class T> struct remove_const<const T[]> { typedef T type[]; };
76 template <class T, unsigned int Size> struct remove_const<const T[Size]> { typedef T type[Size]; };
77 
78 template<typename T> struct remove_all { typedef T type; };
79 template<typename T> struct remove_all<const T>   { typedef typename remove_all<T>::type type; };
80 template<typename T> struct remove_all<T const&>  { typedef typename remove_all<T>::type type; };
81 template<typename T> struct remove_all<T&>        { typedef typename remove_all<T>::type type; };
82 template<typename T> struct remove_all<T const*>  { typedef typename remove_all<T>::type type; };
83 template<typename T> struct remove_all<T*>        { typedef typename remove_all<T>::type type; };
84 
85 template<typename T> struct is_arithmetic      { enum { value = false }; };
86 template<> struct is_arithmetic<float>         { enum { value = true }; };
87 template<> struct is_arithmetic<double>        { enum { value = true }; };
88 template<> struct is_arithmetic<long double>   { enum { value = true }; };
89 template<> struct is_arithmetic<bool>          { enum { value = true }; };
90 template<> struct is_arithmetic<char>          { enum { value = true }; };
91 template<> struct is_arithmetic<signed char>   { enum { value = true }; };
92 template<> struct is_arithmetic<unsigned char> { enum { value = true }; };
93 template<> struct is_arithmetic<signed short>  { enum { value = true }; };
94 template<> struct is_arithmetic<unsigned short>{ enum { value = true }; };
95 template<> struct is_arithmetic<signed int>    { enum { value = true }; };
96 template<> struct is_arithmetic<unsigned int>  { enum { value = true }; };
97 template<> struct is_arithmetic<signed long>   { enum { value = true }; };
98 template<> struct is_arithmetic<unsigned long> { enum { value = true }; };
99 
100 template<typename T> struct is_integral        { enum { value = false }; };
101 template<> struct is_integral<bool>            { enum { value = true }; };
102 template<> struct is_integral<char>            { enum { value = true }; };
103 template<> struct is_integral<signed char>     { enum { value = true }; };
104 template<> struct is_integral<unsigned char>   { enum { value = true }; };
105 template<> struct is_integral<signed short>    { enum { value = true }; };
106 template<> struct is_integral<unsigned short>  { enum { value = true }; };
107 template<> struct is_integral<signed int>      { enum { value = true }; };
108 template<> struct is_integral<unsigned int>    { enum { value = true }; };
109 template<> struct is_integral<signed long>     { enum { value = true }; };
110 template<> struct is_integral<unsigned long>   { enum { value = true }; };
111 
112 #if EIGEN_HAS_CXX11
113 using std::make_unsigned;
114 #else
115 // TODO: Possibly improve this implementation of make_unsigned.
116 // It is currently used only by
117 // template<typename Scalar> struct random_default_impl<Scalar, false, true>.
118 template<typename> struct make_unsigned;
119 template<> struct make_unsigned<char>             { typedef unsigned char type; };
120 template<> struct make_unsigned<signed char>      { typedef unsigned char type; };
121 template<> struct make_unsigned<unsigned char>    { typedef unsigned char type; };
122 template<> struct make_unsigned<signed short>     { typedef unsigned short type; };
123 template<> struct make_unsigned<unsigned short>   { typedef unsigned short type; };
124 template<> struct make_unsigned<signed int>       { typedef unsigned int type; };
125 template<> struct make_unsigned<unsigned int>     { typedef unsigned int type; };
126 template<> struct make_unsigned<signed long>      { typedef unsigned long type; };
127 template<> struct make_unsigned<unsigned long>    { typedef unsigned long type; };
128 #if EIGEN_COMP_MSVC
129 template<> struct make_unsigned<signed __int64>   { typedef unsigned __int64 type; };
130 template<> struct make_unsigned<unsigned __int64> { typedef unsigned __int64 type; };
131 #endif
132 #endif
133 
134 template <typename T> struct add_const { typedef const T type; };
135 template <typename T> struct add_const<T&> { typedef T& type; };
136 
137 template <typename T> struct is_const { enum { value = 0 }; };
138 template <typename T> struct is_const<T const> { enum { value = 1 }; };
139 
140 template<typename T> struct add_const_on_value_type            { typedef const T type;  };
141 template<typename T> struct add_const_on_value_type<T&>        { typedef T const& type; };
142 template<typename T> struct add_const_on_value_type<T*>        { typedef T const* type; };
143 template<typename T> struct add_const_on_value_type<T* const>  { typedef T const* const type; };
144 template<typename T> struct add_const_on_value_type<T const* const>  { typedef T const* const type; };
145 
146 
147 template<typename From, typename To>
148 struct is_convertible_impl
149 {
150 private:
151   struct any_conversion
152   {
153     template <typename T> any_conversion(const volatile T&);
154     template <typename T> any_conversion(T&);
155   };
156   struct yes {int a[1];};
157   struct no  {int a[2];};
158 
159   static yes test(const To&, int);
160   static no  test(any_conversion, ...);
161 
162 public:
163   static From ms_from;
164 #ifdef __INTEL_COMPILER
165   #pragma warning push
166   #pragma warning ( disable : 2259 )
167 #endif
168   enum { value = sizeof(test(ms_from, 0))==sizeof(yes) };
169 #ifdef __INTEL_COMPILER
170   #pragma warning pop
171 #endif
172 };
173 
174 template<typename From, typename To>
175 struct is_convertible
176 {
177   enum { value = is_convertible_impl<typename remove_all<From>::type,
178                                      typename remove_all<To  >::type>::value };
179 };
180 
181 /** \internal Allows to enable/disable an overload
182   * according to a compile time condition.
183   */
184 template<bool Condition, typename T=void> struct enable_if;
185 
186 template<typename T> struct enable_if<true,T>
187 { typedef T type; };
188 
189 #if defined(__CUDA_ARCH__)
190 #if !defined(__FLT_EPSILON__)
191 #define __FLT_EPSILON__ FLT_EPSILON
192 #define __DBL_EPSILON__ DBL_EPSILON
193 #endif
194 
195 namespace device {
196 
197 template<typename T> struct numeric_limits
198 {
199   EIGEN_DEVICE_FUNC
200   static T epsilon() { return 0; }
201   static T (max)() { assert(false && "Highest not supported for this type"); }
202   static T (min)() { assert(false && "Lowest not supported for this type"); }
203   static T infinity() { assert(false && "Infinity not supported for this type"); }
204   static T quiet_NaN() { assert(false && "quiet_NaN not supported for this type"); }
205 };
206 template<> struct numeric_limits<float>
207 {
208   EIGEN_DEVICE_FUNC
209   static float epsilon() { return __FLT_EPSILON__; }
210   EIGEN_DEVICE_FUNC
211   static float (max)() { return CUDART_MAX_NORMAL_F; }
212   EIGEN_DEVICE_FUNC
213   static float (min)() { return FLT_MIN; }
214   EIGEN_DEVICE_FUNC
215   static float infinity() { return CUDART_INF_F; }
216   EIGEN_DEVICE_FUNC
217   static float quiet_NaN() { return CUDART_NAN_F; }
218 };
219 template<> struct numeric_limits<double>
220 {
221   EIGEN_DEVICE_FUNC
222   static double epsilon() { return __DBL_EPSILON__; }
223   EIGEN_DEVICE_FUNC
224   static double (max)() { return DBL_MAX; }
225   EIGEN_DEVICE_FUNC
226   static double (min)() { return DBL_MIN; }
227   EIGEN_DEVICE_FUNC
228   static double infinity() { return CUDART_INF; }
229   EIGEN_DEVICE_FUNC
230   static double quiet_NaN() { return CUDART_NAN; }
231 };
232 template<> struct numeric_limits<int>
233 {
234   EIGEN_DEVICE_FUNC
235   static int epsilon() { return 0; }
236   EIGEN_DEVICE_FUNC
237   static int (max)() { return INT_MAX; }
238   EIGEN_DEVICE_FUNC
239   static int (min)() { return INT_MIN; }
240 };
241 template<> struct numeric_limits<unsigned int>
242 {
243   EIGEN_DEVICE_FUNC
244   static unsigned int epsilon() { return 0; }
245   EIGEN_DEVICE_FUNC
246   static unsigned int (max)() { return UINT_MAX; }
247   EIGEN_DEVICE_FUNC
248   static unsigned int (min)() { return 0; }
249 };
250 template<> struct numeric_limits<long>
251 {
252   EIGEN_DEVICE_FUNC
253   static long epsilon() { return 0; }
254   EIGEN_DEVICE_FUNC
255   static long (max)() { return LONG_MAX; }
256   EIGEN_DEVICE_FUNC
257   static long (min)() { return LONG_MIN; }
258 };
259 template<> struct numeric_limits<unsigned long>
260 {
261   EIGEN_DEVICE_FUNC
262   static unsigned long epsilon() { return 0; }
263   EIGEN_DEVICE_FUNC
264   static unsigned long (max)() { return ULONG_MAX; }
265   EIGEN_DEVICE_FUNC
266   static unsigned long (min)() { return 0; }
267 };
268 template<> struct numeric_limits<long long>
269 {
270   EIGEN_DEVICE_FUNC
271   static long long epsilon() { return 0; }
272   EIGEN_DEVICE_FUNC
273   static long long (max)() { return LLONG_MAX; }
274   EIGEN_DEVICE_FUNC
275   static long long (min)() { return LLONG_MIN; }
276 };
277 template<> struct numeric_limits<unsigned long long>
278 {
279   EIGEN_DEVICE_FUNC
280   static unsigned long long epsilon() { return 0; }
281   EIGEN_DEVICE_FUNC
282   static unsigned long long (max)() { return ULLONG_MAX; }
283   EIGEN_DEVICE_FUNC
284   static unsigned long long (min)() { return 0; }
285 };
286 
287 }
288 
289 #endif
290 
291 /** \internal
292   * A base class do disable default copy ctor and copy assignement operator.
293   */
294 class noncopyable
295 {
296   EIGEN_DEVICE_FUNC noncopyable(const noncopyable&);
297   EIGEN_DEVICE_FUNC const noncopyable& operator=(const noncopyable&);
298 protected:
299   EIGEN_DEVICE_FUNC noncopyable() {}
300   EIGEN_DEVICE_FUNC ~noncopyable() {}
301 };
302 
303 /** \internal
304   * Convenient struct to get the result type of a unary or binary functor.
305   *
306   * It supports both the current STL mechanism (using the result_type member) as well as
307   * upcoming next STL generation (using a templated result member).
308   * If none of these members is provided, then the type of the first argument is returned. FIXME, that behavior is a pretty bad hack.
309   */
310 #if EIGEN_HAS_STD_RESULT_OF
311 template<typename T> struct result_of {
312   typedef typename std::result_of<T>::type type1;
313   typedef typename remove_all<type1>::type type;
314 };
315 #else
316 template<typename T> struct result_of { };
317 
318 struct has_none {int a[1];};
319 struct has_std_result_type {int a[2];};
320 struct has_tr1_result {int a[3];};
321 
322 template<typename Func, typename ArgType, int SizeOf=sizeof(has_none)>
323 struct unary_result_of_select {typedef typename internal::remove_all<ArgType>::type type;};
324 
325 template<typename Func, typename ArgType>
326 struct unary_result_of_select<Func, ArgType, sizeof(has_std_result_type)> {typedef typename Func::result_type type;};
327 
328 template<typename Func, typename ArgType>
329 struct unary_result_of_select<Func, ArgType, sizeof(has_tr1_result)> {typedef typename Func::template result<Func(ArgType)>::type type;};
330 
331 template<typename Func, typename ArgType>
332 struct result_of<Func(ArgType)> {
333     template<typename T>
334     static has_std_result_type    testFunctor(T const *, typename T::result_type const * = 0);
335     template<typename T>
336     static has_tr1_result         testFunctor(T const *, typename T::template result<T(ArgType)>::type const * = 0);
337     static has_none               testFunctor(...);
338 
339     // note that the following indirection is needed for gcc-3.3
340     enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
341     typedef typename unary_result_of_select<Func, ArgType, FunctorType>::type type;
342 };
343 
344 template<typename Func, typename ArgType0, typename ArgType1, int SizeOf=sizeof(has_none)>
345 struct binary_result_of_select {typedef typename internal::remove_all<ArgType0>::type type;};
346 
347 template<typename Func, typename ArgType0, typename ArgType1>
348 struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_std_result_type)>
349 {typedef typename Func::result_type type;};
350 
351 template<typename Func, typename ArgType0, typename ArgType1>
352 struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_tr1_result)>
353 {typedef typename Func::template result<Func(ArgType0,ArgType1)>::type type;};
354 
355 template<typename Func, typename ArgType0, typename ArgType1>
356 struct result_of<Func(ArgType0,ArgType1)> {
357     template<typename T>
358     static has_std_result_type    testFunctor(T const *, typename T::result_type const * = 0);
359     template<typename T>
360     static has_tr1_result         testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1)>::type const * = 0);
361     static has_none               testFunctor(...);
362 
363     // note that the following indirection is needed for gcc-3.3
364     enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
365     typedef typename binary_result_of_select<Func, ArgType0, ArgType1, FunctorType>::type type;
366 };
367 
368 template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2, int SizeOf=sizeof(has_none)>
369 struct ternary_result_of_select {typedef typename internal::remove_all<ArgType0>::type type;};
370 
371 template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2>
372 struct ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, sizeof(has_std_result_type)>
373 {typedef typename Func::result_type type;};
374 
375 template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2>
376 struct ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, sizeof(has_tr1_result)>
377 {typedef typename Func::template result<Func(ArgType0,ArgType1,ArgType2)>::type type;};
378 
379 template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2>
380 struct result_of<Func(ArgType0,ArgType1,ArgType2)> {
381     template<typename T>
382     static has_std_result_type    testFunctor(T const *, typename T::result_type const * = 0);
383     template<typename T>
384     static has_tr1_result         testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1,ArgType2)>::type const * = 0);
385     static has_none               testFunctor(...);
386 
387     // note that the following indirection is needed for gcc-3.3
388     enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
389     typedef typename ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, FunctorType>::type type;
390 };
391 #endif
392 
393 struct meta_yes { char a[1]; };
394 struct meta_no  { char a[2]; };
395 
396 // Check whether T::ReturnType does exist
397 template <typename T>
398 struct has_ReturnType
399 {
400   template <typename C> static meta_yes testFunctor(typename C::ReturnType const *);
401   template <typename C> static meta_no testFunctor(...);
402 
403   enum { value = sizeof(testFunctor<T>(0)) == sizeof(meta_yes) };
404 };
405 
406 template<typename T> const T* return_ptr();
407 
408 template <typename T, typename IndexType=Index>
409 struct has_nullary_operator
410 {
411   template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()())>0)>::type * = 0);
412   static meta_no testFunctor(...);
413 
414   enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) };
415 };
416 
417 template <typename T, typename IndexType=Index>
418 struct has_unary_operator
419 {
420   template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()(IndexType(0)))>0)>::type * = 0);
421   static meta_no testFunctor(...);
422 
423   enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) };
424 };
425 
426 template <typename T, typename IndexType=Index>
427 struct has_binary_operator
428 {
429   template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()(IndexType(0),IndexType(0)))>0)>::type * = 0);
430   static meta_no testFunctor(...);
431 
432   enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) };
433 };
434 
435 /** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer.
436   * Usage example: \code meta_sqrt<1023>::ret \endcode
437   */
438 template<int Y,
439          int InfX = 0,
440          int SupX = ((Y==1) ? 1 : Y/2),
441          bool Done = ((SupX-InfX)<=1 ? true : ((SupX*SupX <= Y) && ((SupX+1)*(SupX+1) > Y))) >
442                                 // use ?: instead of || just to shut up a stupid gcc 4.3 warning
443 class meta_sqrt
444 {
445     enum {
446       MidX = (InfX+SupX)/2,
447       TakeInf = MidX*MidX > Y ? 1 : 0,
448       NewInf = int(TakeInf) ? InfX : int(MidX),
449       NewSup = int(TakeInf) ? int(MidX) : SupX
450     };
451   public:
452     enum { ret = meta_sqrt<Y,NewInf,NewSup>::ret };
453 };
454 
455 template<int Y, int InfX, int SupX>
456 class meta_sqrt<Y, InfX, SupX, true> { public:  enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; };
457 
458 
459 /** \internal Computes the least common multiple of two positive integer A and B
460   * at compile-time. It implements a naive algorithm testing all multiples of A.
461   * It thus works better if A>=B.
462   */
463 template<int A, int B, int K=1, bool Done = ((A*K)%B)==0>
464 struct meta_least_common_multiple
465 {
466   enum { ret = meta_least_common_multiple<A,B,K+1>::ret };
467 };
468 template<int A, int B, int K>
469 struct meta_least_common_multiple<A,B,K,true>
470 {
471   enum { ret = A*K };
472 };
473 
474 /** \internal determines whether the product of two numeric types is allowed and what the return type is */
475 template<typename T, typename U> struct scalar_product_traits
476 {
477   enum { Defined = 0 };
478 };
479 
480 // FIXME quick workaround around current limitation of result_of
481 // template<typename Scalar, typename ArgType0, typename ArgType1>
482 // struct result_of<scalar_product_op<Scalar>(ArgType0,ArgType1)> {
483 // typedef typename scalar_product_traits<typename remove_all<ArgType0>::type, typename remove_all<ArgType1>::type>::ReturnType type;
484 // };
485 
486 } // end namespace internal
487 
488 namespace numext {
489 
490 #if defined(__CUDA_ARCH__)
491 template<typename T> EIGEN_DEVICE_FUNC   void swap(T &a, T &b) { T tmp = b; b = a; a = tmp; }
492 #else
493 template<typename T> EIGEN_STRONG_INLINE void swap(T &a, T &b) { std::swap(a,b); }
494 #endif
495 
496 #if defined(__CUDA_ARCH__)
497 using internal::device::numeric_limits;
498 #else
499 using std::numeric_limits;
500 #endif
501 
502 // Integer division with rounding up.
503 // T is assumed to be an integer type with a>=0, and b>0
504 template<typename T>
505 T div_ceil(const T &a, const T &b)
506 {
507   return (a+b-1) / b;
508 }
509 
510 // The aim of the following functions is to bypass -Wfloat-equal warnings
511 // when we really want a strict equality comparison on floating points.
512 template<typename X, typename Y> EIGEN_STRONG_INLINE
513 bool equal_strict(const X& x,const Y& y) { return x == y; }
514 
515 template<> EIGEN_STRONG_INLINE
516 bool equal_strict(const float& x,const float& y) { return std::equal_to<float>()(x,y); }
517 
518 template<> EIGEN_STRONG_INLINE
519 bool equal_strict(const double& x,const double& y) { return std::equal_to<double>()(x,y); }
520 
521 template<typename X, typename Y> EIGEN_STRONG_INLINE
522 bool not_equal_strict(const X& x,const Y& y) { return x != y; }
523 
524 template<> EIGEN_STRONG_INLINE
525 bool not_equal_strict(const float& x,const float& y) { return std::not_equal_to<float>()(x,y); }
526 
527 template<> EIGEN_STRONG_INLINE
528 bool not_equal_strict(const double& x,const double& y) { return std::not_equal_to<double>()(x,y); }
529 
530 } // end namespace numext
531 
532 } // end namespace Eigen
533 
534 #endif // EIGEN_META_H
535