1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51
52 #include <asm/switch_to.h>
53
54 #include <linux/sched/cond_resched.h>
55 #ifdef CONFIG_SCHED_RTG
56 #include <linux/sched/rtg.h>
57 #endif
58
59 #include "sched.h"
60 #include "stats.h"
61 #include "autogroup.h"
62 #include "walt.h"
63 #include "rtg/rtg.h"
64
65 #ifdef CONFIG_SCHED_WALT
66 static void walt_fixup_sched_stats_fair(struct rq *rq, struct task_struct *p,
67 u16 updated_demand_scaled);
68 #endif
69
70 #if defined(CONFIG_SCHED_WALT) && defined(CONFIG_CFS_BANDWIDTH)
71 static void walt_init_cfs_rq_stats(struct cfs_rq *cfs_rq);
72 static void walt_inc_cfs_rq_stats(struct cfs_rq *cfs_rq,
73 struct task_struct *p);
74 static void walt_dec_cfs_rq_stats(struct cfs_rq *cfs_rq,
75 struct task_struct *p);
76 static void walt_inc_throttled_cfs_rq_stats(struct walt_sched_stats *stats,
77 struct cfs_rq *cfs_rq);
78 static void walt_dec_throttled_cfs_rq_stats(struct walt_sched_stats *stats,
79 struct cfs_rq *cfs_rq);
80 #else
walt_init_cfs_rq_stats(struct cfs_rq * cfs_rq)81 static inline void walt_init_cfs_rq_stats(struct cfs_rq *cfs_rq) {}
82 static inline void
walt_inc_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)83 walt_inc_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p) {}
84 static inline void
walt_dec_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)85 walt_dec_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p) {}
86
87 #define walt_inc_throttled_cfs_rq_stats(...)
88 #define walt_dec_throttled_cfs_rq_stats(...)
89
90 #endif
91
92 /*
93 * Targeted preemption latency for CPU-bound tasks:
94 *
95 * NOTE: this latency value is not the same as the concept of
96 * 'timeslice length' - timeslices in CFS are of variable length
97 * and have no persistent notion like in traditional, time-slice
98 * based scheduling concepts.
99 *
100 * (to see the precise effective timeslice length of your workload,
101 * run vmstat and monitor the context-switches (cs) field)
102 *
103 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
104 */
105 unsigned int sysctl_sched_latency = 6000000ULL;
106 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
107
108 /*
109 * The initial- and re-scaling of tunables is configurable
110 *
111 * Options are:
112 *
113 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
114 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
115 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
116 *
117 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
118 */
119 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
120
121 /*
122 * Minimal preemption granularity for CPU-bound tasks:
123 *
124 * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds)
125 */
126 unsigned int sysctl_sched_base_slice = 700000ULL;
127 static unsigned int normalized_sysctl_sched_base_slice = 700000ULL;
128
129 /*
130 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
131 */
132 static unsigned int sched_nr_latency = 8;
133
134 /*
135 * After fork, child runs first. If set to 0 (default) then
136 * parent will (try to) run first.
137 */
138 unsigned int sysctl_sched_child_runs_first __read_mostly;
139
140 /*
141 * SCHED_OTHER wake-up granularity.
142 *
143 * This option delays the preemption effects of decoupled workloads
144 * and reduces their over-scheduling. Synchronous workloads will still
145 * have immediate wakeup/sleep latencies.
146 *
147 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
148 */
149 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
150 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
151
152 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
153
154 int sched_thermal_decay_shift;
setup_sched_thermal_decay_shift(char * str)155 static int __init setup_sched_thermal_decay_shift(char *str)
156 {
157 int _shift = 0;
158
159 if (kstrtoint(str, 0, &_shift))
160 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
161
162 sched_thermal_decay_shift = clamp(_shift, 0, 10);
163 return 1;
164 }
165 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
166
167 #ifdef CONFIG_SMP
168 /*
169 * For asym packing, by default the lower numbered CPU has higher priority.
170 */
arch_asym_cpu_priority(int cpu)171 int __weak arch_asym_cpu_priority(int cpu)
172 {
173 return -cpu;
174 }
175
176 /*
177 * The margin used when comparing utilization with CPU capacity.
178 *
179 * (default: ~20%)
180 */
181 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
182
183 /*
184 * The margin used when comparing CPU capacities.
185 * is 'cap1' noticeably greater than 'cap2'
186 *
187 * (default: ~5%)
188 */
189 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
190 #endif
191
192 #ifdef CONFIG_CFS_BANDWIDTH
193 /*
194 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
195 * each time a cfs_rq requests quota.
196 *
197 * Note: in the case that the slice exceeds the runtime remaining (either due
198 * to consumption or the quota being specified to be smaller than the slice)
199 * we will always only issue the remaining available time.
200 *
201 * (default: 5 msec, units: microseconds)
202 */
203 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
204 #endif
205
206 #ifdef CONFIG_NUMA_BALANCING
207 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
208 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
209 #endif
210
211 #ifdef CONFIG_SYSCTL
212 static struct ctl_table sched_fair_sysctls[] = {
213 {
214 .procname = "sched_child_runs_first",
215 .data = &sysctl_sched_child_runs_first,
216 .maxlen = sizeof(unsigned int),
217 .mode = 0644,
218 .proc_handler = proc_dointvec,
219 },
220 #ifdef CONFIG_CFS_BANDWIDTH
221 {
222 .procname = "sched_cfs_bandwidth_slice_us",
223 .data = &sysctl_sched_cfs_bandwidth_slice,
224 .maxlen = sizeof(unsigned int),
225 .mode = 0644,
226 .proc_handler = proc_dointvec_minmax,
227 .extra1 = SYSCTL_ONE,
228 },
229 #endif
230 #ifdef CONFIG_NUMA_BALANCING
231 {
232 .procname = "numa_balancing_promote_rate_limit_MBps",
233 .data = &sysctl_numa_balancing_promote_rate_limit,
234 .maxlen = sizeof(unsigned int),
235 .mode = 0644,
236 .proc_handler = proc_dointvec_minmax,
237 .extra1 = SYSCTL_ZERO,
238 },
239 #endif /* CONFIG_NUMA_BALANCING */
240 {}
241 };
242
sched_fair_sysctl_init(void)243 static int __init sched_fair_sysctl_init(void)
244 {
245 register_sysctl_init("kernel", sched_fair_sysctls);
246 return 0;
247 }
248 late_initcall(sched_fair_sysctl_init);
249 #endif
250
update_load_add(struct load_weight * lw,unsigned long inc)251 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
252 {
253 lw->weight += inc;
254 lw->inv_weight = 0;
255 }
256
update_load_sub(struct load_weight * lw,unsigned long dec)257 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
258 {
259 lw->weight -= dec;
260 lw->inv_weight = 0;
261 }
262
update_load_set(struct load_weight * lw,unsigned long w)263 static inline void update_load_set(struct load_weight *lw, unsigned long w)
264 {
265 lw->weight = w;
266 lw->inv_weight = 0;
267 }
268
269 /*
270 * Increase the granularity value when there are more CPUs,
271 * because with more CPUs the 'effective latency' as visible
272 * to users decreases. But the relationship is not linear,
273 * so pick a second-best guess by going with the log2 of the
274 * number of CPUs.
275 *
276 * This idea comes from the SD scheduler of Con Kolivas:
277 */
get_update_sysctl_factor(void)278 static unsigned int get_update_sysctl_factor(void)
279 {
280 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
281 unsigned int factor;
282
283 switch (sysctl_sched_tunable_scaling) {
284 case SCHED_TUNABLESCALING_NONE:
285 factor = 1;
286 break;
287 case SCHED_TUNABLESCALING_LINEAR:
288 factor = cpus;
289 break;
290 case SCHED_TUNABLESCALING_LOG:
291 default:
292 factor = 1 + ilog2(cpus);
293 break;
294 }
295
296 return factor;
297 }
298
update_sysctl(void)299 static void update_sysctl(void)
300 {
301 unsigned int factor = get_update_sysctl_factor();
302
303 #define SET_SYSCTL(name) \
304 (sysctl_##name = (factor) * normalized_sysctl_##name)
305 SET_SYSCTL(sched_base_slice);
306 SET_SYSCTL(sched_latency);
307 SET_SYSCTL(sched_wakeup_granularity);
308 #undef SET_SYSCTL
309 }
310
sched_init_granularity(void)311 void __init sched_init_granularity(void)
312 {
313 update_sysctl();
314 }
315
316 #define WMULT_CONST (~0U)
317 #define WMULT_SHIFT 32
318
__update_inv_weight(struct load_weight * lw)319 static void __update_inv_weight(struct load_weight *lw)
320 {
321 unsigned long w;
322
323 if (likely(lw->inv_weight))
324 return;
325
326 w = scale_load_down(lw->weight);
327
328 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
329 lw->inv_weight = 1;
330 else if (unlikely(!w))
331 lw->inv_weight = WMULT_CONST;
332 else
333 lw->inv_weight = WMULT_CONST / w;
334 }
335
336 /*
337 * delta_exec * weight / lw.weight
338 * OR
339 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
340 *
341 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
342 * we're guaranteed shift stays positive because inv_weight is guaranteed to
343 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
344 *
345 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
346 * weight/lw.weight <= 1, and therefore our shift will also be positive.
347 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)348 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
349 {
350 u64 fact = scale_load_down(weight);
351 u32 fact_hi = (u32)(fact >> 32);
352 int shift = WMULT_SHIFT;
353 int fs;
354
355 __update_inv_weight(lw);
356
357 if (unlikely(fact_hi)) {
358 fs = fls(fact_hi);
359 shift -= fs;
360 fact >>= fs;
361 }
362
363 fact = mul_u32_u32(fact, lw->inv_weight);
364
365 fact_hi = (u32)(fact >> 32);
366 if (fact_hi) {
367 fs = fls(fact_hi);
368 shift -= fs;
369 fact >>= fs;
370 }
371
372 return mul_u64_u32_shr(delta_exec, fact, shift);
373 }
374
375 /*
376 * delta /= w
377 */
calc_delta_fair(u64 delta,struct sched_entity * se)378 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
379 {
380 if (unlikely(se->load.weight != NICE_0_LOAD))
381 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
382
383 return delta;
384 }
385
386 const struct sched_class fair_sched_class;
387
388 /**************************************************************
389 * CFS operations on generic schedulable entities:
390 */
391
392 #ifdef CONFIG_FAIR_GROUP_SCHED
393
394 /* Walk up scheduling entities hierarchy */
395 #define for_each_sched_entity(se) \
396 for (; se; se = se->parent)
397
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)398 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
399 {
400 struct rq *rq = rq_of(cfs_rq);
401 int cpu = cpu_of(rq);
402
403 if (cfs_rq->on_list)
404 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
405
406 cfs_rq->on_list = 1;
407
408 /*
409 * Ensure we either appear before our parent (if already
410 * enqueued) or force our parent to appear after us when it is
411 * enqueued. The fact that we always enqueue bottom-up
412 * reduces this to two cases and a special case for the root
413 * cfs_rq. Furthermore, it also means that we will always reset
414 * tmp_alone_branch either when the branch is connected
415 * to a tree or when we reach the top of the tree
416 */
417 if (cfs_rq->tg->parent &&
418 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
419 /*
420 * If parent is already on the list, we add the child
421 * just before. Thanks to circular linked property of
422 * the list, this means to put the child at the tail
423 * of the list that starts by parent.
424 */
425 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
426 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
427 /*
428 * The branch is now connected to its tree so we can
429 * reset tmp_alone_branch to the beginning of the
430 * list.
431 */
432 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
433 return true;
434 }
435
436 if (!cfs_rq->tg->parent) {
437 /*
438 * cfs rq without parent should be put
439 * at the tail of the list.
440 */
441 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
442 &rq->leaf_cfs_rq_list);
443 /*
444 * We have reach the top of a tree so we can reset
445 * tmp_alone_branch to the beginning of the list.
446 */
447 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
448 return true;
449 }
450
451 /*
452 * The parent has not already been added so we want to
453 * make sure that it will be put after us.
454 * tmp_alone_branch points to the begin of the branch
455 * where we will add parent.
456 */
457 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
458 /*
459 * update tmp_alone_branch to points to the new begin
460 * of the branch
461 */
462 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
463 return false;
464 }
465
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)466 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
467 {
468 if (cfs_rq->on_list) {
469 struct rq *rq = rq_of(cfs_rq);
470
471 /*
472 * With cfs_rq being unthrottled/throttled during an enqueue,
473 * it can happen the tmp_alone_branch points the a leaf that
474 * we finally want to del. In this case, tmp_alone_branch moves
475 * to the prev element but it will point to rq->leaf_cfs_rq_list
476 * at the end of the enqueue.
477 */
478 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
479 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
480
481 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
482 cfs_rq->on_list = 0;
483 }
484 }
485
assert_list_leaf_cfs_rq(struct rq * rq)486 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
487 {
488 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
489 }
490
491 /* Iterate thr' all leaf cfs_rq's on a runqueue */
492 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
493 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
494 leaf_cfs_rq_list)
495
496 /* Do the two (enqueued) entities belong to the same group ? */
497 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)498 is_same_group(struct sched_entity *se, struct sched_entity *pse)
499 {
500 if (se->cfs_rq == pse->cfs_rq)
501 return se->cfs_rq;
502
503 return NULL;
504 }
505
parent_entity(const struct sched_entity * se)506 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
507 {
508 return se->parent;
509 }
510
511 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)512 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
513 {
514 int se_depth, pse_depth;
515
516 /*
517 * preemption test can be made between sibling entities who are in the
518 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
519 * both tasks until we find their ancestors who are siblings of common
520 * parent.
521 */
522
523 /* First walk up until both entities are at same depth */
524 se_depth = (*se)->depth;
525 pse_depth = (*pse)->depth;
526
527 while (se_depth > pse_depth) {
528 se_depth--;
529 *se = parent_entity(*se);
530 }
531
532 while (pse_depth > se_depth) {
533 pse_depth--;
534 *pse = parent_entity(*pse);
535 }
536
537 while (!is_same_group(*se, *pse)) {
538 *se = parent_entity(*se);
539 *pse = parent_entity(*pse);
540 }
541 }
542
tg_is_idle(struct task_group * tg)543 static int tg_is_idle(struct task_group *tg)
544 {
545 return tg->idle > 0;
546 }
547
cfs_rq_is_idle(struct cfs_rq * cfs_rq)548 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
549 {
550 return cfs_rq->idle > 0;
551 }
552
se_is_idle(struct sched_entity * se)553 static int se_is_idle(struct sched_entity *se)
554 {
555 if (entity_is_task(se))
556 return task_has_idle_policy(task_of(se));
557 return cfs_rq_is_idle(group_cfs_rq(se));
558 }
559
560 #else /* !CONFIG_FAIR_GROUP_SCHED */
561
562 #define for_each_sched_entity(se) \
563 for (; se; se = NULL)
564
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)565 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
566 {
567 return true;
568 }
569
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)570 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
571 {
572 }
573
assert_list_leaf_cfs_rq(struct rq * rq)574 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
575 {
576 }
577
578 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
579 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
580
parent_entity(struct sched_entity * se)581 static inline struct sched_entity *parent_entity(struct sched_entity *se)
582 {
583 return NULL;
584 }
585
586 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)587 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
588 {
589 }
590
tg_is_idle(struct task_group * tg)591 static inline int tg_is_idle(struct task_group *tg)
592 {
593 return 0;
594 }
595
cfs_rq_is_idle(struct cfs_rq * cfs_rq)596 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
597 {
598 return 0;
599 }
600
se_is_idle(struct sched_entity * se)601 static int se_is_idle(struct sched_entity *se)
602 {
603 return task_has_idle_policy(task_of(se));
604 }
605
606 #endif /* CONFIG_FAIR_GROUP_SCHED */
607
608 static __always_inline
609 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
610
611 /**************************************************************
612 * Scheduling class tree data structure manipulation methods:
613 */
614
max_vruntime(u64 max_vruntime,u64 vruntime)615 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
616 {
617 s64 delta = (s64)(vruntime - max_vruntime);
618 if (delta > 0)
619 max_vruntime = vruntime;
620
621 return max_vruntime;
622 }
623
min_vruntime(u64 min_vruntime,u64 vruntime)624 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
625 {
626 s64 delta = (s64)(vruntime - min_vruntime);
627 if (delta < 0)
628 min_vruntime = vruntime;
629
630 return min_vruntime;
631 }
632
entity_before(const struct sched_entity * a,const struct sched_entity * b)633 static inline bool entity_before(const struct sched_entity *a,
634 const struct sched_entity *b)
635 {
636 return (s64)(a->vruntime - b->vruntime) < 0;
637 }
638
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)639 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
640 {
641 return (s64)(se->vruntime - cfs_rq->min_vruntime);
642 }
643
644 #define __node_2_se(node) \
645 rb_entry((node), struct sched_entity, run_node)
646
647 /*
648 * Compute virtual time from the per-task service numbers:
649 *
650 * Fair schedulers conserve lag:
651 *
652 * \Sum lag_i = 0
653 *
654 * Where lag_i is given by:
655 *
656 * lag_i = S - s_i = w_i * (V - v_i)
657 *
658 * Where S is the ideal service time and V is it's virtual time counterpart.
659 * Therefore:
660 *
661 * \Sum lag_i = 0
662 * \Sum w_i * (V - v_i) = 0
663 * \Sum w_i * V - w_i * v_i = 0
664 *
665 * From which we can solve an expression for V in v_i (which we have in
666 * se->vruntime):
667 *
668 * \Sum v_i * w_i \Sum v_i * w_i
669 * V = -------------- = --------------
670 * \Sum w_i W
671 *
672 * Specifically, this is the weighted average of all entity virtual runtimes.
673 *
674 * [[ NOTE: this is only equal to the ideal scheduler under the condition
675 * that join/leave operations happen at lag_i = 0, otherwise the
676 * virtual time has non-continguous motion equivalent to:
677 *
678 * V +-= lag_i / W
679 *
680 * Also see the comment in place_entity() that deals with this. ]]
681 *
682 * However, since v_i is u64, and the multiplcation could easily overflow
683 * transform it into a relative form that uses smaller quantities:
684 *
685 * Substitute: v_i == (v_i - v0) + v0
686 *
687 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
688 * V = ---------------------------- = --------------------- + v0
689 * W W
690 *
691 * Which we track using:
692 *
693 * v0 := cfs_rq->min_vruntime
694 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
695 * \Sum w_i := cfs_rq->avg_load
696 *
697 * Since min_vruntime is a monotonic increasing variable that closely tracks
698 * the per-task service, these deltas: (v_i - v), will be in the order of the
699 * maximal (virtual) lag induced in the system due to quantisation.
700 *
701 * Also, we use scale_load_down() to reduce the size.
702 *
703 * As measured, the max (key * weight) value was ~44 bits for a kernel build.
704 */
705 static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)706 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
707 {
708 unsigned long weight = scale_load_down(se->load.weight);
709 s64 key = entity_key(cfs_rq, se);
710
711 cfs_rq->avg_vruntime += key * weight;
712 cfs_rq->avg_load += weight;
713 }
714
715 static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)716 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
717 {
718 unsigned long weight = scale_load_down(se->load.weight);
719 s64 key = entity_key(cfs_rq, se);
720
721 cfs_rq->avg_vruntime -= key * weight;
722 cfs_rq->avg_load -= weight;
723 }
724
725 static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)726 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
727 {
728 /*
729 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
730 */
731 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
732 }
733
734 /*
735 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
736 * For this to be so, the result of this function must have a left bias.
737 */
avg_vruntime(struct cfs_rq * cfs_rq)738 u64 avg_vruntime(struct cfs_rq *cfs_rq)
739 {
740 struct sched_entity *curr = cfs_rq->curr;
741 s64 avg = cfs_rq->avg_vruntime;
742 long load = cfs_rq->avg_load;
743
744 if (curr && curr->on_rq) {
745 unsigned long weight = scale_load_down(curr->load.weight);
746
747 avg += entity_key(cfs_rq, curr) * weight;
748 load += weight;
749 }
750
751 if (load) {
752 /* sign flips effective floor / ceil */
753 if (avg < 0)
754 avg -= (load - 1);
755 avg = div_s64(avg, load);
756 }
757
758 return cfs_rq->min_vruntime + avg;
759 }
760
761 /*
762 * lag_i = S - s_i = w_i * (V - v_i)
763 *
764 * However, since V is approximated by the weighted average of all entities it
765 * is possible -- by addition/removal/reweight to the tree -- to move V around
766 * and end up with a larger lag than we started with.
767 *
768 * Limit this to either double the slice length with a minimum of TICK_NSEC
769 * since that is the timing granularity.
770 *
771 * EEVDF gives the following limit for a steady state system:
772 *
773 * -r_max < lag < max(r_max, q)
774 *
775 * XXX could add max_slice to the augmented data to track this.
776 */
entity_lag(u64 avruntime,struct sched_entity * se)777 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
778 {
779 s64 vlag, limit;
780
781 vlag = avruntime - se->vruntime;
782 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
783
784 return clamp(vlag, -limit, limit);
785 }
786
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)787 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
788 {
789 SCHED_WARN_ON(!se->on_rq);
790
791 se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
792 }
793
794 /*
795 * Entity is eligible once it received less service than it ought to have,
796 * eg. lag >= 0.
797 *
798 * lag_i = S - s_i = w_i*(V - v_i)
799 *
800 * lag_i >= 0 -> V >= v_i
801 *
802 * \Sum (v_i - v)*w_i
803 * V = ------------------ + v
804 * \Sum w_i
805 *
806 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
807 *
808 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
809 * to the loss in precision caused by the division.
810 */
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)811 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
812 {
813 struct sched_entity *curr = cfs_rq->curr;
814 s64 avg = cfs_rq->avg_vruntime;
815 long load = cfs_rq->avg_load;
816
817 if (curr && curr->on_rq) {
818 unsigned long weight = scale_load_down(curr->load.weight);
819
820 avg += entity_key(cfs_rq, curr) * weight;
821 load += weight;
822 }
823
824 return avg >= entity_key(cfs_rq, se) * load;
825 }
826
__update_min_vruntime(struct cfs_rq * cfs_rq,u64 vruntime)827 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
828 {
829 u64 min_vruntime = cfs_rq->min_vruntime;
830 /*
831 * open coded max_vruntime() to allow updating avg_vruntime
832 */
833 s64 delta = (s64)(vruntime - min_vruntime);
834 if (delta > 0) {
835 avg_vruntime_update(cfs_rq, delta);
836 min_vruntime = vruntime;
837 }
838 return min_vruntime;
839 }
840
update_min_vruntime(struct cfs_rq * cfs_rq)841 static void update_min_vruntime(struct cfs_rq *cfs_rq)
842 {
843 struct sched_entity *se = __pick_first_entity(cfs_rq);
844 struct sched_entity *curr = cfs_rq->curr;
845
846 u64 vruntime = cfs_rq->min_vruntime;
847
848 if (curr) {
849 if (curr->on_rq)
850 vruntime = curr->vruntime;
851 else
852 curr = NULL;
853 }
854
855 if (se) {
856 if (!curr)
857 vruntime = se->vruntime;
858 else
859 vruntime = min_vruntime(vruntime, se->vruntime);
860 }
861
862 /* ensure we never gain time by being placed backwards. */
863 u64_u32_store(cfs_rq->min_vruntime,
864 __update_min_vruntime(cfs_rq, vruntime));
865 }
866
__entity_less(struct rb_node * a,const struct rb_node * b)867 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
868 {
869 return entity_before(__node_2_se(a), __node_2_se(b));
870 }
871
872 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
873
__update_min_deadline(struct sched_entity * se,struct rb_node * node)874 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node)
875 {
876 if (node) {
877 struct sched_entity *rse = __node_2_se(node);
878 if (deadline_gt(min_deadline, se, rse))
879 se->min_deadline = rse->min_deadline;
880 }
881 }
882
883 /*
884 * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline)
885 */
min_deadline_update(struct sched_entity * se,bool exit)886 static inline bool min_deadline_update(struct sched_entity *se, bool exit)
887 {
888 u64 old_min_deadline = se->min_deadline;
889 struct rb_node *node = &se->run_node;
890
891 se->min_deadline = se->deadline;
892 __update_min_deadline(se, node->rb_right);
893 __update_min_deadline(se, node->rb_left);
894
895 return se->min_deadline == old_min_deadline;
896 }
897
898 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity,
899 run_node, min_deadline, min_deadline_update);
900
901 /*
902 * Enqueue an entity into the rb-tree:
903 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)904 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
905 {
906 avg_vruntime_add(cfs_rq, se);
907 se->min_deadline = se->deadline;
908 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
909 __entity_less, &min_deadline_cb);
910 }
911
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)912 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
913 {
914 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
915 &min_deadline_cb);
916 avg_vruntime_sub(cfs_rq, se);
917 }
918
__pick_first_entity(struct cfs_rq * cfs_rq)919 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
920 {
921 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
922
923 if (!left)
924 return NULL;
925
926 return __node_2_se(left);
927 }
928
929 /*
930 * Earliest Eligible Virtual Deadline First
931 *
932 * In order to provide latency guarantees for different request sizes
933 * EEVDF selects the best runnable task from two criteria:
934 *
935 * 1) the task must be eligible (must be owed service)
936 *
937 * 2) from those tasks that meet 1), we select the one
938 * with the earliest virtual deadline.
939 *
940 * We can do this in O(log n) time due to an augmented RB-tree. The
941 * tree keeps the entries sorted on service, but also functions as a
942 * heap based on the deadline by keeping:
943 *
944 * se->min_deadline = min(se->deadline, se->{left,right}->min_deadline)
945 *
946 * Which allows an EDF like search on (sub)trees.
947 */
__pick_eevdf(struct cfs_rq * cfs_rq)948 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq)
949 {
950 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
951 struct sched_entity *curr = cfs_rq->curr;
952 struct sched_entity *best = NULL;
953 struct sched_entity *best_left = NULL;
954
955 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
956 curr = NULL;
957 best = curr;
958
959 /*
960 * Once selected, run a task until it either becomes non-eligible or
961 * until it gets a new slice. See the HACK in set_next_entity().
962 */
963 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
964 return curr;
965
966 while (node) {
967 struct sched_entity *se = __node_2_se(node);
968
969 /*
970 * If this entity is not eligible, try the left subtree.
971 */
972 if (!entity_eligible(cfs_rq, se)) {
973 node = node->rb_left;
974 continue;
975 }
976
977 /*
978 * Now we heap search eligible trees for the best (min_)deadline
979 */
980 if (!best || deadline_gt(deadline, best, se))
981 best = se;
982
983 /*
984 * Every se in a left branch is eligible, keep track of the
985 * branch with the best min_deadline
986 */
987 if (node->rb_left) {
988 struct sched_entity *left = __node_2_se(node->rb_left);
989
990 if (!best_left || deadline_gt(min_deadline, best_left, left))
991 best_left = left;
992
993 /*
994 * min_deadline is in the left branch. rb_left and all
995 * descendants are eligible, so immediately switch to the second
996 * loop.
997 */
998 if (left->min_deadline == se->min_deadline)
999 break;
1000 }
1001
1002 /* min_deadline is at this node, no need to look right */
1003 if (se->deadline == se->min_deadline)
1004 break;
1005
1006 /* else min_deadline is in the right branch. */
1007 node = node->rb_right;
1008 }
1009
1010 /*
1011 * We ran into an eligible node which is itself the best.
1012 * (Or nr_running == 0 and both are NULL)
1013 */
1014 if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0)
1015 return best;
1016
1017 /*
1018 * Now best_left and all of its children are eligible, and we are just
1019 * looking for deadline == min_deadline
1020 */
1021 node = &best_left->run_node;
1022 while (node) {
1023 struct sched_entity *se = __node_2_se(node);
1024
1025 /* min_deadline is the current node */
1026 if (se->deadline == se->min_deadline)
1027 return se;
1028
1029 /* min_deadline is in the left branch */
1030 if (node->rb_left &&
1031 __node_2_se(node->rb_left)->min_deadline == se->min_deadline) {
1032 node = node->rb_left;
1033 continue;
1034 }
1035
1036 /* else min_deadline is in the right branch */
1037 node = node->rb_right;
1038 }
1039 return NULL;
1040 }
1041
pick_eevdf(struct cfs_rq * cfs_rq)1042 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
1043 {
1044 struct sched_entity *se = __pick_eevdf(cfs_rq);
1045
1046 if (!se) {
1047 struct sched_entity *left = __pick_first_entity(cfs_rq);
1048 if (left) {
1049 pr_err("EEVDF scheduling fail, picking leftmost\n");
1050 return left;
1051 }
1052 }
1053
1054 return se;
1055 }
1056
1057 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)1058 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
1059 {
1060 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
1061
1062 if (!last)
1063 return NULL;
1064
1065 return __node_2_se(last);
1066 }
1067
1068 /**************************************************************
1069 * Scheduling class statistics methods:
1070 */
1071 #ifdef CONFIG_SMP
sched_update_scaling(void)1072 int sched_update_scaling(void)
1073 {
1074 unsigned int factor = get_update_sysctl_factor();
1075
1076 #define WRT_SYSCTL(name) \
1077 (normalized_sysctl_##name = sysctl_##name / (factor))
1078 WRT_SYSCTL(sched_base_slice);
1079 WRT_SYSCTL(sched_latency);
1080 WRT_SYSCTL(sched_wakeup_granularity);
1081 #undef WRT_SYSCTL
1082
1083 return 0;
1084 }
1085 #endif
1086 #endif
1087
1088 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1089
1090 /*
1091 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1092 * this is probably good enough.
1093 */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)1094 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1095 {
1096 if ((s64)(se->vruntime - se->deadline) < 0)
1097 return;
1098
1099 /*
1100 * For EEVDF the virtual time slope is determined by w_i (iow.
1101 * nice) while the request time r_i is determined by
1102 * sysctl_sched_base_slice.
1103 */
1104 se->slice = sysctl_sched_base_slice;
1105
1106 /*
1107 * EEVDF: vd_i = ve_i + r_i / w_i
1108 */
1109 se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1110
1111 /*
1112 * The task has consumed its request, reschedule.
1113 */
1114 if (cfs_rq->nr_running > 1) {
1115 resched_curr(rq_of(cfs_rq));
1116 clear_buddies(cfs_rq, se);
1117 }
1118 }
1119
1120 #include "pelt.h"
1121 #ifdef CONFIG_SMP
1122
1123 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1124 static unsigned long task_h_load(struct task_struct *p);
1125 static unsigned long capacity_of(int cpu);
1126
1127 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1128 void init_entity_runnable_average(struct sched_entity *se)
1129 {
1130 struct sched_avg *sa = &se->avg;
1131
1132 memset(sa, 0, sizeof(*sa));
1133
1134 /*
1135 * Tasks are initialized with full load to be seen as heavy tasks until
1136 * they get a chance to stabilize to their real load level.
1137 * Group entities are initialized with zero load to reflect the fact that
1138 * nothing has been attached to the task group yet.
1139 */
1140 if (entity_is_task(se))
1141 sa->load_avg = scale_load_down(se->load.weight);
1142
1143 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1144 }
1145
1146 /*
1147 * With new tasks being created, their initial util_avgs are extrapolated
1148 * based on the cfs_rq's current util_avg:
1149 *
1150 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1151 *
1152 * However, in many cases, the above util_avg does not give a desired
1153 * value. Moreover, the sum of the util_avgs may be divergent, such
1154 * as when the series is a harmonic series.
1155 *
1156 * To solve this problem, we also cap the util_avg of successive tasks to
1157 * only 1/2 of the left utilization budget:
1158 *
1159 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1160 *
1161 * where n denotes the nth task and cpu_scale the CPU capacity.
1162 *
1163 * For example, for a CPU with 1024 of capacity, a simplest series from
1164 * the beginning would be like:
1165 *
1166 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
1167 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1168 *
1169 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1170 * if util_avg > util_avg_cap.
1171 */
post_init_entity_util_avg(struct task_struct * p)1172 void post_init_entity_util_avg(struct task_struct *p)
1173 {
1174 struct sched_entity *se = &p->se;
1175 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1176 struct sched_avg *sa = &se->avg;
1177 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1178 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1179
1180 if (p->sched_class != &fair_sched_class) {
1181 /*
1182 * For !fair tasks do:
1183 *
1184 update_cfs_rq_load_avg(now, cfs_rq);
1185 attach_entity_load_avg(cfs_rq, se);
1186 switched_from_fair(rq, p);
1187 *
1188 * such that the next switched_to_fair() has the
1189 * expected state.
1190 */
1191 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1192 return;
1193 }
1194
1195 if (cap > 0) {
1196 if (cfs_rq->avg.util_avg != 0) {
1197 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
1198 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1199
1200 if (sa->util_avg > cap)
1201 sa->util_avg = cap;
1202 } else {
1203 sa->util_avg = cap;
1204 }
1205 }
1206
1207 sa->runnable_avg = sa->util_avg;
1208 }
1209
1210 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)1211 void init_entity_runnable_average(struct sched_entity *se)
1212 {
1213 }
post_init_entity_util_avg(struct task_struct * p)1214 void post_init_entity_util_avg(struct task_struct *p)
1215 {
1216 }
update_tg_load_avg(struct cfs_rq * cfs_rq)1217 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1218 {
1219 }
1220 #endif /* CONFIG_SMP */
1221
update_curr_se(struct rq * rq,struct sched_entity * curr)1222 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1223 {
1224 u64 now = rq_clock_task(rq);
1225 s64 delta_exec;
1226
1227 delta_exec = now - curr->exec_start;
1228 if (unlikely(delta_exec <= 0))
1229 return delta_exec;
1230
1231 curr->exec_start = now;
1232 curr->sum_exec_runtime += delta_exec;
1233
1234 if (schedstat_enabled()) {
1235 struct sched_statistics *stats;
1236
1237 stats = __schedstats_from_se(curr);
1238 __schedstat_set(stats->exec_max,
1239 max(delta_exec, stats->exec_max));
1240 }
1241
1242 return delta_exec;
1243 }
1244
update_curr_task(struct task_struct * p,s64 delta_exec)1245 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1246 {
1247 trace_sched_stat_runtime(p, delta_exec);
1248 account_group_exec_runtime(p, delta_exec);
1249 cgroup_account_cputime(p, delta_exec);
1250 }
1251
1252 /*
1253 * Used by other classes to account runtime.
1254 */
update_curr_common(struct rq * rq)1255 s64 update_curr_common(struct rq *rq)
1256 {
1257 struct task_struct *curr = rq->curr;
1258 s64 delta_exec;
1259
1260 delta_exec = update_curr_se(rq, &curr->se);
1261 if (likely(delta_exec > 0))
1262 update_curr_task(curr, delta_exec);
1263
1264 return delta_exec;
1265 }
1266
1267 /*
1268 * Update the current task's runtime statistics.
1269 */
update_curr(struct cfs_rq * cfs_rq)1270 static void update_curr(struct cfs_rq *cfs_rq)
1271 {
1272 struct sched_entity *curr = cfs_rq->curr;
1273 s64 delta_exec;
1274
1275 if (unlikely(!curr))
1276 return;
1277
1278 delta_exec = update_curr_se(rq_of(cfs_rq), curr);
1279 if (unlikely(delta_exec <= 0))
1280 return;
1281
1282 curr->vruntime += calc_delta_fair(delta_exec, curr);
1283 update_deadline(cfs_rq, curr);
1284 update_min_vruntime(cfs_rq);
1285
1286 if (entity_is_task(curr))
1287 update_curr_task(task_of(curr), delta_exec);
1288
1289 account_cfs_rq_runtime(cfs_rq, delta_exec);
1290 }
1291
update_curr_fair(struct rq * rq)1292 static void update_curr_fair(struct rq *rq)
1293 {
1294 update_curr(cfs_rq_of(&rq->curr->se));
1295 }
1296
1297 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1298 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1299 {
1300 struct sched_statistics *stats;
1301 struct task_struct *p = NULL;
1302
1303 if (!schedstat_enabled())
1304 return;
1305
1306 stats = __schedstats_from_se(se);
1307
1308 if (entity_is_task(se))
1309 p = task_of(se);
1310
1311 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
1312 }
1313
1314 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1315 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1316 {
1317 struct sched_statistics *stats;
1318 struct task_struct *p = NULL;
1319
1320 if (!schedstat_enabled())
1321 return;
1322
1323 stats = __schedstats_from_se(se);
1324
1325 /*
1326 * When the sched_schedstat changes from 0 to 1, some sched se
1327 * maybe already in the runqueue, the se->statistics.wait_start
1328 * will be 0.So it will let the delta wrong. We need to avoid this
1329 * scenario.
1330 */
1331 if (unlikely(!schedstat_val(stats->wait_start)))
1332 return;
1333
1334 if (entity_is_task(se))
1335 p = task_of(se);
1336
1337 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
1338 }
1339
1340 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1341 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1342 {
1343 struct sched_statistics *stats;
1344 struct task_struct *tsk = NULL;
1345
1346 if (!schedstat_enabled())
1347 return;
1348
1349 stats = __schedstats_from_se(se);
1350
1351 if (entity_is_task(se))
1352 tsk = task_of(se);
1353
1354 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1355 }
1356
1357 /*
1358 * Task is being enqueued - update stats:
1359 */
1360 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1361 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1362 {
1363 if (!schedstat_enabled())
1364 return;
1365
1366 /*
1367 * Are we enqueueing a waiting task? (for current tasks
1368 * a dequeue/enqueue event is a NOP)
1369 */
1370 if (se != cfs_rq->curr)
1371 update_stats_wait_start_fair(cfs_rq, se);
1372
1373 if (flags & ENQUEUE_WAKEUP)
1374 update_stats_enqueue_sleeper_fair(cfs_rq, se);
1375 }
1376
1377 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1378 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1379 {
1380
1381 if (!schedstat_enabled())
1382 return;
1383
1384 /*
1385 * Mark the end of the wait period if dequeueing a
1386 * waiting task:
1387 */
1388 if (se != cfs_rq->curr)
1389 update_stats_wait_end_fair(cfs_rq, se);
1390
1391 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1392 struct task_struct *tsk = task_of(se);
1393 unsigned int state;
1394
1395 /* XXX racy against TTWU */
1396 state = READ_ONCE(tsk->__state);
1397 if (state & TASK_INTERRUPTIBLE)
1398 __schedstat_set(tsk->stats.sleep_start,
1399 rq_clock(rq_of(cfs_rq)));
1400 if (state & TASK_UNINTERRUPTIBLE)
1401 __schedstat_set(tsk->stats.block_start,
1402 rq_clock(rq_of(cfs_rq)));
1403 }
1404 }
1405
1406 /*
1407 * We are picking a new current task - update its stats:
1408 */
1409 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1410 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1411 {
1412 /*
1413 * We are starting a new run period:
1414 */
1415 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1416 }
1417
1418 /**************************************************
1419 * Scheduling class queueing methods:
1420 */
1421
is_core_idle(int cpu)1422 static inline bool is_core_idle(int cpu)
1423 {
1424 #ifdef CONFIG_SCHED_SMT
1425 int sibling;
1426
1427 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1428 if (cpu == sibling)
1429 continue;
1430
1431 if (!idle_cpu(sibling))
1432 return false;
1433 }
1434 #endif
1435
1436 return true;
1437 }
1438
1439 #ifdef CONFIG_NUMA
1440 #define NUMA_IMBALANCE_MIN 2
1441
1442 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1443 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1444 {
1445 /*
1446 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1447 * threshold. Above this threshold, individual tasks may be contending
1448 * for both memory bandwidth and any shared HT resources. This is an
1449 * approximation as the number of running tasks may not be related to
1450 * the number of busy CPUs due to sched_setaffinity.
1451 */
1452 if (dst_running > imb_numa_nr)
1453 return imbalance;
1454
1455 /*
1456 * Allow a small imbalance based on a simple pair of communicating
1457 * tasks that remain local when the destination is lightly loaded.
1458 */
1459 if (imbalance <= NUMA_IMBALANCE_MIN)
1460 return 0;
1461
1462 return imbalance;
1463 }
1464 #endif /* CONFIG_NUMA */
1465
1466 #ifdef CONFIG_NUMA_BALANCING
1467 /*
1468 * Approximate time to scan a full NUMA task in ms. The task scan period is
1469 * calculated based on the tasks virtual memory size and
1470 * numa_balancing_scan_size.
1471 */
1472 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1473 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1474
1475 /* Portion of address space to scan in MB */
1476 unsigned int sysctl_numa_balancing_scan_size = 256;
1477
1478 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1479 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1480
1481 /* The page with hint page fault latency < threshold in ms is considered hot */
1482 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1483
1484 struct numa_group {
1485 refcount_t refcount;
1486
1487 spinlock_t lock; /* nr_tasks, tasks */
1488 int nr_tasks;
1489 pid_t gid;
1490 int active_nodes;
1491
1492 struct rcu_head rcu;
1493 unsigned long total_faults;
1494 unsigned long max_faults_cpu;
1495 /*
1496 * faults[] array is split into two regions: faults_mem and faults_cpu.
1497 *
1498 * Faults_cpu is used to decide whether memory should move
1499 * towards the CPU. As a consequence, these stats are weighted
1500 * more by CPU use than by memory faults.
1501 */
1502 unsigned long faults[];
1503 };
1504
1505 /*
1506 * For functions that can be called in multiple contexts that permit reading
1507 * ->numa_group (see struct task_struct for locking rules).
1508 */
deref_task_numa_group(struct task_struct * p)1509 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1510 {
1511 return rcu_dereference_check(p->numa_group, p == current ||
1512 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1513 }
1514
deref_curr_numa_group(struct task_struct * p)1515 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1516 {
1517 return rcu_dereference_protected(p->numa_group, p == current);
1518 }
1519
1520 static inline unsigned long group_faults_priv(struct numa_group *ng);
1521 static inline unsigned long group_faults_shared(struct numa_group *ng);
1522
task_nr_scan_windows(struct task_struct * p)1523 static unsigned int task_nr_scan_windows(struct task_struct *p)
1524 {
1525 unsigned long rss = 0;
1526 unsigned long nr_scan_pages;
1527
1528 /*
1529 * Calculations based on RSS as non-present and empty pages are skipped
1530 * by the PTE scanner and NUMA hinting faults should be trapped based
1531 * on resident pages
1532 */
1533 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1534 rss = get_mm_rss(p->mm);
1535 if (!rss)
1536 rss = nr_scan_pages;
1537
1538 rss = round_up(rss, nr_scan_pages);
1539 return rss / nr_scan_pages;
1540 }
1541
1542 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1543 #define MAX_SCAN_WINDOW 2560
1544
task_scan_min(struct task_struct * p)1545 static unsigned int task_scan_min(struct task_struct *p)
1546 {
1547 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1548 unsigned int scan, floor;
1549 unsigned int windows = 1;
1550
1551 if (scan_size < MAX_SCAN_WINDOW)
1552 windows = MAX_SCAN_WINDOW / scan_size;
1553 floor = 1000 / windows;
1554
1555 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1556 return max_t(unsigned int, floor, scan);
1557 }
1558
task_scan_start(struct task_struct * p)1559 static unsigned int task_scan_start(struct task_struct *p)
1560 {
1561 unsigned long smin = task_scan_min(p);
1562 unsigned long period = smin;
1563 struct numa_group *ng;
1564
1565 /* Scale the maximum scan period with the amount of shared memory. */
1566 rcu_read_lock();
1567 ng = rcu_dereference(p->numa_group);
1568 if (ng) {
1569 unsigned long shared = group_faults_shared(ng);
1570 unsigned long private = group_faults_priv(ng);
1571
1572 period *= refcount_read(&ng->refcount);
1573 period *= shared + 1;
1574 period /= private + shared + 1;
1575 }
1576 rcu_read_unlock();
1577
1578 return max(smin, period);
1579 }
1580
task_scan_max(struct task_struct * p)1581 static unsigned int task_scan_max(struct task_struct *p)
1582 {
1583 unsigned long smin = task_scan_min(p);
1584 unsigned long smax;
1585 struct numa_group *ng;
1586
1587 /* Watch for min being lower than max due to floor calculations */
1588 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1589
1590 /* Scale the maximum scan period with the amount of shared memory. */
1591 ng = deref_curr_numa_group(p);
1592 if (ng) {
1593 unsigned long shared = group_faults_shared(ng);
1594 unsigned long private = group_faults_priv(ng);
1595 unsigned long period = smax;
1596
1597 period *= refcount_read(&ng->refcount);
1598 period *= shared + 1;
1599 period /= private + shared + 1;
1600
1601 smax = max(smax, period);
1602 }
1603
1604 return max(smin, smax);
1605 }
1606
account_numa_enqueue(struct rq * rq,struct task_struct * p)1607 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1608 {
1609 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1610 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1611 }
1612
account_numa_dequeue(struct rq * rq,struct task_struct * p)1613 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1614 {
1615 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1616 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1617 }
1618
1619 /* Shared or private faults. */
1620 #define NR_NUMA_HINT_FAULT_TYPES 2
1621
1622 /* Memory and CPU locality */
1623 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1624
1625 /* Averaged statistics, and temporary buffers. */
1626 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1627
task_numa_group_id(struct task_struct * p)1628 pid_t task_numa_group_id(struct task_struct *p)
1629 {
1630 struct numa_group *ng;
1631 pid_t gid = 0;
1632
1633 rcu_read_lock();
1634 ng = rcu_dereference(p->numa_group);
1635 if (ng)
1636 gid = ng->gid;
1637 rcu_read_unlock();
1638
1639 return gid;
1640 }
1641
1642 /*
1643 * The averaged statistics, shared & private, memory & CPU,
1644 * occupy the first half of the array. The second half of the
1645 * array is for current counters, which are averaged into the
1646 * first set by task_numa_placement.
1647 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1648 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1649 {
1650 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1651 }
1652
task_faults(struct task_struct * p,int nid)1653 static inline unsigned long task_faults(struct task_struct *p, int nid)
1654 {
1655 if (!p->numa_faults)
1656 return 0;
1657
1658 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1659 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1660 }
1661
group_faults(struct task_struct * p,int nid)1662 static inline unsigned long group_faults(struct task_struct *p, int nid)
1663 {
1664 struct numa_group *ng = deref_task_numa_group(p);
1665
1666 if (!ng)
1667 return 0;
1668
1669 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1670 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1671 }
1672
group_faults_cpu(struct numa_group * group,int nid)1673 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1674 {
1675 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1676 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1677 }
1678
group_faults_priv(struct numa_group * ng)1679 static inline unsigned long group_faults_priv(struct numa_group *ng)
1680 {
1681 unsigned long faults = 0;
1682 int node;
1683
1684 for_each_online_node(node) {
1685 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1686 }
1687
1688 return faults;
1689 }
1690
group_faults_shared(struct numa_group * ng)1691 static inline unsigned long group_faults_shared(struct numa_group *ng)
1692 {
1693 unsigned long faults = 0;
1694 int node;
1695
1696 for_each_online_node(node) {
1697 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1698 }
1699
1700 return faults;
1701 }
1702
1703 /*
1704 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1705 * considered part of a numa group's pseudo-interleaving set. Migrations
1706 * between these nodes are slowed down, to allow things to settle down.
1707 */
1708 #define ACTIVE_NODE_FRACTION 3
1709
numa_is_active_node(int nid,struct numa_group * ng)1710 static bool numa_is_active_node(int nid, struct numa_group *ng)
1711 {
1712 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1713 }
1714
1715 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1716 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1717 int lim_dist, bool task)
1718 {
1719 unsigned long score = 0;
1720 int node, max_dist;
1721
1722 /*
1723 * All nodes are directly connected, and the same distance
1724 * from each other. No need for fancy placement algorithms.
1725 */
1726 if (sched_numa_topology_type == NUMA_DIRECT)
1727 return 0;
1728
1729 /* sched_max_numa_distance may be changed in parallel. */
1730 max_dist = READ_ONCE(sched_max_numa_distance);
1731 /*
1732 * This code is called for each node, introducing N^2 complexity,
1733 * which should be ok given the number of nodes rarely exceeds 8.
1734 */
1735 for_each_online_node(node) {
1736 unsigned long faults;
1737 int dist = node_distance(nid, node);
1738
1739 /*
1740 * The furthest away nodes in the system are not interesting
1741 * for placement; nid was already counted.
1742 */
1743 if (dist >= max_dist || node == nid)
1744 continue;
1745
1746 /*
1747 * On systems with a backplane NUMA topology, compare groups
1748 * of nodes, and move tasks towards the group with the most
1749 * memory accesses. When comparing two nodes at distance
1750 * "hoplimit", only nodes closer by than "hoplimit" are part
1751 * of each group. Skip other nodes.
1752 */
1753 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1754 continue;
1755
1756 /* Add up the faults from nearby nodes. */
1757 if (task)
1758 faults = task_faults(p, node);
1759 else
1760 faults = group_faults(p, node);
1761
1762 /*
1763 * On systems with a glueless mesh NUMA topology, there are
1764 * no fixed "groups of nodes". Instead, nodes that are not
1765 * directly connected bounce traffic through intermediate
1766 * nodes; a numa_group can occupy any set of nodes.
1767 * The further away a node is, the less the faults count.
1768 * This seems to result in good task placement.
1769 */
1770 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1771 faults *= (max_dist - dist);
1772 faults /= (max_dist - LOCAL_DISTANCE);
1773 }
1774
1775 score += faults;
1776 }
1777
1778 return score;
1779 }
1780
1781 /*
1782 * These return the fraction of accesses done by a particular task, or
1783 * task group, on a particular numa node. The group weight is given a
1784 * larger multiplier, in order to group tasks together that are almost
1785 * evenly spread out between numa nodes.
1786 */
task_weight(struct task_struct * p,int nid,int dist)1787 static inline unsigned long task_weight(struct task_struct *p, int nid,
1788 int dist)
1789 {
1790 unsigned long faults, total_faults;
1791
1792 if (!p->numa_faults)
1793 return 0;
1794
1795 total_faults = p->total_numa_faults;
1796
1797 if (!total_faults)
1798 return 0;
1799
1800 faults = task_faults(p, nid);
1801 faults += score_nearby_nodes(p, nid, dist, true);
1802
1803 return 1000 * faults / total_faults;
1804 }
1805
group_weight(struct task_struct * p,int nid,int dist)1806 static inline unsigned long group_weight(struct task_struct *p, int nid,
1807 int dist)
1808 {
1809 struct numa_group *ng = deref_task_numa_group(p);
1810 unsigned long faults, total_faults;
1811
1812 if (!ng)
1813 return 0;
1814
1815 total_faults = ng->total_faults;
1816
1817 if (!total_faults)
1818 return 0;
1819
1820 faults = group_faults(p, nid);
1821 faults += score_nearby_nodes(p, nid, dist, false);
1822
1823 return 1000 * faults / total_faults;
1824 }
1825
1826 /*
1827 * If memory tiering mode is enabled, cpupid of slow memory page is
1828 * used to record scan time instead of CPU and PID. When tiering mode
1829 * is disabled at run time, the scan time (in cpupid) will be
1830 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1831 * access out of array bound.
1832 */
cpupid_valid(int cpupid)1833 static inline bool cpupid_valid(int cpupid)
1834 {
1835 return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1836 }
1837
1838 /*
1839 * For memory tiering mode, if there are enough free pages (more than
1840 * enough watermark defined here) in fast memory node, to take full
1841 * advantage of fast memory capacity, all recently accessed slow
1842 * memory pages will be migrated to fast memory node without
1843 * considering hot threshold.
1844 */
pgdat_free_space_enough(struct pglist_data * pgdat)1845 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1846 {
1847 int z;
1848 unsigned long enough_wmark;
1849
1850 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1851 pgdat->node_present_pages >> 4);
1852 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1853 struct zone *zone = pgdat->node_zones + z;
1854
1855 if (!populated_zone(zone))
1856 continue;
1857
1858 if (zone_watermark_ok(zone, 0,
1859 wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1860 ZONE_MOVABLE, 0))
1861 return true;
1862 }
1863 return false;
1864 }
1865
1866 /*
1867 * For memory tiering mode, when page tables are scanned, the scan
1868 * time will be recorded in struct page in addition to make page
1869 * PROT_NONE for slow memory page. So when the page is accessed, in
1870 * hint page fault handler, the hint page fault latency is calculated
1871 * via,
1872 *
1873 * hint page fault latency = hint page fault time - scan time
1874 *
1875 * The smaller the hint page fault latency, the higher the possibility
1876 * for the page to be hot.
1877 */
numa_hint_fault_latency(struct page * page)1878 static int numa_hint_fault_latency(struct page *page)
1879 {
1880 int last_time, time;
1881
1882 time = jiffies_to_msecs(jiffies);
1883 last_time = xchg_page_access_time(page, time);
1884
1885 return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1886 }
1887
1888 /*
1889 * For memory tiering mode, too high promotion/demotion throughput may
1890 * hurt application latency. So we provide a mechanism to rate limit
1891 * the number of pages that are tried to be promoted.
1892 */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1893 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1894 unsigned long rate_limit, int nr)
1895 {
1896 unsigned long nr_cand;
1897 unsigned int now, start;
1898
1899 now = jiffies_to_msecs(jiffies);
1900 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1901 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1902 start = pgdat->nbp_rl_start;
1903 if (now - start > MSEC_PER_SEC &&
1904 cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1905 pgdat->nbp_rl_nr_cand = nr_cand;
1906 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1907 return true;
1908 return false;
1909 }
1910
1911 #define NUMA_MIGRATION_ADJUST_STEPS 16
1912
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1913 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1914 unsigned long rate_limit,
1915 unsigned int ref_th)
1916 {
1917 unsigned int now, start, th_period, unit_th, th;
1918 unsigned long nr_cand, ref_cand, diff_cand;
1919
1920 now = jiffies_to_msecs(jiffies);
1921 th_period = sysctl_numa_balancing_scan_period_max;
1922 start = pgdat->nbp_th_start;
1923 if (now - start > th_period &&
1924 cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1925 ref_cand = rate_limit *
1926 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1927 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1928 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1929 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1930 th = pgdat->nbp_threshold ? : ref_th;
1931 if (diff_cand > ref_cand * 11 / 10)
1932 th = max(th - unit_th, unit_th);
1933 else if (diff_cand < ref_cand * 9 / 10)
1934 th = min(th + unit_th, ref_th * 2);
1935 pgdat->nbp_th_nr_cand = nr_cand;
1936 pgdat->nbp_threshold = th;
1937 }
1938 }
1939
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1940 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1941 int src_nid, int dst_cpu)
1942 {
1943 struct numa_group *ng = deref_curr_numa_group(p);
1944 int dst_nid = cpu_to_node(dst_cpu);
1945 int last_cpupid, this_cpupid;
1946
1947 /*
1948 * The pages in slow memory node should be migrated according
1949 * to hot/cold instead of private/shared.
1950 */
1951 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1952 !node_is_toptier(src_nid)) {
1953 struct pglist_data *pgdat;
1954 unsigned long rate_limit;
1955 unsigned int latency, th, def_th;
1956
1957 pgdat = NODE_DATA(dst_nid);
1958 if (pgdat_free_space_enough(pgdat)) {
1959 /* workload changed, reset hot threshold */
1960 pgdat->nbp_threshold = 0;
1961 return true;
1962 }
1963
1964 def_th = sysctl_numa_balancing_hot_threshold;
1965 rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1966 (20 - PAGE_SHIFT);
1967 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1968
1969 th = pgdat->nbp_threshold ? : def_th;
1970 latency = numa_hint_fault_latency(page);
1971 if (latency >= th)
1972 return false;
1973
1974 return !numa_promotion_rate_limit(pgdat, rate_limit,
1975 thp_nr_pages(page));
1976 }
1977
1978 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1979 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1980
1981 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1982 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1983 return false;
1984
1985 /*
1986 * Allow first faults or private faults to migrate immediately early in
1987 * the lifetime of a task. The magic number 4 is based on waiting for
1988 * two full passes of the "multi-stage node selection" test that is
1989 * executed below.
1990 */
1991 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1992 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1993 return true;
1994
1995 /*
1996 * Multi-stage node selection is used in conjunction with a periodic
1997 * migration fault to build a temporal task<->page relation. By using
1998 * a two-stage filter we remove short/unlikely relations.
1999 *
2000 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
2001 * a task's usage of a particular page (n_p) per total usage of this
2002 * page (n_t) (in a given time-span) to a probability.
2003 *
2004 * Our periodic faults will sample this probability and getting the
2005 * same result twice in a row, given these samples are fully
2006 * independent, is then given by P(n)^2, provided our sample period
2007 * is sufficiently short compared to the usage pattern.
2008 *
2009 * This quadric squishes small probabilities, making it less likely we
2010 * act on an unlikely task<->page relation.
2011 */
2012 if (!cpupid_pid_unset(last_cpupid) &&
2013 cpupid_to_nid(last_cpupid) != dst_nid)
2014 return false;
2015
2016 /* Always allow migrate on private faults */
2017 if (cpupid_match_pid(p, last_cpupid))
2018 return true;
2019
2020 /* A shared fault, but p->numa_group has not been set up yet. */
2021 if (!ng)
2022 return true;
2023
2024 /*
2025 * Destination node is much more heavily used than the source
2026 * node? Allow migration.
2027 */
2028 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
2029 ACTIVE_NODE_FRACTION)
2030 return true;
2031
2032 /*
2033 * Distribute memory according to CPU & memory use on each node,
2034 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2035 *
2036 * faults_cpu(dst) 3 faults_cpu(src)
2037 * --------------- * - > ---------------
2038 * faults_mem(dst) 4 faults_mem(src)
2039 */
2040 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2041 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2042 }
2043
2044 /*
2045 * 'numa_type' describes the node at the moment of load balancing.
2046 */
2047 enum numa_type {
2048 /* The node has spare capacity that can be used to run more tasks. */
2049 node_has_spare = 0,
2050 /*
2051 * The node is fully used and the tasks don't compete for more CPU
2052 * cycles. Nevertheless, some tasks might wait before running.
2053 */
2054 node_fully_busy,
2055 /*
2056 * The node is overloaded and can't provide expected CPU cycles to all
2057 * tasks.
2058 */
2059 node_overloaded
2060 };
2061
2062 /* Cached statistics for all CPUs within a node */
2063 struct numa_stats {
2064 unsigned long load;
2065 unsigned long runnable;
2066 unsigned long util;
2067 /* Total compute capacity of CPUs on a node */
2068 unsigned long compute_capacity;
2069 unsigned int nr_running;
2070 unsigned int weight;
2071 enum numa_type node_type;
2072 int idle_cpu;
2073 };
2074
2075 struct task_numa_env {
2076 struct task_struct *p;
2077
2078 int src_cpu, src_nid;
2079 int dst_cpu, dst_nid;
2080 int imb_numa_nr;
2081
2082 struct numa_stats src_stats, dst_stats;
2083
2084 int imbalance_pct;
2085 int dist;
2086
2087 struct task_struct *best_task;
2088 long best_imp;
2089 int best_cpu;
2090 };
2091
2092 static unsigned long cpu_load(struct rq *rq);
2093 static unsigned long cpu_runnable(struct rq *rq);
2094
2095 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)2096 numa_type numa_classify(unsigned int imbalance_pct,
2097 struct numa_stats *ns)
2098 {
2099 if ((ns->nr_running > ns->weight) &&
2100 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2101 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2102 return node_overloaded;
2103
2104 if ((ns->nr_running < ns->weight) ||
2105 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2106 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2107 return node_has_spare;
2108
2109 return node_fully_busy;
2110 }
2111
2112 #ifdef CONFIG_SCHED_SMT
2113 /* Forward declarations of select_idle_sibling helpers */
2114 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2115 static inline int numa_idle_core(int idle_core, int cpu)
2116 {
2117 if (!static_branch_likely(&sched_smt_present) ||
2118 idle_core >= 0 || !test_idle_cores(cpu))
2119 return idle_core;
2120
2121 /*
2122 * Prefer cores instead of packing HT siblings
2123 * and triggering future load balancing.
2124 */
2125 if (is_core_idle(cpu))
2126 idle_core = cpu;
2127
2128 return idle_core;
2129 }
2130 #else
numa_idle_core(int idle_core,int cpu)2131 static inline int numa_idle_core(int idle_core, int cpu)
2132 {
2133 return idle_core;
2134 }
2135 #endif
2136
2137 /*
2138 * Gather all necessary information to make NUMA balancing placement
2139 * decisions that are compatible with standard load balancer. This
2140 * borrows code and logic from update_sg_lb_stats but sharing a
2141 * common implementation is impractical.
2142 */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2143 static void update_numa_stats(struct task_numa_env *env,
2144 struct numa_stats *ns, int nid,
2145 bool find_idle)
2146 {
2147 int cpu, idle_core = -1;
2148
2149 memset(ns, 0, sizeof(*ns));
2150 ns->idle_cpu = -1;
2151
2152 rcu_read_lock();
2153 for_each_cpu(cpu, cpumask_of_node(nid)) {
2154 struct rq *rq = cpu_rq(cpu);
2155
2156 ns->load += cpu_load(rq);
2157 ns->runnable += cpu_runnable(rq);
2158 ns->util += cpu_util_cfs(cpu);
2159 ns->nr_running += rq->cfs.h_nr_running;
2160 ns->compute_capacity += capacity_of(cpu);
2161
2162 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2163 if (READ_ONCE(rq->numa_migrate_on) ||
2164 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2165 continue;
2166
2167 if (ns->idle_cpu == -1)
2168 ns->idle_cpu = cpu;
2169
2170 idle_core = numa_idle_core(idle_core, cpu);
2171 }
2172 }
2173 rcu_read_unlock();
2174
2175 ns->weight = cpumask_weight(cpumask_of_node(nid));
2176
2177 ns->node_type = numa_classify(env->imbalance_pct, ns);
2178
2179 if (idle_core >= 0)
2180 ns->idle_cpu = idle_core;
2181 }
2182
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2183 static void task_numa_assign(struct task_numa_env *env,
2184 struct task_struct *p, long imp)
2185 {
2186 struct rq *rq = cpu_rq(env->dst_cpu);
2187
2188 /* Check if run-queue part of active NUMA balance. */
2189 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2190 int cpu;
2191 int start = env->dst_cpu;
2192
2193 /* Find alternative idle CPU. */
2194 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2195 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2196 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2197 continue;
2198 }
2199
2200 env->dst_cpu = cpu;
2201 rq = cpu_rq(env->dst_cpu);
2202 if (!xchg(&rq->numa_migrate_on, 1))
2203 goto assign;
2204 }
2205
2206 /* Failed to find an alternative idle CPU */
2207 return;
2208 }
2209
2210 assign:
2211 /*
2212 * Clear previous best_cpu/rq numa-migrate flag, since task now
2213 * found a better CPU to move/swap.
2214 */
2215 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2216 rq = cpu_rq(env->best_cpu);
2217 WRITE_ONCE(rq->numa_migrate_on, 0);
2218 }
2219
2220 if (env->best_task)
2221 put_task_struct(env->best_task);
2222 if (p)
2223 get_task_struct(p);
2224
2225 env->best_task = p;
2226 env->best_imp = imp;
2227 env->best_cpu = env->dst_cpu;
2228 }
2229
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2230 static bool load_too_imbalanced(long src_load, long dst_load,
2231 struct task_numa_env *env)
2232 {
2233 long imb, old_imb;
2234 long orig_src_load, orig_dst_load;
2235 long src_capacity, dst_capacity;
2236
2237 /*
2238 * The load is corrected for the CPU capacity available on each node.
2239 *
2240 * src_load dst_load
2241 * ------------ vs ---------
2242 * src_capacity dst_capacity
2243 */
2244 src_capacity = env->src_stats.compute_capacity;
2245 dst_capacity = env->dst_stats.compute_capacity;
2246
2247 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2248
2249 orig_src_load = env->src_stats.load;
2250 orig_dst_load = env->dst_stats.load;
2251
2252 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2253
2254 /* Would this change make things worse? */
2255 return (imb > old_imb);
2256 }
2257
2258 /*
2259 * Maximum NUMA importance can be 1998 (2*999);
2260 * SMALLIMP @ 30 would be close to 1998/64.
2261 * Used to deter task migration.
2262 */
2263 #define SMALLIMP 30
2264
2265 /*
2266 * This checks if the overall compute and NUMA accesses of the system would
2267 * be improved if the source tasks was migrated to the target dst_cpu taking
2268 * into account that it might be best if task running on the dst_cpu should
2269 * be exchanged with the source task
2270 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2271 static bool task_numa_compare(struct task_numa_env *env,
2272 long taskimp, long groupimp, bool maymove)
2273 {
2274 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2275 struct rq *dst_rq = cpu_rq(env->dst_cpu);
2276 long imp = p_ng ? groupimp : taskimp;
2277 struct task_struct *cur;
2278 long src_load, dst_load;
2279 int dist = env->dist;
2280 long moveimp = imp;
2281 long load;
2282 bool stopsearch = false;
2283
2284 if (READ_ONCE(dst_rq->numa_migrate_on))
2285 return false;
2286
2287 rcu_read_lock();
2288 cur = rcu_dereference(dst_rq->curr);
2289 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2290 cur = NULL;
2291
2292 /*
2293 * Because we have preemption enabled we can get migrated around and
2294 * end try selecting ourselves (current == env->p) as a swap candidate.
2295 */
2296 if (cur == env->p) {
2297 stopsearch = true;
2298 goto unlock;
2299 }
2300
2301 if (!cur) {
2302 if (maymove && moveimp >= env->best_imp)
2303 goto assign;
2304 else
2305 goto unlock;
2306 }
2307
2308 /* Skip this swap candidate if cannot move to the source cpu. */
2309 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2310 goto unlock;
2311
2312 /*
2313 * Skip this swap candidate if it is not moving to its preferred
2314 * node and the best task is.
2315 */
2316 if (env->best_task &&
2317 env->best_task->numa_preferred_nid == env->src_nid &&
2318 cur->numa_preferred_nid != env->src_nid) {
2319 goto unlock;
2320 }
2321
2322 /*
2323 * "imp" is the fault differential for the source task between the
2324 * source and destination node. Calculate the total differential for
2325 * the source task and potential destination task. The more negative
2326 * the value is, the more remote accesses that would be expected to
2327 * be incurred if the tasks were swapped.
2328 *
2329 * If dst and source tasks are in the same NUMA group, or not
2330 * in any group then look only at task weights.
2331 */
2332 cur_ng = rcu_dereference(cur->numa_group);
2333 if (cur_ng == p_ng) {
2334 /*
2335 * Do not swap within a group or between tasks that have
2336 * no group if there is spare capacity. Swapping does
2337 * not address the load imbalance and helps one task at
2338 * the cost of punishing another.
2339 */
2340 if (env->dst_stats.node_type == node_has_spare)
2341 goto unlock;
2342
2343 imp = taskimp + task_weight(cur, env->src_nid, dist) -
2344 task_weight(cur, env->dst_nid, dist);
2345 /*
2346 * Add some hysteresis to prevent swapping the
2347 * tasks within a group over tiny differences.
2348 */
2349 if (cur_ng)
2350 imp -= imp / 16;
2351 } else {
2352 /*
2353 * Compare the group weights. If a task is all by itself
2354 * (not part of a group), use the task weight instead.
2355 */
2356 if (cur_ng && p_ng)
2357 imp += group_weight(cur, env->src_nid, dist) -
2358 group_weight(cur, env->dst_nid, dist);
2359 else
2360 imp += task_weight(cur, env->src_nid, dist) -
2361 task_weight(cur, env->dst_nid, dist);
2362 }
2363
2364 /* Discourage picking a task already on its preferred node */
2365 if (cur->numa_preferred_nid == env->dst_nid)
2366 imp -= imp / 16;
2367
2368 /*
2369 * Encourage picking a task that moves to its preferred node.
2370 * This potentially makes imp larger than it's maximum of
2371 * 1998 (see SMALLIMP and task_weight for why) but in this
2372 * case, it does not matter.
2373 */
2374 if (cur->numa_preferred_nid == env->src_nid)
2375 imp += imp / 8;
2376
2377 if (maymove && moveimp > imp && moveimp > env->best_imp) {
2378 imp = moveimp;
2379 cur = NULL;
2380 goto assign;
2381 }
2382
2383 /*
2384 * Prefer swapping with a task moving to its preferred node over a
2385 * task that is not.
2386 */
2387 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2388 env->best_task->numa_preferred_nid != env->src_nid) {
2389 goto assign;
2390 }
2391
2392 /*
2393 * If the NUMA importance is less than SMALLIMP,
2394 * task migration might only result in ping pong
2395 * of tasks and also hurt performance due to cache
2396 * misses.
2397 */
2398 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2399 goto unlock;
2400
2401 /*
2402 * In the overloaded case, try and keep the load balanced.
2403 */
2404 load = task_h_load(env->p) - task_h_load(cur);
2405 if (!load)
2406 goto assign;
2407
2408 dst_load = env->dst_stats.load + load;
2409 src_load = env->src_stats.load - load;
2410
2411 if (load_too_imbalanced(src_load, dst_load, env))
2412 goto unlock;
2413
2414 assign:
2415 /* Evaluate an idle CPU for a task numa move. */
2416 if (!cur) {
2417 int cpu = env->dst_stats.idle_cpu;
2418
2419 /* Nothing cached so current CPU went idle since the search. */
2420 if (cpu < 0)
2421 cpu = env->dst_cpu;
2422
2423 /*
2424 * If the CPU is no longer truly idle and the previous best CPU
2425 * is, keep using it.
2426 */
2427 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2428 idle_cpu(env->best_cpu)) {
2429 cpu = env->best_cpu;
2430 }
2431
2432 env->dst_cpu = cpu;
2433 }
2434
2435 task_numa_assign(env, cur, imp);
2436
2437 /*
2438 * If a move to idle is allowed because there is capacity or load
2439 * balance improves then stop the search. While a better swap
2440 * candidate may exist, a search is not free.
2441 */
2442 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2443 stopsearch = true;
2444
2445 /*
2446 * If a swap candidate must be identified and the current best task
2447 * moves its preferred node then stop the search.
2448 */
2449 if (!maymove && env->best_task &&
2450 env->best_task->numa_preferred_nid == env->src_nid) {
2451 stopsearch = true;
2452 }
2453 unlock:
2454 rcu_read_unlock();
2455
2456 return stopsearch;
2457 }
2458
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2459 static void task_numa_find_cpu(struct task_numa_env *env,
2460 long taskimp, long groupimp)
2461 {
2462 bool maymove = false;
2463 int cpu;
2464
2465 /*
2466 * If dst node has spare capacity, then check if there is an
2467 * imbalance that would be overruled by the load balancer.
2468 */
2469 if (env->dst_stats.node_type == node_has_spare) {
2470 unsigned int imbalance;
2471 int src_running, dst_running;
2472
2473 /*
2474 * Would movement cause an imbalance? Note that if src has
2475 * more running tasks that the imbalance is ignored as the
2476 * move improves the imbalance from the perspective of the
2477 * CPU load balancer.
2478 * */
2479 src_running = env->src_stats.nr_running - 1;
2480 dst_running = env->dst_stats.nr_running + 1;
2481 imbalance = max(0, dst_running - src_running);
2482 imbalance = adjust_numa_imbalance(imbalance, dst_running,
2483 env->imb_numa_nr);
2484
2485 /* Use idle CPU if there is no imbalance */
2486 if (!imbalance) {
2487 maymove = true;
2488 if (env->dst_stats.idle_cpu >= 0) {
2489 env->dst_cpu = env->dst_stats.idle_cpu;
2490 task_numa_assign(env, NULL, 0);
2491 return;
2492 }
2493 }
2494 } else {
2495 long src_load, dst_load, load;
2496 /*
2497 * If the improvement from just moving env->p direction is better
2498 * than swapping tasks around, check if a move is possible.
2499 */
2500 load = task_h_load(env->p);
2501 dst_load = env->dst_stats.load + load;
2502 src_load = env->src_stats.load - load;
2503 maymove = !load_too_imbalanced(src_load, dst_load, env);
2504 }
2505
2506 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2507 /* Skip this CPU if the source task cannot migrate */
2508 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2509 continue;
2510
2511 env->dst_cpu = cpu;
2512 if (task_numa_compare(env, taskimp, groupimp, maymove))
2513 break;
2514 }
2515 }
2516
task_numa_migrate(struct task_struct * p)2517 static int task_numa_migrate(struct task_struct *p)
2518 {
2519 struct task_numa_env env = {
2520 .p = p,
2521
2522 .src_cpu = task_cpu(p),
2523 .src_nid = task_node(p),
2524
2525 .imbalance_pct = 112,
2526
2527 .best_task = NULL,
2528 .best_imp = 0,
2529 .best_cpu = -1,
2530 };
2531 unsigned long taskweight, groupweight;
2532 struct sched_domain *sd;
2533 long taskimp, groupimp;
2534 struct numa_group *ng;
2535 struct rq *best_rq;
2536 int nid, ret, dist;
2537
2538 /*
2539 * Pick the lowest SD_NUMA domain, as that would have the smallest
2540 * imbalance and would be the first to start moving tasks about.
2541 *
2542 * And we want to avoid any moving of tasks about, as that would create
2543 * random movement of tasks -- counter the numa conditions we're trying
2544 * to satisfy here.
2545 */
2546 rcu_read_lock();
2547 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2548 if (sd) {
2549 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2550 env.imb_numa_nr = sd->imb_numa_nr;
2551 }
2552 rcu_read_unlock();
2553
2554 /*
2555 * Cpusets can break the scheduler domain tree into smaller
2556 * balance domains, some of which do not cross NUMA boundaries.
2557 * Tasks that are "trapped" in such domains cannot be migrated
2558 * elsewhere, so there is no point in (re)trying.
2559 */
2560 if (unlikely(!sd)) {
2561 sched_setnuma(p, task_node(p));
2562 return -EINVAL;
2563 }
2564
2565 env.dst_nid = p->numa_preferred_nid;
2566 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2567 taskweight = task_weight(p, env.src_nid, dist);
2568 groupweight = group_weight(p, env.src_nid, dist);
2569 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2570 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2571 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2572 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2573
2574 /* Try to find a spot on the preferred nid. */
2575 task_numa_find_cpu(&env, taskimp, groupimp);
2576
2577 /*
2578 * Look at other nodes in these cases:
2579 * - there is no space available on the preferred_nid
2580 * - the task is part of a numa_group that is interleaved across
2581 * multiple NUMA nodes; in order to better consolidate the group,
2582 * we need to check other locations.
2583 */
2584 ng = deref_curr_numa_group(p);
2585 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2586 for_each_node_state(nid, N_CPU) {
2587 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2588 continue;
2589
2590 dist = node_distance(env.src_nid, env.dst_nid);
2591 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2592 dist != env.dist) {
2593 taskweight = task_weight(p, env.src_nid, dist);
2594 groupweight = group_weight(p, env.src_nid, dist);
2595 }
2596
2597 /* Only consider nodes where both task and groups benefit */
2598 taskimp = task_weight(p, nid, dist) - taskweight;
2599 groupimp = group_weight(p, nid, dist) - groupweight;
2600 if (taskimp < 0 && groupimp < 0)
2601 continue;
2602
2603 env.dist = dist;
2604 env.dst_nid = nid;
2605 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2606 task_numa_find_cpu(&env, taskimp, groupimp);
2607 }
2608 }
2609
2610 /*
2611 * If the task is part of a workload that spans multiple NUMA nodes,
2612 * and is migrating into one of the workload's active nodes, remember
2613 * this node as the task's preferred numa node, so the workload can
2614 * settle down.
2615 * A task that migrated to a second choice node will be better off
2616 * trying for a better one later. Do not set the preferred node here.
2617 */
2618 if (ng) {
2619 if (env.best_cpu == -1)
2620 nid = env.src_nid;
2621 else
2622 nid = cpu_to_node(env.best_cpu);
2623
2624 if (nid != p->numa_preferred_nid)
2625 sched_setnuma(p, nid);
2626 }
2627
2628 /* No better CPU than the current one was found. */
2629 if (env.best_cpu == -1) {
2630 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2631 return -EAGAIN;
2632 }
2633
2634 best_rq = cpu_rq(env.best_cpu);
2635 if (env.best_task == NULL) {
2636 ret = migrate_task_to(p, env.best_cpu);
2637 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2638 if (ret != 0)
2639 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2640 return ret;
2641 }
2642
2643 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2644 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2645
2646 if (ret != 0)
2647 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2648 put_task_struct(env.best_task);
2649 return ret;
2650 }
2651
2652 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2653 static void numa_migrate_preferred(struct task_struct *p)
2654 {
2655 unsigned long interval = HZ;
2656
2657 /* This task has no NUMA fault statistics yet */
2658 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2659 return;
2660
2661 /* Periodically retry migrating the task to the preferred node */
2662 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2663 p->numa_migrate_retry = jiffies + interval;
2664
2665 /* Success if task is already running on preferred CPU */
2666 if (task_node(p) == p->numa_preferred_nid)
2667 return;
2668
2669 /* Otherwise, try migrate to a CPU on the preferred node */
2670 task_numa_migrate(p);
2671 }
2672
2673 /*
2674 * Find out how many nodes the workload is actively running on. Do this by
2675 * tracking the nodes from which NUMA hinting faults are triggered. This can
2676 * be different from the set of nodes where the workload's memory is currently
2677 * located.
2678 */
numa_group_count_active_nodes(struct numa_group * numa_group)2679 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2680 {
2681 unsigned long faults, max_faults = 0;
2682 int nid, active_nodes = 0;
2683
2684 for_each_node_state(nid, N_CPU) {
2685 faults = group_faults_cpu(numa_group, nid);
2686 if (faults > max_faults)
2687 max_faults = faults;
2688 }
2689
2690 for_each_node_state(nid, N_CPU) {
2691 faults = group_faults_cpu(numa_group, nid);
2692 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2693 active_nodes++;
2694 }
2695
2696 numa_group->max_faults_cpu = max_faults;
2697 numa_group->active_nodes = active_nodes;
2698 }
2699
2700 /*
2701 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2702 * increments. The more local the fault statistics are, the higher the scan
2703 * period will be for the next scan window. If local/(local+remote) ratio is
2704 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2705 * the scan period will decrease. Aim for 70% local accesses.
2706 */
2707 #define NUMA_PERIOD_SLOTS 10
2708 #define NUMA_PERIOD_THRESHOLD 7
2709
2710 /*
2711 * Increase the scan period (slow down scanning) if the majority of
2712 * our memory is already on our local node, or if the majority of
2713 * the page accesses are shared with other processes.
2714 * Otherwise, decrease the scan period.
2715 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2716 static void update_task_scan_period(struct task_struct *p,
2717 unsigned long shared, unsigned long private)
2718 {
2719 unsigned int period_slot;
2720 int lr_ratio, ps_ratio;
2721 int diff;
2722
2723 unsigned long remote = p->numa_faults_locality[0];
2724 unsigned long local = p->numa_faults_locality[1];
2725
2726 /*
2727 * If there were no record hinting faults then either the task is
2728 * completely idle or all activity is in areas that are not of interest
2729 * to automatic numa balancing. Related to that, if there were failed
2730 * migration then it implies we are migrating too quickly or the local
2731 * node is overloaded. In either case, scan slower
2732 */
2733 if (local + shared == 0 || p->numa_faults_locality[2]) {
2734 p->numa_scan_period = min(p->numa_scan_period_max,
2735 p->numa_scan_period << 1);
2736
2737 p->mm->numa_next_scan = jiffies +
2738 msecs_to_jiffies(p->numa_scan_period);
2739
2740 return;
2741 }
2742
2743 /*
2744 * Prepare to scale scan period relative to the current period.
2745 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2746 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2747 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2748 */
2749 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2750 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2751 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2752
2753 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2754 /*
2755 * Most memory accesses are local. There is no need to
2756 * do fast NUMA scanning, since memory is already local.
2757 */
2758 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2759 if (!slot)
2760 slot = 1;
2761 diff = slot * period_slot;
2762 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2763 /*
2764 * Most memory accesses are shared with other tasks.
2765 * There is no point in continuing fast NUMA scanning,
2766 * since other tasks may just move the memory elsewhere.
2767 */
2768 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2769 if (!slot)
2770 slot = 1;
2771 diff = slot * period_slot;
2772 } else {
2773 /*
2774 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2775 * yet they are not on the local NUMA node. Speed up
2776 * NUMA scanning to get the memory moved over.
2777 */
2778 int ratio = max(lr_ratio, ps_ratio);
2779 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2780 }
2781
2782 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2783 task_scan_min(p), task_scan_max(p));
2784 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2785 }
2786
2787 /*
2788 * Get the fraction of time the task has been running since the last
2789 * NUMA placement cycle. The scheduler keeps similar statistics, but
2790 * decays those on a 32ms period, which is orders of magnitude off
2791 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2792 * stats only if the task is so new there are no NUMA statistics yet.
2793 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2794 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2795 {
2796 u64 runtime, delta, now;
2797 /* Use the start of this time slice to avoid calculations. */
2798 now = p->se.exec_start;
2799 runtime = p->se.sum_exec_runtime;
2800
2801 if (p->last_task_numa_placement) {
2802 delta = runtime - p->last_sum_exec_runtime;
2803 *period = now - p->last_task_numa_placement;
2804
2805 /* Avoid time going backwards, prevent potential divide error: */
2806 if (unlikely((s64)*period < 0))
2807 *period = 0;
2808 } else {
2809 delta = p->se.avg.load_sum;
2810 *period = LOAD_AVG_MAX;
2811 }
2812
2813 p->last_sum_exec_runtime = runtime;
2814 p->last_task_numa_placement = now;
2815
2816 return delta;
2817 }
2818
2819 /*
2820 * Determine the preferred nid for a task in a numa_group. This needs to
2821 * be done in a way that produces consistent results with group_weight,
2822 * otherwise workloads might not converge.
2823 */
preferred_group_nid(struct task_struct * p,int nid)2824 static int preferred_group_nid(struct task_struct *p, int nid)
2825 {
2826 nodemask_t nodes;
2827 int dist;
2828
2829 /* Direct connections between all NUMA nodes. */
2830 if (sched_numa_topology_type == NUMA_DIRECT)
2831 return nid;
2832
2833 /*
2834 * On a system with glueless mesh NUMA topology, group_weight
2835 * scores nodes according to the number of NUMA hinting faults on
2836 * both the node itself, and on nearby nodes.
2837 */
2838 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2839 unsigned long score, max_score = 0;
2840 int node, max_node = nid;
2841
2842 dist = sched_max_numa_distance;
2843
2844 for_each_node_state(node, N_CPU) {
2845 score = group_weight(p, node, dist);
2846 if (score > max_score) {
2847 max_score = score;
2848 max_node = node;
2849 }
2850 }
2851 return max_node;
2852 }
2853
2854 /*
2855 * Finding the preferred nid in a system with NUMA backplane
2856 * interconnect topology is more involved. The goal is to locate
2857 * tasks from numa_groups near each other in the system, and
2858 * untangle workloads from different sides of the system. This requires
2859 * searching down the hierarchy of node groups, recursively searching
2860 * inside the highest scoring group of nodes. The nodemask tricks
2861 * keep the complexity of the search down.
2862 */
2863 nodes = node_states[N_CPU];
2864 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2865 unsigned long max_faults = 0;
2866 nodemask_t max_group = NODE_MASK_NONE;
2867 int a, b;
2868
2869 /* Are there nodes at this distance from each other? */
2870 if (!find_numa_distance(dist))
2871 continue;
2872
2873 for_each_node_mask(a, nodes) {
2874 unsigned long faults = 0;
2875 nodemask_t this_group;
2876 nodes_clear(this_group);
2877
2878 /* Sum group's NUMA faults; includes a==b case. */
2879 for_each_node_mask(b, nodes) {
2880 if (node_distance(a, b) < dist) {
2881 faults += group_faults(p, b);
2882 node_set(b, this_group);
2883 node_clear(b, nodes);
2884 }
2885 }
2886
2887 /* Remember the top group. */
2888 if (faults > max_faults) {
2889 max_faults = faults;
2890 max_group = this_group;
2891 /*
2892 * subtle: at the smallest distance there is
2893 * just one node left in each "group", the
2894 * winner is the preferred nid.
2895 */
2896 nid = a;
2897 }
2898 }
2899 /* Next round, evaluate the nodes within max_group. */
2900 if (!max_faults)
2901 break;
2902 nodes = max_group;
2903 }
2904 return nid;
2905 }
2906
task_numa_placement(struct task_struct * p)2907 static void task_numa_placement(struct task_struct *p)
2908 {
2909 int seq, nid, max_nid = NUMA_NO_NODE;
2910 unsigned long max_faults = 0;
2911 unsigned long fault_types[2] = { 0, 0 };
2912 unsigned long total_faults;
2913 u64 runtime, period;
2914 spinlock_t *group_lock = NULL;
2915 struct numa_group *ng;
2916
2917 /*
2918 * The p->mm->numa_scan_seq field gets updated without
2919 * exclusive access. Use READ_ONCE() here to ensure
2920 * that the field is read in a single access:
2921 */
2922 seq = READ_ONCE(p->mm->numa_scan_seq);
2923 if (p->numa_scan_seq == seq)
2924 return;
2925 p->numa_scan_seq = seq;
2926 p->numa_scan_period_max = task_scan_max(p);
2927
2928 total_faults = p->numa_faults_locality[0] +
2929 p->numa_faults_locality[1];
2930 runtime = numa_get_avg_runtime(p, &period);
2931
2932 /* If the task is part of a group prevent parallel updates to group stats */
2933 ng = deref_curr_numa_group(p);
2934 if (ng) {
2935 group_lock = &ng->lock;
2936 spin_lock_irq(group_lock);
2937 }
2938
2939 /* Find the node with the highest number of faults */
2940 for_each_online_node(nid) {
2941 /* Keep track of the offsets in numa_faults array */
2942 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2943 unsigned long faults = 0, group_faults = 0;
2944 int priv;
2945
2946 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2947 long diff, f_diff, f_weight;
2948
2949 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2950 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2951 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2952 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2953
2954 /* Decay existing window, copy faults since last scan */
2955 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2956 fault_types[priv] += p->numa_faults[membuf_idx];
2957 p->numa_faults[membuf_idx] = 0;
2958
2959 /*
2960 * Normalize the faults_from, so all tasks in a group
2961 * count according to CPU use, instead of by the raw
2962 * number of faults. Tasks with little runtime have
2963 * little over-all impact on throughput, and thus their
2964 * faults are less important.
2965 */
2966 f_weight = div64_u64(runtime << 16, period + 1);
2967 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2968 (total_faults + 1);
2969 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2970 p->numa_faults[cpubuf_idx] = 0;
2971
2972 p->numa_faults[mem_idx] += diff;
2973 p->numa_faults[cpu_idx] += f_diff;
2974 faults += p->numa_faults[mem_idx];
2975 p->total_numa_faults += diff;
2976 if (ng) {
2977 /*
2978 * safe because we can only change our own group
2979 *
2980 * mem_idx represents the offset for a given
2981 * nid and priv in a specific region because it
2982 * is at the beginning of the numa_faults array.
2983 */
2984 ng->faults[mem_idx] += diff;
2985 ng->faults[cpu_idx] += f_diff;
2986 ng->total_faults += diff;
2987 group_faults += ng->faults[mem_idx];
2988 }
2989 }
2990
2991 if (!ng) {
2992 if (faults > max_faults) {
2993 max_faults = faults;
2994 max_nid = nid;
2995 }
2996 } else if (group_faults > max_faults) {
2997 max_faults = group_faults;
2998 max_nid = nid;
2999 }
3000 }
3001
3002 /* Cannot migrate task to CPU-less node */
3003 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
3004 int near_nid = max_nid;
3005 int distance, near_distance = INT_MAX;
3006
3007 for_each_node_state(nid, N_CPU) {
3008 distance = node_distance(max_nid, nid);
3009 if (distance < near_distance) {
3010 near_nid = nid;
3011 near_distance = distance;
3012 }
3013 }
3014 max_nid = near_nid;
3015 }
3016
3017 if (ng) {
3018 numa_group_count_active_nodes(ng);
3019 spin_unlock_irq(group_lock);
3020 max_nid = preferred_group_nid(p, max_nid);
3021 }
3022
3023 if (max_faults) {
3024 /* Set the new preferred node */
3025 if (max_nid != p->numa_preferred_nid)
3026 sched_setnuma(p, max_nid);
3027 }
3028
3029 update_task_scan_period(p, fault_types[0], fault_types[1]);
3030 }
3031
get_numa_group(struct numa_group * grp)3032 static inline int get_numa_group(struct numa_group *grp)
3033 {
3034 return refcount_inc_not_zero(&grp->refcount);
3035 }
3036
put_numa_group(struct numa_group * grp)3037 static inline void put_numa_group(struct numa_group *grp)
3038 {
3039 if (refcount_dec_and_test(&grp->refcount))
3040 kfree_rcu(grp, rcu);
3041 }
3042
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)3043 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3044 int *priv)
3045 {
3046 struct numa_group *grp, *my_grp;
3047 struct task_struct *tsk;
3048 bool join = false;
3049 int cpu = cpupid_to_cpu(cpupid);
3050 int i;
3051
3052 if (unlikely(!deref_curr_numa_group(p))) {
3053 unsigned int size = sizeof(struct numa_group) +
3054 NR_NUMA_HINT_FAULT_STATS *
3055 nr_node_ids * sizeof(unsigned long);
3056
3057 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3058 if (!grp)
3059 return;
3060
3061 refcount_set(&grp->refcount, 1);
3062 grp->active_nodes = 1;
3063 grp->max_faults_cpu = 0;
3064 spin_lock_init(&grp->lock);
3065 grp->gid = p->pid;
3066
3067 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3068 grp->faults[i] = p->numa_faults[i];
3069
3070 grp->total_faults = p->total_numa_faults;
3071
3072 grp->nr_tasks++;
3073 rcu_assign_pointer(p->numa_group, grp);
3074 }
3075
3076 rcu_read_lock();
3077 tsk = READ_ONCE(cpu_rq(cpu)->curr);
3078
3079 if (!cpupid_match_pid(tsk, cpupid))
3080 goto no_join;
3081
3082 grp = rcu_dereference(tsk->numa_group);
3083 if (!grp)
3084 goto no_join;
3085
3086 my_grp = deref_curr_numa_group(p);
3087 if (grp == my_grp)
3088 goto no_join;
3089
3090 /*
3091 * Only join the other group if its bigger; if we're the bigger group,
3092 * the other task will join us.
3093 */
3094 if (my_grp->nr_tasks > grp->nr_tasks)
3095 goto no_join;
3096
3097 /*
3098 * Tie-break on the grp address.
3099 */
3100 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3101 goto no_join;
3102
3103 /* Always join threads in the same process. */
3104 if (tsk->mm == current->mm)
3105 join = true;
3106
3107 /* Simple filter to avoid false positives due to PID collisions */
3108 if (flags & TNF_SHARED)
3109 join = true;
3110
3111 /* Update priv based on whether false sharing was detected */
3112 *priv = !join;
3113
3114 if (join && !get_numa_group(grp))
3115 goto no_join;
3116
3117 rcu_read_unlock();
3118
3119 if (!join)
3120 return;
3121
3122 WARN_ON_ONCE(irqs_disabled());
3123 double_lock_irq(&my_grp->lock, &grp->lock);
3124
3125 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3126 my_grp->faults[i] -= p->numa_faults[i];
3127 grp->faults[i] += p->numa_faults[i];
3128 }
3129 my_grp->total_faults -= p->total_numa_faults;
3130 grp->total_faults += p->total_numa_faults;
3131
3132 my_grp->nr_tasks--;
3133 grp->nr_tasks++;
3134
3135 spin_unlock(&my_grp->lock);
3136 spin_unlock_irq(&grp->lock);
3137
3138 rcu_assign_pointer(p->numa_group, grp);
3139
3140 put_numa_group(my_grp);
3141 return;
3142
3143 no_join:
3144 rcu_read_unlock();
3145 return;
3146 }
3147
3148 /*
3149 * Get rid of NUMA statistics associated with a task (either current or dead).
3150 * If @final is set, the task is dead and has reached refcount zero, so we can
3151 * safely free all relevant data structures. Otherwise, there might be
3152 * concurrent reads from places like load balancing and procfs, and we should
3153 * reset the data back to default state without freeing ->numa_faults.
3154 */
task_numa_free(struct task_struct * p,bool final)3155 void task_numa_free(struct task_struct *p, bool final)
3156 {
3157 /* safe: p either is current or is being freed by current */
3158 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3159 unsigned long *numa_faults = p->numa_faults;
3160 unsigned long flags;
3161 int i;
3162
3163 if (!numa_faults)
3164 return;
3165
3166 if (grp) {
3167 spin_lock_irqsave(&grp->lock, flags);
3168 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3169 grp->faults[i] -= p->numa_faults[i];
3170 grp->total_faults -= p->total_numa_faults;
3171
3172 grp->nr_tasks--;
3173 spin_unlock_irqrestore(&grp->lock, flags);
3174 RCU_INIT_POINTER(p->numa_group, NULL);
3175 put_numa_group(grp);
3176 }
3177
3178 if (final) {
3179 p->numa_faults = NULL;
3180 kfree(numa_faults);
3181 } else {
3182 p->total_numa_faults = 0;
3183 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3184 numa_faults[i] = 0;
3185 }
3186 }
3187
3188 /*
3189 * Got a PROT_NONE fault for a page on @node.
3190 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3191 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3192 {
3193 struct task_struct *p = current;
3194 bool migrated = flags & TNF_MIGRATED;
3195 int cpu_node = task_node(current);
3196 int local = !!(flags & TNF_FAULT_LOCAL);
3197 struct numa_group *ng;
3198 int priv;
3199
3200 if (!static_branch_likely(&sched_numa_balancing))
3201 return;
3202
3203 /* for example, ksmd faulting in a user's mm */
3204 if (!p->mm)
3205 return;
3206
3207 /*
3208 * NUMA faults statistics are unnecessary for the slow memory
3209 * node for memory tiering mode.
3210 */
3211 if (!node_is_toptier(mem_node) &&
3212 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3213 !cpupid_valid(last_cpupid)))
3214 return;
3215
3216 /* Allocate buffer to track faults on a per-node basis */
3217 if (unlikely(!p->numa_faults)) {
3218 int size = sizeof(*p->numa_faults) *
3219 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3220
3221 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3222 if (!p->numa_faults)
3223 return;
3224
3225 p->total_numa_faults = 0;
3226 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3227 }
3228
3229 /*
3230 * First accesses are treated as private, otherwise consider accesses
3231 * to be private if the accessing pid has not changed
3232 */
3233 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3234 priv = 1;
3235 } else {
3236 priv = cpupid_match_pid(p, last_cpupid);
3237 if (!priv && !(flags & TNF_NO_GROUP))
3238 task_numa_group(p, last_cpupid, flags, &priv);
3239 }
3240
3241 /*
3242 * If a workload spans multiple NUMA nodes, a shared fault that
3243 * occurs wholly within the set of nodes that the workload is
3244 * actively using should be counted as local. This allows the
3245 * scan rate to slow down when a workload has settled down.
3246 */
3247 ng = deref_curr_numa_group(p);
3248 if (!priv && !local && ng && ng->active_nodes > 1 &&
3249 numa_is_active_node(cpu_node, ng) &&
3250 numa_is_active_node(mem_node, ng))
3251 local = 1;
3252
3253 /*
3254 * Retry to migrate task to preferred node periodically, in case it
3255 * previously failed, or the scheduler moved us.
3256 */
3257 if (time_after(jiffies, p->numa_migrate_retry)) {
3258 task_numa_placement(p);
3259 numa_migrate_preferred(p);
3260 }
3261
3262 if (migrated)
3263 p->numa_pages_migrated += pages;
3264 if (flags & TNF_MIGRATE_FAIL)
3265 p->numa_faults_locality[2] += pages;
3266
3267 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3268 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3269 p->numa_faults_locality[local] += pages;
3270 }
3271
reset_ptenuma_scan(struct task_struct * p)3272 static void reset_ptenuma_scan(struct task_struct *p)
3273 {
3274 /*
3275 * We only did a read acquisition of the mmap sem, so
3276 * p->mm->numa_scan_seq is written to without exclusive access
3277 * and the update is not guaranteed to be atomic. That's not
3278 * much of an issue though, since this is just used for
3279 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3280 * expensive, to avoid any form of compiler optimizations:
3281 */
3282 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3283 p->mm->numa_scan_offset = 0;
3284 }
3285
vma_is_accessed(struct mm_struct * mm,struct vm_area_struct * vma)3286 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3287 {
3288 unsigned long pids;
3289 /*
3290 * Allow unconditional access first two times, so that all the (pages)
3291 * of VMAs get prot_none fault introduced irrespective of accesses.
3292 * This is also done to avoid any side effect of task scanning
3293 * amplifying the unfairness of disjoint set of VMAs' access.
3294 */
3295 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3296 return true;
3297
3298 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3299 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3300 return true;
3301
3302 /*
3303 * Complete a scan that has already started regardless of PID access, or
3304 * some VMAs may never be scanned in multi-threaded applications:
3305 */
3306 if (mm->numa_scan_offset > vma->vm_start) {
3307 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3308 return true;
3309 }
3310
3311 /*
3312 * This vma has not been accessed for a while, and if the number
3313 * the threads in the same process is low, which means no other
3314 * threads can help scan this vma, force a vma scan.
3315 */
3316 if (READ_ONCE(mm->numa_scan_seq) >
3317 (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3318 return true;
3319
3320 return false;
3321 }
3322
3323 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3324
3325 /*
3326 * The expensive part of numa migration is done from task_work context.
3327 * Triggered from task_tick_numa().
3328 */
task_numa_work(struct callback_head * work)3329 static void task_numa_work(struct callback_head *work)
3330 {
3331 unsigned long migrate, next_scan, now = jiffies;
3332 struct task_struct *p = current;
3333 struct mm_struct *mm = p->mm;
3334 u64 runtime = p->se.sum_exec_runtime;
3335 struct vm_area_struct *vma;
3336 unsigned long start, end;
3337 unsigned long nr_pte_updates = 0;
3338 long pages, virtpages;
3339 struct vma_iterator vmi;
3340 bool vma_pids_skipped;
3341 bool vma_pids_forced = false;
3342
3343 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3344
3345 work->next = work;
3346 /*
3347 * Who cares about NUMA placement when they're dying.
3348 *
3349 * NOTE: make sure not to dereference p->mm before this check,
3350 * exit_task_work() happens _after_ exit_mm() so we could be called
3351 * without p->mm even though we still had it when we enqueued this
3352 * work.
3353 */
3354 if (p->flags & PF_EXITING)
3355 return;
3356
3357 if (!mm->numa_next_scan) {
3358 mm->numa_next_scan = now +
3359 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3360 }
3361
3362 /*
3363 * Enforce maximal scan/migration frequency..
3364 */
3365 migrate = mm->numa_next_scan;
3366 if (time_before(now, migrate))
3367 return;
3368
3369 if (p->numa_scan_period == 0) {
3370 p->numa_scan_period_max = task_scan_max(p);
3371 p->numa_scan_period = task_scan_start(p);
3372 }
3373
3374 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3375 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3376 return;
3377
3378 /*
3379 * Delay this task enough that another task of this mm will likely win
3380 * the next time around.
3381 */
3382 p->node_stamp += 2 * TICK_NSEC;
3383
3384 pages = sysctl_numa_balancing_scan_size;
3385 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3386 virtpages = pages * 8; /* Scan up to this much virtual space */
3387 if (!pages)
3388 return;
3389
3390
3391 if (!mmap_read_trylock(mm))
3392 return;
3393
3394 /*
3395 * VMAs are skipped if the current PID has not trapped a fault within
3396 * the VMA recently. Allow scanning to be forced if there is no
3397 * suitable VMA remaining.
3398 */
3399 vma_pids_skipped = false;
3400
3401 retry_pids:
3402 start = mm->numa_scan_offset;
3403 vma_iter_init(&vmi, mm, start);
3404 vma = vma_next(&vmi);
3405 if (!vma) {
3406 reset_ptenuma_scan(p);
3407 start = 0;
3408 vma_iter_set(&vmi, start);
3409 vma = vma_next(&vmi);
3410 }
3411
3412 for (; vma; vma = vma_next(&vmi)) {
3413 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3414 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3415 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3416 continue;
3417 }
3418
3419 /*
3420 * Shared library pages mapped by multiple processes are not
3421 * migrated as it is expected they are cache replicated. Avoid
3422 * hinting faults in read-only file-backed mappings or the vdso
3423 * as migrating the pages will be of marginal benefit.
3424 */
3425 if (!vma->vm_mm ||
3426 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3427 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3428 continue;
3429 }
3430
3431 /*
3432 * Skip inaccessible VMAs to avoid any confusion between
3433 * PROT_NONE and NUMA hinting ptes
3434 */
3435 if (!vma_is_accessible(vma)) {
3436 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3437 continue;
3438 }
3439
3440 /* Initialise new per-VMA NUMAB state. */
3441 if (!vma->numab_state) {
3442 struct vma_numab_state *ptr;
3443
3444 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3445 if (!ptr)
3446 continue;
3447
3448 if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3449 kfree(ptr);
3450 continue;
3451 }
3452
3453 vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3454
3455 vma->numab_state->next_scan = now +
3456 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3457
3458 /* Reset happens after 4 times scan delay of scan start */
3459 vma->numab_state->pids_active_reset = vma->numab_state->next_scan +
3460 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3461
3462 /*
3463 * Ensure prev_scan_seq does not match numa_scan_seq,
3464 * to prevent VMAs being skipped prematurely on the
3465 * first scan:
3466 */
3467 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3468 }
3469
3470 /*
3471 * Scanning the VMA's of short lived tasks add more overhead. So
3472 * delay the scan for new VMAs.
3473 */
3474 if (mm->numa_scan_seq && time_before(jiffies,
3475 vma->numab_state->next_scan)) {
3476 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3477 continue;
3478 }
3479
3480 /* RESET access PIDs regularly for old VMAs. */
3481 if (mm->numa_scan_seq &&
3482 time_after(jiffies, vma->numab_state->pids_active_reset)) {
3483 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3484 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3485 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3486 vma->numab_state->pids_active[1] = 0;
3487 }
3488
3489 /* Do not rescan VMAs twice within the same sequence. */
3490 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3491 mm->numa_scan_offset = vma->vm_end;
3492 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3493 continue;
3494 }
3495
3496 /*
3497 * Do not scan the VMA if task has not accessed it, unless no other
3498 * VMA candidate exists.
3499 */
3500 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3501 vma_pids_skipped = true;
3502 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3503 continue;
3504 }
3505
3506 do {
3507 start = max(start, vma->vm_start);
3508 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3509 end = min(end, vma->vm_end);
3510 nr_pte_updates = change_prot_numa(vma, start, end);
3511
3512 /*
3513 * Try to scan sysctl_numa_balancing_size worth of
3514 * hpages that have at least one present PTE that
3515 * is not already pte-numa. If the VMA contains
3516 * areas that are unused or already full of prot_numa
3517 * PTEs, scan up to virtpages, to skip through those
3518 * areas faster.
3519 */
3520 if (nr_pte_updates)
3521 pages -= (end - start) >> PAGE_SHIFT;
3522 virtpages -= (end - start) >> PAGE_SHIFT;
3523
3524 start = end;
3525 if (pages <= 0 || virtpages <= 0)
3526 goto out;
3527
3528 cond_resched();
3529 } while (end != vma->vm_end);
3530
3531 /* VMA scan is complete, do not scan until next sequence. */
3532 vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3533
3534 /*
3535 * Only force scan within one VMA at a time, to limit the
3536 * cost of scanning a potentially uninteresting VMA.
3537 */
3538 if (vma_pids_forced)
3539 break;
3540 }
3541
3542 /*
3543 * If no VMAs are remaining and VMAs were skipped due to the PID
3544 * not accessing the VMA previously, then force a scan to ensure
3545 * forward progress:
3546 */
3547 if (!vma && !vma_pids_forced && vma_pids_skipped) {
3548 vma_pids_forced = true;
3549 goto retry_pids;
3550 }
3551
3552 out:
3553 /*
3554 * It is possible to reach the end of the VMA list but the last few
3555 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3556 * would find the !migratable VMA on the next scan but not reset the
3557 * scanner to the start so check it now.
3558 */
3559 if (vma)
3560 mm->numa_scan_offset = start;
3561 else
3562 reset_ptenuma_scan(p);
3563 mmap_read_unlock(mm);
3564
3565 /*
3566 * Make sure tasks use at least 32x as much time to run other code
3567 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3568 * Usually update_task_scan_period slows down scanning enough; on an
3569 * overloaded system we need to limit overhead on a per task basis.
3570 */
3571 if (unlikely(p->se.sum_exec_runtime != runtime)) {
3572 u64 diff = p->se.sum_exec_runtime - runtime;
3573 p->node_stamp += 32 * diff;
3574 }
3575 }
3576
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)3577 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3578 {
3579 int mm_users = 0;
3580 struct mm_struct *mm = p->mm;
3581
3582 if (mm) {
3583 mm_users = atomic_read(&mm->mm_users);
3584 if (mm_users == 1) {
3585 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3586 mm->numa_scan_seq = 0;
3587 }
3588 }
3589 p->node_stamp = 0;
3590 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
3591 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
3592 p->numa_migrate_retry = 0;
3593 /* Protect against double add, see task_tick_numa and task_numa_work */
3594 p->numa_work.next = &p->numa_work;
3595 p->numa_faults = NULL;
3596 p->numa_pages_migrated = 0;
3597 p->total_numa_faults = 0;
3598 RCU_INIT_POINTER(p->numa_group, NULL);
3599 p->last_task_numa_placement = 0;
3600 p->last_sum_exec_runtime = 0;
3601
3602 init_task_work(&p->numa_work, task_numa_work);
3603
3604 /* New address space, reset the preferred nid */
3605 if (!(clone_flags & CLONE_VM)) {
3606 p->numa_preferred_nid = NUMA_NO_NODE;
3607 return;
3608 }
3609
3610 /*
3611 * New thread, keep existing numa_preferred_nid which should be copied
3612 * already by arch_dup_task_struct but stagger when scans start.
3613 */
3614 if (mm) {
3615 unsigned int delay;
3616
3617 delay = min_t(unsigned int, task_scan_max(current),
3618 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3619 delay += 2 * TICK_NSEC;
3620 p->node_stamp = delay;
3621 }
3622 }
3623
3624 /*
3625 * Drive the periodic memory faults..
3626 */
task_tick_numa(struct rq * rq,struct task_struct * curr)3627 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3628 {
3629 struct callback_head *work = &curr->numa_work;
3630 u64 period, now;
3631
3632 /*
3633 * We don't care about NUMA placement if we don't have memory.
3634 */
3635 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3636 return;
3637
3638 /*
3639 * Using runtime rather than walltime has the dual advantage that
3640 * we (mostly) drive the selection from busy threads and that the
3641 * task needs to have done some actual work before we bother with
3642 * NUMA placement.
3643 */
3644 now = curr->se.sum_exec_runtime;
3645 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3646
3647 if (now > curr->node_stamp + period) {
3648 if (!curr->node_stamp)
3649 curr->numa_scan_period = task_scan_start(curr);
3650 curr->node_stamp += period;
3651
3652 if (!time_before(jiffies, curr->mm->numa_next_scan))
3653 task_work_add(curr, work, TWA_RESUME);
3654 }
3655 }
3656
update_scan_period(struct task_struct * p,int new_cpu)3657 static void update_scan_period(struct task_struct *p, int new_cpu)
3658 {
3659 int src_nid = cpu_to_node(task_cpu(p));
3660 int dst_nid = cpu_to_node(new_cpu);
3661
3662 if (!static_branch_likely(&sched_numa_balancing))
3663 return;
3664
3665 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3666 return;
3667
3668 if (src_nid == dst_nid)
3669 return;
3670
3671 /*
3672 * Allow resets if faults have been trapped before one scan
3673 * has completed. This is most likely due to a new task that
3674 * is pulled cross-node due to wakeups or load balancing.
3675 */
3676 if (p->numa_scan_seq) {
3677 /*
3678 * Avoid scan adjustments if moving to the preferred
3679 * node or if the task was not previously running on
3680 * the preferred node.
3681 */
3682 if (dst_nid == p->numa_preferred_nid ||
3683 (p->numa_preferred_nid != NUMA_NO_NODE &&
3684 src_nid != p->numa_preferred_nid))
3685 return;
3686 }
3687
3688 p->numa_scan_period = task_scan_start(p);
3689 }
3690
3691 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3692 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3693 {
3694 }
3695
account_numa_enqueue(struct rq * rq,struct task_struct * p)3696 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3697 {
3698 }
3699
account_numa_dequeue(struct rq * rq,struct task_struct * p)3700 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3701 {
3702 }
3703
update_scan_period(struct task_struct * p,int new_cpu)3704 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3705 {
3706 }
3707
3708 #endif /* CONFIG_NUMA_BALANCING */
3709
3710 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3711 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3712 {
3713 update_load_add(&cfs_rq->load, se->load.weight);
3714 #ifdef CONFIG_SMP
3715 if (entity_is_task(se)) {
3716 struct rq *rq = rq_of(cfs_rq);
3717
3718 account_numa_enqueue(rq, task_of(se));
3719 list_add(&se->group_node, &rq->cfs_tasks);
3720 }
3721 #endif
3722 cfs_rq->nr_running++;
3723 if (se_is_idle(se))
3724 cfs_rq->idle_nr_running++;
3725 }
3726
3727 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3728 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3729 {
3730 update_load_sub(&cfs_rq->load, se->load.weight);
3731 #ifdef CONFIG_SMP
3732 if (entity_is_task(se)) {
3733 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3734 list_del_init(&se->group_node);
3735 }
3736 #endif
3737 cfs_rq->nr_running--;
3738 if (se_is_idle(se))
3739 cfs_rq->idle_nr_running--;
3740 }
3741
3742 /*
3743 * Signed add and clamp on underflow.
3744 *
3745 * Explicitly do a load-store to ensure the intermediate value never hits
3746 * memory. This allows lockless observations without ever seeing the negative
3747 * values.
3748 */
3749 #define add_positive(_ptr, _val) do { \
3750 typeof(_ptr) ptr = (_ptr); \
3751 typeof(_val) val = (_val); \
3752 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3753 \
3754 res = var + val; \
3755 \
3756 if (val < 0 && res > var) \
3757 res = 0; \
3758 \
3759 WRITE_ONCE(*ptr, res); \
3760 } while (0)
3761
3762 /*
3763 * Unsigned subtract and clamp on underflow.
3764 *
3765 * Explicitly do a load-store to ensure the intermediate value never hits
3766 * memory. This allows lockless observations without ever seeing the negative
3767 * values.
3768 */
3769 #define sub_positive(_ptr, _val) do { \
3770 typeof(_ptr) ptr = (_ptr); \
3771 typeof(*ptr) val = (_val); \
3772 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3773 res = var - val; \
3774 if (res > var) \
3775 res = 0; \
3776 WRITE_ONCE(*ptr, res); \
3777 } while (0)
3778
3779 /*
3780 * Remove and clamp on negative, from a local variable.
3781 *
3782 * A variant of sub_positive(), which does not use explicit load-store
3783 * and is thus optimized for local variable updates.
3784 */
3785 #define lsub_positive(_ptr, _val) do { \
3786 typeof(_ptr) ptr = (_ptr); \
3787 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3788 } while (0)
3789
3790 #ifdef CONFIG_SMP
3791 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3792 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3793 {
3794 cfs_rq->avg.load_avg += se->avg.load_avg;
3795 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3796 }
3797
3798 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3799 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3800 {
3801 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3802 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3803 /* See update_cfs_rq_load_avg() */
3804 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3805 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3806 }
3807 #else
3808 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3809 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3810 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3811 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3812 #endif
3813
reweight_eevdf(struct sched_entity * se,u64 avruntime,unsigned long weight)3814 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3815 unsigned long weight)
3816 {
3817 unsigned long old_weight = se->load.weight;
3818 s64 vlag, vslice;
3819
3820 /*
3821 * VRUNTIME
3822 * ========
3823 *
3824 * COROLLARY #1: The virtual runtime of the entity needs to be
3825 * adjusted if re-weight at !0-lag point.
3826 *
3827 * Proof: For contradiction assume this is not true, so we can
3828 * re-weight without changing vruntime at !0-lag point.
3829 *
3830 * Weight VRuntime Avg-VRuntime
3831 * before w v V
3832 * after w' v' V'
3833 *
3834 * Since lag needs to be preserved through re-weight:
3835 *
3836 * lag = (V - v)*w = (V'- v')*w', where v = v'
3837 * ==> V' = (V - v)*w/w' + v (1)
3838 *
3839 * Let W be the total weight of the entities before reweight,
3840 * since V' is the new weighted average of entities:
3841 *
3842 * V' = (WV + w'v - wv) / (W + w' - w) (2)
3843 *
3844 * by using (1) & (2) we obtain:
3845 *
3846 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3847 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3848 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3849 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3850 *
3851 * Since we are doing at !0-lag point which means V != v, we
3852 * can simplify (3):
3853 *
3854 * ==> W / (W + w' - w) = w / w'
3855 * ==> Ww' = Ww + ww' - ww
3856 * ==> W * (w' - w) = w * (w' - w)
3857 * ==> W = w (re-weight indicates w' != w)
3858 *
3859 * So the cfs_rq contains only one entity, hence vruntime of
3860 * the entity @v should always equal to the cfs_rq's weighted
3861 * average vruntime @V, which means we will always re-weight
3862 * at 0-lag point, thus breach assumption. Proof completed.
3863 *
3864 *
3865 * COROLLARY #2: Re-weight does NOT affect weighted average
3866 * vruntime of all the entities.
3867 *
3868 * Proof: According to corollary #1, Eq. (1) should be:
3869 *
3870 * (V - v)*w = (V' - v')*w'
3871 * ==> v' = V' - (V - v)*w/w' (4)
3872 *
3873 * According to the weighted average formula, we have:
3874 *
3875 * V' = (WV - wv + w'v') / (W - w + w')
3876 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3877 * = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3878 * = (WV + w'V' - Vw) / (W - w + w')
3879 *
3880 * ==> V'*(W - w + w') = WV + w'V' - Vw
3881 * ==> V' * (W - w) = (W - w) * V (5)
3882 *
3883 * If the entity is the only one in the cfs_rq, then reweight
3884 * always occurs at 0-lag point, so V won't change. Or else
3885 * there are other entities, hence W != w, then Eq. (5) turns
3886 * into V' = V. So V won't change in either case, proof done.
3887 *
3888 *
3889 * So according to corollary #1 & #2, the effect of re-weight
3890 * on vruntime should be:
3891 *
3892 * v' = V' - (V - v) * w / w' (4)
3893 * = V - (V - v) * w / w'
3894 * = V - vl * w / w'
3895 * = V - vl'
3896 */
3897 if (avruntime != se->vruntime) {
3898 vlag = entity_lag(avruntime, se);
3899 vlag = div_s64(vlag * old_weight, weight);
3900 se->vruntime = avruntime - vlag;
3901 }
3902
3903 /*
3904 * DEADLINE
3905 * ========
3906 *
3907 * When the weight changes, the virtual time slope changes and
3908 * we should adjust the relative virtual deadline accordingly.
3909 *
3910 * d' = v' + (d - v)*w/w'
3911 * = V' - (V - v)*w/w' + (d - v)*w/w'
3912 * = V - (V - v)*w/w' + (d - v)*w/w'
3913 * = V + (d - V)*w/w'
3914 */
3915 vslice = (s64)(se->deadline - avruntime);
3916 vslice = div_s64(vslice * old_weight, weight);
3917 se->deadline = avruntime + vslice;
3918 }
3919
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3920 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3921 unsigned long weight)
3922 {
3923 bool curr = cfs_rq->curr == se;
3924 u64 avruntime;
3925
3926 if (se->on_rq) {
3927 /* commit outstanding execution time */
3928 update_curr(cfs_rq);
3929 avruntime = avg_vruntime(cfs_rq);
3930 if (!curr)
3931 __dequeue_entity(cfs_rq, se);
3932 update_load_sub(&cfs_rq->load, se->load.weight);
3933 }
3934 dequeue_load_avg(cfs_rq, se);
3935
3936 if (se->on_rq) {
3937 reweight_eevdf(se, avruntime, weight);
3938 } else {
3939 /*
3940 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3941 * we need to scale se->vlag when w_i changes.
3942 */
3943 se->vlag = div_s64(se->vlag * se->load.weight, weight);
3944 }
3945
3946 update_load_set(&se->load, weight);
3947
3948 #ifdef CONFIG_SMP
3949 do {
3950 u32 divider = get_pelt_divider(&se->avg);
3951
3952 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3953 } while (0);
3954 #endif
3955
3956 enqueue_load_avg(cfs_rq, se);
3957 if (se->on_rq) {
3958 update_load_add(&cfs_rq->load, se->load.weight);
3959 if (!curr)
3960 __enqueue_entity(cfs_rq, se);
3961
3962 /*
3963 * The entity's vruntime has been adjusted, so let's check
3964 * whether the rq-wide min_vruntime needs updated too. Since
3965 * the calculations above require stable min_vruntime rather
3966 * than up-to-date one, we do the update at the end of the
3967 * reweight process.
3968 */
3969 update_min_vruntime(cfs_rq);
3970 }
3971 }
3972
reweight_task(struct task_struct * p,const struct load_weight * lw)3973 void reweight_task(struct task_struct *p, const struct load_weight *lw)
3974 {
3975 struct sched_entity *se = &p->se;
3976 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3977 struct load_weight *load = &se->load;
3978
3979 reweight_entity(cfs_rq, se, lw->weight);
3980 load->inv_weight = lw->inv_weight;
3981 }
3982
3983 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3984
3985 #ifdef CONFIG_FAIR_GROUP_SCHED
3986 #ifdef CONFIG_SMP
3987 /*
3988 * All this does is approximate the hierarchical proportion which includes that
3989 * global sum we all love to hate.
3990 *
3991 * That is, the weight of a group entity, is the proportional share of the
3992 * group weight based on the group runqueue weights. That is:
3993 *
3994 * tg->weight * grq->load.weight
3995 * ge->load.weight = ----------------------------- (1)
3996 * \Sum grq->load.weight
3997 *
3998 * Now, because computing that sum is prohibitively expensive to compute (been
3999 * there, done that) we approximate it with this average stuff. The average
4000 * moves slower and therefore the approximation is cheaper and more stable.
4001 *
4002 * So instead of the above, we substitute:
4003 *
4004 * grq->load.weight -> grq->avg.load_avg (2)
4005 *
4006 * which yields the following:
4007 *
4008 * tg->weight * grq->avg.load_avg
4009 * ge->load.weight = ------------------------------ (3)
4010 * tg->load_avg
4011 *
4012 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
4013 *
4014 * That is shares_avg, and it is right (given the approximation (2)).
4015 *
4016 * The problem with it is that because the average is slow -- it was designed
4017 * to be exactly that of course -- this leads to transients in boundary
4018 * conditions. In specific, the case where the group was idle and we start the
4019 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
4020 * yielding bad latency etc..
4021 *
4022 * Now, in that special case (1) reduces to:
4023 *
4024 * tg->weight * grq->load.weight
4025 * ge->load.weight = ----------------------------- = tg->weight (4)
4026 * grp->load.weight
4027 *
4028 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
4029 *
4030 * So what we do is modify our approximation (3) to approach (4) in the (near)
4031 * UP case, like:
4032 *
4033 * ge->load.weight =
4034 *
4035 * tg->weight * grq->load.weight
4036 * --------------------------------------------------- (5)
4037 * tg->load_avg - grq->avg.load_avg + grq->load.weight
4038 *
4039 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
4040 * we need to use grq->avg.load_avg as its lower bound, which then gives:
4041 *
4042 *
4043 * tg->weight * grq->load.weight
4044 * ge->load.weight = ----------------------------- (6)
4045 * tg_load_avg'
4046 *
4047 * Where:
4048 *
4049 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
4050 * max(grq->load.weight, grq->avg.load_avg)
4051 *
4052 * And that is shares_weight and is icky. In the (near) UP case it approaches
4053 * (4) while in the normal case it approaches (3). It consistently
4054 * overestimates the ge->load.weight and therefore:
4055 *
4056 * \Sum ge->load.weight >= tg->weight
4057 *
4058 * hence icky!
4059 */
calc_group_shares(struct cfs_rq * cfs_rq)4060 static long calc_group_shares(struct cfs_rq *cfs_rq)
4061 {
4062 long tg_weight, tg_shares, load, shares;
4063 struct task_group *tg = cfs_rq->tg;
4064
4065 tg_shares = READ_ONCE(tg->shares);
4066
4067 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
4068
4069 tg_weight = atomic_long_read(&tg->load_avg);
4070
4071 /* Ensure tg_weight >= load */
4072 tg_weight -= cfs_rq->tg_load_avg_contrib;
4073 tg_weight += load;
4074
4075 shares = (tg_shares * load);
4076 if (tg_weight)
4077 shares /= tg_weight;
4078
4079 /*
4080 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
4081 * of a group with small tg->shares value. It is a floor value which is
4082 * assigned as a minimum load.weight to the sched_entity representing
4083 * the group on a CPU.
4084 *
4085 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
4086 * on an 8-core system with 8 tasks each runnable on one CPU shares has
4087 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
4088 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
4089 * instead of 0.
4090 */
4091 return clamp_t(long, shares, MIN_SHARES, tg_shares);
4092 }
4093 #endif /* CONFIG_SMP */
4094
4095 /*
4096 * Recomputes the group entity based on the current state of its group
4097 * runqueue.
4098 */
update_cfs_group(struct sched_entity * se)4099 static void update_cfs_group(struct sched_entity *se)
4100 {
4101 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4102 long shares;
4103
4104 if (!gcfs_rq)
4105 return;
4106
4107 if (throttled_hierarchy(gcfs_rq))
4108 return;
4109
4110 #ifndef CONFIG_SMP
4111 shares = READ_ONCE(gcfs_rq->tg->shares);
4112 #else
4113 shares = calc_group_shares(gcfs_rq);
4114 #endif
4115 if (unlikely(se->load.weight != shares))
4116 reweight_entity(cfs_rq_of(se), se, shares);
4117 }
4118
4119 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)4120 static inline void update_cfs_group(struct sched_entity *se)
4121 {
4122 }
4123 #endif /* CONFIG_FAIR_GROUP_SCHED */
4124
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)4125 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4126 {
4127 struct rq *rq = rq_of(cfs_rq);
4128
4129 if (&rq->cfs == cfs_rq) {
4130 /*
4131 * There are a few boundary cases this might miss but it should
4132 * get called often enough that that should (hopefully) not be
4133 * a real problem.
4134 *
4135 * It will not get called when we go idle, because the idle
4136 * thread is a different class (!fair), nor will the utilization
4137 * number include things like RT tasks.
4138 *
4139 * As is, the util number is not freq-invariant (we'd have to
4140 * implement arch_scale_freq_capacity() for that).
4141 *
4142 * See cpu_util_cfs().
4143 */
4144 cpufreq_update_util(rq, flags);
4145 }
4146 }
4147
4148 #ifdef CONFIG_SMP
load_avg_is_decayed(struct sched_avg * sa)4149 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4150 {
4151 if (sa->load_sum)
4152 return false;
4153
4154 if (sa->util_sum)
4155 return false;
4156
4157 if (sa->runnable_sum)
4158 return false;
4159
4160 /*
4161 * _avg must be null when _sum are null because _avg = _sum / divider
4162 * Make sure that rounding and/or propagation of PELT values never
4163 * break this.
4164 */
4165 SCHED_WARN_ON(sa->load_avg ||
4166 sa->util_avg ||
4167 sa->runnable_avg);
4168
4169 return true;
4170 }
4171
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)4172 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4173 {
4174 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4175 cfs_rq->last_update_time_copy);
4176 }
4177 #ifdef CONFIG_FAIR_GROUP_SCHED
4178 /*
4179 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4180 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4181 * bottom-up, we only have to test whether the cfs_rq before us on the list
4182 * is our child.
4183 * If cfs_rq is not on the list, test whether a child needs its to be added to
4184 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
4185 */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4186 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4187 {
4188 struct cfs_rq *prev_cfs_rq;
4189 struct list_head *prev;
4190 struct rq *rq = rq_of(cfs_rq);
4191
4192 if (cfs_rq->on_list) {
4193 prev = cfs_rq->leaf_cfs_rq_list.prev;
4194 } else {
4195 prev = rq->tmp_alone_branch;
4196 }
4197
4198 if (prev == &rq->leaf_cfs_rq_list)
4199 return false;
4200
4201 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4202
4203 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4204 }
4205
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4206 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4207 {
4208 if (cfs_rq->load.weight)
4209 return false;
4210
4211 if (!load_avg_is_decayed(&cfs_rq->avg))
4212 return false;
4213
4214 if (child_cfs_rq_on_list(cfs_rq))
4215 return false;
4216
4217 return true;
4218 }
4219
4220 /**
4221 * update_tg_load_avg - update the tg's load avg
4222 * @cfs_rq: the cfs_rq whose avg changed
4223 *
4224 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4225 * However, because tg->load_avg is a global value there are performance
4226 * considerations.
4227 *
4228 * In order to avoid having to look at the other cfs_rq's, we use a
4229 * differential update where we store the last value we propagated. This in
4230 * turn allows skipping updates if the differential is 'small'.
4231 *
4232 * Updating tg's load_avg is necessary before update_cfs_share().
4233 */
update_tg_load_avg(struct cfs_rq * cfs_rq)4234 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4235 {
4236 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4237
4238 /*
4239 * No need to update load_avg for root_task_group as it is not used.
4240 */
4241 if (cfs_rq->tg == &root_task_group)
4242 return;
4243
4244 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4245 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4246 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4247 }
4248 }
4249
4250 /*
4251 * Called within set_task_rq() right before setting a task's CPU. The
4252 * caller only guarantees p->pi_lock is held; no other assumptions,
4253 * including the state of rq->lock, should be made.
4254 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4255 void set_task_rq_fair(struct sched_entity *se,
4256 struct cfs_rq *prev, struct cfs_rq *next)
4257 {
4258 u64 p_last_update_time;
4259 u64 n_last_update_time;
4260
4261 if (!sched_feat(ATTACH_AGE_LOAD))
4262 return;
4263
4264 /*
4265 * We are supposed to update the task to "current" time, then its up to
4266 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4267 * getting what current time is, so simply throw away the out-of-date
4268 * time. This will result in the wakee task is less decayed, but giving
4269 * the wakee more load sounds not bad.
4270 */
4271 if (!(se->avg.last_update_time && prev))
4272 return;
4273
4274 p_last_update_time = cfs_rq_last_update_time(prev);
4275 n_last_update_time = cfs_rq_last_update_time(next);
4276
4277 __update_load_avg_blocked_se(p_last_update_time, se);
4278 se->avg.last_update_time = n_last_update_time;
4279 }
4280
4281 /*
4282 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4283 * propagate its contribution. The key to this propagation is the invariant
4284 * that for each group:
4285 *
4286 * ge->avg == grq->avg (1)
4287 *
4288 * _IFF_ we look at the pure running and runnable sums. Because they
4289 * represent the very same entity, just at different points in the hierarchy.
4290 *
4291 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4292 * and simply copies the running/runnable sum over (but still wrong, because
4293 * the group entity and group rq do not have their PELT windows aligned).
4294 *
4295 * However, update_tg_cfs_load() is more complex. So we have:
4296 *
4297 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
4298 *
4299 * And since, like util, the runnable part should be directly transferable,
4300 * the following would _appear_ to be the straight forward approach:
4301 *
4302 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
4303 *
4304 * And per (1) we have:
4305 *
4306 * ge->avg.runnable_avg == grq->avg.runnable_avg
4307 *
4308 * Which gives:
4309 *
4310 * ge->load.weight * grq->avg.load_avg
4311 * ge->avg.load_avg = ----------------------------------- (4)
4312 * grq->load.weight
4313 *
4314 * Except that is wrong!
4315 *
4316 * Because while for entities historical weight is not important and we
4317 * really only care about our future and therefore can consider a pure
4318 * runnable sum, runqueues can NOT do this.
4319 *
4320 * We specifically want runqueues to have a load_avg that includes
4321 * historical weights. Those represent the blocked load, the load we expect
4322 * to (shortly) return to us. This only works by keeping the weights as
4323 * integral part of the sum. We therefore cannot decompose as per (3).
4324 *
4325 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4326 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4327 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4328 * runnable section of these tasks overlap (or not). If they were to perfectly
4329 * align the rq as a whole would be runnable 2/3 of the time. If however we
4330 * always have at least 1 runnable task, the rq as a whole is always runnable.
4331 *
4332 * So we'll have to approximate.. :/
4333 *
4334 * Given the constraint:
4335 *
4336 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4337 *
4338 * We can construct a rule that adds runnable to a rq by assuming minimal
4339 * overlap.
4340 *
4341 * On removal, we'll assume each task is equally runnable; which yields:
4342 *
4343 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4344 *
4345 * XXX: only do this for the part of runnable > running ?
4346 *
4347 */
4348 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4349 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4350 {
4351 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4352 u32 new_sum, divider;
4353
4354 /* Nothing to update */
4355 if (!delta_avg)
4356 return;
4357
4358 /*
4359 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4360 * See ___update_load_avg() for details.
4361 */
4362 divider = get_pelt_divider(&cfs_rq->avg);
4363
4364
4365 /* Set new sched_entity's utilization */
4366 se->avg.util_avg = gcfs_rq->avg.util_avg;
4367 new_sum = se->avg.util_avg * divider;
4368 delta_sum = (long)new_sum - (long)se->avg.util_sum;
4369 se->avg.util_sum = new_sum;
4370
4371 /* Update parent cfs_rq utilization */
4372 add_positive(&cfs_rq->avg.util_avg, delta_avg);
4373 add_positive(&cfs_rq->avg.util_sum, delta_sum);
4374
4375 /* See update_cfs_rq_load_avg() */
4376 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4377 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4378 }
4379
4380 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4381 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4382 {
4383 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4384 u32 new_sum, divider;
4385
4386 /* Nothing to update */
4387 if (!delta_avg)
4388 return;
4389
4390 /*
4391 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4392 * See ___update_load_avg() for details.
4393 */
4394 divider = get_pelt_divider(&cfs_rq->avg);
4395
4396 /* Set new sched_entity's runnable */
4397 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4398 new_sum = se->avg.runnable_avg * divider;
4399 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4400 se->avg.runnable_sum = new_sum;
4401
4402 /* Update parent cfs_rq runnable */
4403 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4404 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4405 /* See update_cfs_rq_load_avg() */
4406 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4407 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4408 }
4409
4410 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4411 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4412 {
4413 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4414 unsigned long load_avg;
4415 u64 load_sum = 0;
4416 s64 delta_sum;
4417 u32 divider;
4418
4419 if (!runnable_sum)
4420 return;
4421
4422 gcfs_rq->prop_runnable_sum = 0;
4423
4424 /*
4425 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4426 * See ___update_load_avg() for details.
4427 */
4428 divider = get_pelt_divider(&cfs_rq->avg);
4429
4430 if (runnable_sum >= 0) {
4431 /*
4432 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4433 * the CPU is saturated running == runnable.
4434 */
4435 runnable_sum += se->avg.load_sum;
4436 runnable_sum = min_t(long, runnable_sum, divider);
4437 } else {
4438 /*
4439 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4440 * assuming all tasks are equally runnable.
4441 */
4442 if (scale_load_down(gcfs_rq->load.weight)) {
4443 load_sum = div_u64(gcfs_rq->avg.load_sum,
4444 scale_load_down(gcfs_rq->load.weight));
4445 }
4446
4447 /* But make sure to not inflate se's runnable */
4448 runnable_sum = min(se->avg.load_sum, load_sum);
4449 }
4450
4451 /*
4452 * runnable_sum can't be lower than running_sum
4453 * Rescale running sum to be in the same range as runnable sum
4454 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
4455 * runnable_sum is in [0 : LOAD_AVG_MAX]
4456 */
4457 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4458 runnable_sum = max(runnable_sum, running_sum);
4459
4460 load_sum = se_weight(se) * runnable_sum;
4461 load_avg = div_u64(load_sum, divider);
4462
4463 delta_avg = load_avg - se->avg.load_avg;
4464 if (!delta_avg)
4465 return;
4466
4467 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4468
4469 se->avg.load_sum = runnable_sum;
4470 se->avg.load_avg = load_avg;
4471 add_positive(&cfs_rq->avg.load_avg, delta_avg);
4472 add_positive(&cfs_rq->avg.load_sum, delta_sum);
4473 /* See update_cfs_rq_load_avg() */
4474 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4475 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4476 }
4477
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4478 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4479 {
4480 cfs_rq->propagate = 1;
4481 cfs_rq->prop_runnable_sum += runnable_sum;
4482 }
4483
4484 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4485 static inline int propagate_entity_load_avg(struct sched_entity *se)
4486 {
4487 struct cfs_rq *cfs_rq, *gcfs_rq;
4488
4489 if (entity_is_task(se))
4490 return 0;
4491
4492 gcfs_rq = group_cfs_rq(se);
4493 if (!gcfs_rq->propagate)
4494 return 0;
4495
4496 gcfs_rq->propagate = 0;
4497
4498 cfs_rq = cfs_rq_of(se);
4499
4500 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4501
4502 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4503 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4504 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4505
4506 trace_pelt_cfs_tp(cfs_rq);
4507 trace_pelt_se_tp(se);
4508
4509 return 1;
4510 }
4511
4512 /*
4513 * Check if we need to update the load and the utilization of a blocked
4514 * group_entity:
4515 */
skip_blocked_update(struct sched_entity * se)4516 static inline bool skip_blocked_update(struct sched_entity *se)
4517 {
4518 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4519
4520 /*
4521 * If sched_entity still have not zero load or utilization, we have to
4522 * decay it:
4523 */
4524 if (se->avg.load_avg || se->avg.util_avg)
4525 return false;
4526
4527 /*
4528 * If there is a pending propagation, we have to update the load and
4529 * the utilization of the sched_entity:
4530 */
4531 if (gcfs_rq->propagate)
4532 return false;
4533
4534 /*
4535 * Otherwise, the load and the utilization of the sched_entity is
4536 * already zero and there is no pending propagation, so it will be a
4537 * waste of time to try to decay it:
4538 */
4539 return true;
4540 }
4541
4542 #else /* CONFIG_FAIR_GROUP_SCHED */
4543
update_tg_load_avg(struct cfs_rq * cfs_rq)4544 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4545
propagate_entity_load_avg(struct sched_entity * se)4546 static inline int propagate_entity_load_avg(struct sched_entity *se)
4547 {
4548 return 0;
4549 }
4550
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4551 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4552
4553 #endif /* CONFIG_FAIR_GROUP_SCHED */
4554
4555 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4556 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4557 {
4558 u64 throttled = 0, now, lut;
4559 struct cfs_rq *cfs_rq;
4560 struct rq *rq;
4561 bool is_idle;
4562
4563 if (load_avg_is_decayed(&se->avg))
4564 return;
4565
4566 cfs_rq = cfs_rq_of(se);
4567 rq = rq_of(cfs_rq);
4568
4569 rcu_read_lock();
4570 is_idle = is_idle_task(rcu_dereference(rq->curr));
4571 rcu_read_unlock();
4572
4573 /*
4574 * The lag estimation comes with a cost we don't want to pay all the
4575 * time. Hence, limiting to the case where the source CPU is idle and
4576 * we know we are at the greatest risk to have an outdated clock.
4577 */
4578 if (!is_idle)
4579 return;
4580
4581 /*
4582 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4583 *
4584 * last_update_time (the cfs_rq's last_update_time)
4585 * = cfs_rq_clock_pelt()@cfs_rq_idle
4586 * = rq_clock_pelt()@cfs_rq_idle
4587 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
4588 *
4589 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
4590 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4591 *
4592 * rq_idle_lag (delta between now and rq's update)
4593 * = sched_clock_cpu() - rq_clock()@rq_idle
4594 *
4595 * We can then write:
4596 *
4597 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4598 * sched_clock_cpu() - rq_clock()@rq_idle
4599 * Where:
4600 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4601 * rq_clock()@rq_idle is rq->clock_idle
4602 * cfs->throttled_clock_pelt_time@cfs_rq_idle
4603 * is cfs_rq->throttled_pelt_idle
4604 */
4605
4606 #ifdef CONFIG_CFS_BANDWIDTH
4607 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4608 /* The clock has been stopped for throttling */
4609 if (throttled == U64_MAX)
4610 return;
4611 #endif
4612 now = u64_u32_load(rq->clock_pelt_idle);
4613 /*
4614 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4615 * is observed the old clock_pelt_idle value and the new clock_idle,
4616 * which lead to an underestimation. The opposite would lead to an
4617 * overestimation.
4618 */
4619 smp_rmb();
4620 lut = cfs_rq_last_update_time(cfs_rq);
4621
4622 now -= throttled;
4623 if (now < lut)
4624 /*
4625 * cfs_rq->avg.last_update_time is more recent than our
4626 * estimation, let's use it.
4627 */
4628 now = lut;
4629 else
4630 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4631
4632 __update_load_avg_blocked_se(now, se);
4633 }
4634 #else
migrate_se_pelt_lag(struct sched_entity * se)4635 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4636 #endif
4637
4638 /**
4639 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4640 * @now: current time, as per cfs_rq_clock_pelt()
4641 * @cfs_rq: cfs_rq to update
4642 *
4643 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4644 * avg. The immediate corollary is that all (fair) tasks must be attached.
4645 *
4646 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4647 *
4648 * Return: true if the load decayed or we removed load.
4649 *
4650 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4651 * call update_tg_load_avg() when this function returns true.
4652 */
4653 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4654 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4655 {
4656 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4657 struct sched_avg *sa = &cfs_rq->avg;
4658 int decayed = 0;
4659
4660 if (cfs_rq->removed.nr) {
4661 unsigned long r;
4662 u32 divider = get_pelt_divider(&cfs_rq->avg);
4663
4664 raw_spin_lock(&cfs_rq->removed.lock);
4665 swap(cfs_rq->removed.util_avg, removed_util);
4666 swap(cfs_rq->removed.load_avg, removed_load);
4667 swap(cfs_rq->removed.runnable_avg, removed_runnable);
4668 cfs_rq->removed.nr = 0;
4669 raw_spin_unlock(&cfs_rq->removed.lock);
4670
4671 r = removed_load;
4672 sub_positive(&sa->load_avg, r);
4673 sub_positive(&sa->load_sum, r * divider);
4674 /* See sa->util_sum below */
4675 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4676
4677 r = removed_util;
4678 sub_positive(&sa->util_avg, r);
4679 sub_positive(&sa->util_sum, r * divider);
4680 /*
4681 * Because of rounding, se->util_sum might ends up being +1 more than
4682 * cfs->util_sum. Although this is not a problem by itself, detaching
4683 * a lot of tasks with the rounding problem between 2 updates of
4684 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4685 * cfs_util_avg is not.
4686 * Check that util_sum is still above its lower bound for the new
4687 * util_avg. Given that period_contrib might have moved since the last
4688 * sync, we are only sure that util_sum must be above or equal to
4689 * util_avg * minimum possible divider
4690 */
4691 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4692
4693 r = removed_runnable;
4694 sub_positive(&sa->runnable_avg, r);
4695 sub_positive(&sa->runnable_sum, r * divider);
4696 /* See sa->util_sum above */
4697 sa->runnable_sum = max_t(u32, sa->runnable_sum,
4698 sa->runnable_avg * PELT_MIN_DIVIDER);
4699
4700 /*
4701 * removed_runnable is the unweighted version of removed_load so we
4702 * can use it to estimate removed_load_sum.
4703 */
4704 add_tg_cfs_propagate(cfs_rq,
4705 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4706
4707 decayed = 1;
4708 }
4709
4710 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4711 u64_u32_store_copy(sa->last_update_time,
4712 cfs_rq->last_update_time_copy,
4713 sa->last_update_time);
4714 return decayed;
4715 }
4716
4717 /**
4718 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4719 * @cfs_rq: cfs_rq to attach to
4720 * @se: sched_entity to attach
4721 *
4722 * Must call update_cfs_rq_load_avg() before this, since we rely on
4723 * cfs_rq->avg.last_update_time being current.
4724 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4725 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4726 {
4727 /*
4728 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4729 * See ___update_load_avg() for details.
4730 */
4731 u32 divider = get_pelt_divider(&cfs_rq->avg);
4732
4733 /*
4734 * When we attach the @se to the @cfs_rq, we must align the decay
4735 * window because without that, really weird and wonderful things can
4736 * happen.
4737 *
4738 * XXX illustrate
4739 */
4740 se->avg.last_update_time = cfs_rq->avg.last_update_time;
4741 se->avg.period_contrib = cfs_rq->avg.period_contrib;
4742
4743 /*
4744 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4745 * period_contrib. This isn't strictly correct, but since we're
4746 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4747 * _sum a little.
4748 */
4749 se->avg.util_sum = se->avg.util_avg * divider;
4750
4751 se->avg.runnable_sum = se->avg.runnable_avg * divider;
4752
4753 se->avg.load_sum = se->avg.load_avg * divider;
4754 if (se_weight(se) < se->avg.load_sum)
4755 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4756 else
4757 se->avg.load_sum = 1;
4758
4759 enqueue_load_avg(cfs_rq, se);
4760 cfs_rq->avg.util_avg += se->avg.util_avg;
4761 cfs_rq->avg.util_sum += se->avg.util_sum;
4762 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4763 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4764
4765 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4766
4767 cfs_rq_util_change(cfs_rq, 0);
4768
4769 trace_pelt_cfs_tp(cfs_rq);
4770 }
4771
4772 /**
4773 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4774 * @cfs_rq: cfs_rq to detach from
4775 * @se: sched_entity to detach
4776 *
4777 * Must call update_cfs_rq_load_avg() before this, since we rely on
4778 * cfs_rq->avg.last_update_time being current.
4779 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4780 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4781 {
4782 dequeue_load_avg(cfs_rq, se);
4783 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4784 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4785 /* See update_cfs_rq_load_avg() */
4786 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4787 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4788
4789 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4790 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4791 /* See update_cfs_rq_load_avg() */
4792 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4793 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4794
4795 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4796
4797 cfs_rq_util_change(cfs_rq, 0);
4798
4799 trace_pelt_cfs_tp(cfs_rq);
4800 }
4801
4802 /*
4803 * Optional action to be done while updating the load average
4804 */
4805 #define UPDATE_TG 0x1
4806 #define SKIP_AGE_LOAD 0x2
4807 #define DO_ATTACH 0x4
4808 #define DO_DETACH 0x8
4809
4810 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4811 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4812 {
4813 u64 now = cfs_rq_clock_pelt(cfs_rq);
4814 int decayed;
4815
4816 /*
4817 * Track task load average for carrying it to new CPU after migrated, and
4818 * track group sched_entity load average for task_h_load calc in migration
4819 */
4820 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4821 __update_load_avg_se(now, cfs_rq, se);
4822
4823 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4824 decayed |= propagate_entity_load_avg(se);
4825
4826 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4827
4828 /*
4829 * DO_ATTACH means we're here from enqueue_entity().
4830 * !last_update_time means we've passed through
4831 * migrate_task_rq_fair() indicating we migrated.
4832 *
4833 * IOW we're enqueueing a task on a new CPU.
4834 */
4835 attach_entity_load_avg(cfs_rq, se);
4836 update_tg_load_avg(cfs_rq);
4837
4838 } else if (flags & DO_DETACH) {
4839 /*
4840 * DO_DETACH means we're here from dequeue_entity()
4841 * and we are migrating task out of the CPU.
4842 */
4843 detach_entity_load_avg(cfs_rq, se);
4844 update_tg_load_avg(cfs_rq);
4845 } else if (decayed) {
4846 cfs_rq_util_change(cfs_rq, 0);
4847
4848 if (flags & UPDATE_TG)
4849 update_tg_load_avg(cfs_rq);
4850 }
4851 }
4852
4853 /*
4854 * Synchronize entity load avg of dequeued entity without locking
4855 * the previous rq.
4856 */
sync_entity_load_avg(struct sched_entity * se)4857 static void sync_entity_load_avg(struct sched_entity *se)
4858 {
4859 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4860 u64 last_update_time;
4861
4862 last_update_time = cfs_rq_last_update_time(cfs_rq);
4863 __update_load_avg_blocked_se(last_update_time, se);
4864 }
4865
4866 /*
4867 * Task first catches up with cfs_rq, and then subtract
4868 * itself from the cfs_rq (task must be off the queue now).
4869 */
remove_entity_load_avg(struct sched_entity * se)4870 static void remove_entity_load_avg(struct sched_entity *se)
4871 {
4872 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4873 unsigned long flags;
4874
4875 /*
4876 * tasks cannot exit without having gone through wake_up_new_task() ->
4877 * enqueue_task_fair() which will have added things to the cfs_rq,
4878 * so we can remove unconditionally.
4879 */
4880
4881 sync_entity_load_avg(se);
4882
4883 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4884 ++cfs_rq->removed.nr;
4885 cfs_rq->removed.util_avg += se->avg.util_avg;
4886 cfs_rq->removed.load_avg += se->avg.load_avg;
4887 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
4888 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4889 }
4890
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4891 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4892 {
4893 return cfs_rq->avg.runnable_avg;
4894 }
4895
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4896 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4897 {
4898 return cfs_rq->avg.load_avg;
4899 }
4900
4901 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4902
task_util(struct task_struct * p)4903 static inline unsigned long task_util(struct task_struct *p)
4904 {
4905 #ifdef CONFIG_SCHED_WALT
4906 if (likely(!walt_disabled && sysctl_sched_use_walt_task_util))
4907 return p->ravg.demand_scaled;
4908 #endif
4909 return READ_ONCE(p->se.avg.util_avg);
4910 }
4911
_task_util_est(struct task_struct * p)4912 static inline unsigned long _task_util_est(struct task_struct *p)
4913 {
4914 struct util_est ue = READ_ONCE(p->se.avg.util_est);
4915
4916 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4917 }
4918
task_util_est(struct task_struct * p)4919 static inline unsigned long task_util_est(struct task_struct *p)
4920 {
4921 #ifdef CONFIG_SCHED_WALT
4922 if (likely(!walt_disabled && sysctl_sched_use_walt_task_util))
4923 return p->ravg.demand_scaled;
4924 #endif
4925 return max(task_util(p), _task_util_est(p));
4926 }
4927
4928 #ifdef CONFIG_UCLAMP_TASK
4929 #ifdef CONFIG_SCHED_RT_CAS
uclamp_task_util(struct task_struct * p,unsigned long uclamp_min,unsigned long uclamp_max)4930 unsigned long uclamp_task_util(struct task_struct *p,
4931 unsigned long uclamp_min,
4932 unsigned long uclamp_max)
4933 #else
4934 static inline unsigned long uclamp_task_util(struct task_struct *p,
4935 unsigned long uclamp_min,
4936 unsigned long uclamp_max)
4937 #endif
4938 {
4939 return clamp(task_util_est(p), uclamp_min, uclamp_max);
4940 }
4941 #else
4942 #ifdef CONFIG_SCHED_RT_CAS
uclamp_task_util(struct task_struct * p,unsigned long uclamp_min,unsigned long uclamp_max)4943 unsigned long uclamp_task_util(struct task_struct *p,
4944 unsigned long uclamp_min,
4945 unsigned long uclamp_max)
4946 #else
4947 static inline unsigned long uclamp_task_util(struct task_struct *p,
4948 unsigned long uclamp_min,
4949 unsigned long uclamp_max)
4950 #endif
4951 {
4952 return task_util_est(p);
4953 }
4954 #endif
4955
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4956 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4957 struct task_struct *p)
4958 {
4959 unsigned int enqueued;
4960
4961 if (!sched_feat(UTIL_EST))
4962 return;
4963
4964 /* Update root cfs_rq's estimated utilization */
4965 enqueued = cfs_rq->avg.util_est.enqueued;
4966 enqueued += _task_util_est(p);
4967 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4968
4969 trace_sched_util_est_cfs_tp(cfs_rq);
4970 }
4971
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4972 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4973 struct task_struct *p)
4974 {
4975 unsigned int enqueued;
4976
4977 if (!sched_feat(UTIL_EST))
4978 return;
4979
4980 /* Update root cfs_rq's estimated utilization */
4981 enqueued = cfs_rq->avg.util_est.enqueued;
4982 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4983 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4984
4985 trace_sched_util_est_cfs_tp(cfs_rq);
4986 }
4987
4988 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4989
4990 /*
4991 * Check if a (signed) value is within a specified (unsigned) margin,
4992 * based on the observation that:
4993 *
4994 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4995 *
4996 * NOTE: this only works when value + margin < INT_MAX.
4997 */
within_margin(int value,int margin)4998 static inline bool within_margin(int value, int margin)
4999 {
5000 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
5001 }
5002
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)5003 static inline void util_est_update(struct cfs_rq *cfs_rq,
5004 struct task_struct *p,
5005 bool task_sleep)
5006 {
5007 long last_ewma_diff, last_enqueued_diff;
5008 struct util_est ue;
5009
5010 if (!sched_feat(UTIL_EST))
5011 return;
5012
5013 /*
5014 * Skip update of task's estimated utilization when the task has not
5015 * yet completed an activation, e.g. being migrated.
5016 */
5017 if (!task_sleep)
5018 return;
5019
5020 /*
5021 * If the PELT values haven't changed since enqueue time,
5022 * skip the util_est update.
5023 */
5024 ue = p->se.avg.util_est;
5025 if (ue.enqueued & UTIL_AVG_UNCHANGED)
5026 return;
5027
5028 last_enqueued_diff = ue.enqueued;
5029
5030 /*
5031 * Reset EWMA on utilization increases, the moving average is used only
5032 * to smooth utilization decreases.
5033 */
5034 ue.enqueued = task_util(p);
5035 if (sched_feat(UTIL_EST_FASTUP)) {
5036 if (ue.ewma < ue.enqueued) {
5037 ue.ewma = ue.enqueued;
5038 goto done;
5039 }
5040 }
5041
5042 /*
5043 * Skip update of task's estimated utilization when its members are
5044 * already ~1% close to its last activation value.
5045 */
5046 last_ewma_diff = ue.enqueued - ue.ewma;
5047 last_enqueued_diff -= ue.enqueued;
5048 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
5049 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
5050 goto done;
5051
5052 return;
5053 }
5054
5055 /*
5056 * To avoid overestimation of actual task utilization, skip updates if
5057 * we cannot grant there is idle time in this CPU.
5058 */
5059 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
5060 return;
5061
5062 /*
5063 * Update Task's estimated utilization
5064 *
5065 * When *p completes an activation we can consolidate another sample
5066 * of the task size. This is done by storing the current PELT value
5067 * as ue.enqueued and by using this value to update the Exponential
5068 * Weighted Moving Average (EWMA):
5069 *
5070 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
5071 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
5072 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
5073 * = w * ( last_ewma_diff ) + ewma(t-1)
5074 * = w * (last_ewma_diff + ewma(t-1) / w)
5075 *
5076 * Where 'w' is the weight of new samples, which is configured to be
5077 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
5078 */
5079 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
5080 ue.ewma += last_ewma_diff;
5081 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
5082 done:
5083 ue.enqueued |= UTIL_AVG_UNCHANGED;
5084 WRITE_ONCE(p->se.avg.util_est, ue);
5085
5086 trace_sched_util_est_se_tp(&p->se);
5087 }
5088
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)5089 static inline int util_fits_cpu(unsigned long util,
5090 unsigned long uclamp_min,
5091 unsigned long uclamp_max,
5092 int cpu)
5093 {
5094 unsigned long capacity_orig, capacity_orig_thermal;
5095 unsigned long capacity = capacity_of(cpu);
5096 bool fits, uclamp_max_fits;
5097
5098 /*
5099 * Check if the real util fits without any uclamp boost/cap applied.
5100 */
5101 fits = fits_capacity(util, capacity);
5102
5103 if (!uclamp_is_used())
5104 return fits;
5105
5106 /*
5107 * We must use capacity_orig_of() for comparing against uclamp_min and
5108 * uclamp_max. We only care about capacity pressure (by using
5109 * capacity_of()) for comparing against the real util.
5110 *
5111 * If a task is boosted to 1024 for example, we don't want a tiny
5112 * pressure to skew the check whether it fits a CPU or not.
5113 *
5114 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
5115 * should fit a little cpu even if there's some pressure.
5116 *
5117 * Only exception is for thermal pressure since it has a direct impact
5118 * on available OPP of the system.
5119 *
5120 * We honour it for uclamp_min only as a drop in performance level
5121 * could result in not getting the requested minimum performance level.
5122 *
5123 * For uclamp_max, we can tolerate a drop in performance level as the
5124 * goal is to cap the task. So it's okay if it's getting less.
5125 */
5126 capacity_orig = capacity_orig_of(cpu);
5127 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
5128
5129 /*
5130 * We want to force a task to fit a cpu as implied by uclamp_max.
5131 * But we do have some corner cases to cater for..
5132 *
5133 *
5134 * C=z
5135 * | ___
5136 * | C=y | |
5137 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5138 * | C=x | | | |
5139 * | ___ | | | |
5140 * | | | | | | | (util somewhere in this region)
5141 * | | | | | | |
5142 * | | | | | | |
5143 * +----------------------------------------
5144 * cpu0 cpu1 cpu2
5145 *
5146 * In the above example if a task is capped to a specific performance
5147 * point, y, then when:
5148 *
5149 * * util = 80% of x then it does not fit on cpu0 and should migrate
5150 * to cpu1
5151 * * util = 80% of y then it is forced to fit on cpu1 to honour
5152 * uclamp_max request.
5153 *
5154 * which is what we're enforcing here. A task always fits if
5155 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5156 * the normal upmigration rules should withhold still.
5157 *
5158 * Only exception is when we are on max capacity, then we need to be
5159 * careful not to block overutilized state. This is so because:
5160 *
5161 * 1. There's no concept of capping at max_capacity! We can't go
5162 * beyond this performance level anyway.
5163 * 2. The system is being saturated when we're operating near
5164 * max capacity, it doesn't make sense to block overutilized.
5165 */
5166 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5167 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5168 fits = fits || uclamp_max_fits;
5169
5170 /*
5171 *
5172 * C=z
5173 * | ___ (region a, capped, util >= uclamp_max)
5174 * | C=y | |
5175 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5176 * | C=x | | | |
5177 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
5178 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5179 * | | | | | | |
5180 * | | | | | | | (region c, boosted, util < uclamp_min)
5181 * +----------------------------------------
5182 * cpu0 cpu1 cpu2
5183 *
5184 * a) If util > uclamp_max, then we're capped, we don't care about
5185 * actual fitness value here. We only care if uclamp_max fits
5186 * capacity without taking margin/pressure into account.
5187 * See comment above.
5188 *
5189 * b) If uclamp_min <= util <= uclamp_max, then the normal
5190 * fits_capacity() rules apply. Except we need to ensure that we
5191 * enforce we remain within uclamp_max, see comment above.
5192 *
5193 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5194 * need to take into account the boosted value fits the CPU without
5195 * taking margin/pressure into account.
5196 *
5197 * Cases (a) and (b) are handled in the 'fits' variable already. We
5198 * just need to consider an extra check for case (c) after ensuring we
5199 * handle the case uclamp_min > uclamp_max.
5200 */
5201 uclamp_min = min(uclamp_min, uclamp_max);
5202 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
5203 return -1;
5204
5205 return fits;
5206 }
5207
task_fits_cpu(struct task_struct * p,int cpu)5208 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5209 {
5210 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5211 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5212 unsigned long util = task_util_est(p);
5213 /*
5214 * Return true only if the cpu fully fits the task requirements, which
5215 * include the utilization but also the performance hints.
5216 */
5217 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5218 }
5219
5220 #ifdef CONFIG_SCHED_RTG
task_fits_max(struct task_struct * p,int cpu)5221 bool task_fits_max(struct task_struct *p, int cpu)
5222 {
5223 unsigned long capacity = capacity_orig_of(cpu);
5224 unsigned long max_capacity = cpu_rq(cpu)->rd->max_cpu_capacity;
5225
5226 if (capacity == max_capacity)
5227 return true;
5228
5229 return task_fits_cpu(p, cpu);
5230 }
5231 #endif
5232
update_misfit_status(struct task_struct * p,struct rq * rq)5233 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5234 {
5235 bool task_fits = false;
5236 #ifdef CONFIG_SCHED_RTG
5237 int cpu = cpu_of(rq);
5238 struct cpumask *rtg_target = NULL;
5239 #endif
5240 if (!sched_asym_cpucap_active())
5241 return;
5242
5243 if (!p || p->nr_cpus_allowed == 1) {
5244 rq->misfit_task_load = 0;
5245 return;
5246 }
5247
5248 #ifdef CONFIG_SCHED_RTG
5249 rtg_target = find_rtg_target(p);
5250 if (rtg_target)
5251 task_fits = capacity_orig_of(cpu) >=
5252 capacity_orig_of(cpumask_first(rtg_target));
5253 else
5254 task_fits = task_fits_cpu(p, cpu_of(rq));
5255 #else
5256 task_fits = task_fits_cpu(p, cpu_of(rq));
5257 #endif
5258 if (task_fits) {
5259 rq->misfit_task_load = 0;
5260 return;
5261 }
5262
5263 /*
5264 * Make sure that misfit_task_load will not be null even if
5265 * task_h_load() returns 0.
5266 */
5267 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5268 }
5269
5270 #else /* CONFIG_SMP */
5271
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)5272 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5273 {
5274 return !cfs_rq->nr_running;
5275 }
5276
5277 #define UPDATE_TG 0x0
5278 #define SKIP_AGE_LOAD 0x0
5279 #define DO_ATTACH 0x0
5280 #define DO_DETACH 0x0
5281
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)5282 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5283 {
5284 cfs_rq_util_change(cfs_rq, 0);
5285 }
5286
remove_entity_load_avg(struct sched_entity * se)5287 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5288
5289 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5290 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5291 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5292 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5293
newidle_balance(struct rq * rq,struct rq_flags * rf)5294 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
5295 {
5296 return 0;
5297 }
5298
5299 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)5300 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5301
5302 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)5303 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5304
5305 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)5306 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5307 bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)5308 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5309
5310 #endif /* CONFIG_SMP */
5311
5312 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5313 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5314 {
5315 u64 vslice, vruntime = avg_vruntime(cfs_rq);
5316 s64 lag = 0;
5317
5318 se->slice = sysctl_sched_base_slice;
5319 vslice = calc_delta_fair(se->slice, se);
5320
5321 /*
5322 * Due to how V is constructed as the weighted average of entities,
5323 * adding tasks with positive lag, or removing tasks with negative lag
5324 * will move 'time' backwards, this can screw around with the lag of
5325 * other tasks.
5326 *
5327 * EEVDF: placement strategy #1 / #2
5328 */
5329 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5330 struct sched_entity *curr = cfs_rq->curr;
5331 unsigned long load;
5332
5333 lag = se->vlag;
5334
5335 /*
5336 * If we want to place a task and preserve lag, we have to
5337 * consider the effect of the new entity on the weighted
5338 * average and compensate for this, otherwise lag can quickly
5339 * evaporate.
5340 *
5341 * Lag is defined as:
5342 *
5343 * lag_i = S - s_i = w_i * (V - v_i)
5344 *
5345 * To avoid the 'w_i' term all over the place, we only track
5346 * the virtual lag:
5347 *
5348 * vl_i = V - v_i <=> v_i = V - vl_i
5349 *
5350 * And we take V to be the weighted average of all v:
5351 *
5352 * V = (\Sum w_j*v_j) / W
5353 *
5354 * Where W is: \Sum w_j
5355 *
5356 * Then, the weighted average after adding an entity with lag
5357 * vl_i is given by:
5358 *
5359 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5360 * = (W*V + w_i*(V - vl_i)) / (W + w_i)
5361 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5362 * = (V*(W + w_i) - w_i*l) / (W + w_i)
5363 * = V - w_i*vl_i / (W + w_i)
5364 *
5365 * And the actual lag after adding an entity with vl_i is:
5366 *
5367 * vl'_i = V' - v_i
5368 * = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5369 * = vl_i - w_i*vl_i / (W + w_i)
5370 *
5371 * Which is strictly less than vl_i. So in order to preserve lag
5372 * we should inflate the lag before placement such that the
5373 * effective lag after placement comes out right.
5374 *
5375 * As such, invert the above relation for vl'_i to get the vl_i
5376 * we need to use such that the lag after placement is the lag
5377 * we computed before dequeue.
5378 *
5379 * vl'_i = vl_i - w_i*vl_i / (W + w_i)
5380 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5381 *
5382 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5383 * = W*vl_i
5384 *
5385 * vl_i = (W + w_i)*vl'_i / W
5386 */
5387 load = cfs_rq->avg_load;
5388 if (curr && curr->on_rq)
5389 load += scale_load_down(curr->load.weight);
5390
5391 lag *= load + scale_load_down(se->load.weight);
5392 if (WARN_ON_ONCE(!load))
5393 load = 1;
5394 lag = div_s64(lag, load);
5395 }
5396
5397 se->vruntime = vruntime - lag;
5398
5399 /*
5400 * When joining the competition; the exisiting tasks will be,
5401 * on average, halfway through their slice, as such start tasks
5402 * off with half a slice to ease into the competition.
5403 */
5404 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5405 vslice /= 2;
5406
5407 /*
5408 * EEVDF: vd_i = ve_i + r_i/w_i
5409 */
5410 se->deadline = se->vruntime + vslice;
5411 }
5412
5413 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5414 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5415
5416 static inline bool cfs_bandwidth_used(void);
5417
5418 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5419 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5420 {
5421 bool curr = cfs_rq->curr == se;
5422
5423 /*
5424 * If we're the current task, we must renormalise before calling
5425 * update_curr().
5426 */
5427 if (curr)
5428 place_entity(cfs_rq, se, flags);
5429
5430 update_curr(cfs_rq);
5431
5432 /*
5433 * When enqueuing a sched_entity, we must:
5434 * - Update loads to have both entity and cfs_rq synced with now.
5435 * - For group_entity, update its runnable_weight to reflect the new
5436 * h_nr_running of its group cfs_rq.
5437 * - For group_entity, update its weight to reflect the new share of
5438 * its group cfs_rq
5439 * - Add its new weight to cfs_rq->load.weight
5440 */
5441 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5442 se_update_runnable(se);
5443 /*
5444 * XXX update_load_avg() above will have attached us to the pelt sum;
5445 * but update_cfs_group() here will re-adjust the weight and have to
5446 * undo/redo all that. Seems wasteful.
5447 */
5448 update_cfs_group(se);
5449
5450 /*
5451 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5452 * we can place the entity.
5453 */
5454 if (!curr)
5455 place_entity(cfs_rq, se, flags);
5456
5457 account_entity_enqueue(cfs_rq, se);
5458
5459 /* Entity has migrated, no longer consider this task hot */
5460 if (flags & ENQUEUE_MIGRATED)
5461 se->exec_start = 0;
5462
5463 check_schedstat_required();
5464 update_stats_enqueue_fair(cfs_rq, se, flags);
5465 if (!curr)
5466 __enqueue_entity(cfs_rq, se);
5467 se->on_rq = 1;
5468
5469 if (cfs_rq->nr_running == 1) {
5470 check_enqueue_throttle(cfs_rq);
5471 if (!throttled_hierarchy(cfs_rq)) {
5472 list_add_leaf_cfs_rq(cfs_rq);
5473 } else {
5474 #ifdef CONFIG_CFS_BANDWIDTH
5475 struct rq *rq = rq_of(cfs_rq);
5476
5477 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5478 cfs_rq->throttled_clock = rq_clock(rq);
5479 if (!cfs_rq->throttled_clock_self)
5480 cfs_rq->throttled_clock_self = rq_clock(rq);
5481 #endif
5482 }
5483 }
5484 }
5485
__clear_buddies_next(struct sched_entity * se)5486 static void __clear_buddies_next(struct sched_entity *se)
5487 {
5488 for_each_sched_entity(se) {
5489 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5490 if (cfs_rq->next != se)
5491 break;
5492
5493 cfs_rq->next = NULL;
5494 }
5495 }
5496
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5497 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5498 {
5499 if (cfs_rq->next == se)
5500 __clear_buddies_next(se);
5501 }
5502
5503 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5504
5505 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5506 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5507 {
5508 int action = UPDATE_TG;
5509
5510 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5511 action |= DO_DETACH;
5512
5513 /*
5514 * Update run-time statistics of the 'current'.
5515 */
5516 update_curr(cfs_rq);
5517
5518 /*
5519 * When dequeuing a sched_entity, we must:
5520 * - Update loads to have both entity and cfs_rq synced with now.
5521 * - For group_entity, update its runnable_weight to reflect the new
5522 * h_nr_running of its group cfs_rq.
5523 * - Subtract its previous weight from cfs_rq->load.weight.
5524 * - For group entity, update its weight to reflect the new share
5525 * of its group cfs_rq.
5526 */
5527 update_load_avg(cfs_rq, se, action);
5528 se_update_runnable(se);
5529
5530 update_stats_dequeue_fair(cfs_rq, se, flags);
5531
5532 clear_buddies(cfs_rq, se);
5533
5534 update_entity_lag(cfs_rq, se);
5535 if (se != cfs_rq->curr)
5536 __dequeue_entity(cfs_rq, se);
5537 se->on_rq = 0;
5538 account_entity_dequeue(cfs_rq, se);
5539
5540 /* return excess runtime on last dequeue */
5541 return_cfs_rq_runtime(cfs_rq);
5542
5543 update_cfs_group(se);
5544
5545 /*
5546 * Now advance min_vruntime if @se was the entity holding it back,
5547 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5548 * put back on, and if we advance min_vruntime, we'll be placed back
5549 * further than we started -- ie. we'll be penalized.
5550 */
5551 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5552 update_min_vruntime(cfs_rq);
5553
5554 if (cfs_rq->nr_running == 0)
5555 update_idle_cfs_rq_clock_pelt(cfs_rq);
5556 }
5557
5558 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5559 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5560 {
5561 clear_buddies(cfs_rq, se);
5562
5563 /* 'current' is not kept within the tree. */
5564 if (se->on_rq) {
5565 /*
5566 * Any task has to be enqueued before it get to execute on
5567 * a CPU. So account for the time it spent waiting on the
5568 * runqueue.
5569 */
5570 update_stats_wait_end_fair(cfs_rq, se);
5571 __dequeue_entity(cfs_rq, se);
5572 update_load_avg(cfs_rq, se, UPDATE_TG);
5573 /*
5574 * HACK, stash a copy of deadline at the point of pick in vlag,
5575 * which isn't used until dequeue.
5576 */
5577 se->vlag = se->deadline;
5578 }
5579
5580 update_stats_curr_start(cfs_rq, se);
5581 cfs_rq->curr = se;
5582
5583 /*
5584 * Track our maximum slice length, if the CPU's load is at
5585 * least twice that of our own weight (i.e. dont track it
5586 * when there are only lesser-weight tasks around):
5587 */
5588 if (schedstat_enabled() &&
5589 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5590 struct sched_statistics *stats;
5591
5592 stats = __schedstats_from_se(se);
5593 __schedstat_set(stats->slice_max,
5594 max((u64)stats->slice_max,
5595 se->sum_exec_runtime - se->prev_sum_exec_runtime));
5596 }
5597
5598 se->prev_sum_exec_runtime = se->sum_exec_runtime;
5599 }
5600
5601 static int
5602 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
5603
5604 /*
5605 * Pick the next process, keeping these things in mind, in this order:
5606 * 1) keep things fair between processes/task groups
5607 * 2) pick the "next" process, since someone really wants that to run
5608 * 3) pick the "last" process, for cache locality
5609 * 4) do not run the "skip" process, if something else is available
5610 */
5611 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)5612 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
5613 {
5614 /*
5615 * Enabling NEXT_BUDDY will affect latency but not fairness.
5616 */
5617 if (sched_feat(NEXT_BUDDY) &&
5618 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5619 return cfs_rq->next;
5620
5621 return pick_eevdf(cfs_rq);
5622 }
5623
5624 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5625
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5626 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5627 {
5628 /*
5629 * If still on the runqueue then deactivate_task()
5630 * was not called and update_curr() has to be done:
5631 */
5632 if (prev->on_rq)
5633 update_curr(cfs_rq);
5634
5635 /* throttle cfs_rqs exceeding runtime */
5636 check_cfs_rq_runtime(cfs_rq);
5637
5638 if (prev->on_rq) {
5639 update_stats_wait_start_fair(cfs_rq, prev);
5640 /* Put 'current' back into the tree. */
5641 __enqueue_entity(cfs_rq, prev);
5642 /* in !on_rq case, update occurred at dequeue */
5643 update_load_avg(cfs_rq, prev, 0);
5644 }
5645 cfs_rq->curr = NULL;
5646 }
5647
5648 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5649 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5650 {
5651 /*
5652 * Update run-time statistics of the 'current'.
5653 */
5654 update_curr(cfs_rq);
5655
5656 /*
5657 * Ensure that runnable average is periodically updated.
5658 */
5659 update_load_avg(cfs_rq, curr, UPDATE_TG);
5660 update_cfs_group(curr);
5661
5662 #ifdef CONFIG_SCHED_HRTICK
5663 /*
5664 * queued ticks are scheduled to match the slice, so don't bother
5665 * validating it and just reschedule.
5666 */
5667 if (queued) {
5668 resched_curr(rq_of(cfs_rq));
5669 return;
5670 }
5671 /*
5672 * don't let the period tick interfere with the hrtick preemption
5673 */
5674 if (!sched_feat(DOUBLE_TICK) &&
5675 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5676 return;
5677 #endif
5678 }
5679
5680
5681 /**************************************************
5682 * CFS bandwidth control machinery
5683 */
5684
5685 #ifdef CONFIG_CFS_BANDWIDTH
5686
5687 #ifdef CONFIG_JUMP_LABEL
5688 static struct static_key __cfs_bandwidth_used;
5689
cfs_bandwidth_used(void)5690 static inline bool cfs_bandwidth_used(void)
5691 {
5692 return static_key_false(&__cfs_bandwidth_used);
5693 }
5694
cfs_bandwidth_usage_inc(void)5695 void cfs_bandwidth_usage_inc(void)
5696 {
5697 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5698 }
5699
cfs_bandwidth_usage_dec(void)5700 void cfs_bandwidth_usage_dec(void)
5701 {
5702 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5703 }
5704 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)5705 static bool cfs_bandwidth_used(void)
5706 {
5707 return true;
5708 }
5709
cfs_bandwidth_usage_inc(void)5710 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5711 void cfs_bandwidth_usage_dec(void) {}
5712 #endif /* CONFIG_JUMP_LABEL */
5713
5714 /*
5715 * default period for cfs group bandwidth.
5716 * default: 0.1s, units: nanoseconds
5717 */
default_cfs_period(void)5718 static inline u64 default_cfs_period(void)
5719 {
5720 return 100000000ULL;
5721 }
5722
sched_cfs_bandwidth_slice(void)5723 static inline u64 sched_cfs_bandwidth_slice(void)
5724 {
5725 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5726 }
5727
5728 /*
5729 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5730 * directly instead of rq->clock to avoid adding additional synchronization
5731 * around rq->lock.
5732 *
5733 * requires cfs_b->lock
5734 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5735 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5736 {
5737 s64 runtime;
5738
5739 if (unlikely(cfs_b->quota == RUNTIME_INF))
5740 return;
5741
5742 cfs_b->runtime += cfs_b->quota;
5743 runtime = cfs_b->runtime_snap - cfs_b->runtime;
5744 if (runtime > 0) {
5745 cfs_b->burst_time += runtime;
5746 cfs_b->nr_burst++;
5747 }
5748
5749 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5750 cfs_b->runtime_snap = cfs_b->runtime;
5751 }
5752
tg_cfs_bandwidth(struct task_group * tg)5753 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5754 {
5755 return &tg->cfs_bandwidth;
5756 }
5757
5758 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5759 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5760 struct cfs_rq *cfs_rq, u64 target_runtime)
5761 {
5762 u64 min_amount, amount = 0;
5763
5764 lockdep_assert_held(&cfs_b->lock);
5765
5766 /* note: this is a positive sum as runtime_remaining <= 0 */
5767 min_amount = target_runtime - cfs_rq->runtime_remaining;
5768
5769 if (cfs_b->quota == RUNTIME_INF)
5770 amount = min_amount;
5771 else {
5772 start_cfs_bandwidth(cfs_b);
5773
5774 if (cfs_b->runtime > 0) {
5775 amount = min(cfs_b->runtime, min_amount);
5776 cfs_b->runtime -= amount;
5777 cfs_b->idle = 0;
5778 }
5779 }
5780
5781 cfs_rq->runtime_remaining += amount;
5782
5783 return cfs_rq->runtime_remaining > 0;
5784 }
5785
5786 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5787 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5788 {
5789 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5790 int ret;
5791
5792 raw_spin_lock(&cfs_b->lock);
5793 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5794 raw_spin_unlock(&cfs_b->lock);
5795
5796 return ret;
5797 }
5798
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5799 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5800 {
5801 /* dock delta_exec before expiring quota (as it could span periods) */
5802 cfs_rq->runtime_remaining -= delta_exec;
5803
5804 if (likely(cfs_rq->runtime_remaining > 0))
5805 return;
5806
5807 if (cfs_rq->throttled)
5808 return;
5809 /*
5810 * if we're unable to extend our runtime we resched so that the active
5811 * hierarchy can be throttled
5812 */
5813 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5814 resched_curr(rq_of(cfs_rq));
5815 }
5816
5817 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5818 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5819 {
5820 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5821 return;
5822
5823 __account_cfs_rq_runtime(cfs_rq, delta_exec);
5824 }
5825
cfs_rq_throttled(struct cfs_rq * cfs_rq)5826 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5827 {
5828 return cfs_bandwidth_used() && cfs_rq->throttled;
5829 }
5830
5831 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5832 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5833 {
5834 return cfs_bandwidth_used() && cfs_rq->throttle_count;
5835 }
5836
5837 /*
5838 * Ensure that neither of the group entities corresponding to src_cpu or
5839 * dest_cpu are members of a throttled hierarchy when performing group
5840 * load-balance operations.
5841 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5842 static inline int throttled_lb_pair(struct task_group *tg,
5843 int src_cpu, int dest_cpu)
5844 {
5845 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5846
5847 src_cfs_rq = tg->cfs_rq[src_cpu];
5848 dest_cfs_rq = tg->cfs_rq[dest_cpu];
5849
5850 return throttled_hierarchy(src_cfs_rq) ||
5851 throttled_hierarchy(dest_cfs_rq);
5852 }
5853
tg_unthrottle_up(struct task_group * tg,void * data)5854 static int tg_unthrottle_up(struct task_group *tg, void *data)
5855 {
5856 struct rq *rq = data;
5857 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5858
5859 cfs_rq->throttle_count--;
5860 if (!cfs_rq->throttle_count) {
5861 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5862 cfs_rq->throttled_clock_pelt;
5863
5864 /* Add cfs_rq with load or one or more already running entities to the list */
5865 if (!cfs_rq_is_decayed(cfs_rq))
5866 list_add_leaf_cfs_rq(cfs_rq);
5867
5868 if (cfs_rq->throttled_clock_self) {
5869 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5870
5871 cfs_rq->throttled_clock_self = 0;
5872
5873 if (SCHED_WARN_ON((s64)delta < 0))
5874 delta = 0;
5875
5876 cfs_rq->throttled_clock_self_time += delta;
5877 }
5878 }
5879
5880 return 0;
5881 }
5882
tg_throttle_down(struct task_group * tg,void * data)5883 static int tg_throttle_down(struct task_group *tg, void *data)
5884 {
5885 struct rq *rq = data;
5886 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5887
5888 /* group is entering throttled state, stop time */
5889 if (!cfs_rq->throttle_count) {
5890 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5891 list_del_leaf_cfs_rq(cfs_rq);
5892
5893 SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5894 if (cfs_rq->nr_running)
5895 cfs_rq->throttled_clock_self = rq_clock(rq);
5896 }
5897 cfs_rq->throttle_count++;
5898
5899 return 0;
5900 }
5901
throttle_cfs_rq(struct cfs_rq * cfs_rq)5902 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5903 {
5904 struct rq *rq = rq_of(cfs_rq);
5905 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5906 struct sched_entity *se;
5907 long task_delta, idle_task_delta, dequeue = 1;
5908
5909 raw_spin_lock(&cfs_b->lock);
5910 /* This will start the period timer if necessary */
5911 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5912 /*
5913 * We have raced with bandwidth becoming available, and if we
5914 * actually throttled the timer might not unthrottle us for an
5915 * entire period. We additionally needed to make sure that any
5916 * subsequent check_cfs_rq_runtime calls agree not to throttle
5917 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5918 * for 1ns of runtime rather than just check cfs_b.
5919 */
5920 dequeue = 0;
5921 } else {
5922 list_add_tail_rcu(&cfs_rq->throttled_list,
5923 &cfs_b->throttled_cfs_rq);
5924 }
5925 raw_spin_unlock(&cfs_b->lock);
5926
5927 if (!dequeue)
5928 return false; /* Throttle no longer required. */
5929
5930 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5931
5932 /* freeze hierarchy runnable averages while throttled */
5933 rcu_read_lock();
5934 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5935 rcu_read_unlock();
5936
5937 task_delta = cfs_rq->h_nr_running;
5938 idle_task_delta = cfs_rq->idle_h_nr_running;
5939 for_each_sched_entity(se) {
5940 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5941 /* throttled entity or throttle-on-deactivate */
5942 if (!se->on_rq)
5943 goto done;
5944
5945 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5946
5947 if (cfs_rq_is_idle(group_cfs_rq(se)))
5948 idle_task_delta = cfs_rq->h_nr_running;
5949
5950 qcfs_rq->h_nr_running -= task_delta;
5951 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5952
5953 if (qcfs_rq->load.weight) {
5954 /* Avoid re-evaluating load for this entity: */
5955 se = parent_entity(se);
5956 break;
5957 }
5958 }
5959
5960 for_each_sched_entity(se) {
5961 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5962 /* throttled entity or throttle-on-deactivate */
5963 if (!se->on_rq)
5964 goto done;
5965
5966 update_load_avg(qcfs_rq, se, 0);
5967 se_update_runnable(se);
5968
5969 if (cfs_rq_is_idle(group_cfs_rq(se)))
5970 idle_task_delta = cfs_rq->h_nr_running;
5971
5972 qcfs_rq->h_nr_running -= task_delta;
5973 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5974 walt_dec_throttled_cfs_rq_stats(&qcfs_rq->walt_stats, cfs_rq);
5975 }
5976
5977 /* At this point se is NULL and we are at root level*/
5978 sub_nr_running(rq, task_delta);
5979 walt_dec_throttled_cfs_rq_stats(&rq->walt_stats, cfs_rq);
5980
5981 done:
5982 /*
5983 * Note: distribution will already see us throttled via the
5984 * throttled-list. rq->lock protects completion.
5985 */
5986 cfs_rq->throttled = 1;
5987 SCHED_WARN_ON(cfs_rq->throttled_clock);
5988 if (cfs_rq->nr_running)
5989 cfs_rq->throttled_clock = rq_clock(rq);
5990 return true;
5991 }
5992
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5993 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5994 {
5995 struct rq *rq = rq_of(cfs_rq);
5996 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5997 struct sched_entity *se;
5998 long task_delta, idle_task_delta;
5999 struct cfs_rq *tcfs_rq __maybe_unused = cfs_rq;
6000
6001 se = cfs_rq->tg->se[cpu_of(rq)];
6002
6003 cfs_rq->throttled = 0;
6004
6005 update_rq_clock(rq);
6006
6007 raw_spin_lock(&cfs_b->lock);
6008 if (cfs_rq->throttled_clock) {
6009 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6010 cfs_rq->throttled_clock = 0;
6011 }
6012 list_del_rcu(&cfs_rq->throttled_list);
6013 raw_spin_unlock(&cfs_b->lock);
6014
6015 /* update hierarchical throttle state */
6016 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6017
6018 if (!cfs_rq->load.weight) {
6019 if (!cfs_rq->on_list)
6020 return;
6021 /*
6022 * Nothing to run but something to decay (on_list)?
6023 * Complete the branch.
6024 */
6025 for_each_sched_entity(se) {
6026 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6027 break;
6028 }
6029 goto unthrottle_throttle;
6030 }
6031
6032 task_delta = cfs_rq->h_nr_running;
6033 idle_task_delta = cfs_rq->idle_h_nr_running;
6034 for_each_sched_entity(se) {
6035 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6036
6037 if (se->on_rq)
6038 break;
6039 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
6040
6041 if (cfs_rq_is_idle(group_cfs_rq(se)))
6042 idle_task_delta = cfs_rq->h_nr_running;
6043
6044 qcfs_rq->h_nr_running += task_delta;
6045 qcfs_rq->idle_h_nr_running += idle_task_delta;
6046 walt_inc_throttled_cfs_rq_stats(&cfs_rq->walt_stats, tcfs_rq);
6047
6048 /* end evaluation on encountering a throttled cfs_rq */
6049 if (cfs_rq_throttled(qcfs_rq))
6050 goto unthrottle_throttle;
6051 }
6052
6053 for_each_sched_entity(se) {
6054 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6055
6056 update_load_avg(qcfs_rq, se, UPDATE_TG);
6057 se_update_runnable(se);
6058
6059 if (cfs_rq_is_idle(group_cfs_rq(se)))
6060 idle_task_delta = cfs_rq->h_nr_running;
6061
6062 qcfs_rq->h_nr_running += task_delta;
6063 qcfs_rq->idle_h_nr_running += idle_task_delta;
6064 walt_inc_throttled_cfs_rq_stats(&cfs_rq->walt_stats, tcfs_rq);
6065
6066 /* end evaluation on encountering a throttled cfs_rq */
6067 if (cfs_rq_throttled(qcfs_rq))
6068 goto unthrottle_throttle;
6069 }
6070
6071 /* At this point se is NULL and we are at root level*/
6072 add_nr_running(rq, task_delta);
6073 walt_inc_throttled_cfs_rq_stats(&rq->walt_stats, tcfs_rq);
6074
6075 unthrottle_throttle:
6076 assert_list_leaf_cfs_rq(rq);
6077
6078 /* Determine whether we need to wake up potentially idle CPU: */
6079 if (rq->curr == rq->idle && rq->cfs.nr_running)
6080 resched_curr(rq);
6081 }
6082
6083 #ifdef CONFIG_SMP
__cfsb_csd_unthrottle(void * arg)6084 static void __cfsb_csd_unthrottle(void *arg)
6085 {
6086 struct cfs_rq *cursor, *tmp;
6087 struct rq *rq = arg;
6088 struct rq_flags rf;
6089
6090 rq_lock(rq, &rf);
6091
6092 /*
6093 * Iterating over the list can trigger several call to
6094 * update_rq_clock() in unthrottle_cfs_rq().
6095 * Do it once and skip the potential next ones.
6096 */
6097 update_rq_clock(rq);
6098 rq_clock_start_loop_update(rq);
6099
6100 /*
6101 * Since we hold rq lock we're safe from concurrent manipulation of
6102 * the CSD list. However, this RCU critical section annotates the
6103 * fact that we pair with sched_free_group_rcu(), so that we cannot
6104 * race with group being freed in the window between removing it
6105 * from the list and advancing to the next entry in the list.
6106 */
6107 rcu_read_lock();
6108
6109 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6110 throttled_csd_list) {
6111 list_del_init(&cursor->throttled_csd_list);
6112
6113 if (cfs_rq_throttled(cursor))
6114 unthrottle_cfs_rq(cursor);
6115 }
6116
6117 rcu_read_unlock();
6118
6119 rq_clock_stop_loop_update(rq);
6120 rq_unlock(rq, &rf);
6121 }
6122
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6123 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6124 {
6125 struct rq *rq = rq_of(cfs_rq);
6126 bool first;
6127
6128 if (rq == this_rq()) {
6129 unthrottle_cfs_rq(cfs_rq);
6130 return;
6131 }
6132
6133 /* Already enqueued */
6134 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
6135 return;
6136
6137 first = list_empty(&rq->cfsb_csd_list);
6138 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6139 if (first)
6140 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6141 }
6142 #else
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6143 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6144 {
6145 unthrottle_cfs_rq(cfs_rq);
6146 }
6147 #endif
6148
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6149 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6150 {
6151 lockdep_assert_rq_held(rq_of(cfs_rq));
6152
6153 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6154 cfs_rq->runtime_remaining <= 0))
6155 return;
6156
6157 __unthrottle_cfs_rq_async(cfs_rq);
6158 }
6159
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)6160 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6161 {
6162 struct cfs_rq *local_unthrottle = NULL;
6163 int this_cpu = smp_processor_id();
6164 u64 runtime, remaining = 1;
6165 bool throttled = false;
6166 struct cfs_rq *cfs_rq;
6167 struct rq_flags rf;
6168 struct rq *rq;
6169
6170 rcu_read_lock();
6171 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6172 throttled_list) {
6173 rq = rq_of(cfs_rq);
6174
6175 if (!remaining) {
6176 throttled = true;
6177 break;
6178 }
6179
6180 rq_lock_irqsave(rq, &rf);
6181 if (!cfs_rq_throttled(cfs_rq))
6182 goto next;
6183
6184 #ifdef CONFIG_SMP
6185 /* Already queued for async unthrottle */
6186 if (!list_empty(&cfs_rq->throttled_csd_list))
6187 goto next;
6188 #endif
6189
6190 /* By the above checks, this should never be true */
6191 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6192
6193 raw_spin_lock(&cfs_b->lock);
6194 runtime = -cfs_rq->runtime_remaining + 1;
6195 if (runtime > cfs_b->runtime)
6196 runtime = cfs_b->runtime;
6197 cfs_b->runtime -= runtime;
6198 remaining = cfs_b->runtime;
6199 raw_spin_unlock(&cfs_b->lock);
6200
6201 cfs_rq->runtime_remaining += runtime;
6202
6203 /* we check whether we're throttled above */
6204 if (cfs_rq->runtime_remaining > 0) {
6205 if (cpu_of(rq) != this_cpu ||
6206 SCHED_WARN_ON(local_unthrottle))
6207 unthrottle_cfs_rq_async(cfs_rq);
6208 else
6209 local_unthrottle = cfs_rq;
6210 } else {
6211 throttled = true;
6212 }
6213
6214 next:
6215 rq_unlock_irqrestore(rq, &rf);
6216 }
6217 rcu_read_unlock();
6218
6219 if (local_unthrottle) {
6220 rq = cpu_rq(this_cpu);
6221 rq_lock_irqsave(rq, &rf);
6222 if (cfs_rq_throttled(local_unthrottle))
6223 unthrottle_cfs_rq(local_unthrottle);
6224 rq_unlock_irqrestore(rq, &rf);
6225 }
6226
6227 return throttled;
6228 }
6229
6230 /*
6231 * Responsible for refilling a task_group's bandwidth and unthrottling its
6232 * cfs_rqs as appropriate. If there has been no activity within the last
6233 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6234 * used to track this state.
6235 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)6236 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6237 {
6238 int throttled;
6239
6240 /* no need to continue the timer with no bandwidth constraint */
6241 if (cfs_b->quota == RUNTIME_INF)
6242 goto out_deactivate;
6243
6244 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6245 cfs_b->nr_periods += overrun;
6246
6247 /* Refill extra burst quota even if cfs_b->idle */
6248 __refill_cfs_bandwidth_runtime(cfs_b);
6249
6250 /*
6251 * idle depends on !throttled (for the case of a large deficit), and if
6252 * we're going inactive then everything else can be deferred
6253 */
6254 if (cfs_b->idle && !throttled)
6255 goto out_deactivate;
6256
6257 if (!throttled) {
6258 /* mark as potentially idle for the upcoming period */
6259 cfs_b->idle = 1;
6260 return 0;
6261 }
6262
6263 /* account preceding periods in which throttling occurred */
6264 cfs_b->nr_throttled += overrun;
6265
6266 /*
6267 * This check is repeated as we release cfs_b->lock while we unthrottle.
6268 */
6269 while (throttled && cfs_b->runtime > 0) {
6270 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6271 /* we can't nest cfs_b->lock while distributing bandwidth */
6272 throttled = distribute_cfs_runtime(cfs_b);
6273 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6274 }
6275
6276 /*
6277 * While we are ensured activity in the period following an
6278 * unthrottle, this also covers the case in which the new bandwidth is
6279 * insufficient to cover the existing bandwidth deficit. (Forcing the
6280 * timer to remain active while there are any throttled entities.)
6281 */
6282 cfs_b->idle = 0;
6283
6284 return 0;
6285
6286 out_deactivate:
6287 return 1;
6288 }
6289
6290 /* a cfs_rq won't donate quota below this amount */
6291 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6292 /* minimum remaining period time to redistribute slack quota */
6293 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6294 /* how long we wait to gather additional slack before distributing */
6295 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6296
6297 /*
6298 * Are we near the end of the current quota period?
6299 *
6300 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6301 * hrtimer base being cleared by hrtimer_start. In the case of
6302 * migrate_hrtimers, base is never cleared, so we are fine.
6303 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6304 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6305 {
6306 struct hrtimer *refresh_timer = &cfs_b->period_timer;
6307 s64 remaining;
6308
6309 /* if the call-back is running a quota refresh is already occurring */
6310 if (hrtimer_callback_running(refresh_timer))
6311 return 1;
6312
6313 /* is a quota refresh about to occur? */
6314 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6315 if (remaining < (s64)min_expire)
6316 return 1;
6317
6318 return 0;
6319 }
6320
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6321 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6322 {
6323 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6324
6325 /* if there's a quota refresh soon don't bother with slack */
6326 if (runtime_refresh_within(cfs_b, min_left))
6327 return;
6328
6329 /* don't push forwards an existing deferred unthrottle */
6330 if (cfs_b->slack_started)
6331 return;
6332 cfs_b->slack_started = true;
6333
6334 hrtimer_start(&cfs_b->slack_timer,
6335 ns_to_ktime(cfs_bandwidth_slack_period),
6336 HRTIMER_MODE_REL);
6337 }
6338
6339 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6340 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6341 {
6342 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6343 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6344
6345 if (slack_runtime <= 0)
6346 return;
6347
6348 raw_spin_lock(&cfs_b->lock);
6349 if (cfs_b->quota != RUNTIME_INF) {
6350 cfs_b->runtime += slack_runtime;
6351
6352 /* we are under rq->lock, defer unthrottling using a timer */
6353 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6354 !list_empty(&cfs_b->throttled_cfs_rq))
6355 start_cfs_slack_bandwidth(cfs_b);
6356 }
6357 raw_spin_unlock(&cfs_b->lock);
6358
6359 /* even if it's not valid for return we don't want to try again */
6360 cfs_rq->runtime_remaining -= slack_runtime;
6361 }
6362
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6363 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6364 {
6365 if (!cfs_bandwidth_used())
6366 return;
6367
6368 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6369 return;
6370
6371 __return_cfs_rq_runtime(cfs_rq);
6372 }
6373
6374 /*
6375 * This is done with a timer (instead of inline with bandwidth return) since
6376 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6377 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6378 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6379 {
6380 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6381 unsigned long flags;
6382
6383 /* confirm we're still not at a refresh boundary */
6384 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6385 cfs_b->slack_started = false;
6386
6387 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6388 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6389 return;
6390 }
6391
6392 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6393 runtime = cfs_b->runtime;
6394
6395 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6396
6397 if (!runtime)
6398 return;
6399
6400 distribute_cfs_runtime(cfs_b);
6401 }
6402
6403 /*
6404 * When a group wakes up we want to make sure that its quota is not already
6405 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6406 * runtime as update_curr() throttling can not trigger until it's on-rq.
6407 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6408 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6409 {
6410 if (!cfs_bandwidth_used())
6411 return;
6412
6413 /* an active group must be handled by the update_curr()->put() path */
6414 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6415 return;
6416
6417 /* ensure the group is not already throttled */
6418 if (cfs_rq_throttled(cfs_rq))
6419 return;
6420
6421 /* update runtime allocation */
6422 account_cfs_rq_runtime(cfs_rq, 0);
6423 if (cfs_rq->runtime_remaining <= 0)
6424 throttle_cfs_rq(cfs_rq);
6425 }
6426
sync_throttle(struct task_group * tg,int cpu)6427 static void sync_throttle(struct task_group *tg, int cpu)
6428 {
6429 struct cfs_rq *pcfs_rq, *cfs_rq;
6430
6431 if (!cfs_bandwidth_used())
6432 return;
6433
6434 if (!tg->parent)
6435 return;
6436
6437 cfs_rq = tg->cfs_rq[cpu];
6438 pcfs_rq = tg->parent->cfs_rq[cpu];
6439
6440 cfs_rq->throttle_count = pcfs_rq->throttle_count;
6441 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6442 }
6443
6444 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6445 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6446 {
6447 if (!cfs_bandwidth_used())
6448 return false;
6449
6450 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6451 return false;
6452
6453 /*
6454 * it's possible for a throttled entity to be forced into a running
6455 * state (e.g. set_curr_task), in this case we're finished.
6456 */
6457 if (cfs_rq_throttled(cfs_rq))
6458 return true;
6459
6460 return throttle_cfs_rq(cfs_rq);
6461 }
6462
sched_cfs_slack_timer(struct hrtimer * timer)6463 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6464 {
6465 struct cfs_bandwidth *cfs_b =
6466 container_of(timer, struct cfs_bandwidth, slack_timer);
6467
6468 do_sched_cfs_slack_timer(cfs_b);
6469
6470 return HRTIMER_NORESTART;
6471 }
6472
6473 extern const u64 max_cfs_quota_period;
6474
sched_cfs_period_timer(struct hrtimer * timer)6475 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6476 {
6477 struct cfs_bandwidth *cfs_b =
6478 container_of(timer, struct cfs_bandwidth, period_timer);
6479 unsigned long flags;
6480 int overrun;
6481 int idle = 0;
6482 int count = 0;
6483
6484 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6485 for (;;) {
6486 overrun = hrtimer_forward_now(timer, cfs_b->period);
6487 if (!overrun)
6488 break;
6489
6490 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6491
6492 if (++count > 3) {
6493 u64 new, old = ktime_to_ns(cfs_b->period);
6494
6495 /*
6496 * Grow period by a factor of 2 to avoid losing precision.
6497 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6498 * to fail.
6499 */
6500 new = old * 2;
6501 if (new < max_cfs_quota_period) {
6502 cfs_b->period = ns_to_ktime(new);
6503 cfs_b->quota *= 2;
6504 cfs_b->burst *= 2;
6505
6506 pr_warn_ratelimited(
6507 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6508 smp_processor_id(),
6509 div_u64(new, NSEC_PER_USEC),
6510 div_u64(cfs_b->quota, NSEC_PER_USEC));
6511 } else {
6512 pr_warn_ratelimited(
6513 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6514 smp_processor_id(),
6515 div_u64(old, NSEC_PER_USEC),
6516 div_u64(cfs_b->quota, NSEC_PER_USEC));
6517 }
6518
6519 /* reset count so we don't come right back in here */
6520 count = 0;
6521 }
6522 }
6523 if (idle)
6524 cfs_b->period_active = 0;
6525 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6526
6527 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6528 }
6529
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6530 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6531 {
6532 raw_spin_lock_init(&cfs_b->lock);
6533 cfs_b->runtime = 0;
6534 cfs_b->quota = RUNTIME_INF;
6535 cfs_b->period = ns_to_ktime(default_cfs_period());
6536 cfs_b->burst = 0;
6537 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6538
6539 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6540 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6541 cfs_b->period_timer.function = sched_cfs_period_timer;
6542
6543 /* Add a random offset so that timers interleave */
6544 hrtimer_set_expires(&cfs_b->period_timer,
6545 get_random_u32_below(cfs_b->period));
6546 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6547 cfs_b->slack_timer.function = sched_cfs_slack_timer;
6548 cfs_b->slack_started = false;
6549 }
6550
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6551 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6552 {
6553 cfs_rq->runtime_enabled = 0;
6554 INIT_LIST_HEAD(&cfs_rq->throttled_list);
6555 #ifdef CONFIG_SMP
6556 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6557 #endif
6558 walt_init_cfs_rq_stats(cfs_rq);
6559 }
6560
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6561 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6562 {
6563 lockdep_assert_held(&cfs_b->lock);
6564
6565 if (cfs_b->period_active)
6566 return;
6567
6568 cfs_b->period_active = 1;
6569 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6570 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6571 }
6572
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6573 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6574 {
6575 int __maybe_unused i;
6576
6577 /* init_cfs_bandwidth() was not called */
6578 if (!cfs_b->throttled_cfs_rq.next)
6579 return;
6580
6581 hrtimer_cancel(&cfs_b->period_timer);
6582 hrtimer_cancel(&cfs_b->slack_timer);
6583
6584 /*
6585 * It is possible that we still have some cfs_rq's pending on a CSD
6586 * list, though this race is very rare. In order for this to occur, we
6587 * must have raced with the last task leaving the group while there
6588 * exist throttled cfs_rq(s), and the period_timer must have queued the
6589 * CSD item but the remote cpu has not yet processed it. To handle this,
6590 * we can simply flush all pending CSD work inline here. We're
6591 * guaranteed at this point that no additional cfs_rq of this group can
6592 * join a CSD list.
6593 */
6594 #ifdef CONFIG_SMP
6595 for_each_possible_cpu(i) {
6596 struct rq *rq = cpu_rq(i);
6597 unsigned long flags;
6598
6599 if (list_empty(&rq->cfsb_csd_list))
6600 continue;
6601
6602 local_irq_save(flags);
6603 __cfsb_csd_unthrottle(rq);
6604 local_irq_restore(flags);
6605 }
6606 #endif
6607 }
6608
6609 /*
6610 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6611 *
6612 * The race is harmless, since modifying bandwidth settings of unhooked group
6613 * bits doesn't do much.
6614 */
6615
6616 /* cpu online callback */
update_runtime_enabled(struct rq * rq)6617 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6618 {
6619 struct task_group *tg;
6620
6621 lockdep_assert_rq_held(rq);
6622
6623 rcu_read_lock();
6624 list_for_each_entry_rcu(tg, &task_groups, list) {
6625 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6626 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6627
6628 raw_spin_lock(&cfs_b->lock);
6629 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6630 raw_spin_unlock(&cfs_b->lock);
6631 }
6632 rcu_read_unlock();
6633 }
6634
6635 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6636 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6637 {
6638 struct task_group *tg;
6639
6640 lockdep_assert_rq_held(rq);
6641
6642 /*
6643 * The rq clock has already been updated in the
6644 * set_rq_offline(), so we should skip updating
6645 * the rq clock again in unthrottle_cfs_rq().
6646 */
6647 rq_clock_start_loop_update(rq);
6648
6649 rcu_read_lock();
6650 list_for_each_entry_rcu(tg, &task_groups, list) {
6651 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6652
6653 if (!cfs_rq->runtime_enabled)
6654 continue;
6655
6656 /*
6657 * clock_task is not advancing so we just need to make sure
6658 * there's some valid quota amount
6659 */
6660 cfs_rq->runtime_remaining = 1;
6661 /*
6662 * Offline rq is schedulable till CPU is completely disabled
6663 * in take_cpu_down(), so we prevent new cfs throttling here.
6664 */
6665 cfs_rq->runtime_enabled = 0;
6666
6667 if (cfs_rq_throttled(cfs_rq))
6668 unthrottle_cfs_rq(cfs_rq);
6669 }
6670 rcu_read_unlock();
6671
6672 rq_clock_stop_loop_update(rq);
6673 }
6674
cfs_task_bw_constrained(struct task_struct * p)6675 bool cfs_task_bw_constrained(struct task_struct *p)
6676 {
6677 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6678
6679 if (!cfs_bandwidth_used())
6680 return false;
6681
6682 if (cfs_rq->runtime_enabled ||
6683 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6684 return true;
6685
6686 return false;
6687 }
6688
6689 #ifdef CONFIG_NO_HZ_FULL
6690 /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6691 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6692 {
6693 int cpu = cpu_of(rq);
6694
6695 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6696 return;
6697
6698 if (!tick_nohz_full_cpu(cpu))
6699 return;
6700
6701 if (rq->nr_running != 1)
6702 return;
6703
6704 /*
6705 * We know there is only one task runnable and we've just picked it. The
6706 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6707 * be otherwise able to stop the tick. Just need to check if we are using
6708 * bandwidth control.
6709 */
6710 if (cfs_task_bw_constrained(p))
6711 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6712 }
6713 #endif
6714
6715 #else /* CONFIG_CFS_BANDWIDTH */
6716
cfs_bandwidth_used(void)6717 static inline bool cfs_bandwidth_used(void)
6718 {
6719 return false;
6720 }
6721
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6722 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6723 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6724 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6725 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6726 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6727
cfs_rq_throttled(struct cfs_rq * cfs_rq)6728 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6729 {
6730 return 0;
6731 }
6732
throttled_hierarchy(struct cfs_rq * cfs_rq)6733 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6734 {
6735 return 0;
6736 }
6737
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)6738 static inline int throttled_lb_pair(struct task_group *tg,
6739 int src_cpu, int dest_cpu)
6740 {
6741 return 0;
6742 }
6743
6744 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6745 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6746 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6747 #endif
6748
tg_cfs_bandwidth(struct task_group * tg)6749 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6750 {
6751 return NULL;
6752 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6753 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6754 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6755 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6756 #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6757 bool cfs_task_bw_constrained(struct task_struct *p)
6758 {
6759 return false;
6760 }
6761 #endif
6762 #endif /* CONFIG_CFS_BANDWIDTH */
6763
6764 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6765 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6766 #endif
6767
6768 /**************************************************
6769 * CFS operations on tasks:
6770 */
6771
6772 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6773 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6774 {
6775 struct sched_entity *se = &p->se;
6776
6777 SCHED_WARN_ON(task_rq(p) != rq);
6778
6779 if (rq->cfs.h_nr_running > 1) {
6780 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6781 u64 slice = se->slice;
6782 s64 delta = slice - ran;
6783
6784 if (delta < 0) {
6785 if (task_current(rq, p))
6786 resched_curr(rq);
6787 return;
6788 }
6789 hrtick_start(rq, delta);
6790 }
6791 }
6792
6793 /*
6794 * called from enqueue/dequeue and updates the hrtick when the
6795 * current task is from our class and nr_running is low enough
6796 * to matter.
6797 */
hrtick_update(struct rq * rq)6798 static void hrtick_update(struct rq *rq)
6799 {
6800 struct task_struct *curr = rq->curr;
6801
6802 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6803 return;
6804
6805 hrtick_start_fair(rq, curr);
6806 }
6807 #else /* !CONFIG_SCHED_HRTICK */
6808 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6809 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6810 {
6811 }
6812
hrtick_update(struct rq * rq)6813 static inline void hrtick_update(struct rq *rq)
6814 {
6815 }
6816 #endif
6817
6818 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)6819 static inline bool cpu_overutilized(int cpu)
6820 {
6821 unsigned long rq_util_min, rq_util_max;
6822
6823 if (!sched_energy_enabled())
6824 return false;
6825
6826 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6827 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6828
6829 /* Return true only if the utilization doesn't fit CPU's capacity */
6830 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6831 }
6832
set_rd_overutilized_status(struct root_domain * rd,unsigned int status)6833 static inline void set_rd_overutilized_status(struct root_domain *rd,
6834 unsigned int status)
6835 {
6836 if (!sched_energy_enabled())
6837 return;
6838
6839 WRITE_ONCE(rd->overutilized, status);
6840 trace_sched_overutilized_tp(rd, !!status);
6841 }
6842
check_update_overutilized_status(struct rq * rq)6843 static inline void check_update_overutilized_status(struct rq *rq)
6844 {
6845 /*
6846 * overutilized field is used for load balancing decisions only
6847 * if energy aware scheduler is being used
6848 */
6849 if (!sched_energy_enabled())
6850 return;
6851
6852 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu))
6853 set_rd_overutilized_status(rq->rd, SG_OVERUTILIZED);
6854 }
6855 #else
check_update_overutilized_status(struct rq * rq)6856 static inline void check_update_overutilized_status(struct rq *rq) { }
6857 #endif
6858
6859 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6860 static int sched_idle_rq(struct rq *rq)
6861 {
6862 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6863 rq->nr_running);
6864 }
6865
6866 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)6867 static int sched_idle_cpu(int cpu)
6868 {
6869 return sched_idle_rq(cpu_rq(cpu));
6870 }
6871 #endif
6872
6873 static void set_next_buddy(struct sched_entity *se);
6874
6875 #ifdef CONFIG_SCHED_LATENCY_NICE
check_preempt_from_idle(struct cfs_rq * cfs,struct sched_entity * se)6876 static void check_preempt_from_idle(struct cfs_rq *cfs, struct sched_entity *se)
6877 {
6878 struct sched_entity *next;
6879
6880 if (se->latency_weight <= 0)
6881 return;
6882
6883 if (cfs->nr_running <= 1)
6884 return;
6885 /*
6886 * When waking from idle, we don't need to check to preempt at wakeup
6887 * the idle thread and don't set next buddy as a candidate for being
6888 * picked in priority.
6889 * In case of simultaneous wakeup from idle, the latency sensitive tasks
6890 * lost opportunity to preempt non sensitive tasks which woke up
6891 * simultaneously.
6892 */
6893
6894 if (cfs->next)
6895 next = cfs->next;
6896 else
6897 next = __pick_first_entity(cfs);
6898
6899 if (next && wakeup_preempt_entity(next, se) == 1)
6900 set_next_buddy(se);
6901 }
6902 #endif
6903
6904 /*
6905 * The enqueue_task method is called before nr_running is
6906 * increased. Here we update the fair scheduling stats and
6907 * then put the task into the rbtree:
6908 */
6909 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6910 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6911 {
6912 struct cfs_rq *cfs_rq;
6913 struct sched_entity *se = &p->se;
6914 int idle_h_nr_running = task_has_idle_policy(p);
6915 int task_new = !(flags & ENQUEUE_WAKEUP);
6916
6917 /*
6918 * The code below (indirectly) updates schedutil which looks at
6919 * the cfs_rq utilization to select a frequency.
6920 * Let's add the task's estimated utilization to the cfs_rq's
6921 * estimated utilization, before we update schedutil.
6922 */
6923 util_est_enqueue(&rq->cfs, p);
6924
6925 /*
6926 * If in_iowait is set, the code below may not trigger any cpufreq
6927 * utilization updates, so do it here explicitly with the IOWAIT flag
6928 * passed.
6929 */
6930 if (p->in_iowait)
6931 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6932
6933 for_each_sched_entity(se) {
6934 if (se->on_rq)
6935 break;
6936 cfs_rq = cfs_rq_of(se);
6937 enqueue_entity(cfs_rq, se, flags);
6938
6939 cfs_rq->h_nr_running++;
6940 cfs_rq->idle_h_nr_running += idle_h_nr_running;
6941 walt_inc_cfs_rq_stats(cfs_rq, p);
6942 if (cfs_rq_is_idle(cfs_rq))
6943 idle_h_nr_running = 1;
6944
6945 /* end evaluation on encountering a throttled cfs_rq */
6946 if (cfs_rq_throttled(cfs_rq))
6947 goto enqueue_throttle;
6948
6949 flags = ENQUEUE_WAKEUP;
6950 }
6951
6952 for_each_sched_entity(se) {
6953 cfs_rq = cfs_rq_of(se);
6954
6955 update_load_avg(cfs_rq, se, UPDATE_TG);
6956 se_update_runnable(se);
6957 update_cfs_group(se);
6958
6959 cfs_rq->h_nr_running++;
6960 cfs_rq->idle_h_nr_running += idle_h_nr_running;
6961 walt_inc_cfs_rq_stats(cfs_rq, p);
6962 if (cfs_rq_is_idle(cfs_rq))
6963 idle_h_nr_running = 1;
6964
6965 /* end evaluation on encountering a throttled cfs_rq */
6966 if (cfs_rq_throttled(cfs_rq))
6967 goto enqueue_throttle;
6968 }
6969
6970 /* At this point se is NULL and we are at root level*/
6971 add_nr_running(rq, 1);
6972 inc_rq_walt_stats(rq, p);
6973 /*
6974 * Since new tasks are assigned an initial util_avg equal to
6975 * half of the spare capacity of their CPU, tiny tasks have the
6976 * ability to cross the overutilized threshold, which will
6977 * result in the load balancer ruining all the task placement
6978 * done by EAS. As a way to mitigate that effect, do not account
6979 * for the first enqueue operation of new tasks during the
6980 * overutilized flag detection.
6981 *
6982 * A better way of solving this problem would be to wait for
6983 * the PELT signals of tasks to converge before taking them
6984 * into account, but that is not straightforward to implement,
6985 * and the following generally works well enough in practice.
6986 */
6987 if (!task_new)
6988 check_update_overutilized_status(rq);
6989
6990 #ifdef CONFIG_SCHED_LATENCY_NICE
6991 if (rq->curr == rq->idle)
6992 check_preempt_from_idle(cfs_rq_of(&p->se), &p->se);
6993 #endif
6994
6995 enqueue_throttle:
6996 assert_list_leaf_cfs_rq(rq);
6997
6998 hrtick_update(rq);
6999 }
7000
7001 static void set_next_buddy(struct sched_entity *se);
7002
7003 /*
7004 * The dequeue_task method is called before nr_running is
7005 * decreased. We remove the task from the rbtree and
7006 * update the fair scheduling stats:
7007 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)7008 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7009 {
7010 struct cfs_rq *cfs_rq;
7011 struct sched_entity *se = &p->se;
7012 int task_sleep = flags & DEQUEUE_SLEEP;
7013 int idle_h_nr_running = task_has_idle_policy(p);
7014 bool was_sched_idle = sched_idle_rq(rq);
7015
7016 util_est_dequeue(&rq->cfs, p);
7017
7018 for_each_sched_entity(se) {
7019 cfs_rq = cfs_rq_of(se);
7020 dequeue_entity(cfs_rq, se, flags);
7021
7022 cfs_rq->h_nr_running--;
7023 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7024 walt_dec_cfs_rq_stats(cfs_rq, p);
7025 if (cfs_rq_is_idle(cfs_rq))
7026 idle_h_nr_running = 1;
7027
7028 /* end evaluation on encountering a throttled cfs_rq */
7029 if (cfs_rq_throttled(cfs_rq))
7030 goto dequeue_throttle;
7031
7032 /* Don't dequeue parent if it has other entities besides us */
7033 if (cfs_rq->load.weight) {
7034 /* Avoid re-evaluating load for this entity: */
7035 se = parent_entity(se);
7036 /*
7037 * Bias pick_next to pick a task from this cfs_rq, as
7038 * p is sleeping when it is within its sched_slice.
7039 */
7040 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7041 set_next_buddy(se);
7042 break;
7043 }
7044 flags |= DEQUEUE_SLEEP;
7045 }
7046
7047 for_each_sched_entity(se) {
7048 cfs_rq = cfs_rq_of(se);
7049
7050 update_load_avg(cfs_rq, se, UPDATE_TG);
7051 se_update_runnable(se);
7052 update_cfs_group(se);
7053
7054 cfs_rq->h_nr_running--;
7055 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7056 walt_dec_cfs_rq_stats(cfs_rq, p);
7057 if (cfs_rq_is_idle(cfs_rq))
7058 idle_h_nr_running = 1;
7059
7060 /* end evaluation on encountering a throttled cfs_rq */
7061 if (cfs_rq_throttled(cfs_rq))
7062 goto dequeue_throttle;
7063
7064 }
7065
7066 /* At this point se is NULL and we are at root level*/
7067 sub_nr_running(rq, 1);
7068 dec_rq_walt_stats(rq, p);
7069
7070 /* balance early to pull high priority tasks */
7071 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7072 rq->next_balance = jiffies;
7073
7074 dequeue_throttle:
7075 util_est_update(&rq->cfs, p, task_sleep);
7076 hrtick_update(rq);
7077 }
7078
7079 #ifdef CONFIG_SMP
7080
7081 /* Working cpumask for: load_balance, load_balance_newidle. */
7082 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7083 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7084 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7085
7086 #ifdef CONFIG_NO_HZ_COMMON
7087
7088 static struct {
7089 cpumask_var_t idle_cpus_mask;
7090 atomic_t nr_cpus;
7091 int has_blocked; /* Idle CPUS has blocked load */
7092 int needs_update; /* Newly idle CPUs need their next_balance collated */
7093 unsigned long next_balance; /* in jiffy units */
7094 unsigned long next_blocked; /* Next update of blocked load in jiffies */
7095 } nohz ____cacheline_aligned;
7096
7097 #endif /* CONFIG_NO_HZ_COMMON */
7098
cpu_load(struct rq * rq)7099 static unsigned long cpu_load(struct rq *rq)
7100 {
7101 return cfs_rq_load_avg(&rq->cfs);
7102 }
7103
7104 /*
7105 * cpu_load_without - compute CPU load without any contributions from *p
7106 * @cpu: the CPU which load is requested
7107 * @p: the task which load should be discounted
7108 *
7109 * The load of a CPU is defined by the load of tasks currently enqueued on that
7110 * CPU as well as tasks which are currently sleeping after an execution on that
7111 * CPU.
7112 *
7113 * This method returns the load of the specified CPU by discounting the load of
7114 * the specified task, whenever the task is currently contributing to the CPU
7115 * load.
7116 */
cpu_load_without(struct rq * rq,struct task_struct * p)7117 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7118 {
7119 struct cfs_rq *cfs_rq;
7120 unsigned int load;
7121
7122 /* Task has no contribution or is new */
7123 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7124 return cpu_load(rq);
7125
7126 cfs_rq = &rq->cfs;
7127 load = READ_ONCE(cfs_rq->avg.load_avg);
7128
7129 /* Discount task's util from CPU's util */
7130 lsub_positive(&load, task_h_load(p));
7131
7132 return load;
7133 }
7134
cpu_runnable(struct rq * rq)7135 static unsigned long cpu_runnable(struct rq *rq)
7136 {
7137 return cfs_rq_runnable_avg(&rq->cfs);
7138 }
7139
cpu_runnable_without(struct rq * rq,struct task_struct * p)7140 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7141 {
7142 struct cfs_rq *cfs_rq;
7143 unsigned int runnable;
7144
7145 /* Task has no contribution or is new */
7146 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7147 return cpu_runnable(rq);
7148
7149 cfs_rq = &rq->cfs;
7150 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7151
7152 /* Discount task's runnable from CPU's runnable */
7153 lsub_positive(&runnable, p->se.avg.runnable_avg);
7154
7155 return runnable;
7156 }
7157
capacity_of(int cpu)7158 static unsigned long capacity_of(int cpu)
7159 {
7160 return cpu_rq(cpu)->cpu_capacity;
7161 }
7162
record_wakee(struct task_struct * p)7163 static void record_wakee(struct task_struct *p)
7164 {
7165 /*
7166 * Only decay a single time; tasks that have less then 1 wakeup per
7167 * jiffy will not have built up many flips.
7168 */
7169 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7170 current->wakee_flips >>= 1;
7171 current->wakee_flip_decay_ts = jiffies;
7172 }
7173
7174 if (current->last_wakee != p) {
7175 current->last_wakee = p;
7176 current->wakee_flips++;
7177 }
7178 }
7179
7180 /*
7181 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7182 *
7183 * A waker of many should wake a different task than the one last awakened
7184 * at a frequency roughly N times higher than one of its wakees.
7185 *
7186 * In order to determine whether we should let the load spread vs consolidating
7187 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7188 * partner, and a factor of lls_size higher frequency in the other.
7189 *
7190 * With both conditions met, we can be relatively sure that the relationship is
7191 * non-monogamous, with partner count exceeding socket size.
7192 *
7193 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7194 * whatever is irrelevant, spread criteria is apparent partner count exceeds
7195 * socket size.
7196 */
wake_wide(struct task_struct * p)7197 static int wake_wide(struct task_struct *p)
7198 {
7199 unsigned int master = current->wakee_flips;
7200 unsigned int slave = p->wakee_flips;
7201 int factor = __this_cpu_read(sd_llc_size);
7202
7203 if (master < slave)
7204 swap(master, slave);
7205 if (slave < factor || master < slave * factor)
7206 return 0;
7207 return 1;
7208 }
7209
7210 /*
7211 * The purpose of wake_affine() is to quickly determine on which CPU we can run
7212 * soonest. For the purpose of speed we only consider the waking and previous
7213 * CPU.
7214 *
7215 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7216 * cache-affine and is (or will be) idle.
7217 *
7218 * wake_affine_weight() - considers the weight to reflect the average
7219 * scheduling latency of the CPUs. This seems to work
7220 * for the overloaded case.
7221 */
7222 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)7223 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7224 {
7225 /*
7226 * If this_cpu is idle, it implies the wakeup is from interrupt
7227 * context. Only allow the move if cache is shared. Otherwise an
7228 * interrupt intensive workload could force all tasks onto one
7229 * node depending on the IO topology or IRQ affinity settings.
7230 *
7231 * If the prev_cpu is idle and cache affine then avoid a migration.
7232 * There is no guarantee that the cache hot data from an interrupt
7233 * is more important than cache hot data on the prev_cpu and from
7234 * a cpufreq perspective, it's better to have higher utilisation
7235 * on one CPU.
7236 */
7237 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7238 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7239
7240 if (sync && cpu_rq(this_cpu)->nr_running == 1)
7241 return this_cpu;
7242
7243 if (available_idle_cpu(prev_cpu))
7244 return prev_cpu;
7245
7246 return nr_cpumask_bits;
7247 }
7248
7249 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7250 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7251 int this_cpu, int prev_cpu, int sync)
7252 {
7253 s64 this_eff_load, prev_eff_load;
7254 unsigned long task_load;
7255
7256 this_eff_load = cpu_load(cpu_rq(this_cpu));
7257
7258 if (sync) {
7259 unsigned long current_load = task_h_load(current);
7260
7261 if (current_load > this_eff_load)
7262 return this_cpu;
7263
7264 this_eff_load -= current_load;
7265 }
7266
7267 task_load = task_h_load(p);
7268
7269 this_eff_load += task_load;
7270 if (sched_feat(WA_BIAS))
7271 this_eff_load *= 100;
7272 this_eff_load *= capacity_of(prev_cpu);
7273
7274 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7275 prev_eff_load -= task_load;
7276 if (sched_feat(WA_BIAS))
7277 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7278 prev_eff_load *= capacity_of(this_cpu);
7279
7280 /*
7281 * If sync, adjust the weight of prev_eff_load such that if
7282 * prev_eff == this_eff that select_idle_sibling() will consider
7283 * stacking the wakee on top of the waker if no other CPU is
7284 * idle.
7285 */
7286 if (sync)
7287 prev_eff_load += 1;
7288
7289 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7290 }
7291
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7292 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7293 int this_cpu, int prev_cpu, int sync)
7294 {
7295 int target = nr_cpumask_bits;
7296
7297 if (sched_feat(WA_IDLE))
7298 target = wake_affine_idle(this_cpu, prev_cpu, sync);
7299
7300 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7301 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7302
7303 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7304 if (target != this_cpu)
7305 return prev_cpu;
7306
7307 schedstat_inc(sd->ttwu_move_affine);
7308 schedstat_inc(p->stats.nr_wakeups_affine);
7309 return target;
7310 }
7311
7312 static struct sched_group *
7313 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7314
7315 /*
7316 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
7317 */
7318 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7319 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7320 {
7321 unsigned long load, min_load = ULONG_MAX;
7322 unsigned int min_exit_latency = UINT_MAX;
7323 u64 latest_idle_timestamp = 0;
7324 int least_loaded_cpu = this_cpu;
7325 int shallowest_idle_cpu = -1;
7326 int i;
7327
7328 /* Check if we have any choice: */
7329 if (group->group_weight == 1)
7330 return cpumask_first(sched_group_span(group));
7331
7332 /* Traverse only the allowed CPUs */
7333 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7334 struct rq *rq = cpu_rq(i);
7335
7336 if (cpu_isolated(i))
7337 continue;
7338
7339 if (!sched_core_cookie_match(rq, p))
7340 continue;
7341
7342 if (sched_idle_cpu(i))
7343 return i;
7344
7345 if (available_idle_cpu(i)) {
7346 struct cpuidle_state *idle = idle_get_state(rq);
7347 if (idle && idle->exit_latency < min_exit_latency) {
7348 /*
7349 * We give priority to a CPU whose idle state
7350 * has the smallest exit latency irrespective
7351 * of any idle timestamp.
7352 */
7353 min_exit_latency = idle->exit_latency;
7354 latest_idle_timestamp = rq->idle_stamp;
7355 shallowest_idle_cpu = i;
7356 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
7357 rq->idle_stamp > latest_idle_timestamp) {
7358 /*
7359 * If equal or no active idle state, then
7360 * the most recently idled CPU might have
7361 * a warmer cache.
7362 */
7363 latest_idle_timestamp = rq->idle_stamp;
7364 shallowest_idle_cpu = i;
7365 }
7366 } else if (shallowest_idle_cpu == -1) {
7367 load = cpu_load(cpu_rq(i));
7368 if (load < min_load) {
7369 min_load = load;
7370 least_loaded_cpu = i;
7371 }
7372 }
7373 }
7374
7375 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7376 }
7377
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7378 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
7379 int cpu, int prev_cpu, int sd_flag)
7380 {
7381 int new_cpu = cpu;
7382
7383 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7384 return prev_cpu;
7385
7386 /*
7387 * We need task's util for cpu_util_without, sync it up to
7388 * prev_cpu's last_update_time.
7389 */
7390 if (!(sd_flag & SD_BALANCE_FORK))
7391 sync_entity_load_avg(&p->se);
7392
7393 while (sd) {
7394 struct sched_group *group;
7395 struct sched_domain *tmp;
7396 int weight;
7397
7398 if (!(sd->flags & sd_flag)) {
7399 sd = sd->child;
7400 continue;
7401 }
7402
7403 group = find_idlest_group(sd, p, cpu);
7404 if (!group) {
7405 sd = sd->child;
7406 continue;
7407 }
7408
7409 new_cpu = find_idlest_group_cpu(group, p, cpu);
7410 if (new_cpu == cpu) {
7411 /* Now try balancing at a lower domain level of 'cpu': */
7412 sd = sd->child;
7413 continue;
7414 }
7415
7416 /* Now try balancing at a lower domain level of 'new_cpu': */
7417 cpu = new_cpu;
7418 weight = sd->span_weight;
7419 sd = NULL;
7420 for_each_domain(cpu, tmp) {
7421 if (weight <= tmp->span_weight)
7422 break;
7423 if (tmp->flags & sd_flag)
7424 sd = tmp;
7425 }
7426 }
7427
7428 return new_cpu;
7429 }
7430
__select_idle_cpu(int cpu,struct task_struct * p)7431 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7432 {
7433 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7434 sched_cpu_cookie_match(cpu_rq(cpu), p))
7435 return cpu;
7436
7437 return -1;
7438 }
7439
7440 #ifdef CONFIG_SCHED_SMT
7441 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7442 EXPORT_SYMBOL_GPL(sched_smt_present);
7443
set_idle_cores(int cpu,int val)7444 static inline void set_idle_cores(int cpu, int val)
7445 {
7446 struct sched_domain_shared *sds;
7447
7448 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7449 if (sds)
7450 WRITE_ONCE(sds->has_idle_cores, val);
7451 }
7452
test_idle_cores(int cpu)7453 static inline bool test_idle_cores(int cpu)
7454 {
7455 struct sched_domain_shared *sds;
7456
7457 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7458 if (sds)
7459 return READ_ONCE(sds->has_idle_cores);
7460
7461 return false;
7462 }
7463
7464 /*
7465 * Scans the local SMT mask to see if the entire core is idle, and records this
7466 * information in sd_llc_shared->has_idle_cores.
7467 *
7468 * Since SMT siblings share all cache levels, inspecting this limited remote
7469 * state should be fairly cheap.
7470 */
__update_idle_core(struct rq * rq)7471 void __update_idle_core(struct rq *rq)
7472 {
7473 int core = cpu_of(rq);
7474 int cpu;
7475
7476 rcu_read_lock();
7477 if (test_idle_cores(core))
7478 goto unlock;
7479
7480 for_each_cpu(cpu, cpu_smt_mask(core)) {
7481 if (cpu == core)
7482 continue;
7483
7484 if (!available_idle_cpu(cpu))
7485 goto unlock;
7486 }
7487
7488 set_idle_cores(core, 1);
7489 unlock:
7490 rcu_read_unlock();
7491 }
7492
7493 /*
7494 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7495 * there are no idle cores left in the system; tracked through
7496 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7497 */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7498 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7499 {
7500
7501 #ifdef CONFIG_CPU_ISOLATION_OPT
7502 cpumask_andnot(cpus, cpus, cpu_isolated_mask);
7503 #endif
7504 bool idle = true;
7505 int cpu;
7506
7507 for_each_cpu(cpu, cpu_smt_mask(core)) {
7508 if (!available_idle_cpu(cpu)) {
7509 idle = false;
7510 if (*idle_cpu == -1) {
7511 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7512 *idle_cpu = cpu;
7513 break;
7514 }
7515 continue;
7516 }
7517 break;
7518 }
7519 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7520 *idle_cpu = cpu;
7521 }
7522
7523 if (idle)
7524 return core;
7525
7526 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7527 return -1;
7528 }
7529
7530 /*
7531 * Scan the local SMT mask for idle CPUs.
7532 */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7533 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7534 {
7535 int cpu;
7536
7537 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7538 if (cpu == target)
7539 continue;
7540 /*
7541 * Check if the CPU is in the LLC scheduling domain of @target.
7542 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7543 */
7544 if (cpu_isolated(cpu))
7545 continue;
7546 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7547 continue;
7548 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7549 return cpu;
7550 }
7551
7552 return -1;
7553 }
7554
7555 #else /* CONFIG_SCHED_SMT */
7556
set_idle_cores(int cpu,int val)7557 static inline void set_idle_cores(int cpu, int val)
7558 {
7559 }
7560
test_idle_cores(int cpu)7561 static inline bool test_idle_cores(int cpu)
7562 {
7563 return false;
7564 }
7565
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7566 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7567 {
7568 return __select_idle_cpu(core, p);
7569 }
7570
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7571 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7572 {
7573 return -1;
7574 }
7575
7576 #endif /* CONFIG_SCHED_SMT */
7577
7578 /*
7579 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7580 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7581 * average idle time for this rq (as found in rq->avg_idle).
7582 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7583 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7584 {
7585 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7586 int i, cpu, idle_cpu = -1, nr = INT_MAX;
7587 struct sched_domain_shared *sd_share;
7588 struct rq *this_rq = this_rq();
7589 int this = smp_processor_id();
7590 struct sched_domain *this_sd = NULL;
7591 u64 time = 0;
7592
7593 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7594
7595 if (sched_feat(SIS_PROP) && !has_idle_core) {
7596 u64 avg_cost, avg_idle, span_avg;
7597 unsigned long now = jiffies;
7598
7599 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
7600 if (!this_sd)
7601 return -1;
7602
7603 /*
7604 * If we're busy, the assumption that the last idle period
7605 * predicts the future is flawed; age away the remaining
7606 * predicted idle time.
7607 */
7608 if (unlikely(this_rq->wake_stamp < now)) {
7609 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
7610 this_rq->wake_stamp++;
7611 this_rq->wake_avg_idle >>= 1;
7612 }
7613 }
7614
7615 avg_idle = this_rq->wake_avg_idle;
7616 avg_cost = this_sd->avg_scan_cost + 1;
7617
7618 span_avg = sd->span_weight * avg_idle;
7619 if (span_avg > 4*avg_cost)
7620 nr = div_u64(span_avg, avg_cost);
7621 else
7622 nr = 4;
7623
7624 time = cpu_clock(this);
7625 }
7626
7627 if (sched_feat(SIS_UTIL)) {
7628 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7629 if (sd_share) {
7630 /* because !--nr is the condition to stop scan */
7631 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7632 /* overloaded LLC is unlikely to have idle cpu/core */
7633 if (nr == 1)
7634 return -1;
7635 }
7636 }
7637
7638 for_each_cpu_wrap(cpu, cpus, target + 1) {
7639 if (has_idle_core) {
7640 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7641 if ((unsigned int)i < nr_cpumask_bits)
7642 return i;
7643
7644 } else {
7645 if (!--nr)
7646 return -1;
7647 if (cpu_isolated(cpu))
7648 continue;
7649 idle_cpu = __select_idle_cpu(cpu, p);
7650 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7651 break;
7652 }
7653 }
7654
7655 if (has_idle_core)
7656 set_idle_cores(target, false);
7657
7658 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
7659 time = cpu_clock(this) - time;
7660
7661 /*
7662 * Account for the scan cost of wakeups against the average
7663 * idle time.
7664 */
7665 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
7666
7667 update_avg(&this_sd->avg_scan_cost, time);
7668 }
7669
7670 return idle_cpu;
7671 }
7672
7673 /*
7674 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7675 * the task fits. If no CPU is big enough, but there are idle ones, try to
7676 * maximize capacity.
7677 */
7678 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7679 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7680 {
7681 unsigned long task_util, util_min, util_max, best_cap = 0;
7682 int fits, best_fits = 0;
7683 int cpu, best_cpu = -1;
7684 struct cpumask *cpus;
7685
7686 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7687 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7688
7689 task_util = task_util_est(p);
7690 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7691 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7692
7693 for_each_cpu_wrap(cpu, cpus, target) {
7694 unsigned long cpu_cap = capacity_of(cpu);
7695
7696 if (cpu_isolated(cpu))
7697 continue;
7698
7699 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7700 continue;
7701
7702 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7703
7704 /* This CPU fits with all requirements */
7705 if (fits > 0)
7706 return cpu;
7707 /*
7708 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7709 * Look for the CPU with best capacity.
7710 */
7711 else if (fits < 0)
7712 cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
7713
7714 /*
7715 * First, select CPU which fits better (-1 being better than 0).
7716 * Then, select the one with best capacity at same level.
7717 */
7718 if ((fits < best_fits) ||
7719 ((fits == best_fits) && (cpu_cap > best_cap))) {
7720 best_cap = cpu_cap;
7721 best_cpu = cpu;
7722 best_fits = fits;
7723 }
7724 }
7725
7726 return best_cpu;
7727 }
7728
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)7729 static inline bool asym_fits_cpu(unsigned long util,
7730 unsigned long util_min,
7731 unsigned long util_max,
7732 int cpu)
7733 {
7734 if (sched_asym_cpucap_active())
7735 /*
7736 * Return true only if the cpu fully fits the task requirements
7737 * which include the utilization and the performance hints.
7738 */
7739 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7740
7741 return true;
7742 }
7743
7744 /*
7745 * Try and locate an idle core/thread in the LLC cache domain.
7746 */
select_idle_sibling(struct task_struct * p,int prev,int target)7747 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7748 {
7749 bool has_idle_core = false;
7750 struct sched_domain *sd;
7751 unsigned long task_util, util_min, util_max;
7752 int i, recent_used_cpu;
7753
7754 /*
7755 * On asymmetric system, update task utilization because we will check
7756 * that the task fits with cpu's capacity.
7757 */
7758 if (sched_asym_cpucap_active()) {
7759 sync_entity_load_avg(&p->se);
7760 task_util = task_util_est(p);
7761 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7762 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7763 }
7764
7765 /*
7766 * per-cpu select_rq_mask usage
7767 */
7768 lockdep_assert_irqs_disabled();
7769
7770 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7771 !cpu_isolated(target) && asym_fits_cpu(task_util, util_min, util_max, target))
7772 return target;
7773
7774 /*
7775 * If the previous CPU is cache affine and idle, don't be stupid:
7776 */
7777 if (prev != target && cpus_share_cache(prev, target) &&
7778 ((available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7779 !cpu_isolated(target) && asym_fits_cpu(task_util, util_min, util_max, prev)))
7780 return prev;
7781
7782 /*
7783 * Allow a per-cpu kthread to stack with the wakee if the
7784 * kworker thread and the tasks previous CPUs are the same.
7785 * The assumption is that the wakee queued work for the
7786 * per-cpu kthread that is now complete and the wakeup is
7787 * essentially a sync wakeup. An obvious example of this
7788 * pattern is IO completions.
7789 */
7790 if (is_per_cpu_kthread(current) &&
7791 in_task() &&
7792 prev == smp_processor_id() &&
7793 this_rq()->nr_running <= 1 &&
7794 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7795 return prev;
7796 }
7797
7798 /* Check a recently used CPU as a potential idle candidate: */
7799 recent_used_cpu = p->recent_used_cpu;
7800 p->recent_used_cpu = prev;
7801 if (recent_used_cpu != prev &&
7802 recent_used_cpu != target &&
7803 cpus_share_cache(recent_used_cpu, target) &&
7804 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7805 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7806 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7807 return recent_used_cpu;
7808 }
7809
7810 /*
7811 * For asymmetric CPU capacity systems, our domain of interest is
7812 * sd_asym_cpucapacity rather than sd_llc.
7813 */
7814 if (sched_asym_cpucap_active()) {
7815 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7816 /*
7817 * On an asymmetric CPU capacity system where an exclusive
7818 * cpuset defines a symmetric island (i.e. one unique
7819 * capacity_orig value through the cpuset), the key will be set
7820 * but the CPUs within that cpuset will not have a domain with
7821 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7822 * capacity path.
7823 */
7824 if (sd) {
7825 i = select_idle_capacity(p, sd, target);
7826 return ((unsigned)i < nr_cpumask_bits) ? i : target;
7827 }
7828 }
7829
7830 sd = rcu_dereference(per_cpu(sd_llc, target));
7831 if (!sd)
7832 return target;
7833
7834 if (sched_smt_active()) {
7835 has_idle_core = test_idle_cores(target);
7836
7837 if (!has_idle_core && cpus_share_cache(prev, target)) {
7838 i = select_idle_smt(p, sd, prev);
7839 if ((unsigned int)i < nr_cpumask_bits)
7840 return i;
7841 }
7842 }
7843
7844 i = select_idle_cpu(p, sd, has_idle_core, target);
7845 if ((unsigned)i < nr_cpumask_bits)
7846 return i;
7847
7848 return target;
7849 }
7850
7851 /**
7852 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7853 * @cpu: the CPU to get the utilization for
7854 * @p: task for which the CPU utilization should be predicted or NULL
7855 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7856 * @boost: 1 to enable boosting, otherwise 0
7857 *
7858 * The unit of the return value must be the same as the one of CPU capacity
7859 * so that CPU utilization can be compared with CPU capacity.
7860 *
7861 * CPU utilization is the sum of running time of runnable tasks plus the
7862 * recent utilization of currently non-runnable tasks on that CPU.
7863 * It represents the amount of CPU capacity currently used by CFS tasks in
7864 * the range [0..max CPU capacity] with max CPU capacity being the CPU
7865 * capacity at f_max.
7866 *
7867 * The estimated CPU utilization is defined as the maximum between CPU
7868 * utilization and sum of the estimated utilization of the currently
7869 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7870 * previously-executed tasks, which helps better deduce how busy a CPU will
7871 * be when a long-sleeping task wakes up. The contribution to CPU utilization
7872 * of such a task would be significantly decayed at this point of time.
7873 *
7874 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7875 * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7876 * utilization. Boosting is implemented in cpu_util() so that internal
7877 * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7878 * latter via cpu_util_cfs_boost().
7879 *
7880 * CPU utilization can be higher than the current CPU capacity
7881 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7882 * of rounding errors as well as task migrations or wakeups of new tasks.
7883 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7884 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7885 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7886 * capacity. CPU utilization is allowed to overshoot current CPU capacity
7887 * though since this is useful for predicting the CPU capacity required
7888 * after task migrations (scheduler-driven DVFS).
7889 *
7890 * Return: (Boosted) (estimated) utilization for the specified CPU.
7891 */
7892 static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)7893 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7894 {
7895 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7896 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7897 unsigned long runnable;
7898
7899 #ifdef CONFIG_SCHED_WALT
7900 if (likely(!walt_disabled && sysctl_sched_use_walt_cpu_util)) {
7901 u64 walt_cpu_util =
7902 cpu_rq(cpu)->walt_stats.cumulative_runnable_avg_scaled;
7903
7904 return min_t(unsigned long, walt_cpu_util,
7905 capacity_orig_of(cpu));
7906 }
7907 #endif
7908
7909 if (boost) {
7910 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7911 util = max(util, runnable);
7912 }
7913
7914 /*
7915 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7916 * contribution. If @p migrates from another CPU to @cpu add its
7917 * contribution. In all the other cases @cpu is not impacted by the
7918 * migration so its util_avg is already correct.
7919 */
7920 if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7921 lsub_positive(&util, task_util(p));
7922 else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7923 util += task_util(p);
7924
7925 if (sched_feat(UTIL_EST)) {
7926 unsigned long util_est;
7927
7928 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
7929
7930 /*
7931 * During wake-up @p isn't enqueued yet and doesn't contribute
7932 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
7933 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7934 * has been enqueued.
7935 *
7936 * During exec (@dst_cpu = -1) @p is enqueued and does
7937 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
7938 * Remove it to "simulate" cpu_util without @p's contribution.
7939 *
7940 * Despite the task_on_rq_queued(@p) check there is still a
7941 * small window for a possible race when an exec
7942 * select_task_rq_fair() races with LB's detach_task().
7943 *
7944 * detach_task()
7945 * deactivate_task()
7946 * p->on_rq = TASK_ON_RQ_MIGRATING;
7947 * -------------------------------- A
7948 * dequeue_task() \
7949 * dequeue_task_fair() + Race Time
7950 * util_est_dequeue() /
7951 * -------------------------------- B
7952 *
7953 * The additional check "current == p" is required to further
7954 * reduce the race window.
7955 */
7956 if (dst_cpu == cpu)
7957 util_est += _task_util_est(p);
7958 else if (p && unlikely(task_on_rq_queued(p) || current == p))
7959 lsub_positive(&util_est, _task_util_est(p));
7960
7961 util = max(util, util_est);
7962 }
7963
7964 return min(util, capacity_orig_of(cpu));
7965 }
7966
cpu_util_cfs(int cpu)7967 unsigned long cpu_util_cfs(int cpu)
7968 {
7969 return cpu_util(cpu, NULL, -1, 0);
7970 }
7971
cpu_util_cfs_boost(int cpu)7972 unsigned long cpu_util_cfs_boost(int cpu)
7973 {
7974 return cpu_util(cpu, NULL, -1, 1);
7975 }
7976
7977 /*
7978 * cpu_util_without: compute cpu utilization without any contributions from *p
7979 * @cpu: the CPU which utilization is requested
7980 * @p: the task which utilization should be discounted
7981 *
7982 * The utilization of a CPU is defined by the utilization of tasks currently
7983 * enqueued on that CPU as well as tasks which are currently sleeping after an
7984 * execution on that CPU.
7985 *
7986 * This method returns the utilization of the specified CPU by discounting the
7987 * utilization of the specified task, whenever the task is currently
7988 * contributing to the CPU utilization.
7989 */
cpu_util_without(int cpu,struct task_struct * p)7990 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7991 {
7992 unsigned int util;
7993 #ifdef CONFIG_SCHED_WALT
7994 /*
7995 * WALT does not decay idle tasks in the same manner
7996 * as PELT, so it makes little sense to subtract task
7997 * utilization from cpu utilization. Instead just use
7998 * cpu_util for this case.
7999 */
8000 if (likely(!walt_disabled && sysctl_sched_use_walt_cpu_util) &&
8001 p->__state == TASK_WAKING)
8002 return cpu_util_cfs(cpu);
8003 #endif
8004 /* Task has no contribution or is new */
8005 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8006 p = NULL;
8007
8008 return cpu_util(cpu, p, -1, 0);
8009 #ifdef CONFIG_SCHED_WALT
8010 if (likely(!walt_disabled && sysctl_sched_use_walt_cpu_util)) {
8011 util = max_t(long, cpu_util_cfs(cpu) - task_util(p), 0);
8012 return min_t(unsigned long, util, capacity_orig_of(cpu));
8013 }
8014 #endif
8015 }
8016
8017 /*
8018 * energy_env - Utilization landscape for energy estimation.
8019 * @task_busy_time: Utilization contribution by the task for which we test the
8020 * placement. Given by eenv_task_busy_time().
8021 * @pd_busy_time: Utilization of the whole perf domain without the task
8022 * contribution. Given by eenv_pd_busy_time().
8023 * @cpu_cap: Maximum CPU capacity for the perf domain.
8024 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8025 */
8026 struct energy_env {
8027 unsigned long task_busy_time;
8028 unsigned long pd_busy_time;
8029 unsigned long cpu_cap;
8030 unsigned long pd_cap;
8031 };
8032
8033 /*
8034 * Compute the task busy time for compute_energy(). This time cannot be
8035 * injected directly into effective_cpu_util() because of the IRQ scaling.
8036 * The latter only makes sense with the most recent CPUs where the task has
8037 * run.
8038 */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)8039 static inline void eenv_task_busy_time(struct energy_env *eenv,
8040 struct task_struct *p, int prev_cpu)
8041 {
8042 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8043 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8044
8045 if (unlikely(irq >= max_cap))
8046 busy_time = max_cap;
8047 else
8048 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8049
8050 eenv->task_busy_time = busy_time;
8051 }
8052
8053 #ifdef CONFIG_SCHED_RTG
capacity_spare_without(int cpu,struct task_struct * p)8054 unsigned long capacity_spare_without(int cpu, struct task_struct *p)
8055 {
8056 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
8057 }
8058 #endif
8059
8060 /*
8061 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8062 * utilization for each @pd_cpus, it however doesn't take into account
8063 * clamping since the ratio (utilization / cpu_capacity) is already enough to
8064 * scale the EM reported power consumption at the (eventually clamped)
8065 * cpu_capacity.
8066 *
8067 * The contribution of the task @p for which we want to estimate the
8068 * energy cost is removed (by cpu_util()) and must be calculated
8069 * separately (see eenv_task_busy_time). This ensures:
8070 *
8071 * - A stable PD utilization, no matter which CPU of that PD we want to place
8072 * the task on.
8073 *
8074 * - A fair comparison between CPUs as the task contribution (task_util())
8075 * will always be the same no matter which CPU utilization we rely on
8076 * (util_avg or util_est).
8077 *
8078 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8079 * exceed @eenv->pd_cap.
8080 */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)8081 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8082 struct cpumask *pd_cpus,
8083 struct task_struct *p)
8084 {
8085 unsigned long busy_time = 0;
8086 int cpu;
8087
8088 for_each_cpu(cpu, pd_cpus) {
8089 unsigned long util = cpu_util(cpu, p, -1, 0);
8090
8091 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
8092 }
8093
8094 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8095 }
8096
8097 /*
8098 * Returns the current capacity of cpu after applying both
8099 * cpu and freq scaling.
8100 */
capacity_curr_of(int cpu)8101 unsigned long capacity_curr_of(int cpu)
8102 {
8103 unsigned long max_cap = cpu_rq(cpu)->cpu_capacity_orig;
8104 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
8105
8106 return cap_scale(max_cap, scale_freq);
8107 }
8108
8109 /*
8110 * Compute the maximum utilization for compute_energy() when the task @p
8111 * is placed on the cpu @dst_cpu.
8112 *
8113 * Returns the maximum utilization among @eenv->cpus. This utilization can't
8114 * exceed @eenv->cpu_cap.
8115 */
8116 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8117 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8118 struct task_struct *p, int dst_cpu)
8119 {
8120 unsigned long max_util = 0;
8121 int cpu;
8122
8123 for_each_cpu(cpu, pd_cpus) {
8124 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8125 unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8126 unsigned long eff_util;
8127
8128 /*
8129 * Performance domain frequency: utilization clamping
8130 * must be considered since it affects the selection
8131 * of the performance domain frequency.
8132 * NOTE: in case RT tasks are running, by default the
8133 * FREQUENCY_UTIL's utilization can be max OPP.
8134 */
8135 eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
8136 max_util = max(max_util, eff_util);
8137 }
8138
8139 return min(max_util, eenv->cpu_cap);
8140 }
8141
8142 /*
8143 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8144 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8145 * contribution is ignored.
8146 */
8147 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8148 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8149 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8150 {
8151 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8152 unsigned long busy_time = eenv->pd_busy_time;
8153
8154 if (dst_cpu >= 0)
8155 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8156
8157 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8158 }
8159
8160 /*
8161 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8162 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8163 * spare capacity in each performance domain and uses it as a potential
8164 * candidate to execute the task. Then, it uses the Energy Model to figure
8165 * out which of the CPU candidates is the most energy-efficient.
8166 *
8167 * The rationale for this heuristic is as follows. In a performance domain,
8168 * all the most energy efficient CPU candidates (according to the Energy
8169 * Model) are those for which we'll request a low frequency. When there are
8170 * several CPUs for which the frequency request will be the same, we don't
8171 * have enough data to break the tie between them, because the Energy Model
8172 * only includes active power costs. With this model, if we assume that
8173 * frequency requests follow utilization (e.g. using schedutil), the CPU with
8174 * the maximum spare capacity in a performance domain is guaranteed to be among
8175 * the best candidates of the performance domain.
8176 *
8177 * In practice, it could be preferable from an energy standpoint to pack
8178 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8179 * but that could also hurt our chances to go cluster idle, and we have no
8180 * ways to tell with the current Energy Model if this is actually a good
8181 * idea or not. So, find_energy_efficient_cpu() basically favors
8182 * cluster-packing, and spreading inside a cluster. That should at least be
8183 * a good thing for latency, and this is consistent with the idea that most
8184 * of the energy savings of EAS come from the asymmetry of the system, and
8185 * not so much from breaking the tie between identical CPUs. That's also the
8186 * reason why EAS is enabled in the topology code only for systems where
8187 * SD_ASYM_CPUCAPACITY is set.
8188 *
8189 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8190 * they don't have any useful utilization data yet and it's not possible to
8191 * forecast their impact on energy consumption. Consequently, they will be
8192 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
8193 * to be energy-inefficient in some use-cases. The alternative would be to
8194 * bias new tasks towards specific types of CPUs first, or to try to infer
8195 * their util_avg from the parent task, but those heuristics could hurt
8196 * other use-cases too. So, until someone finds a better way to solve this,
8197 * let's keep things simple by re-using the existing slow path.
8198 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)8199 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8200 {
8201 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8202 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8203 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8204 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8205 struct root_domain *rd = this_rq()->rd;
8206 int cpu, best_energy_cpu, target = -1;
8207 int prev_fits = -1, best_fits = -1;
8208 unsigned long best_thermal_cap = 0;
8209 unsigned long prev_thermal_cap = 0;
8210 struct sched_domain *sd;
8211 struct perf_domain *pd;
8212 struct energy_env eenv;
8213
8214 rcu_read_lock();
8215 pd = rcu_dereference(rd->pd);
8216 if (!pd || READ_ONCE(rd->overutilized))
8217 goto unlock;
8218
8219 /*
8220 * Energy-aware wake-up happens on the lowest sched_domain starting
8221 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8222 */
8223 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8224 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8225 sd = sd->parent;
8226 if (!sd)
8227 goto unlock;
8228
8229 target = prev_cpu;
8230
8231 sync_entity_load_avg(&p->se);
8232 if (!task_util_est(p) && p_util_min == 0)
8233 goto unlock;
8234
8235 eenv_task_busy_time(&eenv, p, prev_cpu);
8236
8237 for (; pd; pd = pd->next) {
8238 unsigned long util_min = p_util_min, util_max = p_util_max;
8239 unsigned long cpu_cap, cpu_thermal_cap, util;
8240 long prev_spare_cap = -1, max_spare_cap = -1;
8241 unsigned long rq_util_min, rq_util_max;
8242 unsigned long cur_delta, base_energy;
8243 int max_spare_cap_cpu = -1;
8244 int fits, max_fits = -1;
8245
8246 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8247
8248 if (cpumask_empty(cpus))
8249 continue;
8250
8251 /* Account thermal pressure for the energy estimation */
8252 cpu = cpumask_first(cpus);
8253 cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
8254 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
8255
8256 eenv.cpu_cap = cpu_thermal_cap;
8257 eenv.pd_cap = 0;
8258
8259 for_each_cpu(cpu, cpus) {
8260 struct rq *rq = cpu_rq(cpu);
8261
8262 eenv.pd_cap += cpu_thermal_cap;
8263
8264 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8265 continue;
8266
8267 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8268 continue;
8269
8270 util = cpu_util(cpu, p, cpu, 0);
8271 cpu_cap = capacity_of(cpu);
8272
8273 /*
8274 * Skip CPUs that cannot satisfy the capacity request.
8275 * IOW, placing the task there would make the CPU
8276 * overutilized. Take uclamp into account to see how
8277 * much capacity we can get out of the CPU; this is
8278 * aligned with sched_cpu_util().
8279 */
8280 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8281 /*
8282 * Open code uclamp_rq_util_with() except for
8283 * the clamp() part. Ie: apply max aggregation
8284 * only. util_fits_cpu() logic requires to
8285 * operate on non clamped util but must use the
8286 * max-aggregated uclamp_{min, max}.
8287 */
8288 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8289 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8290
8291 util_min = max(rq_util_min, p_util_min);
8292 util_max = max(rq_util_max, p_util_max);
8293 }
8294
8295 fits = util_fits_cpu(util, util_min, util_max, cpu);
8296 if (!fits)
8297 continue;
8298
8299 lsub_positive(&cpu_cap, util);
8300
8301 if (cpu == prev_cpu) {
8302 /* Always use prev_cpu as a candidate. */
8303 prev_spare_cap = cpu_cap;
8304 prev_fits = fits;
8305 } else if ((fits > max_fits) ||
8306 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8307 /*
8308 * Find the CPU with the maximum spare capacity
8309 * among the remaining CPUs in the performance
8310 * domain.
8311 */
8312 max_spare_cap = cpu_cap;
8313 max_spare_cap_cpu = cpu;
8314 max_fits = fits;
8315 }
8316 }
8317
8318 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8319 continue;
8320
8321 eenv_pd_busy_time(&eenv, cpus, p);
8322 /* Compute the 'base' energy of the pd, without @p */
8323 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8324
8325 /* Evaluate the energy impact of using prev_cpu. */
8326 if (prev_spare_cap > -1) {
8327 prev_delta = compute_energy(&eenv, pd, cpus, p,
8328 prev_cpu);
8329 /* CPU utilization has changed */
8330 if (prev_delta < base_energy)
8331 goto unlock;
8332 prev_delta -= base_energy;
8333 prev_thermal_cap = cpu_thermal_cap;
8334 best_delta = min(best_delta, prev_delta);
8335 }
8336
8337 /* Evaluate the energy impact of using max_spare_cap_cpu. */
8338 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8339 /* Current best energy cpu fits better */
8340 if (max_fits < best_fits)
8341 continue;
8342
8343 /*
8344 * Both don't fit performance hint (i.e. uclamp_min)
8345 * but best energy cpu has better capacity.
8346 */
8347 if ((max_fits < 0) &&
8348 (cpu_thermal_cap <= best_thermal_cap))
8349 continue;
8350
8351 cur_delta = compute_energy(&eenv, pd, cpus, p,
8352 max_spare_cap_cpu);
8353 /* CPU utilization has changed */
8354 if (cur_delta < base_energy)
8355 goto unlock;
8356 cur_delta -= base_energy;
8357
8358 /*
8359 * Both fit for the task but best energy cpu has lower
8360 * energy impact.
8361 */
8362 if ((max_fits > 0) && (best_fits > 0) &&
8363 (cur_delta >= best_delta))
8364 continue;
8365
8366 best_delta = cur_delta;
8367 best_energy_cpu = max_spare_cap_cpu;
8368 best_fits = max_fits;
8369 best_thermal_cap = cpu_thermal_cap;
8370 }
8371 }
8372 rcu_read_unlock();
8373
8374 if ((best_fits > prev_fits) ||
8375 ((best_fits > 0) && (best_delta < prev_delta)) ||
8376 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
8377 target = best_energy_cpu;
8378
8379 return target;
8380
8381 unlock:
8382 rcu_read_unlock();
8383
8384 return target;
8385 }
8386
8387 /*
8388 * select_task_rq_fair: Select target runqueue for the waking task in domains
8389 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8390 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8391 *
8392 * Balances load by selecting the idlest CPU in the idlest group, or under
8393 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8394 *
8395 * Returns the target CPU number.
8396 */
8397 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8398 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8399 {
8400 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8401 struct sched_domain *tmp, *sd = NULL;
8402 int cpu = smp_processor_id();
8403 int new_cpu = prev_cpu;
8404 int want_affine = 0;
8405 /* SD_flags and WF_flags share the first nibble */
8406 int sd_flag = wake_flags & 0xF;
8407 #ifdef CONFIG_SCHED_RTG
8408 int target_cpu = -1;
8409 target_cpu = find_rtg_cpu(p);
8410 if (target_cpu >= 0)
8411 return target_cpu;
8412 #endif
8413
8414 /*
8415 * required for stable ->cpus_allowed
8416 */
8417 lockdep_assert_held(&p->pi_lock);
8418 if (wake_flags & WF_TTWU) {
8419 record_wakee(p);
8420
8421 if ((wake_flags & WF_CURRENT_CPU) &&
8422 cpumask_test_cpu(cpu, p->cpus_ptr))
8423 return cpu;
8424
8425 if (sched_energy_enabled()) {
8426 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8427 if (new_cpu >= 0)
8428 return new_cpu;
8429 new_cpu = prev_cpu;
8430 }
8431
8432 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8433 }
8434
8435 rcu_read_lock();
8436 for_each_domain(cpu, tmp) {
8437 /*
8438 * If both 'cpu' and 'prev_cpu' are part of this domain,
8439 * cpu is a valid SD_WAKE_AFFINE target.
8440 */
8441 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8442 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8443 if (cpu != prev_cpu)
8444 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8445
8446 sd = NULL; /* Prefer wake_affine over balance flags */
8447 break;
8448 }
8449
8450 /*
8451 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8452 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8453 * will usually go to the fast path.
8454 */
8455 if (tmp->flags & sd_flag)
8456 sd = tmp;
8457 else if (!want_affine)
8458 break;
8459 }
8460
8461 if (unlikely(sd)) {
8462 /* Slow path */
8463 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
8464 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
8465 /* Fast path */
8466 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8467 }
8468 rcu_read_unlock();
8469
8470 return new_cpu;
8471 }
8472
8473 /*
8474 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8475 * cfs_rq_of(p) references at time of call are still valid and identify the
8476 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8477 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8478 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8479 {
8480 struct sched_entity *se = &p->se;
8481
8482 if (!task_on_rq_migrating(p)) {
8483 remove_entity_load_avg(se);
8484
8485 /*
8486 * Here, the task's PELT values have been updated according to
8487 * the current rq's clock. But if that clock hasn't been
8488 * updated in a while, a substantial idle time will be missed,
8489 * leading to an inflation after wake-up on the new rq.
8490 *
8491 * Estimate the missing time from the cfs_rq last_update_time
8492 * and update sched_avg to improve the PELT continuity after
8493 * migration.
8494 */
8495 migrate_se_pelt_lag(se);
8496 }
8497
8498 /* Tell new CPU we are migrated */
8499 se->avg.last_update_time = 0;
8500
8501 update_scan_period(p, new_cpu);
8502 }
8503
task_dead_fair(struct task_struct * p)8504 static void task_dead_fair(struct task_struct *p)
8505 {
8506 remove_entity_load_avg(&p->se);
8507 }
8508
8509 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8510 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8511 {
8512 if (rq->nr_running)
8513 return 1;
8514
8515 return newidle_balance(rq, rf) != 0;
8516 }
8517 #endif /* CONFIG_SMP */
8518
8519 #ifdef CONFIG_SCHED_LATENCY_NICE
wakeup_latency_gran(struct sched_entity * curr,struct sched_entity * se)8520 static long wakeup_latency_gran(struct sched_entity *curr, struct sched_entity *se)
8521 {
8522 int latency_weight = se->latency_weight;
8523 long thresh = sysctl_sched_latency;
8524
8525 /*
8526 * A positive latency weigth means that the sched_entity has latency
8527 * requirement that needs to be evaluated versus other entity.
8528 * Otherwise, use the latency weight to evaluate how much scheduling
8529 * delay is acceptable by se.
8530 */
8531 if ((se->latency_weight > 0) || (curr->latency_weight > 0))
8532 latency_weight -= curr->latency_weight;
8533
8534 if (!latency_weight)
8535 return 0;
8536
8537 if (sched_feat(GENTLE_FAIR_SLEEPERS))
8538 thresh >>= 1;
8539
8540 /*
8541 * Clamp the delta to stay in the scheduler period range
8542 * [-sysctl_sched_latency:sysctl_sched_latency]
8543 */
8544 latency_weight = clamp_t(long, latency_weight,
8545 -1 * NICE_LATENCY_WEIGHT_MAX,
8546 NICE_LATENCY_WEIGHT_MAX);
8547
8548 return (thresh * latency_weight) >> NICE_LATENCY_SHIFT;
8549 }
8550 #endif
8551
wakeup_gran(struct sched_entity * se)8552 static unsigned long wakeup_gran(struct sched_entity *se)
8553 {
8554 unsigned long gran = sysctl_sched_wakeup_granularity;
8555
8556 /*
8557 * Since its curr running now, convert the gran from real-time
8558 * to virtual-time in his units.
8559 *
8560 * By using 'se' instead of 'curr' we penalize light tasks, so
8561 * they get preempted easier. That is, if 'se' < 'curr' then
8562 * the resulting gran will be larger, therefore penalizing the
8563 * lighter, if otoh 'se' > 'curr' then the resulting gran will
8564 * be smaller, again penalizing the lighter task.
8565 *
8566 * This is especially important for buddies when the leftmost
8567 * task is higher priority than the buddy.
8568 */
8569 return calc_delta_fair(gran, se);
8570 }
8571
8572 /*
8573 * Should 'se' preempt 'curr'.
8574 *
8575 * |s1
8576 * |s2
8577 * |s3
8578 * g
8579 * |<--->|c
8580 *
8581 * w(c, s1) = -1
8582 * w(c, s2) = 0
8583 * w(c, s3) = 1
8584 *
8585 */
8586 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)8587 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
8588 {
8589 s64 gran, vdiff = curr->vruntime - se->vruntime;
8590
8591 #ifdef CONFIG_SCHED_LATENCY_NICE
8592 /* Take into account latency priority */
8593 vdiff += wakeup_latency_gran(curr, se);
8594 #endif
8595
8596 if (vdiff <= 0)
8597 return -1;
8598
8599 gran = wakeup_gran(se);
8600 if (vdiff > gran)
8601 return 1;
8602
8603 return 0;
8604 }
8605
set_next_buddy(struct sched_entity * se)8606 static void set_next_buddy(struct sched_entity *se)
8607 {
8608 for_each_sched_entity(se) {
8609 if (SCHED_WARN_ON(!se->on_rq))
8610 return;
8611 if (se_is_idle(se))
8612 return;
8613 cfs_rq_of(se)->next = se;
8614 }
8615 }
8616
8617 /*
8618 * Preempt the current task with a newly woken task if needed:
8619 */
check_preempt_wakeup_fair(struct rq * rq,struct task_struct * p,int wake_flags)8620 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8621 {
8622 struct task_struct *curr = rq->curr;
8623 struct sched_entity *se = &curr->se, *pse = &p->se;
8624 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8625 int next_buddy_marked = 0;
8626 int cse_is_idle, pse_is_idle;
8627
8628 if (unlikely(se == pse))
8629 return;
8630
8631 /*
8632 * This is possible from callers such as attach_tasks(), in which we
8633 * unconditionally wakeup_preempt() after an enqueue (which may have
8634 * lead to a throttle). This both saves work and prevents false
8635 * next-buddy nomination below.
8636 */
8637 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8638 return;
8639
8640 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8641 set_next_buddy(pse);
8642 next_buddy_marked = 1;
8643 }
8644
8645 /*
8646 * We can come here with TIF_NEED_RESCHED already set from new task
8647 * wake up path.
8648 *
8649 * Note: this also catches the edge-case of curr being in a throttled
8650 * group (e.g. via set_curr_task), since update_curr() (in the
8651 * enqueue of curr) will have resulted in resched being set. This
8652 * prevents us from potentially nominating it as a false LAST_BUDDY
8653 * below.
8654 */
8655 if (test_tsk_need_resched(curr))
8656 return;
8657
8658 if (!sched_feat(WAKEUP_PREEMPTION))
8659 return;
8660
8661 find_matching_se(&se, &pse);
8662 WARN_ON_ONCE(!pse);
8663
8664 cse_is_idle = se_is_idle(se);
8665 pse_is_idle = se_is_idle(pse);
8666
8667 /*
8668 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8669 * in the inverse case).
8670 */
8671 if (cse_is_idle && !pse_is_idle)
8672 goto preempt;
8673 if (cse_is_idle != pse_is_idle)
8674 return;
8675
8676 /*
8677 * BATCH and IDLE tasks do not preempt others.
8678 */
8679 if (unlikely(p->policy != SCHED_NORMAL))
8680 return;
8681
8682 cfs_rq = cfs_rq_of(se);
8683 update_curr(cfs_rq);
8684 /*
8685 * XXX pick_eevdf(cfs_rq) != se ?
8686 */
8687 if (pick_eevdf(cfs_rq) == pse)
8688 goto preempt;
8689
8690 return;
8691
8692 preempt:
8693 resched_curr(rq);
8694 }
8695
8696 #ifdef CONFIG_SMP
pick_task_fair(struct rq * rq)8697 static struct task_struct *pick_task_fair(struct rq *rq)
8698 {
8699 struct sched_entity *se;
8700 struct cfs_rq *cfs_rq;
8701
8702 again:
8703 cfs_rq = &rq->cfs;
8704 if (!cfs_rq->nr_running)
8705 return NULL;
8706
8707 do {
8708 struct sched_entity *curr = cfs_rq->curr;
8709
8710 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8711 if (curr) {
8712 if (curr->on_rq)
8713 update_curr(cfs_rq);
8714 else
8715 curr = NULL;
8716
8717 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8718 goto again;
8719 }
8720
8721 se = pick_next_entity(cfs_rq, curr);
8722 cfs_rq = group_cfs_rq(se);
8723 } while (cfs_rq);
8724
8725 return task_of(se);
8726 }
8727 #endif
8728
8729 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8730 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8731 {
8732 struct cfs_rq *cfs_rq = &rq->cfs;
8733 struct sched_entity *se;
8734 struct task_struct *p;
8735 int new_tasks;
8736
8737 again:
8738 if (!sched_fair_runnable(rq))
8739 goto idle;
8740
8741 #ifdef CONFIG_FAIR_GROUP_SCHED
8742 if (!prev || prev->sched_class != &fair_sched_class)
8743 goto simple;
8744
8745 /*
8746 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8747 * likely that a next task is from the same cgroup as the current.
8748 *
8749 * Therefore attempt to avoid putting and setting the entire cgroup
8750 * hierarchy, only change the part that actually changes.
8751 */
8752
8753 do {
8754 struct sched_entity *curr = cfs_rq->curr;
8755
8756 /*
8757 * Since we got here without doing put_prev_entity() we also
8758 * have to consider cfs_rq->curr. If it is still a runnable
8759 * entity, update_curr() will update its vruntime, otherwise
8760 * forget we've ever seen it.
8761 */
8762 if (curr) {
8763 if (curr->on_rq)
8764 update_curr(cfs_rq);
8765 else
8766 curr = NULL;
8767
8768 /*
8769 * This call to check_cfs_rq_runtime() will do the
8770 * throttle and dequeue its entity in the parent(s).
8771 * Therefore the nr_running test will indeed
8772 * be correct.
8773 */
8774 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8775 cfs_rq = &rq->cfs;
8776
8777 if (!cfs_rq->nr_running)
8778 goto idle;
8779
8780 goto simple;
8781 }
8782 }
8783
8784 se = pick_next_entity(cfs_rq, curr);
8785 cfs_rq = group_cfs_rq(se);
8786 } while (cfs_rq);
8787
8788 p = task_of(se);
8789
8790 /*
8791 * Since we haven't yet done put_prev_entity and if the selected task
8792 * is a different task than we started out with, try and touch the
8793 * least amount of cfs_rqs.
8794 */
8795 if (prev != p) {
8796 struct sched_entity *pse = &prev->se;
8797
8798 while (!(cfs_rq = is_same_group(se, pse))) {
8799 int se_depth = se->depth;
8800 int pse_depth = pse->depth;
8801
8802 if (se_depth <= pse_depth) {
8803 put_prev_entity(cfs_rq_of(pse), pse);
8804 pse = parent_entity(pse);
8805 }
8806 if (se_depth >= pse_depth) {
8807 set_next_entity(cfs_rq_of(se), se);
8808 se = parent_entity(se);
8809 }
8810 }
8811
8812 put_prev_entity(cfs_rq, pse);
8813 set_next_entity(cfs_rq, se);
8814 }
8815
8816 goto done;
8817 simple:
8818 #endif
8819 if (prev)
8820 put_prev_task(rq, prev);
8821
8822 do {
8823 se = pick_next_entity(cfs_rq, NULL);
8824 set_next_entity(cfs_rq, se);
8825 cfs_rq = group_cfs_rq(se);
8826 } while (cfs_rq);
8827
8828 p = task_of(se);
8829
8830 done: __maybe_unused;
8831 #ifdef CONFIG_SMP
8832 /*
8833 * Move the next running task to the front of
8834 * the list, so our cfs_tasks list becomes MRU
8835 * one.
8836 */
8837 list_move(&p->se.group_node, &rq->cfs_tasks);
8838 #endif
8839
8840 if (hrtick_enabled_fair(rq))
8841 hrtick_start_fair(rq, p);
8842
8843 update_misfit_status(p, rq);
8844 sched_fair_update_stop_tick(rq, p);
8845
8846 return p;
8847
8848 idle:
8849 if (!rf)
8850 return NULL;
8851
8852 new_tasks = newidle_balance(rq, rf);
8853
8854 /*
8855 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8856 * possible for any higher priority task to appear. In that case we
8857 * must re-start the pick_next_entity() loop.
8858 */
8859 if (new_tasks < 0)
8860 return RETRY_TASK;
8861
8862 if (new_tasks > 0)
8863 goto again;
8864
8865 /*
8866 * rq is about to be idle, check if we need to update the
8867 * lost_idle_time of clock_pelt
8868 */
8869 update_idle_rq_clock_pelt(rq);
8870
8871 return NULL;
8872 }
8873
__pick_next_task_fair(struct rq * rq)8874 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8875 {
8876 return pick_next_task_fair(rq, NULL, NULL);
8877 }
8878
8879 /*
8880 * Account for a descheduled task:
8881 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)8882 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8883 {
8884 struct sched_entity *se = &prev->se;
8885 struct cfs_rq *cfs_rq;
8886
8887 for_each_sched_entity(se) {
8888 cfs_rq = cfs_rq_of(se);
8889 put_prev_entity(cfs_rq, se);
8890 }
8891 }
8892
8893 /*
8894 * sched_yield() is very simple
8895 */
yield_task_fair(struct rq * rq)8896 static void yield_task_fair(struct rq *rq)
8897 {
8898 struct task_struct *curr = rq->curr;
8899 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8900 struct sched_entity *se = &curr->se;
8901
8902 /*
8903 * Are we the only task in the tree?
8904 */
8905 if (unlikely(rq->nr_running == 1))
8906 return;
8907
8908 clear_buddies(cfs_rq, se);
8909
8910 update_rq_clock(rq);
8911 /*
8912 * Update run-time statistics of the 'current'.
8913 */
8914 update_curr(cfs_rq);
8915 /*
8916 * Tell update_rq_clock() that we've just updated,
8917 * so we don't do microscopic update in schedule()
8918 * and double the fastpath cost.
8919 */
8920 rq_clock_skip_update(rq);
8921
8922 se->deadline += calc_delta_fair(se->slice, se);
8923 }
8924
yield_to_task_fair(struct rq * rq,struct task_struct * p)8925 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8926 {
8927 struct sched_entity *se = &p->se;
8928
8929 /* throttled hierarchies are not runnable */
8930 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8931 return false;
8932
8933 /* Tell the scheduler that we'd really like pse to run next. */
8934 set_next_buddy(se);
8935
8936 yield_task_fair(rq);
8937
8938 return true;
8939 }
8940
8941 #ifdef CONFIG_SMP
8942 /**************************************************
8943 * Fair scheduling class load-balancing methods.
8944 *
8945 * BASICS
8946 *
8947 * The purpose of load-balancing is to achieve the same basic fairness the
8948 * per-CPU scheduler provides, namely provide a proportional amount of compute
8949 * time to each task. This is expressed in the following equation:
8950 *
8951 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
8952 *
8953 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8954 * W_i,0 is defined as:
8955 *
8956 * W_i,0 = \Sum_j w_i,j (2)
8957 *
8958 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8959 * is derived from the nice value as per sched_prio_to_weight[].
8960 *
8961 * The weight average is an exponential decay average of the instantaneous
8962 * weight:
8963 *
8964 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
8965 *
8966 * C_i is the compute capacity of CPU i, typically it is the
8967 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8968 * can also include other factors [XXX].
8969 *
8970 * To achieve this balance we define a measure of imbalance which follows
8971 * directly from (1):
8972 *
8973 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
8974 *
8975 * We them move tasks around to minimize the imbalance. In the continuous
8976 * function space it is obvious this converges, in the discrete case we get
8977 * a few fun cases generally called infeasible weight scenarios.
8978 *
8979 * [XXX expand on:
8980 * - infeasible weights;
8981 * - local vs global optima in the discrete case. ]
8982 *
8983 *
8984 * SCHED DOMAINS
8985 *
8986 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8987 * for all i,j solution, we create a tree of CPUs that follows the hardware
8988 * topology where each level pairs two lower groups (or better). This results
8989 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8990 * tree to only the first of the previous level and we decrease the frequency
8991 * of load-balance at each level inv. proportional to the number of CPUs in
8992 * the groups.
8993 *
8994 * This yields:
8995 *
8996 * log_2 n 1 n
8997 * \Sum { --- * --- * 2^i } = O(n) (5)
8998 * i = 0 2^i 2^i
8999 * `- size of each group
9000 * | | `- number of CPUs doing load-balance
9001 * | `- freq
9002 * `- sum over all levels
9003 *
9004 * Coupled with a limit on how many tasks we can migrate every balance pass,
9005 * this makes (5) the runtime complexity of the balancer.
9006 *
9007 * An important property here is that each CPU is still (indirectly) connected
9008 * to every other CPU in at most O(log n) steps:
9009 *
9010 * The adjacency matrix of the resulting graph is given by:
9011 *
9012 * log_2 n
9013 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
9014 * k = 0
9015 *
9016 * And you'll find that:
9017 *
9018 * A^(log_2 n)_i,j != 0 for all i,j (7)
9019 *
9020 * Showing there's indeed a path between every CPU in at most O(log n) steps.
9021 * The task movement gives a factor of O(m), giving a convergence complexity
9022 * of:
9023 *
9024 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
9025 *
9026 *
9027 * WORK CONSERVING
9028 *
9029 * In order to avoid CPUs going idle while there's still work to do, new idle
9030 * balancing is more aggressive and has the newly idle CPU iterate up the domain
9031 * tree itself instead of relying on other CPUs to bring it work.
9032 *
9033 * This adds some complexity to both (5) and (8) but it reduces the total idle
9034 * time.
9035 *
9036 * [XXX more?]
9037 *
9038 *
9039 * CGROUPS
9040 *
9041 * Cgroups make a horror show out of (2), instead of a simple sum we get:
9042 *
9043 * s_k,i
9044 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
9045 * S_k
9046 *
9047 * Where
9048 *
9049 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
9050 *
9051 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9052 *
9053 * The big problem is S_k, its a global sum needed to compute a local (W_i)
9054 * property.
9055 *
9056 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9057 * rewrite all of this once again.]
9058 */
9059
9060 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9061
9062 enum fbq_type { regular, remote, all };
9063
9064 /*
9065 * 'group_type' describes the group of CPUs at the moment of load balancing.
9066 *
9067 * The enum is ordered by pulling priority, with the group with lowest priority
9068 * first so the group_type can simply be compared when selecting the busiest
9069 * group. See update_sd_pick_busiest().
9070 */
9071 enum group_type {
9072 /* The group has spare capacity that can be used to run more tasks. */
9073 group_has_spare = 0,
9074 /*
9075 * The group is fully used and the tasks don't compete for more CPU
9076 * cycles. Nevertheless, some tasks might wait before running.
9077 */
9078 group_fully_busy,
9079 /*
9080 * One task doesn't fit with CPU's capacity and must be migrated to a
9081 * more powerful CPU.
9082 */
9083 group_misfit_task,
9084 /*
9085 * Balance SMT group that's fully busy. Can benefit from migration
9086 * a task on SMT with busy sibling to another CPU on idle core.
9087 */
9088 group_smt_balance,
9089 /*
9090 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9091 * and the task should be migrated to it instead of running on the
9092 * current CPU.
9093 */
9094 group_asym_packing,
9095 /*
9096 * The tasks' affinity constraints previously prevented the scheduler
9097 * from balancing the load across the system.
9098 */
9099 group_imbalanced,
9100 /*
9101 * The CPU is overloaded and can't provide expected CPU cycles to all
9102 * tasks.
9103 */
9104 group_overloaded
9105 };
9106
9107 enum migration_type {
9108 migrate_load = 0,
9109 migrate_util,
9110 migrate_task,
9111 migrate_misfit
9112 };
9113
9114 #define LBF_ALL_PINNED 0x01
9115 #define LBF_NEED_BREAK 0x02
9116 #define LBF_DST_PINNED 0x04
9117 #define LBF_SOME_PINNED 0x08
9118 #define LBF_ACTIVE_LB 0x10
9119 #ifdef CONFIG_SCHED_RTG
9120 #define LBF_IGNORE_PREFERRED_CLUSTER_TASKS 0x200
9121 #endif
9122 struct lb_env {
9123 struct sched_domain *sd;
9124
9125 struct rq *src_rq;
9126 int src_cpu;
9127
9128 int dst_cpu;
9129 struct rq *dst_rq;
9130
9131 struct cpumask *dst_grpmask;
9132 int new_dst_cpu;
9133 enum cpu_idle_type idle;
9134 long imbalance;
9135 /* The set of CPUs under consideration for load-balancing */
9136 struct cpumask *cpus;
9137
9138 unsigned int flags;
9139
9140 unsigned int loop;
9141 unsigned int loop_break;
9142 unsigned int loop_max;
9143
9144 enum fbq_type fbq_type;
9145 enum migration_type migration_type;
9146 struct list_head tasks;
9147 };
9148
9149 /*
9150 * Is this task likely cache-hot:
9151 */
task_hot(struct task_struct * p,struct lb_env * env)9152 static int task_hot(struct task_struct *p, struct lb_env *env)
9153 {
9154 s64 delta;
9155
9156 lockdep_assert_rq_held(env->src_rq);
9157
9158 if (p->sched_class != &fair_sched_class)
9159 return 0;
9160
9161 if (unlikely(task_has_idle_policy(p)))
9162 return 0;
9163
9164 /* SMT siblings share cache */
9165 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9166 return 0;
9167
9168 /*
9169 * Buddy candidates are cache hot:
9170 */
9171 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9172 (&p->se == cfs_rq_of(&p->se)->next))
9173 return 1;
9174
9175 if (sysctl_sched_migration_cost == -1)
9176 return 1;
9177
9178 /*
9179 * Don't migrate task if the task's cookie does not match
9180 * with the destination CPU's core cookie.
9181 */
9182 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9183 return 1;
9184
9185 if (sysctl_sched_migration_cost == 0)
9186 return 0;
9187
9188 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9189
9190 return delta < (s64)sysctl_sched_migration_cost;
9191 }
9192
9193 #ifdef CONFIG_NUMA_BALANCING
9194 /*
9195 * Returns 1, if task migration degrades locality
9196 * Returns 0, if task migration improves locality i.e migration preferred.
9197 * Returns -1, if task migration is not affected by locality.
9198 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9199 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9200 {
9201 struct numa_group *numa_group = rcu_dereference(p->numa_group);
9202 unsigned long src_weight, dst_weight;
9203 int src_nid, dst_nid, dist;
9204
9205 if (!static_branch_likely(&sched_numa_balancing))
9206 return -1;
9207
9208 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9209 return -1;
9210
9211 src_nid = cpu_to_node(env->src_cpu);
9212 dst_nid = cpu_to_node(env->dst_cpu);
9213
9214 if (src_nid == dst_nid)
9215 return -1;
9216
9217 /* Migrating away from the preferred node is always bad. */
9218 if (src_nid == p->numa_preferred_nid) {
9219 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9220 return 1;
9221 else
9222 return -1;
9223 }
9224
9225 /* Encourage migration to the preferred node. */
9226 if (dst_nid == p->numa_preferred_nid)
9227 return 0;
9228
9229 /* Leaving a core idle is often worse than degrading locality. */
9230 if (env->idle == CPU_IDLE)
9231 return -1;
9232
9233 dist = node_distance(src_nid, dst_nid);
9234 if (numa_group) {
9235 src_weight = group_weight(p, src_nid, dist);
9236 dst_weight = group_weight(p, dst_nid, dist);
9237 } else {
9238 src_weight = task_weight(p, src_nid, dist);
9239 dst_weight = task_weight(p, dst_nid, dist);
9240 }
9241
9242 return dst_weight < src_weight;
9243 }
9244
9245 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9246 static inline int migrate_degrades_locality(struct task_struct *p,
9247 struct lb_env *env)
9248 {
9249 return -1;
9250 }
9251 #endif
9252
9253 /*
9254 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9255 */
9256 static
can_migrate_task(struct task_struct * p,struct lb_env * env)9257 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9258 {
9259 int tsk_cache_hot;
9260
9261 lockdep_assert_rq_held(env->src_rq);
9262 if (p->sched_task_hot)
9263 p->sched_task_hot = 0;
9264
9265 /*
9266 * We do not migrate tasks that are:
9267 * 1) throttled_lb_pair, or
9268 * 2) cannot be migrated to this CPU due to cpus_ptr, or
9269 * 3) running (obviously), or
9270 * 4) are cache-hot on their current CPU.
9271 */
9272 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9273 return 0;
9274
9275 /* Disregard pcpu kthreads; they are where they need to be. */
9276 if (kthread_is_per_cpu(p))
9277 return 0;
9278
9279 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9280 int cpu;
9281
9282 schedstat_inc(p->stats.nr_failed_migrations_affine);
9283
9284 env->flags |= LBF_SOME_PINNED;
9285
9286 /*
9287 * Remember if this task can be migrated to any other CPU in
9288 * our sched_group. We may want to revisit it if we couldn't
9289 * meet load balance goals by pulling other tasks on src_cpu.
9290 *
9291 * Avoid computing new_dst_cpu
9292 * - for NEWLY_IDLE
9293 * - if we have already computed one in current iteration
9294 * - if it's an active balance
9295 */
9296 if (env->idle == CPU_NEWLY_IDLE ||
9297 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9298 return 0;
9299
9300 /* Prevent to re-select dst_cpu via env's CPUs: */
9301 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
9302 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
9303 env->flags |= LBF_DST_PINNED;
9304 env->new_dst_cpu = cpu;
9305 break;
9306 }
9307 }
9308
9309 return 0;
9310 }
9311
9312 /* Record that we found at least one task that could run on dst_cpu */
9313 env->flags &= ~LBF_ALL_PINNED;
9314
9315
9316 #ifdef CONFIG_SCHED_RTG
9317 if (env->flags & LBF_IGNORE_PREFERRED_CLUSTER_TASKS &&
9318 !preferred_cluster(cpu_rq(env->dst_cpu)->cluster, p))
9319 return 0;
9320 #endif
9321
9322 if (task_on_cpu(env->src_rq, p)) {
9323 schedstat_inc(p->stats.nr_failed_migrations_running);
9324 return 0;
9325 }
9326
9327 /*
9328 * Aggressive migration if:
9329 * 1) active balance
9330 * 2) destination numa is preferred
9331 * 3) task is cache cold, or
9332 * 4) too many balance attempts have failed.
9333 */
9334 if (env->flags & LBF_ACTIVE_LB)
9335 return 1;
9336
9337 tsk_cache_hot = migrate_degrades_locality(p, env);
9338 if (tsk_cache_hot == -1)
9339 tsk_cache_hot = task_hot(p, env);
9340
9341 if (tsk_cache_hot <= 0 ||
9342 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9343 if (tsk_cache_hot == 1)
9344 p->sched_task_hot = 1;
9345 return 1;
9346 }
9347
9348 schedstat_inc(p->stats.nr_failed_migrations_hot);
9349 return 0;
9350 }
9351
9352 /*
9353 * detach_task() -- detach the task for the migration specified in env
9354 */
detach_task(struct task_struct * p,struct lb_env * env)9355 static void detach_task(struct task_struct *p, struct lb_env *env)
9356 {
9357 lockdep_assert_rq_held(env->src_rq);
9358
9359 if (p->sched_task_hot) {
9360 p->sched_task_hot = 0;
9361 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9362 schedstat_inc(p->stats.nr_forced_migrations);
9363 }
9364
9365 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9366 #ifdef CONFIG_SCHED_WALT
9367 double_lock_balance(env->src_rq, env->dst_rq);
9368 if (!(env->src_rq->clock_update_flags & RQCF_UPDATED))
9369 update_rq_clock(env->src_rq);
9370 #endif
9371 set_task_cpu(p, env->dst_cpu);
9372 #ifdef CONFIG_SCHED_WALT
9373 double_unlock_balance(env->src_rq, env->dst_rq);
9374 #endif
9375 }
9376
9377 /*
9378 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9379 * part of active balancing operations within "domain".
9380 *
9381 * Returns a task if successful and NULL otherwise.
9382 */
detach_one_task(struct lb_env * env)9383 static struct task_struct *detach_one_task(struct lb_env *env)
9384 {
9385 struct task_struct *p;
9386
9387 lockdep_assert_rq_held(env->src_rq);
9388
9389 list_for_each_entry_reverse(p,
9390 &env->src_rq->cfs_tasks, se.group_node) {
9391 if (!can_migrate_task(p, env))
9392 continue;
9393
9394 detach_task(p, env);
9395
9396 /*
9397 * Right now, this is only the second place where
9398 * lb_gained[env->idle] is updated (other is detach_tasks)
9399 * so we can safely collect stats here rather than
9400 * inside detach_tasks().
9401 */
9402 schedstat_inc(env->sd->lb_gained[env->idle]);
9403 return p;
9404 }
9405 return NULL;
9406 }
9407
9408 /*
9409 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9410 * busiest_rq, as part of a balancing operation within domain "sd".
9411 *
9412 * Returns number of detached tasks if successful and 0 otherwise.
9413 */
detach_tasks(struct lb_env * env)9414 static int detach_tasks(struct lb_env *env)
9415 {
9416 struct list_head *tasks = &env->src_rq->cfs_tasks;
9417 unsigned long util, load;
9418 struct task_struct *p;
9419 int detached = 0;
9420 #ifdef CONFIG_SCHED_RTG
9421 int orig_loop = env->loop;
9422 #endif
9423
9424 lockdep_assert_rq_held(env->src_rq);
9425
9426 /*
9427 * Source run queue has been emptied by another CPU, clear
9428 * LBF_ALL_PINNED flag as we will not test any task.
9429 */
9430 if (env->src_rq->nr_running <= 1) {
9431 env->flags &= ~LBF_ALL_PINNED;
9432 return 0;
9433 }
9434
9435 if (env->imbalance <= 0)
9436 return 0;
9437
9438 #ifdef CONFIG_SCHED_RTG
9439 if (!same_cluster(env->dst_cpu, env->src_cpu))
9440 env->flags |= LBF_IGNORE_PREFERRED_CLUSTER_TASKS;
9441
9442 redo:
9443 #endif
9444 while (!list_empty(tasks)) {
9445 /*
9446 * We don't want to steal all, otherwise we may be treated likewise,
9447 * which could at worst lead to a livelock crash.
9448 */
9449 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
9450 break;
9451
9452 env->loop++;
9453 /* We've more or less seen every task there is, call it quits */
9454 if (env->loop > env->loop_max)
9455 break;
9456
9457 /* take a breather every nr_migrate tasks */
9458 if (env->loop > env->loop_break) {
9459 env->loop_break += SCHED_NR_MIGRATE_BREAK;
9460 env->flags |= LBF_NEED_BREAK;
9461 break;
9462 }
9463
9464 p = list_last_entry(tasks, struct task_struct, se.group_node);
9465
9466 if (!can_migrate_task(p, env))
9467 goto next;
9468
9469 switch (env->migration_type) {
9470 case migrate_load:
9471 /*
9472 * Depending of the number of CPUs and tasks and the
9473 * cgroup hierarchy, task_h_load() can return a null
9474 * value. Make sure that env->imbalance decreases
9475 * otherwise detach_tasks() will stop only after
9476 * detaching up to loop_max tasks.
9477 */
9478 load = max_t(unsigned long, task_h_load(p), 1);
9479
9480 if (sched_feat(LB_MIN) &&
9481 load < 16 && !env->sd->nr_balance_failed)
9482 goto next;
9483
9484 /*
9485 * Make sure that we don't migrate too much load.
9486 * Nevertheless, let relax the constraint if
9487 * scheduler fails to find a good waiting task to
9488 * migrate.
9489 */
9490 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9491 goto next;
9492
9493 env->imbalance -= load;
9494 break;
9495
9496 case migrate_util:
9497 util = task_util_est(p);
9498
9499 if (util > env->imbalance)
9500 goto next;
9501
9502 env->imbalance -= util;
9503 break;
9504
9505 case migrate_task:
9506 env->imbalance--;
9507 break;
9508
9509 case migrate_misfit:
9510 /* This is not a misfit task */
9511 if (task_fits_cpu(p, env->src_cpu))
9512 goto next;
9513
9514 env->imbalance = 0;
9515 break;
9516 }
9517
9518 detach_task(p, env);
9519 list_add(&p->se.group_node, &env->tasks);
9520
9521 detached++;
9522
9523 #ifdef CONFIG_PREEMPTION
9524 /*
9525 * NEWIDLE balancing is a source of latency, so preemptible
9526 * kernels will stop after the first task is detached to minimize
9527 * the critical section.
9528 */
9529 if (env->idle == CPU_NEWLY_IDLE)
9530 break;
9531 #endif
9532
9533 /*
9534 * We only want to steal up to the prescribed amount of
9535 * load/util/tasks.
9536 */
9537 if (env->imbalance <= 0)
9538 break;
9539
9540 continue;
9541 next:
9542 if (p->sched_task_hot)
9543 schedstat_inc(p->stats.nr_failed_migrations_hot);
9544
9545 list_move(&p->se.group_node, tasks);
9546 }
9547
9548 #ifdef CONFIG_SCHED_RTG
9549 if (env->flags & LBF_IGNORE_PREFERRED_CLUSTER_TASKS && !detached) {
9550 tasks = &env->src_rq->cfs_tasks;
9551 env->flags &= ~LBF_IGNORE_PREFERRED_CLUSTER_TASKS;
9552 env->loop = orig_loop;
9553 goto redo;
9554 }
9555 #endif
9556
9557 /*
9558 * Right now, this is one of only two places we collect this stat
9559 * so we can safely collect detach_one_task() stats here rather
9560 * than inside detach_one_task().
9561 */
9562 schedstat_add(env->sd->lb_gained[env->idle], detached);
9563
9564 return detached;
9565 }
9566
9567 /*
9568 * attach_task() -- attach the task detached by detach_task() to its new rq.
9569 */
attach_task(struct rq * rq,struct task_struct * p)9570 static void attach_task(struct rq *rq, struct task_struct *p)
9571 {
9572 lockdep_assert_rq_held(rq);
9573
9574 WARN_ON_ONCE(task_rq(p) != rq);
9575 activate_task(rq, p, ENQUEUE_NOCLOCK);
9576 wakeup_preempt(rq, p, 0);
9577 }
9578
9579 /*
9580 * attach_one_task() -- attaches the task returned from detach_one_task() to
9581 * its new rq.
9582 */
attach_one_task(struct rq * rq,struct task_struct * p)9583 static void attach_one_task(struct rq *rq, struct task_struct *p)
9584 {
9585 struct rq_flags rf;
9586
9587 rq_lock(rq, &rf);
9588 update_rq_clock(rq);
9589 attach_task(rq, p);
9590 rq_unlock(rq, &rf);
9591 }
9592
9593 /*
9594 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9595 * new rq.
9596 */
attach_tasks(struct lb_env * env)9597 static void attach_tasks(struct lb_env *env)
9598 {
9599 struct list_head *tasks = &env->tasks;
9600 struct task_struct *p;
9601 struct rq_flags rf;
9602
9603 rq_lock(env->dst_rq, &rf);
9604 update_rq_clock(env->dst_rq);
9605
9606 while (!list_empty(tasks)) {
9607 p = list_first_entry(tasks, struct task_struct, se.group_node);
9608 list_del_init(&p->se.group_node);
9609
9610 attach_task(env->dst_rq, p);
9611 }
9612
9613 rq_unlock(env->dst_rq, &rf);
9614 }
9615
9616 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9617 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9618 {
9619 if (cfs_rq->avg.load_avg)
9620 return true;
9621
9622 if (cfs_rq->avg.util_avg)
9623 return true;
9624
9625 return false;
9626 }
9627
others_have_blocked(struct rq * rq)9628 static inline bool others_have_blocked(struct rq *rq)
9629 {
9630 if (READ_ONCE(rq->avg_rt.util_avg))
9631 return true;
9632
9633 if (READ_ONCE(rq->avg_dl.util_avg))
9634 return true;
9635
9636 if (thermal_load_avg(rq))
9637 return true;
9638
9639 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9640 if (READ_ONCE(rq->avg_irq.util_avg))
9641 return true;
9642 #endif
9643
9644 return false;
9645 }
9646
update_blocked_load_tick(struct rq * rq)9647 static inline void update_blocked_load_tick(struct rq *rq)
9648 {
9649 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9650 }
9651
update_blocked_load_status(struct rq * rq,bool has_blocked)9652 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9653 {
9654 if (!has_blocked)
9655 rq->has_blocked_load = 0;
9656 }
9657 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9658 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)9659 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)9660 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)9661 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9662 #endif
9663
__update_blocked_others(struct rq * rq,bool * done)9664 static bool __update_blocked_others(struct rq *rq, bool *done)
9665 {
9666 const struct sched_class *curr_class;
9667 u64 now = rq_clock_pelt(rq);
9668 unsigned long thermal_pressure;
9669 bool decayed;
9670
9671 /*
9672 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9673 * DL and IRQ signals have been updated before updating CFS.
9674 */
9675 curr_class = rq->curr->sched_class;
9676
9677 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9678
9679 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9680 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9681 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9682 update_irq_load_avg(rq, 0);
9683
9684 if (others_have_blocked(rq))
9685 *done = false;
9686
9687 return decayed;
9688 }
9689
9690 #ifdef CONFIG_FAIR_GROUP_SCHED
9691
__update_blocked_fair(struct rq * rq,bool * done)9692 static bool __update_blocked_fair(struct rq *rq, bool *done)
9693 {
9694 struct cfs_rq *cfs_rq, *pos;
9695 bool decayed = false;
9696 int cpu = cpu_of(rq);
9697
9698 /*
9699 * Iterates the task_group tree in a bottom up fashion, see
9700 * list_add_leaf_cfs_rq() for details.
9701 */
9702 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9703 struct sched_entity *se;
9704
9705 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9706 update_tg_load_avg(cfs_rq);
9707
9708 if (cfs_rq->nr_running == 0)
9709 update_idle_cfs_rq_clock_pelt(cfs_rq);
9710
9711 if (cfs_rq == &rq->cfs)
9712 decayed = true;
9713 }
9714
9715 /* Propagate pending load changes to the parent, if any: */
9716 se = cfs_rq->tg->se[cpu];
9717 if (se && !skip_blocked_update(se))
9718 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9719
9720 /*
9721 * There can be a lot of idle CPU cgroups. Don't let fully
9722 * decayed cfs_rqs linger on the list.
9723 */
9724 if (cfs_rq_is_decayed(cfs_rq))
9725 list_del_leaf_cfs_rq(cfs_rq);
9726
9727 /* Don't need periodic decay once load/util_avg are null */
9728 if (cfs_rq_has_blocked(cfs_rq))
9729 *done = false;
9730 }
9731
9732 return decayed;
9733 }
9734
9735 /*
9736 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9737 * This needs to be done in a top-down fashion because the load of a child
9738 * group is a fraction of its parents load.
9739 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9740 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9741 {
9742 struct rq *rq = rq_of(cfs_rq);
9743 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9744 unsigned long now = jiffies;
9745 unsigned long load;
9746
9747 if (cfs_rq->last_h_load_update == now)
9748 return;
9749
9750 WRITE_ONCE(cfs_rq->h_load_next, NULL);
9751 for_each_sched_entity(se) {
9752 cfs_rq = cfs_rq_of(se);
9753 WRITE_ONCE(cfs_rq->h_load_next, se);
9754 if (cfs_rq->last_h_load_update == now)
9755 break;
9756 }
9757
9758 if (!se) {
9759 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9760 cfs_rq->last_h_load_update = now;
9761 }
9762
9763 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9764 load = cfs_rq->h_load;
9765 load = div64_ul(load * se->avg.load_avg,
9766 cfs_rq_load_avg(cfs_rq) + 1);
9767 cfs_rq = group_cfs_rq(se);
9768 cfs_rq->h_load = load;
9769 cfs_rq->last_h_load_update = now;
9770 }
9771 }
9772
task_h_load(struct task_struct * p)9773 static unsigned long task_h_load(struct task_struct *p)
9774 {
9775 struct cfs_rq *cfs_rq = task_cfs_rq(p);
9776
9777 update_cfs_rq_h_load(cfs_rq);
9778 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9779 cfs_rq_load_avg(cfs_rq) + 1);
9780 }
9781 #else
__update_blocked_fair(struct rq * rq,bool * done)9782 static bool __update_blocked_fair(struct rq *rq, bool *done)
9783 {
9784 struct cfs_rq *cfs_rq = &rq->cfs;
9785 bool decayed;
9786
9787 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9788 if (cfs_rq_has_blocked(cfs_rq))
9789 *done = false;
9790
9791 return decayed;
9792 }
9793
task_h_load(struct task_struct * p)9794 static unsigned long task_h_load(struct task_struct *p)
9795 {
9796 return p->se.avg.load_avg;
9797 }
9798 #endif
9799
update_blocked_averages(int cpu)9800 static void update_blocked_averages(int cpu)
9801 {
9802 bool decayed = false, done = true;
9803 struct rq *rq = cpu_rq(cpu);
9804 struct rq_flags rf;
9805
9806 rq_lock_irqsave(rq, &rf);
9807 update_blocked_load_tick(rq);
9808 update_rq_clock(rq);
9809
9810 decayed |= __update_blocked_others(rq, &done);
9811 decayed |= __update_blocked_fair(rq, &done);
9812
9813 update_blocked_load_status(rq, !done);
9814 if (decayed)
9815 cpufreq_update_util(rq, 0);
9816 rq_unlock_irqrestore(rq, &rf);
9817 }
9818
9819 /********** Helpers for find_busiest_group ************************/
9820
9821 /*
9822 * sg_lb_stats - stats of a sched_group required for load_balancing
9823 */
9824 struct sg_lb_stats {
9825 unsigned long avg_load; /*Avg load across the CPUs of the group */
9826 unsigned long group_load; /* Total load over the CPUs of the group */
9827 unsigned long group_capacity;
9828 unsigned long group_util; /* Total utilization over the CPUs of the group */
9829 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9830 unsigned int sum_nr_running; /* Nr of tasks running in the group */
9831 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9832 unsigned int idle_cpus;
9833 unsigned int group_weight;
9834 enum group_type group_type;
9835 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9836 unsigned int group_smt_balance; /* Task on busy SMT be moved */
9837 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9838 #ifdef CONFIG_NUMA_BALANCING
9839 unsigned int nr_numa_running;
9840 unsigned int nr_preferred_running;
9841 #endif
9842 };
9843
9844 /*
9845 * sd_lb_stats - Structure to store the statistics of a sched_domain
9846 * during load balancing.
9847 */
9848 struct sd_lb_stats {
9849 struct sched_group *busiest; /* Busiest group in this sd */
9850 struct sched_group *local; /* Local group in this sd */
9851 unsigned long total_load; /* Total load of all groups in sd */
9852 unsigned long total_capacity; /* Total capacity of all groups in sd */
9853 unsigned long avg_load; /* Average load across all groups in sd */
9854 unsigned int prefer_sibling; /* tasks should go to sibling first */
9855
9856 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9857 struct sg_lb_stats local_stat; /* Statistics of the local group */
9858 };
9859
init_sd_lb_stats(struct sd_lb_stats * sds)9860 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9861 {
9862 /*
9863 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9864 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9865 * We must however set busiest_stat::group_type and
9866 * busiest_stat::idle_cpus to the worst busiest group because
9867 * update_sd_pick_busiest() reads these before assignment.
9868 */
9869 *sds = (struct sd_lb_stats){
9870 .busiest = NULL,
9871 .local = NULL,
9872 .total_load = 0UL,
9873 .total_capacity = 0UL,
9874 .busiest_stat = {
9875 .idle_cpus = UINT_MAX,
9876 .group_type = group_has_spare,
9877 },
9878 };
9879 }
9880
scale_rt_capacity(int cpu)9881 static unsigned long scale_rt_capacity(int cpu)
9882 {
9883 struct rq *rq = cpu_rq(cpu);
9884 unsigned long max = arch_scale_cpu_capacity(cpu);
9885 unsigned long used, free;
9886 unsigned long irq;
9887
9888 irq = cpu_util_irq(rq);
9889
9890 if (unlikely(irq >= max))
9891 return 1;
9892
9893 /*
9894 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9895 * (running and not running) with weights 0 and 1024 respectively.
9896 * avg_thermal.load_avg tracks thermal pressure and the weighted
9897 * average uses the actual delta max capacity(load).
9898 */
9899 used = READ_ONCE(rq->avg_rt.util_avg);
9900 used += READ_ONCE(rq->avg_dl.util_avg);
9901 used += thermal_load_avg(rq);
9902
9903 if (unlikely(used >= max))
9904 return 1;
9905
9906 free = max - used;
9907
9908 return scale_irq_capacity(free, irq, max);
9909 }
9910
update_cpu_capacity(struct sched_domain * sd,int cpu)9911 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9912 {
9913 unsigned long capacity = scale_rt_capacity(cpu);
9914 struct sched_group *sdg = sd->groups;
9915
9916 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
9917
9918 if (!capacity)
9919 capacity = 1;
9920
9921 cpu_rq(cpu)->cpu_capacity = capacity;
9922 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9923
9924 sdg->sgc->capacity = capacity;
9925 sdg->sgc->min_capacity = capacity;
9926 sdg->sgc->max_capacity = capacity;
9927 }
9928
update_group_capacity(struct sched_domain * sd,int cpu)9929 void update_group_capacity(struct sched_domain *sd, int cpu)
9930 {
9931 struct sched_domain *child = sd->child;
9932 struct sched_group *group, *sdg = sd->groups;
9933 unsigned long capacity, min_capacity, max_capacity;
9934 unsigned long interval;
9935
9936 interval = msecs_to_jiffies(sd->balance_interval);
9937 interval = clamp(interval, 1UL, max_load_balance_interval);
9938 sdg->sgc->next_update = jiffies + interval;
9939
9940 if (!child) {
9941 update_cpu_capacity(sd, cpu);
9942 return;
9943 }
9944
9945 capacity = 0;
9946 min_capacity = ULONG_MAX;
9947 max_capacity = 0;
9948
9949 if (child->flags & SD_OVERLAP) {
9950 /*
9951 * SD_OVERLAP domains cannot assume that child groups
9952 * span the current group.
9953 */
9954
9955 for_each_cpu(cpu, sched_group_span(sdg)) {
9956 unsigned long cpu_cap = capacity_of(cpu);
9957
9958 if (cpu_isolated(cpu))
9959 continue;
9960
9961 capacity += cpu_cap;
9962 min_capacity = min(cpu_cap, min_capacity);
9963 max_capacity = max(cpu_cap, max_capacity);
9964 }
9965 } else {
9966 /*
9967 * !SD_OVERLAP domains can assume that child groups
9968 * span the current group.
9969 */
9970
9971 group = child->groups;
9972 do {
9973 struct sched_group_capacity *sgc = group->sgc;
9974 __maybe_unused cpumask_t *cpus =
9975 sched_group_span(group);
9976
9977 if (!cpu_isolated(cpumask_first(cpus))) {
9978 capacity += sgc->capacity;
9979 min_capacity = min(sgc->min_capacity,
9980 min_capacity);
9981 max_capacity = max(sgc->max_capacity,
9982 max_capacity);
9983 }
9984 group = group->next;
9985 } while (group != child->groups);
9986 }
9987
9988 sdg->sgc->capacity = capacity;
9989 sdg->sgc->min_capacity = min_capacity;
9990 sdg->sgc->max_capacity = max_capacity;
9991 }
9992
9993 /*
9994 * Check whether the capacity of the rq has been noticeably reduced by side
9995 * activity. The imbalance_pct is used for the threshold.
9996 * Return true is the capacity is reduced
9997 */
9998 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)9999 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10000 {
10001 return ((rq->cpu_capacity * sd->imbalance_pct) <
10002 (rq->cpu_capacity_orig * 100));
10003 }
10004
10005 /*
10006 * Check whether a rq has a misfit task and if it looks like we can actually
10007 * help that task: we can migrate the task to a CPU of higher capacity, or
10008 * the task's current CPU is heavily pressured.
10009 */
check_misfit_status(struct rq * rq,struct sched_domain * sd)10010 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
10011 {
10012 return rq->misfit_task_load &&
10013 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
10014 check_cpu_capacity(rq, sd));
10015 }
10016
10017 /*
10018 * Group imbalance indicates (and tries to solve) the problem where balancing
10019 * groups is inadequate due to ->cpus_ptr constraints.
10020 *
10021 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10022 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10023 * Something like:
10024 *
10025 * { 0 1 2 3 } { 4 5 6 7 }
10026 * * * * *
10027 *
10028 * If we were to balance group-wise we'd place two tasks in the first group and
10029 * two tasks in the second group. Clearly this is undesired as it will overload
10030 * cpu 3 and leave one of the CPUs in the second group unused.
10031 *
10032 * The current solution to this issue is detecting the skew in the first group
10033 * by noticing the lower domain failed to reach balance and had difficulty
10034 * moving tasks due to affinity constraints.
10035 *
10036 * When this is so detected; this group becomes a candidate for busiest; see
10037 * update_sd_pick_busiest(). And calculate_imbalance() and
10038 * find_busiest_group() avoid some of the usual balance conditions to allow it
10039 * to create an effective group imbalance.
10040 *
10041 * This is a somewhat tricky proposition since the next run might not find the
10042 * group imbalance and decide the groups need to be balanced again. A most
10043 * subtle and fragile situation.
10044 */
10045
sg_imbalanced(struct sched_group * group)10046 static inline int sg_imbalanced(struct sched_group *group)
10047 {
10048 return group->sgc->imbalance;
10049 }
10050
10051 /*
10052 * group_has_capacity returns true if the group has spare capacity that could
10053 * be used by some tasks.
10054 * We consider that a group has spare capacity if the number of task is
10055 * smaller than the number of CPUs or if the utilization is lower than the
10056 * available capacity for CFS tasks.
10057 * For the latter, we use a threshold to stabilize the state, to take into
10058 * account the variance of the tasks' load and to return true if the available
10059 * capacity in meaningful for the load balancer.
10060 * As an example, an available capacity of 1% can appear but it doesn't make
10061 * any benefit for the load balance.
10062 */
10063 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10064 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10065 {
10066 if (sgs->sum_nr_running < sgs->group_weight)
10067 return true;
10068
10069 if ((sgs->group_capacity * imbalance_pct) <
10070 (sgs->group_runnable * 100))
10071 return false;
10072
10073 if ((sgs->group_capacity * 100) >
10074 (sgs->group_util * imbalance_pct))
10075 return true;
10076
10077 return false;
10078 }
10079
10080 /*
10081 * group_is_overloaded returns true if the group has more tasks than it can
10082 * handle.
10083 * group_is_overloaded is not equals to !group_has_capacity because a group
10084 * with the exact right number of tasks, has no more spare capacity but is not
10085 * overloaded so both group_has_capacity and group_is_overloaded return
10086 * false.
10087 */
10088 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10089 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10090 {
10091 if (sgs->sum_nr_running <= sgs->group_weight)
10092 return false;
10093
10094 if ((sgs->group_capacity * 100) <
10095 (sgs->group_util * imbalance_pct))
10096 return true;
10097
10098 if ((sgs->group_capacity * imbalance_pct) <
10099 (sgs->group_runnable * 100))
10100 return true;
10101
10102 return false;
10103 }
10104
10105 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)10106 group_type group_classify(unsigned int imbalance_pct,
10107 struct sched_group *group,
10108 struct sg_lb_stats *sgs)
10109 {
10110 if (group_is_overloaded(imbalance_pct, sgs))
10111 return group_overloaded;
10112
10113 if (sg_imbalanced(group))
10114 return group_imbalanced;
10115
10116 if (sgs->group_asym_packing)
10117 return group_asym_packing;
10118
10119 if (sgs->group_smt_balance)
10120 return group_smt_balance;
10121
10122 if (sgs->group_misfit_task_load)
10123 return group_misfit_task;
10124
10125 if (!group_has_capacity(imbalance_pct, sgs))
10126 return group_fully_busy;
10127
10128 return group_has_spare;
10129 }
10130
10131 /**
10132 * sched_use_asym_prio - Check whether asym_packing priority must be used
10133 * @sd: The scheduling domain of the load balancing
10134 * @cpu: A CPU
10135 *
10136 * Always use CPU priority when balancing load between SMT siblings. When
10137 * balancing load between cores, it is not sufficient that @cpu is idle. Only
10138 * use CPU priority if the whole core is idle.
10139 *
10140 * Returns: True if the priority of @cpu must be followed. False otherwise.
10141 */
sched_use_asym_prio(struct sched_domain * sd,int cpu)10142 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10143 {
10144 if (!sched_smt_active())
10145 return true;
10146
10147 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10148 }
10149
10150 /**
10151 * sched_asym - Check if the destination CPU can do asym_packing load balance
10152 * @env: The load balancing environment
10153 * @sds: Load-balancing data with statistics of the local group
10154 * @sgs: Load-balancing statistics of the candidate busiest group
10155 * @group: The candidate busiest group
10156 *
10157 * @env::dst_cpu can do asym_packing if it has higher priority than the
10158 * preferred CPU of @group.
10159 *
10160 * SMT is a special case. If we are balancing load between cores, @env::dst_cpu
10161 * can do asym_packing balance only if all its SMT siblings are idle. Also, it
10162 * can only do it if @group is an SMT group and has exactly on busy CPU. Larger
10163 * imbalances in the number of CPUS are dealt with in find_busiest_group().
10164 *
10165 * If we are balancing load within an SMT core, or at PKG domain level, always
10166 * proceed.
10167 *
10168 * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10169 * otherwise.
10170 */
10171 static inline bool
sched_asym(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * sgs,struct sched_group * group)10172 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs,
10173 struct sched_group *group)
10174 {
10175 /* Ensure that the whole local core is idle, if applicable. */
10176 if (!sched_use_asym_prio(env->sd, env->dst_cpu))
10177 return false;
10178
10179 /*
10180 * CPU priorities does not make sense for SMT cores with more than one
10181 * busy sibling.
10182 */
10183 if (group->flags & SD_SHARE_CPUCAPACITY) {
10184 if (sgs->group_weight - sgs->idle_cpus != 1)
10185 return false;
10186 }
10187
10188 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
10189 }
10190
10191 /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)10192 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10193 struct sched_group *sg2)
10194 {
10195 if (!sg1 || !sg2)
10196 return false;
10197
10198 return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10199 (sg2->flags & SD_SHARE_CPUCAPACITY);
10200 }
10201
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10202 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10203 struct sched_group *group)
10204 {
10205 if (env->idle == CPU_NOT_IDLE)
10206 return false;
10207
10208 /*
10209 * For SMT source group, it is better to move a task
10210 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10211 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10212 * will not be on.
10213 */
10214 if (group->flags & SD_SHARE_CPUCAPACITY &&
10215 sgs->sum_h_nr_running > 1)
10216 return true;
10217
10218 return false;
10219 }
10220
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)10221 static inline long sibling_imbalance(struct lb_env *env,
10222 struct sd_lb_stats *sds,
10223 struct sg_lb_stats *busiest,
10224 struct sg_lb_stats *local)
10225 {
10226 int ncores_busiest, ncores_local;
10227 long imbalance;
10228
10229 if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
10230 return 0;
10231
10232 ncores_busiest = sds->busiest->cores;
10233 ncores_local = sds->local->cores;
10234
10235 if (ncores_busiest == ncores_local) {
10236 imbalance = busiest->sum_nr_running;
10237 lsub_positive(&imbalance, local->sum_nr_running);
10238 return imbalance;
10239 }
10240
10241 /* Balance such that nr_running/ncores ratio are same on both groups */
10242 imbalance = ncores_local * busiest->sum_nr_running;
10243 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10244 /* Normalize imbalance and do rounding on normalization */
10245 imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10246 imbalance /= ncores_local + ncores_busiest;
10247
10248 /* Take advantage of resource in an empty sched group */
10249 if (imbalance <= 1 && local->sum_nr_running == 0 &&
10250 busiest->sum_nr_running > 1)
10251 imbalance = 2;
10252
10253 return imbalance;
10254 }
10255
10256 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)10257 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10258 {
10259 /*
10260 * When there is more than 1 task, the group_overloaded case already
10261 * takes care of cpu with reduced capacity
10262 */
10263 if (rq->cfs.h_nr_running != 1)
10264 return false;
10265
10266 return check_cpu_capacity(rq, sd);
10267 }
10268
10269 /**
10270 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10271 * @env: The load balancing environment.
10272 * @sds: Load-balancing data with statistics of the local group.
10273 * @group: sched_group whose statistics are to be updated.
10274 * @sgs: variable to hold the statistics for this group.
10275 * @sg_status: Holds flag indicating the status of the sched_group
10276 */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)10277 static inline void update_sg_lb_stats(struct lb_env *env,
10278 struct sd_lb_stats *sds,
10279 struct sched_group *group,
10280 struct sg_lb_stats *sgs,
10281 int *sg_status)
10282 {
10283 int i, nr_running, local_group;
10284
10285 memset(sgs, 0, sizeof(*sgs));
10286
10287 local_group = group == sds->local;
10288
10289 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10290 struct rq *rq = cpu_rq(i);
10291 unsigned long load = cpu_load(rq);
10292 if (cpu_isolated(i))
10293 continue;
10294
10295 sgs->group_load += load;
10296 sgs->group_util += cpu_util_cfs(i);
10297 sgs->group_runnable += cpu_runnable(rq);
10298 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
10299
10300 nr_running = rq->nr_running;
10301 sgs->sum_nr_running += nr_running;
10302
10303 if (nr_running > 1)
10304 *sg_status |= SG_OVERLOAD;
10305
10306 if (cpu_overutilized(i))
10307 *sg_status |= SG_OVERUTILIZED;
10308
10309 #ifdef CONFIG_NUMA_BALANCING
10310 sgs->nr_numa_running += rq->nr_numa_running;
10311 sgs->nr_preferred_running += rq->nr_preferred_running;
10312 #endif
10313 /*
10314 * No need to call idle_cpu() if nr_running is not 0
10315 */
10316 if (!nr_running && idle_cpu(i)) {
10317 sgs->idle_cpus++;
10318 /* Idle cpu can't have misfit task */
10319 continue;
10320 }
10321
10322 if (local_group)
10323 continue;
10324
10325 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10326 /* Check for a misfit task on the cpu */
10327 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10328 sgs->group_misfit_task_load = rq->misfit_task_load;
10329 *sg_status |= SG_OVERLOAD;
10330 }
10331 } else if ((env->idle != CPU_NOT_IDLE) &&
10332 sched_reduced_capacity(rq, env->sd)) {
10333 /* Check for a task running on a CPU with reduced capacity */
10334 if (sgs->group_misfit_task_load < load)
10335 sgs->group_misfit_task_load = load;
10336 }
10337 }
10338
10339 sgs->group_capacity = group->sgc->capacity;
10340
10341 sgs->group_weight = group->group_weight;
10342
10343 /* Isolated CPU has no weight */
10344 if (!group->group_weight) {
10345 sgs->group_capacity = 0;
10346 sgs->avg_load = 0;
10347 sgs->group_type = group_has_spare;
10348 sgs->group_weight = group->group_weight;
10349 return;
10350 }
10351
10352 /* Check if dst CPU is idle and preferred to this group */
10353 if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
10354 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
10355 sched_asym(env, sds, sgs, group)) {
10356 sgs->group_asym_packing = 1;
10357 }
10358
10359 /* Check for loaded SMT group to be balanced to dst CPU */
10360 if (!local_group && smt_balance(env, sgs, group))
10361 sgs->group_smt_balance = 1;
10362
10363 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10364
10365 /* Computing avg_load makes sense only when group is overloaded */
10366 if (sgs->group_type == group_overloaded)
10367 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10368 sgs->group_capacity;
10369 }
10370
10371 /**
10372 * update_sd_pick_busiest - return 1 on busiest group
10373 * @env: The load balancing environment.
10374 * @sds: sched_domain statistics
10375 * @sg: sched_group candidate to be checked for being the busiest
10376 * @sgs: sched_group statistics
10377 *
10378 * Determine if @sg is a busier group than the previously selected
10379 * busiest group.
10380 *
10381 * Return: %true if @sg is a busier group than the previously selected
10382 * busiest group. %false otherwise.
10383 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)10384 static bool update_sd_pick_busiest(struct lb_env *env,
10385 struct sd_lb_stats *sds,
10386 struct sched_group *sg,
10387 struct sg_lb_stats *sgs)
10388 {
10389 struct sg_lb_stats *busiest = &sds->busiest_stat;
10390
10391 /* Make sure that there is at least one task to pull */
10392 if (!sgs->sum_h_nr_running)
10393 return false;
10394
10395 /*
10396 * Don't try to pull misfit tasks we can't help.
10397 * We can use max_capacity here as reduction in capacity on some
10398 * CPUs in the group should either be possible to resolve
10399 * internally or be covered by avg_load imbalance (eventually).
10400 */
10401 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10402 (sgs->group_type == group_misfit_task) &&
10403 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10404 sds->local_stat.group_type != group_has_spare))
10405 return false;
10406
10407 if (sgs->group_type > busiest->group_type)
10408 return true;
10409
10410 if (sgs->group_type < busiest->group_type)
10411 return false;
10412
10413 /*
10414 * The candidate and the current busiest group are the same type of
10415 * group. Let check which one is the busiest according to the type.
10416 */
10417
10418 switch (sgs->group_type) {
10419 case group_overloaded:
10420 /* Select the overloaded group with highest avg_load. */
10421 if (sgs->avg_load <= busiest->avg_load)
10422 return false;
10423 break;
10424
10425 case group_imbalanced:
10426 /*
10427 * Select the 1st imbalanced group as we don't have any way to
10428 * choose one more than another.
10429 */
10430 return false;
10431
10432 case group_asym_packing:
10433 /* Prefer to move from lowest priority CPU's work */
10434 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
10435 return false;
10436 break;
10437
10438 case group_misfit_task:
10439 /*
10440 * If we have more than one misfit sg go with the biggest
10441 * misfit.
10442 */
10443 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
10444 return false;
10445 break;
10446
10447 case group_smt_balance:
10448 /*
10449 * Check if we have spare CPUs on either SMT group to
10450 * choose has spare or fully busy handling.
10451 */
10452 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10453 goto has_spare;
10454
10455 fallthrough;
10456
10457 case group_fully_busy:
10458 /*
10459 * Select the fully busy group with highest avg_load. In
10460 * theory, there is no need to pull task from such kind of
10461 * group because tasks have all compute capacity that they need
10462 * but we can still improve the overall throughput by reducing
10463 * contention when accessing shared HW resources.
10464 *
10465 * XXX for now avg_load is not computed and always 0 so we
10466 * select the 1st one, except if @sg is composed of SMT
10467 * siblings.
10468 */
10469
10470 if (sgs->avg_load < busiest->avg_load)
10471 return false;
10472
10473 if (sgs->avg_load == busiest->avg_load) {
10474 /*
10475 * SMT sched groups need more help than non-SMT groups.
10476 * If @sg happens to also be SMT, either choice is good.
10477 */
10478 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10479 return false;
10480 }
10481
10482 break;
10483
10484 case group_has_spare:
10485 /*
10486 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10487 * as we do not want to pull task off SMT core with one task
10488 * and make the core idle.
10489 */
10490 if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10491 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10492 return false;
10493 else
10494 return true;
10495 }
10496 has_spare:
10497
10498 /*
10499 * Select not overloaded group with lowest number of idle cpus
10500 * and highest number of running tasks. We could also compare
10501 * the spare capacity which is more stable but it can end up
10502 * that the group has less spare capacity but finally more idle
10503 * CPUs which means less opportunity to pull tasks.
10504 */
10505 if (sgs->idle_cpus > busiest->idle_cpus)
10506 return false;
10507 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10508 (sgs->sum_nr_running <= busiest->sum_nr_running))
10509 return false;
10510
10511 break;
10512 }
10513
10514 /*
10515 * Candidate sg has no more than one task per CPU and has higher
10516 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10517 * throughput. Maximize throughput, power/energy consequences are not
10518 * considered.
10519 */
10520 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10521 (sgs->group_type <= group_fully_busy) &&
10522 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10523 return false;
10524
10525 return true;
10526 }
10527
10528 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)10529 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10530 {
10531 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10532 return regular;
10533 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10534 return remote;
10535 return all;
10536 }
10537
fbq_classify_rq(struct rq * rq)10538 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10539 {
10540 if (rq->nr_running > rq->nr_numa_running)
10541 return regular;
10542 if (rq->nr_running > rq->nr_preferred_running)
10543 return remote;
10544 return all;
10545 }
10546 #else
fbq_classify_group(struct sg_lb_stats * sgs)10547 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10548 {
10549 return all;
10550 }
10551
fbq_classify_rq(struct rq * rq)10552 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10553 {
10554 return regular;
10555 }
10556 #endif /* CONFIG_NUMA_BALANCING */
10557
10558
10559 struct sg_lb_stats;
10560
10561 /*
10562 * task_running_on_cpu - return 1 if @p is running on @cpu.
10563 */
10564
task_running_on_cpu(int cpu,struct task_struct * p)10565 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10566 {
10567 /* Task has no contribution or is new */
10568 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10569 return 0;
10570
10571 if (task_on_rq_queued(p))
10572 return 1;
10573
10574 return 0;
10575 }
10576
10577 /**
10578 * idle_cpu_without - would a given CPU be idle without p ?
10579 * @cpu: the processor on which idleness is tested.
10580 * @p: task which should be ignored.
10581 *
10582 * Return: 1 if the CPU would be idle. 0 otherwise.
10583 */
idle_cpu_without(int cpu,struct task_struct * p)10584 static int idle_cpu_without(int cpu, struct task_struct *p)
10585 {
10586 struct rq *rq = cpu_rq(cpu);
10587
10588 if (rq->curr != rq->idle && rq->curr != p)
10589 return 0;
10590
10591 /*
10592 * rq->nr_running can't be used but an updated version without the
10593 * impact of p on cpu must be used instead. The updated nr_running
10594 * be computed and tested before calling idle_cpu_without().
10595 */
10596
10597 #ifdef CONFIG_SMP
10598 if (rq->ttwu_pending)
10599 return 0;
10600 #endif
10601
10602 return 1;
10603 }
10604
10605 /*
10606 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10607 * @sd: The sched_domain level to look for idlest group.
10608 * @group: sched_group whose statistics are to be updated.
10609 * @sgs: variable to hold the statistics for this group.
10610 * @p: The task for which we look for the idlest group/CPU.
10611 */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10612 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10613 struct sched_group *group,
10614 struct sg_lb_stats *sgs,
10615 struct task_struct *p)
10616 {
10617 int i, nr_running;
10618
10619 memset(sgs, 0, sizeof(*sgs));
10620
10621 /* Assume that task can't fit any CPU of the group */
10622 if (sd->flags & SD_ASYM_CPUCAPACITY)
10623 sgs->group_misfit_task_load = 1;
10624
10625 for_each_cpu(i, sched_group_span(group)) {
10626 struct rq *rq = cpu_rq(i);
10627 unsigned int local;
10628
10629 sgs->group_load += cpu_load_without(rq, p);
10630 sgs->group_util += cpu_util_without(i, p);
10631 sgs->group_runnable += cpu_runnable_without(rq, p);
10632 local = task_running_on_cpu(i, p);
10633 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10634
10635 nr_running = rq->nr_running - local;
10636 sgs->sum_nr_running += nr_running;
10637
10638 /*
10639 * No need to call idle_cpu_without() if nr_running is not 0
10640 */
10641 if (!nr_running && idle_cpu_without(i, p))
10642 sgs->idle_cpus++;
10643
10644 /* Check if task fits in the CPU */
10645 if (sd->flags & SD_ASYM_CPUCAPACITY &&
10646 sgs->group_misfit_task_load &&
10647 task_fits_cpu(p, i))
10648 sgs->group_misfit_task_load = 0;
10649
10650 }
10651
10652 sgs->group_capacity = group->sgc->capacity;
10653
10654 sgs->group_weight = group->group_weight;
10655
10656 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10657
10658 /*
10659 * Computing avg_load makes sense only when group is fully busy or
10660 * overloaded
10661 */
10662 if (sgs->group_type == group_fully_busy ||
10663 sgs->group_type == group_overloaded)
10664 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10665 sgs->group_capacity;
10666 }
10667
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10668 static bool update_pick_idlest(struct sched_group *idlest,
10669 struct sg_lb_stats *idlest_sgs,
10670 struct sched_group *group,
10671 struct sg_lb_stats *sgs)
10672 {
10673 if (sgs->group_type < idlest_sgs->group_type)
10674 return true;
10675
10676 if (sgs->group_type > idlest_sgs->group_type)
10677 return false;
10678
10679 /*
10680 * The candidate and the current idlest group are the same type of
10681 * group. Let check which one is the idlest according to the type.
10682 */
10683
10684 switch (sgs->group_type) {
10685 case group_overloaded:
10686 case group_fully_busy:
10687 /* Select the group with lowest avg_load. */
10688 if (idlest_sgs->avg_load <= sgs->avg_load)
10689 return false;
10690 break;
10691
10692 case group_imbalanced:
10693 case group_asym_packing:
10694 case group_smt_balance:
10695 /* Those types are not used in the slow wakeup path */
10696 return false;
10697
10698 case group_misfit_task:
10699 /* Select group with the highest max capacity */
10700 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10701 return false;
10702 break;
10703
10704 case group_has_spare:
10705 /* Select group with most idle CPUs */
10706 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10707 return false;
10708
10709 /* Select group with lowest group_util */
10710 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10711 idlest_sgs->group_util <= sgs->group_util)
10712 return false;
10713
10714 break;
10715 }
10716
10717 return true;
10718 }
10719
10720 /*
10721 * find_idlest_group() finds and returns the least busy CPU group within the
10722 * domain.
10723 *
10724 * Assumes p is allowed on at least one CPU in sd.
10725 */
10726 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)10727 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10728 {
10729 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10730 struct sg_lb_stats local_sgs, tmp_sgs;
10731 struct sg_lb_stats *sgs;
10732 unsigned long imbalance;
10733 struct sg_lb_stats idlest_sgs = {
10734 .avg_load = UINT_MAX,
10735 .group_type = group_overloaded,
10736 };
10737 #ifdef CONFIG_CPU_ISOLATION_OPT
10738 cpumask_t allowed_cpus;
10739
10740 cpumask_andnot(&allowed_cpus, p->cpus_ptr, cpu_isolated_mask);
10741 #endif
10742 do {
10743 int local_group;
10744
10745 /* Skip over this group if it has no CPUs allowed */
10746 #ifdef CONFIG_CPU_ISOLATION_OPT
10747 if (!cpumask_intersects(sched_group_span(group),
10748 &allowed_cpus))
10749 #else
10750 if (!cpumask_intersects(sched_group_span(group),
10751 p->cpus_ptr))
10752 #endif
10753 continue;
10754
10755 /* Skip over this group if no cookie matched */
10756 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10757 continue;
10758
10759 local_group = cpumask_test_cpu(this_cpu,
10760 sched_group_span(group));
10761
10762 if (local_group) {
10763 sgs = &local_sgs;
10764 local = group;
10765 } else {
10766 sgs = &tmp_sgs;
10767 }
10768
10769 update_sg_wakeup_stats(sd, group, sgs, p);
10770
10771 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10772 idlest = group;
10773 idlest_sgs = *sgs;
10774 }
10775
10776 } while (group = group->next, group != sd->groups);
10777
10778
10779 /* There is no idlest group to push tasks to */
10780 if (!idlest)
10781 return NULL;
10782
10783 /* The local group has been skipped because of CPU affinity */
10784 if (!local)
10785 return idlest;
10786
10787 /*
10788 * If the local group is idler than the selected idlest group
10789 * don't try and push the task.
10790 */
10791 if (local_sgs.group_type < idlest_sgs.group_type)
10792 return NULL;
10793
10794 /*
10795 * If the local group is busier than the selected idlest group
10796 * try and push the task.
10797 */
10798 if (local_sgs.group_type > idlest_sgs.group_type)
10799 return idlest;
10800
10801 switch (local_sgs.group_type) {
10802 case group_overloaded:
10803 case group_fully_busy:
10804
10805 /* Calculate allowed imbalance based on load */
10806 imbalance = scale_load_down(NICE_0_LOAD) *
10807 (sd->imbalance_pct-100) / 100;
10808
10809 /*
10810 * When comparing groups across NUMA domains, it's possible for
10811 * the local domain to be very lightly loaded relative to the
10812 * remote domains but "imbalance" skews the comparison making
10813 * remote CPUs look much more favourable. When considering
10814 * cross-domain, add imbalance to the load on the remote node
10815 * and consider staying local.
10816 */
10817
10818 if ((sd->flags & SD_NUMA) &&
10819 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10820 return NULL;
10821
10822 /*
10823 * If the local group is less loaded than the selected
10824 * idlest group don't try and push any tasks.
10825 */
10826 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10827 return NULL;
10828
10829 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10830 return NULL;
10831 break;
10832
10833 case group_imbalanced:
10834 case group_asym_packing:
10835 case group_smt_balance:
10836 /* Those type are not used in the slow wakeup path */
10837 return NULL;
10838
10839 case group_misfit_task:
10840 /* Select group with the highest max capacity */
10841 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10842 return NULL;
10843 break;
10844
10845 case group_has_spare:
10846 #ifdef CONFIG_NUMA
10847 if (sd->flags & SD_NUMA) {
10848 int imb_numa_nr = sd->imb_numa_nr;
10849 #ifdef CONFIG_NUMA_BALANCING
10850 int idlest_cpu;
10851 /*
10852 * If there is spare capacity at NUMA, try to select
10853 * the preferred node
10854 */
10855 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10856 return NULL;
10857
10858 idlest_cpu = cpumask_first(sched_group_span(idlest));
10859 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10860 return idlest;
10861 #endif /* CONFIG_NUMA_BALANCING */
10862 /*
10863 * Otherwise, keep the task close to the wakeup source
10864 * and improve locality if the number of running tasks
10865 * would remain below threshold where an imbalance is
10866 * allowed while accounting for the possibility the
10867 * task is pinned to a subset of CPUs. If there is a
10868 * real need of migration, periodic load balance will
10869 * take care of it.
10870 */
10871 if (p->nr_cpus_allowed != NR_CPUS) {
10872 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10873
10874 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10875 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10876 }
10877
10878 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10879 if (!adjust_numa_imbalance(imbalance,
10880 local_sgs.sum_nr_running + 1,
10881 imb_numa_nr)) {
10882 return NULL;
10883 }
10884 }
10885 #endif /* CONFIG_NUMA */
10886
10887 /*
10888 * Select group with highest number of idle CPUs. We could also
10889 * compare the utilization which is more stable but it can end
10890 * up that the group has less spare capacity but finally more
10891 * idle CPUs which means more opportunity to run task.
10892 */
10893 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10894 return NULL;
10895 break;
10896 }
10897
10898 return idlest;
10899 }
10900
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)10901 static void update_idle_cpu_scan(struct lb_env *env,
10902 unsigned long sum_util)
10903 {
10904 struct sched_domain_shared *sd_share;
10905 int llc_weight, pct;
10906 u64 x, y, tmp;
10907 /*
10908 * Update the number of CPUs to scan in LLC domain, which could
10909 * be used as a hint in select_idle_cpu(). The update of sd_share
10910 * could be expensive because it is within a shared cache line.
10911 * So the write of this hint only occurs during periodic load
10912 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10913 * can fire way more frequently than the former.
10914 */
10915 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10916 return;
10917
10918 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10919 if (env->sd->span_weight != llc_weight)
10920 return;
10921
10922 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10923 if (!sd_share)
10924 return;
10925
10926 /*
10927 * The number of CPUs to search drops as sum_util increases, when
10928 * sum_util hits 85% or above, the scan stops.
10929 * The reason to choose 85% as the threshold is because this is the
10930 * imbalance_pct(117) when a LLC sched group is overloaded.
10931 *
10932 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
10933 * and y'= y / SCHED_CAPACITY_SCALE
10934 *
10935 * x is the ratio of sum_util compared to the CPU capacity:
10936 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10937 * y' is the ratio of CPUs to be scanned in the LLC domain,
10938 * and the number of CPUs to scan is calculated by:
10939 *
10940 * nr_scan = llc_weight * y' [2]
10941 *
10942 * When x hits the threshold of overloaded, AKA, when
10943 * x = 100 / pct, y drops to 0. According to [1],
10944 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10945 *
10946 * Scale x by SCHED_CAPACITY_SCALE:
10947 * x' = sum_util / llc_weight; [3]
10948 *
10949 * and finally [1] becomes:
10950 * y = SCHED_CAPACITY_SCALE -
10951 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
10952 *
10953 */
10954 /* equation [3] */
10955 x = sum_util;
10956 do_div(x, llc_weight);
10957
10958 /* equation [4] */
10959 pct = env->sd->imbalance_pct;
10960 tmp = x * x * pct * pct;
10961 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10962 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10963 y = SCHED_CAPACITY_SCALE - tmp;
10964
10965 /* equation [2] */
10966 y *= llc_weight;
10967 do_div(y, SCHED_CAPACITY_SCALE);
10968 if ((int)y != sd_share->nr_idle_scan)
10969 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10970 }
10971
10972 /**
10973 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10974 * @env: The load balancing environment.
10975 * @sds: variable to hold the statistics for this sched_domain.
10976 */
10977
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)10978 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10979 {
10980 struct sched_group *sg = env->sd->groups;
10981 struct sg_lb_stats *local = &sds->local_stat;
10982 struct sg_lb_stats tmp_sgs;
10983 unsigned long sum_util = 0;
10984 int sg_status = 0;
10985
10986 do {
10987 struct sg_lb_stats *sgs = &tmp_sgs;
10988 int local_group;
10989
10990 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10991 if (local_group) {
10992 sds->local = sg;
10993 sgs = local;
10994
10995 if (env->idle != CPU_NEWLY_IDLE ||
10996 time_after_eq(jiffies, sg->sgc->next_update))
10997 update_group_capacity(env->sd, env->dst_cpu);
10998 }
10999
11000 update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
11001
11002 if (local_group)
11003 goto next_group;
11004
11005
11006 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
11007 sds->busiest = sg;
11008 sds->busiest_stat = *sgs;
11009 }
11010
11011 next_group:
11012 /* Now, start updating sd_lb_stats */
11013 sds->total_load += sgs->group_load;
11014 sds->total_capacity += sgs->group_capacity;
11015
11016 sum_util += sgs->group_util;
11017 sg = sg->next;
11018 } while (sg != env->sd->groups);
11019
11020 /*
11021 * Indicate that the child domain of the busiest group prefers tasks
11022 * go to a child's sibling domains first. NB the flags of a sched group
11023 * are those of the child domain.
11024 */
11025 if (sds->busiest)
11026 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11027
11028
11029 if (env->sd->flags & SD_NUMA)
11030 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11031
11032 if (!env->sd->parent) {
11033 /* update overload indicator if we are at root domain */
11034 WRITE_ONCE(env->dst_rq->rd->overload, sg_status & SG_OVERLOAD);
11035
11036 /* Update over-utilization (tipping point, U >= 0) indicator */
11037 set_rd_overutilized_status(env->dst_rq->rd,
11038 sg_status & SG_OVERUTILIZED);
11039 } else if (sg_status & SG_OVERUTILIZED) {
11040 set_rd_overutilized_status(env->dst_rq->rd, SG_OVERUTILIZED);
11041 }
11042
11043 update_idle_cpu_scan(env, sum_util);
11044 }
11045
11046 /**
11047 * calculate_imbalance - Calculate the amount of imbalance present within the
11048 * groups of a given sched_domain during load balance.
11049 * @env: load balance environment
11050 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11051 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)11052 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11053 {
11054 struct sg_lb_stats *local, *busiest;
11055
11056 local = &sds->local_stat;
11057 busiest = &sds->busiest_stat;
11058
11059 if (busiest->group_type == group_misfit_task) {
11060 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11061 /* Set imbalance to allow misfit tasks to be balanced. */
11062 env->migration_type = migrate_misfit;
11063 env->imbalance = 1;
11064 } else {
11065 /*
11066 * Set load imbalance to allow moving task from cpu
11067 * with reduced capacity.
11068 */
11069 env->migration_type = migrate_load;
11070 env->imbalance = busiest->group_misfit_task_load;
11071 }
11072 return;
11073 }
11074
11075 if (busiest->group_type == group_asym_packing) {
11076 /*
11077 * In case of asym capacity, we will try to migrate all load to
11078 * the preferred CPU.
11079 */
11080 env->migration_type = migrate_task;
11081 env->imbalance = busiest->sum_h_nr_running;
11082 return;
11083 }
11084
11085 if (busiest->group_type == group_smt_balance) {
11086 /* Reduce number of tasks sharing CPU capacity */
11087 env->migration_type = migrate_task;
11088 env->imbalance = 1;
11089 return;
11090 }
11091
11092 if (busiest->group_type == group_imbalanced) {
11093 /*
11094 * In the group_imb case we cannot rely on group-wide averages
11095 * to ensure CPU-load equilibrium, try to move any task to fix
11096 * the imbalance. The next load balance will take care of
11097 * balancing back the system.
11098 */
11099 env->migration_type = migrate_task;
11100 env->imbalance = 1;
11101 return;
11102 }
11103
11104 /*
11105 * Try to use spare capacity of local group without overloading it or
11106 * emptying busiest.
11107 */
11108 if (local->group_type == group_has_spare) {
11109 if ((busiest->group_type > group_fully_busy) &&
11110 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
11111 /*
11112 * If busiest is overloaded, try to fill spare
11113 * capacity. This might end up creating spare capacity
11114 * in busiest or busiest still being overloaded but
11115 * there is no simple way to directly compute the
11116 * amount of load to migrate in order to balance the
11117 * system.
11118 */
11119 env->migration_type = migrate_util;
11120 env->imbalance = max(local->group_capacity, local->group_util) -
11121 local->group_util;
11122
11123 /*
11124 * In some cases, the group's utilization is max or even
11125 * higher than capacity because of migrations but the
11126 * local CPU is (newly) idle. There is at least one
11127 * waiting task in this overloaded busiest group. Let's
11128 * try to pull it.
11129 */
11130 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
11131 env->migration_type = migrate_task;
11132 env->imbalance = 1;
11133 }
11134
11135 return;
11136 }
11137
11138 if (busiest->group_weight == 1 || sds->prefer_sibling) {
11139 /*
11140 * When prefer sibling, evenly spread running tasks on
11141 * groups.
11142 */
11143 env->migration_type = migrate_task;
11144 env->imbalance = sibling_imbalance(env, sds, busiest, local);
11145 } else {
11146
11147 /*
11148 * If there is no overload, we just want to even the number of
11149 * idle cpus.
11150 */
11151 env->migration_type = migrate_task;
11152 env->imbalance = max_t(long, 0,
11153 (local->idle_cpus - busiest->idle_cpus));
11154 }
11155
11156 #ifdef CONFIG_NUMA
11157 /* Consider allowing a small imbalance between NUMA groups */
11158 if (env->sd->flags & SD_NUMA) {
11159 env->imbalance = adjust_numa_imbalance(env->imbalance,
11160 local->sum_nr_running + 1,
11161 env->sd->imb_numa_nr);
11162 }
11163 #endif
11164
11165 /* Number of tasks to move to restore balance */
11166 env->imbalance >>= 1;
11167
11168 return;
11169 }
11170
11171 /*
11172 * Local is fully busy but has to take more load to relieve the
11173 * busiest group
11174 */
11175 if (local->group_type < group_overloaded) {
11176 /*
11177 * Local will become overloaded so the avg_load metrics are
11178 * finally needed.
11179 */
11180
11181 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11182 local->group_capacity;
11183
11184 /*
11185 * If the local group is more loaded than the selected
11186 * busiest group don't try to pull any tasks.
11187 */
11188 if (local->avg_load >= busiest->avg_load) {
11189 env->imbalance = 0;
11190 return;
11191 }
11192
11193 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11194 sds->total_capacity;
11195
11196 /*
11197 * If the local group is more loaded than the average system
11198 * load, don't try to pull any tasks.
11199 */
11200 if (local->avg_load >= sds->avg_load) {
11201 env->imbalance = 0;
11202 return;
11203 }
11204
11205 }
11206
11207 /*
11208 * Both group are or will become overloaded and we're trying to get all
11209 * the CPUs to the average_load, so we don't want to push ourselves
11210 * above the average load, nor do we wish to reduce the max loaded CPU
11211 * below the average load. At the same time, we also don't want to
11212 * reduce the group load below the group capacity. Thus we look for
11213 * the minimum possible imbalance.
11214 */
11215 env->migration_type = migrate_load;
11216 env->imbalance = min(
11217 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11218 (sds->avg_load - local->avg_load) * local->group_capacity
11219 ) / SCHED_CAPACITY_SCALE;
11220 }
11221
11222 /******* find_busiest_group() helpers end here *********************/
11223
11224 /*
11225 * Decision matrix according to the local and busiest group type:
11226 *
11227 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11228 * has_spare nr_idle balanced N/A N/A balanced balanced
11229 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
11230 * misfit_task force N/A N/A N/A N/A N/A
11231 * asym_packing force force N/A N/A force force
11232 * imbalanced force force N/A N/A force force
11233 * overloaded force force N/A N/A force avg_load
11234 *
11235 * N/A : Not Applicable because already filtered while updating
11236 * statistics.
11237 * balanced : The system is balanced for these 2 groups.
11238 * force : Calculate the imbalance as load migration is probably needed.
11239 * avg_load : Only if imbalance is significant enough.
11240 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
11241 * different in groups.
11242 */
11243
11244 /**
11245 * find_busiest_group - Returns the busiest group within the sched_domain
11246 * if there is an imbalance.
11247 * @env: The load balancing environment.
11248 *
11249 * Also calculates the amount of runnable load which should be moved
11250 * to restore balance.
11251 *
11252 * Return: - The busiest group if imbalance exists.
11253 */
find_busiest_group(struct lb_env * env)11254 static struct sched_group *find_busiest_group(struct lb_env *env)
11255 {
11256 struct sg_lb_stats *local, *busiest;
11257 struct sd_lb_stats sds;
11258
11259 init_sd_lb_stats(&sds);
11260
11261 /*
11262 * Compute the various statistics relevant for load balancing at
11263 * this level.
11264 */
11265 update_sd_lb_stats(env, &sds);
11266
11267 /* There is no busy sibling group to pull tasks from */
11268 if (!sds.busiest)
11269 goto out_balanced;
11270
11271 busiest = &sds.busiest_stat;
11272
11273 /* Misfit tasks should be dealt with regardless of the avg load */
11274 if (busiest->group_type == group_misfit_task)
11275 goto force_balance;
11276
11277 if (sched_energy_enabled()) {
11278 struct root_domain *rd = env->dst_rq->rd;
11279
11280 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
11281 goto out_balanced;
11282 }
11283
11284 /* ASYM feature bypasses nice load balance check */
11285 if (busiest->group_type == group_asym_packing)
11286 goto force_balance;
11287
11288 /*
11289 * If the busiest group is imbalanced the below checks don't
11290 * work because they assume all things are equal, which typically
11291 * isn't true due to cpus_ptr constraints and the like.
11292 */
11293 if (busiest->group_type == group_imbalanced)
11294 goto force_balance;
11295
11296 local = &sds.local_stat;
11297 /*
11298 * If the local group is busier than the selected busiest group
11299 * don't try and pull any tasks.
11300 */
11301 if (local->group_type > busiest->group_type)
11302 goto out_balanced;
11303
11304 /*
11305 * When groups are overloaded, use the avg_load to ensure fairness
11306 * between tasks.
11307 */
11308 if (local->group_type == group_overloaded) {
11309 /*
11310 * If the local group is more loaded than the selected
11311 * busiest group don't try to pull any tasks.
11312 */
11313 if (local->avg_load >= busiest->avg_load)
11314 goto out_balanced;
11315
11316 /* XXX broken for overlapping NUMA groups */
11317 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11318 sds.total_capacity;
11319
11320 /*
11321 * Don't pull any tasks if this group is already above the
11322 * domain average load.
11323 */
11324 if (local->avg_load >= sds.avg_load)
11325 goto out_balanced;
11326
11327 /*
11328 * If the busiest group is more loaded, use imbalance_pct to be
11329 * conservative.
11330 */
11331 if (100 * busiest->avg_load <=
11332 env->sd->imbalance_pct * local->avg_load)
11333 goto out_balanced;
11334 }
11335
11336 /*
11337 * Try to move all excess tasks to a sibling domain of the busiest
11338 * group's child domain.
11339 */
11340 if (sds.prefer_sibling && local->group_type == group_has_spare &&
11341 sibling_imbalance(env, &sds, busiest, local) > 1)
11342 goto force_balance;
11343
11344 if (busiest->group_type != group_overloaded) {
11345 if (env->idle == CPU_NOT_IDLE) {
11346 /*
11347 * If the busiest group is not overloaded (and as a
11348 * result the local one too) but this CPU is already
11349 * busy, let another idle CPU try to pull task.
11350 */
11351 goto out_balanced;
11352 }
11353
11354 if (busiest->group_type == group_smt_balance &&
11355 smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11356 /* Let non SMT CPU pull from SMT CPU sharing with sibling */
11357 goto force_balance;
11358 }
11359
11360 if (busiest->group_weight > 1 &&
11361 local->idle_cpus <= (busiest->idle_cpus + 1)) {
11362 /*
11363 * If the busiest group is not overloaded
11364 * and there is no imbalance between this and busiest
11365 * group wrt idle CPUs, it is balanced. The imbalance
11366 * becomes significant if the diff is greater than 1
11367 * otherwise we might end up to just move the imbalance
11368 * on another group. Of course this applies only if
11369 * there is more than 1 CPU per group.
11370 */
11371 goto out_balanced;
11372 }
11373
11374 if (busiest->sum_h_nr_running == 1) {
11375 /*
11376 * busiest doesn't have any tasks waiting to run
11377 */
11378 goto out_balanced;
11379 }
11380 }
11381
11382 force_balance:
11383 /* Looks like there is an imbalance. Compute it */
11384 calculate_imbalance(env, &sds);
11385 return env->imbalance ? sds.busiest : NULL;
11386
11387 out_balanced:
11388 env->imbalance = 0;
11389 return NULL;
11390 }
11391
11392 /*
11393 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
11394 */
find_busiest_queue(struct lb_env * env,struct sched_group * group)11395 static struct rq *find_busiest_queue(struct lb_env *env,
11396 struct sched_group *group)
11397 {
11398 struct rq *busiest = NULL, *rq;
11399 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11400 unsigned int busiest_nr = 0;
11401 int i;
11402
11403 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11404 unsigned long capacity, load, util;
11405 unsigned int nr_running;
11406 enum fbq_type rt;
11407
11408 rq = cpu_rq(i);
11409 rt = fbq_classify_rq(rq);
11410
11411 /*
11412 * We classify groups/runqueues into three groups:
11413 * - regular: there are !numa tasks
11414 * - remote: there are numa tasks that run on the 'wrong' node
11415 * - all: there is no distinction
11416 *
11417 * In order to avoid migrating ideally placed numa tasks,
11418 * ignore those when there's better options.
11419 *
11420 * If we ignore the actual busiest queue to migrate another
11421 * task, the next balance pass can still reduce the busiest
11422 * queue by moving tasks around inside the node.
11423 *
11424 * If we cannot move enough load due to this classification
11425 * the next pass will adjust the group classification and
11426 * allow migration of more tasks.
11427 *
11428 * Both cases only affect the total convergence complexity.
11429 */
11430 if (rt > env->fbq_type)
11431 continue;
11432
11433 if (cpu_isolated(i))
11434 continue;
11435
11436 nr_running = rq->cfs.h_nr_running;
11437 if (!nr_running)
11438 continue;
11439
11440 capacity = capacity_of(i);
11441
11442 /*
11443 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11444 * eventually lead to active_balancing high->low capacity.
11445 * Higher per-CPU capacity is considered better than balancing
11446 * average load.
11447 */
11448 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11449 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11450 nr_running == 1)
11451 continue;
11452
11453 /*
11454 * Make sure we only pull tasks from a CPU of lower priority
11455 * when balancing between SMT siblings.
11456 *
11457 * If balancing between cores, let lower priority CPUs help
11458 * SMT cores with more than one busy sibling.
11459 */
11460 if ((env->sd->flags & SD_ASYM_PACKING) &&
11461 sched_use_asym_prio(env->sd, i) &&
11462 sched_asym_prefer(i, env->dst_cpu) &&
11463 nr_running == 1)
11464 continue;
11465
11466 switch (env->migration_type) {
11467 case migrate_load:
11468 /*
11469 * When comparing with load imbalance, use cpu_load()
11470 * which is not scaled with the CPU capacity.
11471 */
11472 load = cpu_load(rq);
11473
11474 if (nr_running == 1 && load > env->imbalance &&
11475 !check_cpu_capacity(rq, env->sd))
11476 break;
11477
11478 /*
11479 * For the load comparisons with the other CPUs,
11480 * consider the cpu_load() scaled with the CPU
11481 * capacity, so that the load can be moved away
11482 * from the CPU that is potentially running at a
11483 * lower capacity.
11484 *
11485 * Thus we're looking for max(load_i / capacity_i),
11486 * crosswise multiplication to rid ourselves of the
11487 * division works out to:
11488 * load_i * capacity_j > load_j * capacity_i;
11489 * where j is our previous maximum.
11490 */
11491 if (load * busiest_capacity > busiest_load * capacity) {
11492 busiest_load = load;
11493 busiest_capacity = capacity;
11494 busiest = rq;
11495 }
11496 break;
11497
11498 case migrate_util:
11499 util = cpu_util_cfs_boost(i);
11500
11501 /*
11502 * Don't try to pull utilization from a CPU with one
11503 * running task. Whatever its utilization, we will fail
11504 * detach the task.
11505 */
11506 if (nr_running <= 1)
11507 continue;
11508
11509 if (busiest_util < util) {
11510 busiest_util = util;
11511 busiest = rq;
11512 }
11513 break;
11514
11515 case migrate_task:
11516 if (busiest_nr < nr_running) {
11517 busiest_nr = nr_running;
11518 busiest = rq;
11519 }
11520 break;
11521
11522 case migrate_misfit:
11523 /*
11524 * For ASYM_CPUCAPACITY domains with misfit tasks we
11525 * simply seek the "biggest" misfit task.
11526 */
11527 if (rq->misfit_task_load > busiest_load) {
11528 busiest_load = rq->misfit_task_load;
11529 busiest = rq;
11530 }
11531
11532 break;
11533
11534 }
11535 }
11536
11537 return busiest;
11538 }
11539
11540 /*
11541 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11542 * so long as it is large enough.
11543 */
11544 #define MAX_PINNED_INTERVAL 512
11545
11546 static inline bool
asym_active_balance(struct lb_env * env)11547 asym_active_balance(struct lb_env *env)
11548 {
11549 /*
11550 * ASYM_PACKING needs to force migrate tasks from busy but lower
11551 * priority CPUs in order to pack all tasks in the highest priority
11552 * CPUs. When done between cores, do it only if the whole core if the
11553 * whole core is idle.
11554 *
11555 * If @env::src_cpu is an SMT core with busy siblings, let
11556 * the lower priority @env::dst_cpu help it. Do not follow
11557 * CPU priority.
11558 */
11559 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
11560 sched_use_asym_prio(env->sd, env->dst_cpu) &&
11561 (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11562 !sched_use_asym_prio(env->sd, env->src_cpu));
11563 }
11564
11565 static inline bool
imbalanced_active_balance(struct lb_env * env)11566 imbalanced_active_balance(struct lb_env *env)
11567 {
11568 struct sched_domain *sd = env->sd;
11569
11570 /*
11571 * The imbalanced case includes the case of pinned tasks preventing a fair
11572 * distribution of the load on the system but also the even distribution of the
11573 * threads on a system with spare capacity
11574 */
11575 if ((env->migration_type == migrate_task) &&
11576 (sd->nr_balance_failed > sd->cache_nice_tries+2))
11577 return 1;
11578
11579 return 0;
11580 }
11581
need_active_balance(struct lb_env * env)11582 static int need_active_balance(struct lb_env *env)
11583 {
11584 struct sched_domain *sd = env->sd;
11585
11586 if (asym_active_balance(env))
11587 return 1;
11588
11589 if (imbalanced_active_balance(env))
11590 return 1;
11591
11592 /*
11593 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11594 * It's worth migrating the task if the src_cpu's capacity is reduced
11595 * because of other sched_class or IRQs if more capacity stays
11596 * available on dst_cpu.
11597 */
11598 if ((env->idle != CPU_NOT_IDLE) &&
11599 (env->src_rq->cfs.h_nr_running == 1)) {
11600 if ((check_cpu_capacity(env->src_rq, sd)) &&
11601 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11602 return 1;
11603 }
11604
11605 if (env->migration_type == migrate_misfit)
11606 return 1;
11607
11608 return 0;
11609 }
11610
11611 #ifdef CONFIG_CPU_ISOLATION_OPT
group_balance_cpu_not_isolated(struct sched_group * sg)11612 int group_balance_cpu_not_isolated(struct sched_group *sg)
11613 {
11614 cpumask_t cpus;
11615
11616 cpumask_and(&cpus, sched_group_span(sg), group_balance_mask(sg));
11617 cpumask_andnot(&cpus, &cpus, cpu_isolated_mask);
11618 return cpumask_first(&cpus);
11619 }
11620 #endif
11621 static int active_load_balance_cpu_stop(void *data);
11622
should_we_balance(struct lb_env * env)11623 static int should_we_balance(struct lb_env *env)
11624 {
11625 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11626 struct sched_group *sg = env->sd->groups;
11627 int cpu, idle_smt = -1;
11628
11629 /*
11630 * Ensure the balancing environment is consistent; can happen
11631 * when the softirq triggers 'during' hotplug.
11632 */
11633 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11634 return 0;
11635
11636 /*
11637 * In the newly idle case, we will allow all the CPUs
11638 * to do the newly idle load balance.
11639 *
11640 * However, we bail out if we already have tasks or a wakeup pending,
11641 * to optimize wakeup latency.
11642 */
11643 if (env->idle == CPU_NEWLY_IDLE) {
11644 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11645 return 0;
11646 return 1;
11647 }
11648
11649 cpumask_copy(swb_cpus, group_balance_mask(sg));
11650 /* Try to find first idle CPU */
11651 for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11652 if (!idle_cpu(cpu) || cpu_isolated(cpu))
11653 continue;
11654
11655 /*
11656 * Don't balance to idle SMT in busy core right away when
11657 * balancing cores, but remember the first idle SMT CPU for
11658 * later consideration. Find CPU on an idle core first.
11659 */
11660 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11661 if (idle_smt == -1)
11662 idle_smt = cpu;
11663 /*
11664 * If the core is not idle, and first SMT sibling which is
11665 * idle has been found, then its not needed to check other
11666 * SMT siblings for idleness:
11667 */
11668 #ifdef CONFIG_SCHED_SMT
11669 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11670 #endif
11671 continue;
11672 }
11673
11674 /*
11675 * Are we the first idle core in a non-SMT domain or higher,
11676 * or the first idle CPU in a SMT domain?
11677 */
11678 return cpu == env->dst_cpu;
11679 }
11680
11681 /* Are we the first idle CPU with busy siblings? */
11682 if (idle_smt != -1)
11683 return idle_smt == env->dst_cpu;
11684
11685 /* Are we the first CPU of this group ? */
11686 return group_balance_cpu_not_isolated(sg) == env->dst_cpu;
11687 }
11688
11689 /*
11690 * Check this_cpu to ensure it is balanced within domain. Attempt to move
11691 * tasks if there is an imbalance.
11692 */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11693 static int load_balance(int this_cpu, struct rq *this_rq,
11694 struct sched_domain *sd, enum cpu_idle_type idle,
11695 int *continue_balancing)
11696 {
11697 int ld_moved, cur_ld_moved, active_balance = 0;
11698 struct sched_domain *sd_parent = sd->parent;
11699 struct sched_group *group;
11700 struct rq *busiest;
11701 struct rq_flags rf;
11702 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11703 struct lb_env env = {
11704 .sd = sd,
11705 .dst_cpu = this_cpu,
11706 .dst_rq = this_rq,
11707 .dst_grpmask = group_balance_mask(sd->groups),
11708 .idle = idle,
11709 .loop_break = SCHED_NR_MIGRATE_BREAK,
11710 .cpus = cpus,
11711 .fbq_type = all,
11712 .tasks = LIST_HEAD_INIT(env.tasks),
11713 };
11714
11715 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11716
11717 schedstat_inc(sd->lb_count[idle]);
11718
11719 redo:
11720 if (!should_we_balance(&env)) {
11721 *continue_balancing = 0;
11722 goto out_balanced;
11723 }
11724
11725 group = find_busiest_group(&env);
11726 if (!group) {
11727 schedstat_inc(sd->lb_nobusyg[idle]);
11728 goto out_balanced;
11729 }
11730
11731 busiest = find_busiest_queue(&env, group);
11732 if (!busiest) {
11733 schedstat_inc(sd->lb_nobusyq[idle]);
11734 goto out_balanced;
11735 }
11736
11737 WARN_ON_ONCE(busiest == env.dst_rq);
11738
11739 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11740
11741 env.src_cpu = busiest->cpu;
11742 env.src_rq = busiest;
11743
11744 ld_moved = 0;
11745 /* Clear this flag as soon as we find a pullable task */
11746 env.flags |= LBF_ALL_PINNED;
11747 if (busiest->nr_running > 1) {
11748 /*
11749 * Attempt to move tasks. If find_busiest_group has found
11750 * an imbalance but busiest->nr_running <= 1, the group is
11751 * still unbalanced. ld_moved simply stays zero, so it is
11752 * correctly treated as an imbalance.
11753 */
11754 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
11755
11756 more_balance:
11757 rq_lock_irqsave(busiest, &rf);
11758 update_rq_clock(busiest);
11759
11760 /*
11761 * cur_ld_moved - load moved in current iteration
11762 * ld_moved - cumulative load moved across iterations
11763 */
11764 cur_ld_moved = detach_tasks(&env);
11765
11766 /*
11767 * We've detached some tasks from busiest_rq. Every
11768 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11769 * unlock busiest->lock, and we are able to be sure
11770 * that nobody can manipulate the tasks in parallel.
11771 * See task_rq_lock() family for the details.
11772 */
11773
11774 rq_unlock(busiest, &rf);
11775
11776 if (cur_ld_moved) {
11777 attach_tasks(&env);
11778 ld_moved += cur_ld_moved;
11779 }
11780
11781 local_irq_restore(rf.flags);
11782
11783 if (env.flags & LBF_NEED_BREAK) {
11784 env.flags &= ~LBF_NEED_BREAK;
11785 goto more_balance;
11786 }
11787
11788 /*
11789 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11790 * us and move them to an alternate dst_cpu in our sched_group
11791 * where they can run. The upper limit on how many times we
11792 * iterate on same src_cpu is dependent on number of CPUs in our
11793 * sched_group.
11794 *
11795 * This changes load balance semantics a bit on who can move
11796 * load to a given_cpu. In addition to the given_cpu itself
11797 * (or a ilb_cpu acting on its behalf where given_cpu is
11798 * nohz-idle), we now have balance_cpu in a position to move
11799 * load to given_cpu. In rare situations, this may cause
11800 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11801 * _independently_ and at _same_ time to move some load to
11802 * given_cpu) causing excess load to be moved to given_cpu.
11803 * This however should not happen so much in practice and
11804 * moreover subsequent load balance cycles should correct the
11805 * excess load moved.
11806 */
11807 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11808
11809 /* Prevent to re-select dst_cpu via env's CPUs */
11810 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
11811
11812 env.dst_rq = cpu_rq(env.new_dst_cpu);
11813 env.dst_cpu = env.new_dst_cpu;
11814 env.flags &= ~LBF_DST_PINNED;
11815 env.loop = 0;
11816 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11817
11818 /*
11819 * Go back to "more_balance" rather than "redo" since we
11820 * need to continue with same src_cpu.
11821 */
11822 goto more_balance;
11823 }
11824
11825 /*
11826 * We failed to reach balance because of affinity.
11827 */
11828 if (sd_parent) {
11829 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11830
11831 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11832 *group_imbalance = 1;
11833 }
11834
11835 /* All tasks on this runqueue were pinned by CPU affinity */
11836 if (unlikely(env.flags & LBF_ALL_PINNED)) {
11837 __cpumask_clear_cpu(cpu_of(busiest), cpus);
11838 /*
11839 * Attempting to continue load balancing at the current
11840 * sched_domain level only makes sense if there are
11841 * active CPUs remaining as possible busiest CPUs to
11842 * pull load from which are not contained within the
11843 * destination group that is receiving any migrated
11844 * load.
11845 */
11846 if (!cpumask_subset(cpus, env.dst_grpmask)) {
11847 env.loop = 0;
11848 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11849 goto redo;
11850 }
11851 goto out_all_pinned;
11852 }
11853 }
11854
11855 if (!ld_moved) {
11856 schedstat_inc(sd->lb_failed[idle]);
11857 /*
11858 * Increment the failure counter only on periodic balance.
11859 * We do not want newidle balance, which can be very
11860 * frequent, pollute the failure counter causing
11861 * excessive cache_hot migrations and active balances.
11862 */
11863 if (idle != CPU_NEWLY_IDLE)
11864 sd->nr_balance_failed++;
11865
11866 if (need_active_balance(&env)) {
11867 unsigned long flags;
11868
11869 raw_spin_rq_lock_irqsave(busiest, flags);
11870
11871 /*
11872 * Don't kick the active_load_balance_cpu_stop,
11873 * if the curr task on busiest CPU can't be
11874 * moved to this_cpu:
11875 */
11876 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11877 raw_spin_rq_unlock_irqrestore(busiest, flags);
11878 goto out_one_pinned;
11879 }
11880
11881 /* Record that we found at least one task that could run on this_cpu */
11882 env.flags &= ~LBF_ALL_PINNED;
11883
11884 /*
11885 * ->active_balance synchronizes accesses to
11886 * ->active_balance_work. Once set, it's cleared
11887 * only after active load balance is finished.
11888 */
11889 if (!busiest->active_balance &&
11890 !cpu_isolated(cpu_of(busiest))) {
11891 busiest->active_balance = 1;
11892 busiest->push_cpu = this_cpu;
11893 active_balance = 1;
11894 }
11895
11896 preempt_disable();
11897 raw_spin_rq_unlock_irqrestore(busiest, flags);
11898 if (active_balance) {
11899 stop_one_cpu_nowait(cpu_of(busiest),
11900 active_load_balance_cpu_stop, busiest,
11901 &busiest->active_balance_work);
11902 }
11903 preempt_enable();
11904 }
11905 } else {
11906 sd->nr_balance_failed = 0;
11907 }
11908
11909 if (likely(!active_balance) || need_active_balance(&env)) {
11910 /* We were unbalanced, so reset the balancing interval */
11911 sd->balance_interval = sd->min_interval;
11912 }
11913
11914 goto out;
11915
11916 out_balanced:
11917 /*
11918 * We reach balance although we may have faced some affinity
11919 * constraints. Clear the imbalance flag only if other tasks got
11920 * a chance to move and fix the imbalance.
11921 */
11922 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11923 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11924
11925 if (*group_imbalance)
11926 *group_imbalance = 0;
11927 }
11928
11929 out_all_pinned:
11930 /*
11931 * We reach balance because all tasks are pinned at this level so
11932 * we can't migrate them. Let the imbalance flag set so parent level
11933 * can try to migrate them.
11934 */
11935 schedstat_inc(sd->lb_balanced[idle]);
11936
11937 sd->nr_balance_failed = 0;
11938
11939 out_one_pinned:
11940 ld_moved = 0;
11941
11942 /*
11943 * newidle_balance() disregards balance intervals, so we could
11944 * repeatedly reach this code, which would lead to balance_interval
11945 * skyrocketing in a short amount of time. Skip the balance_interval
11946 * increase logic to avoid that.
11947 */
11948 if (env.idle == CPU_NEWLY_IDLE)
11949 goto out;
11950
11951 /* tune up the balancing interval */
11952 if ((env.flags & LBF_ALL_PINNED &&
11953 sd->balance_interval < MAX_PINNED_INTERVAL) ||
11954 sd->balance_interval < sd->max_interval)
11955 sd->balance_interval *= 2;
11956 out:
11957 return ld_moved;
11958 }
11959
11960 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)11961 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11962 {
11963 unsigned long interval = sd->balance_interval;
11964
11965 if (cpu_busy)
11966 interval *= sd->busy_factor;
11967
11968 /* scale ms to jiffies */
11969 interval = msecs_to_jiffies(interval);
11970
11971 /*
11972 * Reduce likelihood of busy balancing at higher domains racing with
11973 * balancing at lower domains by preventing their balancing periods
11974 * from being multiples of each other.
11975 */
11976 if (cpu_busy)
11977 interval -= 1;
11978
11979 interval = clamp(interval, 1UL, max_load_balance_interval);
11980
11981 return interval;
11982 }
11983
11984 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)11985 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11986 {
11987 unsigned long interval, next;
11988
11989 /* used by idle balance, so cpu_busy = 0 */
11990 interval = get_sd_balance_interval(sd, 0);
11991 next = sd->last_balance + interval;
11992
11993 if (time_after(*next_balance, next))
11994 *next_balance = next;
11995 }
11996
11997 /*
11998 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11999 * running tasks off the busiest CPU onto idle CPUs. It requires at
12000 * least 1 task to be running on each physical CPU where possible, and
12001 * avoids physical / logical imbalances.
12002 */
active_load_balance_cpu_stop(void * data)12003 static int active_load_balance_cpu_stop(void *data)
12004 {
12005 struct rq *busiest_rq = data;
12006 int busiest_cpu = cpu_of(busiest_rq);
12007 int target_cpu = busiest_rq->push_cpu;
12008 struct rq *target_rq = cpu_rq(target_cpu);
12009 struct sched_domain *sd = NULL;
12010 struct task_struct *p = NULL;
12011 struct rq_flags rf;
12012 #ifdef CONFIG_SCHED_EAS
12013 struct task_struct *push_task;
12014 int push_task_detached = 0;
12015 #endif
12016
12017 rq_lock_irq(busiest_rq, &rf);
12018 /*
12019 * Between queueing the stop-work and running it is a hole in which
12020 * CPUs can become inactive. We should not move tasks from or to
12021 * inactive CPUs.
12022 */
12023 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
12024 goto out_unlock;
12025
12026 /* Make sure the requested CPU hasn't gone down in the meantime: */
12027 if (unlikely(busiest_cpu != smp_processor_id() ||
12028 !busiest_rq->active_balance))
12029 goto out_unlock;
12030
12031 /* Is there any task to move? */
12032 if (busiest_rq->nr_running <= 1)
12033 goto out_unlock;
12034
12035 /*
12036 * This condition is "impossible", if it occurs
12037 * we need to fix it. Originally reported by
12038 * Bjorn Helgaas on a 128-CPU setup.
12039 */
12040 WARN_ON_ONCE(busiest_rq == target_rq);
12041 #ifdef CONFIG_SCHED_EAS
12042 push_task = busiest_rq->push_task;
12043 target_cpu = busiest_rq->push_cpu;
12044 if (push_task) {
12045 struct lb_env env = {
12046 .sd = sd,
12047 .dst_cpu = target_cpu,
12048 .dst_rq = target_rq,
12049 .src_cpu = busiest_rq->cpu,
12050 .src_rq = busiest_rq,
12051 .idle = CPU_IDLE,
12052 .flags = 0,
12053 .loop = 0,
12054 };
12055 if (task_on_rq_queued(push_task) &&
12056 push_task->__state == TASK_RUNNING &&
12057 task_cpu(push_task) == busiest_cpu &&
12058 cpu_online(target_cpu)) {
12059 update_rq_clock(busiest_rq);
12060 detach_task(push_task, &env);
12061 push_task_detached = 1;
12062 }
12063 goto out_unlock;
12064 }
12065 #endif
12066
12067 /* Search for an sd spanning us and the target CPU. */
12068 rcu_read_lock();
12069 for_each_domain(target_cpu, sd) {
12070 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12071 break;
12072 }
12073
12074 if (likely(sd)) {
12075 struct lb_env env = {
12076 .sd = sd,
12077 .dst_cpu = target_cpu,
12078 .dst_rq = target_rq,
12079 .src_cpu = busiest_rq->cpu,
12080 .src_rq = busiest_rq,
12081 .idle = CPU_IDLE,
12082 .flags = LBF_ACTIVE_LB,
12083 };
12084
12085 schedstat_inc(sd->alb_count);
12086 update_rq_clock(busiest_rq);
12087
12088 p = detach_one_task(&env);
12089 if (p) {
12090 schedstat_inc(sd->alb_pushed);
12091 /* Active balancing done, reset the failure counter. */
12092 sd->nr_balance_failed = 0;
12093 } else {
12094 schedstat_inc(sd->alb_failed);
12095 }
12096 }
12097 rcu_read_unlock();
12098 out_unlock:
12099 busiest_rq->active_balance = 0;
12100
12101 #ifdef CONFIG_SCHED_EAS
12102 push_task = busiest_rq->push_task;
12103 if (push_task)
12104 busiest_rq->push_task = NULL;
12105 #endif
12106 rq_unlock(busiest_rq, &rf);
12107
12108 #ifdef CONFIG_SCHED_EAS
12109 if (push_task) {
12110 if (push_task_detached)
12111 attach_one_task(target_rq, push_task);
12112
12113 put_task_struct(push_task);
12114 }
12115 #endif
12116
12117 if (p)
12118 attach_one_task(target_rq, p);
12119
12120 local_irq_enable();
12121
12122 return 0;
12123 }
12124
12125 static DEFINE_SPINLOCK(balancing);
12126
12127 /*
12128 * Scale the max load_balance interval with the number of CPUs in the system.
12129 * This trades load-balance latency on larger machines for less cross talk.
12130 */
update_max_interval(void)12131 void update_max_interval(void)
12132 {
12133 unsigned int available_cpus;
12134 #ifdef CONFIG_CPU_ISOLATION_OPT
12135 cpumask_t avail_mask;
12136
12137 cpumask_andnot(&avail_mask, cpu_online_mask, cpu_isolated_mask);
12138 available_cpus = cpumask_weight(&avail_mask);
12139 #else
12140 available_cpus = num_online_cpus();
12141 #endif
12142
12143 max_load_balance_interval = HZ*available_cpus/10;
12144 }
12145
update_newidle_cost(struct sched_domain * sd,u64 cost)12146 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12147 {
12148 if (cost > sd->max_newidle_lb_cost) {
12149 /*
12150 * Track max cost of a domain to make sure to not delay the
12151 * next wakeup on the CPU.
12152 */
12153 sd->max_newidle_lb_cost = cost;
12154 sd->last_decay_max_lb_cost = jiffies;
12155 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12156 /*
12157 * Decay the newidle max times by ~1% per second to ensure that
12158 * it is not outdated and the current max cost is actually
12159 * shorter.
12160 */
12161 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12162 sd->last_decay_max_lb_cost = jiffies;
12163
12164 return true;
12165 }
12166
12167 return false;
12168 }
12169
12170 /*
12171 * It checks each scheduling domain to see if it is due to be balanced,
12172 * and initiates a balancing operation if so.
12173 *
12174 * Balancing parameters are set up in init_sched_domains.
12175 */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)12176 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
12177 {
12178 int continue_balancing = 1;
12179 int cpu = rq->cpu;
12180 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12181 unsigned long interval;
12182 struct sched_domain *sd;
12183 /* Earliest time when we have to do rebalance again */
12184 unsigned long next_balance = jiffies + 60*HZ;
12185 int update_next_balance = 0;
12186 int need_serialize, need_decay = 0;
12187 u64 max_cost = 0;
12188
12189 rcu_read_lock();
12190 for_each_domain(cpu, sd) {
12191 /*
12192 * Decay the newidle max times here because this is a regular
12193 * visit to all the domains.
12194 */
12195 need_decay = update_newidle_cost(sd, 0);
12196 max_cost += sd->max_newidle_lb_cost;
12197
12198 /*
12199 * Stop the load balance at this level. There is another
12200 * CPU in our sched group which is doing load balancing more
12201 * actively.
12202 */
12203 if (!continue_balancing) {
12204 if (need_decay)
12205 continue;
12206 break;
12207 }
12208
12209 interval = get_sd_balance_interval(sd, busy);
12210
12211 need_serialize = sd->flags & SD_SERIALIZE;
12212 if (need_serialize) {
12213 if (!spin_trylock(&balancing))
12214 goto out;
12215 }
12216
12217 if (time_after_eq(jiffies, sd->last_balance + interval)) {
12218 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
12219 /*
12220 * The LBF_DST_PINNED logic could have changed
12221 * env->dst_cpu, so we can't know our idle
12222 * state even if we migrated tasks. Update it.
12223 */
12224 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
12225 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12226 }
12227 sd->last_balance = jiffies;
12228 interval = get_sd_balance_interval(sd, busy);
12229 }
12230 if (need_serialize)
12231 spin_unlock(&balancing);
12232 out:
12233 if (time_after(next_balance, sd->last_balance + interval)) {
12234 next_balance = sd->last_balance + interval;
12235 update_next_balance = 1;
12236 }
12237 }
12238 if (need_decay) {
12239 /*
12240 * Ensure the rq-wide value also decays but keep it at a
12241 * reasonable floor to avoid funnies with rq->avg_idle.
12242 */
12243 rq->max_idle_balance_cost =
12244 max((u64)sysctl_sched_migration_cost, max_cost);
12245 }
12246 rcu_read_unlock();
12247
12248 /*
12249 * next_balance will be updated only when there is a need.
12250 * When the cpu is attached to null domain for ex, it will not be
12251 * updated.
12252 */
12253 if (likely(update_next_balance))
12254 rq->next_balance = next_balance;
12255
12256 }
12257
on_null_domain(struct rq * rq)12258 static inline int on_null_domain(struct rq *rq)
12259 {
12260 return unlikely(!rcu_dereference_sched(rq->sd));
12261 }
12262
12263 #ifdef CONFIG_NO_HZ_COMMON
12264 /*
12265 * idle load balancing details
12266 * - When one of the busy CPUs notice that there may be an idle rebalancing
12267 * needed, they will kick the idle load balancer, which then does idle
12268 * load balancing for all the idle CPUs.
12269 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
12270 * anywhere yet.
12271 */
12272
find_new_ilb(void)12273 static inline int find_new_ilb(void)
12274 {
12275 int ilb;
12276 const struct cpumask *hk_mask;
12277
12278 hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
12279
12280 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
12281
12282 if (cpu_isolated(ilb))
12283 continue;
12284
12285 if (ilb == smp_processor_id())
12286 continue;
12287
12288 if (idle_cpu(ilb))
12289 return ilb;
12290 }
12291
12292 return nr_cpu_ids;
12293 }
12294
12295 /*
12296 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
12297 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
12298 */
kick_ilb(unsigned int flags)12299 static void kick_ilb(unsigned int flags)
12300 {
12301 int ilb_cpu;
12302
12303 /*
12304 * Increase nohz.next_balance only when if full ilb is triggered but
12305 * not if we only update stats.
12306 */
12307 if (flags & NOHZ_BALANCE_KICK)
12308 nohz.next_balance = jiffies+1;
12309
12310 ilb_cpu = find_new_ilb();
12311
12312 if (ilb_cpu >= nr_cpu_ids)
12313 return;
12314
12315 /*
12316 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12317 * the first flag owns it; cleared by nohz_csd_func().
12318 */
12319 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12320 if (flags & NOHZ_KICK_MASK)
12321 return;
12322
12323 /*
12324 * This way we generate an IPI on the target CPU which
12325 * is idle. And the softirq performing nohz idle load balance
12326 * will be run before returning from the IPI.
12327 */
12328 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12329 }
12330
12331 /*
12332 * Current decision point for kicking the idle load balancer in the presence
12333 * of idle CPUs in the system.
12334 */
nohz_balancer_kick(struct rq * rq)12335 static void nohz_balancer_kick(struct rq *rq)
12336 {
12337 unsigned long now = jiffies;
12338 struct sched_domain_shared *sds;
12339 struct sched_domain *sd;
12340 int nr_busy, i, cpu = rq->cpu;
12341 unsigned int flags = 0;
12342 cpumask_t cpumask;
12343
12344 if (unlikely(rq->idle_balance))
12345 return;
12346
12347 /*
12348 * We may be recently in ticked or tickless idle mode. At the first
12349 * busy tick after returning from idle, we will update the busy stats.
12350 */
12351 nohz_balance_exit_idle(rq);
12352
12353 /*
12354 * None are in tickless mode and hence no need for NOHZ idle load
12355 * balancing.
12356 */
12357 #ifdef CONFIG_CPU_ISOLATION_OPT
12358 cpumask_andnot(&cpumask, nohz.idle_cpus_mask, cpu_isolated_mask);
12359 if (cpumask_empty(&cpumask))
12360 return;
12361 #else
12362 cpumask_copy(&cpumask, nohz.idle_cpus_mask);
12363 if (likely(!atomic_read(&nohz.nr_cpus)))
12364 return;
12365 #endif
12366
12367 if (READ_ONCE(nohz.has_blocked) &&
12368 time_after(now, READ_ONCE(nohz.next_blocked)))
12369 flags = NOHZ_STATS_KICK;
12370
12371 if (time_before(now, nohz.next_balance))
12372 goto out;
12373
12374 if (rq->nr_running >= 2) {
12375 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12376 goto out;
12377 }
12378
12379 rcu_read_lock();
12380
12381 sd = rcu_dereference(rq->sd);
12382 if (sd) {
12383 /*
12384 * If there's a CFS task and the current CPU has reduced
12385 * capacity; kick the ILB to see if there's a better CPU to run
12386 * on.
12387 */
12388 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
12389 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12390 goto unlock;
12391 }
12392 }
12393
12394 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12395 if (sd) {
12396 /*
12397 * When ASYM_PACKING; see if there's a more preferred CPU
12398 * currently idle; in which case, kick the ILB to move tasks
12399 * around.
12400 *
12401 * When balancing betwen cores, all the SMT siblings of the
12402 * preferred CPU must be idle.
12403 */
12404 for_each_cpu_and(i, sched_domain_span(sd), &cpumask) {
12405 if (sched_use_asym_prio(sd, i) &&
12406 sched_asym_prefer(i, cpu)) {
12407 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12408 goto unlock;
12409 }
12410 }
12411 }
12412
12413 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12414 if (sd) {
12415 /*
12416 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12417 * to run the misfit task on.
12418 */
12419 if (check_misfit_status(rq, sd)) {
12420 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12421 goto unlock;
12422 }
12423
12424 /*
12425 * For asymmetric systems, we do not want to nicely balance
12426 * cache use, instead we want to embrace asymmetry and only
12427 * ensure tasks have enough CPU capacity.
12428 *
12429 * Skip the LLC logic because it's not relevant in that case.
12430 */
12431 goto unlock;
12432 }
12433
12434 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12435 if (sds) {
12436 /*
12437 * If there is an imbalance between LLC domains (IOW we could
12438 * increase the overall cache use), we need some less-loaded LLC
12439 * domain to pull some load. Likewise, we may need to spread
12440 * load within the current LLC domain (e.g. packed SMT cores but
12441 * other CPUs are idle). We can't really know from here how busy
12442 * the others are - so just get a nohz balance going if it looks
12443 * like this LLC domain has tasks we could move.
12444 */
12445 nr_busy = atomic_read(&sds->nr_busy_cpus);
12446 if (nr_busy > 1) {
12447 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12448 goto unlock;
12449 }
12450 }
12451 unlock:
12452 rcu_read_unlock();
12453 out:
12454 if (READ_ONCE(nohz.needs_update))
12455 flags |= NOHZ_NEXT_KICK;
12456
12457 if (flags)
12458 kick_ilb(flags);
12459 }
12460
set_cpu_sd_state_busy(int cpu)12461 static void set_cpu_sd_state_busy(int cpu)
12462 {
12463 struct sched_domain *sd;
12464
12465 rcu_read_lock();
12466 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12467
12468 if (!sd || !sd->nohz_idle)
12469 goto unlock;
12470 sd->nohz_idle = 0;
12471
12472 atomic_inc(&sd->shared->nr_busy_cpus);
12473 unlock:
12474 rcu_read_unlock();
12475 }
12476
nohz_balance_exit_idle(struct rq * rq)12477 void nohz_balance_exit_idle(struct rq *rq)
12478 {
12479 SCHED_WARN_ON(rq != this_rq());
12480
12481 if (likely(!rq->nohz_tick_stopped))
12482 return;
12483
12484 rq->nohz_tick_stopped = 0;
12485 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12486 atomic_dec(&nohz.nr_cpus);
12487
12488 set_cpu_sd_state_busy(rq->cpu);
12489 }
12490
set_cpu_sd_state_idle(int cpu)12491 static void set_cpu_sd_state_idle(int cpu)
12492 {
12493 struct sched_domain *sd;
12494
12495 rcu_read_lock();
12496 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12497
12498 if (!sd || sd->nohz_idle)
12499 goto unlock;
12500 sd->nohz_idle = 1;
12501
12502 atomic_dec(&sd->shared->nr_busy_cpus);
12503 unlock:
12504 rcu_read_unlock();
12505 }
12506
12507 /*
12508 * This routine will record that the CPU is going idle with tick stopped.
12509 * This info will be used in performing idle load balancing in the future.
12510 */
nohz_balance_enter_idle(int cpu)12511 void nohz_balance_enter_idle(int cpu)
12512 {
12513 struct rq *rq = cpu_rq(cpu);
12514
12515 SCHED_WARN_ON(cpu != smp_processor_id());
12516
12517 /* If this CPU is going down, then nothing needs to be done: */
12518 if (!cpu_active(cpu))
12519 return;
12520
12521 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
12522 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12523 return;
12524
12525 /*
12526 * Can be set safely without rq->lock held
12527 * If a clear happens, it will have evaluated last additions because
12528 * rq->lock is held during the check and the clear
12529 */
12530 rq->has_blocked_load = 1;
12531
12532 /*
12533 * The tick is still stopped but load could have been added in the
12534 * meantime. We set the nohz.has_blocked flag to trig a check of the
12535 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12536 * of nohz.has_blocked can only happen after checking the new load
12537 */
12538 if (rq->nohz_tick_stopped)
12539 goto out;
12540
12541 /* If we're a completely isolated CPU, we don't play: */
12542 if (on_null_domain(rq))
12543 return;
12544
12545 rq->nohz_tick_stopped = 1;
12546
12547 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12548 atomic_inc(&nohz.nr_cpus);
12549
12550 /*
12551 * Ensures that if nohz_idle_balance() fails to observe our
12552 * @idle_cpus_mask store, it must observe the @has_blocked
12553 * and @needs_update stores.
12554 */
12555 smp_mb__after_atomic();
12556
12557 set_cpu_sd_state_idle(cpu);
12558
12559 WRITE_ONCE(nohz.needs_update, 1);
12560 out:
12561 /*
12562 * Each time a cpu enter idle, we assume that it has blocked load and
12563 * enable the periodic update of the load of idle cpus
12564 */
12565 WRITE_ONCE(nohz.has_blocked, 1);
12566 }
12567
update_nohz_stats(struct rq * rq)12568 static bool update_nohz_stats(struct rq *rq)
12569 {
12570 unsigned int cpu = rq->cpu;
12571
12572 if (!rq->has_blocked_load)
12573 return false;
12574
12575 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12576 return false;
12577
12578 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12579 return true;
12580
12581 update_blocked_averages(cpu);
12582
12583 return rq->has_blocked_load;
12584 }
12585
12586 /*
12587 * Internal function that runs load balance for all idle cpus. The load balance
12588 * can be a simple update of blocked load or a complete load balance with
12589 * tasks movement depending of flags.
12590 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)12591 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12592 {
12593 /* Earliest time when we have to do rebalance again */
12594 unsigned long now = jiffies;
12595 unsigned long next_balance = now + 60*HZ;
12596 bool has_blocked_load = false;
12597 int update_next_balance = 0;
12598 int this_cpu = this_rq->cpu;
12599 int balance_cpu;
12600 struct rq *rq;
12601 cpumask_t cpus;
12602
12603 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12604
12605 /*
12606 * We assume there will be no idle load after this update and clear
12607 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12608 * set the has_blocked flag and trigger another update of idle load.
12609 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12610 * setting the flag, we are sure to not clear the state and not
12611 * check the load of an idle cpu.
12612 *
12613 * Same applies to idle_cpus_mask vs needs_update.
12614 */
12615 if (flags & NOHZ_STATS_KICK)
12616 WRITE_ONCE(nohz.has_blocked, 0);
12617 if (flags & NOHZ_NEXT_KICK)
12618 WRITE_ONCE(nohz.needs_update, 0);
12619
12620 /*
12621 * Ensures that if we miss the CPU, we must see the has_blocked
12622 * store from nohz_balance_enter_idle().
12623 */
12624 smp_mb();
12625
12626 #ifdef CONFIG_CPU_ISOLATION_OPT
12627 cpumask_andnot(&cpus, nohz.idle_cpus_mask, cpu_isolated_mask);
12628 #else
12629 cpumask_copy(&cpus, nohz.idle_cpus_mask);
12630 #endif
12631
12632 /*
12633 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12634 * chance for other idle cpu to pull load.
12635 */
12636 for_each_cpu_wrap(balance_cpu, &cpus, this_cpu+1) {
12637 if (!idle_cpu(balance_cpu))
12638 continue;
12639
12640 /*
12641 * If this CPU gets work to do, stop the load balancing
12642 * work being done for other CPUs. Next load
12643 * balancing owner will pick it up.
12644 */
12645 if (!idle_cpu(this_cpu) && need_resched()) {
12646 if (flags & NOHZ_STATS_KICK)
12647 has_blocked_load = true;
12648 if (flags & NOHZ_NEXT_KICK)
12649 WRITE_ONCE(nohz.needs_update, 1);
12650 goto abort;
12651 }
12652
12653 rq = cpu_rq(balance_cpu);
12654
12655 if (flags & NOHZ_STATS_KICK)
12656 has_blocked_load |= update_nohz_stats(rq);
12657
12658 /*
12659 * If time for next balance is due,
12660 * do the balance.
12661 */
12662 if (time_after_eq(jiffies, rq->next_balance)) {
12663 struct rq_flags rf;
12664
12665 rq_lock_irqsave(rq, &rf);
12666 update_rq_clock(rq);
12667 rq_unlock_irqrestore(rq, &rf);
12668
12669 if (flags & NOHZ_BALANCE_KICK)
12670 rebalance_domains(rq, CPU_IDLE);
12671 }
12672
12673 if (time_after(next_balance, rq->next_balance)) {
12674 next_balance = rq->next_balance;
12675 update_next_balance = 1;
12676 }
12677 }
12678
12679 /*
12680 * next_balance will be updated only when there is a need.
12681 * When the CPU is attached to null domain for ex, it will not be
12682 * updated.
12683 */
12684 if (likely(update_next_balance))
12685 nohz.next_balance = next_balance;
12686
12687 if (flags & NOHZ_STATS_KICK)
12688 WRITE_ONCE(nohz.next_blocked,
12689 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12690
12691 abort:
12692 /* There is still blocked load, enable periodic update */
12693 if (has_blocked_load)
12694 WRITE_ONCE(nohz.has_blocked, 1);
12695 }
12696
12697 /*
12698 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12699 * rebalancing for all the cpus for whom scheduler ticks are stopped.
12700 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12701 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12702 {
12703 unsigned int flags = this_rq->nohz_idle_balance;
12704
12705 if (!flags)
12706 return false;
12707
12708 this_rq->nohz_idle_balance = 0;
12709
12710 if (idle != CPU_IDLE)
12711 return false;
12712
12713 _nohz_idle_balance(this_rq, flags);
12714
12715 return true;
12716 }
12717
12718 /*
12719 * Check if we need to run the ILB for updating blocked load before entering
12720 * idle state.
12721 */
nohz_run_idle_balance(int cpu)12722 void nohz_run_idle_balance(int cpu)
12723 {
12724 unsigned int flags;
12725
12726 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12727
12728 /*
12729 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12730 * (ie NOHZ_STATS_KICK set) and will do the same.
12731 */
12732 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12733 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12734 }
12735
nohz_newidle_balance(struct rq * this_rq)12736 static void nohz_newidle_balance(struct rq *this_rq)
12737 {
12738 int this_cpu = this_rq->cpu;
12739
12740 /*
12741 * This CPU doesn't want to be disturbed by scheduler
12742 * housekeeping
12743 */
12744 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12745 return;
12746
12747 /* Will wake up very soon. No time for doing anything else*/
12748 if (this_rq->avg_idle < sysctl_sched_migration_cost)
12749 return;
12750
12751 /* Don't need to update blocked load of idle CPUs*/
12752 if (!READ_ONCE(nohz.has_blocked) ||
12753 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12754 return;
12755
12756 /*
12757 * Set the need to trigger ILB in order to update blocked load
12758 * before entering idle state.
12759 */
12760 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12761 }
12762
12763 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)12764 static inline void nohz_balancer_kick(struct rq *rq) { }
12765
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12766 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12767 {
12768 return false;
12769 }
12770
nohz_newidle_balance(struct rq * this_rq)12771 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12772 #endif /* CONFIG_NO_HZ_COMMON */
12773
12774 /*
12775 * newidle_balance is called by schedule() if this_cpu is about to become
12776 * idle. Attempts to pull tasks from other CPUs.
12777 *
12778 * Returns:
12779 * < 0 - we released the lock and there are !fair tasks present
12780 * 0 - failed, no new tasks
12781 * > 0 - success, new (fair) tasks present
12782 */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)12783 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12784 {
12785 unsigned long next_balance = jiffies + HZ;
12786 int this_cpu = this_rq->cpu;
12787 u64 t0, t1, curr_cost = 0;
12788 struct sched_domain *sd;
12789 int pulled_task = 0;
12790
12791 if (cpu_isolated(this_cpu))
12792 return 0;
12793
12794 update_misfit_status(NULL, this_rq);
12795
12796 /*
12797 * There is a task waiting to run. No need to search for one.
12798 * Return 0; the task will be enqueued when switching to idle.
12799 */
12800 if (this_rq->ttwu_pending)
12801 return 0;
12802
12803 /*
12804 * We must set idle_stamp _before_ calling idle_balance(), such that we
12805 * measure the duration of idle_balance() as idle time.
12806 */
12807 this_rq->idle_stamp = rq_clock(this_rq);
12808
12809 /*
12810 * Do not pull tasks towards !active CPUs...
12811 */
12812 if (!cpu_active(this_cpu))
12813 return 0;
12814
12815 /*
12816 * This is OK, because current is on_cpu, which avoids it being picked
12817 * for load-balance and preemption/IRQs are still disabled avoiding
12818 * further scheduler activity on it and we're being very careful to
12819 * re-start the picking loop.
12820 */
12821 rq_unpin_lock(this_rq, rf);
12822
12823 rcu_read_lock();
12824 sd = rcu_dereference_check_sched_domain(this_rq->sd);
12825
12826 if (!READ_ONCE(this_rq->rd->overload) ||
12827 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12828
12829 if (sd)
12830 update_next_balance(sd, &next_balance);
12831 rcu_read_unlock();
12832
12833 goto out;
12834 }
12835 rcu_read_unlock();
12836
12837 raw_spin_rq_unlock(this_rq);
12838
12839 t0 = sched_clock_cpu(this_cpu);
12840 update_blocked_averages(this_cpu);
12841
12842 rcu_read_lock();
12843 for_each_domain(this_cpu, sd) {
12844 int continue_balancing = 1;
12845 u64 domain_cost;
12846
12847 update_next_balance(sd, &next_balance);
12848
12849 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12850 break;
12851
12852 if (sd->flags & SD_BALANCE_NEWIDLE) {
12853
12854 pulled_task = load_balance(this_cpu, this_rq,
12855 sd, CPU_NEWLY_IDLE,
12856 &continue_balancing);
12857
12858 t1 = sched_clock_cpu(this_cpu);
12859 domain_cost = t1 - t0;
12860 update_newidle_cost(sd, domain_cost);
12861
12862 curr_cost += domain_cost;
12863 t0 = t1;
12864 }
12865
12866 /*
12867 * Stop searching for tasks to pull if there are
12868 * now runnable tasks on this rq.
12869 */
12870 if (pulled_task || this_rq->nr_running > 0 ||
12871 this_rq->ttwu_pending)
12872 break;
12873 }
12874 rcu_read_unlock();
12875
12876 raw_spin_rq_lock(this_rq);
12877
12878 if (curr_cost > this_rq->max_idle_balance_cost)
12879 this_rq->max_idle_balance_cost = curr_cost;
12880
12881 /*
12882 * While browsing the domains, we released the rq lock, a task could
12883 * have been enqueued in the meantime. Since we're not going idle,
12884 * pretend we pulled a task.
12885 */
12886 if (this_rq->cfs.h_nr_running && !pulled_task)
12887 pulled_task = 1;
12888
12889 /* Is there a task of a high priority class? */
12890 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12891 pulled_task = -1;
12892
12893 out:
12894 /* Move the next balance forward */
12895 if (time_after(this_rq->next_balance, next_balance))
12896 this_rq->next_balance = next_balance;
12897
12898 if (pulled_task)
12899 this_rq->idle_stamp = 0;
12900 else
12901 nohz_newidle_balance(this_rq);
12902
12903 rq_repin_lock(this_rq, rf);
12904
12905 return pulled_task;
12906 }
12907
12908 /*
12909 * run_rebalance_domains is triggered when needed from the scheduler tick.
12910 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12911 */
run_rebalance_domains(struct softirq_action * h)12912 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12913 {
12914 struct rq *this_rq = this_rq();
12915 enum cpu_idle_type idle = this_rq->idle_balance ?
12916 CPU_IDLE : CPU_NOT_IDLE;
12917
12918 /*
12919 * Since core isolation doesn't update nohz.idle_cpus_mask, there
12920 * is a possibility this nohz kicked cpu could be isolated. Hence
12921 * return if the cpu is isolated.
12922 */
12923 if (cpu_isolated(this_rq->cpu))
12924 return;
12925
12926 /*
12927 * If this CPU has a pending nohz_balance_kick, then do the
12928 * balancing on behalf of the other idle CPUs whose ticks are
12929 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12930 * give the idle CPUs a chance to load balance. Else we may
12931 * load balance only within the local sched_domain hierarchy
12932 * and abort nohz_idle_balance altogether if we pull some load.
12933 */
12934 if (nohz_idle_balance(this_rq, idle))
12935 return;
12936
12937 /* normal load balance */
12938 update_blocked_averages(this_rq->cpu);
12939 rebalance_domains(this_rq, idle);
12940 }
12941
12942 /*
12943 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12944 */
trigger_load_balance(struct rq * rq)12945 void trigger_load_balance(struct rq *rq)
12946 {
12947 /*
12948 * Don't need to rebalance while attached to NULL domain or
12949 * runqueue CPU is not active
12950 */
12951 if (unlikely(on_null_domain(rq)) || cpu_isolated(cpu_of(rq)) || !cpu_active(cpu_of(rq)))
12952 return;
12953
12954 if (time_after_eq(jiffies, rq->next_balance))
12955 raise_softirq(SCHED_SOFTIRQ);
12956
12957 nohz_balancer_kick(rq);
12958 }
12959
rq_online_fair(struct rq * rq)12960 static void rq_online_fair(struct rq *rq)
12961 {
12962 update_sysctl();
12963
12964 update_runtime_enabled(rq);
12965 }
12966
rq_offline_fair(struct rq * rq)12967 static void rq_offline_fair(struct rq *rq)
12968 {
12969 update_sysctl();
12970
12971 /* Ensure any throttled groups are reachable by pick_next_task */
12972 unthrottle_offline_cfs_rqs(rq);
12973 }
12974
12975 #ifdef CONFIG_SCHED_EAS
12976 static inline int
kick_active_balance(struct rq * rq,struct task_struct * p,int new_cpu)12977 kick_active_balance(struct rq *rq, struct task_struct *p, int new_cpu)
12978 {
12979 unsigned long flags;
12980 int rc = 0;
12981
12982 if (cpu_of(rq) == new_cpu)
12983 return rc;
12984
12985 /* Invoke active balance to force migrate currently running task */
12986 raw_spin_lock_irqsave(&rq->__lock, flags);
12987 if (!rq->active_balance) {
12988 rq->active_balance = 1;
12989 rq->push_cpu = new_cpu;
12990 get_task_struct(p);
12991 rq->push_task = p;
12992 rc = 1;
12993 }
12994 raw_spin_unlock_irqrestore(&rq->__lock, flags);
12995 return rc;
12996 }
12997
12998 DEFINE_RAW_SPINLOCK(migration_lock);
check_for_migration_fair(struct rq * rq,struct task_struct * p)12999 static void check_for_migration_fair(struct rq *rq, struct task_struct *p)
13000 {
13001 int active_balance;
13002 int new_cpu = -1;
13003 int prev_cpu = task_cpu(p);
13004 int ret;
13005
13006 #ifdef CONFIG_SCHED_RTG
13007 bool need_down_migrate = false;
13008 struct cpumask *rtg_target = find_rtg_target(p);
13009
13010 if (rtg_target &&
13011 (capacity_orig_of(prev_cpu) >
13012 capacity_orig_of(cpumask_first(rtg_target))))
13013 need_down_migrate = true;
13014 #endif
13015
13016 if (rq->misfit_task_load) {
13017 if (rq->curr->__state != TASK_RUNNING ||
13018 rq->curr->nr_cpus_allowed == 1)
13019 return;
13020
13021 raw_spin_lock(&migration_lock);
13022 #ifdef CONFIG_SCHED_RTG
13023 if (rtg_target) {
13024 new_cpu = find_rtg_cpu(p);
13025
13026 if (new_cpu != -1 && need_down_migrate &&
13027 cpumask_test_cpu(new_cpu, rtg_target) &&
13028 idle_cpu(new_cpu))
13029 goto do_active_balance;
13030
13031 if (new_cpu != -1 &&
13032 capacity_orig_of(new_cpu) > capacity_orig_of(prev_cpu))
13033 goto do_active_balance;
13034
13035 goto out_unlock;
13036 }
13037 #endif
13038 rcu_read_lock();
13039 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
13040 rcu_read_unlock();
13041
13042 if (new_cpu == -1 ||
13043 capacity_orig_of(new_cpu) <= capacity_orig_of(prev_cpu))
13044 goto out_unlock;
13045 #ifdef CONFIG_SCHED_RTG
13046 do_active_balance:
13047 #endif
13048 active_balance = kick_active_balance(rq, p, new_cpu);
13049 if (active_balance) {
13050 mark_reserved(new_cpu);
13051 raw_spin_unlock(&migration_lock);
13052 ret = stop_one_cpu_nowait(prev_cpu,
13053 active_load_balance_cpu_stop, rq,
13054 &rq->active_balance_work);
13055 if (!ret)
13056 clear_reserved(new_cpu);
13057 else
13058 wake_up_if_idle(new_cpu);
13059 return;
13060 }
13061 out_unlock:
13062 raw_spin_unlock(&migration_lock);
13063 }
13064 }
13065 #endif /* CONFIG_SCHED_EAS */
13066
13067 #endif /* CONFIG_SMP */
13068
13069 #ifdef CONFIG_SCHED_CORE
13070 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)13071 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
13072 {
13073 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
13074 u64 slice = se->slice;
13075
13076 return (rtime * min_nr_tasks > slice);
13077 }
13078
13079 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
task_tick_core(struct rq * rq,struct task_struct * curr)13080 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
13081 {
13082 if (!sched_core_enabled(rq))
13083 return;
13084
13085 /*
13086 * If runqueue has only one task which used up its slice and
13087 * if the sibling is forced idle, then trigger schedule to
13088 * give forced idle task a chance.
13089 *
13090 * sched_slice() considers only this active rq and it gets the
13091 * whole slice. But during force idle, we have siblings acting
13092 * like a single runqueue and hence we need to consider runnable
13093 * tasks on this CPU and the forced idle CPU. Ideally, we should
13094 * go through the forced idle rq, but that would be a perf hit.
13095 * We can assume that the forced idle CPU has at least
13096 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
13097 * if we need to give up the CPU.
13098 */
13099 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
13100 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
13101 resched_curr(rq);
13102 }
13103
13104 /*
13105 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
13106 */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)13107 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
13108 bool forceidle)
13109 {
13110 for_each_sched_entity(se) {
13111 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13112
13113 if (forceidle) {
13114 if (cfs_rq->forceidle_seq == fi_seq)
13115 break;
13116 cfs_rq->forceidle_seq = fi_seq;
13117 }
13118
13119 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
13120 }
13121 }
13122
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)13123 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
13124 {
13125 struct sched_entity *se = &p->se;
13126
13127 if (p->sched_class != &fair_sched_class)
13128 return;
13129
13130 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
13131 }
13132
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)13133 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
13134 bool in_fi)
13135 {
13136 struct rq *rq = task_rq(a);
13137 const struct sched_entity *sea = &a->se;
13138 const struct sched_entity *seb = &b->se;
13139 struct cfs_rq *cfs_rqa;
13140 struct cfs_rq *cfs_rqb;
13141 s64 delta;
13142
13143 SCHED_WARN_ON(task_rq(b)->core != rq->core);
13144
13145 #ifdef CONFIG_FAIR_GROUP_SCHED
13146 /*
13147 * Find an se in the hierarchy for tasks a and b, such that the se's
13148 * are immediate siblings.
13149 */
13150 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
13151 int sea_depth = sea->depth;
13152 int seb_depth = seb->depth;
13153
13154 if (sea_depth >= seb_depth)
13155 sea = parent_entity(sea);
13156 if (sea_depth <= seb_depth)
13157 seb = parent_entity(seb);
13158 }
13159
13160 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
13161 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13162
13163 cfs_rqa = sea->cfs_rq;
13164 cfs_rqb = seb->cfs_rq;
13165 #else
13166 cfs_rqa = &task_rq(a)->cfs;
13167 cfs_rqb = &task_rq(b)->cfs;
13168 #endif
13169
13170 /*
13171 * Find delta after normalizing se's vruntime with its cfs_rq's
13172 * min_vruntime_fi, which would have been updated in prior calls
13173 * to se_fi_update().
13174 */
13175 delta = (s64)(sea->vruntime - seb->vruntime) +
13176 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13177
13178 return delta > 0;
13179 }
13180
task_is_throttled_fair(struct task_struct * p,int cpu)13181 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13182 {
13183 struct cfs_rq *cfs_rq;
13184
13185 #ifdef CONFIG_FAIR_GROUP_SCHED
13186 cfs_rq = task_group(p)->cfs_rq[cpu];
13187 #else
13188 cfs_rq = &cpu_rq(cpu)->cfs;
13189 #endif
13190 return throttled_hierarchy(cfs_rq);
13191 }
13192 #else
task_tick_core(struct rq * rq,struct task_struct * curr)13193 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13194 #endif
13195
13196 /*
13197 * scheduler tick hitting a task of our scheduling class.
13198 *
13199 * NOTE: This function can be called remotely by the tick offload that
13200 * goes along full dynticks. Therefore no local assumption can be made
13201 * and everything must be accessed through the @rq and @curr passed in
13202 * parameters.
13203 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)13204 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13205 {
13206 struct cfs_rq *cfs_rq;
13207 struct sched_entity *se = &curr->se;
13208
13209 for_each_sched_entity(se) {
13210 cfs_rq = cfs_rq_of(se);
13211 entity_tick(cfs_rq, se, queued);
13212 }
13213
13214 if (static_branch_unlikely(&sched_numa_balancing))
13215 task_tick_numa(rq, curr);
13216
13217 update_misfit_status(curr, rq);
13218 check_update_overutilized_status(task_rq(curr));
13219
13220 task_tick_core(rq, curr);
13221 }
13222
13223 /*
13224 * called on fork with the child task as argument from the parent's context
13225 * - child not yet on the tasklist
13226 * - preemption disabled
13227 */
task_fork_fair(struct task_struct * p)13228 static void task_fork_fair(struct task_struct *p)
13229 {
13230 struct sched_entity *se = &p->se, *curr;
13231 struct cfs_rq *cfs_rq;
13232 struct rq *rq = this_rq();
13233 struct rq_flags rf;
13234
13235 rq_lock(rq, &rf);
13236 update_rq_clock(rq);
13237
13238 cfs_rq = task_cfs_rq(current);
13239 curr = cfs_rq->curr;
13240 if (curr)
13241 update_curr(cfs_rq);
13242 place_entity(cfs_rq, se, ENQUEUE_INITIAL);
13243 rq_unlock(rq, &rf);
13244 }
13245
13246 /*
13247 * Priority of the task has changed. Check to see if we preempt
13248 * the current task.
13249 */
13250 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)13251 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13252 {
13253 if (!task_on_rq_queued(p))
13254 return;
13255
13256 if (rq->cfs.nr_running == 1)
13257 return;
13258
13259 /*
13260 * Reschedule if we are currently running on this runqueue and
13261 * our priority decreased, or if we are not currently running on
13262 * this runqueue and our priority is higher than the current's
13263 */
13264 if (task_current(rq, p)) {
13265 if (p->prio > oldprio)
13266 resched_curr(rq);
13267 } else
13268 wakeup_preempt(rq, p, 0);
13269 }
13270
13271 #ifdef CONFIG_FAIR_GROUP_SCHED
13272 /*
13273 * Propagate the changes of the sched_entity across the tg tree to make it
13274 * visible to the root
13275 */
propagate_entity_cfs_rq(struct sched_entity * se)13276 static void propagate_entity_cfs_rq(struct sched_entity *se)
13277 {
13278 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13279
13280 if (cfs_rq_throttled(cfs_rq))
13281 return;
13282
13283 if (!throttled_hierarchy(cfs_rq))
13284 list_add_leaf_cfs_rq(cfs_rq);
13285
13286 /* Start to propagate at parent */
13287 se = se->parent;
13288
13289 for_each_sched_entity(se) {
13290 cfs_rq = cfs_rq_of(se);
13291
13292 update_load_avg(cfs_rq, se, UPDATE_TG);
13293
13294 if (cfs_rq_throttled(cfs_rq))
13295 break;
13296
13297 if (!throttled_hierarchy(cfs_rq))
13298 list_add_leaf_cfs_rq(cfs_rq);
13299 }
13300 }
13301 #else
propagate_entity_cfs_rq(struct sched_entity * se)13302 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13303 #endif
13304
detach_entity_cfs_rq(struct sched_entity * se)13305 static void detach_entity_cfs_rq(struct sched_entity *se)
13306 {
13307 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13308
13309 #ifdef CONFIG_SMP
13310 /*
13311 * In case the task sched_avg hasn't been attached:
13312 * - A forked task which hasn't been woken up by wake_up_new_task().
13313 * - A task which has been woken up by try_to_wake_up() but is
13314 * waiting for actually being woken up by sched_ttwu_pending().
13315 */
13316 if (!se->avg.last_update_time)
13317 return;
13318 #endif
13319
13320 /* Catch up with the cfs_rq and remove our load when we leave */
13321 update_load_avg(cfs_rq, se, 0);
13322 detach_entity_load_avg(cfs_rq, se);
13323 update_tg_load_avg(cfs_rq);
13324 propagate_entity_cfs_rq(se);
13325 }
13326
attach_entity_cfs_rq(struct sched_entity * se)13327 static void attach_entity_cfs_rq(struct sched_entity *se)
13328 {
13329 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13330
13331 /* Synchronize entity with its cfs_rq */
13332 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13333 attach_entity_load_avg(cfs_rq, se);
13334 update_tg_load_avg(cfs_rq);
13335 propagate_entity_cfs_rq(se);
13336 }
13337
detach_task_cfs_rq(struct task_struct * p)13338 static void detach_task_cfs_rq(struct task_struct *p)
13339 {
13340 struct sched_entity *se = &p->se;
13341
13342 detach_entity_cfs_rq(se);
13343 }
13344
attach_task_cfs_rq(struct task_struct * p)13345 static void attach_task_cfs_rq(struct task_struct *p)
13346 {
13347 struct sched_entity *se = &p->se;
13348
13349 attach_entity_cfs_rq(se);
13350 }
13351
switched_from_fair(struct rq * rq,struct task_struct * p)13352 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13353 {
13354 detach_task_cfs_rq(p);
13355 }
13356
switched_to_fair(struct rq * rq,struct task_struct * p)13357 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13358 {
13359 attach_task_cfs_rq(p);
13360
13361 if (task_on_rq_queued(p)) {
13362 /*
13363 * We were most likely switched from sched_rt, so
13364 * kick off the schedule if running, otherwise just see
13365 * if we can still preempt the current task.
13366 */
13367 if (task_current(rq, p))
13368 resched_curr(rq);
13369 else
13370 wakeup_preempt(rq, p, 0);
13371 }
13372 }
13373
13374 /* Account for a task changing its policy or group.
13375 *
13376 * This routine is mostly called to set cfs_rq->curr field when a task
13377 * migrates between groups/classes.
13378 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13379 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13380 {
13381 struct sched_entity *se = &p->se;
13382
13383 #ifdef CONFIG_SMP
13384 if (task_on_rq_queued(p)) {
13385 /*
13386 * Move the next running task to the front of the list, so our
13387 * cfs_tasks list becomes MRU one.
13388 */
13389 list_move(&se->group_node, &rq->cfs_tasks);
13390 }
13391 #endif
13392
13393 for_each_sched_entity(se) {
13394 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13395
13396 set_next_entity(cfs_rq, se);
13397 /* ensure bandwidth has been allocated on our new cfs_rq */
13398 account_cfs_rq_runtime(cfs_rq, 0);
13399 }
13400 }
13401
init_cfs_rq(struct cfs_rq * cfs_rq)13402 void init_cfs_rq(struct cfs_rq *cfs_rq)
13403 {
13404 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13405 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
13406 #ifdef CONFIG_SMP
13407 raw_spin_lock_init(&cfs_rq->removed.lock);
13408 #endif
13409 }
13410
13411 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)13412 static void task_change_group_fair(struct task_struct *p)
13413 {
13414 /*
13415 * We couldn't detach or attach a forked task which
13416 * hasn't been woken up by wake_up_new_task().
13417 */
13418 if (READ_ONCE(p->__state) == TASK_NEW)
13419 return;
13420
13421 detach_task_cfs_rq(p);
13422
13423 #ifdef CONFIG_SMP
13424 /* Tell se's cfs_rq has been changed -- migrated */
13425 p->se.avg.last_update_time = 0;
13426 #endif
13427 set_task_rq(p, task_cpu(p));
13428 attach_task_cfs_rq(p);
13429 }
13430
free_fair_sched_group(struct task_group * tg)13431 void free_fair_sched_group(struct task_group *tg)
13432 {
13433 int i;
13434
13435 for_each_possible_cpu(i) {
13436 if (tg->cfs_rq)
13437 kfree(tg->cfs_rq[i]);
13438 if (tg->se)
13439 kfree(tg->se[i]);
13440 }
13441
13442 kfree(tg->cfs_rq);
13443 kfree(tg->se);
13444 }
13445
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)13446 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13447 {
13448 struct sched_entity *se;
13449 struct cfs_rq *cfs_rq;
13450 int i;
13451
13452 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13453 if (!tg->cfs_rq)
13454 goto err;
13455 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13456 if (!tg->se)
13457 goto err;
13458
13459 tg->shares = NICE_0_LOAD;
13460
13461 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13462
13463 for_each_possible_cpu(i) {
13464 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13465 GFP_KERNEL, cpu_to_node(i));
13466 if (!cfs_rq)
13467 goto err;
13468
13469 se = kzalloc_node(sizeof(struct sched_entity_stats),
13470 GFP_KERNEL, cpu_to_node(i));
13471 if (!se)
13472 goto err_free_rq;
13473
13474 init_cfs_rq(cfs_rq);
13475 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13476 init_entity_runnable_average(se);
13477 }
13478
13479 return 1;
13480
13481 err_free_rq:
13482 kfree(cfs_rq);
13483 err:
13484 return 0;
13485 }
13486
online_fair_sched_group(struct task_group * tg)13487 void online_fair_sched_group(struct task_group *tg)
13488 {
13489 struct sched_entity *se;
13490 struct rq_flags rf;
13491 struct rq *rq;
13492 int i;
13493
13494 for_each_possible_cpu(i) {
13495 rq = cpu_rq(i);
13496 se = tg->se[i];
13497 rq_lock_irq(rq, &rf);
13498 update_rq_clock(rq);
13499 attach_entity_cfs_rq(se);
13500 sync_throttle(tg, i);
13501 rq_unlock_irq(rq, &rf);
13502 }
13503 }
13504
unregister_fair_sched_group(struct task_group * tg)13505 void unregister_fair_sched_group(struct task_group *tg)
13506 {
13507 unsigned long flags;
13508 struct rq *rq;
13509 int cpu;
13510
13511 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13512
13513 for_each_possible_cpu(cpu) {
13514 if (tg->se[cpu])
13515 remove_entity_load_avg(tg->se[cpu]);
13516
13517 /*
13518 * Only empty task groups can be destroyed; so we can speculatively
13519 * check on_list without danger of it being re-added.
13520 */
13521 if (!tg->cfs_rq[cpu]->on_list)
13522 continue;
13523
13524 rq = cpu_rq(cpu);
13525
13526 raw_spin_rq_lock_irqsave(rq, flags);
13527 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
13528 raw_spin_rq_unlock_irqrestore(rq, flags);
13529 }
13530 }
13531
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)13532 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13533 struct sched_entity *se, int cpu,
13534 struct sched_entity *parent)
13535 {
13536 struct rq *rq = cpu_rq(cpu);
13537
13538 cfs_rq->tg = tg;
13539 cfs_rq->rq = rq;
13540 init_cfs_rq_runtime(cfs_rq);
13541
13542 tg->cfs_rq[cpu] = cfs_rq;
13543 tg->se[cpu] = se;
13544
13545 /* se could be NULL for root_task_group */
13546 if (!se)
13547 return;
13548
13549 if (!parent) {
13550 se->cfs_rq = &rq->cfs;
13551 se->depth = 0;
13552 } else {
13553 se->cfs_rq = parent->my_q;
13554 se->depth = parent->depth + 1;
13555 }
13556
13557 se->my_q = cfs_rq;
13558 /* guarantee group entities always have weight */
13559 update_load_set(&se->load, NICE_0_LOAD);
13560 se->parent = parent;
13561 }
13562
13563 static DEFINE_MUTEX(shares_mutex);
13564
__sched_group_set_shares(struct task_group * tg,unsigned long shares)13565 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13566 {
13567 int i;
13568
13569 lockdep_assert_held(&shares_mutex);
13570
13571 /*
13572 * We can't change the weight of the root cgroup.
13573 */
13574 if (!tg->se[0])
13575 return -EINVAL;
13576
13577 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13578
13579 if (tg->shares == shares)
13580 return 0;
13581
13582 tg->shares = shares;
13583 for_each_possible_cpu(i) {
13584 struct rq *rq = cpu_rq(i);
13585 struct sched_entity *se = tg->se[i];
13586 struct rq_flags rf;
13587
13588 /* Propagate contribution to hierarchy */
13589 rq_lock_irqsave(rq, &rf);
13590 update_rq_clock(rq);
13591 for_each_sched_entity(se) {
13592 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13593 update_cfs_group(se);
13594 }
13595 rq_unlock_irqrestore(rq, &rf);
13596 }
13597
13598 return 0;
13599 }
13600
sched_group_set_shares(struct task_group * tg,unsigned long shares)13601 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13602 {
13603 int ret;
13604
13605 mutex_lock(&shares_mutex);
13606 if (tg_is_idle(tg))
13607 ret = -EINVAL;
13608 else
13609 ret = __sched_group_set_shares(tg, shares);
13610 mutex_unlock(&shares_mutex);
13611
13612 return ret;
13613 }
13614
sched_group_set_idle(struct task_group * tg,long idle)13615 int sched_group_set_idle(struct task_group *tg, long idle)
13616 {
13617 int i;
13618
13619 if (tg == &root_task_group)
13620 return -EINVAL;
13621
13622 if (idle < 0 || idle > 1)
13623 return -EINVAL;
13624
13625 mutex_lock(&shares_mutex);
13626
13627 if (tg->idle == idle) {
13628 mutex_unlock(&shares_mutex);
13629 return 0;
13630 }
13631
13632 tg->idle = idle;
13633
13634 for_each_possible_cpu(i) {
13635 struct rq *rq = cpu_rq(i);
13636 struct sched_entity *se = tg->se[i];
13637 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13638 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13639 long idle_task_delta;
13640 struct rq_flags rf;
13641
13642 rq_lock_irqsave(rq, &rf);
13643
13644 grp_cfs_rq->idle = idle;
13645 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13646 goto next_cpu;
13647
13648 if (se->on_rq) {
13649 parent_cfs_rq = cfs_rq_of(se);
13650 if (cfs_rq_is_idle(grp_cfs_rq))
13651 parent_cfs_rq->idle_nr_running++;
13652 else
13653 parent_cfs_rq->idle_nr_running--;
13654 }
13655
13656 idle_task_delta = grp_cfs_rq->h_nr_running -
13657 grp_cfs_rq->idle_h_nr_running;
13658 if (!cfs_rq_is_idle(grp_cfs_rq))
13659 idle_task_delta *= -1;
13660
13661 for_each_sched_entity(se) {
13662 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13663
13664 if (!se->on_rq)
13665 break;
13666
13667 cfs_rq->idle_h_nr_running += idle_task_delta;
13668
13669 /* Already accounted at parent level and above. */
13670 if (cfs_rq_is_idle(cfs_rq))
13671 break;
13672 }
13673
13674 next_cpu:
13675 rq_unlock_irqrestore(rq, &rf);
13676 }
13677
13678 /* Idle groups have minimum weight. */
13679 if (tg_is_idle(tg))
13680 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13681 else
13682 __sched_group_set_shares(tg, NICE_0_LOAD);
13683
13684 mutex_unlock(&shares_mutex);
13685 return 0;
13686 }
13687
13688 #else /* CONFIG_FAIR_GROUP_SCHED */
13689
free_fair_sched_group(struct task_group * tg)13690 void free_fair_sched_group(struct task_group *tg) { }
13691
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)13692 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13693 {
13694 return 1;
13695 }
13696
online_fair_sched_group(struct task_group * tg)13697 void online_fair_sched_group(struct task_group *tg) { }
13698
unregister_fair_sched_group(struct task_group * tg)13699 void unregister_fair_sched_group(struct task_group *tg) { }
13700
13701 #endif /* CONFIG_FAIR_GROUP_SCHED */
13702
13703
get_rr_interval_fair(struct rq * rq,struct task_struct * task)13704 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13705 {
13706 struct sched_entity *se = &task->se;
13707 unsigned int rr_interval = 0;
13708
13709 /*
13710 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13711 * idle runqueue:
13712 */
13713 if (rq->cfs.load.weight)
13714 rr_interval = NS_TO_JIFFIES(se->slice);
13715
13716 return rr_interval;
13717 }
13718
13719 /*
13720 * All the scheduling class methods:
13721 */
13722 DEFINE_SCHED_CLASS(fair) = {
13723
13724 .enqueue_task = enqueue_task_fair,
13725 .dequeue_task = dequeue_task_fair,
13726 .yield_task = yield_task_fair,
13727 .yield_to_task = yield_to_task_fair,
13728
13729 .wakeup_preempt = check_preempt_wakeup_fair,
13730
13731 .pick_next_task = __pick_next_task_fair,
13732 .put_prev_task = put_prev_task_fair,
13733 .set_next_task = set_next_task_fair,
13734
13735 #ifdef CONFIG_SMP
13736 .balance = balance_fair,
13737 .pick_task = pick_task_fair,
13738 .select_task_rq = select_task_rq_fair,
13739 .migrate_task_rq = migrate_task_rq_fair,
13740
13741 .rq_online = rq_online_fair,
13742 .rq_offline = rq_offline_fair,
13743
13744 .task_dead = task_dead_fair,
13745 .set_cpus_allowed = set_cpus_allowed_common,
13746 #endif
13747
13748 .task_tick = task_tick_fair,
13749 .task_fork = task_fork_fair,
13750
13751 .prio_changed = prio_changed_fair,
13752 .switched_from = switched_from_fair,
13753 .switched_to = switched_to_fair,
13754
13755 .get_rr_interval = get_rr_interval_fair,
13756
13757 .update_curr = update_curr_fair,
13758
13759 #ifdef CONFIG_FAIR_GROUP_SCHED
13760 .task_change_group = task_change_group_fair,
13761 #endif
13762
13763 #ifdef CONFIG_SCHED_CORE
13764 .task_is_throttled = task_is_throttled_fair,
13765 #endif
13766
13767 #ifdef CONFIG_UCLAMP_TASK
13768 .uclamp_enabled = 1,
13769 #endif
13770 #ifdef CONFIG_SCHED_WALT
13771 .fixup_walt_sched_stats = walt_fixup_sched_stats_fair,
13772 #endif
13773 #ifdef CONFIG_SCHED_EAS
13774 .check_for_migration = check_for_migration_fair,
13775 #endif
13776 };
13777
13778 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)13779 void print_cfs_stats(struct seq_file *m, int cpu)
13780 {
13781 struct cfs_rq *cfs_rq, *pos;
13782
13783 rcu_read_lock();
13784 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13785 print_cfs_rq(m, cpu, cfs_rq);
13786 rcu_read_unlock();
13787 }
13788
13789 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13790 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13791 {
13792 int node;
13793 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13794 struct numa_group *ng;
13795
13796 rcu_read_lock();
13797 ng = rcu_dereference(p->numa_group);
13798 for_each_online_node(node) {
13799 if (p->numa_faults) {
13800 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13801 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13802 }
13803 if (ng) {
13804 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13805 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13806 }
13807 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13808 }
13809 rcu_read_unlock();
13810 }
13811 #endif /* CONFIG_NUMA_BALANCING */
13812 #endif /* CONFIG_SCHED_DEBUG */
13813
init_sched_fair_class(void)13814 __init void init_sched_fair_class(void)
13815 {
13816 #ifdef CONFIG_SMP
13817 int i;
13818
13819 for_each_possible_cpu(i) {
13820 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13821 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
13822 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13823 GFP_KERNEL, cpu_to_node(i));
13824
13825 #ifdef CONFIG_CFS_BANDWIDTH
13826 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13827 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13828 #endif
13829 }
13830
13831 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
13832
13833 #ifdef CONFIG_NO_HZ_COMMON
13834 nohz.next_balance = jiffies;
13835 nohz.next_blocked = jiffies;
13836 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13837 #endif
13838 #endif /* SMP */
13839
13840 }
13841
13842 /* WALT sched implementation begins here */
13843 #ifdef CONFIG_SCHED_WALT
13844
13845 #ifdef CONFIG_CFS_BANDWIDTH
13846
walt_init_cfs_rq_stats(struct cfs_rq * cfs_rq)13847 static void walt_init_cfs_rq_stats(struct cfs_rq *cfs_rq)
13848 {
13849 cfs_rq->walt_stats.cumulative_runnable_avg_scaled = 0;
13850 }
13851
walt_inc_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)13852 static void walt_inc_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p)
13853 {
13854 fixup_cumulative_runnable_avg(&cfs_rq->walt_stats,
13855 p->ravg.demand_scaled);
13856 }
13857
walt_dec_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)13858 static void walt_dec_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p)
13859 {
13860 fixup_cumulative_runnable_avg(&cfs_rq->walt_stats,
13861 -(s64)p->ravg.demand_scaled);
13862 }
13863
walt_inc_throttled_cfs_rq_stats(struct walt_sched_stats * stats,struct cfs_rq * tcfs_rq)13864 static void walt_inc_throttled_cfs_rq_stats(struct walt_sched_stats *stats,
13865 struct cfs_rq *tcfs_rq)
13866 {
13867 struct rq *rq = rq_of(tcfs_rq);
13868
13869 fixup_cumulative_runnable_avg(stats,
13870 tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
13871
13872 if (stats == &rq->walt_stats)
13873 walt_fixup_cum_window_demand(rq,
13874 tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
13875
13876 }
13877
walt_dec_throttled_cfs_rq_stats(struct walt_sched_stats * stats,struct cfs_rq * tcfs_rq)13878 static void walt_dec_throttled_cfs_rq_stats(struct walt_sched_stats *stats,
13879 struct cfs_rq *tcfs_rq)
13880 {
13881 struct rq *rq = rq_of(tcfs_rq);
13882
13883 fixup_cumulative_runnable_avg(stats,
13884 -tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
13885
13886 /*
13887 * We remove the throttled cfs_rq's tasks's contribution from the
13888 * cumulative window demand so that the same can be added
13889 * unconditionally when the cfs_rq is unthrottled.
13890 */
13891 if (stats == &rq->walt_stats)
13892 walt_fixup_cum_window_demand(rq,
13893 -tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
13894 }
13895
walt_fixup_sched_stats_fair(struct rq * rq,struct task_struct * p,u16 updated_demand_scaled)13896 static void walt_fixup_sched_stats_fair(struct rq *rq, struct task_struct *p,
13897 u16 updated_demand_scaled)
13898 {
13899 struct cfs_rq *cfs_rq;
13900 struct sched_entity *se = &p->se;
13901 s64 task_load_delta = (s64)updated_demand_scaled -
13902 p->ravg.demand_scaled;
13903
13904 for_each_sched_entity(se) {
13905 cfs_rq = cfs_rq_of(se);
13906
13907 fixup_cumulative_runnable_avg(&cfs_rq->walt_stats,
13908 task_load_delta);
13909 if (cfs_rq_throttled(cfs_rq))
13910 break;
13911 }
13912
13913 /* Fix up rq->walt_stats only if we didn't find any throttled cfs_rq */
13914 if (!se) {
13915 fixup_cumulative_runnable_avg(&rq->walt_stats,
13916 task_load_delta);
13917 walt_fixup_cum_window_demand(rq, task_load_delta);
13918 }
13919 }
13920
13921 #else /* CONFIG_CFS_BANDWIDTH */
walt_fixup_sched_stats_fair(struct rq * rq,struct task_struct * p,u16 updated_demand_scaled)13922 static void walt_fixup_sched_stats_fair(struct rq *rq, struct task_struct *p,
13923 u16 updated_demand_scaled)
13924 {
13925 fixup_walt_sched_stats_common(rq, p, updated_demand_scaled);
13926 }
13927 #endif /* CONFIG_CFS_BANDWIDTH */
13928 #endif /* CONFIG_SCHED_WALT */
13929