1 //===- HexagonPacketizer.cpp - VLIW packetizer ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements a simple VLIW packetizer using DFA. The packetizer works on
10 // machine basic blocks. For each instruction I in BB, the packetizer consults
11 // the DFA to see if machine resources are available to execute I. If so, the
12 // packetizer checks if I depends on any instruction J in the current packet.
13 // If no dependency is found, I is added to current packet and machine resource
14 // is marked as taken. If any dependency is found, a target API call is made to
15 // prune the dependence.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "HexagonVLIWPacketizer.h"
20 #include "Hexagon.h"
21 #include "HexagonInstrInfo.h"
22 #include "HexagonRegisterInfo.h"
23 #include "HexagonSubtarget.h"
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
31 #include "llvm/CodeGen/MachineDominators.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBundle.h"
37 #include "llvm/CodeGen/MachineLoopInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/ScheduleDAG.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <cassert>
51 #include <cstdint>
52 #include <iterator>
53
54 using namespace llvm;
55
56 #define DEBUG_TYPE "packets"
57
58 static cl::opt<bool> DisablePacketizer("disable-packetizer", cl::Hidden,
59 cl::ZeroOrMore, cl::init(false),
60 cl::desc("Disable Hexagon packetizer pass"));
61
62 static cl::opt<bool> Slot1Store("slot1-store-slot0-load", cl::Hidden,
63 cl::ZeroOrMore, cl::init(true),
64 cl::desc("Allow slot1 store and slot0 load"));
65
66 static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles",
67 cl::ZeroOrMore, cl::Hidden, cl::init(true),
68 cl::desc("Allow non-solo packetization of volatile memory references"));
69
70 static cl::opt<bool> EnableGenAllInsnClass("enable-gen-insn", cl::init(false),
71 cl::Hidden, cl::ZeroOrMore, cl::desc("Generate all instruction with TC"));
72
73 static cl::opt<bool> DisableVecDblNVStores("disable-vecdbl-nv-stores",
74 cl::init(false), cl::Hidden, cl::ZeroOrMore,
75 cl::desc("Disable vector double new-value-stores"));
76
77 extern cl::opt<bool> ScheduleInlineAsm;
78
79 namespace llvm {
80
81 FunctionPass *createHexagonPacketizer(bool Minimal);
82 void initializeHexagonPacketizerPass(PassRegistry&);
83
84 } // end namespace llvm
85
86 namespace {
87
88 class HexagonPacketizer : public MachineFunctionPass {
89 public:
90 static char ID;
91
HexagonPacketizer(bool Min=false)92 HexagonPacketizer(bool Min = false)
93 : MachineFunctionPass(ID), Minimal(Min) {}
94
getAnalysisUsage(AnalysisUsage & AU) const95 void getAnalysisUsage(AnalysisUsage &AU) const override {
96 AU.setPreservesCFG();
97 AU.addRequired<AAResultsWrapperPass>();
98 AU.addRequired<MachineBranchProbabilityInfo>();
99 AU.addRequired<MachineDominatorTree>();
100 AU.addRequired<MachineLoopInfo>();
101 AU.addPreserved<MachineDominatorTree>();
102 AU.addPreserved<MachineLoopInfo>();
103 MachineFunctionPass::getAnalysisUsage(AU);
104 }
105
getPassName() const106 StringRef getPassName() const override { return "Hexagon Packetizer"; }
107 bool runOnMachineFunction(MachineFunction &Fn) override;
108
getRequiredProperties() const109 MachineFunctionProperties getRequiredProperties() const override {
110 return MachineFunctionProperties().set(
111 MachineFunctionProperties::Property::NoVRegs);
112 }
113
114 private:
115 const HexagonInstrInfo *HII = nullptr;
116 const HexagonRegisterInfo *HRI = nullptr;
117 const bool Minimal = false;
118 };
119
120 } // end anonymous namespace
121
122 char HexagonPacketizer::ID = 0;
123
124 INITIALIZE_PASS_BEGIN(HexagonPacketizer, "hexagon-packetizer",
125 "Hexagon Packetizer", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)126 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
127 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
128 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
129 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
130 INITIALIZE_PASS_END(HexagonPacketizer, "hexagon-packetizer",
131 "Hexagon Packetizer", false, false)
132
133 HexagonPacketizerList::HexagonPacketizerList(MachineFunction &MF,
134 MachineLoopInfo &MLI, AAResults *AA,
135 const MachineBranchProbabilityInfo *MBPI, bool Minimal)
136 : VLIWPacketizerList(MF, MLI, AA), MBPI(MBPI), MLI(&MLI),
137 Minimal(Minimal) {
138 HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
139 HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
140
141 addMutation(std::make_unique<HexagonSubtarget::UsrOverflowMutation>());
142 addMutation(std::make_unique<HexagonSubtarget::HVXMemLatencyMutation>());
143 addMutation(std::make_unique<HexagonSubtarget::BankConflictMutation>());
144 }
145
146 // Check if FirstI modifies a register that SecondI reads.
hasWriteToReadDep(const MachineInstr & FirstI,const MachineInstr & SecondI,const TargetRegisterInfo * TRI)147 static bool hasWriteToReadDep(const MachineInstr &FirstI,
148 const MachineInstr &SecondI,
149 const TargetRegisterInfo *TRI) {
150 for (auto &MO : FirstI.operands()) {
151 if (!MO.isReg() || !MO.isDef())
152 continue;
153 Register R = MO.getReg();
154 if (SecondI.readsRegister(R, TRI))
155 return true;
156 }
157 return false;
158 }
159
160
moveInstrOut(MachineInstr & MI,MachineBasicBlock::iterator BundleIt,bool Before)161 static MachineBasicBlock::iterator moveInstrOut(MachineInstr &MI,
162 MachineBasicBlock::iterator BundleIt, bool Before) {
163 MachineBasicBlock::instr_iterator InsertPt;
164 if (Before)
165 InsertPt = BundleIt.getInstrIterator();
166 else
167 InsertPt = std::next(BundleIt).getInstrIterator();
168
169 MachineBasicBlock &B = *MI.getParent();
170 // The instruction should at least be bundled with the preceding instruction
171 // (there will always be one, i.e. BUNDLE, if nothing else).
172 assert(MI.isBundledWithPred());
173 if (MI.isBundledWithSucc()) {
174 MI.clearFlag(MachineInstr::BundledSucc);
175 MI.clearFlag(MachineInstr::BundledPred);
176 } else {
177 // If it's not bundled with the successor (i.e. it is the last one
178 // in the bundle), then we can simply unbundle it from the predecessor,
179 // which will take care of updating the predecessor's flag.
180 MI.unbundleFromPred();
181 }
182 B.splice(InsertPt, &B, MI.getIterator());
183
184 // Get the size of the bundle without asserting.
185 MachineBasicBlock::const_instr_iterator I = BundleIt.getInstrIterator();
186 MachineBasicBlock::const_instr_iterator E = B.instr_end();
187 unsigned Size = 0;
188 for (++I; I != E && I->isBundledWithPred(); ++I)
189 ++Size;
190
191 // If there are still two or more instructions, then there is nothing
192 // else to be done.
193 if (Size > 1)
194 return BundleIt;
195
196 // Otherwise, extract the single instruction out and delete the bundle.
197 MachineBasicBlock::iterator NextIt = std::next(BundleIt);
198 MachineInstr &SingleI = *BundleIt->getNextNode();
199 SingleI.unbundleFromPred();
200 assert(!SingleI.isBundledWithSucc());
201 BundleIt->eraseFromParent();
202 return NextIt;
203 }
204
runOnMachineFunction(MachineFunction & MF)205 bool HexagonPacketizer::runOnMachineFunction(MachineFunction &MF) {
206 auto &HST = MF.getSubtarget<HexagonSubtarget>();
207 HII = HST.getInstrInfo();
208 HRI = HST.getRegisterInfo();
209 auto &MLI = getAnalysis<MachineLoopInfo>();
210 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
211 auto *MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
212
213 if (EnableGenAllInsnClass)
214 HII->genAllInsnTimingClasses(MF);
215
216 // Instantiate the packetizer.
217 bool MinOnly = Minimal || DisablePacketizer || !HST.usePackets() ||
218 skipFunction(MF.getFunction());
219 HexagonPacketizerList Packetizer(MF, MLI, AA, MBPI, MinOnly);
220
221 // DFA state table should not be empty.
222 assert(Packetizer.getResourceTracker() && "Empty DFA table!");
223
224 // Loop over all basic blocks and remove KILL pseudo-instructions
225 // These instructions confuse the dependence analysis. Consider:
226 // D0 = ... (Insn 0)
227 // R0 = KILL R0, D0 (Insn 1)
228 // R0 = ... (Insn 2)
229 // Here, Insn 1 will result in the dependence graph not emitting an output
230 // dependence between Insn 0 and Insn 2. This can lead to incorrect
231 // packetization
232 for (MachineBasicBlock &MB : MF) {
233 auto End = MB.end();
234 auto MI = MB.begin();
235 while (MI != End) {
236 auto NextI = std::next(MI);
237 if (MI->isKill()) {
238 MB.erase(MI);
239 End = MB.end();
240 }
241 MI = NextI;
242 }
243 }
244
245 // Loop over all of the basic blocks.
246 for (auto &MB : MF) {
247 auto Begin = MB.begin(), End = MB.end();
248 while (Begin != End) {
249 // Find the first non-boundary starting from the end of the last
250 // scheduling region.
251 MachineBasicBlock::iterator RB = Begin;
252 while (RB != End && HII->isSchedulingBoundary(*RB, &MB, MF))
253 ++RB;
254 // Find the first boundary starting from the beginning of the new
255 // region.
256 MachineBasicBlock::iterator RE = RB;
257 while (RE != End && !HII->isSchedulingBoundary(*RE, &MB, MF))
258 ++RE;
259 // Add the scheduling boundary if it's not block end.
260 if (RE != End)
261 ++RE;
262 // If RB == End, then RE == End.
263 if (RB != End)
264 Packetizer.PacketizeMIs(&MB, RB, RE);
265
266 Begin = RE;
267 }
268 }
269
270 Packetizer.unpacketizeSoloInstrs(MF);
271 return true;
272 }
273
274 // Reserve resources for a constant extender. Trigger an assertion if the
275 // reservation fails.
reserveResourcesForConstExt()276 void HexagonPacketizerList::reserveResourcesForConstExt() {
277 if (!tryAllocateResourcesForConstExt(true))
278 llvm_unreachable("Resources not available");
279 }
280
canReserveResourcesForConstExt()281 bool HexagonPacketizerList::canReserveResourcesForConstExt() {
282 return tryAllocateResourcesForConstExt(false);
283 }
284
285 // Allocate resources (i.e. 4 bytes) for constant extender. If succeeded,
286 // return true, otherwise, return false.
tryAllocateResourcesForConstExt(bool Reserve)287 bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve) {
288 auto *ExtMI = MF.CreateMachineInstr(HII->get(Hexagon::A4_ext), DebugLoc());
289 bool Avail = ResourceTracker->canReserveResources(*ExtMI);
290 if (Reserve && Avail)
291 ResourceTracker->reserveResources(*ExtMI);
292 MF.DeleteMachineInstr(ExtMI);
293 return Avail;
294 }
295
isCallDependent(const MachineInstr & MI,SDep::Kind DepType,unsigned DepReg)296 bool HexagonPacketizerList::isCallDependent(const MachineInstr &MI,
297 SDep::Kind DepType, unsigned DepReg) {
298 // Check for LR dependence.
299 if (DepReg == HRI->getRARegister())
300 return true;
301
302 if (HII->isDeallocRet(MI))
303 if (DepReg == HRI->getFrameRegister() || DepReg == HRI->getStackRegister())
304 return true;
305
306 // Call-like instructions can be packetized with preceding instructions
307 // that define registers implicitly used or modified by the call. Explicit
308 // uses are still prohibited, as in the case of indirect calls:
309 // r0 = ...
310 // J2_jumpr r0
311 if (DepType == SDep::Data) {
312 for (const MachineOperand &MO : MI.operands())
313 if (MO.isReg() && MO.getReg() == DepReg && !MO.isImplicit())
314 return true;
315 }
316
317 return false;
318 }
319
isRegDependence(const SDep::Kind DepType)320 static bool isRegDependence(const SDep::Kind DepType) {
321 return DepType == SDep::Data || DepType == SDep::Anti ||
322 DepType == SDep::Output;
323 }
324
isDirectJump(const MachineInstr & MI)325 static bool isDirectJump(const MachineInstr &MI) {
326 return MI.getOpcode() == Hexagon::J2_jump;
327 }
328
isSchedBarrier(const MachineInstr & MI)329 static bool isSchedBarrier(const MachineInstr &MI) {
330 switch (MI.getOpcode()) {
331 case Hexagon::Y2_barrier:
332 return true;
333 }
334 return false;
335 }
336
isControlFlow(const MachineInstr & MI)337 static bool isControlFlow(const MachineInstr &MI) {
338 return MI.getDesc().isTerminator() || MI.getDesc().isCall();
339 }
340
341 /// Returns true if the instruction modifies a callee-saved register.
doesModifyCalleeSavedReg(const MachineInstr & MI,const TargetRegisterInfo * TRI)342 static bool doesModifyCalleeSavedReg(const MachineInstr &MI,
343 const TargetRegisterInfo *TRI) {
344 const MachineFunction &MF = *MI.getParent()->getParent();
345 for (auto *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR)
346 if (MI.modifiesRegister(*CSR, TRI))
347 return true;
348 return false;
349 }
350
351 // Returns true if an instruction can be promoted to .new predicate or
352 // new-value store.
isNewifiable(const MachineInstr & MI,const TargetRegisterClass * NewRC)353 bool HexagonPacketizerList::isNewifiable(const MachineInstr &MI,
354 const TargetRegisterClass *NewRC) {
355 // Vector stores can be predicated, and can be new-value stores, but
356 // they cannot be predicated on a .new predicate value.
357 if (NewRC == &Hexagon::PredRegsRegClass) {
358 if (HII->isHVXVec(MI) && MI.mayStore())
359 return false;
360 return HII->isPredicated(MI) && HII->getDotNewPredOp(MI, nullptr) > 0;
361 }
362 // If the class is not PredRegs, it could only apply to new-value stores.
363 return HII->mayBeNewStore(MI);
364 }
365
366 // Promote an instructiont to its .cur form.
367 // At this time, we have already made a call to canPromoteToDotCur and made
368 // sure that it can *indeed* be promoted.
promoteToDotCur(MachineInstr & MI,SDep::Kind DepType,MachineBasicBlock::iterator & MII,const TargetRegisterClass * RC)369 bool HexagonPacketizerList::promoteToDotCur(MachineInstr &MI,
370 SDep::Kind DepType, MachineBasicBlock::iterator &MII,
371 const TargetRegisterClass* RC) {
372 assert(DepType == SDep::Data);
373 int CurOpcode = HII->getDotCurOp(MI);
374 MI.setDesc(HII->get(CurOpcode));
375 return true;
376 }
377
cleanUpDotCur()378 void HexagonPacketizerList::cleanUpDotCur() {
379 MachineInstr *MI = nullptr;
380 for (auto BI : CurrentPacketMIs) {
381 LLVM_DEBUG(dbgs() << "Cleanup packet has "; BI->dump(););
382 if (HII->isDotCurInst(*BI)) {
383 MI = BI;
384 continue;
385 }
386 if (MI) {
387 for (auto &MO : BI->operands())
388 if (MO.isReg() && MO.getReg() == MI->getOperand(0).getReg())
389 return;
390 }
391 }
392 if (!MI)
393 return;
394 // We did not find a use of the CUR, so de-cur it.
395 MI->setDesc(HII->get(HII->getNonDotCurOp(*MI)));
396 LLVM_DEBUG(dbgs() << "Demoted CUR "; MI->dump(););
397 }
398
399 // Check to see if an instruction can be dot cur.
canPromoteToDotCur(const MachineInstr & MI,const SUnit * PacketSU,unsigned DepReg,MachineBasicBlock::iterator & MII,const TargetRegisterClass * RC)400 bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr &MI,
401 const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
402 const TargetRegisterClass *RC) {
403 if (!HII->isHVXVec(MI))
404 return false;
405 if (!HII->isHVXVec(*MII))
406 return false;
407
408 // Already a dot new instruction.
409 if (HII->isDotCurInst(MI) && !HII->mayBeCurLoad(MI))
410 return false;
411
412 if (!HII->mayBeCurLoad(MI))
413 return false;
414
415 // The "cur value" cannot come from inline asm.
416 if (PacketSU->getInstr()->isInlineAsm())
417 return false;
418
419 // Make sure candidate instruction uses cur.
420 LLVM_DEBUG(dbgs() << "Can we DOT Cur Vector MI\n"; MI.dump();
421 dbgs() << "in packet\n";);
422 MachineInstr &MJ = *MII;
423 LLVM_DEBUG({
424 dbgs() << "Checking CUR against ";
425 MJ.dump();
426 });
427 Register DestReg = MI.getOperand(0).getReg();
428 bool FoundMatch = false;
429 for (auto &MO : MJ.operands())
430 if (MO.isReg() && MO.getReg() == DestReg)
431 FoundMatch = true;
432 if (!FoundMatch)
433 return false;
434
435 // Check for existing uses of a vector register within the packet which
436 // would be affected by converting a vector load into .cur formt.
437 for (auto BI : CurrentPacketMIs) {
438 LLVM_DEBUG(dbgs() << "packet has "; BI->dump(););
439 if (BI->readsRegister(DepReg, MF.getSubtarget().getRegisterInfo()))
440 return false;
441 }
442
443 LLVM_DEBUG(dbgs() << "Can Dot CUR MI\n"; MI.dump(););
444 // We can convert the opcode into a .cur.
445 return true;
446 }
447
448 // Promote an instruction to its .new form. At this time, we have already
449 // made a call to canPromoteToDotNew and made sure that it can *indeed* be
450 // promoted.
promoteToDotNew(MachineInstr & MI,SDep::Kind DepType,MachineBasicBlock::iterator & MII,const TargetRegisterClass * RC)451 bool HexagonPacketizerList::promoteToDotNew(MachineInstr &MI,
452 SDep::Kind DepType, MachineBasicBlock::iterator &MII,
453 const TargetRegisterClass* RC) {
454 assert(DepType == SDep::Data);
455 int NewOpcode;
456 if (RC == &Hexagon::PredRegsRegClass)
457 NewOpcode = HII->getDotNewPredOp(MI, MBPI);
458 else
459 NewOpcode = HII->getDotNewOp(MI);
460 MI.setDesc(HII->get(NewOpcode));
461 return true;
462 }
463
demoteToDotOld(MachineInstr & MI)464 bool HexagonPacketizerList::demoteToDotOld(MachineInstr &MI) {
465 int NewOpcode = HII->getDotOldOp(MI);
466 MI.setDesc(HII->get(NewOpcode));
467 return true;
468 }
469
useCallersSP(MachineInstr & MI)470 bool HexagonPacketizerList::useCallersSP(MachineInstr &MI) {
471 unsigned Opc = MI.getOpcode();
472 switch (Opc) {
473 case Hexagon::S2_storerd_io:
474 case Hexagon::S2_storeri_io:
475 case Hexagon::S2_storerh_io:
476 case Hexagon::S2_storerb_io:
477 break;
478 default:
479 llvm_unreachable("Unexpected instruction");
480 }
481 unsigned FrameSize = MF.getFrameInfo().getStackSize();
482 MachineOperand &Off = MI.getOperand(1);
483 int64_t NewOff = Off.getImm() - (FrameSize + HEXAGON_LRFP_SIZE);
484 if (HII->isValidOffset(Opc, NewOff, HRI)) {
485 Off.setImm(NewOff);
486 return true;
487 }
488 return false;
489 }
490
useCalleesSP(MachineInstr & MI)491 void HexagonPacketizerList::useCalleesSP(MachineInstr &MI) {
492 unsigned Opc = MI.getOpcode();
493 switch (Opc) {
494 case Hexagon::S2_storerd_io:
495 case Hexagon::S2_storeri_io:
496 case Hexagon::S2_storerh_io:
497 case Hexagon::S2_storerb_io:
498 break;
499 default:
500 llvm_unreachable("Unexpected instruction");
501 }
502 unsigned FrameSize = MF.getFrameInfo().getStackSize();
503 MachineOperand &Off = MI.getOperand(1);
504 Off.setImm(Off.getImm() + FrameSize + HEXAGON_LRFP_SIZE);
505 }
506
507 /// Return true if we can update the offset in MI so that MI and MJ
508 /// can be packetized together.
updateOffset(SUnit * SUI,SUnit * SUJ)509 bool HexagonPacketizerList::updateOffset(SUnit *SUI, SUnit *SUJ) {
510 assert(SUI->getInstr() && SUJ->getInstr());
511 MachineInstr &MI = *SUI->getInstr();
512 MachineInstr &MJ = *SUJ->getInstr();
513
514 unsigned BPI, OPI;
515 if (!HII->getBaseAndOffsetPosition(MI, BPI, OPI))
516 return false;
517 unsigned BPJ, OPJ;
518 if (!HII->getBaseAndOffsetPosition(MJ, BPJ, OPJ))
519 return false;
520 Register Reg = MI.getOperand(BPI).getReg();
521 if (Reg != MJ.getOperand(BPJ).getReg())
522 return false;
523 // Make sure that the dependences do not restrict adding MI to the packet.
524 // That is, ignore anti dependences, and make sure the only data dependence
525 // involves the specific register.
526 for (const auto &PI : SUI->Preds)
527 if (PI.getKind() != SDep::Anti &&
528 (PI.getKind() != SDep::Data || PI.getReg() != Reg))
529 return false;
530 int Incr;
531 if (!HII->getIncrementValue(MJ, Incr))
532 return false;
533
534 int64_t Offset = MI.getOperand(OPI).getImm();
535 if (!HII->isValidOffset(MI.getOpcode(), Offset+Incr, HRI))
536 return false;
537
538 MI.getOperand(OPI).setImm(Offset + Incr);
539 ChangedOffset = Offset;
540 return true;
541 }
542
543 /// Undo the changed offset. This is needed if the instruction cannot be
544 /// added to the current packet due to a different instruction.
undoChangedOffset(MachineInstr & MI)545 void HexagonPacketizerList::undoChangedOffset(MachineInstr &MI) {
546 unsigned BP, OP;
547 if (!HII->getBaseAndOffsetPosition(MI, BP, OP))
548 llvm_unreachable("Unable to find base and offset operands.");
549 MI.getOperand(OP).setImm(ChangedOffset);
550 }
551
552 enum PredicateKind {
553 PK_False,
554 PK_True,
555 PK_Unknown
556 };
557
558 /// Returns true if an instruction is predicated on p0 and false if it's
559 /// predicated on !p0.
getPredicateSense(const MachineInstr & MI,const HexagonInstrInfo * HII)560 static PredicateKind getPredicateSense(const MachineInstr &MI,
561 const HexagonInstrInfo *HII) {
562 if (!HII->isPredicated(MI))
563 return PK_Unknown;
564 if (HII->isPredicatedTrue(MI))
565 return PK_True;
566 return PK_False;
567 }
568
getPostIncrementOperand(const MachineInstr & MI,const HexagonInstrInfo * HII)569 static const MachineOperand &getPostIncrementOperand(const MachineInstr &MI,
570 const HexagonInstrInfo *HII) {
571 assert(HII->isPostIncrement(MI) && "Not a post increment operation.");
572 #ifndef NDEBUG
573 // Post Increment means duplicates. Use dense map to find duplicates in the
574 // list. Caution: Densemap initializes with the minimum of 64 buckets,
575 // whereas there are at most 5 operands in the post increment.
576 DenseSet<unsigned> DefRegsSet;
577 for (auto &MO : MI.operands())
578 if (MO.isReg() && MO.isDef())
579 DefRegsSet.insert(MO.getReg());
580
581 for (auto &MO : MI.operands())
582 if (MO.isReg() && MO.isUse() && DefRegsSet.count(MO.getReg()))
583 return MO;
584 #else
585 if (MI.mayLoad()) {
586 const MachineOperand &Op1 = MI.getOperand(1);
587 // The 2nd operand is always the post increment operand in load.
588 assert(Op1.isReg() && "Post increment operand has be to a register.");
589 return Op1;
590 }
591 if (MI.getDesc().mayStore()) {
592 const MachineOperand &Op0 = MI.getOperand(0);
593 // The 1st operand is always the post increment operand in store.
594 assert(Op0.isReg() && "Post increment operand has be to a register.");
595 return Op0;
596 }
597 #endif
598 // we should never come here.
599 llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
600 }
601
602 // Get the value being stored.
getStoreValueOperand(const MachineInstr & MI)603 static const MachineOperand& getStoreValueOperand(const MachineInstr &MI) {
604 // value being stored is always the last operand.
605 return MI.getOperand(MI.getNumOperands()-1);
606 }
607
isLoadAbsSet(const MachineInstr & MI)608 static bool isLoadAbsSet(const MachineInstr &MI) {
609 unsigned Opc = MI.getOpcode();
610 switch (Opc) {
611 case Hexagon::L4_loadrd_ap:
612 case Hexagon::L4_loadrb_ap:
613 case Hexagon::L4_loadrh_ap:
614 case Hexagon::L4_loadrub_ap:
615 case Hexagon::L4_loadruh_ap:
616 case Hexagon::L4_loadri_ap:
617 return true;
618 }
619 return false;
620 }
621
getAbsSetOperand(const MachineInstr & MI)622 static const MachineOperand &getAbsSetOperand(const MachineInstr &MI) {
623 assert(isLoadAbsSet(MI));
624 return MI.getOperand(1);
625 }
626
627 // Can be new value store?
628 // Following restrictions are to be respected in convert a store into
629 // a new value store.
630 // 1. If an instruction uses auto-increment, its address register cannot
631 // be a new-value register. Arch Spec 5.4.2.1
632 // 2. If an instruction uses absolute-set addressing mode, its address
633 // register cannot be a new-value register. Arch Spec 5.4.2.1.
634 // 3. If an instruction produces a 64-bit result, its registers cannot be used
635 // as new-value registers. Arch Spec 5.4.2.2.
636 // 4. If the instruction that sets the new-value register is conditional, then
637 // the instruction that uses the new-value register must also be conditional,
638 // and both must always have their predicates evaluate identically.
639 // Arch Spec 5.4.2.3.
640 // 5. There is an implied restriction that a packet cannot have another store,
641 // if there is a new value store in the packet. Corollary: if there is
642 // already a store in a packet, there can not be a new value store.
643 // Arch Spec: 3.4.4.2
canPromoteToNewValueStore(const MachineInstr & MI,const MachineInstr & PacketMI,unsigned DepReg)644 bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr &MI,
645 const MachineInstr &PacketMI, unsigned DepReg) {
646 // Make sure we are looking at the store, that can be promoted.
647 if (!HII->mayBeNewStore(MI))
648 return false;
649
650 // Make sure there is dependency and can be new value'd.
651 const MachineOperand &Val = getStoreValueOperand(MI);
652 if (Val.isReg() && Val.getReg() != DepReg)
653 return false;
654
655 const MCInstrDesc& MCID = PacketMI.getDesc();
656
657 // First operand is always the result.
658 const TargetRegisterClass *PacketRC = HII->getRegClass(MCID, 0, HRI, MF);
659 // Double regs can not feed into new value store: PRM section: 5.4.2.2.
660 if (PacketRC == &Hexagon::DoubleRegsRegClass)
661 return false;
662
663 // New-value stores are of class NV (slot 0), dual stores require class ST
664 // in slot 0 (PRM 5.5).
665 for (auto I : CurrentPacketMIs) {
666 SUnit *PacketSU = MIToSUnit.find(I)->second;
667 if (PacketSU->getInstr()->mayStore())
668 return false;
669 }
670
671 // Make sure it's NOT the post increment register that we are going to
672 // new value.
673 if (HII->isPostIncrement(MI) &&
674 getPostIncrementOperand(MI, HII).getReg() == DepReg) {
675 return false;
676 }
677
678 if (HII->isPostIncrement(PacketMI) && PacketMI.mayLoad() &&
679 getPostIncrementOperand(PacketMI, HII).getReg() == DepReg) {
680 // If source is post_inc, or absolute-set addressing, it can not feed
681 // into new value store
682 // r3 = memw(r2++#4)
683 // memw(r30 + #-1404) = r2.new -> can not be new value store
684 // arch spec section: 5.4.2.1.
685 return false;
686 }
687
688 if (isLoadAbsSet(PacketMI) && getAbsSetOperand(PacketMI).getReg() == DepReg)
689 return false;
690
691 // If the source that feeds the store is predicated, new value store must
692 // also be predicated.
693 if (HII->isPredicated(PacketMI)) {
694 if (!HII->isPredicated(MI))
695 return false;
696
697 // Check to make sure that they both will have their predicates
698 // evaluate identically.
699 unsigned predRegNumSrc = 0;
700 unsigned predRegNumDst = 0;
701 const TargetRegisterClass* predRegClass = nullptr;
702
703 // Get predicate register used in the source instruction.
704 for (auto &MO : PacketMI.operands()) {
705 if (!MO.isReg())
706 continue;
707 predRegNumSrc = MO.getReg();
708 predRegClass = HRI->getMinimalPhysRegClass(predRegNumSrc);
709 if (predRegClass == &Hexagon::PredRegsRegClass)
710 break;
711 }
712 assert((predRegClass == &Hexagon::PredRegsRegClass) &&
713 "predicate register not found in a predicated PacketMI instruction");
714
715 // Get predicate register used in new-value store instruction.
716 for (auto &MO : MI.operands()) {
717 if (!MO.isReg())
718 continue;
719 predRegNumDst = MO.getReg();
720 predRegClass = HRI->getMinimalPhysRegClass(predRegNumDst);
721 if (predRegClass == &Hexagon::PredRegsRegClass)
722 break;
723 }
724 assert((predRegClass == &Hexagon::PredRegsRegClass) &&
725 "predicate register not found in a predicated MI instruction");
726
727 // New-value register producer and user (store) need to satisfy these
728 // constraints:
729 // 1) Both instructions should be predicated on the same register.
730 // 2) If producer of the new-value register is .new predicated then store
731 // should also be .new predicated and if producer is not .new predicated
732 // then store should not be .new predicated.
733 // 3) Both new-value register producer and user should have same predicate
734 // sense, i.e, either both should be negated or both should be non-negated.
735 if (predRegNumDst != predRegNumSrc ||
736 HII->isDotNewInst(PacketMI) != HII->isDotNewInst(MI) ||
737 getPredicateSense(MI, HII) != getPredicateSense(PacketMI, HII))
738 return false;
739 }
740
741 // Make sure that other than the new-value register no other store instruction
742 // register has been modified in the same packet. Predicate registers can be
743 // modified by they should not be modified between the producer and the store
744 // instruction as it will make them both conditional on different values.
745 // We already know this to be true for all the instructions before and
746 // including PacketMI. Howerver, we need to perform the check for the
747 // remaining instructions in the packet.
748
749 unsigned StartCheck = 0;
750
751 for (auto I : CurrentPacketMIs) {
752 SUnit *TempSU = MIToSUnit.find(I)->second;
753 MachineInstr &TempMI = *TempSU->getInstr();
754
755 // Following condition is true for all the instructions until PacketMI is
756 // reached (StartCheck is set to 0 before the for loop).
757 // StartCheck flag is 1 for all the instructions after PacketMI.
758 if (&TempMI != &PacketMI && !StartCheck) // Start processing only after
759 continue; // encountering PacketMI.
760
761 StartCheck = 1;
762 if (&TempMI == &PacketMI) // We don't want to check PacketMI for dependence.
763 continue;
764
765 for (auto &MO : MI.operands())
766 if (MO.isReg() && TempSU->getInstr()->modifiesRegister(MO.getReg(), HRI))
767 return false;
768 }
769
770 // Make sure that for non-POST_INC stores:
771 // 1. The only use of reg is DepReg and no other registers.
772 // This handles base+index registers.
773 // The following store can not be dot new.
774 // Eg. r0 = add(r0, #3)
775 // memw(r1+r0<<#2) = r0
776 if (!HII->isPostIncrement(MI)) {
777 for (unsigned opNum = 0; opNum < MI.getNumOperands()-1; opNum++) {
778 const MachineOperand &MO = MI.getOperand(opNum);
779 if (MO.isReg() && MO.getReg() == DepReg)
780 return false;
781 }
782 }
783
784 // If data definition is because of implicit definition of the register,
785 // do not newify the store. Eg.
786 // %r9 = ZXTH %r12, implicit %d6, implicit-def %r12
787 // S2_storerh_io %r8, 2, killed %r12; mem:ST2[%scevgep343]
788 for (auto &MO : PacketMI.operands()) {
789 if (MO.isRegMask() && MO.clobbersPhysReg(DepReg))
790 return false;
791 if (!MO.isReg() || !MO.isDef() || !MO.isImplicit())
792 continue;
793 Register R = MO.getReg();
794 if (R == DepReg || HRI->isSuperRegister(DepReg, R))
795 return false;
796 }
797
798 // Handle imp-use of super reg case. There is a target independent side
799 // change that should prevent this situation but I am handling it for
800 // just-in-case. For example, we cannot newify R2 in the following case:
801 // %r3 = A2_tfrsi 0;
802 // S2_storeri_io killed %r0, 0, killed %r2, implicit killed %d1;
803 for (auto &MO : MI.operands()) {
804 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == DepReg)
805 return false;
806 }
807
808 // Can be dot new store.
809 return true;
810 }
811
812 // Can this MI to promoted to either new value store or new value jump.
canPromoteToNewValue(const MachineInstr & MI,const SUnit * PacketSU,unsigned DepReg,MachineBasicBlock::iterator & MII)813 bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr &MI,
814 const SUnit *PacketSU, unsigned DepReg,
815 MachineBasicBlock::iterator &MII) {
816 if (!HII->mayBeNewStore(MI))
817 return false;
818
819 // Check to see the store can be new value'ed.
820 MachineInstr &PacketMI = *PacketSU->getInstr();
821 if (canPromoteToNewValueStore(MI, PacketMI, DepReg))
822 return true;
823
824 // Check to see the compare/jump can be new value'ed.
825 // This is done as a pass on its own. Don't need to check it here.
826 return false;
827 }
828
isImplicitDependency(const MachineInstr & I,bool CheckDef,unsigned DepReg)829 static bool isImplicitDependency(const MachineInstr &I, bool CheckDef,
830 unsigned DepReg) {
831 for (auto &MO : I.operands()) {
832 if (CheckDef && MO.isRegMask() && MO.clobbersPhysReg(DepReg))
833 return true;
834 if (!MO.isReg() || MO.getReg() != DepReg || !MO.isImplicit())
835 continue;
836 if (CheckDef == MO.isDef())
837 return true;
838 }
839 return false;
840 }
841
842 // Check to see if an instruction can be dot new.
canPromoteToDotNew(const MachineInstr & MI,const SUnit * PacketSU,unsigned DepReg,MachineBasicBlock::iterator & MII,const TargetRegisterClass * RC)843 bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr &MI,
844 const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
845 const TargetRegisterClass* RC) {
846 // Already a dot new instruction.
847 if (HII->isDotNewInst(MI) && !HII->mayBeNewStore(MI))
848 return false;
849
850 if (!isNewifiable(MI, RC))
851 return false;
852
853 const MachineInstr &PI = *PacketSU->getInstr();
854
855 // The "new value" cannot come from inline asm.
856 if (PI.isInlineAsm())
857 return false;
858
859 // IMPLICIT_DEFs won't materialize as real instructions, so .new makes no
860 // sense.
861 if (PI.isImplicitDef())
862 return false;
863
864 // If dependency is trough an implicitly defined register, we should not
865 // newify the use.
866 if (isImplicitDependency(PI, true, DepReg) ||
867 isImplicitDependency(MI, false, DepReg))
868 return false;
869
870 const MCInstrDesc& MCID = PI.getDesc();
871 const TargetRegisterClass *VecRC = HII->getRegClass(MCID, 0, HRI, MF);
872 if (DisableVecDblNVStores && VecRC == &Hexagon::HvxWRRegClass)
873 return false;
874
875 // predicate .new
876 if (RC == &Hexagon::PredRegsRegClass)
877 return HII->predCanBeUsedAsDotNew(PI, DepReg);
878
879 if (RC != &Hexagon::PredRegsRegClass && !HII->mayBeNewStore(MI))
880 return false;
881
882 // Create a dot new machine instruction to see if resources can be
883 // allocated. If not, bail out now.
884 int NewOpcode = HII->getDotNewOp(MI);
885 const MCInstrDesc &D = HII->get(NewOpcode);
886 MachineInstr *NewMI = MF.CreateMachineInstr(D, DebugLoc());
887 bool ResourcesAvailable = ResourceTracker->canReserveResources(*NewMI);
888 MF.DeleteMachineInstr(NewMI);
889 if (!ResourcesAvailable)
890 return false;
891
892 // New Value Store only. New Value Jump generated as a separate pass.
893 if (!canPromoteToNewValue(MI, PacketSU, DepReg, MII))
894 return false;
895
896 return true;
897 }
898
899 // Go through the packet instructions and search for an anti dependency between
900 // them and DepReg from MI. Consider this case:
901 // Trying to add
902 // a) %r1 = TFRI_cdNotPt %p3, 2
903 // to this packet:
904 // {
905 // b) %p0 = C2_or killed %p3, killed %p0
906 // c) %p3 = C2_tfrrp %r23
907 // d) %r1 = C2_cmovenewit %p3, 4
908 // }
909 // The P3 from a) and d) will be complements after
910 // a)'s P3 is converted to .new form
911 // Anti-dep between c) and b) is irrelevant for this case
restrictingDepExistInPacket(MachineInstr & MI,unsigned DepReg)912 bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr &MI,
913 unsigned DepReg) {
914 SUnit *PacketSUDep = MIToSUnit.find(&MI)->second;
915
916 for (auto I : CurrentPacketMIs) {
917 // We only care for dependencies to predicated instructions
918 if (!HII->isPredicated(*I))
919 continue;
920
921 // Scheduling Unit for current insn in the packet
922 SUnit *PacketSU = MIToSUnit.find(I)->second;
923
924 // Look at dependencies between current members of the packet and
925 // predicate defining instruction MI. Make sure that dependency is
926 // on the exact register we care about.
927 if (PacketSU->isSucc(PacketSUDep)) {
928 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
929 auto &Dep = PacketSU->Succs[i];
930 if (Dep.getSUnit() == PacketSUDep && Dep.getKind() == SDep::Anti &&
931 Dep.getReg() == DepReg)
932 return true;
933 }
934 }
935 }
936
937 return false;
938 }
939
940 /// Gets the predicate register of a predicated instruction.
getPredicatedRegister(MachineInstr & MI,const HexagonInstrInfo * QII)941 static unsigned getPredicatedRegister(MachineInstr &MI,
942 const HexagonInstrInfo *QII) {
943 /// We use the following rule: The first predicate register that is a use is
944 /// the predicate register of a predicated instruction.
945 assert(QII->isPredicated(MI) && "Must be predicated instruction");
946
947 for (auto &Op : MI.operands()) {
948 if (Op.isReg() && Op.getReg() && Op.isUse() &&
949 Hexagon::PredRegsRegClass.contains(Op.getReg()))
950 return Op.getReg();
951 }
952
953 llvm_unreachable("Unknown instruction operand layout");
954 return 0;
955 }
956
957 // Given two predicated instructions, this function detects whether
958 // the predicates are complements.
arePredicatesComplements(MachineInstr & MI1,MachineInstr & MI2)959 bool HexagonPacketizerList::arePredicatesComplements(MachineInstr &MI1,
960 MachineInstr &MI2) {
961 // If we don't know the predicate sense of the instructions bail out early, we
962 // need it later.
963 if (getPredicateSense(MI1, HII) == PK_Unknown ||
964 getPredicateSense(MI2, HII) == PK_Unknown)
965 return false;
966
967 // Scheduling unit for candidate.
968 SUnit *SU = MIToSUnit[&MI1];
969
970 // One corner case deals with the following scenario:
971 // Trying to add
972 // a) %r24 = A2_tfrt %p0, %r25
973 // to this packet:
974 // {
975 // b) %r25 = A2_tfrf %p0, %r24
976 // c) %p0 = C2_cmpeqi %r26, 1
977 // }
978 //
979 // On general check a) and b) are complements, but presence of c) will
980 // convert a) to .new form, and then it is not a complement.
981 // We attempt to detect it by analyzing existing dependencies in the packet.
982
983 // Analyze relationships between all existing members of the packet.
984 // Look for Anti dependecy on the same predicate reg as used in the
985 // candidate.
986 for (auto I : CurrentPacketMIs) {
987 // Scheduling Unit for current insn in the packet.
988 SUnit *PacketSU = MIToSUnit.find(I)->second;
989
990 // If this instruction in the packet is succeeded by the candidate...
991 if (PacketSU->isSucc(SU)) {
992 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
993 auto Dep = PacketSU->Succs[i];
994 // The corner case exist when there is true data dependency between
995 // candidate and one of current packet members, this dep is on
996 // predicate reg, and there already exist anti dep on the same pred in
997 // the packet.
998 if (Dep.getSUnit() == SU && Dep.getKind() == SDep::Data &&
999 Hexagon::PredRegsRegClass.contains(Dep.getReg())) {
1000 // Here I know that I is predicate setting instruction with true
1001 // data dep to candidate on the register we care about - c) in the
1002 // above example. Now I need to see if there is an anti dependency
1003 // from c) to any other instruction in the same packet on the pred
1004 // reg of interest.
1005 if (restrictingDepExistInPacket(*I, Dep.getReg()))
1006 return false;
1007 }
1008 }
1009 }
1010 }
1011
1012 // If the above case does not apply, check regular complement condition.
1013 // Check that the predicate register is the same and that the predicate
1014 // sense is different We also need to differentiate .old vs. .new: !p0
1015 // is not complementary to p0.new.
1016 unsigned PReg1 = getPredicatedRegister(MI1, HII);
1017 unsigned PReg2 = getPredicatedRegister(MI2, HII);
1018 return PReg1 == PReg2 &&
1019 Hexagon::PredRegsRegClass.contains(PReg1) &&
1020 Hexagon::PredRegsRegClass.contains(PReg2) &&
1021 getPredicateSense(MI1, HII) != getPredicateSense(MI2, HII) &&
1022 HII->isDotNewInst(MI1) == HII->isDotNewInst(MI2);
1023 }
1024
1025 // Initialize packetizer flags.
initPacketizerState()1026 void HexagonPacketizerList::initPacketizerState() {
1027 Dependence = false;
1028 PromotedToDotNew = false;
1029 GlueToNewValueJump = false;
1030 GlueAllocframeStore = false;
1031 FoundSequentialDependence = false;
1032 ChangedOffset = INT64_MAX;
1033 }
1034
1035 // Ignore bundling of pseudo instructions.
ignorePseudoInstruction(const MachineInstr & MI,const MachineBasicBlock *)1036 bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr &MI,
1037 const MachineBasicBlock *) {
1038 if (MI.isDebugInstr())
1039 return true;
1040
1041 if (MI.isCFIInstruction())
1042 return false;
1043
1044 // We must print out inline assembly.
1045 if (MI.isInlineAsm())
1046 return false;
1047
1048 if (MI.isImplicitDef())
1049 return false;
1050
1051 // We check if MI has any functional units mapped to it. If it doesn't,
1052 // we ignore the instruction.
1053 const MCInstrDesc& TID = MI.getDesc();
1054 auto *IS = ResourceTracker->getInstrItins()->beginStage(TID.getSchedClass());
1055 unsigned FuncUnits = IS->getUnits();
1056 return !FuncUnits;
1057 }
1058
isSoloInstruction(const MachineInstr & MI)1059 bool HexagonPacketizerList::isSoloInstruction(const MachineInstr &MI) {
1060 // Ensure any bundles created by gather packetize remain seperate.
1061 if (MI.isBundle())
1062 return true;
1063
1064 if (MI.isEHLabel() || MI.isCFIInstruction())
1065 return true;
1066
1067 // Consider inline asm to not be a solo instruction by default.
1068 // Inline asm will be put in a packet temporarily, but then it will be
1069 // removed, and placed outside of the packet (before or after, depending
1070 // on dependencies). This is to reduce the impact of inline asm as a
1071 // "packet splitting" instruction.
1072 if (MI.isInlineAsm() && !ScheduleInlineAsm)
1073 return true;
1074
1075 if (isSchedBarrier(MI))
1076 return true;
1077
1078 if (HII->isSolo(MI))
1079 return true;
1080
1081 if (MI.getOpcode() == Hexagon::A2_nop)
1082 return true;
1083
1084 return false;
1085 }
1086
1087 // Quick check if instructions MI and MJ cannot coexist in the same packet.
1088 // Limit the tests to be "one-way", e.g. "if MI->isBranch and MJ->isInlineAsm",
1089 // but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm".
1090 // For full test call this function twice:
1091 // cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI)
1092 // Doing the test only one way saves the amount of code in this function,
1093 // since every test would need to be repeated with the MI and MJ reversed.
cannotCoexistAsymm(const MachineInstr & MI,const MachineInstr & MJ,const HexagonInstrInfo & HII)1094 static bool cannotCoexistAsymm(const MachineInstr &MI, const MachineInstr &MJ,
1095 const HexagonInstrInfo &HII) {
1096 const MachineFunction *MF = MI.getParent()->getParent();
1097 if (MF->getSubtarget<HexagonSubtarget>().hasV60OpsOnly() &&
1098 HII.isHVXMemWithAIndirect(MI, MJ))
1099 return true;
1100
1101 // An inline asm cannot be together with a branch, because we may not be
1102 // able to remove the asm out after packetizing (i.e. if the asm must be
1103 // moved past the bundle). Similarly, two asms cannot be together to avoid
1104 // complications when determining their relative order outside of a bundle.
1105 if (MI.isInlineAsm())
1106 return MJ.isInlineAsm() || MJ.isBranch() || MJ.isBarrier() ||
1107 MJ.isCall() || MJ.isTerminator();
1108
1109 // New-value stores cannot coexist with any other stores.
1110 if (HII.isNewValueStore(MI) && MJ.mayStore())
1111 return true;
1112
1113 switch (MI.getOpcode()) {
1114 case Hexagon::S2_storew_locked:
1115 case Hexagon::S4_stored_locked:
1116 case Hexagon::L2_loadw_locked:
1117 case Hexagon::L4_loadd_locked:
1118 case Hexagon::Y2_dccleana:
1119 case Hexagon::Y2_dccleaninva:
1120 case Hexagon::Y2_dcinva:
1121 case Hexagon::Y2_dczeroa:
1122 case Hexagon::Y4_l2fetch:
1123 case Hexagon::Y5_l2fetch: {
1124 // These instructions can only be grouped with ALU32 or non-floating-point
1125 // XTYPE instructions. Since there is no convenient way of identifying fp
1126 // XTYPE instructions, only allow grouping with ALU32 for now.
1127 unsigned TJ = HII.getType(MJ);
1128 if (TJ != HexagonII::TypeALU32_2op &&
1129 TJ != HexagonII::TypeALU32_3op &&
1130 TJ != HexagonII::TypeALU32_ADDI)
1131 return true;
1132 break;
1133 }
1134 default:
1135 break;
1136 }
1137
1138 // "False" really means that the quick check failed to determine if
1139 // I and J cannot coexist.
1140 return false;
1141 }
1142
1143 // Full, symmetric check.
cannotCoexist(const MachineInstr & MI,const MachineInstr & MJ)1144 bool HexagonPacketizerList::cannotCoexist(const MachineInstr &MI,
1145 const MachineInstr &MJ) {
1146 return cannotCoexistAsymm(MI, MJ, *HII) || cannotCoexistAsymm(MJ, MI, *HII);
1147 }
1148
unpacketizeSoloInstrs(MachineFunction & MF)1149 void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction &MF) {
1150 for (auto &B : MF) {
1151 MachineBasicBlock::iterator BundleIt;
1152 MachineBasicBlock::instr_iterator NextI;
1153 for (auto I = B.instr_begin(), E = B.instr_end(); I != E; I = NextI) {
1154 NextI = std::next(I);
1155 MachineInstr &MI = *I;
1156 if (MI.isBundle())
1157 BundleIt = I;
1158 if (!MI.isInsideBundle())
1159 continue;
1160
1161 // Decide on where to insert the instruction that we are pulling out.
1162 // Debug instructions always go before the bundle, but the placement of
1163 // INLINE_ASM depends on potential dependencies. By default, try to
1164 // put it before the bundle, but if the asm writes to a register that
1165 // other instructions in the bundle read, then we need to place it
1166 // after the bundle (to preserve the bundle semantics).
1167 bool InsertBeforeBundle;
1168 if (MI.isInlineAsm())
1169 InsertBeforeBundle = !hasWriteToReadDep(MI, *BundleIt, HRI);
1170 else if (MI.isDebugValue())
1171 InsertBeforeBundle = true;
1172 else
1173 continue;
1174
1175 BundleIt = moveInstrOut(MI, BundleIt, InsertBeforeBundle);
1176 }
1177 }
1178 }
1179
1180 // Check if a given instruction is of class "system".
isSystemInstr(const MachineInstr & MI)1181 static bool isSystemInstr(const MachineInstr &MI) {
1182 unsigned Opc = MI.getOpcode();
1183 switch (Opc) {
1184 case Hexagon::Y2_barrier:
1185 case Hexagon::Y2_dcfetchbo:
1186 case Hexagon::Y4_l2fetch:
1187 case Hexagon::Y5_l2fetch:
1188 return true;
1189 }
1190 return false;
1191 }
1192
hasDeadDependence(const MachineInstr & I,const MachineInstr & J)1193 bool HexagonPacketizerList::hasDeadDependence(const MachineInstr &I,
1194 const MachineInstr &J) {
1195 // The dependence graph may not include edges between dead definitions,
1196 // so without extra checks, we could end up packetizing two instruction
1197 // defining the same (dead) register.
1198 if (I.isCall() || J.isCall())
1199 return false;
1200 if (HII->isPredicated(I) || HII->isPredicated(J))
1201 return false;
1202
1203 BitVector DeadDefs(Hexagon::NUM_TARGET_REGS);
1204 for (auto &MO : I.operands()) {
1205 if (!MO.isReg() || !MO.isDef() || !MO.isDead())
1206 continue;
1207 DeadDefs[MO.getReg()] = true;
1208 }
1209
1210 for (auto &MO : J.operands()) {
1211 if (!MO.isReg() || !MO.isDef() || !MO.isDead())
1212 continue;
1213 Register R = MO.getReg();
1214 if (R != Hexagon::USR_OVF && DeadDefs[R])
1215 return true;
1216 }
1217 return false;
1218 }
1219
hasControlDependence(const MachineInstr & I,const MachineInstr & J)1220 bool HexagonPacketizerList::hasControlDependence(const MachineInstr &I,
1221 const MachineInstr &J) {
1222 // A save callee-save register function call can only be in a packet
1223 // with instructions that don't write to the callee-save registers.
1224 if ((HII->isSaveCalleeSavedRegsCall(I) &&
1225 doesModifyCalleeSavedReg(J, HRI)) ||
1226 (HII->isSaveCalleeSavedRegsCall(J) &&
1227 doesModifyCalleeSavedReg(I, HRI)))
1228 return true;
1229
1230 // Two control flow instructions cannot go in the same packet.
1231 if (isControlFlow(I) && isControlFlow(J))
1232 return true;
1233
1234 // \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot
1235 // contain a speculative indirect jump,
1236 // a new-value compare jump or a dealloc_return.
1237 auto isBadForLoopN = [this] (const MachineInstr &MI) -> bool {
1238 if (MI.isCall() || HII->isDeallocRet(MI) || HII->isNewValueJump(MI))
1239 return true;
1240 if (HII->isPredicated(MI) && HII->isPredicatedNew(MI) && HII->isJumpR(MI))
1241 return true;
1242 return false;
1243 };
1244
1245 if (HII->isLoopN(I) && isBadForLoopN(J))
1246 return true;
1247 if (HII->isLoopN(J) && isBadForLoopN(I))
1248 return true;
1249
1250 // dealloc_return cannot appear in the same packet as a conditional or
1251 // unconditional jump.
1252 return HII->isDeallocRet(I) &&
1253 (J.isBranch() || J.isCall() || J.isBarrier());
1254 }
1255
hasRegMaskDependence(const MachineInstr & I,const MachineInstr & J)1256 bool HexagonPacketizerList::hasRegMaskDependence(const MachineInstr &I,
1257 const MachineInstr &J) {
1258 // Adding I to a packet that has J.
1259
1260 // Regmasks are not reflected in the scheduling dependency graph, so
1261 // we need to check them manually. This code assumes that regmasks only
1262 // occur on calls, and the problematic case is when we add an instruction
1263 // defining a register R to a packet that has a call that clobbers R via
1264 // a regmask. Those cannot be packetized together, because the call will
1265 // be executed last. That's also a reson why it is ok to add a call
1266 // clobbering R to a packet that defines R.
1267
1268 // Look for regmasks in J.
1269 for (const MachineOperand &OpJ : J.operands()) {
1270 if (!OpJ.isRegMask())
1271 continue;
1272 assert((J.isCall() || HII->isTailCall(J)) && "Regmask on a non-call");
1273 for (const MachineOperand &OpI : I.operands()) {
1274 if (OpI.isReg()) {
1275 if (OpJ.clobbersPhysReg(OpI.getReg()))
1276 return true;
1277 } else if (OpI.isRegMask()) {
1278 // Both are regmasks. Assume that they intersect.
1279 return true;
1280 }
1281 }
1282 }
1283 return false;
1284 }
1285
hasDualStoreDependence(const MachineInstr & I,const MachineInstr & J)1286 bool HexagonPacketizerList::hasDualStoreDependence(const MachineInstr &I,
1287 const MachineInstr &J) {
1288 bool SysI = isSystemInstr(I), SysJ = isSystemInstr(J);
1289 bool StoreI = I.mayStore(), StoreJ = J.mayStore();
1290 if ((SysI && StoreJ) || (SysJ && StoreI))
1291 return true;
1292
1293 if (StoreI && StoreJ) {
1294 if (HII->isNewValueInst(J) || HII->isMemOp(J) || HII->isMemOp(I))
1295 return true;
1296 } else {
1297 // A memop cannot be in the same packet with another memop or a store.
1298 // Two stores can be together, but here I and J cannot both be stores.
1299 bool MopStI = HII->isMemOp(I) || StoreI;
1300 bool MopStJ = HII->isMemOp(J) || StoreJ;
1301 if (MopStI && MopStJ)
1302 return true;
1303 }
1304
1305 return (StoreJ && HII->isDeallocRet(I)) || (StoreI && HII->isDeallocRet(J));
1306 }
1307
1308 // SUI is the current instruction that is out side of the current packet.
1309 // SUJ is the current instruction inside the current packet against which that
1310 // SUI will be packetized.
isLegalToPacketizeTogether(SUnit * SUI,SUnit * SUJ)1311 bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
1312 assert(SUI->getInstr() && SUJ->getInstr());
1313 MachineInstr &I = *SUI->getInstr();
1314 MachineInstr &J = *SUJ->getInstr();
1315
1316 // Clear IgnoreDepMIs when Packet starts.
1317 if (CurrentPacketMIs.size() == 1)
1318 IgnoreDepMIs.clear();
1319
1320 MachineBasicBlock::iterator II = I.getIterator();
1321
1322 // Solo instructions cannot go in the packet.
1323 assert(!isSoloInstruction(I) && "Unexpected solo instr!");
1324
1325 if (cannotCoexist(I, J))
1326 return false;
1327
1328 Dependence = hasDeadDependence(I, J) || hasControlDependence(I, J);
1329 if (Dependence)
1330 return false;
1331
1332 // Regmasks are not accounted for in the scheduling graph, so we need
1333 // to explicitly check for dependencies caused by them. They should only
1334 // appear on calls, so it's not too pessimistic to reject all regmask
1335 // dependencies.
1336 Dependence = hasRegMaskDependence(I, J);
1337 if (Dependence)
1338 return false;
1339
1340 // Dual-store does not allow second store, if the first store is not
1341 // in SLOT0. New value store, new value jump, dealloc_return and memop
1342 // always take SLOT0. Arch spec 3.4.4.2.
1343 Dependence = hasDualStoreDependence(I, J);
1344 if (Dependence)
1345 return false;
1346
1347 // If an instruction feeds new value jump, glue it.
1348 MachineBasicBlock::iterator NextMII = I.getIterator();
1349 ++NextMII;
1350 if (NextMII != I.getParent()->end() && HII->isNewValueJump(*NextMII)) {
1351 MachineInstr &NextMI = *NextMII;
1352
1353 bool secondRegMatch = false;
1354 const MachineOperand &NOp0 = NextMI.getOperand(0);
1355 const MachineOperand &NOp1 = NextMI.getOperand(1);
1356
1357 if (NOp1.isReg() && I.getOperand(0).getReg() == NOp1.getReg())
1358 secondRegMatch = true;
1359
1360 for (MachineInstr *PI : CurrentPacketMIs) {
1361 // NVJ can not be part of the dual jump - Arch Spec: section 7.8.
1362 if (PI->isCall()) {
1363 Dependence = true;
1364 break;
1365 }
1366 // Validate:
1367 // 1. Packet does not have a store in it.
1368 // 2. If the first operand of the nvj is newified, and the second
1369 // operand is also a reg, it (second reg) is not defined in
1370 // the same packet.
1371 // 3. If the second operand of the nvj is newified, (which means
1372 // first operand is also a reg), first reg is not defined in
1373 // the same packet.
1374 if (PI->getOpcode() == Hexagon::S2_allocframe || PI->mayStore() ||
1375 HII->isLoopN(*PI)) {
1376 Dependence = true;
1377 break;
1378 }
1379 // Check #2/#3.
1380 const MachineOperand &OpR = secondRegMatch ? NOp0 : NOp1;
1381 if (OpR.isReg() && PI->modifiesRegister(OpR.getReg(), HRI)) {
1382 Dependence = true;
1383 break;
1384 }
1385 }
1386
1387 GlueToNewValueJump = true;
1388 if (Dependence)
1389 return false;
1390 }
1391
1392 // There no dependency between a prolog instruction and its successor.
1393 if (!SUJ->isSucc(SUI))
1394 return true;
1395
1396 for (unsigned i = 0; i < SUJ->Succs.size(); ++i) {
1397 if (FoundSequentialDependence)
1398 break;
1399
1400 if (SUJ->Succs[i].getSUnit() != SUI)
1401 continue;
1402
1403 SDep::Kind DepType = SUJ->Succs[i].getKind();
1404 // For direct calls:
1405 // Ignore register dependences for call instructions for packetization
1406 // purposes except for those due to r31 and predicate registers.
1407 //
1408 // For indirect calls:
1409 // Same as direct calls + check for true dependences to the register
1410 // used in the indirect call.
1411 //
1412 // We completely ignore Order dependences for call instructions.
1413 //
1414 // For returns:
1415 // Ignore register dependences for return instructions like jumpr,
1416 // dealloc return unless we have dependencies on the explicit uses
1417 // of the registers used by jumpr (like r31) or dealloc return
1418 // (like r29 or r30).
1419 unsigned DepReg = 0;
1420 const TargetRegisterClass *RC = nullptr;
1421 if (DepType == SDep::Data) {
1422 DepReg = SUJ->Succs[i].getReg();
1423 RC = HRI->getMinimalPhysRegClass(DepReg);
1424 }
1425
1426 if (I.isCall() || HII->isJumpR(I) || I.isReturn() || HII->isTailCall(I)) {
1427 if (!isRegDependence(DepType))
1428 continue;
1429 if (!isCallDependent(I, DepType, SUJ->Succs[i].getReg()))
1430 continue;
1431 }
1432
1433 if (DepType == SDep::Data) {
1434 if (canPromoteToDotCur(J, SUJ, DepReg, II, RC))
1435 if (promoteToDotCur(J, DepType, II, RC))
1436 continue;
1437 }
1438
1439 // Data dpendence ok if we have load.cur.
1440 if (DepType == SDep::Data && HII->isDotCurInst(J)) {
1441 if (HII->isHVXVec(I))
1442 continue;
1443 }
1444
1445 // For instructions that can be promoted to dot-new, try to promote.
1446 if (DepType == SDep::Data) {
1447 if (canPromoteToDotNew(I, SUJ, DepReg, II, RC)) {
1448 if (promoteToDotNew(I, DepType, II, RC)) {
1449 PromotedToDotNew = true;
1450 if (cannotCoexist(I, J))
1451 FoundSequentialDependence = true;
1452 continue;
1453 }
1454 }
1455 if (HII->isNewValueJump(I))
1456 continue;
1457 }
1458
1459 // For predicated instructions, if the predicates are complements then
1460 // there can be no dependence.
1461 if (HII->isPredicated(I) && HII->isPredicated(J) &&
1462 arePredicatesComplements(I, J)) {
1463 // Not always safe to do this translation.
1464 // DAG Builder attempts to reduce dependence edges using transitive
1465 // nature of dependencies. Here is an example:
1466 //
1467 // r0 = tfr_pt ... (1)
1468 // r0 = tfr_pf ... (2)
1469 // r0 = tfr_pt ... (3)
1470 //
1471 // There will be an output dependence between (1)->(2) and (2)->(3).
1472 // However, there is no dependence edge between (1)->(3). This results
1473 // in all 3 instructions going in the same packet. We ignore dependce
1474 // only once to avoid this situation.
1475 auto Itr = find(IgnoreDepMIs, &J);
1476 if (Itr != IgnoreDepMIs.end()) {
1477 Dependence = true;
1478 return false;
1479 }
1480 IgnoreDepMIs.push_back(&I);
1481 continue;
1482 }
1483
1484 // Ignore Order dependences between unconditional direct branches
1485 // and non-control-flow instructions.
1486 if (isDirectJump(I) && !J.isBranch() && !J.isCall() &&
1487 DepType == SDep::Order)
1488 continue;
1489
1490 // Ignore all dependences for jumps except for true and output
1491 // dependences.
1492 if (I.isConditionalBranch() && DepType != SDep::Data &&
1493 DepType != SDep::Output)
1494 continue;
1495
1496 if (DepType == SDep::Output) {
1497 FoundSequentialDependence = true;
1498 break;
1499 }
1500
1501 // For Order dependences:
1502 // 1. Volatile loads/stores can be packetized together, unless other
1503 // rules prevent is.
1504 // 2. Store followed by a load is not allowed.
1505 // 3. Store followed by a store is valid.
1506 // 4. Load followed by any memory operation is allowed.
1507 if (DepType == SDep::Order) {
1508 if (!PacketizeVolatiles) {
1509 bool OrdRefs = I.hasOrderedMemoryRef() || J.hasOrderedMemoryRef();
1510 if (OrdRefs) {
1511 FoundSequentialDependence = true;
1512 break;
1513 }
1514 }
1515 // J is first, I is second.
1516 bool LoadJ = J.mayLoad(), StoreJ = J.mayStore();
1517 bool LoadI = I.mayLoad(), StoreI = I.mayStore();
1518 bool NVStoreJ = HII->isNewValueStore(J);
1519 bool NVStoreI = HII->isNewValueStore(I);
1520 bool IsVecJ = HII->isHVXVec(J);
1521 bool IsVecI = HII->isHVXVec(I);
1522
1523 if (Slot1Store && MF.getSubtarget<HexagonSubtarget>().hasV65Ops() &&
1524 ((LoadJ && StoreI && !NVStoreI) ||
1525 (StoreJ && LoadI && !NVStoreJ)) &&
1526 (J.getOpcode() != Hexagon::S2_allocframe &&
1527 I.getOpcode() != Hexagon::S2_allocframe) &&
1528 (J.getOpcode() != Hexagon::L2_deallocframe &&
1529 I.getOpcode() != Hexagon::L2_deallocframe) &&
1530 (!HII->isMemOp(J) && !HII->isMemOp(I)) && (!IsVecJ && !IsVecI))
1531 setmemShufDisabled(true);
1532 else
1533 if (StoreJ && LoadI && alias(J, I)) {
1534 FoundSequentialDependence = true;
1535 break;
1536 }
1537
1538 if (!StoreJ)
1539 if (!LoadJ || (!LoadI && !StoreI)) {
1540 // If J is neither load nor store, assume a dependency.
1541 // If J is a load, but I is neither, also assume a dependency.
1542 FoundSequentialDependence = true;
1543 break;
1544 }
1545 // Store followed by store: not OK on V2.
1546 // Store followed by load: not OK on all.
1547 // Load followed by store: OK on all.
1548 // Load followed by load: OK on all.
1549 continue;
1550 }
1551
1552 // Special case for ALLOCFRAME: even though there is dependency
1553 // between ALLOCFRAME and subsequent store, allow it to be packetized
1554 // in a same packet. This implies that the store is using the caller's
1555 // SP. Hence, offset needs to be updated accordingly.
1556 if (DepType == SDep::Data && J.getOpcode() == Hexagon::S2_allocframe) {
1557 unsigned Opc = I.getOpcode();
1558 switch (Opc) {
1559 case Hexagon::S2_storerd_io:
1560 case Hexagon::S2_storeri_io:
1561 case Hexagon::S2_storerh_io:
1562 case Hexagon::S2_storerb_io:
1563 if (I.getOperand(0).getReg() == HRI->getStackRegister()) {
1564 // Since this store is to be glued with allocframe in the same
1565 // packet, it will use SP of the previous stack frame, i.e.
1566 // caller's SP. Therefore, we need to recalculate offset
1567 // according to this change.
1568 GlueAllocframeStore = useCallersSP(I);
1569 if (GlueAllocframeStore)
1570 continue;
1571 }
1572 break;
1573 default:
1574 break;
1575 }
1576 }
1577
1578 // There are certain anti-dependencies that cannot be ignored.
1579 // Specifically:
1580 // J2_call ... implicit-def %r0 ; SUJ
1581 // R0 = ... ; SUI
1582 // Those cannot be packetized together, since the call will observe
1583 // the effect of the assignment to R0.
1584 if ((DepType == SDep::Anti || DepType == SDep::Output) && J.isCall()) {
1585 // Check if I defines any volatile register. We should also check
1586 // registers that the call may read, but these happen to be a
1587 // subset of the volatile register set.
1588 for (const MachineOperand &Op : I.operands()) {
1589 if (Op.isReg() && Op.isDef()) {
1590 Register R = Op.getReg();
1591 if (!J.readsRegister(R, HRI) && !J.modifiesRegister(R, HRI))
1592 continue;
1593 } else if (!Op.isRegMask()) {
1594 // If I has a regmask assume dependency.
1595 continue;
1596 }
1597 FoundSequentialDependence = true;
1598 break;
1599 }
1600 }
1601
1602 // Skip over remaining anti-dependences. Two instructions that are
1603 // anti-dependent can share a packet, since in most such cases all
1604 // operands are read before any modifications take place.
1605 // The exceptions are branch and call instructions, since they are
1606 // executed after all other instructions have completed (at least
1607 // conceptually).
1608 if (DepType != SDep::Anti) {
1609 FoundSequentialDependence = true;
1610 break;
1611 }
1612 }
1613
1614 if (FoundSequentialDependence) {
1615 Dependence = true;
1616 return false;
1617 }
1618
1619 return true;
1620 }
1621
isLegalToPruneDependencies(SUnit * SUI,SUnit * SUJ)1622 bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
1623 assert(SUI->getInstr() && SUJ->getInstr());
1624 MachineInstr &I = *SUI->getInstr();
1625 MachineInstr &J = *SUJ->getInstr();
1626
1627 bool Coexist = !cannotCoexist(I, J);
1628
1629 if (Coexist && !Dependence)
1630 return true;
1631
1632 // Check if the instruction was promoted to a dot-new. If so, demote it
1633 // back into a dot-old.
1634 if (PromotedToDotNew)
1635 demoteToDotOld(I);
1636
1637 cleanUpDotCur();
1638 // Check if the instruction (must be a store) was glued with an allocframe
1639 // instruction. If so, restore its offset to its original value, i.e. use
1640 // current SP instead of caller's SP.
1641 if (GlueAllocframeStore) {
1642 useCalleesSP(I);
1643 GlueAllocframeStore = false;
1644 }
1645
1646 if (ChangedOffset != INT64_MAX)
1647 undoChangedOffset(I);
1648
1649 if (GlueToNewValueJump) {
1650 // Putting I and J together would prevent the new-value jump from being
1651 // packetized with the producer. In that case I and J must be separated.
1652 GlueToNewValueJump = false;
1653 return false;
1654 }
1655
1656 if (!Coexist)
1657 return false;
1658
1659 if (ChangedOffset == INT64_MAX && updateOffset(SUI, SUJ)) {
1660 FoundSequentialDependence = false;
1661 Dependence = false;
1662 return true;
1663 }
1664
1665 return false;
1666 }
1667
1668
foundLSInPacket()1669 bool HexagonPacketizerList::foundLSInPacket() {
1670 bool FoundLoad = false;
1671 bool FoundStore = false;
1672
1673 for (auto MJ : CurrentPacketMIs) {
1674 unsigned Opc = MJ->getOpcode();
1675 if (Opc == Hexagon::S2_allocframe || Opc == Hexagon::L2_deallocframe)
1676 continue;
1677 if (HII->isMemOp(*MJ))
1678 continue;
1679 if (MJ->mayLoad())
1680 FoundLoad = true;
1681 if (MJ->mayStore() && !HII->isNewValueStore(*MJ))
1682 FoundStore = true;
1683 }
1684 return FoundLoad && FoundStore;
1685 }
1686
1687
1688 MachineBasicBlock::iterator
addToPacket(MachineInstr & MI)1689 HexagonPacketizerList::addToPacket(MachineInstr &MI) {
1690 MachineBasicBlock::iterator MII = MI.getIterator();
1691 MachineBasicBlock *MBB = MI.getParent();
1692
1693 if (CurrentPacketMIs.empty())
1694 PacketStalls = false;
1695 PacketStalls |= producesStall(MI);
1696
1697 if (MI.isImplicitDef()) {
1698 // Add to the packet to allow subsequent instructions to be checked
1699 // properly.
1700 CurrentPacketMIs.push_back(&MI);
1701 return MII;
1702 }
1703 assert(ResourceTracker->canReserveResources(MI));
1704
1705 bool ExtMI = HII->isExtended(MI) || HII->isConstExtended(MI);
1706 bool Good = true;
1707
1708 if (GlueToNewValueJump) {
1709 MachineInstr &NvjMI = *++MII;
1710 // We need to put both instructions in the same packet: MI and NvjMI.
1711 // Either of them can require a constant extender. Try to add both to
1712 // the current packet, and if that fails, end the packet and start a
1713 // new one.
1714 ResourceTracker->reserveResources(MI);
1715 if (ExtMI)
1716 Good = tryAllocateResourcesForConstExt(true);
1717
1718 bool ExtNvjMI = HII->isExtended(NvjMI) || HII->isConstExtended(NvjMI);
1719 if (Good) {
1720 if (ResourceTracker->canReserveResources(NvjMI))
1721 ResourceTracker->reserveResources(NvjMI);
1722 else
1723 Good = false;
1724 }
1725 if (Good && ExtNvjMI)
1726 Good = tryAllocateResourcesForConstExt(true);
1727
1728 if (!Good) {
1729 endPacket(MBB, MI);
1730 assert(ResourceTracker->canReserveResources(MI));
1731 ResourceTracker->reserveResources(MI);
1732 if (ExtMI) {
1733 assert(canReserveResourcesForConstExt());
1734 tryAllocateResourcesForConstExt(true);
1735 }
1736 assert(ResourceTracker->canReserveResources(NvjMI));
1737 ResourceTracker->reserveResources(NvjMI);
1738 if (ExtNvjMI) {
1739 assert(canReserveResourcesForConstExt());
1740 reserveResourcesForConstExt();
1741 }
1742 }
1743 CurrentPacketMIs.push_back(&MI);
1744 CurrentPacketMIs.push_back(&NvjMI);
1745 return MII;
1746 }
1747
1748 ResourceTracker->reserveResources(MI);
1749 if (ExtMI && !tryAllocateResourcesForConstExt(true)) {
1750 endPacket(MBB, MI);
1751 if (PromotedToDotNew)
1752 demoteToDotOld(MI);
1753 if (GlueAllocframeStore) {
1754 useCalleesSP(MI);
1755 GlueAllocframeStore = false;
1756 }
1757 ResourceTracker->reserveResources(MI);
1758 reserveResourcesForConstExt();
1759 }
1760
1761 CurrentPacketMIs.push_back(&MI);
1762 return MII;
1763 }
1764
endPacket(MachineBasicBlock * MBB,MachineBasicBlock::iterator EndMI)1765 void HexagonPacketizerList::endPacket(MachineBasicBlock *MBB,
1766 MachineBasicBlock::iterator EndMI) {
1767 // Replace VLIWPacketizerList::endPacket(MBB, EndMI).
1768 LLVM_DEBUG({
1769 if (!CurrentPacketMIs.empty()) {
1770 dbgs() << "Finalizing packet:\n";
1771 unsigned Idx = 0;
1772 for (MachineInstr *MI : CurrentPacketMIs) {
1773 unsigned R = ResourceTracker->getUsedResources(Idx++);
1774 dbgs() << " * [res:0x" << utohexstr(R) << "] " << *MI;
1775 }
1776 }
1777 });
1778
1779 bool memShufDisabled = getmemShufDisabled();
1780 if (memShufDisabled && !foundLSInPacket()) {
1781 setmemShufDisabled(false);
1782 LLVM_DEBUG(dbgs() << " Not added to NoShufPacket\n");
1783 }
1784 memShufDisabled = getmemShufDisabled();
1785
1786 OldPacketMIs.clear();
1787 for (MachineInstr *MI : CurrentPacketMIs) {
1788 MachineBasicBlock::instr_iterator NextMI = std::next(MI->getIterator());
1789 for (auto &I : make_range(HII->expandVGatherPseudo(*MI), NextMI))
1790 OldPacketMIs.push_back(&I);
1791 }
1792 CurrentPacketMIs.clear();
1793
1794 if (OldPacketMIs.size() > 1) {
1795 MachineBasicBlock::instr_iterator FirstMI(OldPacketMIs.front());
1796 MachineBasicBlock::instr_iterator LastMI(EndMI.getInstrIterator());
1797 finalizeBundle(*MBB, FirstMI, LastMI);
1798 auto BundleMII = std::prev(FirstMI);
1799 if (memShufDisabled)
1800 HII->setBundleNoShuf(BundleMII);
1801
1802 setmemShufDisabled(false);
1803 }
1804
1805 ResourceTracker->clearResources();
1806 LLVM_DEBUG(dbgs() << "End packet\n");
1807 }
1808
shouldAddToPacket(const MachineInstr & MI)1809 bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr &MI) {
1810 if (Minimal)
1811 return false;
1812 return !producesStall(MI);
1813 }
1814
1815 // V60 forward scheduling.
producesStall(const MachineInstr & I)1816 bool HexagonPacketizerList::producesStall(const MachineInstr &I) {
1817 // If the packet already stalls, then ignore the stall from a subsequent
1818 // instruction in the same packet.
1819 if (PacketStalls)
1820 return false;
1821
1822 // Check whether the previous packet is in a different loop. If this is the
1823 // case, there is little point in trying to avoid a stall because that would
1824 // favor the rare case (loop entry) over the common case (loop iteration).
1825 //
1826 // TODO: We should really be able to check all the incoming edges if this is
1827 // the first packet in a basic block, so we can avoid stalls from the loop
1828 // backedge.
1829 if (!OldPacketMIs.empty()) {
1830 auto *OldBB = OldPacketMIs.front()->getParent();
1831 auto *ThisBB = I.getParent();
1832 if (MLI->getLoopFor(OldBB) != MLI->getLoopFor(ThisBB))
1833 return false;
1834 }
1835
1836 SUnit *SUI = MIToSUnit[const_cast<MachineInstr *>(&I)];
1837
1838 // If the latency is 0 and there is a data dependence between this
1839 // instruction and any instruction in the current packet, we disregard any
1840 // potential stalls due to the instructions in the previous packet. Most of
1841 // the instruction pairs that can go together in the same packet have 0
1842 // latency between them. The exceptions are
1843 // 1. NewValueJumps as they're generated much later and the latencies can't
1844 // be changed at that point.
1845 // 2. .cur instructions, if its consumer has a 0 latency successor (such as
1846 // .new). In this case, the latency between .cur and the consumer stays
1847 // non-zero even though we can have both .cur and .new in the same packet.
1848 // Changing the latency to 0 is not an option as it causes software pipeliner
1849 // to not pipeline in some cases.
1850
1851 // For Example:
1852 // {
1853 // I1: v6.cur = vmem(r0++#1)
1854 // I2: v7 = valign(v6,v4,r2)
1855 // I3: vmem(r5++#1) = v7.new
1856 // }
1857 // Here I2 and I3 has 0 cycle latency, but I1 and I2 has 2.
1858
1859 for (auto J : CurrentPacketMIs) {
1860 SUnit *SUJ = MIToSUnit[J];
1861 for (auto &Pred : SUI->Preds)
1862 if (Pred.getSUnit() == SUJ)
1863 if ((Pred.getLatency() == 0 && Pred.isAssignedRegDep()) ||
1864 HII->isNewValueJump(I) || HII->isToBeScheduledASAP(*J, I))
1865 return false;
1866 }
1867
1868 // Check if the latency is greater than one between this instruction and any
1869 // instruction in the previous packet.
1870 for (auto J : OldPacketMIs) {
1871 SUnit *SUJ = MIToSUnit[J];
1872 for (auto &Pred : SUI->Preds)
1873 if (Pred.getSUnit() == SUJ && Pred.getLatency() > 1)
1874 return true;
1875 }
1876
1877 return false;
1878 }
1879
1880 //===----------------------------------------------------------------------===//
1881 // Public Constructor Functions
1882 //===----------------------------------------------------------------------===//
1883
createHexagonPacketizer(bool Minimal)1884 FunctionPass *llvm::createHexagonPacketizer(bool Minimal) {
1885 return new HexagonPacketizer(Minimal);
1886 }
1887