1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 */
24
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27
28 #include "dm_services.h"
29
30 #include "dc.h"
31
32 #include "core_status.h"
33 #include "core_types.h"
34 #include "hw_sequencer.h"
35 #include "dce/dce_hwseq.h"
36
37 #include "resource.h"
38
39 #include "clk_mgr.h"
40 #include "clock_source.h"
41 #include "dc_bios_types.h"
42
43 #include "bios_parser_interface.h"
44 #include "include/irq_service_interface.h"
45 #include "transform.h"
46 #include "dmcu.h"
47 #include "dpp.h"
48 #include "timing_generator.h"
49 #include "abm.h"
50 #include "virtual/virtual_link_encoder.h"
51
52 #include "link_hwss.h"
53 #include "link_encoder.h"
54
55 #include "dc_link_ddc.h"
56 #include "dm_helpers.h"
57 #include "mem_input.h"
58 #include "hubp.h"
59
60 #include "dc_link_dp.h"
61 #include "dc_dmub_srv.h"
62
63 #include "dsc.h"
64
65 #include "vm_helper.h"
66
67 #include "dce/dce_i2c.h"
68
69 #include "dmub/dmub_srv.h"
70
71 #include "dce/dmub_hw_lock_mgr.h"
72
73 #define CTX \
74 dc->ctx
75
76 #define DC_LOGGER \
77 dc->ctx->logger
78
79 static const char DC_BUILD_ID[] = "production-build";
80
81 /**
82 * DOC: Overview
83 *
84 * DC is the OS-agnostic component of the amdgpu DC driver.
85 *
86 * DC maintains and validates a set of structs representing the state of the
87 * driver and writes that state to AMD hardware
88 *
89 * Main DC HW structs:
90 *
91 * struct dc - The central struct. One per driver. Created on driver load,
92 * destroyed on driver unload.
93 *
94 * struct dc_context - One per driver.
95 * Used as a backpointer by most other structs in dc.
96 *
97 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
98 * plugpoints). Created on driver load, destroyed on driver unload.
99 *
100 * struct dc_sink - One per display. Created on boot or hotplug.
101 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink
102 * (the display directly attached). It may also have one or more remote
103 * sinks (in the Multi-Stream Transport case)
104 *
105 * struct resource_pool - One per driver. Represents the hw blocks not in the
106 * main pipeline. Not directly accessible by dm.
107 *
108 * Main dc state structs:
109 *
110 * These structs can be created and destroyed as needed. There is a full set of
111 * these structs in dc->current_state representing the currently programmed state.
112 *
113 * struct dc_state - The global DC state to track global state information,
114 * such as bandwidth values.
115 *
116 * struct dc_stream_state - Represents the hw configuration for the pipeline from
117 * a framebuffer to a display. Maps one-to-one with dc_sink.
118 *
119 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
120 * and may have more in the Multi-Plane Overlay case.
121 *
122 * struct resource_context - Represents the programmable state of everything in
123 * the resource_pool. Not directly accessible by dm.
124 *
125 * struct pipe_ctx - A member of struct resource_context. Represents the
126 * internal hardware pipeline components. Each dc_plane_state has either
127 * one or two (in the pipe-split case).
128 */
129
130 /*******************************************************************************
131 * Private functions
132 ******************************************************************************/
133
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)134 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
135 {
136 if (new > *original)
137 *original = new;
138 }
139
destroy_links(struct dc * dc)140 static void destroy_links(struct dc *dc)
141 {
142 uint32_t i;
143
144 for (i = 0; i < dc->link_count; i++) {
145 if (NULL != dc->links[i])
146 link_destroy(&dc->links[i]);
147 }
148 }
149
create_links(struct dc * dc,uint32_t num_virtual_links)150 static bool create_links(
151 struct dc *dc,
152 uint32_t num_virtual_links)
153 {
154 int i;
155 int connectors_num;
156 struct dc_bios *bios = dc->ctx->dc_bios;
157
158 dc->link_count = 0;
159
160 connectors_num = bios->funcs->get_connectors_number(bios);
161
162 if (connectors_num > ENUM_ID_COUNT) {
163 dm_error(
164 "DC: Number of connectors %d exceeds maximum of %d!\n",
165 connectors_num,
166 ENUM_ID_COUNT);
167 return false;
168 }
169
170 dm_output_to_console(
171 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
172 __func__,
173 connectors_num,
174 num_virtual_links);
175
176 for (i = 0; i < connectors_num; i++) {
177 struct link_init_data link_init_params = {0};
178 struct dc_link *link;
179
180 link_init_params.ctx = dc->ctx;
181 /* next BIOS object table connector */
182 link_init_params.connector_index = i;
183 link_init_params.link_index = dc->link_count;
184 link_init_params.dc = dc;
185 link = link_create(&link_init_params);
186
187 if (link) {
188 bool should_destory_link = false;
189
190 if (link->connector_signal == SIGNAL_TYPE_EDP) {
191 if (dc->config.edp_not_connected) {
192 if (!IS_DIAG_DC(dc->ctx->dce_environment))
193 should_destory_link = true;
194 } else {
195 enum dc_connection_type type;
196 dc_link_detect_sink(link, &type);
197 if (type == dc_connection_none)
198 should_destory_link = true;
199 }
200 }
201
202 if (dc->config.force_enum_edp || !should_destory_link) {
203 dc->links[dc->link_count] = link;
204 link->dc = dc;
205 ++dc->link_count;
206 } else {
207 link_destroy(&link);
208 }
209 }
210 }
211
212 for (i = 0; i < num_virtual_links; i++) {
213 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
214 struct encoder_init_data enc_init = {0};
215
216 if (link == NULL) {
217 BREAK_TO_DEBUGGER();
218 goto failed_alloc;
219 }
220
221 link->link_index = dc->link_count;
222 dc->links[dc->link_count] = link;
223 dc->link_count++;
224
225 link->ctx = dc->ctx;
226 link->dc = dc;
227 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
228 link->link_id.type = OBJECT_TYPE_CONNECTOR;
229 link->link_id.id = CONNECTOR_ID_VIRTUAL;
230 link->link_id.enum_id = ENUM_ID_1;
231 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
232
233 if (!link->link_enc) {
234 BREAK_TO_DEBUGGER();
235 goto failed_alloc;
236 }
237
238 link->link_status.dpcd_caps = &link->dpcd_caps;
239
240 enc_init.ctx = dc->ctx;
241 enc_init.channel = CHANNEL_ID_UNKNOWN;
242 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
243 enc_init.transmitter = TRANSMITTER_UNKNOWN;
244 enc_init.connector = link->link_id;
245 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
246 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
247 enc_init.encoder.enum_id = ENUM_ID_1;
248 virtual_link_encoder_construct(link->link_enc, &enc_init);
249 }
250
251 return true;
252
253 failed_alloc:
254 return false;
255 }
256
dc_perf_trace_create(void)257 static struct dc_perf_trace *dc_perf_trace_create(void)
258 {
259 return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
260 }
261
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)262 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
263 {
264 kfree(*perf_trace);
265 *perf_trace = NULL;
266 }
267
268 /**
269 *****************************************************************************
270 * Function: dc_stream_adjust_vmin_vmax
271 *
272 * @brief
273 * Looks up the pipe context of dc_stream_state and updates the
274 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
275 * Rate, which is a power-saving feature that targets reducing panel
276 * refresh rate while the screen is static
277 *
278 * @param [in] dc: dc reference
279 * @param [in] stream: Initial dc stream state
280 * @param [in] adjust: Updated parameters for vertical_total_min and
281 * vertical_total_max
282 *****************************************************************************
283 */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)284 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
285 struct dc_stream_state *stream,
286 struct dc_crtc_timing_adjust *adjust)
287 {
288 int i = 0;
289 bool ret = false;
290
291 stream->adjust = *adjust;
292
293 for (i = 0; i < MAX_PIPES; i++) {
294 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
295
296 if (pipe->stream == stream && pipe->stream_res.tg) {
297 dc->hwss.set_drr(&pipe,
298 1,
299 adjust->v_total_min,
300 adjust->v_total_max,
301 adjust->v_total_mid,
302 adjust->v_total_mid_frame_num);
303
304 ret = true;
305 }
306 }
307 return ret;
308 }
309
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)310 bool dc_stream_get_crtc_position(struct dc *dc,
311 struct dc_stream_state **streams, int num_streams,
312 unsigned int *v_pos, unsigned int *nom_v_pos)
313 {
314 /* TODO: Support multiple streams */
315 const struct dc_stream_state *stream = streams[0];
316 int i = 0;
317 bool ret = false;
318 struct crtc_position position;
319
320 for (i = 0; i < MAX_PIPES; i++) {
321 struct pipe_ctx *pipe =
322 &dc->current_state->res_ctx.pipe_ctx[i];
323
324 if (pipe->stream == stream && pipe->stream_res.stream_enc) {
325 dc->hwss.get_position(&pipe, 1, &position);
326
327 *v_pos = position.vertical_count;
328 *nom_v_pos = position.nominal_vcount;
329 ret = true;
330 }
331 }
332 return ret;
333 }
334
335 /**
336 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
337 * @dc: DC Object
338 * @stream: The stream to configure CRC on.
339 * @enable: Enable CRC if true, disable otherwise.
340 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
341 * once.
342 *
343 * By default, only CRC0 is configured, and the entire frame is used to
344 * calculate the crc.
345 */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,bool enable,bool continuous)346 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
347 bool enable, bool continuous)
348 {
349 int i;
350 struct pipe_ctx *pipe;
351 struct crc_params param;
352 struct timing_generator *tg;
353
354 for (i = 0; i < MAX_PIPES; i++) {
355 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
356 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
357 break;
358 }
359 /* Stream not found */
360 if (i == MAX_PIPES)
361 return false;
362
363 /* Always capture the full frame */
364 param.windowa_x_start = 0;
365 param.windowa_y_start = 0;
366 param.windowa_x_end = pipe->stream->timing.h_addressable;
367 param.windowa_y_end = pipe->stream->timing.v_addressable;
368 param.windowb_x_start = 0;
369 param.windowb_y_start = 0;
370 param.windowb_x_end = pipe->stream->timing.h_addressable;
371 param.windowb_y_end = pipe->stream->timing.v_addressable;
372
373 param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
374 param.odm_mode = pipe->next_odm_pipe ? 1:0;
375
376 /* Default to the union of both windows */
377 param.selection = UNION_WINDOW_A_B;
378 param.continuous_mode = continuous;
379 param.enable = enable;
380
381 tg = pipe->stream_res.tg;
382
383 /* Only call if supported */
384 if (tg->funcs->configure_crc)
385 return tg->funcs->configure_crc(tg, ¶m);
386 DC_LOG_WARNING("CRC capture not supported.");
387 return false;
388 }
389
390 /**
391 * dc_stream_get_crc() - Get CRC values for the given stream.
392 * @dc: DC object
393 * @stream: The DC stream state of the stream to get CRCs from.
394 * @r_cr, g_y, b_cb: CRC values for the three channels are stored here.
395 *
396 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
397 * Return false if stream is not found, or if CRCs are not enabled.
398 */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)399 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
400 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
401 {
402 int i;
403 struct pipe_ctx *pipe;
404 struct timing_generator *tg;
405
406 for (i = 0; i < MAX_PIPES; i++) {
407 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
408 if (pipe->stream == stream)
409 break;
410 }
411 /* Stream not found */
412 if (i == MAX_PIPES)
413 return false;
414
415 tg = pipe->stream_res.tg;
416
417 if (tg->funcs->get_crc)
418 return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
419 DC_LOG_WARNING("CRC capture not supported.");
420 return false;
421 }
422
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)423 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
424 enum dc_dynamic_expansion option)
425 {
426 /* OPP FMT dyn expansion updates*/
427 int i = 0;
428 struct pipe_ctx *pipe_ctx;
429
430 for (i = 0; i < MAX_PIPES; i++) {
431 if (dc->current_state->res_ctx.pipe_ctx[i].stream
432 == stream) {
433 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
434 pipe_ctx->stream_res.opp->dyn_expansion = option;
435 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
436 pipe_ctx->stream_res.opp,
437 COLOR_SPACE_YCBCR601,
438 stream->timing.display_color_depth,
439 stream->signal);
440 }
441 }
442 }
443
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)444 void dc_stream_set_dither_option(struct dc_stream_state *stream,
445 enum dc_dither_option option)
446 {
447 struct bit_depth_reduction_params params;
448 struct dc_link *link = stream->link;
449 struct pipe_ctx *pipes = NULL;
450 int i;
451
452 for (i = 0; i < MAX_PIPES; i++) {
453 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
454 stream) {
455 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
456 break;
457 }
458 }
459
460 if (!pipes)
461 return;
462 if (option > DITHER_OPTION_MAX)
463 return;
464
465 stream->dither_option = option;
466
467 memset(¶ms, 0, sizeof(params));
468 resource_build_bit_depth_reduction_params(stream, ¶ms);
469 stream->bit_depth_params = params;
470
471 if (pipes->plane_res.xfm &&
472 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
473 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
474 pipes->plane_res.xfm,
475 pipes->plane_res.scl_data.lb_params.depth,
476 &stream->bit_depth_params);
477 }
478
479 pipes->stream_res.opp->funcs->
480 opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms);
481 }
482
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)483 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
484 {
485 int i = 0;
486 bool ret = false;
487 struct pipe_ctx *pipes;
488
489 for (i = 0; i < MAX_PIPES; i++) {
490 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
491 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
492 dc->hwss.program_gamut_remap(pipes);
493 ret = true;
494 }
495 }
496
497 return ret;
498 }
499
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)500 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
501 {
502 int i = 0;
503 bool ret = false;
504 struct pipe_ctx *pipes;
505
506 for (i = 0; i < MAX_PIPES; i++) {
507 if (dc->current_state->res_ctx.pipe_ctx[i].stream
508 == stream) {
509
510 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
511 dc->hwss.program_output_csc(dc,
512 pipes,
513 stream->output_color_space,
514 stream->csc_color_matrix.matrix,
515 pipes->stream_res.opp->inst);
516 ret = true;
517 }
518 }
519
520 return ret;
521 }
522
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)523 void dc_stream_set_static_screen_params(struct dc *dc,
524 struct dc_stream_state **streams,
525 int num_streams,
526 const struct dc_static_screen_params *params)
527 {
528 int i = 0;
529 int j = 0;
530 struct pipe_ctx *pipes_affected[MAX_PIPES];
531 int num_pipes_affected = 0;
532
533 for (i = 0; i < num_streams; i++) {
534 struct dc_stream_state *stream = streams[i];
535
536 for (j = 0; j < MAX_PIPES; j++) {
537 if (dc->current_state->res_ctx.pipe_ctx[j].stream
538 == stream) {
539 pipes_affected[num_pipes_affected++] =
540 &dc->current_state->res_ctx.pipe_ctx[j];
541 }
542 }
543 }
544
545 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
546 }
547
dc_destruct(struct dc * dc)548 static void dc_destruct(struct dc *dc)
549 {
550 if (dc->current_state) {
551 dc_release_state(dc->current_state);
552 dc->current_state = NULL;
553 }
554
555 destroy_links(dc);
556
557 if (dc->clk_mgr) {
558 dc_destroy_clk_mgr(dc->clk_mgr);
559 dc->clk_mgr = NULL;
560 }
561
562 dc_destroy_resource_pool(dc);
563
564 if (dc->ctx->gpio_service)
565 dal_gpio_service_destroy(&dc->ctx->gpio_service);
566
567 if (dc->ctx->created_bios)
568 dal_bios_parser_destroy(&dc->ctx->dc_bios);
569
570 dc_perf_trace_destroy(&dc->ctx->perf_trace);
571
572 kfree(dc->ctx);
573 dc->ctx = NULL;
574
575 kfree(dc->bw_vbios);
576 dc->bw_vbios = NULL;
577
578 kfree(dc->bw_dceip);
579 dc->bw_dceip = NULL;
580
581 #ifdef CONFIG_DRM_AMD_DC_DCN
582 kfree(dc->dcn_soc);
583 dc->dcn_soc = NULL;
584
585 kfree(dc->dcn_ip);
586 dc->dcn_ip = NULL;
587
588 #endif
589 kfree(dc->vm_helper);
590 dc->vm_helper = NULL;
591
592 }
593
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)594 static bool dc_construct_ctx(struct dc *dc,
595 const struct dc_init_data *init_params)
596 {
597 struct dc_context *dc_ctx;
598 enum dce_version dc_version = DCE_VERSION_UNKNOWN;
599
600 dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
601 if (!dc_ctx)
602 return false;
603
604 dc_ctx->cgs_device = init_params->cgs_device;
605 dc_ctx->driver_context = init_params->driver;
606 dc_ctx->dc = dc;
607 dc_ctx->asic_id = init_params->asic_id;
608 dc_ctx->dc_sink_id_count = 0;
609 dc_ctx->dc_stream_id_count = 0;
610 dc_ctx->dce_environment = init_params->dce_environment;
611
612 /* Create logger */
613
614 dc_version = resource_parse_asic_id(init_params->asic_id);
615 dc_ctx->dce_version = dc_version;
616
617 dc_ctx->perf_trace = dc_perf_trace_create();
618 if (!dc_ctx->perf_trace) {
619 kfree(dc_ctx);
620 ASSERT_CRITICAL(false);
621 return false;
622 }
623
624 dc->ctx = dc_ctx;
625
626 return true;
627 }
628
dc_construct(struct dc * dc,const struct dc_init_data * init_params)629 static bool dc_construct(struct dc *dc,
630 const struct dc_init_data *init_params)
631 {
632 struct dc_context *dc_ctx;
633 struct bw_calcs_dceip *dc_dceip;
634 struct bw_calcs_vbios *dc_vbios;
635 #ifdef CONFIG_DRM_AMD_DC_DCN
636 struct dcn_soc_bounding_box *dcn_soc;
637 struct dcn_ip_params *dcn_ip;
638 #endif
639
640 dc->config = init_params->flags;
641
642 // Allocate memory for the vm_helper
643 dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
644 if (!dc->vm_helper) {
645 dm_error("%s: failed to create dc->vm_helper\n", __func__);
646 goto fail;
647 }
648
649 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
650
651 dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
652 if (!dc_dceip) {
653 dm_error("%s: failed to create dceip\n", __func__);
654 goto fail;
655 }
656
657 dc->bw_dceip = dc_dceip;
658
659 dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
660 if (!dc_vbios) {
661 dm_error("%s: failed to create vbios\n", __func__);
662 goto fail;
663 }
664
665 dc->bw_vbios = dc_vbios;
666 #ifdef CONFIG_DRM_AMD_DC_DCN
667 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
668 if (!dcn_soc) {
669 dm_error("%s: failed to create dcn_soc\n", __func__);
670 goto fail;
671 }
672
673 dc->dcn_soc = dcn_soc;
674
675 dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
676 if (!dcn_ip) {
677 dm_error("%s: failed to create dcn_ip\n", __func__);
678 goto fail;
679 }
680
681 dc->dcn_ip = dcn_ip;
682 dc->soc_bounding_box = init_params->soc_bounding_box;
683 #endif
684
685 if (!dc_construct_ctx(dc, init_params)) {
686 dm_error("%s: failed to create ctx\n", __func__);
687 goto fail;
688 }
689
690 dc_ctx = dc->ctx;
691
692 /* Resource should construct all asic specific resources.
693 * This should be the only place where we need to parse the asic id
694 */
695 if (init_params->vbios_override)
696 dc_ctx->dc_bios = init_params->vbios_override;
697 else {
698 /* Create BIOS parser */
699 struct bp_init_data bp_init_data;
700
701 bp_init_data.ctx = dc_ctx;
702 bp_init_data.bios = init_params->asic_id.atombios_base_address;
703
704 dc_ctx->dc_bios = dal_bios_parser_create(
705 &bp_init_data, dc_ctx->dce_version);
706
707 if (!dc_ctx->dc_bios) {
708 ASSERT_CRITICAL(false);
709 goto fail;
710 }
711
712 dc_ctx->created_bios = true;
713 }
714
715 dc->vendor_signature = init_params->vendor_signature;
716
717 /* Create GPIO service */
718 dc_ctx->gpio_service = dal_gpio_service_create(
719 dc_ctx->dce_version,
720 dc_ctx->dce_environment,
721 dc_ctx);
722
723 if (!dc_ctx->gpio_service) {
724 ASSERT_CRITICAL(false);
725 goto fail;
726 }
727
728 dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
729 if (!dc->res_pool)
730 goto fail;
731
732 dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
733 if (!dc->clk_mgr)
734 goto fail;
735 #ifdef CONFIG_DRM_AMD_DC_DCN3_0
736 dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
737
738 dc->debug.force_ignore_link_settings = init_params->force_ignore_link_settings;
739
740 if (dc->res_pool->funcs->update_bw_bounding_box) {
741 DC_FP_START();
742 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
743 DC_FP_END();
744 }
745 #endif
746
747 /* Creation of current_state must occur after dc->dml
748 * is initialized in dc_create_resource_pool because
749 * on creation it copies the contents of dc->dml
750 */
751
752 dc->current_state = dc_create_state(dc);
753
754 if (!dc->current_state) {
755 dm_error("%s: failed to create validate ctx\n", __func__);
756 goto fail;
757 }
758
759 dc_resource_state_construct(dc, dc->current_state);
760
761 if (!create_links(dc, init_params->num_virtual_links))
762 goto fail;
763
764 return true;
765
766 fail:
767 return false;
768 }
769
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)770 static bool disable_all_writeback_pipes_for_stream(
771 const struct dc *dc,
772 struct dc_stream_state *stream,
773 struct dc_state *context)
774 {
775 int i;
776
777 for (i = 0; i < stream->num_wb_info; i++)
778 stream->writeback_info[i].wb_enabled = false;
779
780 return true;
781 }
782
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)783 void apply_ctx_interdependent_lock(struct dc *dc, struct dc_state *context, struct dc_stream_state *stream, bool lock)
784 {
785 int i = 0;
786
787 /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
788 if (dc->hwss.interdependent_update_lock)
789 dc->hwss.interdependent_update_lock(dc, context, lock);
790 else {
791 for (i = 0; i < dc->res_pool->pipe_count; i++) {
792 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
793 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
794
795 // Copied conditions that were previously in dce110_apply_ctx_for_surface
796 if (stream == pipe_ctx->stream) {
797 if (!pipe_ctx->top_pipe &&
798 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
799 dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
800 }
801 }
802 }
803 }
804
disable_dangling_plane(struct dc * dc,struct dc_state * context)805 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
806 {
807 int i, j;
808 struct dc_state *dangling_context = dc_create_state(dc);
809 struct dc_state *current_ctx;
810
811 if (dangling_context == NULL)
812 return;
813
814 dc_resource_state_copy_construct(dc->current_state, dangling_context);
815
816 for (i = 0; i < dc->res_pool->pipe_count; i++) {
817 struct dc_stream_state *old_stream =
818 dc->current_state->res_ctx.pipe_ctx[i].stream;
819 bool should_disable = true;
820
821 for (j = 0; j < context->stream_count; j++) {
822 if (old_stream == context->streams[j]) {
823 should_disable = false;
824 break;
825 }
826 }
827 if (should_disable && old_stream) {
828 dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
829 disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
830
831 if (dc->hwss.apply_ctx_for_surface) {
832 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
833 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
834 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
835 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
836 }
837 if (dc->hwss.program_front_end_for_ctx) {
838 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
839 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
840 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
841 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
842 }
843 }
844 }
845
846 current_ctx = dc->current_state;
847 dc->current_state = dangling_context;
848 dc_release_state(current_ctx);
849 }
850
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)851 static void disable_vbios_mode_if_required(
852 struct dc *dc,
853 struct dc_state *context)
854 {
855 unsigned int i, j;
856
857 /* check if timing_changed, disable stream*/
858 for (i = 0; i < dc->res_pool->pipe_count; i++) {
859 struct dc_stream_state *stream = NULL;
860 struct dc_link *link = NULL;
861 struct pipe_ctx *pipe = NULL;
862
863 pipe = &context->res_ctx.pipe_ctx[i];
864 stream = pipe->stream;
865 if (stream == NULL)
866 continue;
867
868 if (stream->apply_seamless_boot_optimization)
869 continue;
870
871 // only looking for first odm pipe
872 if (pipe->prev_odm_pipe)
873 continue;
874
875 if (stream->link->local_sink &&
876 stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
877 link = stream->link;
878 }
879
880 if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
881 unsigned int enc_inst, tg_inst = 0;
882 unsigned int pix_clk_100hz;
883
884 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
885 if (enc_inst != ENGINE_ID_UNKNOWN) {
886 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
887 if (dc->res_pool->stream_enc[j]->id == enc_inst) {
888 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
889 dc->res_pool->stream_enc[j]);
890 break;
891 }
892 }
893
894 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
895 dc->res_pool->dp_clock_source,
896 tg_inst, &pix_clk_100hz);
897
898 if (link->link_status.link_active) {
899 uint32_t requested_pix_clk_100hz =
900 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
901
902 if (pix_clk_100hz != requested_pix_clk_100hz) {
903 core_link_disable_stream(pipe);
904 pipe->stream->dpms_off = false;
905 }
906 }
907 }
908 }
909 }
910 }
911
wait_for_no_pipes_pending(struct dc * dc,struct dc_state * context)912 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
913 {
914 int i;
915 PERF_TRACE();
916 for (i = 0; i < MAX_PIPES; i++) {
917 int count = 0;
918 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
919
920 if (!pipe->plane_state)
921 continue;
922
923 /* Timeout 100 ms */
924 while (count < 100000) {
925 /* Must set to false to start with, due to OR in update function */
926 pipe->plane_state->status.is_flip_pending = false;
927 dc->hwss.update_pending_status(pipe);
928 if (!pipe->plane_state->status.is_flip_pending)
929 break;
930 udelay(1);
931 count++;
932 }
933 ASSERT(!pipe->plane_state->status.is_flip_pending);
934 }
935 PERF_TRACE();
936 }
937
938 /*******************************************************************************
939 * Public functions
940 ******************************************************************************/
941
dc_create(const struct dc_init_data * init_params)942 struct dc *dc_create(const struct dc_init_data *init_params)
943 {
944 struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
945 unsigned int full_pipe_count;
946
947 if (NULL == dc)
948 goto alloc_fail;
949
950 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
951 if (false == dc_construct_ctx(dc, init_params)) {
952 dc_destruct(dc);
953 goto construct_fail;
954 }
955 } else {
956 if (false == dc_construct(dc, init_params)) {
957 dc_destruct(dc);
958 goto construct_fail;
959 }
960
961 full_pipe_count = dc->res_pool->pipe_count;
962 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
963 full_pipe_count--;
964 dc->caps.max_streams = min(
965 full_pipe_count,
966 dc->res_pool->stream_enc_count);
967
968 dc->optimize_seamless_boot_streams = 0;
969 dc->caps.max_links = dc->link_count;
970 dc->caps.max_audios = dc->res_pool->audio_count;
971 dc->caps.linear_pitch_alignment = 64;
972
973 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
974
975 if (dc->res_pool->dmcu != NULL)
976 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
977 }
978
979 /* Populate versioning information */
980 dc->versions.dc_ver = DC_VER;
981
982 dc->build_id = DC_BUILD_ID;
983
984 DC_LOG_DC("Display Core initialized\n");
985
986
987
988 return dc;
989
990 construct_fail:
991 kfree(dc);
992
993 alloc_fail:
994 return NULL;
995 }
996
dc_hardware_init(struct dc * dc)997 void dc_hardware_init(struct dc *dc)
998 {
999 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1000 dc->hwss.init_hw(dc);
1001 }
1002
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1003 void dc_init_callbacks(struct dc *dc,
1004 const struct dc_callback_init *init_params)
1005 {
1006 #ifdef CONFIG_DRM_AMD_DC_HDCP
1007 dc->ctx->cp_psp = init_params->cp_psp;
1008 #endif
1009 }
1010
dc_deinit_callbacks(struct dc * dc)1011 void dc_deinit_callbacks(struct dc *dc)
1012 {
1013 #ifdef CONFIG_DRM_AMD_DC_HDCP
1014 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1015 #endif
1016 }
1017
dc_destroy(struct dc ** dc)1018 void dc_destroy(struct dc **dc)
1019 {
1020 dc_destruct(*dc);
1021 kfree(*dc);
1022 *dc = NULL;
1023 }
1024
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1025 static void enable_timing_multisync(
1026 struct dc *dc,
1027 struct dc_state *ctx)
1028 {
1029 int i = 0, multisync_count = 0;
1030 int pipe_count = dc->res_pool->pipe_count;
1031 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1032
1033 for (i = 0; i < pipe_count; i++) {
1034 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1035 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1036 continue;
1037 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1038 continue;
1039 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1040 multisync_count++;
1041 }
1042
1043 if (multisync_count > 0) {
1044 dc->hwss.enable_per_frame_crtc_position_reset(
1045 dc, multisync_count, multisync_pipes);
1046 }
1047 }
1048
program_timing_sync(struct dc * dc,struct dc_state * ctx)1049 static void program_timing_sync(
1050 struct dc *dc,
1051 struct dc_state *ctx)
1052 {
1053 int i, j, k;
1054 int group_index = 0;
1055 int num_group = 0;
1056 int pipe_count = dc->res_pool->pipe_count;
1057 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1058
1059 for (i = 0; i < pipe_count; i++) {
1060 if (!ctx->res_ctx.pipe_ctx[i].stream || ctx->res_ctx.pipe_ctx[i].top_pipe)
1061 continue;
1062
1063 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1064 }
1065
1066 for (i = 0; i < pipe_count; i++) {
1067 int group_size = 1;
1068 struct pipe_ctx *pipe_set[MAX_PIPES];
1069
1070 if (!unsynced_pipes[i])
1071 continue;
1072
1073 pipe_set[0] = unsynced_pipes[i];
1074 unsynced_pipes[i] = NULL;
1075
1076 /* Add tg to the set, search rest of the tg's for ones with
1077 * same timing, add all tgs with same timing to the group
1078 */
1079 for (j = i + 1; j < pipe_count; j++) {
1080 if (!unsynced_pipes[j])
1081 continue;
1082
1083 if (resource_are_streams_timing_synchronizable(
1084 unsynced_pipes[j]->stream,
1085 pipe_set[0]->stream)) {
1086 pipe_set[group_size] = unsynced_pipes[j];
1087 unsynced_pipes[j] = NULL;
1088 group_size++;
1089 }
1090 }
1091
1092 /* set first unblanked pipe as master */
1093 for (j = 0; j < group_size; j++) {
1094 bool is_blanked;
1095
1096 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1097 is_blanked =
1098 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1099 else
1100 is_blanked =
1101 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1102 if (!is_blanked) {
1103 if (j == 0)
1104 break;
1105
1106 swap(pipe_set[0], pipe_set[j]);
1107 break;
1108 }
1109 }
1110
1111
1112 for (k = 0; k < group_size; k++) {
1113 struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1114
1115 status->timing_sync_info.group_id = num_group;
1116 status->timing_sync_info.group_size = group_size;
1117 if (k == 0)
1118 status->timing_sync_info.master = true;
1119 else
1120 status->timing_sync_info.master = false;
1121
1122 }
1123 /* remove any other unblanked pipes as they have already been synced */
1124 for (j = j + 1; j < group_size; j++) {
1125 bool is_blanked;
1126
1127 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1128 is_blanked =
1129 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1130 else
1131 is_blanked =
1132 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1133 if (!is_blanked) {
1134 group_size--;
1135 pipe_set[j] = pipe_set[group_size];
1136 j--;
1137 }
1138 }
1139
1140 if (group_size > 1) {
1141 dc->hwss.enable_timing_synchronization(
1142 dc, group_index, group_size, pipe_set);
1143 group_index++;
1144 }
1145 num_group++;
1146 }
1147 }
1148
context_changed(struct dc * dc,struct dc_state * context)1149 static bool context_changed(
1150 struct dc *dc,
1151 struct dc_state *context)
1152 {
1153 uint8_t i;
1154
1155 if (context->stream_count != dc->current_state->stream_count)
1156 return true;
1157
1158 for (i = 0; i < dc->current_state->stream_count; i++) {
1159 if (dc->current_state->streams[i] != context->streams[i])
1160 return true;
1161 }
1162
1163 return false;
1164 }
1165
dc_validate_seamless_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1166 bool dc_validate_seamless_boot_timing(const struct dc *dc,
1167 const struct dc_sink *sink,
1168 struct dc_crtc_timing *crtc_timing)
1169 {
1170 struct timing_generator *tg;
1171 struct stream_encoder *se = NULL;
1172
1173 struct dc_crtc_timing hw_crtc_timing = {0};
1174
1175 struct dc_link *link = sink->link;
1176 unsigned int i, enc_inst, tg_inst = 0;
1177
1178 // Seamless port only support single DP and EDP so far
1179 if (sink->sink_signal != SIGNAL_TYPE_DISPLAY_PORT &&
1180 sink->sink_signal != SIGNAL_TYPE_EDP)
1181 return false;
1182
1183 /* Check for enabled DIG to identify enabled display */
1184 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1185 return false;
1186
1187 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1188
1189 if (enc_inst == ENGINE_ID_UNKNOWN)
1190 return false;
1191
1192 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1193 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1194
1195 se = dc->res_pool->stream_enc[i];
1196
1197 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1198 dc->res_pool->stream_enc[i]);
1199 break;
1200 }
1201 }
1202
1203 // tg_inst not found
1204 if (i == dc->res_pool->stream_enc_count)
1205 return false;
1206
1207 if (tg_inst >= dc->res_pool->timing_generator_count)
1208 return false;
1209
1210 tg = dc->res_pool->timing_generators[tg_inst];
1211
1212 if (!tg->funcs->get_hw_timing)
1213 return false;
1214
1215 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1216 return false;
1217
1218 if (crtc_timing->h_total != hw_crtc_timing.h_total)
1219 return false;
1220
1221 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1222 return false;
1223
1224 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1225 return false;
1226
1227 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1228 return false;
1229
1230 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1231 return false;
1232
1233 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1234 return false;
1235
1236 if (crtc_timing->v_total != hw_crtc_timing.v_total)
1237 return false;
1238
1239 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1240 return false;
1241
1242 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1243 return false;
1244
1245 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1246 return false;
1247
1248 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1249 return false;
1250
1251 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1252 return false;
1253
1254 if (dc_is_dp_signal(link->connector_signal)) {
1255 unsigned int pix_clk_100hz;
1256
1257 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1258 dc->res_pool->dp_clock_source,
1259 tg_inst, &pix_clk_100hz);
1260
1261 if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1262 return false;
1263
1264 if (!se->funcs->dp_get_pixel_format)
1265 return false;
1266
1267 if (!se->funcs->dp_get_pixel_format(
1268 se,
1269 &hw_crtc_timing.pixel_encoding,
1270 &hw_crtc_timing.display_color_depth))
1271 return false;
1272
1273 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1274 return false;
1275
1276 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1277 return false;
1278 }
1279
1280 return true;
1281 }
1282
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1283 bool dc_enable_stereo(
1284 struct dc *dc,
1285 struct dc_state *context,
1286 struct dc_stream_state *streams[],
1287 uint8_t stream_count)
1288 {
1289 bool ret = true;
1290 int i, j;
1291 struct pipe_ctx *pipe;
1292
1293 for (i = 0; i < MAX_PIPES; i++) {
1294 if (context != NULL)
1295 pipe = &context->res_ctx.pipe_ctx[i];
1296 else
1297 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1298 for (j = 0 ; pipe && j < stream_count; j++) {
1299 if (streams[j] && streams[j] == pipe->stream &&
1300 dc->hwss.setup_stereo)
1301 dc->hwss.setup_stereo(pipe, dc);
1302 }
1303 }
1304
1305 return ret;
1306 }
1307
dc_trigger_sync(struct dc * dc,struct dc_state * context)1308 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1309 {
1310 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1311 enable_timing_multisync(dc, context);
1312 program_timing_sync(dc, context);
1313 }
1314 }
1315
get_stream_mask(struct dc * dc,struct dc_state * context)1316 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1317 {
1318 int i;
1319 unsigned int stream_mask = 0;
1320
1321 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1322 if (context->res_ctx.pipe_ctx[i].stream)
1323 stream_mask |= 1 << i;
1324 }
1325
1326 return stream_mask;
1327 }
1328
1329 /*
1330 * Applies given context to HW and copy it into current context.
1331 * It's up to the user to release the src context afterwards.
1332 */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1333 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1334 {
1335 struct dc_bios *dcb = dc->ctx->dc_bios;
1336 enum dc_status result = DC_ERROR_UNEXPECTED;
1337 struct pipe_ctx *pipe;
1338 int i, k, l;
1339 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1340
1341 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
1342 dc_allow_idle_optimizations(dc, false);
1343 #endif
1344
1345 for (i = 0; i < context->stream_count; i++)
1346 dc_streams[i] = context->streams[i];
1347
1348 if (!dcb->funcs->is_accelerated_mode(dcb)) {
1349 disable_vbios_mode_if_required(dc, context);
1350 dc->hwss.enable_accelerated_mode(dc, context);
1351 }
1352
1353 for (i = 0; i < context->stream_count; i++)
1354 if (context->streams[i]->apply_seamless_boot_optimization)
1355 dc->optimize_seamless_boot_streams++;
1356
1357 if (context->stream_count > dc->optimize_seamless_boot_streams ||
1358 context->stream_count == 0)
1359 dc->hwss.prepare_bandwidth(dc, context);
1360
1361 disable_dangling_plane(dc, context);
1362 /* re-program planes for existing stream, in case we need to
1363 * free up plane resource for later use
1364 */
1365 if (dc->hwss.apply_ctx_for_surface) {
1366 for (i = 0; i < context->stream_count; i++) {
1367 if (context->streams[i]->mode_changed)
1368 continue;
1369 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1370 dc->hwss.apply_ctx_for_surface(
1371 dc, context->streams[i],
1372 context->stream_status[i].plane_count,
1373 context); /* use new pipe config in new context */
1374 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1375 dc->hwss.post_unlock_program_front_end(dc, context);
1376 }
1377 }
1378
1379 /* Program hardware */
1380 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1381 pipe = &context->res_ctx.pipe_ctx[i];
1382 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1383 }
1384
1385 result = dc->hwss.apply_ctx_to_hw(dc, context);
1386
1387 if (result != DC_OK)
1388 return result;
1389
1390 dc_trigger_sync(dc, context);
1391
1392 /* Program all planes within new context*/
1393 if (dc->hwss.program_front_end_for_ctx) {
1394 dc->hwss.interdependent_update_lock(dc, context, true);
1395 dc->hwss.program_front_end_for_ctx(dc, context);
1396 dc->hwss.interdependent_update_lock(dc, context, false);
1397 dc->hwss.post_unlock_program_front_end(dc, context);
1398 }
1399 for (i = 0; i < context->stream_count; i++) {
1400 const struct dc_link *link = context->streams[i]->link;
1401
1402 if (!context->streams[i]->mode_changed)
1403 continue;
1404
1405 if (dc->hwss.apply_ctx_for_surface) {
1406 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1407 dc->hwss.apply_ctx_for_surface(
1408 dc, context->streams[i],
1409 context->stream_status[i].plane_count,
1410 context);
1411 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1412 dc->hwss.post_unlock_program_front_end(dc, context);
1413 }
1414
1415 /*
1416 * enable stereo
1417 * TODO rework dc_enable_stereo call to work with validation sets?
1418 */
1419 for (k = 0; k < MAX_PIPES; k++) {
1420 pipe = &context->res_ctx.pipe_ctx[k];
1421
1422 for (l = 0 ; pipe && l < context->stream_count; l++) {
1423 if (context->streams[l] &&
1424 context->streams[l] == pipe->stream &&
1425 dc->hwss.setup_stereo)
1426 dc->hwss.setup_stereo(pipe, dc);
1427 }
1428 }
1429
1430 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1431 context->streams[i]->timing.h_addressable,
1432 context->streams[i]->timing.v_addressable,
1433 context->streams[i]->timing.h_total,
1434 context->streams[i]->timing.v_total,
1435 context->streams[i]->timing.pix_clk_100hz / 10);
1436 }
1437
1438 dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1439
1440 if (context->stream_count > dc->optimize_seamless_boot_streams ||
1441 context->stream_count == 0) {
1442 /* Must wait for no flips to be pending before doing optimize bw */
1443 wait_for_no_pipes_pending(dc, context);
1444 /* pplib is notified if disp_num changed */
1445 dc->hwss.optimize_bandwidth(dc, context);
1446 /* Need to do otg sync again as otg could be out of sync due to otg
1447 * workaround applied during clock update
1448 */
1449 dc_trigger_sync(dc, context);
1450 }
1451
1452 context->stream_mask = get_stream_mask(dc, context);
1453
1454 if (context->stream_mask != dc->current_state->stream_mask)
1455 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
1456
1457 for (i = 0; i < context->stream_count; i++)
1458 context->streams[i]->mode_changed = false;
1459
1460 dc_release_state(dc->current_state);
1461
1462 dc->current_state = context;
1463
1464 dc_retain_state(dc->current_state);
1465
1466 return result;
1467 }
1468
dc_commit_state(struct dc * dc,struct dc_state * context)1469 bool dc_commit_state(struct dc *dc, struct dc_state *context)
1470 {
1471 enum dc_status result = DC_ERROR_UNEXPECTED;
1472 int i;
1473
1474 if (false == context_changed(dc, context))
1475 return DC_OK;
1476
1477 DC_LOG_DC("%s: %d streams\n",
1478 __func__, context->stream_count);
1479
1480 for (i = 0; i < context->stream_count; i++) {
1481 struct dc_stream_state *stream = context->streams[i];
1482
1483 dc_stream_log(dc, stream);
1484 }
1485
1486 result = dc_commit_state_no_check(dc, context);
1487
1488 return (result == DC_OK);
1489 }
1490
1491 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1492 bool dc_acquire_release_mpc_3dlut(
1493 struct dc *dc, bool acquire,
1494 struct dc_stream_state *stream,
1495 struct dc_3dlut **lut,
1496 struct dc_transfer_func **shaper)
1497 {
1498 int pipe_idx;
1499 bool ret = false;
1500 bool found_pipe_idx = false;
1501 const struct resource_pool *pool = dc->res_pool;
1502 struct resource_context *res_ctx = &dc->current_state->res_ctx;
1503 int mpcc_id = 0;
1504
1505 if (pool && res_ctx) {
1506 if (acquire) {
1507 /*find pipe idx for the given stream*/
1508 for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
1509 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
1510 found_pipe_idx = true;
1511 mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
1512 break;
1513 }
1514 }
1515 } else
1516 found_pipe_idx = true;/*for release pipe_idx is not required*/
1517
1518 if (found_pipe_idx) {
1519 if (acquire && pool->funcs->acquire_post_bldn_3dlut)
1520 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
1521 else if (acquire == false && pool->funcs->release_post_bldn_3dlut)
1522 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
1523 }
1524 }
1525 return ret;
1526 }
1527 #endif
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)1528 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
1529 {
1530 int i;
1531 struct pipe_ctx *pipe;
1532
1533 for (i = 0; i < MAX_PIPES; i++) {
1534 pipe = &context->res_ctx.pipe_ctx[i];
1535
1536 if (!pipe->plane_state)
1537 continue;
1538
1539 /* Must set to false to start with, due to OR in update function */
1540 pipe->plane_state->status.is_flip_pending = false;
1541 dc->hwss.update_pending_status(pipe);
1542 if (pipe->plane_state->status.is_flip_pending)
1543 return true;
1544 }
1545 return false;
1546 }
1547
dc_post_update_surfaces_to_stream(struct dc * dc)1548 bool dc_post_update_surfaces_to_stream(struct dc *dc)
1549 {
1550 int i;
1551 struct dc_state *context = dc->current_state;
1552
1553 if ((!dc->optimized_required) || dc->optimize_seamless_boot_streams > 0)
1554 return true;
1555
1556 post_surface_trace(dc);
1557
1558 if (is_flip_pending_in_pipes(dc, context))
1559 return true;
1560
1561 for (i = 0; i < dc->res_pool->pipe_count; i++)
1562 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
1563 context->res_ctx.pipe_ctx[i].plane_state == NULL) {
1564 context->res_ctx.pipe_ctx[i].pipe_idx = i;
1565 dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
1566 }
1567
1568 dc->hwss.optimize_bandwidth(dc, context);
1569
1570 dc->optimized_required = false;
1571 dc->wm_optimized_required = false;
1572
1573 return true;
1574 }
1575
init_state(struct dc * dc,struct dc_state * context)1576 static void init_state(struct dc *dc, struct dc_state *context)
1577 {
1578 /* Each context must have their own instance of VBA and in order to
1579 * initialize and obtain IP and SOC the base DML instance from DC is
1580 * initially copied into every context
1581 */
1582 #ifdef CONFIG_DRM_AMD_DC_DCN
1583 memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
1584 #endif
1585 }
1586
dc_create_state(struct dc * dc)1587 struct dc_state *dc_create_state(struct dc *dc)
1588 {
1589 struct dc_state *context = kvzalloc(sizeof(struct dc_state),
1590 GFP_KERNEL);
1591
1592 if (!context)
1593 return NULL;
1594
1595 init_state(dc, context);
1596
1597 kref_init(&context->refcount);
1598
1599 return context;
1600 }
1601
dc_copy_state(struct dc_state * src_ctx)1602 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
1603 {
1604 int i, j;
1605 struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
1606
1607 if (!new_ctx)
1608 return NULL;
1609 memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
1610
1611 for (i = 0; i < MAX_PIPES; i++) {
1612 struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
1613
1614 if (cur_pipe->top_pipe)
1615 cur_pipe->top_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
1616
1617 if (cur_pipe->bottom_pipe)
1618 cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
1619
1620 if (cur_pipe->prev_odm_pipe)
1621 cur_pipe->prev_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
1622
1623 if (cur_pipe->next_odm_pipe)
1624 cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
1625
1626 }
1627
1628 for (i = 0; i < new_ctx->stream_count; i++) {
1629 dc_stream_retain(new_ctx->streams[i]);
1630 for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
1631 dc_plane_state_retain(
1632 new_ctx->stream_status[i].plane_states[j]);
1633 }
1634
1635 kref_init(&new_ctx->refcount);
1636
1637 return new_ctx;
1638 }
1639
dc_retain_state(struct dc_state * context)1640 void dc_retain_state(struct dc_state *context)
1641 {
1642 kref_get(&context->refcount);
1643 }
1644
dc_state_free(struct kref * kref)1645 static void dc_state_free(struct kref *kref)
1646 {
1647 struct dc_state *context = container_of(kref, struct dc_state, refcount);
1648 dc_resource_state_destruct(context);
1649 kvfree(context);
1650 }
1651
dc_release_state(struct dc_state * context)1652 void dc_release_state(struct dc_state *context)
1653 {
1654 kref_put(&context->refcount, dc_state_free);
1655 }
1656
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)1657 bool dc_set_generic_gpio_for_stereo(bool enable,
1658 struct gpio_service *gpio_service)
1659 {
1660 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
1661 struct gpio_pin_info pin_info;
1662 struct gpio *generic;
1663 struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
1664 GFP_KERNEL);
1665
1666 if (!config)
1667 return false;
1668 pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
1669
1670 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
1671 kfree(config);
1672 return false;
1673 } else {
1674 generic = dal_gpio_service_create_generic_mux(
1675 gpio_service,
1676 pin_info.offset,
1677 pin_info.mask);
1678 }
1679
1680 if (!generic) {
1681 kfree(config);
1682 return false;
1683 }
1684
1685 gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
1686
1687 config->enable_output_from_mux = enable;
1688 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
1689
1690 if (gpio_result == GPIO_RESULT_OK)
1691 gpio_result = dal_mux_setup_config(generic, config);
1692
1693 if (gpio_result == GPIO_RESULT_OK) {
1694 dal_gpio_close(generic);
1695 dal_gpio_destroy_generic_mux(&generic);
1696 kfree(config);
1697 return true;
1698 } else {
1699 dal_gpio_close(generic);
1700 dal_gpio_destroy_generic_mux(&generic);
1701 kfree(config);
1702 return false;
1703 }
1704 }
1705
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)1706 static bool is_surface_in_context(
1707 const struct dc_state *context,
1708 const struct dc_plane_state *plane_state)
1709 {
1710 int j;
1711
1712 for (j = 0; j < MAX_PIPES; j++) {
1713 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
1714
1715 if (plane_state == pipe_ctx->plane_state) {
1716 return true;
1717 }
1718 }
1719
1720 return false;
1721 }
1722
get_plane_info_update_type(const struct dc_surface_update * u)1723 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
1724 {
1725 union surface_update_flags *update_flags = &u->surface->update_flags;
1726 enum surface_update_type update_type = UPDATE_TYPE_FAST;
1727
1728 if (!u->plane_info)
1729 return UPDATE_TYPE_FAST;
1730
1731 if (u->plane_info->color_space != u->surface->color_space) {
1732 update_flags->bits.color_space_change = 1;
1733 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1734 }
1735
1736 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
1737 update_flags->bits.horizontal_mirror_change = 1;
1738 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1739 }
1740
1741 if (u->plane_info->rotation != u->surface->rotation) {
1742 update_flags->bits.rotation_change = 1;
1743 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1744 }
1745
1746 if (u->plane_info->format != u->surface->format) {
1747 update_flags->bits.pixel_format_change = 1;
1748 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1749 }
1750
1751 if (u->plane_info->stereo_format != u->surface->stereo_format) {
1752 update_flags->bits.stereo_format_change = 1;
1753 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1754 }
1755
1756 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
1757 update_flags->bits.per_pixel_alpha_change = 1;
1758 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1759 }
1760
1761 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
1762 update_flags->bits.global_alpha_change = 1;
1763 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1764 }
1765
1766 if (u->plane_info->dcc.enable != u->surface->dcc.enable
1767 || u->plane_info->dcc.independent_64b_blks != u->surface->dcc.independent_64b_blks
1768 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
1769 update_flags->bits.dcc_change = 1;
1770 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1771 }
1772
1773 if (resource_pixel_format_to_bpp(u->plane_info->format) !=
1774 resource_pixel_format_to_bpp(u->surface->format)) {
1775 /* different bytes per element will require full bandwidth
1776 * and DML calculation
1777 */
1778 update_flags->bits.bpp_change = 1;
1779 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1780 }
1781
1782 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
1783 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
1784 update_flags->bits.plane_size_change = 1;
1785 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1786 }
1787
1788
1789 if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
1790 sizeof(union dc_tiling_info)) != 0) {
1791 update_flags->bits.swizzle_change = 1;
1792 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1793
1794 /* todo: below are HW dependent, we should add a hook to
1795 * DCE/N resource and validated there.
1796 */
1797 if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
1798 /* swizzled mode requires RQ to be setup properly,
1799 * thus need to run DML to calculate RQ settings
1800 */
1801 update_flags->bits.bandwidth_change = 1;
1802 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1803 }
1804 }
1805
1806 /* This should be UPDATE_TYPE_FAST if nothing has changed. */
1807 return update_type;
1808 }
1809
get_scaling_info_update_type(const struct dc_surface_update * u)1810 static enum surface_update_type get_scaling_info_update_type(
1811 const struct dc_surface_update *u)
1812 {
1813 union surface_update_flags *update_flags = &u->surface->update_flags;
1814
1815 if (!u->scaling_info)
1816 return UPDATE_TYPE_FAST;
1817
1818 if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width
1819 || u->scaling_info->clip_rect.height != u->surface->clip_rect.height
1820 || u->scaling_info->dst_rect.width != u->surface->dst_rect.width
1821 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
1822 || u->scaling_info->scaling_quality.integer_scaling !=
1823 u->surface->scaling_quality.integer_scaling
1824 ) {
1825 update_flags->bits.scaling_change = 1;
1826
1827 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
1828 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
1829 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
1830 || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
1831 /* Making dst rect smaller requires a bandwidth change */
1832 update_flags->bits.bandwidth_change = 1;
1833 }
1834
1835 if (u->scaling_info->src_rect.width != u->surface->src_rect.width
1836 || u->scaling_info->src_rect.height != u->surface->src_rect.height) {
1837
1838 update_flags->bits.scaling_change = 1;
1839 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
1840 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
1841 /* Making src rect bigger requires a bandwidth change */
1842 update_flags->bits.clock_change = 1;
1843 }
1844
1845 if (u->scaling_info->src_rect.x != u->surface->src_rect.x
1846 || u->scaling_info->src_rect.y != u->surface->src_rect.y
1847 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
1848 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
1849 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
1850 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
1851 update_flags->bits.position_change = 1;
1852
1853 if (update_flags->bits.clock_change
1854 || update_flags->bits.bandwidth_change
1855 || update_flags->bits.scaling_change)
1856 return UPDATE_TYPE_FULL;
1857
1858 if (update_flags->bits.position_change)
1859 return UPDATE_TYPE_MED;
1860
1861 return UPDATE_TYPE_FAST;
1862 }
1863
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)1864 static enum surface_update_type det_surface_update(const struct dc *dc,
1865 const struct dc_surface_update *u)
1866 {
1867 const struct dc_state *context = dc->current_state;
1868 enum surface_update_type type;
1869 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1870 union surface_update_flags *update_flags = &u->surface->update_flags;
1871
1872 if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
1873 update_flags->raw = 0xFFFFFFFF;
1874 return UPDATE_TYPE_FULL;
1875 }
1876
1877 update_flags->raw = 0; // Reset all flags
1878
1879 type = get_plane_info_update_type(u);
1880 elevate_update_type(&overall_type, type);
1881
1882 type = get_scaling_info_update_type(u);
1883 elevate_update_type(&overall_type, type);
1884
1885 if (u->flip_addr)
1886 update_flags->bits.addr_update = 1;
1887
1888 if (u->in_transfer_func)
1889 update_flags->bits.in_transfer_func_change = 1;
1890
1891 if (u->input_csc_color_matrix)
1892 update_flags->bits.input_csc_change = 1;
1893
1894 if (u->coeff_reduction_factor)
1895 update_flags->bits.coeff_reduction_change = 1;
1896
1897 if (u->gamut_remap_matrix)
1898 update_flags->bits.gamut_remap_change = 1;
1899
1900 if (u->gamma) {
1901 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
1902
1903 if (u->plane_info)
1904 format = u->plane_info->format;
1905 else if (u->surface)
1906 format = u->surface->format;
1907
1908 if (dce_use_lut(format))
1909 update_flags->bits.gamma_change = 1;
1910 }
1911
1912 if (u->hdr_mult.value)
1913 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
1914 update_flags->bits.hdr_mult = 1;
1915 elevate_update_type(&overall_type, UPDATE_TYPE_MED);
1916 }
1917
1918 if (update_flags->bits.in_transfer_func_change) {
1919 type = UPDATE_TYPE_MED;
1920 elevate_update_type(&overall_type, type);
1921 }
1922
1923 if (update_flags->bits.input_csc_change
1924 || update_flags->bits.coeff_reduction_change
1925 || update_flags->bits.gamma_change
1926 || update_flags->bits.gamut_remap_change) {
1927 type = UPDATE_TYPE_FULL;
1928 elevate_update_type(&overall_type, type);
1929 }
1930
1931 return overall_type;
1932 }
1933
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)1934 static enum surface_update_type check_update_surfaces_for_stream(
1935 struct dc *dc,
1936 struct dc_surface_update *updates,
1937 int surface_count,
1938 struct dc_stream_update *stream_update,
1939 const struct dc_stream_status *stream_status)
1940 {
1941 int i;
1942 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1943
1944 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
1945 if (dc->idle_optimizations_allowed)
1946 overall_type = UPDATE_TYPE_FULL;
1947
1948 #endif
1949 if (stream_status == NULL || stream_status->plane_count != surface_count)
1950 overall_type = UPDATE_TYPE_FULL;
1951
1952 /* some stream updates require passive update */
1953 if (stream_update) {
1954 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
1955
1956 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
1957 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
1958 stream_update->integer_scaling_update)
1959 su_flags->bits.scaling = 1;
1960
1961 if (stream_update->out_transfer_func)
1962 su_flags->bits.out_tf = 1;
1963
1964 if (stream_update->abm_level)
1965 su_flags->bits.abm_level = 1;
1966
1967 if (stream_update->dpms_off)
1968 su_flags->bits.dpms_off = 1;
1969
1970 if (stream_update->gamut_remap)
1971 su_flags->bits.gamut_remap = 1;
1972
1973 if (stream_update->wb_update)
1974 su_flags->bits.wb_update = 1;
1975
1976 if (stream_update->dsc_config)
1977 su_flags->bits.dsc_changed = 1;
1978
1979 if (su_flags->raw != 0)
1980 overall_type = UPDATE_TYPE_FULL;
1981
1982 if (stream_update->output_csc_transform || stream_update->output_color_space)
1983 su_flags->bits.out_csc = 1;
1984 }
1985
1986 for (i = 0 ; i < surface_count; i++) {
1987 enum surface_update_type type =
1988 det_surface_update(dc, &updates[i]);
1989
1990 elevate_update_type(&overall_type, type);
1991 }
1992
1993 return overall_type;
1994 }
1995
1996 /**
1997 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
1998 *
1999 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2000 */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2001 enum surface_update_type dc_check_update_surfaces_for_stream(
2002 struct dc *dc,
2003 struct dc_surface_update *updates,
2004 int surface_count,
2005 struct dc_stream_update *stream_update,
2006 const struct dc_stream_status *stream_status)
2007 {
2008 int i;
2009 enum surface_update_type type;
2010
2011 if (stream_update)
2012 stream_update->stream->update_flags.raw = 0;
2013 for (i = 0; i < surface_count; i++)
2014 updates[i].surface->update_flags.raw = 0;
2015
2016 type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2017 if (type == UPDATE_TYPE_FULL) {
2018 if (stream_update) {
2019 uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2020 stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2021 stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2022 }
2023 for (i = 0; i < surface_count; i++)
2024 updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2025 }
2026
2027 if (type == UPDATE_TYPE_FAST) {
2028 // If there's an available clock comparator, we use that.
2029 if (dc->clk_mgr->funcs->are_clock_states_equal) {
2030 if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2031 dc->optimized_required = true;
2032 // Else we fallback to mem compare.
2033 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2034 dc->optimized_required = true;
2035 }
2036
2037 dc->optimized_required |= dc->wm_optimized_required;
2038 }
2039
2040 return type;
2041 }
2042
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2043 static struct dc_stream_status *stream_get_status(
2044 struct dc_state *ctx,
2045 struct dc_stream_state *stream)
2046 {
2047 uint8_t i;
2048
2049 for (i = 0; i < ctx->stream_count; i++) {
2050 if (stream == ctx->streams[i]) {
2051 return &ctx->stream_status[i];
2052 }
2053 }
2054
2055 return NULL;
2056 }
2057
2058 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2059
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2060 static void copy_surface_update_to_plane(
2061 struct dc_plane_state *surface,
2062 struct dc_surface_update *srf_update)
2063 {
2064 if (srf_update->flip_addr) {
2065 surface->address = srf_update->flip_addr->address;
2066 surface->flip_immediate =
2067 srf_update->flip_addr->flip_immediate;
2068 surface->time.time_elapsed_in_us[surface->time.index] =
2069 srf_update->flip_addr->flip_timestamp_in_us -
2070 surface->time.prev_update_time_in_us;
2071 surface->time.prev_update_time_in_us =
2072 srf_update->flip_addr->flip_timestamp_in_us;
2073 surface->time.index++;
2074 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2075 surface->time.index = 0;
2076
2077 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2078 }
2079
2080 if (srf_update->scaling_info) {
2081 surface->scaling_quality =
2082 srf_update->scaling_info->scaling_quality;
2083 surface->dst_rect =
2084 srf_update->scaling_info->dst_rect;
2085 surface->src_rect =
2086 srf_update->scaling_info->src_rect;
2087 surface->clip_rect =
2088 srf_update->scaling_info->clip_rect;
2089 }
2090
2091 if (srf_update->plane_info) {
2092 surface->color_space =
2093 srf_update->plane_info->color_space;
2094 surface->format =
2095 srf_update->plane_info->format;
2096 surface->plane_size =
2097 srf_update->plane_info->plane_size;
2098 surface->rotation =
2099 srf_update->plane_info->rotation;
2100 surface->horizontal_mirror =
2101 srf_update->plane_info->horizontal_mirror;
2102 surface->stereo_format =
2103 srf_update->plane_info->stereo_format;
2104 surface->tiling_info =
2105 srf_update->plane_info->tiling_info;
2106 surface->visible =
2107 srf_update->plane_info->visible;
2108 surface->per_pixel_alpha =
2109 srf_update->plane_info->per_pixel_alpha;
2110 surface->global_alpha =
2111 srf_update->plane_info->global_alpha;
2112 surface->global_alpha_value =
2113 srf_update->plane_info->global_alpha_value;
2114 surface->dcc =
2115 srf_update->plane_info->dcc;
2116 surface->layer_index =
2117 srf_update->plane_info->layer_index;
2118 }
2119
2120 if (srf_update->gamma &&
2121 (surface->gamma_correction !=
2122 srf_update->gamma)) {
2123 memcpy(&surface->gamma_correction->entries,
2124 &srf_update->gamma->entries,
2125 sizeof(struct dc_gamma_entries));
2126 surface->gamma_correction->is_identity =
2127 srf_update->gamma->is_identity;
2128 surface->gamma_correction->num_entries =
2129 srf_update->gamma->num_entries;
2130 surface->gamma_correction->type =
2131 srf_update->gamma->type;
2132 }
2133
2134 if (srf_update->in_transfer_func &&
2135 (surface->in_transfer_func !=
2136 srf_update->in_transfer_func)) {
2137 surface->in_transfer_func->sdr_ref_white_level =
2138 srf_update->in_transfer_func->sdr_ref_white_level;
2139 surface->in_transfer_func->tf =
2140 srf_update->in_transfer_func->tf;
2141 surface->in_transfer_func->type =
2142 srf_update->in_transfer_func->type;
2143 memcpy(&surface->in_transfer_func->tf_pts,
2144 &srf_update->in_transfer_func->tf_pts,
2145 sizeof(struct dc_transfer_func_distributed_points));
2146 }
2147
2148 if (srf_update->func_shaper &&
2149 (surface->in_shaper_func !=
2150 srf_update->func_shaper))
2151 memcpy(surface->in_shaper_func, srf_update->func_shaper,
2152 sizeof(*surface->in_shaper_func));
2153
2154 if (srf_update->lut3d_func &&
2155 (surface->lut3d_func !=
2156 srf_update->lut3d_func))
2157 memcpy(surface->lut3d_func, srf_update->lut3d_func,
2158 sizeof(*surface->lut3d_func));
2159
2160 if (srf_update->hdr_mult.value)
2161 surface->hdr_mult =
2162 srf_update->hdr_mult;
2163
2164 if (srf_update->blend_tf &&
2165 (surface->blend_tf !=
2166 srf_update->blend_tf))
2167 memcpy(surface->blend_tf, srf_update->blend_tf,
2168 sizeof(*surface->blend_tf));
2169
2170 if (srf_update->input_csc_color_matrix)
2171 surface->input_csc_color_matrix =
2172 *srf_update->input_csc_color_matrix;
2173
2174 if (srf_update->coeff_reduction_factor)
2175 surface->coeff_reduction_factor =
2176 *srf_update->coeff_reduction_factor;
2177
2178 if (srf_update->gamut_remap_matrix)
2179 surface->gamut_remap_matrix =
2180 *srf_update->gamut_remap_matrix;
2181 }
2182
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2183 static void copy_stream_update_to_stream(struct dc *dc,
2184 struct dc_state *context,
2185 struct dc_stream_state *stream,
2186 struct dc_stream_update *update)
2187 {
2188 struct dc_context *dc_ctx = dc->ctx;
2189
2190 if (update == NULL || stream == NULL)
2191 return;
2192
2193 if (update->src.height && update->src.width)
2194 stream->src = update->src;
2195
2196 if (update->dst.height && update->dst.width)
2197 stream->dst = update->dst;
2198
2199 if (update->out_transfer_func &&
2200 stream->out_transfer_func != update->out_transfer_func) {
2201 stream->out_transfer_func->sdr_ref_white_level =
2202 update->out_transfer_func->sdr_ref_white_level;
2203 stream->out_transfer_func->tf = update->out_transfer_func->tf;
2204 stream->out_transfer_func->type =
2205 update->out_transfer_func->type;
2206 memcpy(&stream->out_transfer_func->tf_pts,
2207 &update->out_transfer_func->tf_pts,
2208 sizeof(struct dc_transfer_func_distributed_points));
2209 }
2210
2211 if (update->hdr_static_metadata)
2212 stream->hdr_static_metadata = *update->hdr_static_metadata;
2213
2214 if (update->abm_level)
2215 stream->abm_level = *update->abm_level;
2216
2217 if (update->periodic_interrupt)
2218 stream->periodic_interrupt = *update->periodic_interrupt;
2219
2220 if (update->gamut_remap)
2221 stream->gamut_remap_matrix = *update->gamut_remap;
2222
2223 /* Note: this being updated after mode set is currently not a use case
2224 * however if it arises OCSC would need to be reprogrammed at the
2225 * minimum
2226 */
2227 if (update->output_color_space)
2228 stream->output_color_space = *update->output_color_space;
2229
2230 if (update->output_csc_transform)
2231 stream->csc_color_matrix = *update->output_csc_transform;
2232
2233 if (update->vrr_infopacket)
2234 stream->vrr_infopacket = *update->vrr_infopacket;
2235
2236 if (update->dpms_off)
2237 stream->dpms_off = *update->dpms_off;
2238
2239 if (update->vsc_infopacket)
2240 stream->vsc_infopacket = *update->vsc_infopacket;
2241
2242 if (update->vsp_infopacket)
2243 stream->vsp_infopacket = *update->vsp_infopacket;
2244
2245 if (update->dither_option)
2246 stream->dither_option = *update->dither_option;
2247 /* update current stream with writeback info */
2248 if (update->wb_update) {
2249 int i;
2250
2251 stream->num_wb_info = update->wb_update->num_wb_info;
2252 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2253 for (i = 0; i < stream->num_wb_info; i++)
2254 stream->writeback_info[i] =
2255 update->wb_update->writeback_info[i];
2256 }
2257 if (update->dsc_config) {
2258 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2259 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2260 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2261 update->dsc_config->num_slices_v != 0);
2262
2263 /* Use temporarry context for validating new DSC config */
2264 struct dc_state *dsc_validate_context = dc_create_state(dc);
2265
2266 if (dsc_validate_context) {
2267 dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2268
2269 stream->timing.dsc_cfg = *update->dsc_config;
2270 stream->timing.flags.DSC = enable_dsc;
2271 if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2272 stream->timing.dsc_cfg = old_dsc_cfg;
2273 stream->timing.flags.DSC = old_dsc_enabled;
2274 update->dsc_config = NULL;
2275 }
2276
2277 dc_release_state(dsc_validate_context);
2278 } else {
2279 DC_ERROR("Failed to allocate new validate context for DSC change\n");
2280 update->dsc_config = NULL;
2281 }
2282 }
2283 }
2284
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)2285 static void commit_planes_do_stream_update(struct dc *dc,
2286 struct dc_stream_state *stream,
2287 struct dc_stream_update *stream_update,
2288 enum surface_update_type update_type,
2289 struct dc_state *context)
2290 {
2291 int j;
2292 bool should_program_abm;
2293
2294 // Stream updates
2295 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2296 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2297
2298 if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && pipe_ctx->stream == stream) {
2299
2300 if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
2301 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
2302
2303 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
2304 stream_update->vrr_infopacket ||
2305 stream_update->vsc_infopacket ||
2306 stream_update->vsp_infopacket) {
2307 resource_build_info_frame(pipe_ctx);
2308 dc->hwss.update_info_frame(pipe_ctx);
2309 }
2310
2311 if (stream_update->hdr_static_metadata &&
2312 stream->use_dynamic_meta &&
2313 dc->hwss.set_dmdata_attributes &&
2314 pipe_ctx->stream->dmdata_address.quad_part != 0)
2315 dc->hwss.set_dmdata_attributes(pipe_ctx);
2316
2317 if (stream_update->gamut_remap)
2318 dc_stream_set_gamut_remap(dc, stream);
2319
2320 if (stream_update->output_csc_transform)
2321 dc_stream_program_csc_matrix(dc, stream);
2322
2323 if (stream_update->dither_option) {
2324 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2325 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
2326 &pipe_ctx->stream->bit_depth_params);
2327 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
2328 &stream->bit_depth_params,
2329 &stream->clamping);
2330 while (odm_pipe) {
2331 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
2332 &stream->bit_depth_params,
2333 &stream->clamping);
2334 odm_pipe = odm_pipe->next_odm_pipe;
2335 }
2336 }
2337
2338 /* Full fe update*/
2339 if (update_type == UPDATE_TYPE_FAST)
2340 continue;
2341
2342 if (stream_update->dsc_config)
2343 dp_update_dsc_config(pipe_ctx);
2344
2345 if (stream_update->dpms_off) {
2346 if (*stream_update->dpms_off) {
2347 core_link_disable_stream(pipe_ctx);
2348 /* for dpms, keep acquired resources*/
2349 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
2350 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
2351
2352 dc->optimized_required = true;
2353
2354 } else {
2355 if (dc->optimize_seamless_boot_streams == 0)
2356 dc->hwss.prepare_bandwidth(dc, dc->current_state);
2357
2358 core_link_enable_stream(dc->current_state, pipe_ctx);
2359 }
2360 }
2361
2362 if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
2363 should_program_abm = true;
2364
2365 // if otg funcs defined check if blanked before programming
2366 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
2367 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
2368 should_program_abm = false;
2369
2370 if (should_program_abm) {
2371 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
2372 dc->hwss.set_abm_immediate_disable(pipe_ctx);
2373 } else {
2374 pipe_ctx->stream_res.abm->funcs->set_abm_level(
2375 pipe_ctx->stream_res.abm, stream->abm_level);
2376 }
2377 }
2378 }
2379 }
2380 }
2381 }
2382
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)2383 static void commit_planes_for_stream(struct dc *dc,
2384 struct dc_surface_update *srf_updates,
2385 int surface_count,
2386 struct dc_stream_state *stream,
2387 struct dc_stream_update *stream_update,
2388 enum surface_update_type update_type,
2389 struct dc_state *context)
2390 {
2391 bool mpcc_disconnected = false;
2392 int i, j;
2393 struct pipe_ctx *top_pipe_to_program = NULL;
2394
2395 if (dc->optimize_seamless_boot_streams > 0 && surface_count > 0) {
2396 /* Optimize seamless boot flag keeps clocks and watermarks high until
2397 * first flip. After first flip, optimization is required to lower
2398 * bandwidth. Important to note that it is expected UEFI will
2399 * only light up a single display on POST, therefore we only expect
2400 * one stream with seamless boot flag set.
2401 */
2402 if (stream->apply_seamless_boot_optimization) {
2403 stream->apply_seamless_boot_optimization = false;
2404 dc->optimize_seamless_boot_streams--;
2405
2406 if (dc->optimize_seamless_boot_streams == 0)
2407 dc->optimized_required = true;
2408 }
2409 }
2410
2411 if (update_type == UPDATE_TYPE_FULL) {
2412 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
2413 dc_allow_idle_optimizations(dc, false);
2414
2415 #endif
2416 if (dc->optimize_seamless_boot_streams == 0)
2417 dc->hwss.prepare_bandwidth(dc, context);
2418
2419 context_clock_trace(dc, context);
2420 }
2421
2422 if (update_type != UPDATE_TYPE_FAST && dc->hwss.interdependent_update_lock &&
2423 dc->hwss.disconnect_pipes && dc->hwss.wait_for_pending_cleared){
2424 dc->hwss.interdependent_update_lock(dc, context, true);
2425 mpcc_disconnected = dc->hwss.disconnect_pipes(dc, context);
2426 dc->hwss.interdependent_update_lock(dc, context, false);
2427 if (mpcc_disconnected)
2428 dc->hwss.wait_for_pending_cleared(dc, context);
2429 }
2430
2431 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2432 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2433
2434 if (!pipe_ctx->top_pipe &&
2435 !pipe_ctx->prev_odm_pipe &&
2436 pipe_ctx->stream &&
2437 pipe_ctx->stream == stream) {
2438 top_pipe_to_program = pipe_ctx;
2439 }
2440 }
2441
2442 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2443 if (top_pipe_to_program &&
2444 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2445 if (should_use_dmub_lock(stream->link)) {
2446 union dmub_hw_lock_flags hw_locks = { 0 };
2447 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2448
2449 hw_locks.bits.lock_dig = 1;
2450 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2451
2452 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2453 true,
2454 &hw_locks,
2455 &inst_flags);
2456 } else
2457 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
2458 top_pipe_to_program->stream_res.tg);
2459 }
2460
2461 if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2462 dc->hwss.interdependent_update_lock(dc, context, true);
2463 else
2464 /* Lock the top pipe while updating plane addrs, since freesync requires
2465 * plane addr update event triggers to be synchronized.
2466 * top_pipe_to_program is expected to never be NULL
2467 */
2468 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
2469
2470
2471 // Stream updates
2472 if (stream_update)
2473 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
2474
2475 if (surface_count == 0) {
2476 /*
2477 * In case of turning off screen, no need to program front end a second time.
2478 * just return after program blank.
2479 */
2480 if (dc->hwss.apply_ctx_for_surface)
2481 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
2482 if (dc->hwss.program_front_end_for_ctx)
2483 dc->hwss.program_front_end_for_ctx(dc, context);
2484
2485 if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2486 dc->hwss.interdependent_update_lock(dc, context, false);
2487 else
2488 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2489
2490 dc->hwss.post_unlock_program_front_end(dc, context);
2491 return;
2492 }
2493
2494 if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
2495 for (i = 0; i < surface_count; i++) {
2496 struct dc_plane_state *plane_state = srf_updates[i].surface;
2497 /*set logical flag for lock/unlock use*/
2498 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2499 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2500 if (!pipe_ctx->plane_state)
2501 continue;
2502 if (pipe_ctx->plane_state != plane_state)
2503 continue;
2504 plane_state->triplebuffer_flips = false;
2505 if (update_type == UPDATE_TYPE_FAST &&
2506 dc->hwss.program_triplebuffer != NULL &&
2507 !plane_state->flip_immediate && dc->debug.enable_tri_buf) {
2508 /*triple buffer for VUpdate only*/
2509 plane_state->triplebuffer_flips = true;
2510 }
2511 }
2512 if (update_type == UPDATE_TYPE_FULL) {
2513 /* force vsync flip when reconfiguring pipes to prevent underflow */
2514 plane_state->flip_immediate = false;
2515 }
2516 }
2517 }
2518
2519 // Update Type FULL, Surface updates
2520 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2521 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2522
2523 if (!pipe_ctx->top_pipe &&
2524 !pipe_ctx->prev_odm_pipe &&
2525 pipe_ctx->stream &&
2526 pipe_ctx->stream == stream) {
2527 struct dc_stream_status *stream_status = NULL;
2528
2529 if (!pipe_ctx->plane_state)
2530 continue;
2531
2532 /* Full fe update*/
2533 if (update_type == UPDATE_TYPE_FAST)
2534 continue;
2535
2536 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
2537
2538 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2539 /*turn off triple buffer for full update*/
2540 dc->hwss.program_triplebuffer(
2541 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
2542 }
2543 stream_status =
2544 stream_get_status(context, pipe_ctx->stream);
2545
2546 if (dc->hwss.apply_ctx_for_surface)
2547 dc->hwss.apply_ctx_for_surface(
2548 dc, pipe_ctx->stream, stream_status->plane_count, context);
2549 }
2550 }
2551 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
2552 dc->hwss.program_front_end_for_ctx(dc, context);
2553 #ifdef CONFIG_DRM_AMD_DC_DCN
2554 if (dc->debug.validate_dml_output) {
2555 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2556 struct pipe_ctx cur_pipe = context->res_ctx.pipe_ctx[i];
2557 if (cur_pipe.stream == NULL)
2558 continue;
2559
2560 cur_pipe.plane_res.hubp->funcs->validate_dml_output(
2561 cur_pipe.plane_res.hubp, dc->ctx,
2562 &context->res_ctx.pipe_ctx[i].rq_regs,
2563 &context->res_ctx.pipe_ctx[i].dlg_regs,
2564 &context->res_ctx.pipe_ctx[i].ttu_regs);
2565 }
2566 }
2567 #endif
2568 }
2569
2570 // Update Type FAST, Surface updates
2571 if (update_type == UPDATE_TYPE_FAST) {
2572 if (dc->hwss.set_flip_control_gsl)
2573 for (i = 0; i < surface_count; i++) {
2574 struct dc_plane_state *plane_state = srf_updates[i].surface;
2575
2576 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2577 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2578
2579 if (pipe_ctx->stream != stream)
2580 continue;
2581
2582 if (pipe_ctx->plane_state != plane_state)
2583 continue;
2584
2585 // GSL has to be used for flip immediate
2586 dc->hwss.set_flip_control_gsl(pipe_ctx,
2587 plane_state->flip_immediate);
2588 }
2589 }
2590 /* Perform requested Updates */
2591 for (i = 0; i < surface_count; i++) {
2592 struct dc_plane_state *plane_state = srf_updates[i].surface;
2593
2594 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2595 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2596
2597 if (pipe_ctx->stream != stream)
2598 continue;
2599
2600 if (pipe_ctx->plane_state != plane_state)
2601 continue;
2602 /*program triple buffer after lock based on flip type*/
2603 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2604 /*only enable triplebuffer for fast_update*/
2605 dc->hwss.program_triplebuffer(
2606 dc, pipe_ctx, plane_state->triplebuffer_flips);
2607 }
2608 if (srf_updates[i].flip_addr)
2609 dc->hwss.update_plane_addr(dc, pipe_ctx);
2610 }
2611 }
2612 }
2613
2614 if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2615 dc->hwss.interdependent_update_lock(dc, context, false);
2616 else
2617 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2618
2619 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2620 if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2621 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2622 top_pipe_to_program->stream_res.tg,
2623 CRTC_STATE_VACTIVE);
2624 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2625 top_pipe_to_program->stream_res.tg,
2626 CRTC_STATE_VBLANK);
2627 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2628 top_pipe_to_program->stream_res.tg,
2629 CRTC_STATE_VACTIVE);
2630
2631 if (stream && should_use_dmub_lock(stream->link)) {
2632 union dmub_hw_lock_flags hw_locks = { 0 };
2633 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2634
2635 hw_locks.bits.lock_dig = 1;
2636 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2637
2638 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2639 false,
2640 &hw_locks,
2641 &inst_flags);
2642 } else
2643 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
2644 top_pipe_to_program->stream_res.tg);
2645 }
2646
2647 if (update_type != UPDATE_TYPE_FAST)
2648 dc->hwss.post_unlock_program_front_end(dc, context);
2649
2650 // Fire manual trigger only when bottom plane is flipped
2651 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2652 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2653
2654 if (pipe_ctx->bottom_pipe ||
2655 !pipe_ctx->stream ||
2656 pipe_ctx->stream != stream ||
2657 !pipe_ctx->plane_state->update_flags.bits.addr_update)
2658 continue;
2659
2660 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
2661 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
2662 }
2663 }
2664
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)2665 void dc_commit_updates_for_stream(struct dc *dc,
2666 struct dc_surface_update *srf_updates,
2667 int surface_count,
2668 struct dc_stream_state *stream,
2669 struct dc_stream_update *stream_update,
2670 struct dc_state *state)
2671 {
2672 const struct dc_stream_status *stream_status;
2673 enum surface_update_type update_type;
2674 struct dc_state *context;
2675 struct dc_context *dc_ctx = dc->ctx;
2676 int i, j;
2677
2678 stream_status = dc_stream_get_status(stream);
2679 context = dc->current_state;
2680
2681 update_type = dc_check_update_surfaces_for_stream(
2682 dc, srf_updates, surface_count, stream_update, stream_status);
2683
2684 if (update_type >= update_surface_trace_level)
2685 update_surface_trace(dc, srf_updates, surface_count);
2686
2687
2688 if (update_type >= UPDATE_TYPE_FULL) {
2689
2690 /* initialize scratch memory for building context */
2691 context = dc_create_state(dc);
2692 if (context == NULL) {
2693 DC_ERROR("Failed to allocate new validate context!\n");
2694 return;
2695 }
2696
2697 dc_resource_state_copy_construct(state, context);
2698
2699 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2700 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
2701 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2702
2703 if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
2704 new_pipe->plane_state->force_full_update = true;
2705 }
2706 }
2707
2708
2709 for (i = 0; i < surface_count; i++) {
2710 struct dc_plane_state *surface = srf_updates[i].surface;
2711
2712 copy_surface_update_to_plane(surface, &srf_updates[i]);
2713
2714 if (update_type >= UPDATE_TYPE_MED) {
2715 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2716 struct pipe_ctx *pipe_ctx =
2717 &context->res_ctx.pipe_ctx[j];
2718
2719 if (pipe_ctx->plane_state != surface)
2720 continue;
2721
2722 resource_build_scaling_params(pipe_ctx);
2723 }
2724 }
2725 }
2726
2727 copy_stream_update_to_stream(dc, context, stream, stream_update);
2728
2729 if (update_type >= UPDATE_TYPE_FULL) {
2730 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
2731 DC_ERROR("Mode validation failed for stream update!\n");
2732 dc_release_state(context);
2733 return;
2734 }
2735 }
2736
2737 commit_planes_for_stream(
2738 dc,
2739 srf_updates,
2740 surface_count,
2741 stream,
2742 stream_update,
2743 update_type,
2744 context);
2745 /*update current_State*/
2746 if (dc->current_state != context) {
2747
2748 struct dc_state *old = dc->current_state;
2749
2750 dc->current_state = context;
2751 dc_release_state(old);
2752
2753 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2754 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2755
2756 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
2757 pipe_ctx->plane_state->force_full_update = false;
2758 }
2759 }
2760 /*let's use current_state to update watermark etc*/
2761 if (update_type >= UPDATE_TYPE_FULL)
2762 dc_post_update_surfaces_to_stream(dc);
2763
2764 return;
2765
2766 }
2767
dc_get_current_stream_count(struct dc * dc)2768 uint8_t dc_get_current_stream_count(struct dc *dc)
2769 {
2770 return dc->current_state->stream_count;
2771 }
2772
dc_get_stream_at_index(struct dc * dc,uint8_t i)2773 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
2774 {
2775 if (i < dc->current_state->stream_count)
2776 return dc->current_state->streams[i];
2777 return NULL;
2778 }
2779
dc_stream_find_from_link(const struct dc_link * link)2780 struct dc_stream_state *dc_stream_find_from_link(const struct dc_link *link)
2781 {
2782 uint8_t i;
2783 struct dc_context *ctx = link->ctx;
2784
2785 for (i = 0; i < ctx->dc->current_state->stream_count; i++) {
2786 if (ctx->dc->current_state->streams[i]->link == link)
2787 return ctx->dc->current_state->streams[i];
2788 }
2789
2790 return NULL;
2791 }
2792
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)2793 enum dc_irq_source dc_interrupt_to_irq_source(
2794 struct dc *dc,
2795 uint32_t src_id,
2796 uint32_t ext_id)
2797 {
2798 return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
2799 }
2800
2801 /**
2802 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
2803 */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)2804 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
2805 {
2806
2807 if (dc == NULL)
2808 return false;
2809
2810 return dal_irq_service_set(dc->res_pool->irqs, src, enable);
2811 }
2812
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)2813 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
2814 {
2815 dal_irq_service_ack(dc->res_pool->irqs, src);
2816 }
2817
dc_power_down_on_boot(struct dc * dc)2818 void dc_power_down_on_boot(struct dc *dc)
2819 {
2820 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
2821 dc->hwss.power_down_on_boot)
2822 dc->hwss.power_down_on_boot(dc);
2823 }
2824
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)2825 void dc_set_power_state(
2826 struct dc *dc,
2827 enum dc_acpi_cm_power_state power_state)
2828 {
2829 struct kref refcount;
2830 struct display_mode_lib *dml;
2831
2832 switch (power_state) {
2833 case DC_ACPI_CM_POWER_STATE_D0:
2834 dc_resource_state_construct(dc, dc->current_state);
2835
2836 if (dc->ctx->dmub_srv)
2837 dc_dmub_srv_wait_phy_init(dc->ctx->dmub_srv);
2838
2839 dc->hwss.init_hw(dc);
2840
2841 if (dc->hwss.init_sys_ctx != NULL &&
2842 dc->vm_pa_config.valid) {
2843 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
2844 }
2845
2846 break;
2847 default:
2848 ASSERT(dc->current_state->stream_count == 0);
2849 /* Zero out the current context so that on resume we start with
2850 * clean state, and dc hw programming optimizations will not
2851 * cause any trouble.
2852 */
2853 dml = kzalloc(sizeof(struct display_mode_lib),
2854 GFP_KERNEL);
2855
2856 ASSERT(dml);
2857 if (!dml)
2858 return;
2859
2860 /* Preserve refcount */
2861 refcount = dc->current_state->refcount;
2862 /* Preserve display mode lib */
2863 memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
2864
2865 dc_resource_state_destruct(dc->current_state);
2866 memset(dc->current_state, 0,
2867 sizeof(*dc->current_state));
2868
2869 dc->current_state->refcount = refcount;
2870 dc->current_state->bw_ctx.dml = *dml;
2871
2872 kfree(dml);
2873
2874 break;
2875 }
2876 }
2877
dc_resume(struct dc * dc)2878 void dc_resume(struct dc *dc)
2879 {
2880 uint32_t i;
2881
2882 for (i = 0; i < dc->link_count; i++)
2883 core_link_resume(dc->links[i]);
2884 }
2885
dc_is_dmcu_initialized(struct dc * dc)2886 bool dc_is_dmcu_initialized(struct dc *dc)
2887 {
2888 struct dmcu *dmcu = dc->res_pool->dmcu;
2889
2890 if (dmcu)
2891 return dmcu->funcs->is_dmcu_initialized(dmcu);
2892 return false;
2893 }
2894
dc_submit_i2c(struct dc * dc,uint32_t link_index,struct i2c_command * cmd)2895 bool dc_submit_i2c(
2896 struct dc *dc,
2897 uint32_t link_index,
2898 struct i2c_command *cmd)
2899 {
2900
2901 struct dc_link *link = dc->links[link_index];
2902 struct ddc_service *ddc = link->ddc;
2903 return dce_i2c_submit_command(
2904 dc->res_pool,
2905 ddc->ddc_pin,
2906 cmd);
2907 }
2908
dc_submit_i2c_oem(struct dc * dc,struct i2c_command * cmd)2909 bool dc_submit_i2c_oem(
2910 struct dc *dc,
2911 struct i2c_command *cmd)
2912 {
2913 struct ddc_service *ddc = dc->res_pool->oem_device;
2914 return dce_i2c_submit_command(
2915 dc->res_pool,
2916 ddc->ddc_pin,
2917 cmd);
2918 }
2919
link_add_remote_sink_helper(struct dc_link * dc_link,struct dc_sink * sink)2920 static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink)
2921 {
2922 if (dc_link->sink_count >= MAX_SINKS_PER_LINK) {
2923 BREAK_TO_DEBUGGER();
2924 return false;
2925 }
2926
2927 dc_sink_retain(sink);
2928
2929 dc_link->remote_sinks[dc_link->sink_count] = sink;
2930 dc_link->sink_count++;
2931
2932 return true;
2933 }
2934
2935 /**
2936 * dc_link_add_remote_sink() - Create a sink and attach it to an existing link
2937 *
2938 * EDID length is in bytes
2939 */
dc_link_add_remote_sink(struct dc_link * link,const uint8_t * edid,int len,struct dc_sink_init_data * init_data)2940 struct dc_sink *dc_link_add_remote_sink(
2941 struct dc_link *link,
2942 const uint8_t *edid,
2943 int len,
2944 struct dc_sink_init_data *init_data)
2945 {
2946 struct dc_sink *dc_sink;
2947 enum dc_edid_status edid_status;
2948
2949 if (len > DC_MAX_EDID_BUFFER_SIZE) {
2950 dm_error("Max EDID buffer size breached!\n");
2951 return NULL;
2952 }
2953
2954 if (!init_data) {
2955 BREAK_TO_DEBUGGER();
2956 return NULL;
2957 }
2958
2959 if (!init_data->link) {
2960 BREAK_TO_DEBUGGER();
2961 return NULL;
2962 }
2963
2964 dc_sink = dc_sink_create(init_data);
2965
2966 if (!dc_sink)
2967 return NULL;
2968
2969 memmove(dc_sink->dc_edid.raw_edid, edid, len);
2970 dc_sink->dc_edid.length = len;
2971
2972 if (!link_add_remote_sink_helper(
2973 link,
2974 dc_sink))
2975 goto fail_add_sink;
2976
2977 edid_status = dm_helpers_parse_edid_caps(
2978 link->ctx,
2979 &dc_sink->dc_edid,
2980 &dc_sink->edid_caps);
2981
2982 /*
2983 * Treat device as no EDID device if EDID
2984 * parsing fails
2985 */
2986 if (edid_status != EDID_OK) {
2987 dc_sink->dc_edid.length = 0;
2988 dm_error("Bad EDID, status%d!\n", edid_status);
2989 }
2990
2991 return dc_sink;
2992
2993 fail_add_sink:
2994 dc_sink_release(dc_sink);
2995 return NULL;
2996 }
2997
2998 /**
2999 * dc_link_remove_remote_sink() - Remove a remote sink from a dc_link
3000 *
3001 * Note that this just removes the struct dc_sink - it doesn't
3002 * program hardware or alter other members of dc_link
3003 */
dc_link_remove_remote_sink(struct dc_link * link,struct dc_sink * sink)3004 void dc_link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink)
3005 {
3006 int i;
3007
3008 if (!link->sink_count) {
3009 BREAK_TO_DEBUGGER();
3010 return;
3011 }
3012
3013 for (i = 0; i < link->sink_count; i++) {
3014 if (link->remote_sinks[i] == sink) {
3015 dc_sink_release(sink);
3016 link->remote_sinks[i] = NULL;
3017
3018 /* shrink array to remove empty place */
3019 while (i < link->sink_count - 1) {
3020 link->remote_sinks[i] = link->remote_sinks[i+1];
3021 i++;
3022 }
3023 link->remote_sinks[i] = NULL;
3024 link->sink_count--;
3025 return;
3026 }
3027 }
3028 }
3029
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)3030 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
3031 {
3032 info->displayClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
3033 info->engineClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
3034 info->memoryClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
3035 info->maxSupportedDppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
3036 info->dppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
3037 info->socClock = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
3038 info->dcfClockDeepSleep = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
3039 info->fClock = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
3040 info->phyClock = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
3041 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)3042 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
3043 {
3044 if (dc->hwss.set_clock)
3045 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
3046 return DC_ERROR_UNEXPECTED;
3047 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)3048 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
3049 {
3050 if (dc->hwss.get_clock)
3051 dc->hwss.get_clock(dc, clock_type, clock_cfg);
3052 }
3053
3054 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)3055 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
3056 {
3057 int i;
3058
3059 for (i = 0; i < dc->current_state->stream_count ; i++) {
3060 struct dc_link *link;
3061 struct dc_stream_state *stream = dc->current_state->streams[i];
3062
3063 link = stream->link;
3064 if (!link)
3065 continue;
3066
3067 if (link->psr_settings.psr_feature_enabled) {
3068 if (enable && !link->psr_settings.psr_allow_active)
3069 return dc_link_set_psr_allow_active(link, true, false);
3070 else if (!enable && link->psr_settings.psr_allow_active)
3071 return dc_link_set_psr_allow_active(link, false, true);
3072 }
3073 }
3074
3075 return true;
3076 }
3077
3078 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
3079
dc_allow_idle_optimizations(struct dc * dc,bool allow)3080 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
3081 {
3082 if (dc->debug.disable_idle_power_optimizations)
3083 return;
3084
3085 if (allow == dc->idle_optimizations_allowed)
3086 return;
3087
3088 if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
3089 dc->idle_optimizations_allowed = allow;
3090 }
3091
3092 /*
3093 * blank all streams, and set min and max memory clock to
3094 * lowest and highest DPM level, respectively
3095 */
dc_unlock_memory_clock_frequency(struct dc * dc)3096 void dc_unlock_memory_clock_frequency(struct dc *dc)
3097 {
3098 unsigned int i;
3099
3100 for (i = 0; i < MAX_PIPES; i++)
3101 if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3102 core_link_disable_stream(&dc->current_state->res_ctx.pipe_ctx[i]);
3103
3104 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
3105 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3106 }
3107
3108 /*
3109 * set min memory clock to the min required for current mode,
3110 * max to maxDPM, and unblank streams
3111 */
dc_lock_memory_clock_frequency(struct dc * dc)3112 void dc_lock_memory_clock_frequency(struct dc *dc)
3113 {
3114 unsigned int i;
3115
3116 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
3117 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
3118 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3119
3120 for (i = 0; i < MAX_PIPES; i++)
3121 if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3122 core_link_enable_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i]);
3123 }
3124
dc_is_plane_eligible_for_idle_optimizaitons(struct dc * dc,struct dc_plane_state * plane)3125 bool dc_is_plane_eligible_for_idle_optimizaitons(struct dc *dc,
3126 struct dc_plane_state *plane)
3127 {
3128 return false;
3129 }
3130 #endif
3131