• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! Single-threaded reference-counting pointers. 'Rc' stands for 'Reference
2 //! Counted'.
3 //!
4 //! The type [`Rc<T>`][`Rc`] provides shared ownership of a value of type `T`,
5 //! allocated in the heap. Invoking [`clone`][clone] on [`Rc`] produces a new
6 //! pointer to the same allocation in the heap. When the last [`Rc`] pointer to a
7 //! given allocation is destroyed, the value stored in that allocation (often
8 //! referred to as "inner value") is also dropped.
9 //!
10 //! Shared references in Rust disallow mutation by default, and [`Rc`]
11 //! is no exception: you cannot generally obtain a mutable reference to
12 //! something inside an [`Rc`]. If you need mutability, put a [`Cell`]
13 //! or [`RefCell`] inside the [`Rc`]; see [an example of mutability
14 //! inside an `Rc`][mutability].
15 //!
16 //! [`Rc`] uses non-atomic reference counting. This means that overhead is very
17 //! low, but an [`Rc`] cannot be sent between threads, and consequently [`Rc`]
18 //! does not implement [`Send`]. As a result, the Rust compiler
19 //! will check *at compile time* that you are not sending [`Rc`]s between
20 //! threads. If you need multi-threaded, atomic reference counting, use
21 //! [`sync::Arc`][arc].
22 //!
23 //! The [`downgrade`][downgrade] method can be used to create a non-owning
24 //! [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
25 //! to an [`Rc`], but this will return [`None`] if the value stored in the allocation has
26 //! already been dropped. In other words, `Weak` pointers do not keep the value
27 //! inside the allocation alive; however, they *do* keep the allocation
28 //! (the backing store for the inner value) alive.
29 //!
30 //! A cycle between [`Rc`] pointers will never be deallocated. For this reason,
31 //! [`Weak`] is used to break cycles. For example, a tree could have strong
32 //! [`Rc`] pointers from parent nodes to children, and [`Weak`] pointers from
33 //! children back to their parents.
34 //!
35 //! `Rc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
36 //! so you can call `T`'s methods on a value of type [`Rc<T>`][`Rc`]. To avoid name
37 //! clashes with `T`'s methods, the methods of [`Rc<T>`][`Rc`] itself are associated
38 //! functions, called using [fully qualified syntax]:
39 //!
40 //! ```
41 //! use std::rc::Rc;
42 //!
43 //! let my_rc = Rc::new(());
44 //! let my_weak = Rc::downgrade(&my_rc);
45 //! ```
46 //!
47 //! `Rc<T>`'s implementations of traits like `Clone` may also be called using
48 //! fully qualified syntax. Some people prefer to use fully qualified syntax,
49 //! while others prefer using method-call syntax.
50 //!
51 //! ```
52 //! use std::rc::Rc;
53 //!
54 //! let rc = Rc::new(());
55 //! // Method-call syntax
56 //! let rc2 = rc.clone();
57 //! // Fully qualified syntax
58 //! let rc3 = Rc::clone(&rc);
59 //! ```
60 //!
61 //! [`Weak<T>`][`Weak`] does not auto-dereference to `T`, because the inner value may have
62 //! already been dropped.
63 //!
64 //! # Cloning references
65 //!
66 //! Creating a new reference to the same allocation as an existing reference counted pointer
67 //! is done using the `Clone` trait implemented for [`Rc<T>`][`Rc`] and [`Weak<T>`][`Weak`].
68 //!
69 //! ```
70 //! use std::rc::Rc;
71 //!
72 //! let foo = Rc::new(vec![1.0, 2.0, 3.0]);
73 //! // The two syntaxes below are equivalent.
74 //! let a = foo.clone();
75 //! let b = Rc::clone(&foo);
76 //! // a and b both point to the same memory location as foo.
77 //! ```
78 //!
79 //! The `Rc::clone(&from)` syntax is the most idiomatic because it conveys more explicitly
80 //! the meaning of the code. In the example above, this syntax makes it easier to see that
81 //! this code is creating a new reference rather than copying the whole content of foo.
82 //!
83 //! # Examples
84 //!
85 //! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
86 //! We want to have our `Gadget`s point to their `Owner`. We can't do this with
87 //! unique ownership, because more than one gadget may belong to the same
88 //! `Owner`. [`Rc`] allows us to share an `Owner` between multiple `Gadget`s,
89 //! and have the `Owner` remain allocated as long as any `Gadget` points at it.
90 //!
91 //! ```
92 //! use std::rc::Rc;
93 //!
94 //! struct Owner {
95 //!     name: String,
96 //!     // ...other fields
97 //! }
98 //!
99 //! struct Gadget {
100 //!     id: i32,
101 //!     owner: Rc<Owner>,
102 //!     // ...other fields
103 //! }
104 //!
105 //! fn main() {
106 //!     // Create a reference-counted `Owner`.
107 //!     let gadget_owner: Rc<Owner> = Rc::new(
108 //!         Owner {
109 //!             name: "Gadget Man".to_string(),
110 //!         }
111 //!     );
112 //!
113 //!     // Create `Gadget`s belonging to `gadget_owner`. Cloning the `Rc<Owner>`
114 //!     // gives us a new pointer to the same `Owner` allocation, incrementing
115 //!     // the reference count in the process.
116 //!     let gadget1 = Gadget {
117 //!         id: 1,
118 //!         owner: Rc::clone(&gadget_owner),
119 //!     };
120 //!     let gadget2 = Gadget {
121 //!         id: 2,
122 //!         owner: Rc::clone(&gadget_owner),
123 //!     };
124 //!
125 //!     // Dispose of our local variable `gadget_owner`.
126 //!     drop(gadget_owner);
127 //!
128 //!     // Despite dropping `gadget_owner`, we're still able to print out the name
129 //!     // of the `Owner` of the `Gadget`s. This is because we've only dropped a
130 //!     // single `Rc<Owner>`, not the `Owner` it points to. As long as there are
131 //!     // other `Rc<Owner>` pointing at the same `Owner` allocation, it will remain
132 //!     // live. The field projection `gadget1.owner.name` works because
133 //!     // `Rc<Owner>` automatically dereferences to `Owner`.
134 //!     println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
135 //!     println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
136 //!
137 //!     // At the end of the function, `gadget1` and `gadget2` are destroyed, and
138 //!     // with them the last counted references to our `Owner`. Gadget Man now
139 //!     // gets destroyed as well.
140 //! }
141 //! ```
142 //!
143 //! If our requirements change, and we also need to be able to traverse from
144 //! `Owner` to `Gadget`, we will run into problems. An [`Rc`] pointer from `Owner`
145 //! to `Gadget` introduces a cycle. This means that their
146 //! reference counts can never reach 0, and the allocation will never be destroyed:
147 //! a memory leak. In order to get around this, we can use [`Weak`]
148 //! pointers.
149 //!
150 //! Rust actually makes it somewhat difficult to produce this loop in the first
151 //! place. In order to end up with two values that point at each other, one of
152 //! them needs to be mutable. This is difficult because [`Rc`] enforces
153 //! memory safety by only giving out shared references to the value it wraps,
154 //! and these don't allow direct mutation. We need to wrap the part of the
155 //! value we wish to mutate in a [`RefCell`], which provides *interior
156 //! mutability*: a method to achieve mutability through a shared reference.
157 //! [`RefCell`] enforces Rust's borrowing rules at runtime.
158 //!
159 //! ```
160 //! use std::rc::Rc;
161 //! use std::rc::Weak;
162 //! use std::cell::RefCell;
163 //!
164 //! struct Owner {
165 //!     name: String,
166 //!     gadgets: RefCell<Vec<Weak<Gadget>>>,
167 //!     // ...other fields
168 //! }
169 //!
170 //! struct Gadget {
171 //!     id: i32,
172 //!     owner: Rc<Owner>,
173 //!     // ...other fields
174 //! }
175 //!
176 //! fn main() {
177 //!     // Create a reference-counted `Owner`. Note that we've put the `Owner`'s
178 //!     // vector of `Gadget`s inside a `RefCell` so that we can mutate it through
179 //!     // a shared reference.
180 //!     let gadget_owner: Rc<Owner> = Rc::new(
181 //!         Owner {
182 //!             name: "Gadget Man".to_string(),
183 //!             gadgets: RefCell::new(vec![]),
184 //!         }
185 //!     );
186 //!
187 //!     // Create `Gadget`s belonging to `gadget_owner`, as before.
188 //!     let gadget1 = Rc::new(
189 //!         Gadget {
190 //!             id: 1,
191 //!             owner: Rc::clone(&gadget_owner),
192 //!         }
193 //!     );
194 //!     let gadget2 = Rc::new(
195 //!         Gadget {
196 //!             id: 2,
197 //!             owner: Rc::clone(&gadget_owner),
198 //!         }
199 //!     );
200 //!
201 //!     // Add the `Gadget`s to their `Owner`.
202 //!     {
203 //!         let mut gadgets = gadget_owner.gadgets.borrow_mut();
204 //!         gadgets.push(Rc::downgrade(&gadget1));
205 //!         gadgets.push(Rc::downgrade(&gadget2));
206 //!
207 //!         // `RefCell` dynamic borrow ends here.
208 //!     }
209 //!
210 //!     // Iterate over our `Gadget`s, printing their details out.
211 //!     for gadget_weak in gadget_owner.gadgets.borrow().iter() {
212 //!
213 //!         // `gadget_weak` is a `Weak<Gadget>`. Since `Weak` pointers can't
214 //!         // guarantee the allocation still exists, we need to call
215 //!         // `upgrade`, which returns an `Option<Rc<Gadget>>`.
216 //!         //
217 //!         // In this case we know the allocation still exists, so we simply
218 //!         // `unwrap` the `Option`. In a more complicated program, you might
219 //!         // need graceful error handling for a `None` result.
220 //!
221 //!         let gadget = gadget_weak.upgrade().unwrap();
222 //!         println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
223 //!     }
224 //!
225 //!     // At the end of the function, `gadget_owner`, `gadget1`, and `gadget2`
226 //!     // are destroyed. There are now no strong (`Rc`) pointers to the
227 //!     // gadgets, so they are destroyed. This zeroes the reference count on
228 //!     // Gadget Man, so he gets destroyed as well.
229 //! }
230 //! ```
231 //!
232 //! [clone]: Clone::clone
233 //! [`Cell`]: core::cell::Cell
234 //! [`RefCell`]: core::cell::RefCell
235 //! [arc]: crate::sync::Arc
236 //! [`Deref`]: core::ops::Deref
237 //! [downgrade]: Rc::downgrade
238 //! [upgrade]: Weak::upgrade
239 //! [mutability]: core::cell#introducing-mutability-inside-of-something-immutable
240 //! [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
241 
242 #![stable(feature = "rust1", since = "1.0.0")]
243 
244 #[cfg(not(test))]
245 use crate::boxed::Box;
246 #[cfg(test)]
247 use std::boxed::Box;
248 
249 use core::any::Any;
250 use core::borrow;
251 use core::cell::Cell;
252 use core::cmp::Ordering;
253 use core::fmt;
254 use core::hash::{Hash, Hasher};
255 use core::intrinsics::abort;
256 #[cfg(not(no_global_oom_handling))]
257 use core::iter;
258 use core::marker::{PhantomData, Unsize};
259 #[cfg(not(no_global_oom_handling))]
260 use core::mem::size_of_val;
261 use core::mem::{self, align_of_val_raw, forget, ManuallyDrop};
262 use core::ops::{CoerceUnsized, Deref, DerefMut, DispatchFromDyn, Receiver};
263 use core::panic::{RefUnwindSafe, UnwindSafe};
264 #[cfg(not(no_global_oom_handling))]
265 use core::pin::Pin;
266 use core::ptr::{self, drop_in_place, NonNull};
267 #[cfg(not(no_global_oom_handling))]
268 use core::slice::from_raw_parts_mut;
269 
270 #[cfg(not(no_global_oom_handling))]
271 use crate::alloc::handle_alloc_error;
272 #[cfg(not(no_global_oom_handling))]
273 use crate::alloc::WriteCloneIntoRaw;
274 use crate::alloc::{AllocError, Allocator, Global, Layout};
275 use crate::borrow::{Cow, ToOwned};
276 #[cfg(not(no_global_oom_handling))]
277 use crate::string::String;
278 #[cfg(not(no_global_oom_handling))]
279 use crate::vec::Vec;
280 
281 #[cfg(test)]
282 mod tests;
283 
284 // This is repr(C) to future-proof against possible field-reordering, which
285 // would interfere with otherwise safe [into|from]_raw() of transmutable
286 // inner types.
287 #[repr(C)]
288 struct RcBox<T: ?Sized> {
289     strong: Cell<usize>,
290     weak: Cell<usize>,
291     value: T,
292 }
293 
294 /// Calculate layout for `RcBox<T>` using the inner value's layout
rcbox_layout_for_value_layout(layout: Layout) -> Layout295 fn rcbox_layout_for_value_layout(layout: Layout) -> Layout {
296     // Calculate layout using the given value layout.
297     // Previously, layout was calculated on the expression
298     // `&*(ptr as *const RcBox<T>)`, but this created a misaligned
299     // reference (see #54908).
300     Layout::new::<RcBox<()>>().extend(layout).unwrap().0.pad_to_align()
301 }
302 
303 /// A single-threaded reference-counting pointer. 'Rc' stands for 'Reference
304 /// Counted'.
305 ///
306 /// See the [module-level documentation](./index.html) for more details.
307 ///
308 /// The inherent methods of `Rc` are all associated functions, which means
309 /// that you have to call them as e.g., [`Rc::get_mut(&mut value)`][get_mut] instead of
310 /// `value.get_mut()`. This avoids conflicts with methods of the inner type `T`.
311 ///
312 /// [get_mut]: Rc::get_mut
313 #[cfg_attr(not(test), rustc_diagnostic_item = "Rc")]
314 #[stable(feature = "rust1", since = "1.0.0")]
315 #[rustc_insignificant_dtor]
316 pub struct Rc<T: ?Sized> {
317     ptr: NonNull<RcBox<T>>,
318     phantom: PhantomData<RcBox<T>>,
319 }
320 
321 #[stable(feature = "rust1", since = "1.0.0")]
322 impl<T: ?Sized> !Send for Rc<T> {}
323 
324 // Note that this negative impl isn't strictly necessary for correctness,
325 // as `Rc` transitively contains a `Cell`, which is itself `!Sync`.
326 // However, given how important `Rc`'s `!Sync`-ness is,
327 // having an explicit negative impl is nice for documentation purposes
328 // and results in nicer error messages.
329 #[stable(feature = "rust1", since = "1.0.0")]
330 impl<T: ?Sized> !Sync for Rc<T> {}
331 
332 #[stable(feature = "catch_unwind", since = "1.9.0")]
333 impl<T: RefUnwindSafe + ?Sized> UnwindSafe for Rc<T> {}
334 #[stable(feature = "rc_ref_unwind_safe", since = "1.58.0")]
335 impl<T: RefUnwindSafe + ?Sized> RefUnwindSafe for Rc<T> {}
336 
337 #[unstable(feature = "coerce_unsized", issue = "18598")]
338 impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Rc<U>> for Rc<T> {}
339 
340 #[unstable(feature = "dispatch_from_dyn", issue = "none")]
341 impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Rc<U>> for Rc<T> {}
342 
343 impl<T: ?Sized> Rc<T> {
344     #[inline(always)]
inner(&self) -> &RcBox<T>345     fn inner(&self) -> &RcBox<T> {
346         // This unsafety is ok because while this Rc is alive we're guaranteed
347         // that the inner pointer is valid.
348         unsafe { self.ptr.as_ref() }
349     }
350 
from_inner(ptr: NonNull<RcBox<T>>) -> Self351     unsafe fn from_inner(ptr: NonNull<RcBox<T>>) -> Self {
352         Self { ptr, phantom: PhantomData }
353     }
354 
from_ptr(ptr: *mut RcBox<T>) -> Self355     unsafe fn from_ptr(ptr: *mut RcBox<T>) -> Self {
356         unsafe { Self::from_inner(NonNull::new_unchecked(ptr)) }
357     }
358 }
359 
360 impl<T> Rc<T> {
361     /// Constructs a new `Rc<T>`.
362     ///
363     /// # Examples
364     ///
365     /// ```
366     /// use std::rc::Rc;
367     ///
368     /// let five = Rc::new(5);
369     /// ```
370     #[cfg(not(no_global_oom_handling))]
371     #[stable(feature = "rust1", since = "1.0.0")]
new(value: T) -> Rc<T>372     pub fn new(value: T) -> Rc<T> {
373         // There is an implicit weak pointer owned by all the strong
374         // pointers, which ensures that the weak destructor never frees
375         // the allocation while the strong destructor is running, even
376         // if the weak pointer is stored inside the strong one.
377         unsafe {
378             Self::from_inner(
379                 Box::leak(Box::new(RcBox { strong: Cell::new(1), weak: Cell::new(1), value }))
380                     .into(),
381             )
382         }
383     }
384 
385     /// Constructs a new `Rc<T>` while giving you a `Weak<T>` to the allocation,
386     /// to allow you to construct a `T` which holds a weak pointer to itself.
387     ///
388     /// Generally, a structure circularly referencing itself, either directly or
389     /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
390     /// Using this function, you get access to the weak pointer during the
391     /// initialization of `T`, before the `Rc<T>` is created, such that you can
392     /// clone and store it inside the `T`.
393     ///
394     /// `new_cyclic` first allocates the managed allocation for the `Rc<T>`,
395     /// then calls your closure, giving it a `Weak<T>` to this allocation,
396     /// and only afterwards completes the construction of the `Rc<T>` by placing
397     /// the `T` returned from your closure into the allocation.
398     ///
399     /// Since the new `Rc<T>` is not fully-constructed until `Rc<T>::new_cyclic`
400     /// returns, calling [`upgrade`] on the weak reference inside your closure will
401     /// fail and result in a `None` value.
402     ///
403     /// # Panics
404     ///
405     /// If `data_fn` panics, the panic is propagated to the caller, and the
406     /// temporary [`Weak<T>`] is dropped normally.
407     ///
408     /// # Examples
409     ///
410     /// ```
411     /// # #![allow(dead_code)]
412     /// use std::rc::{Rc, Weak};
413     ///
414     /// struct Gadget {
415     ///     me: Weak<Gadget>,
416     /// }
417     ///
418     /// impl Gadget {
419     ///     /// Construct a reference counted Gadget.
420     ///     fn new() -> Rc<Self> {
421     ///         // `me` is a `Weak<Gadget>` pointing at the new allocation of the
422     ///         // `Rc` we're constructing.
423     ///         Rc::new_cyclic(|me| {
424     ///             // Create the actual struct here.
425     ///             Gadget { me: me.clone() }
426     ///         })
427     ///     }
428     ///
429     ///     /// Return a reference counted pointer to Self.
430     ///     fn me(&self) -> Rc<Self> {
431     ///         self.me.upgrade().unwrap()
432     ///     }
433     /// }
434     /// ```
435     /// [`upgrade`]: Weak::upgrade
436     #[cfg(not(no_global_oom_handling))]
437     #[stable(feature = "arc_new_cyclic", since = "1.60.0")]
new_cyclic<F>(data_fn: F) -> Rc<T> where F: FnOnce(&Weak<T>) -> T,438     pub fn new_cyclic<F>(data_fn: F) -> Rc<T>
439     where
440         F: FnOnce(&Weak<T>) -> T,
441     {
442         // Construct the inner in the "uninitialized" state with a single
443         // weak reference.
444         let uninit_ptr: NonNull<_> = Box::leak(Box::new(RcBox {
445             strong: Cell::new(0),
446             weak: Cell::new(1),
447             value: mem::MaybeUninit::<T>::uninit(),
448         }))
449         .into();
450 
451         let init_ptr: NonNull<RcBox<T>> = uninit_ptr.cast();
452 
453         let weak = Weak { ptr: init_ptr };
454 
455         // It's important we don't give up ownership of the weak pointer, or
456         // else the memory might be freed by the time `data_fn` returns. If
457         // we really wanted to pass ownership, we could create an additional
458         // weak pointer for ourselves, but this would result in additional
459         // updates to the weak reference count which might not be necessary
460         // otherwise.
461         let data = data_fn(&weak);
462 
463         let strong = unsafe {
464             let inner = init_ptr.as_ptr();
465             ptr::write(ptr::addr_of_mut!((*inner).value), data);
466 
467             let prev_value = (*inner).strong.get();
468             debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
469             (*inner).strong.set(1);
470 
471             Rc::from_inner(init_ptr)
472         };
473 
474         // Strong references should collectively own a shared weak reference,
475         // so don't run the destructor for our old weak reference.
476         mem::forget(weak);
477         strong
478     }
479 
480     /// Constructs a new `Rc` with uninitialized contents.
481     ///
482     /// # Examples
483     ///
484     /// ```
485     /// #![feature(new_uninit)]
486     /// #![feature(get_mut_unchecked)]
487     ///
488     /// use std::rc::Rc;
489     ///
490     /// let mut five = Rc::<u32>::new_uninit();
491     ///
492     /// // Deferred initialization:
493     /// Rc::get_mut(&mut five).unwrap().write(5);
494     ///
495     /// let five = unsafe { five.assume_init() };
496     ///
497     /// assert_eq!(*five, 5)
498     /// ```
499     #[cfg(not(no_global_oom_handling))]
500     #[unstable(feature = "new_uninit", issue = "63291")]
501     #[must_use]
new_uninit() -> Rc<mem::MaybeUninit<T>>502     pub fn new_uninit() -> Rc<mem::MaybeUninit<T>> {
503         unsafe {
504             Rc::from_ptr(Rc::allocate_for_layout(
505                 Layout::new::<T>(),
506                 |layout| Global.allocate(layout),
507                 |mem| mem as *mut RcBox<mem::MaybeUninit<T>>,
508             ))
509         }
510     }
511 
512     /// Constructs a new `Rc` with uninitialized contents, with the memory
513     /// being filled with `0` bytes.
514     ///
515     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
516     /// incorrect usage of this method.
517     ///
518     /// # Examples
519     ///
520     /// ```
521     /// #![feature(new_uninit)]
522     ///
523     /// use std::rc::Rc;
524     ///
525     /// let zero = Rc::<u32>::new_zeroed();
526     /// let zero = unsafe { zero.assume_init() };
527     ///
528     /// assert_eq!(*zero, 0)
529     /// ```
530     ///
531     /// [zeroed]: mem::MaybeUninit::zeroed
532     #[cfg(not(no_global_oom_handling))]
533     #[unstable(feature = "new_uninit", issue = "63291")]
534     #[must_use]
new_zeroed() -> Rc<mem::MaybeUninit<T>>535     pub fn new_zeroed() -> Rc<mem::MaybeUninit<T>> {
536         unsafe {
537             Rc::from_ptr(Rc::allocate_for_layout(
538                 Layout::new::<T>(),
539                 |layout| Global.allocate_zeroed(layout),
540                 |mem| mem as *mut RcBox<mem::MaybeUninit<T>>,
541             ))
542         }
543     }
544 
545     /// Constructs a new `Rc<T>`, returning an error if the allocation fails
546     ///
547     /// # Examples
548     ///
549     /// ```
550     /// #![feature(allocator_api)]
551     /// use std::rc::Rc;
552     ///
553     /// let five = Rc::try_new(5);
554     /// # Ok::<(), std::alloc::AllocError>(())
555     /// ```
556     #[unstable(feature = "allocator_api", issue = "32838")]
try_new(value: T) -> Result<Rc<T>, AllocError>557     pub fn try_new(value: T) -> Result<Rc<T>, AllocError> {
558         // There is an implicit weak pointer owned by all the strong
559         // pointers, which ensures that the weak destructor never frees
560         // the allocation while the strong destructor is running, even
561         // if the weak pointer is stored inside the strong one.
562         unsafe {
563             Ok(Self::from_inner(
564                 Box::leak(Box::try_new(RcBox { strong: Cell::new(1), weak: Cell::new(1), value })?)
565                     .into(),
566             ))
567         }
568     }
569 
570     /// Constructs a new `Rc` with uninitialized contents, returning an error if the allocation fails
571     ///
572     /// # Examples
573     ///
574     /// ```
575     /// #![feature(allocator_api, new_uninit)]
576     /// #![feature(get_mut_unchecked)]
577     ///
578     /// use std::rc::Rc;
579     ///
580     /// let mut five = Rc::<u32>::try_new_uninit()?;
581     ///
582     /// // Deferred initialization:
583     /// Rc::get_mut(&mut five).unwrap().write(5);
584     ///
585     /// let five = unsafe { five.assume_init() };
586     ///
587     /// assert_eq!(*five, 5);
588     /// # Ok::<(), std::alloc::AllocError>(())
589     /// ```
590     #[unstable(feature = "allocator_api", issue = "32838")]
591     // #[unstable(feature = "new_uninit", issue = "63291")]
try_new_uninit() -> Result<Rc<mem::MaybeUninit<T>>, AllocError>592     pub fn try_new_uninit() -> Result<Rc<mem::MaybeUninit<T>>, AllocError> {
593         unsafe {
594             Ok(Rc::from_ptr(Rc::try_allocate_for_layout(
595                 Layout::new::<T>(),
596                 |layout| Global.allocate(layout),
597                 |mem| mem as *mut RcBox<mem::MaybeUninit<T>>,
598             )?))
599         }
600     }
601 
602     /// Constructs a new `Rc` with uninitialized contents, with the memory
603     /// being filled with `0` bytes, returning an error if the allocation fails
604     ///
605     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
606     /// incorrect usage of this method.
607     ///
608     /// # Examples
609     ///
610     /// ```
611     /// #![feature(allocator_api, new_uninit)]
612     ///
613     /// use std::rc::Rc;
614     ///
615     /// let zero = Rc::<u32>::try_new_zeroed()?;
616     /// let zero = unsafe { zero.assume_init() };
617     ///
618     /// assert_eq!(*zero, 0);
619     /// # Ok::<(), std::alloc::AllocError>(())
620     /// ```
621     ///
622     /// [zeroed]: mem::MaybeUninit::zeroed
623     #[unstable(feature = "allocator_api", issue = "32838")]
624     //#[unstable(feature = "new_uninit", issue = "63291")]
try_new_zeroed() -> Result<Rc<mem::MaybeUninit<T>>, AllocError>625     pub fn try_new_zeroed() -> Result<Rc<mem::MaybeUninit<T>>, AllocError> {
626         unsafe {
627             Ok(Rc::from_ptr(Rc::try_allocate_for_layout(
628                 Layout::new::<T>(),
629                 |layout| Global.allocate_zeroed(layout),
630                 |mem| mem as *mut RcBox<mem::MaybeUninit<T>>,
631             )?))
632         }
633     }
634     /// Constructs a new `Pin<Rc<T>>`. If `T` does not implement `Unpin`, then
635     /// `value` will be pinned in memory and unable to be moved.
636     #[cfg(not(no_global_oom_handling))]
637     #[stable(feature = "pin", since = "1.33.0")]
638     #[must_use]
pin(value: T) -> Pin<Rc<T>>639     pub fn pin(value: T) -> Pin<Rc<T>> {
640         unsafe { Pin::new_unchecked(Rc::new(value)) }
641     }
642 
643     /// Returns the inner value, if the `Rc` has exactly one strong reference.
644     ///
645     /// Otherwise, an [`Err`] is returned with the same `Rc` that was
646     /// passed in.
647     ///
648     /// This will succeed even if there are outstanding weak references.
649     ///
650     /// # Examples
651     ///
652     /// ```
653     /// use std::rc::Rc;
654     ///
655     /// let x = Rc::new(3);
656     /// assert_eq!(Rc::try_unwrap(x), Ok(3));
657     ///
658     /// let x = Rc::new(4);
659     /// let _y = Rc::clone(&x);
660     /// assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4);
661     /// ```
662     #[inline]
663     #[stable(feature = "rc_unique", since = "1.4.0")]
try_unwrap(this: Self) -> Result<T, Self>664     pub fn try_unwrap(this: Self) -> Result<T, Self> {
665         if Rc::strong_count(&this) == 1 {
666             unsafe {
667                 let val = ptr::read(&*this); // copy the contained object
668 
669                 // Indicate to Weaks that they can't be promoted by decrementing
670                 // the strong count, and then remove the implicit "strong weak"
671                 // pointer while also handling drop logic by just crafting a
672                 // fake Weak.
673                 this.inner().dec_strong();
674                 let _weak = Weak { ptr: this.ptr };
675                 forget(this);
676                 Ok(val)
677             }
678         } else {
679             Err(this)
680         }
681     }
682 
683     /// Returns the inner value, if the `Rc` has exactly one strong reference.
684     ///
685     /// Otherwise, [`None`] is returned and the `Rc` is dropped.
686     ///
687     /// This will succeed even if there are outstanding weak references.
688     ///
689     /// If `Rc::into_inner` is called on every clone of this `Rc`,
690     /// it is guaranteed that exactly one of the calls returns the inner value.
691     /// This means in particular that the inner value is not dropped.
692     ///
693     /// This is equivalent to `Rc::try_unwrap(this).ok()`. (Note that these are not equivalent for
694     /// [`Arc`](crate::sync::Arc), due to race conditions that do not apply to `Rc`.)
695     #[inline]
696     #[stable(feature = "rc_into_inner", since = "1.70.0")]
into_inner(this: Self) -> Option<T>697     pub fn into_inner(this: Self) -> Option<T> {
698         Rc::try_unwrap(this).ok()
699     }
700 }
701 
702 impl<T> Rc<[T]> {
703     /// Constructs a new reference-counted slice with uninitialized contents.
704     ///
705     /// # Examples
706     ///
707     /// ```
708     /// #![feature(new_uninit)]
709     /// #![feature(get_mut_unchecked)]
710     ///
711     /// use std::rc::Rc;
712     ///
713     /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
714     ///
715     /// // Deferred initialization:
716     /// let data = Rc::get_mut(&mut values).unwrap();
717     /// data[0].write(1);
718     /// data[1].write(2);
719     /// data[2].write(3);
720     ///
721     /// let values = unsafe { values.assume_init() };
722     ///
723     /// assert_eq!(*values, [1, 2, 3])
724     /// ```
725     #[cfg(not(no_global_oom_handling))]
726     #[unstable(feature = "new_uninit", issue = "63291")]
727     #[must_use]
new_uninit_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]>728     pub fn new_uninit_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
729         unsafe { Rc::from_ptr(Rc::allocate_for_slice(len)) }
730     }
731 
732     /// Constructs a new reference-counted slice with uninitialized contents, with the memory being
733     /// filled with `0` bytes.
734     ///
735     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
736     /// incorrect usage of this method.
737     ///
738     /// # Examples
739     ///
740     /// ```
741     /// #![feature(new_uninit)]
742     ///
743     /// use std::rc::Rc;
744     ///
745     /// let values = Rc::<[u32]>::new_zeroed_slice(3);
746     /// let values = unsafe { values.assume_init() };
747     ///
748     /// assert_eq!(*values, [0, 0, 0])
749     /// ```
750     ///
751     /// [zeroed]: mem::MaybeUninit::zeroed
752     #[cfg(not(no_global_oom_handling))]
753     #[unstable(feature = "new_uninit", issue = "63291")]
754     #[must_use]
new_zeroed_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]>755     pub fn new_zeroed_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
756         unsafe {
757             Rc::from_ptr(Rc::allocate_for_layout(
758                 Layout::array::<T>(len).unwrap(),
759                 |layout| Global.allocate_zeroed(layout),
760                 |mem| {
761                     ptr::slice_from_raw_parts_mut(mem as *mut T, len)
762                         as *mut RcBox<[mem::MaybeUninit<T>]>
763                 },
764             ))
765         }
766     }
767 }
768 
769 impl<T> Rc<mem::MaybeUninit<T>> {
770     /// Converts to `Rc<T>`.
771     ///
772     /// # Safety
773     ///
774     /// As with [`MaybeUninit::assume_init`],
775     /// it is up to the caller to guarantee that the inner value
776     /// really is in an initialized state.
777     /// Calling this when the content is not yet fully initialized
778     /// causes immediate undefined behavior.
779     ///
780     /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
781     ///
782     /// # Examples
783     ///
784     /// ```
785     /// #![feature(new_uninit)]
786     /// #![feature(get_mut_unchecked)]
787     ///
788     /// use std::rc::Rc;
789     ///
790     /// let mut five = Rc::<u32>::new_uninit();
791     ///
792     /// // Deferred initialization:
793     /// Rc::get_mut(&mut five).unwrap().write(5);
794     ///
795     /// let five = unsafe { five.assume_init() };
796     ///
797     /// assert_eq!(*five, 5)
798     /// ```
799     #[unstable(feature = "new_uninit", issue = "63291")]
800     #[inline]
assume_init(self) -> Rc<T>801     pub unsafe fn assume_init(self) -> Rc<T> {
802         unsafe { Rc::from_inner(mem::ManuallyDrop::new(self).ptr.cast()) }
803     }
804 }
805 
806 impl<T> Rc<[mem::MaybeUninit<T>]> {
807     /// Converts to `Rc<[T]>`.
808     ///
809     /// # Safety
810     ///
811     /// As with [`MaybeUninit::assume_init`],
812     /// it is up to the caller to guarantee that the inner value
813     /// really is in an initialized state.
814     /// Calling this when the content is not yet fully initialized
815     /// causes immediate undefined behavior.
816     ///
817     /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
818     ///
819     /// # Examples
820     ///
821     /// ```
822     /// #![feature(new_uninit)]
823     /// #![feature(get_mut_unchecked)]
824     ///
825     /// use std::rc::Rc;
826     ///
827     /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
828     ///
829     /// // Deferred initialization:
830     /// let data = Rc::get_mut(&mut values).unwrap();
831     /// data[0].write(1);
832     /// data[1].write(2);
833     /// data[2].write(3);
834     ///
835     /// let values = unsafe { values.assume_init() };
836     ///
837     /// assert_eq!(*values, [1, 2, 3])
838     /// ```
839     #[unstable(feature = "new_uninit", issue = "63291")]
840     #[inline]
assume_init(self) -> Rc<[T]>841     pub unsafe fn assume_init(self) -> Rc<[T]> {
842         unsafe { Rc::from_ptr(mem::ManuallyDrop::new(self).ptr.as_ptr() as _) }
843     }
844 }
845 
846 impl<T: ?Sized> Rc<T> {
847     /// Consumes the `Rc`, returning the wrapped pointer.
848     ///
849     /// To avoid a memory leak the pointer must be converted back to an `Rc` using
850     /// [`Rc::from_raw`].
851     ///
852     /// # Examples
853     ///
854     /// ```
855     /// use std::rc::Rc;
856     ///
857     /// let x = Rc::new("hello".to_owned());
858     /// let x_ptr = Rc::into_raw(x);
859     /// assert_eq!(unsafe { &*x_ptr }, "hello");
860     /// ```
861     #[stable(feature = "rc_raw", since = "1.17.0")]
into_raw(this: Self) -> *const T862     pub fn into_raw(this: Self) -> *const T {
863         let ptr = Self::as_ptr(&this);
864         mem::forget(this);
865         ptr
866     }
867 
868     /// Provides a raw pointer to the data.
869     ///
870     /// The counts are not affected in any way and the `Rc` is not consumed. The pointer is valid
871     /// for as long there are strong counts in the `Rc`.
872     ///
873     /// # Examples
874     ///
875     /// ```
876     /// use std::rc::Rc;
877     ///
878     /// let x = Rc::new("hello".to_owned());
879     /// let y = Rc::clone(&x);
880     /// let x_ptr = Rc::as_ptr(&x);
881     /// assert_eq!(x_ptr, Rc::as_ptr(&y));
882     /// assert_eq!(unsafe { &*x_ptr }, "hello");
883     /// ```
884     #[stable(feature = "weak_into_raw", since = "1.45.0")]
as_ptr(this: &Self) -> *const T885     pub fn as_ptr(this: &Self) -> *const T {
886         let ptr: *mut RcBox<T> = NonNull::as_ptr(this.ptr);
887 
888         // SAFETY: This cannot go through Deref::deref or Rc::inner because
889         // this is required to retain raw/mut provenance such that e.g. `get_mut` can
890         // write through the pointer after the Rc is recovered through `from_raw`.
891         unsafe { ptr::addr_of_mut!((*ptr).value) }
892     }
893 
894     /// Constructs an `Rc<T>` from a raw pointer.
895     ///
896     /// The raw pointer must have been previously returned by a call to
897     /// [`Rc<U>::into_raw`][into_raw] where `U` must have the same size
898     /// and alignment as `T`. This is trivially true if `U` is `T`.
899     /// Note that if `U` is not `T` but has the same size and alignment, this is
900     /// basically like transmuting references of different types. See
901     /// [`mem::transmute`] for more information on what
902     /// restrictions apply in this case.
903     ///
904     /// The user of `from_raw` has to make sure a specific value of `T` is only
905     /// dropped once.
906     ///
907     /// This function is unsafe because improper use may lead to memory unsafety,
908     /// even if the returned `Rc<T>` is never accessed.
909     ///
910     /// [into_raw]: Rc::into_raw
911     ///
912     /// # Examples
913     ///
914     /// ```
915     /// use std::rc::Rc;
916     ///
917     /// let x = Rc::new("hello".to_owned());
918     /// let x_ptr = Rc::into_raw(x);
919     ///
920     /// unsafe {
921     ///     // Convert back to an `Rc` to prevent leak.
922     ///     let x = Rc::from_raw(x_ptr);
923     ///     assert_eq!(&*x, "hello");
924     ///
925     ///     // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe.
926     /// }
927     ///
928     /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
929     /// ```
930     #[stable(feature = "rc_raw", since = "1.17.0")]
from_raw(ptr: *const T) -> Self931     pub unsafe fn from_raw(ptr: *const T) -> Self {
932         let offset = unsafe { data_offset(ptr) };
933 
934         // Reverse the offset to find the original RcBox.
935         let rc_ptr = unsafe { ptr.byte_sub(offset) as *mut RcBox<T> };
936 
937         unsafe { Self::from_ptr(rc_ptr) }
938     }
939 
940     /// Creates a new [`Weak`] pointer to this allocation.
941     ///
942     /// # Examples
943     ///
944     /// ```
945     /// use std::rc::Rc;
946     ///
947     /// let five = Rc::new(5);
948     ///
949     /// let weak_five = Rc::downgrade(&five);
950     /// ```
951     #[must_use = "this returns a new `Weak` pointer, \
952                   without modifying the original `Rc`"]
953     #[stable(feature = "rc_weak", since = "1.4.0")]
downgrade(this: &Self) -> Weak<T>954     pub fn downgrade(this: &Self) -> Weak<T> {
955         this.inner().inc_weak();
956         // Make sure we do not create a dangling Weak
957         debug_assert!(!is_dangling(this.ptr.as_ptr()));
958         Weak { ptr: this.ptr }
959     }
960 
961     /// Gets the number of [`Weak`] pointers to this allocation.
962     ///
963     /// # Examples
964     ///
965     /// ```
966     /// use std::rc::Rc;
967     ///
968     /// let five = Rc::new(5);
969     /// let _weak_five = Rc::downgrade(&five);
970     ///
971     /// assert_eq!(1, Rc::weak_count(&five));
972     /// ```
973     #[inline]
974     #[stable(feature = "rc_counts", since = "1.15.0")]
weak_count(this: &Self) -> usize975     pub fn weak_count(this: &Self) -> usize {
976         this.inner().weak() - 1
977     }
978 
979     /// Gets the number of strong (`Rc`) pointers to this allocation.
980     ///
981     /// # Examples
982     ///
983     /// ```
984     /// use std::rc::Rc;
985     ///
986     /// let five = Rc::new(5);
987     /// let _also_five = Rc::clone(&five);
988     ///
989     /// assert_eq!(2, Rc::strong_count(&five));
990     /// ```
991     #[inline]
992     #[stable(feature = "rc_counts", since = "1.15.0")]
strong_count(this: &Self) -> usize993     pub fn strong_count(this: &Self) -> usize {
994         this.inner().strong()
995     }
996 
997     /// Increments the strong reference count on the `Rc<T>` associated with the
998     /// provided pointer by one.
999     ///
1000     /// # Safety
1001     ///
1002     /// The pointer must have been obtained through `Rc::into_raw`, and the
1003     /// associated `Rc` instance must be valid (i.e. the strong count must be at
1004     /// least 1) for the duration of this method.
1005     ///
1006     /// # Examples
1007     ///
1008     /// ```
1009     /// use std::rc::Rc;
1010     ///
1011     /// let five = Rc::new(5);
1012     ///
1013     /// unsafe {
1014     ///     let ptr = Rc::into_raw(five);
1015     ///     Rc::increment_strong_count(ptr);
1016     ///
1017     ///     let five = Rc::from_raw(ptr);
1018     ///     assert_eq!(2, Rc::strong_count(&five));
1019     /// }
1020     /// ```
1021     #[inline]
1022     #[stable(feature = "rc_mutate_strong_count", since = "1.53.0")]
increment_strong_count(ptr: *const T)1023     pub unsafe fn increment_strong_count(ptr: *const T) {
1024         // Retain Rc, but don't touch refcount by wrapping in ManuallyDrop
1025         let rc = unsafe { mem::ManuallyDrop::new(Rc::<T>::from_raw(ptr)) };
1026         // Now increase refcount, but don't drop new refcount either
1027         let _rc_clone: mem::ManuallyDrop<_> = rc.clone();
1028     }
1029 
1030     /// Decrements the strong reference count on the `Rc<T>` associated with the
1031     /// provided pointer by one.
1032     ///
1033     /// # Safety
1034     ///
1035     /// The pointer must have been obtained through `Rc::into_raw`, and the
1036     /// associated `Rc` instance must be valid (i.e. the strong count must be at
1037     /// least 1) when invoking this method. This method can be used to release
1038     /// the final `Rc` and backing storage, but **should not** be called after
1039     /// the final `Rc` has been released.
1040     ///
1041     /// # Examples
1042     ///
1043     /// ```
1044     /// use std::rc::Rc;
1045     ///
1046     /// let five = Rc::new(5);
1047     ///
1048     /// unsafe {
1049     ///     let ptr = Rc::into_raw(five);
1050     ///     Rc::increment_strong_count(ptr);
1051     ///
1052     ///     let five = Rc::from_raw(ptr);
1053     ///     assert_eq!(2, Rc::strong_count(&five));
1054     ///     Rc::decrement_strong_count(ptr);
1055     ///     assert_eq!(1, Rc::strong_count(&five));
1056     /// }
1057     /// ```
1058     #[inline]
1059     #[stable(feature = "rc_mutate_strong_count", since = "1.53.0")]
decrement_strong_count(ptr: *const T)1060     pub unsafe fn decrement_strong_count(ptr: *const T) {
1061         unsafe { drop(Rc::from_raw(ptr)) };
1062     }
1063 
1064     /// Returns `true` if there are no other `Rc` or [`Weak`] pointers to
1065     /// this allocation.
1066     #[inline]
is_unique(this: &Self) -> bool1067     fn is_unique(this: &Self) -> bool {
1068         Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1
1069     }
1070 
1071     /// Returns a mutable reference into the given `Rc`, if there are
1072     /// no other `Rc` or [`Weak`] pointers to the same allocation.
1073     ///
1074     /// Returns [`None`] otherwise, because it is not safe to
1075     /// mutate a shared value.
1076     ///
1077     /// See also [`make_mut`][make_mut], which will [`clone`][clone]
1078     /// the inner value when there are other `Rc` pointers.
1079     ///
1080     /// [make_mut]: Rc::make_mut
1081     /// [clone]: Clone::clone
1082     ///
1083     /// # Examples
1084     ///
1085     /// ```
1086     /// use std::rc::Rc;
1087     ///
1088     /// let mut x = Rc::new(3);
1089     /// *Rc::get_mut(&mut x).unwrap() = 4;
1090     /// assert_eq!(*x, 4);
1091     ///
1092     /// let _y = Rc::clone(&x);
1093     /// assert!(Rc::get_mut(&mut x).is_none());
1094     /// ```
1095     #[inline]
1096     #[stable(feature = "rc_unique", since = "1.4.0")]
get_mut(this: &mut Self) -> Option<&mut T>1097     pub fn get_mut(this: &mut Self) -> Option<&mut T> {
1098         if Rc::is_unique(this) { unsafe { Some(Rc::get_mut_unchecked(this)) } } else { None }
1099     }
1100 
1101     /// Returns a mutable reference into the given `Rc`,
1102     /// without any check.
1103     ///
1104     /// See also [`get_mut`], which is safe and does appropriate checks.
1105     ///
1106     /// [`get_mut`]: Rc::get_mut
1107     ///
1108     /// # Safety
1109     ///
1110     /// If any other `Rc` or [`Weak`] pointers to the same allocation exist, then
1111     /// they must not be dereferenced or have active borrows for the duration
1112     /// of the returned borrow, and their inner type must be exactly the same as the
1113     /// inner type of this Rc (including lifetimes). This is trivially the case if no
1114     /// such pointers exist, for example immediately after `Rc::new`.
1115     ///
1116     /// # Examples
1117     ///
1118     /// ```
1119     /// #![feature(get_mut_unchecked)]
1120     ///
1121     /// use std::rc::Rc;
1122     ///
1123     /// let mut x = Rc::new(String::new());
1124     /// unsafe {
1125     ///     Rc::get_mut_unchecked(&mut x).push_str("foo")
1126     /// }
1127     /// assert_eq!(*x, "foo");
1128     /// ```
1129     /// Other `Rc` pointers to the same allocation must be to the same type.
1130     /// ```no_run
1131     /// #![feature(get_mut_unchecked)]
1132     ///
1133     /// use std::rc::Rc;
1134     ///
1135     /// let x: Rc<str> = Rc::from("Hello, world!");
1136     /// let mut y: Rc<[u8]> = x.clone().into();
1137     /// unsafe {
1138     ///     // this is Undefined Behavior, because x's inner type is str, not [u8]
1139     ///     Rc::get_mut_unchecked(&mut y).fill(0xff); // 0xff is invalid in UTF-8
1140     /// }
1141     /// println!("{}", &*x); // Invalid UTF-8 in a str
1142     /// ```
1143     /// Other `Rc` pointers to the same allocation must be to the exact same type, including lifetimes.
1144     /// ```no_run
1145     /// #![feature(get_mut_unchecked)]
1146     ///
1147     /// use std::rc::Rc;
1148     ///
1149     /// let x: Rc<&str> = Rc::new("Hello, world!");
1150     /// {
1151     ///     let s = String::from("Oh, no!");
1152     ///     let mut y: Rc<&str> = x.clone().into();
1153     ///     unsafe {
1154     ///         // this is Undefined Behavior, because x's inner type
1155     ///         // is &'long str, not &'short str
1156     ///         *Rc::get_mut_unchecked(&mut y) = &s;
1157     ///     }
1158     /// }
1159     /// println!("{}", &*x); // Use-after-free
1160     /// ```
1161     #[inline]
1162     #[unstable(feature = "get_mut_unchecked", issue = "63292")]
get_mut_unchecked(this: &mut Self) -> &mut T1163     pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
1164         // We are careful to *not* create a reference covering the "count" fields, as
1165         // this would conflict with accesses to the reference counts (e.g. by `Weak`).
1166         unsafe { &mut (*this.ptr.as_ptr()).value }
1167     }
1168 
1169     #[inline]
1170     #[stable(feature = "ptr_eq", since = "1.17.0")]
1171     /// Returns `true` if the two `Rc`s point to the same allocation in a vein similar to
1172     /// [`ptr::eq`]. This function ignores the metadata of  `dyn Trait` pointers.
1173     ///
1174     /// # Examples
1175     ///
1176     /// ```
1177     /// use std::rc::Rc;
1178     ///
1179     /// let five = Rc::new(5);
1180     /// let same_five = Rc::clone(&five);
1181     /// let other_five = Rc::new(5);
1182     ///
1183     /// assert!(Rc::ptr_eq(&five, &same_five));
1184     /// assert!(!Rc::ptr_eq(&five, &other_five));
1185     /// ```
ptr_eq(this: &Self, other: &Self) -> bool1186     pub fn ptr_eq(this: &Self, other: &Self) -> bool {
1187         this.ptr.as_ptr() as *const () == other.ptr.as_ptr() as *const ()
1188     }
1189 }
1190 
1191 impl<T: Clone> Rc<T> {
1192     /// Makes a mutable reference into the given `Rc`.
1193     ///
1194     /// If there are other `Rc` pointers to the same allocation, then `make_mut` will
1195     /// [`clone`] the inner value to a new allocation to ensure unique ownership.  This is also
1196     /// referred to as clone-on-write.
1197     ///
1198     /// However, if there are no other `Rc` pointers to this allocation, but some [`Weak`]
1199     /// pointers, then the [`Weak`] pointers will be disassociated and the inner value will not
1200     /// be cloned.
1201     ///
1202     /// See also [`get_mut`], which will fail rather than cloning the inner value
1203     /// or disassociating [`Weak`] pointers.
1204     ///
1205     /// [`clone`]: Clone::clone
1206     /// [`get_mut`]: Rc::get_mut
1207     ///
1208     /// # Examples
1209     ///
1210     /// ```
1211     /// use std::rc::Rc;
1212     ///
1213     /// let mut data = Rc::new(5);
1214     ///
1215     /// *Rc::make_mut(&mut data) += 1;         // Won't clone anything
1216     /// let mut other_data = Rc::clone(&data); // Won't clone inner data
1217     /// *Rc::make_mut(&mut data) += 1;         // Clones inner data
1218     /// *Rc::make_mut(&mut data) += 1;         // Won't clone anything
1219     /// *Rc::make_mut(&mut other_data) *= 2;   // Won't clone anything
1220     ///
1221     /// // Now `data` and `other_data` point to different allocations.
1222     /// assert_eq!(*data, 8);
1223     /// assert_eq!(*other_data, 12);
1224     /// ```
1225     ///
1226     /// [`Weak`] pointers will be disassociated:
1227     ///
1228     /// ```
1229     /// use std::rc::Rc;
1230     ///
1231     /// let mut data = Rc::new(75);
1232     /// let weak = Rc::downgrade(&data);
1233     ///
1234     /// assert!(75 == *data);
1235     /// assert!(75 == *weak.upgrade().unwrap());
1236     ///
1237     /// *Rc::make_mut(&mut data) += 1;
1238     ///
1239     /// assert!(76 == *data);
1240     /// assert!(weak.upgrade().is_none());
1241     /// ```
1242     #[cfg(not(no_global_oom_handling))]
1243     #[inline]
1244     #[stable(feature = "rc_unique", since = "1.4.0")]
make_mut(this: &mut Self) -> &mut T1245     pub fn make_mut(this: &mut Self) -> &mut T {
1246         if Rc::strong_count(this) != 1 {
1247             // Gotta clone the data, there are other Rcs.
1248             // Pre-allocate memory to allow writing the cloned value directly.
1249             let mut rc = Self::new_uninit();
1250             unsafe {
1251                 let data = Rc::get_mut_unchecked(&mut rc);
1252                 (**this).write_clone_into_raw(data.as_mut_ptr());
1253                 *this = rc.assume_init();
1254             }
1255         } else if Rc::weak_count(this) != 0 {
1256             // Can just steal the data, all that's left is Weaks
1257             let mut rc = Self::new_uninit();
1258             unsafe {
1259                 let data = Rc::get_mut_unchecked(&mut rc);
1260                 data.as_mut_ptr().copy_from_nonoverlapping(&**this, 1);
1261 
1262                 this.inner().dec_strong();
1263                 // Remove implicit strong-weak ref (no need to craft a fake
1264                 // Weak here -- we know other Weaks can clean up for us)
1265                 this.inner().dec_weak();
1266                 ptr::write(this, rc.assume_init());
1267             }
1268         }
1269         // This unsafety is ok because we're guaranteed that the pointer
1270         // returned is the *only* pointer that will ever be returned to T. Our
1271         // reference count is guaranteed to be 1 at this point, and we required
1272         // the `Rc<T>` itself to be `mut`, so we're returning the only possible
1273         // reference to the allocation.
1274         unsafe { &mut this.ptr.as_mut().value }
1275     }
1276 
1277     /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the
1278     /// clone.
1279     ///
1280     /// Assuming `rc_t` is of type `Rc<T>`, this function is functionally equivalent to
1281     /// `(*rc_t).clone()`, but will avoid cloning the inner value where possible.
1282     ///
1283     /// # Examples
1284     ///
1285     /// ```
1286     /// #![feature(arc_unwrap_or_clone)]
1287     /// # use std::{ptr, rc::Rc};
1288     /// let inner = String::from("test");
1289     /// let ptr = inner.as_ptr();
1290     ///
1291     /// let rc = Rc::new(inner);
1292     /// let inner = Rc::unwrap_or_clone(rc);
1293     /// // The inner value was not cloned
1294     /// assert!(ptr::eq(ptr, inner.as_ptr()));
1295     ///
1296     /// let rc = Rc::new(inner);
1297     /// let rc2 = rc.clone();
1298     /// let inner = Rc::unwrap_or_clone(rc);
1299     /// // Because there were 2 references, we had to clone the inner value.
1300     /// assert!(!ptr::eq(ptr, inner.as_ptr()));
1301     /// // `rc2` is the last reference, so when we unwrap it we get back
1302     /// // the original `String`.
1303     /// let inner = Rc::unwrap_or_clone(rc2);
1304     /// assert!(ptr::eq(ptr, inner.as_ptr()));
1305     /// ```
1306     #[inline]
1307     #[unstable(feature = "arc_unwrap_or_clone", issue = "93610")]
unwrap_or_clone(this: Self) -> T1308     pub fn unwrap_or_clone(this: Self) -> T {
1309         Rc::try_unwrap(this).unwrap_or_else(|rc| (*rc).clone())
1310     }
1311 }
1312 
1313 impl Rc<dyn Any> {
1314     /// Attempt to downcast the `Rc<dyn Any>` to a concrete type.
1315     ///
1316     /// # Examples
1317     ///
1318     /// ```
1319     /// use std::any::Any;
1320     /// use std::rc::Rc;
1321     ///
1322     /// fn print_if_string(value: Rc<dyn Any>) {
1323     ///     if let Ok(string) = value.downcast::<String>() {
1324     ///         println!("String ({}): {}", string.len(), string);
1325     ///     }
1326     /// }
1327     ///
1328     /// let my_string = "Hello World".to_string();
1329     /// print_if_string(Rc::new(my_string));
1330     /// print_if_string(Rc::new(0i8));
1331     /// ```
1332     #[inline]
1333     #[stable(feature = "rc_downcast", since = "1.29.0")]
downcast<T: Any>(self) -> Result<Rc<T>, Rc<dyn Any>>1334     pub fn downcast<T: Any>(self) -> Result<Rc<T>, Rc<dyn Any>> {
1335         if (*self).is::<T>() {
1336             unsafe {
1337                 let ptr = self.ptr.cast::<RcBox<T>>();
1338                 forget(self);
1339                 Ok(Rc::from_inner(ptr))
1340             }
1341         } else {
1342             Err(self)
1343         }
1344     }
1345 
1346     /// Downcasts the `Rc<dyn Any>` to a concrete type.
1347     ///
1348     /// For a safe alternative see [`downcast`].
1349     ///
1350     /// # Examples
1351     ///
1352     /// ```
1353     /// #![feature(downcast_unchecked)]
1354     ///
1355     /// use std::any::Any;
1356     /// use std::rc::Rc;
1357     ///
1358     /// let x: Rc<dyn Any> = Rc::new(1_usize);
1359     ///
1360     /// unsafe {
1361     ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1362     /// }
1363     /// ```
1364     ///
1365     /// # Safety
1366     ///
1367     /// The contained value must be of type `T`. Calling this method
1368     /// with the incorrect type is *undefined behavior*.
1369     ///
1370     ///
1371     /// [`downcast`]: Self::downcast
1372     #[inline]
1373     #[unstable(feature = "downcast_unchecked", issue = "90850")]
downcast_unchecked<T: Any>(self) -> Rc<T>1374     pub unsafe fn downcast_unchecked<T: Any>(self) -> Rc<T> {
1375         unsafe {
1376             let ptr = self.ptr.cast::<RcBox<T>>();
1377             mem::forget(self);
1378             Rc::from_inner(ptr)
1379         }
1380     }
1381 }
1382 
1383 impl<T: ?Sized> Rc<T> {
1384     /// Allocates an `RcBox<T>` with sufficient space for
1385     /// a possibly-unsized inner value where the value has the layout provided.
1386     ///
1387     /// The function `mem_to_rcbox` is called with the data pointer
1388     /// and must return back a (potentially fat)-pointer for the `RcBox<T>`.
1389     #[cfg(not(no_global_oom_handling))]
allocate_for_layout( value_layout: Layout, allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>, mem_to_rcbox: impl FnOnce(*mut u8) -> *mut RcBox<T>, ) -> *mut RcBox<T>1390     unsafe fn allocate_for_layout(
1391         value_layout: Layout,
1392         allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
1393         mem_to_rcbox: impl FnOnce(*mut u8) -> *mut RcBox<T>,
1394     ) -> *mut RcBox<T> {
1395         let layout = rcbox_layout_for_value_layout(value_layout);
1396         unsafe {
1397             Rc::try_allocate_for_layout(value_layout, allocate, mem_to_rcbox)
1398                 .unwrap_or_else(|_| handle_alloc_error(layout))
1399         }
1400     }
1401 
1402     /// Allocates an `RcBox<T>` with sufficient space for
1403     /// a possibly-unsized inner value where the value has the layout provided,
1404     /// returning an error if allocation fails.
1405     ///
1406     /// The function `mem_to_rcbox` is called with the data pointer
1407     /// and must return back a (potentially fat)-pointer for the `RcBox<T>`.
1408     #[inline]
try_allocate_for_layout( value_layout: Layout, allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>, mem_to_rcbox: impl FnOnce(*mut u8) -> *mut RcBox<T>, ) -> Result<*mut RcBox<T>, AllocError>1409     unsafe fn try_allocate_for_layout(
1410         value_layout: Layout,
1411         allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
1412         mem_to_rcbox: impl FnOnce(*mut u8) -> *mut RcBox<T>,
1413     ) -> Result<*mut RcBox<T>, AllocError> {
1414         let layout = rcbox_layout_for_value_layout(value_layout);
1415 
1416         // Allocate for the layout.
1417         let ptr = allocate(layout)?;
1418 
1419         // Initialize the RcBox
1420         let inner = mem_to_rcbox(ptr.as_non_null_ptr().as_ptr());
1421         unsafe {
1422             debug_assert_eq!(Layout::for_value(&*inner), layout);
1423 
1424             ptr::write(&mut (*inner).strong, Cell::new(1));
1425             ptr::write(&mut (*inner).weak, Cell::new(1));
1426         }
1427 
1428         Ok(inner)
1429     }
1430 
1431     /// Allocates an `RcBox<T>` with sufficient space for an unsized inner value
1432     #[cfg(not(no_global_oom_handling))]
allocate_for_ptr(ptr: *const T) -> *mut RcBox<T>1433     unsafe fn allocate_for_ptr(ptr: *const T) -> *mut RcBox<T> {
1434         // Allocate for the `RcBox<T>` using the given value.
1435         unsafe {
1436             Self::allocate_for_layout(
1437                 Layout::for_value(&*ptr),
1438                 |layout| Global.allocate(layout),
1439                 |mem| mem.with_metadata_of(ptr as *const RcBox<T>),
1440             )
1441         }
1442     }
1443 
1444     #[cfg(not(no_global_oom_handling))]
from_box(src: Box<T>) -> Rc<T>1445     fn from_box(src: Box<T>) -> Rc<T> {
1446         unsafe {
1447             let value_size = size_of_val(&*src);
1448             let ptr = Self::allocate_for_ptr(&*src);
1449 
1450             // Copy value as bytes
1451             ptr::copy_nonoverlapping(
1452                 &*src as *const T as *const u8,
1453                 &mut (*ptr).value as *mut _ as *mut u8,
1454                 value_size,
1455             );
1456 
1457             // Free the allocation without dropping its contents
1458             let src = Box::from_raw(Box::into_raw(src) as *mut mem::ManuallyDrop<T>);
1459             drop(src);
1460 
1461             Self::from_ptr(ptr)
1462         }
1463     }
1464 }
1465 
1466 impl<T> Rc<[T]> {
1467     /// Allocates an `RcBox<[T]>` with the given length.
1468     #[cfg(not(no_global_oom_handling))]
allocate_for_slice(len: usize) -> *mut RcBox<[T]>1469     unsafe fn allocate_for_slice(len: usize) -> *mut RcBox<[T]> {
1470         unsafe {
1471             Self::allocate_for_layout(
1472                 Layout::array::<T>(len).unwrap(),
1473                 |layout| Global.allocate(layout),
1474                 |mem| ptr::slice_from_raw_parts_mut(mem as *mut T, len) as *mut RcBox<[T]>,
1475             )
1476         }
1477     }
1478 
1479     /// Copy elements from slice into newly allocated `Rc<[T]>`
1480     ///
1481     /// Unsafe because the caller must either take ownership or bind `T: Copy`
1482     #[cfg(not(no_global_oom_handling))]
copy_from_slice(v: &[T]) -> Rc<[T]>1483     unsafe fn copy_from_slice(v: &[T]) -> Rc<[T]> {
1484         unsafe {
1485             let ptr = Self::allocate_for_slice(v.len());
1486             ptr::copy_nonoverlapping(v.as_ptr(), &mut (*ptr).value as *mut [T] as *mut T, v.len());
1487             Self::from_ptr(ptr)
1488         }
1489     }
1490 
1491     /// Constructs an `Rc<[T]>` from an iterator known to be of a certain size.
1492     ///
1493     /// Behavior is undefined should the size be wrong.
1494     #[cfg(not(no_global_oom_handling))]
from_iter_exact(iter: impl Iterator<Item = T>, len: usize) -> Rc<[T]>1495     unsafe fn from_iter_exact(iter: impl Iterator<Item = T>, len: usize) -> Rc<[T]> {
1496         // Panic guard while cloning T elements.
1497         // In the event of a panic, elements that have been written
1498         // into the new RcBox will be dropped, then the memory freed.
1499         struct Guard<T> {
1500             mem: NonNull<u8>,
1501             elems: *mut T,
1502             layout: Layout,
1503             n_elems: usize,
1504         }
1505 
1506         impl<T> Drop for Guard<T> {
1507             fn drop(&mut self) {
1508                 unsafe {
1509                     let slice = from_raw_parts_mut(self.elems, self.n_elems);
1510                     ptr::drop_in_place(slice);
1511 
1512                     Global.deallocate(self.mem, self.layout);
1513                 }
1514             }
1515         }
1516 
1517         unsafe {
1518             let ptr = Self::allocate_for_slice(len);
1519 
1520             let mem = ptr as *mut _ as *mut u8;
1521             let layout = Layout::for_value(&*ptr);
1522 
1523             // Pointer to first element
1524             let elems = &mut (*ptr).value as *mut [T] as *mut T;
1525 
1526             let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
1527 
1528             for (i, item) in iter.enumerate() {
1529                 ptr::write(elems.add(i), item);
1530                 guard.n_elems += 1;
1531             }
1532 
1533             // All clear. Forget the guard so it doesn't free the new RcBox.
1534             forget(guard);
1535 
1536             Self::from_ptr(ptr)
1537         }
1538     }
1539 }
1540 
1541 /// Specialization trait used for `From<&[T]>`.
1542 trait RcFromSlice<T> {
from_slice(slice: &[T]) -> Self1543     fn from_slice(slice: &[T]) -> Self;
1544 }
1545 
1546 #[cfg(not(no_global_oom_handling))]
1547 impl<T: Clone> RcFromSlice<T> for Rc<[T]> {
1548     #[inline]
from_slice(v: &[T]) -> Self1549     default fn from_slice(v: &[T]) -> Self {
1550         unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
1551     }
1552 }
1553 
1554 #[cfg(not(no_global_oom_handling))]
1555 impl<T: Copy> RcFromSlice<T> for Rc<[T]> {
1556     #[inline]
from_slice(v: &[T]) -> Self1557     fn from_slice(v: &[T]) -> Self {
1558         unsafe { Rc::copy_from_slice(v) }
1559     }
1560 }
1561 
1562 #[stable(feature = "rust1", since = "1.0.0")]
1563 impl<T: ?Sized> Deref for Rc<T> {
1564     type Target = T;
1565 
1566     #[inline(always)]
deref(&self) -> &T1567     fn deref(&self) -> &T {
1568         &self.inner().value
1569     }
1570 }
1571 
1572 #[unstable(feature = "receiver_trait", issue = "none")]
1573 impl<T: ?Sized> Receiver for Rc<T> {}
1574 
1575 #[stable(feature = "rust1", since = "1.0.0")]
1576 unsafe impl<#[may_dangle] T: ?Sized> Drop for Rc<T> {
1577     /// Drops the `Rc`.
1578     ///
1579     /// This will decrement the strong reference count. If the strong reference
1580     /// count reaches zero then the only other references (if any) are
1581     /// [`Weak`], so we `drop` the inner value.
1582     ///
1583     /// # Examples
1584     ///
1585     /// ```
1586     /// use std::rc::Rc;
1587     ///
1588     /// struct Foo;
1589     ///
1590     /// impl Drop for Foo {
1591     ///     fn drop(&mut self) {
1592     ///         println!("dropped!");
1593     ///     }
1594     /// }
1595     ///
1596     /// let foo  = Rc::new(Foo);
1597     /// let foo2 = Rc::clone(&foo);
1598     ///
1599     /// drop(foo);    // Doesn't print anything
1600     /// drop(foo2);   // Prints "dropped!"
1601     /// ```
drop(&mut self)1602     fn drop(&mut self) {
1603         unsafe {
1604             self.inner().dec_strong();
1605             if self.inner().strong() == 0 {
1606                 // destroy the contained object
1607                 ptr::drop_in_place(Self::get_mut_unchecked(self));
1608 
1609                 // remove the implicit "strong weak" pointer now that we've
1610                 // destroyed the contents.
1611                 self.inner().dec_weak();
1612 
1613                 if self.inner().weak() == 0 {
1614                     Global.deallocate(self.ptr.cast(), Layout::for_value(self.ptr.as_ref()));
1615                 }
1616             }
1617         }
1618     }
1619 }
1620 
1621 #[stable(feature = "rust1", since = "1.0.0")]
1622 impl<T: ?Sized> Clone for Rc<T> {
1623     /// Makes a clone of the `Rc` pointer.
1624     ///
1625     /// This creates another pointer to the same allocation, increasing the
1626     /// strong reference count.
1627     ///
1628     /// # Examples
1629     ///
1630     /// ```
1631     /// use std::rc::Rc;
1632     ///
1633     /// let five = Rc::new(5);
1634     ///
1635     /// let _ = Rc::clone(&five);
1636     /// ```
1637     #[inline]
clone(&self) -> Rc<T>1638     fn clone(&self) -> Rc<T> {
1639         unsafe {
1640             self.inner().inc_strong();
1641             Self::from_inner(self.ptr)
1642         }
1643     }
1644 }
1645 
1646 #[cfg(not(no_global_oom_handling))]
1647 #[stable(feature = "rust1", since = "1.0.0")]
1648 impl<T: Default> Default for Rc<T> {
1649     /// Creates a new `Rc<T>`, with the `Default` value for `T`.
1650     ///
1651     /// # Examples
1652     ///
1653     /// ```
1654     /// use std::rc::Rc;
1655     ///
1656     /// let x: Rc<i32> = Default::default();
1657     /// assert_eq!(*x, 0);
1658     /// ```
1659     #[inline]
default() -> Rc<T>1660     fn default() -> Rc<T> {
1661         Rc::new(Default::default())
1662     }
1663 }
1664 
1665 #[stable(feature = "rust1", since = "1.0.0")]
1666 trait RcEqIdent<T: ?Sized + PartialEq> {
eq(&self, other: &Rc<T>) -> bool1667     fn eq(&self, other: &Rc<T>) -> bool;
ne(&self, other: &Rc<T>) -> bool1668     fn ne(&self, other: &Rc<T>) -> bool;
1669 }
1670 
1671 #[stable(feature = "rust1", since = "1.0.0")]
1672 impl<T: ?Sized + PartialEq> RcEqIdent<T> for Rc<T> {
1673     #[inline]
eq(&self, other: &Rc<T>) -> bool1674     default fn eq(&self, other: &Rc<T>) -> bool {
1675         **self == **other
1676     }
1677 
1678     #[inline]
ne(&self, other: &Rc<T>) -> bool1679     default fn ne(&self, other: &Rc<T>) -> bool {
1680         **self != **other
1681     }
1682 }
1683 
1684 // Hack to allow specializing on `Eq` even though `Eq` has a method.
1685 #[rustc_unsafe_specialization_marker]
1686 pub(crate) trait MarkerEq: PartialEq<Self> {}
1687 
1688 impl<T: Eq> MarkerEq for T {}
1689 
1690 /// We're doing this specialization here, and not as a more general optimization on `&T`, because it
1691 /// would otherwise add a cost to all equality checks on refs. We assume that `Rc`s are used to
1692 /// store large values, that are slow to clone, but also heavy to check for equality, causing this
1693 /// cost to pay off more easily. It's also more likely to have two `Rc` clones, that point to
1694 /// the same value, than two `&T`s.
1695 ///
1696 /// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
1697 #[stable(feature = "rust1", since = "1.0.0")]
1698 impl<T: ?Sized + MarkerEq> RcEqIdent<T> for Rc<T> {
1699     #[inline]
eq(&self, other: &Rc<T>) -> bool1700     fn eq(&self, other: &Rc<T>) -> bool {
1701         Rc::ptr_eq(self, other) || **self == **other
1702     }
1703 
1704     #[inline]
ne(&self, other: &Rc<T>) -> bool1705     fn ne(&self, other: &Rc<T>) -> bool {
1706         !Rc::ptr_eq(self, other) && **self != **other
1707     }
1708 }
1709 
1710 #[stable(feature = "rust1", since = "1.0.0")]
1711 impl<T: ?Sized + PartialEq> PartialEq for Rc<T> {
1712     /// Equality for two `Rc`s.
1713     ///
1714     /// Two `Rc`s are equal if their inner values are equal, even if they are
1715     /// stored in different allocation.
1716     ///
1717     /// If `T` also implements `Eq` (implying reflexivity of equality),
1718     /// two `Rc`s that point to the same allocation are
1719     /// always equal.
1720     ///
1721     /// # Examples
1722     ///
1723     /// ```
1724     /// use std::rc::Rc;
1725     ///
1726     /// let five = Rc::new(5);
1727     ///
1728     /// assert!(five == Rc::new(5));
1729     /// ```
1730     #[inline]
eq(&self, other: &Rc<T>) -> bool1731     fn eq(&self, other: &Rc<T>) -> bool {
1732         RcEqIdent::eq(self, other)
1733     }
1734 
1735     /// Inequality for two `Rc`s.
1736     ///
1737     /// Two `Rc`s are not equal if their inner values are not equal.
1738     ///
1739     /// If `T` also implements `Eq` (implying reflexivity of equality),
1740     /// two `Rc`s that point to the same allocation are
1741     /// always equal.
1742     ///
1743     /// # Examples
1744     ///
1745     /// ```
1746     /// use std::rc::Rc;
1747     ///
1748     /// let five = Rc::new(5);
1749     ///
1750     /// assert!(five != Rc::new(6));
1751     /// ```
1752     #[inline]
ne(&self, other: &Rc<T>) -> bool1753     fn ne(&self, other: &Rc<T>) -> bool {
1754         RcEqIdent::ne(self, other)
1755     }
1756 }
1757 
1758 #[stable(feature = "rust1", since = "1.0.0")]
1759 impl<T: ?Sized + Eq> Eq for Rc<T> {}
1760 
1761 #[stable(feature = "rust1", since = "1.0.0")]
1762 impl<T: ?Sized + PartialOrd> PartialOrd for Rc<T> {
1763     /// Partial comparison for two `Rc`s.
1764     ///
1765     /// The two are compared by calling `partial_cmp()` on their inner values.
1766     ///
1767     /// # Examples
1768     ///
1769     /// ```
1770     /// use std::rc::Rc;
1771     /// use std::cmp::Ordering;
1772     ///
1773     /// let five = Rc::new(5);
1774     ///
1775     /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Rc::new(6)));
1776     /// ```
1777     #[inline(always)]
partial_cmp(&self, other: &Rc<T>) -> Option<Ordering>1778     fn partial_cmp(&self, other: &Rc<T>) -> Option<Ordering> {
1779         (**self).partial_cmp(&**other)
1780     }
1781 
1782     /// Less-than comparison for two `Rc`s.
1783     ///
1784     /// The two are compared by calling `<` on their inner values.
1785     ///
1786     /// # Examples
1787     ///
1788     /// ```
1789     /// use std::rc::Rc;
1790     ///
1791     /// let five = Rc::new(5);
1792     ///
1793     /// assert!(five < Rc::new(6));
1794     /// ```
1795     #[inline(always)]
lt(&self, other: &Rc<T>) -> bool1796     fn lt(&self, other: &Rc<T>) -> bool {
1797         **self < **other
1798     }
1799 
1800     /// 'Less than or equal to' comparison for two `Rc`s.
1801     ///
1802     /// The two are compared by calling `<=` on their inner values.
1803     ///
1804     /// # Examples
1805     ///
1806     /// ```
1807     /// use std::rc::Rc;
1808     ///
1809     /// let five = Rc::new(5);
1810     ///
1811     /// assert!(five <= Rc::new(5));
1812     /// ```
1813     #[inline(always)]
le(&self, other: &Rc<T>) -> bool1814     fn le(&self, other: &Rc<T>) -> bool {
1815         **self <= **other
1816     }
1817 
1818     /// Greater-than comparison for two `Rc`s.
1819     ///
1820     /// The two are compared by calling `>` on their inner values.
1821     ///
1822     /// # Examples
1823     ///
1824     /// ```
1825     /// use std::rc::Rc;
1826     ///
1827     /// let five = Rc::new(5);
1828     ///
1829     /// assert!(five > Rc::new(4));
1830     /// ```
1831     #[inline(always)]
gt(&self, other: &Rc<T>) -> bool1832     fn gt(&self, other: &Rc<T>) -> bool {
1833         **self > **other
1834     }
1835 
1836     /// 'Greater than or equal to' comparison for two `Rc`s.
1837     ///
1838     /// The two are compared by calling `>=` on their inner values.
1839     ///
1840     /// # Examples
1841     ///
1842     /// ```
1843     /// use std::rc::Rc;
1844     ///
1845     /// let five = Rc::new(5);
1846     ///
1847     /// assert!(five >= Rc::new(5));
1848     /// ```
1849     #[inline(always)]
ge(&self, other: &Rc<T>) -> bool1850     fn ge(&self, other: &Rc<T>) -> bool {
1851         **self >= **other
1852     }
1853 }
1854 
1855 #[stable(feature = "rust1", since = "1.0.0")]
1856 impl<T: ?Sized + Ord> Ord for Rc<T> {
1857     /// Comparison for two `Rc`s.
1858     ///
1859     /// The two are compared by calling `cmp()` on their inner values.
1860     ///
1861     /// # Examples
1862     ///
1863     /// ```
1864     /// use std::rc::Rc;
1865     /// use std::cmp::Ordering;
1866     ///
1867     /// let five = Rc::new(5);
1868     ///
1869     /// assert_eq!(Ordering::Less, five.cmp(&Rc::new(6)));
1870     /// ```
1871     #[inline]
cmp(&self, other: &Rc<T>) -> Ordering1872     fn cmp(&self, other: &Rc<T>) -> Ordering {
1873         (**self).cmp(&**other)
1874     }
1875 }
1876 
1877 #[stable(feature = "rust1", since = "1.0.0")]
1878 impl<T: ?Sized + Hash> Hash for Rc<T> {
hash<H: Hasher>(&self, state: &mut H)1879     fn hash<H: Hasher>(&self, state: &mut H) {
1880         (**self).hash(state);
1881     }
1882 }
1883 
1884 #[stable(feature = "rust1", since = "1.0.0")]
1885 impl<T: ?Sized + fmt::Display> fmt::Display for Rc<T> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1886     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1887         fmt::Display::fmt(&**self, f)
1888     }
1889 }
1890 
1891 #[stable(feature = "rust1", since = "1.0.0")]
1892 impl<T: ?Sized + fmt::Debug> fmt::Debug for Rc<T> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1893     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1894         fmt::Debug::fmt(&**self, f)
1895     }
1896 }
1897 
1898 #[stable(feature = "rust1", since = "1.0.0")]
1899 impl<T: ?Sized> fmt::Pointer for Rc<T> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1900     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1901         fmt::Pointer::fmt(&(&**self as *const T), f)
1902     }
1903 }
1904 
1905 #[cfg(not(no_global_oom_handling))]
1906 #[stable(feature = "from_for_ptrs", since = "1.6.0")]
1907 impl<T> From<T> for Rc<T> {
1908     /// Converts a generic type `T` into an `Rc<T>`
1909     ///
1910     /// The conversion allocates on the heap and moves `t`
1911     /// from the stack into it.
1912     ///
1913     /// # Example
1914     /// ```rust
1915     /// # use std::rc::Rc;
1916     /// let x = 5;
1917     /// let rc = Rc::new(5);
1918     ///
1919     /// assert_eq!(Rc::from(x), rc);
1920     /// ```
from(t: T) -> Self1921     fn from(t: T) -> Self {
1922         Rc::new(t)
1923     }
1924 }
1925 
1926 #[cfg(not(no_global_oom_handling))]
1927 #[stable(feature = "shared_from_slice", since = "1.21.0")]
1928 impl<T: Clone> From<&[T]> for Rc<[T]> {
1929     /// Allocate a reference-counted slice and fill it by cloning `v`'s items.
1930     ///
1931     /// # Example
1932     ///
1933     /// ```
1934     /// # use std::rc::Rc;
1935     /// let original: &[i32] = &[1, 2, 3];
1936     /// let shared: Rc<[i32]> = Rc::from(original);
1937     /// assert_eq!(&[1, 2, 3], &shared[..]);
1938     /// ```
1939     #[inline]
from(v: &[T]) -> Rc<[T]>1940     fn from(v: &[T]) -> Rc<[T]> {
1941         <Self as RcFromSlice<T>>::from_slice(v)
1942     }
1943 }
1944 
1945 #[cfg(not(no_global_oom_handling))]
1946 #[stable(feature = "shared_from_slice", since = "1.21.0")]
1947 impl From<&str> for Rc<str> {
1948     /// Allocate a reference-counted string slice and copy `v` into it.
1949     ///
1950     /// # Example
1951     ///
1952     /// ```
1953     /// # use std::rc::Rc;
1954     /// let shared: Rc<str> = Rc::from("statue");
1955     /// assert_eq!("statue", &shared[..]);
1956     /// ```
1957     #[inline]
from(v: &str) -> Rc<str>1958     fn from(v: &str) -> Rc<str> {
1959         let rc = Rc::<[u8]>::from(v.as_bytes());
1960         unsafe { Rc::from_raw(Rc::into_raw(rc) as *const str) }
1961     }
1962 }
1963 
1964 #[cfg(not(no_global_oom_handling))]
1965 #[stable(feature = "shared_from_slice", since = "1.21.0")]
1966 impl From<String> for Rc<str> {
1967     /// Allocate a reference-counted string slice and copy `v` into it.
1968     ///
1969     /// # Example
1970     ///
1971     /// ```
1972     /// # use std::rc::Rc;
1973     /// let original: String = "statue".to_owned();
1974     /// let shared: Rc<str> = Rc::from(original);
1975     /// assert_eq!("statue", &shared[..]);
1976     /// ```
1977     #[inline]
from(v: String) -> Rc<str>1978     fn from(v: String) -> Rc<str> {
1979         Rc::from(&v[..])
1980     }
1981 }
1982 
1983 #[cfg(not(no_global_oom_handling))]
1984 #[stable(feature = "shared_from_slice", since = "1.21.0")]
1985 impl<T: ?Sized> From<Box<T>> for Rc<T> {
1986     /// Move a boxed object to a new, reference counted, allocation.
1987     ///
1988     /// # Example
1989     ///
1990     /// ```
1991     /// # use std::rc::Rc;
1992     /// let original: Box<i32> = Box::new(1);
1993     /// let shared: Rc<i32> = Rc::from(original);
1994     /// assert_eq!(1, *shared);
1995     /// ```
1996     #[inline]
from(v: Box<T>) -> Rc<T>1997     fn from(v: Box<T>) -> Rc<T> {
1998         Rc::from_box(v)
1999     }
2000 }
2001 
2002 #[cfg(not(no_global_oom_handling))]
2003 #[stable(feature = "shared_from_slice", since = "1.21.0")]
2004 impl<T> From<Vec<T>> for Rc<[T]> {
2005     /// Allocate a reference-counted slice and move `v`'s items into it.
2006     ///
2007     /// # Example
2008     ///
2009     /// ```
2010     /// # use std::rc::Rc;
2011     /// let original: Box<Vec<i32>> = Box::new(vec![1, 2, 3]);
2012     /// let shared: Rc<Vec<i32>> = Rc::from(original);
2013     /// assert_eq!(vec![1, 2, 3], *shared);
2014     /// ```
2015     #[inline]
from(mut v: Vec<T>) -> Rc<[T]>2016     fn from(mut v: Vec<T>) -> Rc<[T]> {
2017         unsafe {
2018             let rc = Rc::copy_from_slice(&v);
2019             // Allow the Vec to free its memory, but not destroy its contents
2020             v.set_len(0);
2021             rc
2022         }
2023     }
2024 }
2025 
2026 #[stable(feature = "shared_from_cow", since = "1.45.0")]
2027 impl<'a, B> From<Cow<'a, B>> for Rc<B>
2028 where
2029     B: ToOwned + ?Sized,
2030     Rc<B>: From<&'a B> + From<B::Owned>,
2031 {
2032     /// Create a reference-counted pointer from
2033     /// a clone-on-write pointer by copying its content.
2034     ///
2035     /// # Example
2036     ///
2037     /// ```rust
2038     /// # use std::rc::Rc;
2039     /// # use std::borrow::Cow;
2040     /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
2041     /// let shared: Rc<str> = Rc::from(cow);
2042     /// assert_eq!("eggplant", &shared[..]);
2043     /// ```
2044     #[inline]
from(cow: Cow<'a, B>) -> Rc<B>2045     fn from(cow: Cow<'a, B>) -> Rc<B> {
2046         match cow {
2047             Cow::Borrowed(s) => Rc::from(s),
2048             Cow::Owned(s) => Rc::from(s),
2049         }
2050     }
2051 }
2052 
2053 #[stable(feature = "shared_from_str", since = "1.62.0")]
2054 impl From<Rc<str>> for Rc<[u8]> {
2055     /// Converts a reference-counted string slice into a byte slice.
2056     ///
2057     /// # Example
2058     ///
2059     /// ```
2060     /// # use std::rc::Rc;
2061     /// let string: Rc<str> = Rc::from("eggplant");
2062     /// let bytes: Rc<[u8]> = Rc::from(string);
2063     /// assert_eq!("eggplant".as_bytes(), bytes.as_ref());
2064     /// ```
2065     #[inline]
from(rc: Rc<str>) -> Self2066     fn from(rc: Rc<str>) -> Self {
2067         // SAFETY: `str` has the same layout as `[u8]`.
2068         unsafe { Rc::from_raw(Rc::into_raw(rc) as *const [u8]) }
2069     }
2070 }
2071 
2072 #[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
2073 impl<T, const N: usize> TryFrom<Rc<[T]>> for Rc<[T; N]> {
2074     type Error = Rc<[T]>;
2075 
try_from(boxed_slice: Rc<[T]>) -> Result<Self, Self::Error>2076     fn try_from(boxed_slice: Rc<[T]>) -> Result<Self, Self::Error> {
2077         if boxed_slice.len() == N {
2078             Ok(unsafe { Rc::from_raw(Rc::into_raw(boxed_slice) as *mut [T; N]) })
2079         } else {
2080             Err(boxed_slice)
2081         }
2082     }
2083 }
2084 
2085 #[cfg(not(no_global_oom_handling))]
2086 #[stable(feature = "shared_from_iter", since = "1.37.0")]
2087 impl<T> FromIterator<T> for Rc<[T]> {
2088     /// Takes each element in the `Iterator` and collects it into an `Rc<[T]>`.
2089     ///
2090     /// # Performance characteristics
2091     ///
2092     /// ## The general case
2093     ///
2094     /// In the general case, collecting into `Rc<[T]>` is done by first
2095     /// collecting into a `Vec<T>`. That is, when writing the following:
2096     ///
2097     /// ```rust
2098     /// # use std::rc::Rc;
2099     /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
2100     /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
2101     /// ```
2102     ///
2103     /// this behaves as if we wrote:
2104     ///
2105     /// ```rust
2106     /// # use std::rc::Rc;
2107     /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
2108     ///     .collect::<Vec<_>>() // The first set of allocations happens here.
2109     ///     .into(); // A second allocation for `Rc<[T]>` happens here.
2110     /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
2111     /// ```
2112     ///
2113     /// This will allocate as many times as needed for constructing the `Vec<T>`
2114     /// and then it will allocate once for turning the `Vec<T>` into the `Rc<[T]>`.
2115     ///
2116     /// ## Iterators of known length
2117     ///
2118     /// When your `Iterator` implements `TrustedLen` and is of an exact size,
2119     /// a single allocation will be made for the `Rc<[T]>`. For example:
2120     ///
2121     /// ```rust
2122     /// # use std::rc::Rc;
2123     /// let evens: Rc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
2124     /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
2125     /// ```
from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self2126     fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
2127         ToRcSlice::to_rc_slice(iter.into_iter())
2128     }
2129 }
2130 
2131 /// Specialization trait used for collecting into `Rc<[T]>`.
2132 #[cfg(not(no_global_oom_handling))]
2133 trait ToRcSlice<T>: Iterator<Item = T> + Sized {
to_rc_slice(self) -> Rc<[T]>2134     fn to_rc_slice(self) -> Rc<[T]>;
2135 }
2136 
2137 #[cfg(not(no_global_oom_handling))]
2138 impl<T, I: Iterator<Item = T>> ToRcSlice<T> for I {
to_rc_slice(self) -> Rc<[T]>2139     default fn to_rc_slice(self) -> Rc<[T]> {
2140         self.collect::<Vec<T>>().into()
2141     }
2142 }
2143 
2144 #[cfg(not(no_global_oom_handling))]
2145 impl<T, I: iter::TrustedLen<Item = T>> ToRcSlice<T> for I {
to_rc_slice(self) -> Rc<[T]>2146     fn to_rc_slice(self) -> Rc<[T]> {
2147         // This is the case for a `TrustedLen` iterator.
2148         let (low, high) = self.size_hint();
2149         if let Some(high) = high {
2150             debug_assert_eq!(
2151                 low,
2152                 high,
2153                 "TrustedLen iterator's size hint is not exact: {:?}",
2154                 (low, high)
2155             );
2156 
2157             unsafe {
2158                 // SAFETY: We need to ensure that the iterator has an exact length and we have.
2159                 Rc::from_iter_exact(self, low)
2160             }
2161         } else {
2162             // TrustedLen contract guarantees that `upper_bound == None` implies an iterator
2163             // length exceeding `usize::MAX`.
2164             // The default implementation would collect into a vec which would panic.
2165             // Thus we panic here immediately without invoking `Vec` code.
2166             panic!("capacity overflow");
2167         }
2168     }
2169 }
2170 
2171 /// `Weak` is a version of [`Rc`] that holds a non-owning reference to the
2172 /// managed allocation. The allocation is accessed by calling [`upgrade`] on the `Weak`
2173 /// pointer, which returns an <code>[Option]<[Rc]\<T>></code>.
2174 ///
2175 /// Since a `Weak` reference does not count towards ownership, it will not
2176 /// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
2177 /// guarantees about the value still being present. Thus it may return [`None`]
2178 /// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
2179 /// itself (the backing store) from being deallocated.
2180 ///
2181 /// A `Weak` pointer is useful for keeping a temporary reference to the allocation
2182 /// managed by [`Rc`] without preventing its inner value from being dropped. It is also used to
2183 /// prevent circular references between [`Rc`] pointers, since mutual owning references
2184 /// would never allow either [`Rc`] to be dropped. For example, a tree could
2185 /// have strong [`Rc`] pointers from parent nodes to children, and `Weak`
2186 /// pointers from children back to their parents.
2187 ///
2188 /// The typical way to obtain a `Weak` pointer is to call [`Rc::downgrade`].
2189 ///
2190 /// [`upgrade`]: Weak::upgrade
2191 #[stable(feature = "rc_weak", since = "1.4.0")]
2192 pub struct Weak<T: ?Sized> {
2193     // This is a `NonNull` to allow optimizing the size of this type in enums,
2194     // but it is not necessarily a valid pointer.
2195     // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
2196     // to allocate space on the heap. That's not a value a real pointer
2197     // will ever have because RcBox has alignment at least 2.
2198     // This is only possible when `T: Sized`; unsized `T` never dangle.
2199     ptr: NonNull<RcBox<T>>,
2200 }
2201 
2202 #[stable(feature = "rc_weak", since = "1.4.0")]
2203 impl<T: ?Sized> !Send for Weak<T> {}
2204 #[stable(feature = "rc_weak", since = "1.4.0")]
2205 impl<T: ?Sized> !Sync for Weak<T> {}
2206 
2207 #[unstable(feature = "coerce_unsized", issue = "18598")]
2208 impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Weak<U>> for Weak<T> {}
2209 
2210 #[unstable(feature = "dispatch_from_dyn", issue = "none")]
2211 impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
2212 
2213 impl<T> Weak<T> {
2214     /// Constructs a new `Weak<T>`, without allocating any memory.
2215     /// Calling [`upgrade`] on the return value always gives [`None`].
2216     ///
2217     /// [`upgrade`]: Weak::upgrade
2218     ///
2219     /// # Examples
2220     ///
2221     /// ```
2222     /// use std::rc::Weak;
2223     ///
2224     /// let empty: Weak<i64> = Weak::new();
2225     /// assert!(empty.upgrade().is_none());
2226     /// ```
2227     #[stable(feature = "downgraded_weak", since = "1.10.0")]
2228     #[rustc_const_unstable(feature = "const_weak_new", issue = "95091", reason = "recently added")]
2229     #[must_use]
new() -> Weak<T>2230     pub const fn new() -> Weak<T> {
2231         Weak { ptr: unsafe { NonNull::new_unchecked(ptr::invalid_mut::<RcBox<T>>(usize::MAX)) } }
2232     }
2233 }
2234 
is_dangling<T: ?Sized>(ptr: *mut T) -> bool2235 pub(crate) fn is_dangling<T: ?Sized>(ptr: *mut T) -> bool {
2236     (ptr as *mut ()).addr() == usize::MAX
2237 }
2238 
2239 /// Helper type to allow accessing the reference counts without
2240 /// making any assertions about the data field.
2241 struct WeakInner<'a> {
2242     weak: &'a Cell<usize>,
2243     strong: &'a Cell<usize>,
2244 }
2245 
2246 impl<T: ?Sized> Weak<T> {
2247     /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
2248     ///
2249     /// The pointer is valid only if there are some strong references. The pointer may be dangling,
2250     /// unaligned or even [`null`] otherwise.
2251     ///
2252     /// # Examples
2253     ///
2254     /// ```
2255     /// use std::rc::Rc;
2256     /// use std::ptr;
2257     ///
2258     /// let strong = Rc::new("hello".to_owned());
2259     /// let weak = Rc::downgrade(&strong);
2260     /// // Both point to the same object
2261     /// assert!(ptr::eq(&*strong, weak.as_ptr()));
2262     /// // The strong here keeps it alive, so we can still access the object.
2263     /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
2264     ///
2265     /// drop(strong);
2266     /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
2267     /// // undefined behaviour.
2268     /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
2269     /// ```
2270     ///
2271     /// [`null`]: ptr::null
2272     #[must_use]
2273     #[stable(feature = "rc_as_ptr", since = "1.45.0")]
as_ptr(&self) -> *const T2274     pub fn as_ptr(&self) -> *const T {
2275         let ptr: *mut RcBox<T> = NonNull::as_ptr(self.ptr);
2276 
2277         if is_dangling(ptr) {
2278             // If the pointer is dangling, we return the sentinel directly. This cannot be
2279             // a valid payload address, as the payload is at least as aligned as RcBox (usize).
2280             ptr as *const T
2281         } else {
2282             // SAFETY: if is_dangling returns false, then the pointer is dereferenceable.
2283             // The payload may be dropped at this point, and we have to maintain provenance,
2284             // so use raw pointer manipulation.
2285             unsafe { ptr::addr_of_mut!((*ptr).value) }
2286         }
2287     }
2288 
2289     /// Consumes the `Weak<T>` and turns it into a raw pointer.
2290     ///
2291     /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
2292     /// one weak reference (the weak count is not modified by this operation). It can be turned
2293     /// back into the `Weak<T>` with [`from_raw`].
2294     ///
2295     /// The same restrictions of accessing the target of the pointer as with
2296     /// [`as_ptr`] apply.
2297     ///
2298     /// # Examples
2299     ///
2300     /// ```
2301     /// use std::rc::{Rc, Weak};
2302     ///
2303     /// let strong = Rc::new("hello".to_owned());
2304     /// let weak = Rc::downgrade(&strong);
2305     /// let raw = weak.into_raw();
2306     ///
2307     /// assert_eq!(1, Rc::weak_count(&strong));
2308     /// assert_eq!("hello", unsafe { &*raw });
2309     ///
2310     /// drop(unsafe { Weak::from_raw(raw) });
2311     /// assert_eq!(0, Rc::weak_count(&strong));
2312     /// ```
2313     ///
2314     /// [`from_raw`]: Weak::from_raw
2315     /// [`as_ptr`]: Weak::as_ptr
2316     #[must_use = "`self` will be dropped if the result is not used"]
2317     #[stable(feature = "weak_into_raw", since = "1.45.0")]
into_raw(self) -> *const T2318     pub fn into_raw(self) -> *const T {
2319         let result = self.as_ptr();
2320         mem::forget(self);
2321         result
2322     }
2323 
2324     /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
2325     ///
2326     /// This can be used to safely get a strong reference (by calling [`upgrade`]
2327     /// later) or to deallocate the weak count by dropping the `Weak<T>`.
2328     ///
2329     /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
2330     /// as these don't own anything; the method still works on them).
2331     ///
2332     /// # Safety
2333     ///
2334     /// The pointer must have originated from the [`into_raw`] and must still own its potential
2335     /// weak reference.
2336     ///
2337     /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
2338     /// takes ownership of one weak reference currently represented as a raw pointer (the weak
2339     /// count is not modified by this operation) and therefore it must be paired with a previous
2340     /// call to [`into_raw`].
2341     ///
2342     /// # Examples
2343     ///
2344     /// ```
2345     /// use std::rc::{Rc, Weak};
2346     ///
2347     /// let strong = Rc::new("hello".to_owned());
2348     ///
2349     /// let raw_1 = Rc::downgrade(&strong).into_raw();
2350     /// let raw_2 = Rc::downgrade(&strong).into_raw();
2351     ///
2352     /// assert_eq!(2, Rc::weak_count(&strong));
2353     ///
2354     /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
2355     /// assert_eq!(1, Rc::weak_count(&strong));
2356     ///
2357     /// drop(strong);
2358     ///
2359     /// // Decrement the last weak count.
2360     /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
2361     /// ```
2362     ///
2363     /// [`into_raw`]: Weak::into_raw
2364     /// [`upgrade`]: Weak::upgrade
2365     /// [`new`]: Weak::new
2366     #[stable(feature = "weak_into_raw", since = "1.45.0")]
from_raw(ptr: *const T) -> Self2367     pub unsafe fn from_raw(ptr: *const T) -> Self {
2368         // See Weak::as_ptr for context on how the input pointer is derived.
2369 
2370         let ptr = if is_dangling(ptr as *mut T) {
2371             // This is a dangling Weak.
2372             ptr as *mut RcBox<T>
2373         } else {
2374             // Otherwise, we're guaranteed the pointer came from a nondangling Weak.
2375             // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T.
2376             let offset = unsafe { data_offset(ptr) };
2377             // Thus, we reverse the offset to get the whole RcBox.
2378             // SAFETY: the pointer originated from a Weak, so this offset is safe.
2379             unsafe { ptr.byte_sub(offset) as *mut RcBox<T> }
2380         };
2381 
2382         // SAFETY: we now have recovered the original Weak pointer, so can create the Weak.
2383         Weak { ptr: unsafe { NonNull::new_unchecked(ptr) } }
2384     }
2385 
2386     /// Attempts to upgrade the `Weak` pointer to an [`Rc`], delaying
2387     /// dropping of the inner value if successful.
2388     ///
2389     /// Returns [`None`] if the inner value has since been dropped.
2390     ///
2391     /// # Examples
2392     ///
2393     /// ```
2394     /// use std::rc::Rc;
2395     ///
2396     /// let five = Rc::new(5);
2397     ///
2398     /// let weak_five = Rc::downgrade(&five);
2399     ///
2400     /// let strong_five: Option<Rc<_>> = weak_five.upgrade();
2401     /// assert!(strong_five.is_some());
2402     ///
2403     /// // Destroy all strong pointers.
2404     /// drop(strong_five);
2405     /// drop(five);
2406     ///
2407     /// assert!(weak_five.upgrade().is_none());
2408     /// ```
2409     #[must_use = "this returns a new `Rc`, \
2410                   without modifying the original weak pointer"]
2411     #[stable(feature = "rc_weak", since = "1.4.0")]
upgrade(&self) -> Option<Rc<T>>2412     pub fn upgrade(&self) -> Option<Rc<T>> {
2413         let inner = self.inner()?;
2414 
2415         if inner.strong() == 0 {
2416             None
2417         } else {
2418             unsafe {
2419                 inner.inc_strong();
2420                 Some(Rc::from_inner(self.ptr))
2421             }
2422         }
2423     }
2424 
2425     /// Gets the number of strong (`Rc`) pointers pointing to this allocation.
2426     ///
2427     /// If `self` was created using [`Weak::new`], this will return 0.
2428     #[must_use]
2429     #[stable(feature = "weak_counts", since = "1.41.0")]
strong_count(&self) -> usize2430     pub fn strong_count(&self) -> usize {
2431         if let Some(inner) = self.inner() { inner.strong() } else { 0 }
2432     }
2433 
2434     /// Gets the number of `Weak` pointers pointing to this allocation.
2435     ///
2436     /// If no strong pointers remain, this will return zero.
2437     #[must_use]
2438     #[stable(feature = "weak_counts", since = "1.41.0")]
weak_count(&self) -> usize2439     pub fn weak_count(&self) -> usize {
2440         self.inner()
2441             .map(|inner| {
2442                 if inner.strong() > 0 {
2443                     inner.weak() - 1 // subtract the implicit weak ptr
2444                 } else {
2445                     0
2446                 }
2447             })
2448             .unwrap_or(0)
2449     }
2450 
2451     /// Returns `None` when the pointer is dangling and there is no allocated `RcBox`,
2452     /// (i.e., when this `Weak` was created by `Weak::new`).
2453     #[inline]
inner(&self) -> Option<WeakInner<'_>>2454     fn inner(&self) -> Option<WeakInner<'_>> {
2455         if is_dangling(self.ptr.as_ptr()) {
2456             None
2457         } else {
2458             // We are careful to *not* create a reference covering the "data" field, as
2459             // the field may be mutated concurrently (for example, if the last `Rc`
2460             // is dropped, the data field will be dropped in-place).
2461             Some(unsafe {
2462                 let ptr = self.ptr.as_ptr();
2463                 WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak }
2464             })
2465         }
2466     }
2467 
2468     /// Returns `true` if the two `Weak`s point to the same allocation similar to [`ptr::eq`], or if
2469     /// both don't point to any allocation (because they were created with `Weak::new()`). However,
2470     /// this function ignores the metadata of  `dyn Trait` pointers.
2471     ///
2472     /// # Notes
2473     ///
2474     /// Since this compares pointers it means that `Weak::new()` will equal each
2475     /// other, even though they don't point to any allocation.
2476     ///
2477     /// # Examples
2478     ///
2479     /// ```
2480     /// use std::rc::Rc;
2481     ///
2482     /// let first_rc = Rc::new(5);
2483     /// let first = Rc::downgrade(&first_rc);
2484     /// let second = Rc::downgrade(&first_rc);
2485     ///
2486     /// assert!(first.ptr_eq(&second));
2487     ///
2488     /// let third_rc = Rc::new(5);
2489     /// let third = Rc::downgrade(&third_rc);
2490     ///
2491     /// assert!(!first.ptr_eq(&third));
2492     /// ```
2493     ///
2494     /// Comparing `Weak::new`.
2495     ///
2496     /// ```
2497     /// use std::rc::{Rc, Weak};
2498     ///
2499     /// let first = Weak::new();
2500     /// let second = Weak::new();
2501     /// assert!(first.ptr_eq(&second));
2502     ///
2503     /// let third_rc = Rc::new(());
2504     /// let third = Rc::downgrade(&third_rc);
2505     /// assert!(!first.ptr_eq(&third));
2506     /// ```
2507     #[inline]
2508     #[must_use]
2509     #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
ptr_eq(&self, other: &Self) -> bool2510     pub fn ptr_eq(&self, other: &Self) -> bool {
2511         ptr::eq(self.ptr.as_ptr() as *const (), other.ptr.as_ptr() as *const ())
2512     }
2513 }
2514 
2515 #[stable(feature = "rc_weak", since = "1.4.0")]
2516 unsafe impl<#[may_dangle] T: ?Sized> Drop for Weak<T> {
2517     /// Drops the `Weak` pointer.
2518     ///
2519     /// # Examples
2520     ///
2521     /// ```
2522     /// use std::rc::{Rc, Weak};
2523     ///
2524     /// struct Foo;
2525     ///
2526     /// impl Drop for Foo {
2527     ///     fn drop(&mut self) {
2528     ///         println!("dropped!");
2529     ///     }
2530     /// }
2531     ///
2532     /// let foo = Rc::new(Foo);
2533     /// let weak_foo = Rc::downgrade(&foo);
2534     /// let other_weak_foo = Weak::clone(&weak_foo);
2535     ///
2536     /// drop(weak_foo);   // Doesn't print anything
2537     /// drop(foo);        // Prints "dropped!"
2538     ///
2539     /// assert!(other_weak_foo.upgrade().is_none());
2540     /// ```
drop(&mut self)2541     fn drop(&mut self) {
2542         let inner = if let Some(inner) = self.inner() { inner } else { return };
2543 
2544         inner.dec_weak();
2545         // the weak count starts at 1, and will only go to zero if all
2546         // the strong pointers have disappeared.
2547         if inner.weak() == 0 {
2548             unsafe {
2549                 Global.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()));
2550             }
2551         }
2552     }
2553 }
2554 
2555 #[stable(feature = "rc_weak", since = "1.4.0")]
2556 impl<T: ?Sized> Clone for Weak<T> {
2557     /// Makes a clone of the `Weak` pointer that points to the same allocation.
2558     ///
2559     /// # Examples
2560     ///
2561     /// ```
2562     /// use std::rc::{Rc, Weak};
2563     ///
2564     /// let weak_five = Rc::downgrade(&Rc::new(5));
2565     ///
2566     /// let _ = Weak::clone(&weak_five);
2567     /// ```
2568     #[inline]
clone(&self) -> Weak<T>2569     fn clone(&self) -> Weak<T> {
2570         if let Some(inner) = self.inner() {
2571             inner.inc_weak()
2572         }
2573         Weak { ptr: self.ptr }
2574     }
2575 }
2576 
2577 #[stable(feature = "rc_weak", since = "1.4.0")]
2578 impl<T: ?Sized> fmt::Debug for Weak<T> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result2579     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2580         write!(f, "(Weak)")
2581     }
2582 }
2583 
2584 #[stable(feature = "downgraded_weak", since = "1.10.0")]
2585 impl<T> Default for Weak<T> {
2586     /// Constructs a new `Weak<T>`, without allocating any memory.
2587     /// Calling [`upgrade`] on the return value always gives [`None`].
2588     ///
2589     /// [`upgrade`]: Weak::upgrade
2590     ///
2591     /// # Examples
2592     ///
2593     /// ```
2594     /// use std::rc::Weak;
2595     ///
2596     /// let empty: Weak<i64> = Default::default();
2597     /// assert!(empty.upgrade().is_none());
2598     /// ```
default() -> Weak<T>2599     fn default() -> Weak<T> {
2600         Weak::new()
2601     }
2602 }
2603 
2604 // NOTE: We checked_add here to deal with mem::forget safely. In particular
2605 // if you mem::forget Rcs (or Weaks), the ref-count can overflow, and then
2606 // you can free the allocation while outstanding Rcs (or Weaks) exist.
2607 // We abort because this is such a degenerate scenario that we don't care about
2608 // what happens -- no real program should ever experience this.
2609 //
2610 // This should have negligible overhead since you don't actually need to
2611 // clone these much in Rust thanks to ownership and move-semantics.
2612 
2613 #[doc(hidden)]
2614 trait RcInnerPtr {
weak_ref(&self) -> &Cell<usize>2615     fn weak_ref(&self) -> &Cell<usize>;
strong_ref(&self) -> &Cell<usize>2616     fn strong_ref(&self) -> &Cell<usize>;
2617 
2618     #[inline]
strong(&self) -> usize2619     fn strong(&self) -> usize {
2620         self.strong_ref().get()
2621     }
2622 
2623     #[inline]
inc_strong(&self)2624     fn inc_strong(&self) {
2625         let strong = self.strong();
2626 
2627         // We insert an `assume` here to hint LLVM at an otherwise
2628         // missed optimization.
2629         // SAFETY: The reference count will never be zero when this is
2630         // called.
2631         unsafe {
2632             core::intrinsics::assume(strong != 0);
2633         }
2634 
2635         let strong = strong.wrapping_add(1);
2636         self.strong_ref().set(strong);
2637 
2638         // We want to abort on overflow instead of dropping the value.
2639         // Checking for overflow after the store instead of before
2640         // allows for slightly better code generation.
2641         if core::intrinsics::unlikely(strong == 0) {
2642             abort();
2643         }
2644     }
2645 
2646     #[inline]
dec_strong(&self)2647     fn dec_strong(&self) {
2648         self.strong_ref().set(self.strong() - 1);
2649     }
2650 
2651     #[inline]
weak(&self) -> usize2652     fn weak(&self) -> usize {
2653         self.weak_ref().get()
2654     }
2655 
2656     #[inline]
inc_weak(&self)2657     fn inc_weak(&self) {
2658         let weak = self.weak();
2659 
2660         // We insert an `assume` here to hint LLVM at an otherwise
2661         // missed optimization.
2662         // SAFETY: The reference count will never be zero when this is
2663         // called.
2664         unsafe {
2665             core::intrinsics::assume(weak != 0);
2666         }
2667 
2668         let weak = weak.wrapping_add(1);
2669         self.weak_ref().set(weak);
2670 
2671         // We want to abort on overflow instead of dropping the value.
2672         // Checking for overflow after the store instead of before
2673         // allows for slightly better code generation.
2674         if core::intrinsics::unlikely(weak == 0) {
2675             abort();
2676         }
2677     }
2678 
2679     #[inline]
dec_weak(&self)2680     fn dec_weak(&self) {
2681         self.weak_ref().set(self.weak() - 1);
2682     }
2683 }
2684 
2685 impl<T: ?Sized> RcInnerPtr for RcBox<T> {
2686     #[inline(always)]
weak_ref(&self) -> &Cell<usize>2687     fn weak_ref(&self) -> &Cell<usize> {
2688         &self.weak
2689     }
2690 
2691     #[inline(always)]
strong_ref(&self) -> &Cell<usize>2692     fn strong_ref(&self) -> &Cell<usize> {
2693         &self.strong
2694     }
2695 }
2696 
2697 impl<'a> RcInnerPtr for WeakInner<'a> {
2698     #[inline(always)]
weak_ref(&self) -> &Cell<usize>2699     fn weak_ref(&self) -> &Cell<usize> {
2700         self.weak
2701     }
2702 
2703     #[inline(always)]
strong_ref(&self) -> &Cell<usize>2704     fn strong_ref(&self) -> &Cell<usize> {
2705         self.strong
2706     }
2707 }
2708 
2709 #[stable(feature = "rust1", since = "1.0.0")]
2710 impl<T: ?Sized> borrow::Borrow<T> for Rc<T> {
borrow(&self) -> &T2711     fn borrow(&self) -> &T {
2712         &**self
2713     }
2714 }
2715 
2716 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
2717 impl<T: ?Sized> AsRef<T> for Rc<T> {
as_ref(&self) -> &T2718     fn as_ref(&self) -> &T {
2719         &**self
2720     }
2721 }
2722 
2723 #[stable(feature = "pin", since = "1.33.0")]
2724 impl<T: ?Sized> Unpin for Rc<T> {}
2725 
2726 /// Get the offset within an `RcBox` for the payload behind a pointer.
2727 ///
2728 /// # Safety
2729 ///
2730 /// The pointer must point to (and have valid metadata for) a previously
2731 /// valid instance of T, but the T is allowed to be dropped.
data_offset<T: ?Sized>(ptr: *const T) -> usize2732 unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize {
2733     // Align the unsized value to the end of the RcBox.
2734     // Because RcBox is repr(C), it will always be the last field in memory.
2735     // SAFETY: since the only unsized types possible are slices, trait objects,
2736     // and extern types, the input safety requirement is currently enough to
2737     // satisfy the requirements of align_of_val_raw; this is an implementation
2738     // detail of the language that must not be relied upon outside of std.
2739     unsafe { data_offset_align(align_of_val_raw(ptr)) }
2740 }
2741 
2742 #[inline]
data_offset_align(align: usize) -> usize2743 fn data_offset_align(align: usize) -> usize {
2744     let layout = Layout::new::<RcBox<()>>();
2745     layout.size() + layout.padding_needed_for(align)
2746 }
2747 
2748 /// A uniquely owned `Rc`
2749 ///
2750 /// This represents an `Rc` that is known to be uniquely owned -- that is, have exactly one strong
2751 /// reference. Multiple weak pointers can be created, but attempts to upgrade those to strong
2752 /// references will fail unless the `UniqueRc` they point to has been converted into a regular `Rc`.
2753 ///
2754 /// Because they are uniquely owned, the contents of a `UniqueRc` can be freely mutated. A common
2755 /// use case is to have an object be mutable during its initialization phase but then have it become
2756 /// immutable and converted to a normal `Rc`.
2757 ///
2758 /// This can be used as a flexible way to create cyclic data structures, as in the example below.
2759 ///
2760 /// ```
2761 /// #![feature(unique_rc_arc)]
2762 /// use std::rc::{Rc, Weak, UniqueRc};
2763 ///
2764 /// struct Gadget {
2765 ///     #[allow(dead_code)]
2766 ///     me: Weak<Gadget>,
2767 /// }
2768 ///
2769 /// fn create_gadget() -> Option<Rc<Gadget>> {
2770 ///     let mut rc = UniqueRc::new(Gadget {
2771 ///         me: Weak::new(),
2772 ///     });
2773 ///     rc.me = UniqueRc::downgrade(&rc);
2774 ///     Some(UniqueRc::into_rc(rc))
2775 /// }
2776 ///
2777 /// create_gadget().unwrap();
2778 /// ```
2779 ///
2780 /// An advantage of using `UniqueRc` over [`Rc::new_cyclic`] to build cyclic data structures is that
2781 /// [`Rc::new_cyclic`]'s `data_fn` parameter cannot be async or return a [`Result`]. As shown in the
2782 /// previous example, `UniqueRc` allows for more flexibility in the construction of cyclic data,
2783 /// including fallible or async constructors.
2784 #[unstable(feature = "unique_rc_arc", issue = "112566")]
2785 #[derive(Debug)]
2786 pub struct UniqueRc<T> {
2787     ptr: NonNull<RcBox<T>>,
2788     phantom: PhantomData<RcBox<T>>,
2789 }
2790 
2791 impl<T> UniqueRc<T> {
2792     /// Creates a new `UniqueRc`
2793     ///
2794     /// Weak references to this `UniqueRc` can be created with [`UniqueRc::downgrade`]. Upgrading
2795     /// these weak references will fail before the `UniqueRc` has been converted into an [`Rc`].
2796     /// After converting the `UniqueRc` into an [`Rc`], any weak references created beforehand will
2797     /// point to the new [`Rc`].
2798     #[cfg(not(no_global_oom_handling))]
2799     #[unstable(feature = "unique_rc_arc", issue = "112566")]
new(value: T) -> Self2800     pub fn new(value: T) -> Self {
2801         Self {
2802             ptr: Box::leak(Box::new(RcBox {
2803                 strong: Cell::new(0),
2804                 // keep one weak reference so if all the weak pointers that are created are dropped
2805                 // the UniqueRc still stays valid.
2806                 weak: Cell::new(1),
2807                 value,
2808             }))
2809             .into(),
2810             phantom: PhantomData,
2811         }
2812     }
2813 
2814     /// Creates a new weak reference to the `UniqueRc`
2815     ///
2816     /// Attempting to upgrade this weak reference will fail before the `UniqueRc` has been converted
2817     /// to a [`Rc`] using [`UniqueRc::into_rc`].
2818     #[unstable(feature = "unique_rc_arc", issue = "112566")]
downgrade(this: &Self) -> Weak<T>2819     pub fn downgrade(this: &Self) -> Weak<T> {
2820         // SAFETY: This pointer was allocated at creation time and we guarantee that we only have
2821         // one strong reference before converting to a regular Rc.
2822         unsafe {
2823             this.ptr.as_ref().inc_weak();
2824         }
2825         Weak { ptr: this.ptr }
2826     }
2827 
2828     /// Converts the `UniqueRc` into a regular [`Rc`]
2829     ///
2830     /// This consumes the `UniqueRc` and returns a regular [`Rc`] that contains the `value` that
2831     /// is passed to `into_rc`.
2832     ///
2833     /// Any weak references created before this method is called can now be upgraded to strong
2834     /// references.
2835     #[unstable(feature = "unique_rc_arc", issue = "112566")]
into_rc(this: Self) -> Rc<T>2836     pub fn into_rc(this: Self) -> Rc<T> {
2837         let mut this = ManuallyDrop::new(this);
2838         // SAFETY: This pointer was allocated at creation time so we know it is valid.
2839         unsafe {
2840             // Convert our weak reference into a strong reference
2841             this.ptr.as_mut().strong.set(1);
2842             Rc::from_inner(this.ptr)
2843         }
2844     }
2845 }
2846 
2847 #[unstable(feature = "unique_rc_arc", issue = "112566")]
2848 impl<T> Deref for UniqueRc<T> {
2849     type Target = T;
2850 
deref(&self) -> &T2851     fn deref(&self) -> &T {
2852         // SAFETY: This pointer was allocated at creation time so we know it is valid.
2853         unsafe { &self.ptr.as_ref().value }
2854     }
2855 }
2856 
2857 #[unstable(feature = "unique_rc_arc", issue = "112566")]
2858 impl<T> DerefMut for UniqueRc<T> {
deref_mut(&mut self) -> &mut T2859     fn deref_mut(&mut self) -> &mut T {
2860         // SAFETY: This pointer was allocated at creation time so we know it is valid. We know we
2861         // have unique ownership and therefore it's safe to make a mutable reference because
2862         // `UniqueRc` owns the only strong reference to itself.
2863         unsafe { &mut (*self.ptr.as_ptr()).value }
2864     }
2865 }
2866 
2867 #[unstable(feature = "unique_rc_arc", issue = "112566")]
2868 unsafe impl<#[may_dangle] T> Drop for UniqueRc<T> {
drop(&mut self)2869     fn drop(&mut self) {
2870         unsafe {
2871             // destroy the contained object
2872             drop_in_place(DerefMut::deref_mut(self));
2873 
2874             // remove the implicit "strong weak" pointer now that we've destroyed the contents.
2875             self.ptr.as_ref().dec_weak();
2876 
2877             if self.ptr.as_ref().weak() == 0 {
2878                 Global.deallocate(self.ptr.cast(), Layout::for_value(self.ptr.as_ref()));
2879             }
2880         }
2881     }
2882 }
2883