• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Decoding metadata from a single crate's metadata
2 
3 use crate::creader::{CStore, CrateMetadataRef};
4 use crate::rmeta::table::IsDefault;
5 use crate::rmeta::*;
6 
7 use rustc_ast as ast;
8 use rustc_data_structures::captures::Captures;
9 use rustc_data_structures::fx::FxHashMap;
10 use rustc_data_structures::owned_slice::OwnedSlice;
11 use rustc_data_structures::svh::Svh;
12 use rustc_data_structures::sync::{AppendOnlyVec, AtomicBool, Lock, Lrc, OnceCell};
13 use rustc_data_structures::unhash::UnhashMap;
14 use rustc_expand::base::{SyntaxExtension, SyntaxExtensionKind};
15 use rustc_expand::proc_macro::{AttrProcMacro, BangProcMacro, DeriveProcMacro};
16 use rustc_hir::def::{CtorKind, DefKind, DocLinkResMap, Res};
17 use rustc_hir::def_id::{CrateNum, DefId, DefIndex, CRATE_DEF_INDEX, LOCAL_CRATE};
18 use rustc_hir::definitions::{DefKey, DefPath, DefPathData, DefPathHash};
19 use rustc_hir::diagnostic_items::DiagnosticItems;
20 use rustc_index::{Idx, IndexVec};
21 use rustc_middle::metadata::ModChild;
22 use rustc_middle::middle::debugger_visualizer::DebuggerVisualizerFile;
23 use rustc_middle::middle::exported_symbols::{ExportedSymbol, SymbolExportInfo};
24 use rustc_middle::mir::interpret::{AllocDecodingSession, AllocDecodingState};
25 use rustc_middle::ty::codec::TyDecoder;
26 use rustc_middle::ty::fast_reject::SimplifiedType;
27 use rustc_middle::ty::GeneratorDiagnosticData;
28 use rustc_middle::ty::{self, ParameterizedOverTcx, Ty, TyCtxt, Visibility};
29 use rustc_serialize::opaque::MemDecoder;
30 use rustc_serialize::{Decodable, Decoder};
31 use rustc_session::cstore::{
32     CrateSource, ExternCrate, ForeignModule, LinkagePreference, NativeLib,
33 };
34 use rustc_session::Session;
35 use rustc_span::hygiene::ExpnIndex;
36 use rustc_span::symbol::{kw, Ident, Symbol};
37 use rustc_span::{self, BytePos, ExpnId, Pos, Span, SyntaxContext, DUMMY_SP};
38 
39 use proc_macro::bridge::client::ProcMacro;
40 use std::iter::TrustedLen;
41 use std::num::NonZeroUsize;
42 use std::path::Path;
43 use std::sync::atomic::Ordering;
44 use std::{io, iter, mem};
45 
46 pub(super) use cstore_impl::provide;
47 pub use cstore_impl::provide_extern;
48 use rustc_span::hygiene::HygieneDecodeContext;
49 
50 mod cstore_impl;
51 
52 /// A reference to the raw binary version of crate metadata.
53 /// A `MetadataBlob` internally is just a reference counted pointer to
54 /// the actual data, so cloning it is cheap.
55 #[derive(Clone)]
56 pub(crate) struct MetadataBlob(pub(crate) OwnedSlice);
57 
58 impl std::ops::Deref for MetadataBlob {
59     type Target = [u8];
60 
61     #[inline]
deref(&self) -> &[u8]62     fn deref(&self) -> &[u8] {
63         &self.0[..]
64     }
65 }
66 
67 /// A map from external crate numbers (as decoded from some crate file) to
68 /// local crate numbers (as generated during this session). Each external
69 /// crate may refer to types in other external crates, and each has their
70 /// own crate numbers.
71 pub(crate) type CrateNumMap = IndexVec<CrateNum, CrateNum>;
72 
73 pub(crate) struct CrateMetadata {
74     /// The primary crate data - binary metadata blob.
75     blob: MetadataBlob,
76 
77     // --- Some data pre-decoded from the metadata blob, usually for performance ---
78     /// Data about the top-level items in a crate, as well as various crate-level metadata.
79     root: CrateRoot,
80     /// Trait impl data.
81     /// FIXME: Used only from queries and can use query cache,
82     /// so pre-decoding can probably be avoided.
83     trait_impls: FxHashMap<(u32, DefIndex), LazyArray<(DefIndex, Option<SimplifiedType>)>>,
84     /// Inherent impls which do not follow the normal coherence rules.
85     ///
86     /// These can be introduced using either `#![rustc_coherence_is_core]`
87     /// or `#[rustc_allow_incoherent_impl]`.
88     incoherent_impls: FxHashMap<SimplifiedType, LazyArray<DefIndex>>,
89     /// Proc macro descriptions for this crate, if it's a proc macro crate.
90     raw_proc_macros: Option<&'static [ProcMacro]>,
91     /// Source maps for code from the crate.
92     source_map_import_info: Lock<Vec<Option<ImportedSourceFile>>>,
93     /// For every definition in this crate, maps its `DefPathHash` to its `DefIndex`.
94     def_path_hash_map: DefPathHashMapRef<'static>,
95     /// Likewise for ExpnHash.
96     expn_hash_map: OnceCell<UnhashMap<ExpnHash, ExpnIndex>>,
97     /// Used for decoding interpret::AllocIds in a cached & thread-safe manner.
98     alloc_decoding_state: AllocDecodingState,
99     /// Caches decoded `DefKey`s.
100     def_key_cache: Lock<FxHashMap<DefIndex, DefKey>>,
101     /// Caches decoded `DefPathHash`es.
102     def_path_hash_cache: Lock<FxHashMap<DefIndex, DefPathHash>>,
103 
104     // --- Other significant crate properties ---
105     /// ID of this crate, from the current compilation session's point of view.
106     cnum: CrateNum,
107     /// Maps crate IDs as they are were seen from this crate's compilation sessions into
108     /// IDs as they are seen from the current compilation session.
109     cnum_map: CrateNumMap,
110     /// Same ID set as `cnum_map` plus maybe some injected crates like panic runtime.
111     dependencies: AppendOnlyVec<CrateNum>,
112     /// How to link (or not link) this crate to the currently compiled crate.
113     dep_kind: Lock<CrateDepKind>,
114     /// Filesystem location of this crate.
115     source: Lrc<CrateSource>,
116     /// Whether or not this crate should be consider a private dependency.
117     /// Used by the 'exported_private_dependencies' lint, and for determining
118     /// whether to emit suggestions that reference this crate.
119     private_dep: AtomicBool,
120     /// The hash for the host proc macro. Used to support `-Z dual-proc-macro`.
121     host_hash: Option<Svh>,
122 
123     /// Additional data used for decoding `HygieneData` (e.g. `SyntaxContext`
124     /// and `ExpnId`).
125     /// Note that we store a `HygieneDecodeContext` for each `CrateMetadata`. This is
126     /// because `SyntaxContext` ids are not globally unique, so we need
127     /// to track which ids we've decoded on a per-crate basis.
128     hygiene_context: HygieneDecodeContext,
129 
130     // --- Data used only for improving diagnostics ---
131     /// Information about the `extern crate` item or path that caused this crate to be loaded.
132     /// If this is `None`, then the crate was injected (e.g., by the allocator).
133     extern_crate: Lock<Option<ExternCrate>>,
134 }
135 
136 /// Holds information about a rustc_span::SourceFile imported from another crate.
137 /// See `imported_source_file()` for more information.
138 #[derive(Clone)]
139 struct ImportedSourceFile {
140     /// This SourceFile's byte-offset within the source_map of its original crate
141     original_start_pos: rustc_span::BytePos,
142     /// The end of this SourceFile within the source_map of its original crate
143     original_end_pos: rustc_span::BytePos,
144     /// The imported SourceFile's representation within the local source_map
145     translated_source_file: Lrc<rustc_span::SourceFile>,
146 }
147 
148 pub(super) struct DecodeContext<'a, 'tcx> {
149     opaque: MemDecoder<'a>,
150     cdata: Option<CrateMetadataRef<'a>>,
151     blob: &'a MetadataBlob,
152     sess: Option<&'tcx Session>,
153     tcx: Option<TyCtxt<'tcx>>,
154 
155     lazy_state: LazyState,
156 
157     // Used for decoding interpret::AllocIds in a cached & thread-safe manner.
158     alloc_decoding_session: Option<AllocDecodingSession<'a>>,
159 }
160 
161 /// Abstract over the various ways one can create metadata decoders.
162 pub(super) trait Metadata<'a, 'tcx>: Copy {
blob(self) -> &'a MetadataBlob163     fn blob(self) -> &'a MetadataBlob;
164 
cdata(self) -> Option<CrateMetadataRef<'a>>165     fn cdata(self) -> Option<CrateMetadataRef<'a>> {
166         None
167     }
sess(self) -> Option<&'tcx Session>168     fn sess(self) -> Option<&'tcx Session> {
169         None
170     }
tcx(self) -> Option<TyCtxt<'tcx>>171     fn tcx(self) -> Option<TyCtxt<'tcx>> {
172         None
173     }
174 
decoder(self, pos: usize) -> DecodeContext<'a, 'tcx>175     fn decoder(self, pos: usize) -> DecodeContext<'a, 'tcx> {
176         let tcx = self.tcx();
177         DecodeContext {
178             opaque: MemDecoder::new(self.blob(), pos),
179             cdata: self.cdata(),
180             blob: self.blob(),
181             sess: self.sess().or(tcx.map(|tcx| tcx.sess)),
182             tcx,
183             lazy_state: LazyState::NoNode,
184             alloc_decoding_session: self
185                 .cdata()
186                 .map(|cdata| cdata.cdata.alloc_decoding_state.new_decoding_session()),
187         }
188     }
189 }
190 
191 impl<'a, 'tcx> Metadata<'a, 'tcx> for &'a MetadataBlob {
192     #[inline]
blob(self) -> &'a MetadataBlob193     fn blob(self) -> &'a MetadataBlob {
194         self
195     }
196 }
197 
198 impl<'a, 'tcx> Metadata<'a, 'tcx> for (&'a MetadataBlob, &'tcx Session) {
199     #[inline]
blob(self) -> &'a MetadataBlob200     fn blob(self) -> &'a MetadataBlob {
201         self.0
202     }
203 
204     #[inline]
sess(self) -> Option<&'tcx Session>205     fn sess(self) -> Option<&'tcx Session> {
206         let (_, sess) = self;
207         Some(sess)
208     }
209 }
210 
211 impl<'a, 'tcx> Metadata<'a, 'tcx> for CrateMetadataRef<'a> {
212     #[inline]
blob(self) -> &'a MetadataBlob213     fn blob(self) -> &'a MetadataBlob {
214         &self.cdata.blob
215     }
216     #[inline]
cdata(self) -> Option<CrateMetadataRef<'a>>217     fn cdata(self) -> Option<CrateMetadataRef<'a>> {
218         Some(self)
219     }
220 }
221 
222 impl<'a, 'tcx> Metadata<'a, 'tcx> for (CrateMetadataRef<'a>, &'tcx Session) {
223     #[inline]
blob(self) -> &'a MetadataBlob224     fn blob(self) -> &'a MetadataBlob {
225         &self.0.cdata.blob
226     }
227     #[inline]
cdata(self) -> Option<CrateMetadataRef<'a>>228     fn cdata(self) -> Option<CrateMetadataRef<'a>> {
229         Some(self.0)
230     }
231     #[inline]
sess(self) -> Option<&'tcx Session>232     fn sess(self) -> Option<&'tcx Session> {
233         Some(self.1)
234     }
235 }
236 
237 impl<'a, 'tcx> Metadata<'a, 'tcx> for (CrateMetadataRef<'a>, TyCtxt<'tcx>) {
238     #[inline]
blob(self) -> &'a MetadataBlob239     fn blob(self) -> &'a MetadataBlob {
240         &self.0.cdata.blob
241     }
242     #[inline]
cdata(self) -> Option<CrateMetadataRef<'a>>243     fn cdata(self) -> Option<CrateMetadataRef<'a>> {
244         Some(self.0)
245     }
246     #[inline]
tcx(self) -> Option<TyCtxt<'tcx>>247     fn tcx(self) -> Option<TyCtxt<'tcx>> {
248         Some(self.1)
249     }
250 }
251 
252 impl<T: ParameterizedOverTcx> LazyValue<T> {
decode<'a, 'tcx, M: Metadata<'a, 'tcx>>(self, metadata: M) -> T::Value<'tcx> where T::Value<'tcx>: Decodable<DecodeContext<'a, 'tcx>>,253     fn decode<'a, 'tcx, M: Metadata<'a, 'tcx>>(self, metadata: M) -> T::Value<'tcx>
254     where
255         T::Value<'tcx>: Decodable<DecodeContext<'a, 'tcx>>,
256     {
257         let mut dcx = metadata.decoder(self.position.get());
258         dcx.lazy_state = LazyState::NodeStart(self.position);
259         T::Value::decode(&mut dcx)
260     }
261 }
262 
263 struct DecodeIterator<'a, 'tcx, T> {
264     elem_counter: std::ops::Range<usize>,
265     dcx: DecodeContext<'a, 'tcx>,
266     _phantom: PhantomData<fn() -> T>,
267 }
268 
269 impl<'a, 'tcx, T: Decodable<DecodeContext<'a, 'tcx>>> Iterator for DecodeIterator<'a, 'tcx, T> {
270     type Item = T;
271 
272     #[inline(always)]
next(&mut self) -> Option<Self::Item>273     fn next(&mut self) -> Option<Self::Item> {
274         self.elem_counter.next().map(|_| T::decode(&mut self.dcx))
275     }
276 
277     #[inline(always)]
size_hint(&self) -> (usize, Option<usize>)278     fn size_hint(&self) -> (usize, Option<usize>) {
279         self.elem_counter.size_hint()
280     }
281 }
282 
283 impl<'a, 'tcx, T: Decodable<DecodeContext<'a, 'tcx>>> ExactSizeIterator
284     for DecodeIterator<'a, 'tcx, T>
285 {
len(&self) -> usize286     fn len(&self) -> usize {
287         self.elem_counter.len()
288     }
289 }
290 
291 unsafe impl<'a, 'tcx, T: Decodable<DecodeContext<'a, 'tcx>>> TrustedLen
292     for DecodeIterator<'a, 'tcx, T>
293 {
294 }
295 
296 impl<T: ParameterizedOverTcx> LazyArray<T> {
decode<'a, 'tcx, M: Metadata<'a, 'tcx>>( self, metadata: M, ) -> DecodeIterator<'a, 'tcx, T::Value<'tcx>> where T::Value<'tcx>: Decodable<DecodeContext<'a, 'tcx>>,297     fn decode<'a, 'tcx, M: Metadata<'a, 'tcx>>(
298         self,
299         metadata: M,
300     ) -> DecodeIterator<'a, 'tcx, T::Value<'tcx>>
301     where
302         T::Value<'tcx>: Decodable<DecodeContext<'a, 'tcx>>,
303     {
304         let mut dcx = metadata.decoder(self.position.get());
305         dcx.lazy_state = LazyState::NodeStart(self.position);
306         DecodeIterator { elem_counter: (0..self.num_elems), dcx, _phantom: PhantomData }
307     }
308 }
309 
310 impl<'a, 'tcx> DecodeContext<'a, 'tcx> {
311     #[inline]
tcx(&self) -> TyCtxt<'tcx>312     fn tcx(&self) -> TyCtxt<'tcx> {
313         let Some(tcx) = self.tcx else {
314             bug!("No TyCtxt found for decoding. \
315                 You need to explicitly pass `(crate_metadata_ref, tcx)` to `decode` instead of just `crate_metadata_ref`.");
316         };
317         tcx
318     }
319 
320     #[inline]
blob(&self) -> &'a MetadataBlob321     pub fn blob(&self) -> &'a MetadataBlob {
322         self.blob
323     }
324 
325     #[inline]
cdata(&self) -> CrateMetadataRef<'a>326     pub fn cdata(&self) -> CrateMetadataRef<'a> {
327         debug_assert!(self.cdata.is_some(), "missing CrateMetadata in DecodeContext");
328         self.cdata.unwrap()
329     }
330 
331     #[inline]
map_encoded_cnum_to_current(&self, cnum: CrateNum) -> CrateNum332     fn map_encoded_cnum_to_current(&self, cnum: CrateNum) -> CrateNum {
333         self.cdata().map_encoded_cnum_to_current(cnum)
334     }
335 
336     #[inline]
read_lazy_offset_then<T>(&mut self, f: impl Fn(NonZeroUsize) -> T) -> T337     fn read_lazy_offset_then<T>(&mut self, f: impl Fn(NonZeroUsize) -> T) -> T {
338         let distance = self.read_usize();
339         let position = match self.lazy_state {
340             LazyState::NoNode => bug!("read_lazy_with_meta: outside of a metadata node"),
341             LazyState::NodeStart(start) => {
342                 let start = start.get();
343                 assert!(distance <= start);
344                 start - distance
345             }
346             LazyState::Previous(last_pos) => last_pos.get() + distance,
347         };
348         let position = NonZeroUsize::new(position).unwrap();
349         self.lazy_state = LazyState::Previous(position);
350         f(position)
351     }
352 
read_lazy<T>(&mut self) -> LazyValue<T>353     fn read_lazy<T>(&mut self) -> LazyValue<T> {
354         self.read_lazy_offset_then(|pos| LazyValue::from_position(pos))
355     }
356 
read_lazy_array<T>(&mut self, len: usize) -> LazyArray<T>357     fn read_lazy_array<T>(&mut self, len: usize) -> LazyArray<T> {
358         self.read_lazy_offset_then(|pos| LazyArray::from_position_and_num_elems(pos, len))
359     }
360 
read_lazy_table<I, T>(&mut self, len: usize) -> LazyTable<I, T>361     fn read_lazy_table<I, T>(&mut self, len: usize) -> LazyTable<I, T> {
362         self.read_lazy_offset_then(|pos| LazyTable::from_position_and_encoded_size(pos, len))
363     }
364 
365     #[inline]
read_raw_bytes(&mut self, len: usize) -> &[u8]366     pub fn read_raw_bytes(&mut self, len: usize) -> &[u8] {
367         self.opaque.read_raw_bytes(len)
368     }
369 }
370 
371 impl<'a, 'tcx> TyDecoder for DecodeContext<'a, 'tcx> {
372     const CLEAR_CROSS_CRATE: bool = true;
373 
374     type I = TyCtxt<'tcx>;
375 
376     #[inline]
interner(&self) -> Self::I377     fn interner(&self) -> Self::I {
378         self.tcx()
379     }
380 
cached_ty_for_shorthand<F>(&mut self, shorthand: usize, or_insert_with: F) -> Ty<'tcx> where F: FnOnce(&mut Self) -> Ty<'tcx>,381     fn cached_ty_for_shorthand<F>(&mut self, shorthand: usize, or_insert_with: F) -> Ty<'tcx>
382     where
383         F: FnOnce(&mut Self) -> Ty<'tcx>,
384     {
385         let tcx = self.tcx();
386 
387         let key = ty::CReaderCacheKey { cnum: Some(self.cdata().cnum), pos: shorthand };
388 
389         if let Some(&ty) = tcx.ty_rcache.borrow().get(&key) {
390             return ty;
391         }
392 
393         let ty = or_insert_with(self);
394         tcx.ty_rcache.borrow_mut().insert(key, ty);
395         ty
396     }
397 
with_position<F, R>(&mut self, pos: usize, f: F) -> R where F: FnOnce(&mut Self) -> R,398     fn with_position<F, R>(&mut self, pos: usize, f: F) -> R
399     where
400         F: FnOnce(&mut Self) -> R,
401     {
402         let new_opaque = MemDecoder::new(self.opaque.data(), pos);
403         let old_opaque = mem::replace(&mut self.opaque, new_opaque);
404         let old_state = mem::replace(&mut self.lazy_state, LazyState::NoNode);
405         let r = f(self);
406         self.opaque = old_opaque;
407         self.lazy_state = old_state;
408         r
409     }
410 
decode_alloc_id(&mut self) -> rustc_middle::mir::interpret::AllocId411     fn decode_alloc_id(&mut self) -> rustc_middle::mir::interpret::AllocId {
412         if let Some(alloc_decoding_session) = self.alloc_decoding_session {
413             alloc_decoding_session.decode_alloc_id(self)
414         } else {
415             bug!("Attempting to decode interpret::AllocId without CrateMetadata")
416         }
417     }
418 }
419 
420 impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for CrateNum {
decode(d: &mut DecodeContext<'a, 'tcx>) -> CrateNum421     fn decode(d: &mut DecodeContext<'a, 'tcx>) -> CrateNum {
422         let cnum = CrateNum::from_u32(d.read_u32());
423         d.map_encoded_cnum_to_current(cnum)
424     }
425 }
426 
427 impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for DefIndex {
decode(d: &mut DecodeContext<'a, 'tcx>) -> DefIndex428     fn decode(d: &mut DecodeContext<'a, 'tcx>) -> DefIndex {
429         DefIndex::from_u32(d.read_u32())
430     }
431 }
432 
433 impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for ExpnIndex {
decode(d: &mut DecodeContext<'a, 'tcx>) -> ExpnIndex434     fn decode(d: &mut DecodeContext<'a, 'tcx>) -> ExpnIndex {
435         ExpnIndex::from_u32(d.read_u32())
436     }
437 }
438 
439 impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for ast::AttrId {
decode(d: &mut DecodeContext<'a, 'tcx>) -> ast::AttrId440     fn decode(d: &mut DecodeContext<'a, 'tcx>) -> ast::AttrId {
441         let sess = d.sess.expect("can't decode AttrId without Session");
442         sess.parse_sess.attr_id_generator.mk_attr_id()
443     }
444 }
445 
446 impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for SyntaxContext {
decode(decoder: &mut DecodeContext<'a, 'tcx>) -> SyntaxContext447     fn decode(decoder: &mut DecodeContext<'a, 'tcx>) -> SyntaxContext {
448         let cdata = decoder.cdata();
449 
450         let Some(sess) = decoder.sess else {
451             bug!("Cannot decode SyntaxContext without Session.\
452                 You need to explicitly pass `(crate_metadata_ref, tcx)` to `decode` instead of just `crate_metadata_ref`.");
453         };
454 
455         let cname = cdata.root.name();
456         rustc_span::hygiene::decode_syntax_context(decoder, &cdata.hygiene_context, |_, id| {
457             debug!("SpecializedDecoder<SyntaxContext>: decoding {}", id);
458             cdata
459                 .root
460                 .syntax_contexts
461                 .get(cdata, id)
462                 .unwrap_or_else(|| panic!("Missing SyntaxContext {id:?} for crate {cname:?}"))
463                 .decode((cdata, sess))
464         })
465     }
466 }
467 
468 impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for ExpnId {
decode(decoder: &mut DecodeContext<'a, 'tcx>) -> ExpnId469     fn decode(decoder: &mut DecodeContext<'a, 'tcx>) -> ExpnId {
470         let local_cdata = decoder.cdata();
471 
472         let Some(sess) = decoder.sess else {
473             bug!("Cannot decode ExpnId without Session. \
474                 You need to explicitly pass `(crate_metadata_ref, tcx)` to `decode` instead of just `crate_metadata_ref`.");
475         };
476 
477         let cnum = CrateNum::decode(decoder);
478         let index = u32::decode(decoder);
479 
480         let expn_id = rustc_span::hygiene::decode_expn_id(cnum, index, |expn_id| {
481             let ExpnId { krate: cnum, local_id: index } = expn_id;
482             // Lookup local `ExpnData`s in our own crate data. Foreign `ExpnData`s
483             // are stored in the owning crate, to avoid duplication.
484             debug_assert_ne!(cnum, LOCAL_CRATE);
485             let crate_data = if cnum == local_cdata.cnum {
486                 local_cdata
487             } else {
488                 local_cdata.cstore.get_crate_data(cnum)
489             };
490             let expn_data = crate_data
491                 .root
492                 .expn_data
493                 .get(crate_data, index)
494                 .unwrap()
495                 .decode((crate_data, sess));
496             let expn_hash = crate_data
497                 .root
498                 .expn_hashes
499                 .get(crate_data, index)
500                 .unwrap()
501                 .decode((crate_data, sess));
502             (expn_data, expn_hash)
503         });
504         expn_id
505     }
506 }
507 
508 impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for Span {
decode(decoder: &mut DecodeContext<'a, 'tcx>) -> Span509     fn decode(decoder: &mut DecodeContext<'a, 'tcx>) -> Span {
510         let ctxt = SyntaxContext::decode(decoder);
511         let tag = u8::decode(decoder);
512 
513         if tag == TAG_PARTIAL_SPAN {
514             return DUMMY_SP.with_ctxt(ctxt);
515         }
516 
517         debug_assert!(tag == TAG_VALID_SPAN_LOCAL || tag == TAG_VALID_SPAN_FOREIGN);
518 
519         let lo = BytePos::decode(decoder);
520         let len = BytePos::decode(decoder);
521         let hi = lo + len;
522 
523         let Some(sess) = decoder.sess else {
524             bug!("Cannot decode Span without Session. \
525                 You need to explicitly pass `(crate_metadata_ref, tcx)` to `decode` instead of just `crate_metadata_ref`.")
526         };
527 
528         // Index of the file in the corresponding crate's list of encoded files.
529         let metadata_index = u32::decode(decoder);
530 
531         // There are two possibilities here:
532         // 1. This is a 'local span', which is located inside a `SourceFile`
533         // that came from this crate. In this case, we use the source map data
534         // encoded in this crate. This branch should be taken nearly all of the time.
535         // 2. This is a 'foreign span', which is located inside a `SourceFile`
536         // that came from a *different* crate (some crate upstream of the one
537         // whose metadata we're looking at). For example, consider this dependency graph:
538         //
539         // A -> B -> C
540         //
541         // Suppose that we're currently compiling crate A, and start deserializing
542         // metadata from crate B. When we deserialize a Span from crate B's metadata,
543         // there are two possibilities:
544         //
545         // 1. The span references a file from crate B. This makes it a 'local' span,
546         // which means that we can use crate B's serialized source map information.
547         // 2. The span references a file from crate C. This makes it a 'foreign' span,
548         // which means we need to use Crate *C* (not crate B) to determine the source
549         // map information. We only record source map information for a file in the
550         // crate that 'owns' it, so deserializing a Span may require us to look at
551         // a transitive dependency.
552         //
553         // When we encode a foreign span, we adjust its 'lo' and 'high' values
554         // to be based on the *foreign* crate (e.g. crate C), not the crate
555         // we are writing metadata for (e.g. crate B). This allows us to
556         // treat the 'local' and 'foreign' cases almost identically during deserialization:
557         // we can call `imported_source_file` for the proper crate, and binary search
558         // through the returned slice using our span.
559         let source_file = if tag == TAG_VALID_SPAN_LOCAL {
560             decoder.cdata().imported_source_file(metadata_index, sess)
561         } else {
562             // When we encode a proc-macro crate, all `Span`s should be encoded
563             // with `TAG_VALID_SPAN_LOCAL`
564             if decoder.cdata().root.is_proc_macro_crate() {
565                 // Decode `CrateNum` as u32 - using `CrateNum::decode` will ICE
566                 // since we don't have `cnum_map` populated.
567                 let cnum = u32::decode(decoder);
568                 panic!(
569                     "Decoding of crate {:?} tried to access proc-macro dep {:?}",
570                     decoder.cdata().root.header.name,
571                     cnum
572                 );
573             }
574             // tag is TAG_VALID_SPAN_FOREIGN, checked by `debug_assert` above
575             let cnum = CrateNum::decode(decoder);
576             debug!(
577                 "SpecializedDecoder<Span>::specialized_decode: loading source files from cnum {:?}",
578                 cnum
579             );
580 
581             let foreign_data = decoder.cdata().cstore.get_crate_data(cnum);
582             foreign_data.imported_source_file(metadata_index, sess)
583         };
584 
585         // Make sure our span is well-formed.
586         debug_assert!(
587             lo + source_file.original_start_pos <= source_file.original_end_pos,
588             "Malformed encoded span: lo={:?} source_file.original_start_pos={:?} source_file.original_end_pos={:?}",
589             lo,
590             source_file.original_start_pos,
591             source_file.original_end_pos
592         );
593 
594         // Make sure we correctly filtered out invalid spans during encoding.
595         debug_assert!(
596             hi + source_file.original_start_pos <= source_file.original_end_pos,
597             "Malformed encoded span: hi={:?} source_file.original_start_pos={:?} source_file.original_end_pos={:?}",
598             hi,
599             source_file.original_start_pos,
600             source_file.original_end_pos
601         );
602 
603         let lo = lo + source_file.translated_source_file.start_pos;
604         let hi = hi + source_file.translated_source_file.start_pos;
605 
606         // Do not try to decode parent for foreign spans.
607         Span::new(lo, hi, ctxt, None)
608     }
609 }
610 
611 impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for Symbol {
decode(d: &mut DecodeContext<'a, 'tcx>) -> Self612     fn decode(d: &mut DecodeContext<'a, 'tcx>) -> Self {
613         let tag = d.read_u8();
614 
615         match tag {
616             SYMBOL_STR => {
617                 let s = d.read_str();
618                 Symbol::intern(s)
619             }
620             SYMBOL_OFFSET => {
621                 // read str offset
622                 let pos = d.read_usize();
623 
624                 // move to str offset and read
625                 d.opaque.with_position(pos, |d| {
626                     let s = d.read_str();
627                     Symbol::intern(s)
628                 })
629             }
630             SYMBOL_PREINTERNED => {
631                 let symbol_index = d.read_u32();
632                 Symbol::new_from_decoded(symbol_index)
633             }
634             _ => unreachable!(),
635         }
636     }
637 }
638 
639 impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for &'tcx [(ty::Clause<'tcx>, Span)] {
decode(d: &mut DecodeContext<'a, 'tcx>) -> Self640     fn decode(d: &mut DecodeContext<'a, 'tcx>) -> Self {
641         ty::codec::RefDecodable::decode(d)
642     }
643 }
644 
645 impl<'a, 'tcx, T> Decodable<DecodeContext<'a, 'tcx>> for LazyValue<T> {
decode(decoder: &mut DecodeContext<'a, 'tcx>) -> Self646     fn decode(decoder: &mut DecodeContext<'a, 'tcx>) -> Self {
647         decoder.read_lazy()
648     }
649 }
650 
651 impl<'a, 'tcx, T> Decodable<DecodeContext<'a, 'tcx>> for LazyArray<T> {
decode(decoder: &mut DecodeContext<'a, 'tcx>) -> Self652     fn decode(decoder: &mut DecodeContext<'a, 'tcx>) -> Self {
653         let len = decoder.read_usize();
654         if len == 0 { LazyArray::default() } else { decoder.read_lazy_array(len) }
655     }
656 }
657 
658 impl<'a, 'tcx, I: Idx, T> Decodable<DecodeContext<'a, 'tcx>> for LazyTable<I, T> {
decode(decoder: &mut DecodeContext<'a, 'tcx>) -> Self659     fn decode(decoder: &mut DecodeContext<'a, 'tcx>) -> Self {
660         let len = decoder.read_usize();
661         decoder.read_lazy_table(len)
662     }
663 }
664 
665 implement_ty_decoder!(DecodeContext<'a, 'tcx>);
666 
667 impl MetadataBlob {
is_compatible(&self) -> bool668     pub(crate) fn is_compatible(&self) -> bool {
669         self.blob().starts_with(METADATA_HEADER)
670     }
671 
get_rustc_version(&self) -> String672     pub(crate) fn get_rustc_version(&self) -> String {
673         LazyValue::<String>::from_position(NonZeroUsize::new(METADATA_HEADER.len() + 4).unwrap())
674             .decode(self)
675     }
676 
get_header(&self) -> CrateHeader677     pub(crate) fn get_header(&self) -> CrateHeader {
678         let slice = &self.blob()[..];
679         let offset = METADATA_HEADER.len();
680 
681         let pos_bytes = slice[offset..][..4].try_into().unwrap();
682         let pos = u32::from_be_bytes(pos_bytes) as usize;
683 
684         LazyValue::<CrateHeader>::from_position(NonZeroUsize::new(pos).unwrap()).decode(self)
685     }
686 
get_root(&self) -> CrateRoot687     pub(crate) fn get_root(&self) -> CrateRoot {
688         let slice = &self.blob()[..];
689         let offset = METADATA_HEADER.len();
690 
691         let pos_bytes = slice[offset..][..4].try_into().unwrap();
692         let pos = u32::from_be_bytes(pos_bytes) as usize;
693 
694         LazyValue::<CrateRoot>::from_position(NonZeroUsize::new(pos).unwrap()).decode(self)
695     }
696 
list_crate_metadata(&self, out: &mut dyn io::Write) -> io::Result<()>697     pub(crate) fn list_crate_metadata(&self, out: &mut dyn io::Write) -> io::Result<()> {
698         let root = self.get_root();
699         writeln!(out, "Crate info:")?;
700         writeln!(out, "name {}{}", root.name(), root.extra_filename)?;
701         writeln!(out, "hash {} stable_crate_id {:?}", root.hash(), root.stable_crate_id)?;
702         writeln!(out, "proc_macro {:?}", root.proc_macro_data.is_some())?;
703         writeln!(out, "=External Dependencies=")?;
704 
705         for (i, dep) in root.crate_deps.decode(self).enumerate() {
706             let CrateDep { name, extra_filename, hash, host_hash, kind, is_private } = dep;
707             let number = i + 1;
708 
709             writeln!(
710                 out,
711                 "{number} {name}{extra_filename} hash {hash} host_hash {host_hash:?} kind {kind:?} {privacy}",
712                 privacy = if is_private { "private" } else { "public" }
713             )?;
714         }
715         write!(out, "\n")?;
716         Ok(())
717     }
718 }
719 
720 impl CrateRoot {
is_proc_macro_crate(&self) -> bool721     pub(crate) fn is_proc_macro_crate(&self) -> bool {
722         self.proc_macro_data.is_some()
723     }
724 
name(&self) -> Symbol725     pub(crate) fn name(&self) -> Symbol {
726         self.header.name
727     }
728 
hash(&self) -> Svh729     pub(crate) fn hash(&self) -> Svh {
730         self.header.hash
731     }
732 
stable_crate_id(&self) -> StableCrateId733     pub(crate) fn stable_crate_id(&self) -> StableCrateId {
734         self.stable_crate_id
735     }
736 
decode_crate_deps<'a>( &self, metadata: &'a MetadataBlob, ) -> impl ExactSizeIterator<Item = CrateDep> + Captures<'a>737     pub(crate) fn decode_crate_deps<'a>(
738         &self,
739         metadata: &'a MetadataBlob,
740     ) -> impl ExactSizeIterator<Item = CrateDep> + Captures<'a> {
741         self.crate_deps.decode(metadata)
742     }
743 }
744 
745 impl<'a, 'tcx> CrateMetadataRef<'a> {
missing(self, descr: &str, id: DefIndex) -> !746     fn missing(self, descr: &str, id: DefIndex) -> ! {
747         bug!("missing `{descr}` for {:?}", self.local_def_id(id))
748     }
749 
raw_proc_macro(self, id: DefIndex) -> &'a ProcMacro750     fn raw_proc_macro(self, id: DefIndex) -> &'a ProcMacro {
751         // DefIndex's in root.proc_macro_data have a one-to-one correspondence
752         // with items in 'raw_proc_macros'.
753         let pos = self
754             .root
755             .proc_macro_data
756             .as_ref()
757             .unwrap()
758             .macros
759             .decode(self)
760             .position(|i| i == id)
761             .unwrap();
762         &self.raw_proc_macros.unwrap()[pos]
763     }
764 
opt_item_name(self, item_index: DefIndex) -> Option<Symbol>765     fn opt_item_name(self, item_index: DefIndex) -> Option<Symbol> {
766         let def_key = self.def_key(item_index);
767         def_key.disambiguated_data.data.get_opt_name().or_else(|| {
768             if def_key.disambiguated_data.data == DefPathData::Ctor {
769                 let parent_index = def_key.parent.expect("no parent for a constructor");
770                 self.def_key(parent_index).disambiguated_data.data.get_opt_name()
771             } else {
772                 None
773             }
774         })
775     }
776 
item_name(self, item_index: DefIndex) -> Symbol777     fn item_name(self, item_index: DefIndex) -> Symbol {
778         self.opt_item_name(item_index).expect("no encoded ident for item")
779     }
780 
opt_item_ident(self, item_index: DefIndex, sess: &Session) -> Option<Ident>781     fn opt_item_ident(self, item_index: DefIndex, sess: &Session) -> Option<Ident> {
782         let name = self.opt_item_name(item_index)?;
783         let span = self
784             .root
785             .tables
786             .def_ident_span
787             .get(self, item_index)
788             .unwrap_or_else(|| self.missing("def_ident_span", item_index))
789             .decode((self, sess));
790         Some(Ident::new(name, span))
791     }
792 
item_ident(self, item_index: DefIndex, sess: &Session) -> Ident793     fn item_ident(self, item_index: DefIndex, sess: &Session) -> Ident {
794         self.opt_item_ident(item_index, sess).expect("no encoded ident for item")
795     }
796 
797     #[inline]
map_encoded_cnum_to_current(self, cnum: CrateNum) -> CrateNum798     pub(super) fn map_encoded_cnum_to_current(self, cnum: CrateNum) -> CrateNum {
799         if cnum == LOCAL_CRATE { self.cnum } else { self.cnum_map[cnum] }
800     }
801 
def_kind(self, item_id: DefIndex) -> DefKind802     fn def_kind(self, item_id: DefIndex) -> DefKind {
803         self.root.tables.opt_def_kind.get(self, item_id).unwrap_or_else(|| {
804             bug!(
805                 "CrateMetadata::def_kind({:?}): id not found, in crate {:?} with number {}",
806                 item_id,
807                 self.root.name(),
808                 self.cnum,
809             )
810         })
811     }
812 
get_span(self, index: DefIndex, sess: &Session) -> Span813     fn get_span(self, index: DefIndex, sess: &Session) -> Span {
814         self.root
815             .tables
816             .def_span
817             .get(self, index)
818             .unwrap_or_else(|| self.missing("def_span", index))
819             .decode((self, sess))
820     }
821 
load_proc_macro(self, id: DefIndex, sess: &Session) -> SyntaxExtension822     fn load_proc_macro(self, id: DefIndex, sess: &Session) -> SyntaxExtension {
823         let (name, kind, helper_attrs) = match *self.raw_proc_macro(id) {
824             ProcMacro::CustomDerive { trait_name, attributes, client } => {
825                 let helper_attrs =
826                     attributes.iter().cloned().map(Symbol::intern).collect::<Vec<_>>();
827                 (
828                     trait_name,
829                     SyntaxExtensionKind::Derive(Box::new(DeriveProcMacro { client })),
830                     helper_attrs,
831                 )
832             }
833             ProcMacro::Attr { name, client } => {
834                 (name, SyntaxExtensionKind::Attr(Box::new(AttrProcMacro { client })), Vec::new())
835             }
836             ProcMacro::Bang { name, client } => {
837                 (name, SyntaxExtensionKind::Bang(Box::new(BangProcMacro { client })), Vec::new())
838             }
839         };
840 
841         let attrs: Vec<_> = self.get_item_attrs(id, sess).collect();
842         SyntaxExtension::new(
843             sess,
844             kind,
845             self.get_span(id, sess),
846             helper_attrs,
847             self.root.edition,
848             Symbol::intern(name),
849             &attrs,
850         )
851     }
852 
get_explicit_item_bounds( self, index: DefIndex, tcx: TyCtxt<'tcx>, ) -> ty::EarlyBinder<&'tcx [(ty::Clause<'tcx>, Span)]>853     fn get_explicit_item_bounds(
854         self,
855         index: DefIndex,
856         tcx: TyCtxt<'tcx>,
857     ) -> ty::EarlyBinder<&'tcx [(ty::Clause<'tcx>, Span)]> {
858         let lazy = self.root.tables.explicit_item_bounds.get(self, index);
859         let output = if lazy.is_default() {
860             &mut []
861         } else {
862             tcx.arena.alloc_from_iter(lazy.decode((self, tcx)))
863         };
864         ty::EarlyBinder::bind(&*output)
865     }
866 
get_variant( self, kind: DefKind, index: DefIndex, parent_did: DefId, ) -> (VariantIdx, ty::VariantDef)867     fn get_variant(
868         self,
869         kind: DefKind,
870         index: DefIndex,
871         parent_did: DefId,
872     ) -> (VariantIdx, ty::VariantDef) {
873         let adt_kind = match kind {
874             DefKind::Variant => ty::AdtKind::Enum,
875             DefKind::Struct => ty::AdtKind::Struct,
876             DefKind::Union => ty::AdtKind::Union,
877             _ => bug!(),
878         };
879 
880         let data = self.root.tables.variant_data.get(self, index).unwrap().decode(self);
881 
882         let variant_did =
883             if adt_kind == ty::AdtKind::Enum { Some(self.local_def_id(index)) } else { None };
884         let ctor = data.ctor.map(|(kind, index)| (kind, self.local_def_id(index)));
885 
886         (
887             data.idx,
888             ty::VariantDef::new(
889                 self.item_name(index),
890                 variant_did,
891                 ctor,
892                 data.discr,
893                 self.get_associated_item_or_field_def_ids(index)
894                     .map(|did| ty::FieldDef {
895                         did,
896                         name: self.item_name(did.index),
897                         vis: self.get_visibility(did.index),
898                     })
899                     .collect(),
900                 adt_kind,
901                 parent_did,
902                 false,
903                 data.is_non_exhaustive,
904             ),
905         )
906     }
907 
get_adt_def(self, item_id: DefIndex, tcx: TyCtxt<'tcx>) -> ty::AdtDef<'tcx>908     fn get_adt_def(self, item_id: DefIndex, tcx: TyCtxt<'tcx>) -> ty::AdtDef<'tcx> {
909         let kind = self.def_kind(item_id);
910         let did = self.local_def_id(item_id);
911 
912         let adt_kind = match kind {
913             DefKind::Enum => ty::AdtKind::Enum,
914             DefKind::Struct => ty::AdtKind::Struct,
915             DefKind::Union => ty::AdtKind::Union,
916             _ => bug!("get_adt_def called on a non-ADT {:?}", did),
917         };
918         let repr = self.root.tables.repr_options.get(self, item_id).unwrap().decode(self);
919 
920         let mut variants: Vec<_> = if let ty::AdtKind::Enum = adt_kind {
921             self.root
922                 .tables
923                 .module_children_non_reexports
924                 .get(self, item_id)
925                 .expect("variants are not encoded for an enum")
926                 .decode(self)
927                 .filter_map(|index| {
928                     let kind = self.def_kind(index);
929                     match kind {
930                         DefKind::Ctor(..) => None,
931                         _ => Some(self.get_variant(kind, index, did)),
932                     }
933                 })
934                 .collect()
935         } else {
936             std::iter::once(self.get_variant(kind, item_id, did)).collect()
937         };
938 
939         variants.sort_by_key(|(idx, _)| *idx);
940 
941         tcx.mk_adt_def(
942             did,
943             adt_kind,
944             variants.into_iter().map(|(_, variant)| variant).collect(),
945             repr,
946         )
947     }
948 
get_visibility(self, id: DefIndex) -> Visibility<DefId>949     fn get_visibility(self, id: DefIndex) -> Visibility<DefId> {
950         self.root
951             .tables
952             .visibility
953             .get(self, id)
954             .unwrap_or_else(|| self.missing("visibility", id))
955             .decode(self)
956             .map_id(|index| self.local_def_id(index))
957     }
958 
get_trait_item_def_id(self, id: DefIndex) -> Option<DefId>959     fn get_trait_item_def_id(self, id: DefIndex) -> Option<DefId> {
960         self.root.tables.trait_item_def_id.get(self, id).map(|d| d.decode_from_cdata(self))
961     }
962 
get_expn_that_defined(self, id: DefIndex, sess: &Session) -> ExpnId963     fn get_expn_that_defined(self, id: DefIndex, sess: &Session) -> ExpnId {
964         self.root
965             .tables
966             .expn_that_defined
967             .get(self, id)
968             .unwrap_or_else(|| self.missing("expn_that_defined", id))
969             .decode((self, sess))
970     }
971 
get_debugger_visualizers(self) -> Vec<DebuggerVisualizerFile>972     fn get_debugger_visualizers(self) -> Vec<DebuggerVisualizerFile> {
973         self.root.debugger_visualizers.decode(self).collect::<Vec<_>>()
974     }
975 
976     /// Iterates over all the stability attributes in the given crate.
get_lib_features(self, tcx: TyCtxt<'tcx>) -> &'tcx [(Symbol, Option<Symbol>)]977     fn get_lib_features(self, tcx: TyCtxt<'tcx>) -> &'tcx [(Symbol, Option<Symbol>)] {
978         tcx.arena.alloc_from_iter(self.root.lib_features.decode(self))
979     }
980 
981     /// Iterates over the stability implications in the given crate (when a `#[unstable]` attribute
982     /// has an `implied_by` meta item, then the mapping from the implied feature to the actual
983     /// feature is a stability implication).
get_stability_implications(self, tcx: TyCtxt<'tcx>) -> &'tcx [(Symbol, Symbol)]984     fn get_stability_implications(self, tcx: TyCtxt<'tcx>) -> &'tcx [(Symbol, Symbol)] {
985         tcx.arena.alloc_from_iter(self.root.stability_implications.decode(self))
986     }
987 
988     /// Iterates over the language items in the given crate.
get_lang_items(self, tcx: TyCtxt<'tcx>) -> &'tcx [(DefId, LangItem)]989     fn get_lang_items(self, tcx: TyCtxt<'tcx>) -> &'tcx [(DefId, LangItem)] {
990         tcx.arena.alloc_from_iter(
991             self.root
992                 .lang_items
993                 .decode(self)
994                 .map(move |(def_index, index)| (self.local_def_id(def_index), index)),
995         )
996     }
997 
get_stripped_cfg_items(self, cnum: CrateNum, tcx: TyCtxt<'tcx>) -> &'tcx [StrippedCfgItem]998     fn get_stripped_cfg_items(self, cnum: CrateNum, tcx: TyCtxt<'tcx>) -> &'tcx [StrippedCfgItem] {
999         let item_names = self
1000             .root
1001             .stripped_cfg_items
1002             .decode((self, tcx))
1003             .map(|item| item.map_mod_id(|index| DefId { krate: cnum, index }));
1004         tcx.arena.alloc_from_iter(item_names)
1005     }
1006 
1007     /// Iterates over the diagnostic items in the given crate.
get_diagnostic_items(self) -> DiagnosticItems1008     fn get_diagnostic_items(self) -> DiagnosticItems {
1009         let mut id_to_name = FxHashMap::default();
1010         let name_to_id = self
1011             .root
1012             .diagnostic_items
1013             .decode(self)
1014             .map(|(name, def_index)| {
1015                 let id = self.local_def_id(def_index);
1016                 id_to_name.insert(id, name);
1017                 (name, id)
1018             })
1019             .collect();
1020         DiagnosticItems { id_to_name, name_to_id }
1021     }
1022 
get_mod_child(self, id: DefIndex, sess: &Session) -> ModChild1023     fn get_mod_child(self, id: DefIndex, sess: &Session) -> ModChild {
1024         let ident = self.item_ident(id, sess);
1025         let res = Res::Def(self.def_kind(id), self.local_def_id(id));
1026         let vis = self.get_visibility(id);
1027 
1028         ModChild { ident, res, vis, reexport_chain: Default::default() }
1029     }
1030 
1031     /// Iterates over all named children of the given module,
1032     /// including both proper items and reexports.
1033     /// Module here is understood in name resolution sense - it can be a `mod` item,
1034     /// or a crate root, or an enum, or a trait.
get_module_children( self, id: DefIndex, sess: &'a Session, ) -> impl Iterator<Item = ModChild> + 'a1035     fn get_module_children(
1036         self,
1037         id: DefIndex,
1038         sess: &'a Session,
1039     ) -> impl Iterator<Item = ModChild> + 'a {
1040         iter::from_generator(move || {
1041             if let Some(data) = &self.root.proc_macro_data {
1042                 // If we are loading as a proc macro, we want to return
1043                 // the view of this crate as a proc macro crate.
1044                 if id == CRATE_DEF_INDEX {
1045                     for child_index in data.macros.decode(self) {
1046                         yield self.get_mod_child(child_index, sess);
1047                     }
1048                 }
1049             } else {
1050                 // Iterate over all children.
1051                 let non_reexports = self.root.tables.module_children_non_reexports.get(self, id);
1052                 for child_index in non_reexports.unwrap().decode(self) {
1053                     yield self.get_mod_child(child_index, sess);
1054                 }
1055 
1056                 let reexports = self.root.tables.module_children_reexports.get(self, id);
1057                 if !reexports.is_default() {
1058                     for reexport in reexports.decode((self, sess)) {
1059                         yield reexport;
1060                     }
1061                 }
1062             }
1063         })
1064     }
1065 
is_ctfe_mir_available(self, id: DefIndex) -> bool1066     fn is_ctfe_mir_available(self, id: DefIndex) -> bool {
1067         self.root.tables.mir_for_ctfe.get(self, id).is_some()
1068     }
1069 
is_item_mir_available(self, id: DefIndex) -> bool1070     fn is_item_mir_available(self, id: DefIndex) -> bool {
1071         self.root.tables.optimized_mir.get(self, id).is_some()
1072     }
1073 
get_fn_has_self_parameter(self, id: DefIndex, sess: &'a Session) -> bool1074     fn get_fn_has_self_parameter(self, id: DefIndex, sess: &'a Session) -> bool {
1075         self.root
1076             .tables
1077             .fn_arg_names
1078             .get(self, id)
1079             .expect("argument names not encoded for a function")
1080             .decode((self, sess))
1081             .nth(0)
1082             .is_some_and(|ident| ident.name == kw::SelfLower)
1083     }
1084 
get_associated_item_or_field_def_ids( self, id: DefIndex, ) -> impl Iterator<Item = DefId> + 'a1085     fn get_associated_item_or_field_def_ids(
1086         self,
1087         id: DefIndex,
1088     ) -> impl Iterator<Item = DefId> + 'a {
1089         self.root
1090             .tables
1091             .associated_item_or_field_def_ids
1092             .get(self, id)
1093             .unwrap_or_else(|| self.missing("associated_item_or_field_def_ids", id))
1094             .decode(self)
1095             .map(move |child_index| self.local_def_id(child_index))
1096     }
1097 
get_associated_item(self, id: DefIndex, sess: &'a Session) -> ty::AssocItem1098     fn get_associated_item(self, id: DefIndex, sess: &'a Session) -> ty::AssocItem {
1099         let name = if self.root.tables.opt_rpitit_info.get(self, id).is_some() {
1100             kw::Empty
1101         } else {
1102             self.item_name(id)
1103         };
1104         let (kind, has_self) = match self.def_kind(id) {
1105             DefKind::AssocConst => (ty::AssocKind::Const, false),
1106             DefKind::AssocFn => (ty::AssocKind::Fn, self.get_fn_has_self_parameter(id, sess)),
1107             DefKind::AssocTy => (ty::AssocKind::Type, false),
1108             _ => bug!("cannot get associated-item of `{:?}`", self.def_key(id)),
1109         };
1110         let container = self.root.tables.assoc_container.get(self, id).unwrap();
1111         let opt_rpitit_info =
1112             self.root.tables.opt_rpitit_info.get(self, id).map(|d| d.decode(self));
1113 
1114         ty::AssocItem {
1115             name,
1116             kind,
1117             def_id: self.local_def_id(id),
1118             trait_item_def_id: self.get_trait_item_def_id(id),
1119             container,
1120             fn_has_self_parameter: has_self,
1121             opt_rpitit_info,
1122         }
1123     }
1124 
get_ctor(self, node_id: DefIndex) -> Option<(CtorKind, DefId)>1125     fn get_ctor(self, node_id: DefIndex) -> Option<(CtorKind, DefId)> {
1126         match self.def_kind(node_id) {
1127             DefKind::Struct | DefKind::Variant => {
1128                 let vdata = self.root.tables.variant_data.get(self, node_id).unwrap().decode(self);
1129                 vdata.ctor.map(|(kind, index)| (kind, self.local_def_id(index)))
1130             }
1131             _ => None,
1132         }
1133     }
1134 
get_item_attrs( self, id: DefIndex, sess: &'a Session, ) -> impl Iterator<Item = ast::Attribute> + 'a1135     fn get_item_attrs(
1136         self,
1137         id: DefIndex,
1138         sess: &'a Session,
1139     ) -> impl Iterator<Item = ast::Attribute> + 'a {
1140         self.root
1141             .tables
1142             .attributes
1143             .get(self, id)
1144             .unwrap_or_else(|| {
1145                 // Structure and variant constructors don't have any attributes encoded for them,
1146                 // but we assume that someone passing a constructor ID actually wants to look at
1147                 // the attributes on the corresponding struct or variant.
1148                 let def_key = self.def_key(id);
1149                 assert_eq!(def_key.disambiguated_data.data, DefPathData::Ctor);
1150                 let parent_id = def_key.parent.expect("no parent for a constructor");
1151                 self.root
1152                     .tables
1153                     .attributes
1154                     .get(self, parent_id)
1155                     .expect("no encoded attributes for a structure or variant")
1156             })
1157             .decode((self, sess))
1158     }
1159 
get_inherent_implementations_for_type( self, tcx: TyCtxt<'tcx>, id: DefIndex, ) -> &'tcx [DefId]1160     fn get_inherent_implementations_for_type(
1161         self,
1162         tcx: TyCtxt<'tcx>,
1163         id: DefIndex,
1164     ) -> &'tcx [DefId] {
1165         tcx.arena.alloc_from_iter(
1166             self.root
1167                 .tables
1168                 .inherent_impls
1169                 .get(self, id)
1170                 .decode(self)
1171                 .map(|index| self.local_def_id(index)),
1172         )
1173     }
1174 
1175     /// Decodes all traits in the crate (for rustdoc and rustc diagnostics).
get_traits(self) -> impl Iterator<Item = DefId> + 'a1176     fn get_traits(self) -> impl Iterator<Item = DefId> + 'a {
1177         self.root.traits.decode(self).map(move |index| self.local_def_id(index))
1178     }
1179 
1180     /// Decodes all trait impls in the crate (for rustdoc).
get_trait_impls(self) -> impl Iterator<Item = DefId> + 'a1181     fn get_trait_impls(self) -> impl Iterator<Item = DefId> + 'a {
1182         self.cdata.trait_impls.values().flat_map(move |impls| {
1183             impls.decode(self).map(move |(impl_index, _)| self.local_def_id(impl_index))
1184         })
1185     }
1186 
get_incoherent_impls(self, tcx: TyCtxt<'tcx>, simp: SimplifiedType) -> &'tcx [DefId]1187     fn get_incoherent_impls(self, tcx: TyCtxt<'tcx>, simp: SimplifiedType) -> &'tcx [DefId] {
1188         if let Some(impls) = self.cdata.incoherent_impls.get(&simp) {
1189             tcx.arena.alloc_from_iter(impls.decode(self).map(|idx| self.local_def_id(idx)))
1190         } else {
1191             &[]
1192         }
1193     }
1194 
get_implementations_of_trait( self, tcx: TyCtxt<'tcx>, trait_def_id: DefId, ) -> &'tcx [(DefId, Option<SimplifiedType>)]1195     fn get_implementations_of_trait(
1196         self,
1197         tcx: TyCtxt<'tcx>,
1198         trait_def_id: DefId,
1199     ) -> &'tcx [(DefId, Option<SimplifiedType>)] {
1200         if self.trait_impls.is_empty() {
1201             return &[];
1202         }
1203 
1204         // Do a reverse lookup beforehand to avoid touching the crate_num
1205         // hash map in the loop below.
1206         let key = match self.reverse_translate_def_id(trait_def_id) {
1207             Some(def_id) => (def_id.krate.as_u32(), def_id.index),
1208             None => return &[],
1209         };
1210 
1211         if let Some(impls) = self.trait_impls.get(&key) {
1212             tcx.arena.alloc_from_iter(
1213                 impls
1214                     .decode(self)
1215                     .map(|(idx, simplified_self_ty)| (self.local_def_id(idx), simplified_self_ty)),
1216             )
1217         } else {
1218             &[]
1219         }
1220     }
1221 
get_native_libraries(self, sess: &'a Session) -> impl Iterator<Item = NativeLib> + 'a1222     fn get_native_libraries(self, sess: &'a Session) -> impl Iterator<Item = NativeLib> + 'a {
1223         self.root.native_libraries.decode((self, sess))
1224     }
1225 
get_proc_macro_quoted_span(self, index: usize, sess: &Session) -> Span1226     fn get_proc_macro_quoted_span(self, index: usize, sess: &Session) -> Span {
1227         self.root
1228             .tables
1229             .proc_macro_quoted_spans
1230             .get(self, index)
1231             .unwrap_or_else(|| panic!("Missing proc macro quoted span: {index:?}"))
1232             .decode((self, sess))
1233     }
1234 
get_foreign_modules(self, sess: &'a Session) -> impl Iterator<Item = ForeignModule> + '_1235     fn get_foreign_modules(self, sess: &'a Session) -> impl Iterator<Item = ForeignModule> + '_ {
1236         self.root.foreign_modules.decode((self, sess))
1237     }
1238 
get_dylib_dependency_formats( self, tcx: TyCtxt<'tcx>, ) -> &'tcx [(CrateNum, LinkagePreference)]1239     fn get_dylib_dependency_formats(
1240         self,
1241         tcx: TyCtxt<'tcx>,
1242     ) -> &'tcx [(CrateNum, LinkagePreference)] {
1243         tcx.arena.alloc_from_iter(
1244             self.root.dylib_dependency_formats.decode(self).enumerate().flat_map(|(i, link)| {
1245                 let cnum = CrateNum::new(i + 1);
1246                 link.map(|link| (self.cnum_map[cnum], link))
1247             }),
1248         )
1249     }
1250 
get_missing_lang_items(self, tcx: TyCtxt<'tcx>) -> &'tcx [LangItem]1251     fn get_missing_lang_items(self, tcx: TyCtxt<'tcx>) -> &'tcx [LangItem] {
1252         tcx.arena.alloc_from_iter(self.root.lang_items_missing.decode(self))
1253     }
1254 
exported_symbols( self, tcx: TyCtxt<'tcx>, ) -> &'tcx [(ExportedSymbol<'tcx>, SymbolExportInfo)]1255     fn exported_symbols(
1256         self,
1257         tcx: TyCtxt<'tcx>,
1258     ) -> &'tcx [(ExportedSymbol<'tcx>, SymbolExportInfo)] {
1259         tcx.arena.alloc_from_iter(self.root.exported_symbols.decode((self, tcx)))
1260     }
1261 
get_macro(self, id: DefIndex, sess: &Session) -> ast::MacroDef1262     fn get_macro(self, id: DefIndex, sess: &Session) -> ast::MacroDef {
1263         match self.def_kind(id) {
1264             DefKind::Macro(_) => {
1265                 let macro_rules = self.root.tables.is_macro_rules.get(self, id);
1266                 let body =
1267                     self.root.tables.macro_definition.get(self, id).unwrap().decode((self, sess));
1268                 ast::MacroDef { macro_rules, body: ast::ptr::P(body) }
1269             }
1270             _ => bug!(),
1271         }
1272     }
1273 
1274     #[inline]
def_key(self, index: DefIndex) -> DefKey1275     fn def_key(self, index: DefIndex) -> DefKey {
1276         *self
1277             .def_key_cache
1278             .lock()
1279             .entry(index)
1280             .or_insert_with(|| self.root.tables.def_keys.get(self, index).unwrap().decode(self))
1281     }
1282 
1283     // Returns the path leading to the thing with this `id`.
def_path(self, id: DefIndex) -> DefPath1284     fn def_path(self, id: DefIndex) -> DefPath {
1285         debug!("def_path(cnum={:?}, id={:?})", self.cnum, id);
1286         DefPath::make(self.cnum, id, |parent| self.def_key(parent))
1287     }
1288 
def_path_hash_unlocked( self, index: DefIndex, def_path_hashes: &mut FxHashMap<DefIndex, DefPathHash>, ) -> DefPathHash1289     fn def_path_hash_unlocked(
1290         self,
1291         index: DefIndex,
1292         def_path_hashes: &mut FxHashMap<DefIndex, DefPathHash>,
1293     ) -> DefPathHash {
1294         *def_path_hashes
1295             .entry(index)
1296             .or_insert_with(|| self.root.tables.def_path_hashes.get(self, index))
1297     }
1298 
1299     #[inline]
def_path_hash(self, index: DefIndex) -> DefPathHash1300     fn def_path_hash(self, index: DefIndex) -> DefPathHash {
1301         let mut def_path_hashes = self.def_path_hash_cache.lock();
1302         self.def_path_hash_unlocked(index, &mut def_path_hashes)
1303     }
1304 
1305     #[inline]
def_path_hash_to_def_index(self, hash: DefPathHash) -> DefIndex1306     fn def_path_hash_to_def_index(self, hash: DefPathHash) -> DefIndex {
1307         self.def_path_hash_map.def_path_hash_to_def_index(&hash)
1308     }
1309 
expn_hash_to_expn_id(self, sess: &Session, index_guess: u32, hash: ExpnHash) -> ExpnId1310     fn expn_hash_to_expn_id(self, sess: &Session, index_guess: u32, hash: ExpnHash) -> ExpnId {
1311         debug_assert_eq!(ExpnId::from_hash(hash), None);
1312         let index_guess = ExpnIndex::from_u32(index_guess);
1313         let old_hash = self.root.expn_hashes.get(self, index_guess).map(|lazy| lazy.decode(self));
1314 
1315         let index = if old_hash == Some(hash) {
1316             // Fast path: the expn and its index is unchanged from the
1317             // previous compilation session. There is no need to decode anything
1318             // else.
1319             index_guess
1320         } else {
1321             // Slow path: We need to find out the new `DefIndex` of the provided
1322             // `DefPathHash`, if its still exists. This requires decoding every `DefPathHash`
1323             // stored in this crate.
1324             let map = self.cdata.expn_hash_map.get_or_init(|| {
1325                 let end_id = self.root.expn_hashes.size() as u32;
1326                 let mut map =
1327                     UnhashMap::with_capacity_and_hasher(end_id as usize, Default::default());
1328                 for i in 0..end_id {
1329                     let i = ExpnIndex::from_u32(i);
1330                     if let Some(hash) = self.root.expn_hashes.get(self, i) {
1331                         map.insert(hash.decode(self), i);
1332                     }
1333                 }
1334                 map
1335             });
1336             map[&hash]
1337         };
1338 
1339         let data = self.root.expn_data.get(self, index).unwrap().decode((self, sess));
1340         rustc_span::hygiene::register_expn_id(self.cnum, index, data, hash)
1341     }
1342 
1343     /// Imports the source_map from an external crate into the source_map of the crate
1344     /// currently being compiled (the "local crate").
1345     ///
1346     /// The import algorithm works analogous to how AST items are inlined from an
1347     /// external crate's metadata:
1348     /// For every SourceFile in the external source_map an 'inline' copy is created in the
1349     /// local source_map. The correspondence relation between external and local
1350     /// SourceFiles is recorded in the `ImportedSourceFile` objects returned from this
1351     /// function. When an item from an external crate is later inlined into this
1352     /// crate, this correspondence information is used to translate the span
1353     /// information of the inlined item so that it refers the correct positions in
1354     /// the local source_map (see `<decoder::DecodeContext as SpecializedDecoder<Span>>`).
1355     ///
1356     /// The import algorithm in the function below will reuse SourceFiles already
1357     /// existing in the local source_map. For example, even if the SourceFile of some
1358     /// source file of libstd gets imported many times, there will only ever be
1359     /// one SourceFile object for the corresponding file in the local source_map.
1360     ///
1361     /// Note that imported SourceFiles do not actually contain the source code of the
1362     /// file they represent, just information about length, line breaks, and
1363     /// multibyte characters. This information is enough to generate valid debuginfo
1364     /// for items inlined from other crates.
1365     ///
1366     /// Proc macro crates don't currently export spans, so this function does not have
1367     /// to work for them.
imported_source_file(self, source_file_index: u32, sess: &Session) -> ImportedSourceFile1368     fn imported_source_file(self, source_file_index: u32, sess: &Session) -> ImportedSourceFile {
1369         fn filter<'a>(sess: &Session, path: Option<&'a Path>) -> Option<&'a Path> {
1370             path.filter(|_| {
1371                 // Only spend time on further checks if we have what to translate *to*.
1372                 sess.opts.real_rust_source_base_dir.is_some()
1373                 // Some tests need the translation to be always skipped.
1374                 && sess.opts.unstable_opts.translate_remapped_path_to_local_path
1375             })
1376             .filter(|virtual_dir| {
1377                 // Don't translate away `/rustc/$hash` if we're still remapping to it,
1378                 // since that means we're still building `std`/`rustc` that need it,
1379                 // and we don't want the real path to leak into codegen/debuginfo.
1380                 !sess.opts.remap_path_prefix.iter().any(|(_from, to)| to == virtual_dir)
1381             })
1382         }
1383 
1384         // Translate the virtual `/rustc/$hash` prefix back to a real directory
1385         // that should hold actual sources, where possible.
1386         //
1387         // NOTE: if you update this, you might need to also update bootstrap's code for generating
1388         // the `rust-src` component in `Src::run` in `src/bootstrap/dist.rs`.
1389         let virtual_rust_source_base_dir = [
1390             filter(sess, option_env!("CFG_VIRTUAL_RUST_SOURCE_BASE_DIR").map(Path::new)),
1391             filter(sess, sess.opts.unstable_opts.simulate_remapped_rust_src_base.as_deref()),
1392         ];
1393 
1394         let try_to_translate_virtual_to_real = |name: &mut rustc_span::FileName| {
1395             debug!(
1396                 "try_to_translate_virtual_to_real(name={:?}): \
1397                  virtual_rust_source_base_dir={:?}, real_rust_source_base_dir={:?}",
1398                 name, virtual_rust_source_base_dir, sess.opts.real_rust_source_base_dir,
1399             );
1400 
1401             for virtual_dir in virtual_rust_source_base_dir.iter().flatten() {
1402                 if let Some(real_dir) = &sess.opts.real_rust_source_base_dir {
1403                     if let rustc_span::FileName::Real(old_name) = name {
1404                         if let rustc_span::RealFileName::Remapped { local_path: _, virtual_name } =
1405                             old_name
1406                         {
1407                             if let Ok(rest) = virtual_name.strip_prefix(virtual_dir) {
1408                                 let virtual_name = virtual_name.clone();
1409 
1410                                 // The std library crates are in
1411                                 // `$sysroot/lib/rustlib/src/rust/library`, whereas other crates
1412                                 // may be in `$sysroot/lib/rustlib/src/rust/` directly. So we
1413                                 // detect crates from the std libs and handle them specially.
1414                                 const STD_LIBS: &[&str] = &[
1415                                     "core",
1416                                     "alloc",
1417                                     "std",
1418                                     "test",
1419                                     "term",
1420                                     "unwind",
1421                                     "proc_macro",
1422                                     "panic_abort",
1423                                     "panic_unwind",
1424                                     "profiler_builtins",
1425                                     "rtstartup",
1426                                     "rustc-std-workspace-core",
1427                                     "rustc-std-workspace-alloc",
1428                                     "rustc-std-workspace-std",
1429                                     "backtrace",
1430                                 ];
1431                                 let is_std_lib = STD_LIBS.iter().any(|l| rest.starts_with(l));
1432 
1433                                 let new_path = if is_std_lib {
1434                                     real_dir.join("library").join(rest)
1435                                 } else {
1436                                     real_dir.join(rest)
1437                                 };
1438 
1439                                 debug!(
1440                                     "try_to_translate_virtual_to_real: `{}` -> `{}`",
1441                                     virtual_name.display(),
1442                                     new_path.display(),
1443                                 );
1444                                 let new_name = rustc_span::RealFileName::Remapped {
1445                                     local_path: Some(new_path),
1446                                     virtual_name,
1447                                 };
1448                                 *old_name = new_name;
1449                             }
1450                         }
1451                     }
1452                 }
1453             }
1454         };
1455 
1456         let mut import_info = self.cdata.source_map_import_info.lock();
1457         for _ in import_info.len()..=(source_file_index as usize) {
1458             import_info.push(None);
1459         }
1460         import_info[source_file_index as usize]
1461             .get_or_insert_with(|| {
1462                 let source_file_to_import = self
1463                     .root
1464                     .source_map
1465                     .get(self, source_file_index)
1466                     .expect("missing source file")
1467                     .decode(self);
1468 
1469                 // We can't reuse an existing SourceFile, so allocate a new one
1470                 // containing the information we need.
1471                 let rustc_span::SourceFile {
1472                     mut name,
1473                     src_hash,
1474                     start_pos,
1475                     end_pos,
1476                     lines,
1477                     multibyte_chars,
1478                     non_narrow_chars,
1479                     normalized_pos,
1480                     name_hash,
1481                     ..
1482                 } = source_file_to_import;
1483 
1484                 // If this file is under $sysroot/lib/rustlib/src/
1485                 // and the user wish to simulate remapping with -Z simulate-remapped-rust-src-base,
1486                 // then we change `name` to a similar state as if the rust was bootstrapped
1487                 // with `remap-debuginfo = true`.
1488                 // This is useful for testing so that tests about the effects of
1489                 // `try_to_translate_virtual_to_real` don't have to worry about how the
1490                 // compiler is bootstrapped.
1491                 if let Some(virtual_dir) = &sess.opts.unstable_opts.simulate_remapped_rust_src_base
1492                 && let Some(real_dir) = &sess.opts.real_rust_source_base_dir
1493                 && let rustc_span::FileName::Real(ref mut old_name) = name {
1494                     let relative_path = match old_name {
1495                         rustc_span::RealFileName::LocalPath(local) => local.strip_prefix(real_dir).ok(),
1496                         rustc_span::RealFileName::Remapped { virtual_name, .. } => {
1497                             option_env!("CFG_VIRTUAL_RUST_SOURCE_BASE_DIR").and_then(|virtual_dir| virtual_name.strip_prefix(virtual_dir).ok())
1498                         }
1499                     };
1500                     debug!(?relative_path, ?virtual_dir, "simulate_remapped_rust_src_base");
1501                     for subdir in ["library", "compiler"] {
1502                         if let Some(rest) = relative_path.and_then(|p| p.strip_prefix(subdir).ok()) {
1503                             *old_name = rustc_span::RealFileName::Remapped {
1504                                 local_path: None, // FIXME: maybe we should preserve this?
1505                                 virtual_name: virtual_dir.join(subdir).join(rest),
1506                             };
1507                             break;
1508                         }
1509                     }
1510                 }
1511 
1512                 // If this file's path has been remapped to `/rustc/$hash`,
1513                 // we might be able to reverse that (also see comments above,
1514                 // on `try_to_translate_virtual_to_real`).
1515                 try_to_translate_virtual_to_real(&mut name);
1516 
1517                 let source_length = (end_pos - start_pos).to_usize();
1518 
1519                 let local_version = sess.source_map().new_imported_source_file(
1520                     name,
1521                     src_hash,
1522                     name_hash,
1523                     source_length,
1524                     self.cnum,
1525                     lines,
1526                     multibyte_chars,
1527                     non_narrow_chars,
1528                     normalized_pos,
1529                     start_pos,
1530                     source_file_index,
1531                 );
1532                 debug!(
1533                     "CrateMetaData::imported_source_files alloc \
1534                          source_file {:?} original (start_pos {:?} end_pos {:?}) \
1535                          translated (start_pos {:?} end_pos {:?})",
1536                     local_version.name,
1537                     start_pos,
1538                     end_pos,
1539                     local_version.start_pos,
1540                     local_version.end_pos
1541                 );
1542 
1543                 ImportedSourceFile {
1544                     original_start_pos: start_pos,
1545                     original_end_pos: end_pos,
1546                     translated_source_file: local_version,
1547                 }
1548             })
1549             .clone()
1550     }
1551 
get_generator_diagnostic_data( self, tcx: TyCtxt<'tcx>, id: DefIndex, ) -> Option<GeneratorDiagnosticData<'tcx>>1552     fn get_generator_diagnostic_data(
1553         self,
1554         tcx: TyCtxt<'tcx>,
1555         id: DefIndex,
1556     ) -> Option<GeneratorDiagnosticData<'tcx>> {
1557         self.root
1558             .tables
1559             .generator_diagnostic_data
1560             .get(self, id)
1561             .map(|param| param.decode((self, tcx)))
1562             .map(|generator_data| GeneratorDiagnosticData {
1563                 generator_interior_types: generator_data.generator_interior_types,
1564                 hir_owner: generator_data.hir_owner,
1565                 nodes_types: generator_data.nodes_types,
1566                 adjustments: generator_data.adjustments,
1567             })
1568     }
1569 
get_attr_flags(self, index: DefIndex) -> AttrFlags1570     fn get_attr_flags(self, index: DefIndex) -> AttrFlags {
1571         self.root.tables.attr_flags.get(self, index)
1572     }
1573 
get_is_intrinsic(self, index: DefIndex) -> bool1574     fn get_is_intrinsic(self, index: DefIndex) -> bool {
1575         self.root.tables.is_intrinsic.get(self, index)
1576     }
1577 
get_doc_link_resolutions(self, index: DefIndex) -> DocLinkResMap1578     fn get_doc_link_resolutions(self, index: DefIndex) -> DocLinkResMap {
1579         self.root
1580             .tables
1581             .doc_link_resolutions
1582             .get(self, index)
1583             .expect("no resolutions for a doc link")
1584             .decode(self)
1585     }
1586 
get_doc_link_traits_in_scope(self, index: DefIndex) -> impl Iterator<Item = DefId> + 'a1587     fn get_doc_link_traits_in_scope(self, index: DefIndex) -> impl Iterator<Item = DefId> + 'a {
1588         self.root
1589             .tables
1590             .doc_link_traits_in_scope
1591             .get(self, index)
1592             .expect("no traits in scope for a doc link")
1593             .decode(self)
1594     }
1595 }
1596 
1597 impl CrateMetadata {
new( sess: &Session, cstore: &CStore, blob: MetadataBlob, root: CrateRoot, raw_proc_macros: Option<&'static [ProcMacro]>, cnum: CrateNum, cnum_map: CrateNumMap, dep_kind: CrateDepKind, source: CrateSource, private_dep: bool, host_hash: Option<Svh>, ) -> CrateMetadata1598     pub(crate) fn new(
1599         sess: &Session,
1600         cstore: &CStore,
1601         blob: MetadataBlob,
1602         root: CrateRoot,
1603         raw_proc_macros: Option<&'static [ProcMacro]>,
1604         cnum: CrateNum,
1605         cnum_map: CrateNumMap,
1606         dep_kind: CrateDepKind,
1607         source: CrateSource,
1608         private_dep: bool,
1609         host_hash: Option<Svh>,
1610     ) -> CrateMetadata {
1611         let trait_impls = root
1612             .impls
1613             .decode((&blob, sess))
1614             .map(|trait_impls| (trait_impls.trait_id, trait_impls.impls))
1615             .collect();
1616         let alloc_decoding_state =
1617             AllocDecodingState::new(root.interpret_alloc_index.decode(&blob).collect());
1618         let dependencies = cnum_map.iter().copied().collect();
1619 
1620         // Pre-decode the DefPathHash->DefIndex table. This is a cheap operation
1621         // that does not copy any data. It just does some data verification.
1622         let def_path_hash_map = root.def_path_hash_map.decode(&blob);
1623 
1624         let mut cdata = CrateMetadata {
1625             blob,
1626             root,
1627             trait_impls,
1628             incoherent_impls: Default::default(),
1629             raw_proc_macros,
1630             source_map_import_info: Lock::new(Vec::new()),
1631             def_path_hash_map,
1632             expn_hash_map: Default::default(),
1633             alloc_decoding_state,
1634             cnum,
1635             cnum_map,
1636             dependencies,
1637             dep_kind: Lock::new(dep_kind),
1638             source: Lrc::new(source),
1639             private_dep: AtomicBool::new(private_dep),
1640             host_hash,
1641             extern_crate: Lock::new(None),
1642             hygiene_context: Default::default(),
1643             def_key_cache: Default::default(),
1644             def_path_hash_cache: Default::default(),
1645         };
1646 
1647         // Need `CrateMetadataRef` to decode `DefId`s in simplified types.
1648         cdata.incoherent_impls = cdata
1649             .root
1650             .incoherent_impls
1651             .decode(CrateMetadataRef { cdata: &cdata, cstore })
1652             .map(|incoherent_impls| (incoherent_impls.self_ty, incoherent_impls.impls))
1653             .collect();
1654 
1655         cdata
1656     }
1657 
dependencies(&self) -> impl Iterator<Item = CrateNum> + '_1658     pub(crate) fn dependencies(&self) -> impl Iterator<Item = CrateNum> + '_ {
1659         self.dependencies.iter()
1660     }
1661 
add_dependency(&self, cnum: CrateNum)1662     pub(crate) fn add_dependency(&self, cnum: CrateNum) {
1663         self.dependencies.push(cnum);
1664     }
1665 
update_extern_crate(&self, new_extern_crate: ExternCrate) -> bool1666     pub(crate) fn update_extern_crate(&self, new_extern_crate: ExternCrate) -> bool {
1667         let mut extern_crate = self.extern_crate.borrow_mut();
1668         let update = Some(new_extern_crate.rank()) > extern_crate.as_ref().map(ExternCrate::rank);
1669         if update {
1670             *extern_crate = Some(new_extern_crate);
1671         }
1672         update
1673     }
1674 
source(&self) -> &CrateSource1675     pub(crate) fn source(&self) -> &CrateSource {
1676         &*self.source
1677     }
1678 
dep_kind(&self) -> CrateDepKind1679     pub(crate) fn dep_kind(&self) -> CrateDepKind {
1680         *self.dep_kind.lock()
1681     }
1682 
update_dep_kind(&self, f: impl FnOnce(CrateDepKind) -> CrateDepKind)1683     pub(crate) fn update_dep_kind(&self, f: impl FnOnce(CrateDepKind) -> CrateDepKind) {
1684         self.dep_kind.with_lock(|dep_kind| *dep_kind = f(*dep_kind))
1685     }
1686 
update_and_private_dep(&self, private_dep: bool)1687     pub(crate) fn update_and_private_dep(&self, private_dep: bool) {
1688         self.private_dep.fetch_and(private_dep, Ordering::SeqCst);
1689     }
1690 
required_panic_strategy(&self) -> Option<PanicStrategy>1691     pub(crate) fn required_panic_strategy(&self) -> Option<PanicStrategy> {
1692         self.root.required_panic_strategy
1693     }
1694 
needs_panic_runtime(&self) -> bool1695     pub(crate) fn needs_panic_runtime(&self) -> bool {
1696         self.root.needs_panic_runtime
1697     }
1698 
is_panic_runtime(&self) -> bool1699     pub(crate) fn is_panic_runtime(&self) -> bool {
1700         self.root.panic_runtime
1701     }
1702 
is_profiler_runtime(&self) -> bool1703     pub(crate) fn is_profiler_runtime(&self) -> bool {
1704         self.root.profiler_runtime
1705     }
1706 
needs_allocator(&self) -> bool1707     pub(crate) fn needs_allocator(&self) -> bool {
1708         self.root.needs_allocator
1709     }
1710 
has_global_allocator(&self) -> bool1711     pub(crate) fn has_global_allocator(&self) -> bool {
1712         self.root.has_global_allocator
1713     }
1714 
has_alloc_error_handler(&self) -> bool1715     pub(crate) fn has_alloc_error_handler(&self) -> bool {
1716         self.root.has_alloc_error_handler
1717     }
1718 
has_default_lib_allocator(&self) -> bool1719     pub(crate) fn has_default_lib_allocator(&self) -> bool {
1720         self.root.has_default_lib_allocator
1721     }
1722 
is_proc_macro_crate(&self) -> bool1723     pub(crate) fn is_proc_macro_crate(&self) -> bool {
1724         self.root.is_proc_macro_crate()
1725     }
1726 
name(&self) -> Symbol1727     pub(crate) fn name(&self) -> Symbol {
1728         self.root.header.name
1729     }
1730 
hash(&self) -> Svh1731     pub(crate) fn hash(&self) -> Svh {
1732         self.root.header.hash
1733     }
1734 
num_def_ids(&self) -> usize1735     fn num_def_ids(&self) -> usize {
1736         self.root.tables.def_keys.size()
1737     }
1738 
local_def_id(&self, index: DefIndex) -> DefId1739     fn local_def_id(&self, index: DefIndex) -> DefId {
1740         DefId { krate: self.cnum, index }
1741     }
1742 
1743     // Translate a DefId from the current compilation environment to a DefId
1744     // for an external crate.
reverse_translate_def_id(&self, did: DefId) -> Option<DefId>1745     fn reverse_translate_def_id(&self, did: DefId) -> Option<DefId> {
1746         for (local, &global) in self.cnum_map.iter_enumerated() {
1747             if global == did.krate {
1748                 return Some(DefId { krate: local, index: did.index });
1749             }
1750         }
1751 
1752         None
1753     }
1754 }
1755