• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! Traits, helpers, and type definitions for core I/O functionality.
2 //!
3 //! The `std::io` module contains a number of common things you'll need
4 //! when doing input and output. The most core part of this module is
5 //! the [`Read`] and [`Write`] traits, which provide the
6 //! most general interface for reading and writing input and output.
7 //!
8 //! # Read and Write
9 //!
10 //! Because they are traits, [`Read`] and [`Write`] are implemented by a number
11 //! of other types, and you can implement them for your types too. As such,
12 //! you'll see a few different types of I/O throughout the documentation in
13 //! this module: [`File`]s, [`TcpStream`]s, and sometimes even [`Vec<T>`]s. For
14 //! example, [`Read`] adds a [`read`][`Read::read`] method, which we can use on
15 //! [`File`]s:
16 //!
17 //! ```no_run
18 //! use std::io;
19 //! use std::io::prelude::*;
20 //! use std::fs::File;
21 //!
22 //! fn main() -> io::Result<()> {
23 //!     let mut f = File::open("foo.txt")?;
24 //!     let mut buffer = [0; 10];
25 //!
26 //!     // read up to 10 bytes
27 //!     let n = f.read(&mut buffer)?;
28 //!
29 //!     println!("The bytes: {:?}", &buffer[..n]);
30 //!     Ok(())
31 //! }
32 //! ```
33 //!
34 //! [`Read`] and [`Write`] are so important, implementors of the two traits have a
35 //! nickname: readers and writers. So you'll sometimes see 'a reader' instead
36 //! of 'a type that implements the [`Read`] trait'. Much easier!
37 //!
38 //! ## Seek and BufRead
39 //!
40 //! Beyond that, there are two important traits that are provided: [`Seek`]
41 //! and [`BufRead`]. Both of these build on top of a reader to control
42 //! how the reading happens. [`Seek`] lets you control where the next byte is
43 //! coming from:
44 //!
45 //! ```no_run
46 //! use std::io;
47 //! use std::io::prelude::*;
48 //! use std::io::SeekFrom;
49 //! use std::fs::File;
50 //!
51 //! fn main() -> io::Result<()> {
52 //!     let mut f = File::open("foo.txt")?;
53 //!     let mut buffer = [0; 10];
54 //!
55 //!     // skip to the last 10 bytes of the file
56 //!     f.seek(SeekFrom::End(-10))?;
57 //!
58 //!     // read up to 10 bytes
59 //!     let n = f.read(&mut buffer)?;
60 //!
61 //!     println!("The bytes: {:?}", &buffer[..n]);
62 //!     Ok(())
63 //! }
64 //! ```
65 //!
66 //! [`BufRead`] uses an internal buffer to provide a number of other ways to read, but
67 //! to show it off, we'll need to talk about buffers in general. Keep reading!
68 //!
69 //! ## BufReader and BufWriter
70 //!
71 //! Byte-based interfaces are unwieldy and can be inefficient, as we'd need to be
72 //! making near-constant calls to the operating system. To help with this,
73 //! `std::io` comes with two structs, [`BufReader`] and [`BufWriter`], which wrap
74 //! readers and writers. The wrapper uses a buffer, reducing the number of
75 //! calls and providing nicer methods for accessing exactly what you want.
76 //!
77 //! For example, [`BufReader`] works with the [`BufRead`] trait to add extra
78 //! methods to any reader:
79 //!
80 //! ```no_run
81 //! use std::io;
82 //! use std::io::prelude::*;
83 //! use std::io::BufReader;
84 //! use std::fs::File;
85 //!
86 //! fn main() -> io::Result<()> {
87 //!     let f = File::open("foo.txt")?;
88 //!     let mut reader = BufReader::new(f);
89 //!     let mut buffer = String::new();
90 //!
91 //!     // read a line into buffer
92 //!     reader.read_line(&mut buffer)?;
93 //!
94 //!     println!("{buffer}");
95 //!     Ok(())
96 //! }
97 //! ```
98 //!
99 //! [`BufWriter`] doesn't add any new ways of writing; it just buffers every call
100 //! to [`write`][`Write::write`]:
101 //!
102 //! ```no_run
103 //! use std::io;
104 //! use std::io::prelude::*;
105 //! use std::io::BufWriter;
106 //! use std::fs::File;
107 //!
108 //! fn main() -> io::Result<()> {
109 //!     let f = File::create("foo.txt")?;
110 //!     {
111 //!         let mut writer = BufWriter::new(f);
112 //!
113 //!         // write a byte to the buffer
114 //!         writer.write(&[42])?;
115 //!
116 //!     } // the buffer is flushed once writer goes out of scope
117 //!
118 //!     Ok(())
119 //! }
120 //! ```
121 //!
122 //! ## Standard input and output
123 //!
124 //! A very common source of input is standard input:
125 //!
126 //! ```no_run
127 //! use std::io;
128 //!
129 //! fn main() -> io::Result<()> {
130 //!     let mut input = String::new();
131 //!
132 //!     io::stdin().read_line(&mut input)?;
133 //!
134 //!     println!("You typed: {}", input.trim());
135 //!     Ok(())
136 //! }
137 //! ```
138 //!
139 //! Note that you cannot use the [`?` operator] in functions that do not return
140 //! a [`Result<T, E>`][`Result`]. Instead, you can call [`.unwrap()`]
141 //! or `match` on the return value to catch any possible errors:
142 //!
143 //! ```no_run
144 //! use std::io;
145 //!
146 //! let mut input = String::new();
147 //!
148 //! io::stdin().read_line(&mut input).unwrap();
149 //! ```
150 //!
151 //! And a very common source of output is standard output:
152 //!
153 //! ```no_run
154 //! use std::io;
155 //! use std::io::prelude::*;
156 //!
157 //! fn main() -> io::Result<()> {
158 //!     io::stdout().write(&[42])?;
159 //!     Ok(())
160 //! }
161 //! ```
162 //!
163 //! Of course, using [`io::stdout`] directly is less common than something like
164 //! [`println!`].
165 //!
166 //! ## Iterator types
167 //!
168 //! A large number of the structures provided by `std::io` are for various
169 //! ways of iterating over I/O. For example, [`Lines`] is used to split over
170 //! lines:
171 //!
172 //! ```no_run
173 //! use std::io;
174 //! use std::io::prelude::*;
175 //! use std::io::BufReader;
176 //! use std::fs::File;
177 //!
178 //! fn main() -> io::Result<()> {
179 //!     let f = File::open("foo.txt")?;
180 //!     let reader = BufReader::new(f);
181 //!
182 //!     for line in reader.lines() {
183 //!         println!("{}", line?);
184 //!     }
185 //!     Ok(())
186 //! }
187 //! ```
188 //!
189 //! ## Functions
190 //!
191 //! There are a number of [functions][functions-list] that offer access to various
192 //! features. For example, we can use three of these functions to copy everything
193 //! from standard input to standard output:
194 //!
195 //! ```no_run
196 //! use std::io;
197 //!
198 //! fn main() -> io::Result<()> {
199 //!     io::copy(&mut io::stdin(), &mut io::stdout())?;
200 //!     Ok(())
201 //! }
202 //! ```
203 //!
204 //! [functions-list]: #functions-1
205 //!
206 //! ## io::Result
207 //!
208 //! Last, but certainly not least, is [`io::Result`]. This type is used
209 //! as the return type of many `std::io` functions that can cause an error, and
210 //! can be returned from your own functions as well. Many of the examples in this
211 //! module use the [`?` operator]:
212 //!
213 //! ```
214 //! use std::io;
215 //!
216 //! fn read_input() -> io::Result<()> {
217 //!     let mut input = String::new();
218 //!
219 //!     io::stdin().read_line(&mut input)?;
220 //!
221 //!     println!("You typed: {}", input.trim());
222 //!
223 //!     Ok(())
224 //! }
225 //! ```
226 //!
227 //! The return type of `read_input()`, [`io::Result<()>`][`io::Result`], is a very
228 //! common type for functions which don't have a 'real' return value, but do want to
229 //! return errors if they happen. In this case, the only purpose of this function is
230 //! to read the line and print it, so we use `()`.
231 //!
232 //! ## Platform-specific behavior
233 //!
234 //! Many I/O functions throughout the standard library are documented to indicate
235 //! what various library or syscalls they are delegated to. This is done to help
236 //! applications both understand what's happening under the hood as well as investigate
237 //! any possibly unclear semantics. Note, however, that this is informative, not a binding
238 //! contract. The implementation of many of these functions are subject to change over
239 //! time and may call fewer or more syscalls/library functions.
240 //!
241 //! [`File`]: crate::fs::File
242 //! [`TcpStream`]: crate::net::TcpStream
243 //! [`io::stdout`]: stdout
244 //! [`io::Result`]: self::Result
245 //! [`?` operator]: ../../book/appendix-02-operators.html
246 //! [`Result`]: crate::result::Result
247 //! [`.unwrap()`]: crate::result::Result::unwrap
248 
249 #![stable(feature = "rust1", since = "1.0.0")]
250 
251 #[cfg(test)]
252 mod tests;
253 
254 use crate::cmp;
255 use crate::fmt;
256 use crate::mem::take;
257 use crate::ops::{Deref, DerefMut};
258 use crate::slice;
259 use crate::str;
260 use crate::sys;
261 use crate::sys_common::memchr;
262 
263 #[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
264 pub use self::buffered::WriterPanicked;
265 #[unstable(feature = "raw_os_error_ty", issue = "107792")]
266 pub use self::error::RawOsError;
267 pub(crate) use self::stdio::attempt_print_to_stderr;
268 #[unstable(feature = "internal_output_capture", issue = "none")]
269 #[doc(no_inline, hidden)]
270 pub use self::stdio::set_output_capture;
271 #[stable(feature = "is_terminal", since = "1.70.0")]
272 pub use self::stdio::IsTerminal;
273 #[unstable(feature = "print_internals", issue = "none")]
274 pub use self::stdio::{_eprint, _print};
275 #[stable(feature = "rust1", since = "1.0.0")]
276 pub use self::{
277     buffered::{BufReader, BufWriter, IntoInnerError, LineWriter},
278     copy::copy,
279     cursor::Cursor,
280     error::{Error, ErrorKind, Result},
281     stdio::{stderr, stdin, stdout, Stderr, StderrLock, Stdin, StdinLock, Stdout, StdoutLock},
282     util::{empty, repeat, sink, Empty, Repeat, Sink},
283 };
284 
285 #[unstable(feature = "read_buf", issue = "78485")]
286 pub use self::readbuf::{BorrowedBuf, BorrowedCursor};
287 pub(crate) use error::const_io_error;
288 
289 mod buffered;
290 pub(crate) mod copy;
291 mod cursor;
292 mod error;
293 mod impls;
294 pub mod prelude;
295 mod readbuf;
296 mod stdio;
297 mod util;
298 
299 const DEFAULT_BUF_SIZE: usize = crate::sys_common::io::DEFAULT_BUF_SIZE;
300 
301 pub(crate) use stdio::cleanup;
302 
303 struct Guard<'a> {
304     buf: &'a mut Vec<u8>,
305     len: usize,
306 }
307 
308 impl Drop for Guard<'_> {
drop(&mut self)309     fn drop(&mut self) {
310         unsafe {
311             self.buf.set_len(self.len);
312         }
313     }
314 }
315 
316 // Several `read_to_string` and `read_line` methods in the standard library will
317 // append data into a `String` buffer, but we need to be pretty careful when
318 // doing this. The implementation will just call `.as_mut_vec()` and then
319 // delegate to a byte-oriented reading method, but we must ensure that when
320 // returning we never leave `buf` in a state such that it contains invalid UTF-8
321 // in its bounds.
322 //
323 // To this end, we use an RAII guard (to protect against panics) which updates
324 // the length of the string when it is dropped. This guard initially truncates
325 // the string to the prior length and only after we've validated that the
326 // new contents are valid UTF-8 do we allow it to set a longer length.
327 //
328 // The unsafety in this function is twofold:
329 //
330 // 1. We're looking at the raw bytes of `buf`, so we take on the burden of UTF-8
331 //    checks.
332 // 2. We're passing a raw buffer to the function `f`, and it is expected that
333 //    the function only *appends* bytes to the buffer. We'll get undefined
334 //    behavior if existing bytes are overwritten to have non-UTF-8 data.
append_to_string<F>(buf: &mut String, f: F) -> Result<usize> where F: FnOnce(&mut Vec<u8>) -> Result<usize>,335 pub(crate) unsafe fn append_to_string<F>(buf: &mut String, f: F) -> Result<usize>
336 where
337     F: FnOnce(&mut Vec<u8>) -> Result<usize>,
338 {
339     let mut g = Guard { len: buf.len(), buf: buf.as_mut_vec() };
340     let ret = f(g.buf);
341     if str::from_utf8(&g.buf[g.len..]).is_err() {
342         ret.and_then(|_| {
343             Err(error::const_io_error!(
344                 ErrorKind::InvalidData,
345                 "stream did not contain valid UTF-8"
346             ))
347         })
348     } else {
349         g.len = g.buf.len();
350         ret
351     }
352 }
353 
354 // This uses an adaptive system to extend the vector when it fills. We want to
355 // avoid paying to allocate and zero a huge chunk of memory if the reader only
356 // has 4 bytes while still making large reads if the reader does have a ton
357 // of data to return. Simply tacking on an extra DEFAULT_BUF_SIZE space every
358 // time is 4,500 times (!) slower than a default reservation size of 32 if the
359 // reader has a very small amount of data to return.
default_read_to_end<R: Read + ?Sized>( r: &mut R, buf: &mut Vec<u8>, size_hint: Option<usize>, ) -> Result<usize>360 pub(crate) fn default_read_to_end<R: Read + ?Sized>(
361     r: &mut R,
362     buf: &mut Vec<u8>,
363     size_hint: Option<usize>,
364 ) -> Result<usize> {
365     let start_len = buf.len();
366     let start_cap = buf.capacity();
367     // Optionally limit the maximum bytes read on each iteration.
368     // This adds an arbitrary fiddle factor to allow for more data than we expect.
369     let max_read_size =
370         size_hint.and_then(|s| s.checked_add(1024)?.checked_next_multiple_of(DEFAULT_BUF_SIZE));
371 
372     let mut initialized = 0; // Extra initialized bytes from previous loop iteration
373     loop {
374         if buf.len() == buf.capacity() {
375             buf.reserve(32); // buf is full, need more space
376         }
377 
378         let mut spare = buf.spare_capacity_mut();
379         if let Some(size) = max_read_size {
380             let len = cmp::min(spare.len(), size);
381             spare = &mut spare[..len]
382         }
383         let mut read_buf: BorrowedBuf<'_> = spare.into();
384 
385         // SAFETY: These bytes were initialized but not filled in the previous loop
386         unsafe {
387             read_buf.set_init(initialized);
388         }
389 
390         let mut cursor = read_buf.unfilled();
391         match r.read_buf(cursor.reborrow()) {
392             Ok(()) => {}
393             Err(e) if e.kind() == ErrorKind::Interrupted => continue,
394             Err(e) => return Err(e),
395         }
396 
397         if cursor.written() == 0 {
398             return Ok(buf.len() - start_len);
399         }
400 
401         // store how much was initialized but not filled
402         initialized = cursor.init_ref().len();
403 
404         // SAFETY: BorrowedBuf's invariants mean this much memory is initialized.
405         unsafe {
406             let new_len = read_buf.filled().len() + buf.len();
407             buf.set_len(new_len);
408         }
409 
410         if buf.len() == buf.capacity() && buf.capacity() == start_cap {
411             // The buffer might be an exact fit. Let's read into a probe buffer
412             // and see if it returns `Ok(0)`. If so, we've avoided an
413             // unnecessary doubling of the capacity. But if not, append the
414             // probe buffer to the primary buffer and let its capacity grow.
415             let mut probe = [0u8; 32];
416 
417             loop {
418                 match r.read(&mut probe) {
419                     Ok(0) => return Ok(buf.len() - start_len),
420                     Ok(n) => {
421                         buf.extend_from_slice(&probe[..n]);
422                         break;
423                     }
424                     Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
425                     Err(e) => return Err(e),
426                 }
427             }
428         }
429     }
430 }
431 
default_read_to_string<R: Read + ?Sized>( r: &mut R, buf: &mut String, size_hint: Option<usize>, ) -> Result<usize>432 pub(crate) fn default_read_to_string<R: Read + ?Sized>(
433     r: &mut R,
434     buf: &mut String,
435     size_hint: Option<usize>,
436 ) -> Result<usize> {
437     // Note that we do *not* call `r.read_to_end()` here. We are passing
438     // `&mut Vec<u8>` (the raw contents of `buf`) into the `read_to_end`
439     // method to fill it up. An arbitrary implementation could overwrite the
440     // entire contents of the vector, not just append to it (which is what
441     // we are expecting).
442     //
443     // To prevent extraneously checking the UTF-8-ness of the entire buffer
444     // we pass it to our hardcoded `default_read_to_end` implementation which
445     // we know is guaranteed to only read data into the end of the buffer.
446     unsafe { append_to_string(buf, |b| default_read_to_end(r, b, size_hint)) }
447 }
448 
default_read_vectored<F>(read: F, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> where F: FnOnce(&mut [u8]) -> Result<usize>,449 pub(crate) fn default_read_vectored<F>(read: F, bufs: &mut [IoSliceMut<'_>]) -> Result<usize>
450 where
451     F: FnOnce(&mut [u8]) -> Result<usize>,
452 {
453     let buf = bufs.iter_mut().find(|b| !b.is_empty()).map_or(&mut [][..], |b| &mut **b);
454     read(buf)
455 }
456 
default_write_vectored<F>(write: F, bufs: &[IoSlice<'_>]) -> Result<usize> where F: FnOnce(&[u8]) -> Result<usize>,457 pub(crate) fn default_write_vectored<F>(write: F, bufs: &[IoSlice<'_>]) -> Result<usize>
458 where
459     F: FnOnce(&[u8]) -> Result<usize>,
460 {
461     let buf = bufs.iter().find(|b| !b.is_empty()).map_or(&[][..], |b| &**b);
462     write(buf)
463 }
464 
default_read_exact<R: Read + ?Sized>(this: &mut R, mut buf: &mut [u8]) -> Result<()>465 pub(crate) fn default_read_exact<R: Read + ?Sized>(this: &mut R, mut buf: &mut [u8]) -> Result<()> {
466     while !buf.is_empty() {
467         match this.read(buf) {
468             Ok(0) => break,
469             Ok(n) => {
470                 let tmp = buf;
471                 buf = &mut tmp[n..];
472             }
473             Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
474             Err(e) => return Err(e),
475         }
476     }
477     if !buf.is_empty() {
478         Err(error::const_io_error!(ErrorKind::UnexpectedEof, "failed to fill whole buffer"))
479     } else {
480         Ok(())
481     }
482 }
483 
default_read_buf<F>(read: F, mut cursor: BorrowedCursor<'_>) -> Result<()> where F: FnOnce(&mut [u8]) -> Result<usize>,484 pub(crate) fn default_read_buf<F>(read: F, mut cursor: BorrowedCursor<'_>) -> Result<()>
485 where
486     F: FnOnce(&mut [u8]) -> Result<usize>,
487 {
488     let n = read(cursor.ensure_init().init_mut())?;
489     unsafe {
490         // SAFETY: we initialised using `ensure_init` so there is no uninit data to advance to.
491         cursor.advance(n);
492     }
493     Ok(())
494 }
495 
496 /// The `Read` trait allows for reading bytes from a source.
497 ///
498 /// Implementors of the `Read` trait are called 'readers'.
499 ///
500 /// Readers are defined by one required method, [`read()`]. Each call to [`read()`]
501 /// will attempt to pull bytes from this source into a provided buffer. A
502 /// number of other methods are implemented in terms of [`read()`], giving
503 /// implementors a number of ways to read bytes while only needing to implement
504 /// a single method.
505 ///
506 /// Readers are intended to be composable with one another. Many implementors
507 /// throughout [`std::io`] take and provide types which implement the `Read`
508 /// trait.
509 ///
510 /// Please note that each call to [`read()`] may involve a system call, and
511 /// therefore, using something that implements [`BufRead`], such as
512 /// [`BufReader`], will be more efficient.
513 ///
514 /// # Examples
515 ///
516 /// [`File`]s implement `Read`:
517 ///
518 /// ```no_run
519 /// use std::io;
520 /// use std::io::prelude::*;
521 /// use std::fs::File;
522 ///
523 /// fn main() -> io::Result<()> {
524 ///     let mut f = File::open("foo.txt")?;
525 ///     let mut buffer = [0; 10];
526 ///
527 ///     // read up to 10 bytes
528 ///     f.read(&mut buffer)?;
529 ///
530 ///     let mut buffer = Vec::new();
531 ///     // read the whole file
532 ///     f.read_to_end(&mut buffer)?;
533 ///
534 ///     // read into a String, so that you don't need to do the conversion.
535 ///     let mut buffer = String::new();
536 ///     f.read_to_string(&mut buffer)?;
537 ///
538 ///     // and more! See the other methods for more details.
539 ///     Ok(())
540 /// }
541 /// ```
542 ///
543 /// Read from [`&str`] because [`&[u8]`][prim@slice] implements `Read`:
544 ///
545 /// ```no_run
546 /// # use std::io;
547 /// use std::io::prelude::*;
548 ///
549 /// fn main() -> io::Result<()> {
550 ///     let mut b = "This string will be read".as_bytes();
551 ///     let mut buffer = [0; 10];
552 ///
553 ///     // read up to 10 bytes
554 ///     b.read(&mut buffer)?;
555 ///
556 ///     // etc... it works exactly as a File does!
557 ///     Ok(())
558 /// }
559 /// ```
560 ///
561 /// [`read()`]: Read::read
562 /// [`&str`]: prim@str
563 /// [`std::io`]: self
564 /// [`File`]: crate::fs::File
565 #[stable(feature = "rust1", since = "1.0.0")]
566 #[doc(notable_trait)]
567 #[cfg_attr(not(test), rustc_diagnostic_item = "IoRead")]
568 pub trait Read {
569     /// Pull some bytes from this source into the specified buffer, returning
570     /// how many bytes were read.
571     ///
572     /// This function does not provide any guarantees about whether it blocks
573     /// waiting for data, but if an object needs to block for a read and cannot,
574     /// it will typically signal this via an [`Err`] return value.
575     ///
576     /// If the return value of this method is [`Ok(n)`], then implementations must
577     /// guarantee that `0 <= n <= buf.len()`. A nonzero `n` value indicates
578     /// that the buffer `buf` has been filled in with `n` bytes of data from this
579     /// source. If `n` is `0`, then it can indicate one of two scenarios:
580     ///
581     /// 1. This reader has reached its "end of file" and will likely no longer
582     ///    be able to produce bytes. Note that this does not mean that the
583     ///    reader will *always* no longer be able to produce bytes. As an example,
584     ///    on Linux, this method will call the `recv` syscall for a [`TcpStream`],
585     ///    where returning zero indicates the connection was shut down correctly. While
586     ///    for [`File`], it is possible to reach the end of file and get zero as result,
587     ///    but if more data is appended to the file, future calls to `read` will return
588     ///    more data.
589     /// 2. The buffer specified was 0 bytes in length.
590     ///
591     /// It is not an error if the returned value `n` is smaller than the buffer size,
592     /// even when the reader is not at the end of the stream yet.
593     /// This may happen for example because fewer bytes are actually available right now
594     /// (e. g. being close to end-of-file) or because read() was interrupted by a signal.
595     ///
596     /// As this trait is safe to implement, callers in unsafe code cannot rely on
597     /// `n <= buf.len()` for safety.
598     /// Extra care needs to be taken when `unsafe` functions are used to access the read bytes.
599     /// Callers have to ensure that no unchecked out-of-bounds accesses are possible even if
600     /// `n > buf.len()`.
601     ///
602     /// No guarantees are provided about the contents of `buf` when this
603     /// function is called, so implementations cannot rely on any property of the
604     /// contents of `buf` being true. It is recommended that *implementations*
605     /// only write data to `buf` instead of reading its contents.
606     ///
607     /// Correspondingly, however, *callers* of this method in unsafe code must not assume
608     /// any guarantees about how the implementation uses `buf`. The trait is safe to implement,
609     /// so it is possible that the code that's supposed to write to the buffer might also read
610     /// from it. It is your responsibility to make sure that `buf` is initialized
611     /// before calling `read`. Calling `read` with an uninitialized `buf` (of the kind one
612     /// obtains via [`MaybeUninit<T>`]) is not safe, and can lead to undefined behavior.
613     ///
614     /// [`MaybeUninit<T>`]: crate::mem::MaybeUninit
615     ///
616     /// # Errors
617     ///
618     /// If this function encounters any form of I/O or other error, an error
619     /// variant will be returned. If an error is returned then it must be
620     /// guaranteed that no bytes were read.
621     ///
622     /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the read
623     /// operation should be retried if there is nothing else to do.
624     ///
625     /// # Examples
626     ///
627     /// [`File`]s implement `Read`:
628     ///
629     /// [`Ok(n)`]: Ok
630     /// [`File`]: crate::fs::File
631     /// [`TcpStream`]: crate::net::TcpStream
632     ///
633     /// ```no_run
634     /// use std::io;
635     /// use std::io::prelude::*;
636     /// use std::fs::File;
637     ///
638     /// fn main() -> io::Result<()> {
639     ///     let mut f = File::open("foo.txt")?;
640     ///     let mut buffer = [0; 10];
641     ///
642     ///     // read up to 10 bytes
643     ///     let n = f.read(&mut buffer[..])?;
644     ///
645     ///     println!("The bytes: {:?}", &buffer[..n]);
646     ///     Ok(())
647     /// }
648     /// ```
649     #[stable(feature = "rust1", since = "1.0.0")]
read(&mut self, buf: &mut [u8]) -> Result<usize>650     fn read(&mut self, buf: &mut [u8]) -> Result<usize>;
651 
652     /// Like `read`, except that it reads into a slice of buffers.
653     ///
654     /// Data is copied to fill each buffer in order, with the final buffer
655     /// written to possibly being only partially filled. This method must
656     /// behave equivalently to a single call to `read` with concatenated
657     /// buffers.
658     ///
659     /// The default implementation calls `read` with either the first nonempty
660     /// buffer provided, or an empty one if none exists.
661     #[stable(feature = "iovec", since = "1.36.0")]
read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize>662     fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
663         default_read_vectored(|b| self.read(b), bufs)
664     }
665 
666     /// Determines if this `Read`er has an efficient `read_vectored`
667     /// implementation.
668     ///
669     /// If a `Read`er does not override the default `read_vectored`
670     /// implementation, code using it may want to avoid the method all together
671     /// and coalesce writes into a single buffer for higher performance.
672     ///
673     /// The default implementation returns `false`.
674     #[unstable(feature = "can_vector", issue = "69941")]
is_read_vectored(&self) -> bool675     fn is_read_vectored(&self) -> bool {
676         false
677     }
678 
679     /// Read all bytes until EOF in this source, placing them into `buf`.
680     ///
681     /// All bytes read from this source will be appended to the specified buffer
682     /// `buf`. This function will continuously call [`read()`] to append more data to
683     /// `buf` until [`read()`] returns either [`Ok(0)`] or an error of
684     /// non-[`ErrorKind::Interrupted`] kind.
685     ///
686     /// If successful, this function will return the total number of bytes read.
687     ///
688     /// # Errors
689     ///
690     /// If this function encounters an error of the kind
691     /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
692     /// will continue.
693     ///
694     /// If any other read error is encountered then this function immediately
695     /// returns. Any bytes which have already been read will be appended to
696     /// `buf`.
697     ///
698     /// # Examples
699     ///
700     /// [`File`]s implement `Read`:
701     ///
702     /// [`read()`]: Read::read
703     /// [`Ok(0)`]: Ok
704     /// [`File`]: crate::fs::File
705     ///
706     /// ```no_run
707     /// use std::io;
708     /// use std::io::prelude::*;
709     /// use std::fs::File;
710     ///
711     /// fn main() -> io::Result<()> {
712     ///     let mut f = File::open("foo.txt")?;
713     ///     let mut buffer = Vec::new();
714     ///
715     ///     // read the whole file
716     ///     f.read_to_end(&mut buffer)?;
717     ///     Ok(())
718     /// }
719     /// ```
720     ///
721     /// (See also the [`std::fs::read`] convenience function for reading from a
722     /// file.)
723     ///
724     /// [`std::fs::read`]: crate::fs::read
725     #[stable(feature = "rust1", since = "1.0.0")]
read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize>726     fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
727         default_read_to_end(self, buf, None)
728     }
729 
730     /// Read all bytes until EOF in this source, appending them to `buf`.
731     ///
732     /// If successful, this function returns the number of bytes which were read
733     /// and appended to `buf`.
734     ///
735     /// # Errors
736     ///
737     /// If the data in this stream is *not* valid UTF-8 then an error is
738     /// returned and `buf` is unchanged.
739     ///
740     /// See [`read_to_end`] for other error semantics.
741     ///
742     /// [`read_to_end`]: Read::read_to_end
743     ///
744     /// # Examples
745     ///
746     /// [`File`]s implement `Read`:
747     ///
748     /// [`File`]: crate::fs::File
749     ///
750     /// ```no_run
751     /// use std::io;
752     /// use std::io::prelude::*;
753     /// use std::fs::File;
754     ///
755     /// fn main() -> io::Result<()> {
756     ///     let mut f = File::open("foo.txt")?;
757     ///     let mut buffer = String::new();
758     ///
759     ///     f.read_to_string(&mut buffer)?;
760     ///     Ok(())
761     /// }
762     /// ```
763     ///
764     /// (See also the [`std::fs::read_to_string`] convenience function for
765     /// reading from a file.)
766     ///
767     /// [`std::fs::read_to_string`]: crate::fs::read_to_string
768     #[stable(feature = "rust1", since = "1.0.0")]
read_to_string(&mut self, buf: &mut String) -> Result<usize>769     fn read_to_string(&mut self, buf: &mut String) -> Result<usize> {
770         default_read_to_string(self, buf, None)
771     }
772 
773     /// Read the exact number of bytes required to fill `buf`.
774     ///
775     /// This function reads as many bytes as necessary to completely fill the
776     /// specified buffer `buf`.
777     ///
778     /// No guarantees are provided about the contents of `buf` when this
779     /// function is called, so implementations cannot rely on any property of the
780     /// contents of `buf` being true. It is recommended that implementations
781     /// only write data to `buf` instead of reading its contents. The
782     /// documentation on [`read`] has a more detailed explanation on this
783     /// subject.
784     ///
785     /// # Errors
786     ///
787     /// If this function encounters an error of the kind
788     /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
789     /// will continue.
790     ///
791     /// If this function encounters an "end of file" before completely filling
792     /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
793     /// The contents of `buf` are unspecified in this case.
794     ///
795     /// If any other read error is encountered then this function immediately
796     /// returns. The contents of `buf` are unspecified in this case.
797     ///
798     /// If this function returns an error, it is unspecified how many bytes it
799     /// has read, but it will never read more than would be necessary to
800     /// completely fill the buffer.
801     ///
802     /// # Examples
803     ///
804     /// [`File`]s implement `Read`:
805     ///
806     /// [`read`]: Read::read
807     /// [`File`]: crate::fs::File
808     ///
809     /// ```no_run
810     /// use std::io;
811     /// use std::io::prelude::*;
812     /// use std::fs::File;
813     ///
814     /// fn main() -> io::Result<()> {
815     ///     let mut f = File::open("foo.txt")?;
816     ///     let mut buffer = [0; 10];
817     ///
818     ///     // read exactly 10 bytes
819     ///     f.read_exact(&mut buffer)?;
820     ///     Ok(())
821     /// }
822     /// ```
823     #[stable(feature = "read_exact", since = "1.6.0")]
read_exact(&mut self, buf: &mut [u8]) -> Result<()>824     fn read_exact(&mut self, buf: &mut [u8]) -> Result<()> {
825         default_read_exact(self, buf)
826     }
827 
828     /// Pull some bytes from this source into the specified buffer.
829     ///
830     /// This is equivalent to the [`read`](Read::read) method, except that it is passed a [`BorrowedCursor`] rather than `[u8]` to allow use
831     /// with uninitialized buffers. The new data will be appended to any existing contents of `buf`.
832     ///
833     /// The default implementation delegates to `read`.
834     #[unstable(feature = "read_buf", issue = "78485")]
read_buf(&mut self, buf: BorrowedCursor<'_>) -> Result<()>835     fn read_buf(&mut self, buf: BorrowedCursor<'_>) -> Result<()> {
836         default_read_buf(|b| self.read(b), buf)
837     }
838 
839     /// Read the exact number of bytes required to fill `cursor`.
840     ///
841     /// This is similar to the [`read_exact`](Read::read_exact) method, except
842     /// that it is passed a [`BorrowedCursor`] rather than `[u8]` to allow use
843     /// with uninitialized buffers.
844     ///
845     /// # Errors
846     ///
847     /// If this function encounters an error of the kind [`ErrorKind::Interrupted`]
848     /// then the error is ignored and the operation will continue.
849     ///
850     /// If this function encounters an "end of file" before completely filling
851     /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
852     ///
853     /// If any other read error is encountered then this function immediately
854     /// returns.
855     ///
856     /// If this function returns an error, all bytes read will be appended to `cursor`.
857     #[unstable(feature = "read_buf", issue = "78485")]
read_buf_exact(&mut self, mut cursor: BorrowedCursor<'_>) -> Result<()>858     fn read_buf_exact(&mut self, mut cursor: BorrowedCursor<'_>) -> Result<()> {
859         while cursor.capacity() > 0 {
860             let prev_written = cursor.written();
861             match self.read_buf(cursor.reborrow()) {
862                 Ok(()) => {}
863                 Err(e) if e.kind() == ErrorKind::Interrupted => continue,
864                 Err(e) => return Err(e),
865             }
866 
867             if cursor.written() == prev_written {
868                 return Err(Error::new(ErrorKind::UnexpectedEof, "failed to fill buffer"));
869             }
870         }
871 
872         Ok(())
873     }
874 
875     /// Creates a "by reference" adaptor for this instance of `Read`.
876     ///
877     /// The returned adapter also implements `Read` and will simply borrow this
878     /// current reader.
879     ///
880     /// # Examples
881     ///
882     /// [`File`]s implement `Read`:
883     ///
884     /// [`File`]: crate::fs::File
885     ///
886     /// ```no_run
887     /// use std::io;
888     /// use std::io::Read;
889     /// use std::fs::File;
890     ///
891     /// fn main() -> io::Result<()> {
892     ///     let mut f = File::open("foo.txt")?;
893     ///     let mut buffer = Vec::new();
894     ///     let mut other_buffer = Vec::new();
895     ///
896     ///     {
897     ///         let reference = f.by_ref();
898     ///
899     ///         // read at most 5 bytes
900     ///         reference.take(5).read_to_end(&mut buffer)?;
901     ///
902     ///     } // drop our &mut reference so we can use f again
903     ///
904     ///     // original file still usable, read the rest
905     ///     f.read_to_end(&mut other_buffer)?;
906     ///     Ok(())
907     /// }
908     /// ```
909     #[stable(feature = "rust1", since = "1.0.0")]
by_ref(&mut self) -> &mut Self where Self: Sized,910     fn by_ref(&mut self) -> &mut Self
911     where
912         Self: Sized,
913     {
914         self
915     }
916 
917     /// Transforms this `Read` instance to an [`Iterator`] over its bytes.
918     ///
919     /// The returned type implements [`Iterator`] where the [`Item`] is
920     /// <code>[Result]<[u8], [io::Error]></code>.
921     /// The yielded item is [`Ok`] if a byte was successfully read and [`Err`]
922     /// otherwise. EOF is mapped to returning [`None`] from this iterator.
923     ///
924     /// The default implementation calls `read` for each byte,
925     /// which can be very inefficient for data that's not in memory,
926     /// such as [`File`]. Consider using a [`BufReader`] in such cases.
927     ///
928     /// # Examples
929     ///
930     /// [`File`]s implement `Read`:
931     ///
932     /// [`Item`]: Iterator::Item
933     /// [`File`]: crate::fs::File "fs::File"
934     /// [Result]: crate::result::Result "Result"
935     /// [io::Error]: self::Error "io::Error"
936     ///
937     /// ```no_run
938     /// use std::io;
939     /// use std::io::prelude::*;
940     /// use std::io::BufReader;
941     /// use std::fs::File;
942     ///
943     /// fn main() -> io::Result<()> {
944     ///     let f = BufReader::new(File::open("foo.txt")?);
945     ///
946     ///     for byte in f.bytes() {
947     ///         println!("{}", byte.unwrap());
948     ///     }
949     ///     Ok(())
950     /// }
951     /// ```
952     #[stable(feature = "rust1", since = "1.0.0")]
bytes(self) -> Bytes<Self> where Self: Sized,953     fn bytes(self) -> Bytes<Self>
954     where
955         Self: Sized,
956     {
957         Bytes { inner: self }
958     }
959 
960     /// Creates an adapter which will chain this stream with another.
961     ///
962     /// The returned `Read` instance will first read all bytes from this object
963     /// until EOF is encountered. Afterwards the output is equivalent to the
964     /// output of `next`.
965     ///
966     /// # Examples
967     ///
968     /// [`File`]s implement `Read`:
969     ///
970     /// [`File`]: crate::fs::File
971     ///
972     /// ```no_run
973     /// use std::io;
974     /// use std::io::prelude::*;
975     /// use std::fs::File;
976     ///
977     /// fn main() -> io::Result<()> {
978     ///     let f1 = File::open("foo.txt")?;
979     ///     let f2 = File::open("bar.txt")?;
980     ///
981     ///     let mut handle = f1.chain(f2);
982     ///     let mut buffer = String::new();
983     ///
984     ///     // read the value into a String. We could use any Read method here,
985     ///     // this is just one example.
986     ///     handle.read_to_string(&mut buffer)?;
987     ///     Ok(())
988     /// }
989     /// ```
990     #[stable(feature = "rust1", since = "1.0.0")]
chain<R: Read>(self, next: R) -> Chain<Self, R> where Self: Sized,991     fn chain<R: Read>(self, next: R) -> Chain<Self, R>
992     where
993         Self: Sized,
994     {
995         Chain { first: self, second: next, done_first: false }
996     }
997 
998     /// Creates an adapter which will read at most `limit` bytes from it.
999     ///
1000     /// This function returns a new instance of `Read` which will read at most
1001     /// `limit` bytes, after which it will always return EOF ([`Ok(0)`]). Any
1002     /// read errors will not count towards the number of bytes read and future
1003     /// calls to [`read()`] may succeed.
1004     ///
1005     /// # Examples
1006     ///
1007     /// [`File`]s implement `Read`:
1008     ///
1009     /// [`File`]: crate::fs::File
1010     /// [`Ok(0)`]: Ok
1011     /// [`read()`]: Read::read
1012     ///
1013     /// ```no_run
1014     /// use std::io;
1015     /// use std::io::prelude::*;
1016     /// use std::fs::File;
1017     ///
1018     /// fn main() -> io::Result<()> {
1019     ///     let f = File::open("foo.txt")?;
1020     ///     let mut buffer = [0; 5];
1021     ///
1022     ///     // read at most five bytes
1023     ///     let mut handle = f.take(5);
1024     ///
1025     ///     handle.read(&mut buffer)?;
1026     ///     Ok(())
1027     /// }
1028     /// ```
1029     #[stable(feature = "rust1", since = "1.0.0")]
take(self, limit: u64) -> Take<Self> where Self: Sized,1030     fn take(self, limit: u64) -> Take<Self>
1031     where
1032         Self: Sized,
1033     {
1034         Take { inner: self, limit }
1035     }
1036 }
1037 
1038 /// Read all bytes from a [reader][Read] into a new [`String`].
1039 ///
1040 /// This is a convenience function for [`Read::read_to_string`]. Using this
1041 /// function avoids having to create a variable first and provides more type
1042 /// safety since you can only get the buffer out if there were no errors. (If you
1043 /// use [`Read::read_to_string`] you have to remember to check whether the read
1044 /// succeeded because otherwise your buffer will be empty or only partially full.)
1045 ///
1046 /// # Performance
1047 ///
1048 /// The downside of this function's increased ease of use and type safety is
1049 /// that it gives you less control over performance. For example, you can't
1050 /// pre-allocate memory like you can using [`String::with_capacity`] and
1051 /// [`Read::read_to_string`]. Also, you can't re-use the buffer if an error
1052 /// occurs while reading.
1053 ///
1054 /// In many cases, this function's performance will be adequate and the ease of use
1055 /// and type safety tradeoffs will be worth it. However, there are cases where you
1056 /// need more control over performance, and in those cases you should definitely use
1057 /// [`Read::read_to_string`] directly.
1058 ///
1059 /// Note that in some special cases, such as when reading files, this function will
1060 /// pre-allocate memory based on the size of the input it is reading. In those
1061 /// cases, the performance should be as good as if you had used
1062 /// [`Read::read_to_string`] with a manually pre-allocated buffer.
1063 ///
1064 /// # Errors
1065 ///
1066 /// This function forces you to handle errors because the output (the `String`)
1067 /// is wrapped in a [`Result`]. See [`Read::read_to_string`] for the errors
1068 /// that can occur. If any error occurs, you will get an [`Err`], so you
1069 /// don't have to worry about your buffer being empty or partially full.
1070 ///
1071 /// # Examples
1072 ///
1073 /// ```no_run
1074 /// # use std::io;
1075 /// fn main() -> io::Result<()> {
1076 ///     let stdin = io::read_to_string(io::stdin())?;
1077 ///     println!("Stdin was:");
1078 ///     println!("{stdin}");
1079 ///     Ok(())
1080 /// }
1081 /// ```
1082 #[stable(feature = "io_read_to_string", since = "1.65.0")]
read_to_string<R: Read>(mut reader: R) -> Result<String>1083 pub fn read_to_string<R: Read>(mut reader: R) -> Result<String> {
1084     let mut buf = String::new();
1085     reader.read_to_string(&mut buf)?;
1086     Ok(buf)
1087 }
1088 
1089 /// A buffer type used with `Read::read_vectored`.
1090 ///
1091 /// It is semantically a wrapper around an `&mut [u8]`, but is guaranteed to be
1092 /// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
1093 /// Windows.
1094 #[stable(feature = "iovec", since = "1.36.0")]
1095 #[repr(transparent)]
1096 pub struct IoSliceMut<'a>(sys::io::IoSliceMut<'a>);
1097 
1098 #[stable(feature = "iovec-send-sync", since = "1.44.0")]
1099 unsafe impl<'a> Send for IoSliceMut<'a> {}
1100 
1101 #[stable(feature = "iovec-send-sync", since = "1.44.0")]
1102 unsafe impl<'a> Sync for IoSliceMut<'a> {}
1103 
1104 #[stable(feature = "iovec", since = "1.36.0")]
1105 impl<'a> fmt::Debug for IoSliceMut<'a> {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result1106     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1107         fmt::Debug::fmt(self.0.as_slice(), fmt)
1108     }
1109 }
1110 
1111 impl<'a> IoSliceMut<'a> {
1112     /// Creates a new `IoSliceMut` wrapping a byte slice.
1113     ///
1114     /// # Panics
1115     ///
1116     /// Panics on Windows if the slice is larger than 4GB.
1117     #[stable(feature = "iovec", since = "1.36.0")]
1118     #[inline]
new(buf: &'a mut [u8]) -> IoSliceMut<'a>1119     pub fn new(buf: &'a mut [u8]) -> IoSliceMut<'a> {
1120         IoSliceMut(sys::io::IoSliceMut::new(buf))
1121     }
1122 
1123     /// Advance the internal cursor of the slice.
1124     ///
1125     /// Also see [`IoSliceMut::advance_slices`] to advance the cursors of
1126     /// multiple buffers.
1127     ///
1128     /// # Panics
1129     ///
1130     /// Panics when trying to advance beyond the end of the slice.
1131     ///
1132     /// # Examples
1133     ///
1134     /// ```
1135     /// #![feature(io_slice_advance)]
1136     ///
1137     /// use std::io::IoSliceMut;
1138     /// use std::ops::Deref;
1139     ///
1140     /// let mut data = [1; 8];
1141     /// let mut buf = IoSliceMut::new(&mut data);
1142     ///
1143     /// // Mark 3 bytes as read.
1144     /// buf.advance(3);
1145     /// assert_eq!(buf.deref(), [1; 5].as_ref());
1146     /// ```
1147     #[unstable(feature = "io_slice_advance", issue = "62726")]
1148     #[inline]
advance(&mut self, n: usize)1149     pub fn advance(&mut self, n: usize) {
1150         self.0.advance(n)
1151     }
1152 
1153     /// Advance a slice of slices.
1154     ///
1155     /// Shrinks the slice to remove any `IoSliceMut`s that are fully advanced over.
1156     /// If the cursor ends up in the middle of an `IoSliceMut`, it is modified
1157     /// to start at that cursor.
1158     ///
1159     /// For example, if we have a slice of two 8-byte `IoSliceMut`s, and we advance by 10 bytes,
1160     /// the result will only include the second `IoSliceMut`, advanced by 2 bytes.
1161     ///
1162     /// # Panics
1163     ///
1164     /// Panics when trying to advance beyond the end of the slices.
1165     ///
1166     /// # Examples
1167     ///
1168     /// ```
1169     /// #![feature(io_slice_advance)]
1170     ///
1171     /// use std::io::IoSliceMut;
1172     /// use std::ops::Deref;
1173     ///
1174     /// let mut buf1 = [1; 8];
1175     /// let mut buf2 = [2; 16];
1176     /// let mut buf3 = [3; 8];
1177     /// let mut bufs = &mut [
1178     ///     IoSliceMut::new(&mut buf1),
1179     ///     IoSliceMut::new(&mut buf2),
1180     ///     IoSliceMut::new(&mut buf3),
1181     /// ][..];
1182     ///
1183     /// // Mark 10 bytes as read.
1184     /// IoSliceMut::advance_slices(&mut bufs, 10);
1185     /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
1186     /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
1187     /// ```
1188     #[unstable(feature = "io_slice_advance", issue = "62726")]
1189     #[inline]
advance_slices(bufs: &mut &mut [IoSliceMut<'a>], n: usize)1190     pub fn advance_slices(bufs: &mut &mut [IoSliceMut<'a>], n: usize) {
1191         // Number of buffers to remove.
1192         let mut remove = 0;
1193         // Total length of all the to be removed buffers.
1194         let mut accumulated_len = 0;
1195         for buf in bufs.iter() {
1196             if accumulated_len + buf.len() > n {
1197                 break;
1198             } else {
1199                 accumulated_len += buf.len();
1200                 remove += 1;
1201             }
1202         }
1203 
1204         *bufs = &mut take(bufs)[remove..];
1205         if bufs.is_empty() {
1206             assert!(n == accumulated_len, "advancing io slices beyond their length");
1207         } else {
1208             bufs[0].advance(n - accumulated_len)
1209         }
1210     }
1211 }
1212 
1213 #[stable(feature = "iovec", since = "1.36.0")]
1214 impl<'a> Deref for IoSliceMut<'a> {
1215     type Target = [u8];
1216 
1217     #[inline]
deref(&self) -> &[u8]1218     fn deref(&self) -> &[u8] {
1219         self.0.as_slice()
1220     }
1221 }
1222 
1223 #[stable(feature = "iovec", since = "1.36.0")]
1224 impl<'a> DerefMut for IoSliceMut<'a> {
1225     #[inline]
deref_mut(&mut self) -> &mut [u8]1226     fn deref_mut(&mut self) -> &mut [u8] {
1227         self.0.as_mut_slice()
1228     }
1229 }
1230 
1231 /// A buffer type used with `Write::write_vectored`.
1232 ///
1233 /// It is semantically a wrapper around a `&[u8]`, but is guaranteed to be
1234 /// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
1235 /// Windows.
1236 #[stable(feature = "iovec", since = "1.36.0")]
1237 #[derive(Copy, Clone)]
1238 #[repr(transparent)]
1239 pub struct IoSlice<'a>(sys::io::IoSlice<'a>);
1240 
1241 #[stable(feature = "iovec-send-sync", since = "1.44.0")]
1242 unsafe impl<'a> Send for IoSlice<'a> {}
1243 
1244 #[stable(feature = "iovec-send-sync", since = "1.44.0")]
1245 unsafe impl<'a> Sync for IoSlice<'a> {}
1246 
1247 #[stable(feature = "iovec", since = "1.36.0")]
1248 impl<'a> fmt::Debug for IoSlice<'a> {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result1249     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1250         fmt::Debug::fmt(self.0.as_slice(), fmt)
1251     }
1252 }
1253 
1254 impl<'a> IoSlice<'a> {
1255     /// Creates a new `IoSlice` wrapping a byte slice.
1256     ///
1257     /// # Panics
1258     ///
1259     /// Panics on Windows if the slice is larger than 4GB.
1260     #[stable(feature = "iovec", since = "1.36.0")]
1261     #[must_use]
1262     #[inline]
new(buf: &'a [u8]) -> IoSlice<'a>1263     pub fn new(buf: &'a [u8]) -> IoSlice<'a> {
1264         IoSlice(sys::io::IoSlice::new(buf))
1265     }
1266 
1267     /// Advance the internal cursor of the slice.
1268     ///
1269     /// Also see [`IoSlice::advance_slices`] to advance the cursors of multiple
1270     /// buffers.
1271     ///
1272     /// # Panics
1273     ///
1274     /// Panics when trying to advance beyond the end of the slice.
1275     ///
1276     /// # Examples
1277     ///
1278     /// ```
1279     /// #![feature(io_slice_advance)]
1280     ///
1281     /// use std::io::IoSlice;
1282     /// use std::ops::Deref;
1283     ///
1284     /// let data = [1; 8];
1285     /// let mut buf = IoSlice::new(&data);
1286     ///
1287     /// // Mark 3 bytes as read.
1288     /// buf.advance(3);
1289     /// assert_eq!(buf.deref(), [1; 5].as_ref());
1290     /// ```
1291     #[unstable(feature = "io_slice_advance", issue = "62726")]
1292     #[inline]
advance(&mut self, n: usize)1293     pub fn advance(&mut self, n: usize) {
1294         self.0.advance(n)
1295     }
1296 
1297     /// Advance a slice of slices.
1298     ///
1299     /// Shrinks the slice to remove any `IoSlice`s that are fully advanced over.
1300     /// If the cursor ends up in the middle of an `IoSlice`, it is modified
1301     /// to start at that cursor.
1302     ///
1303     /// For example, if we have a slice of two 8-byte `IoSlice`s, and we advance by 10 bytes,
1304     /// the result will only include the second `IoSlice`, advanced by 2 bytes.
1305     ///
1306     /// # Panics
1307     ///
1308     /// Panics when trying to advance beyond the end of the slices.
1309     ///
1310     /// # Examples
1311     ///
1312     /// ```
1313     /// #![feature(io_slice_advance)]
1314     ///
1315     /// use std::io::IoSlice;
1316     /// use std::ops::Deref;
1317     ///
1318     /// let buf1 = [1; 8];
1319     /// let buf2 = [2; 16];
1320     /// let buf3 = [3; 8];
1321     /// let mut bufs = &mut [
1322     ///     IoSlice::new(&buf1),
1323     ///     IoSlice::new(&buf2),
1324     ///     IoSlice::new(&buf3),
1325     /// ][..];
1326     ///
1327     /// // Mark 10 bytes as written.
1328     /// IoSlice::advance_slices(&mut bufs, 10);
1329     /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
1330     /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
1331     #[unstable(feature = "io_slice_advance", issue = "62726")]
1332     #[inline]
advance_slices(bufs: &mut &mut [IoSlice<'a>], n: usize)1333     pub fn advance_slices(bufs: &mut &mut [IoSlice<'a>], n: usize) {
1334         // Number of buffers to remove.
1335         let mut remove = 0;
1336         // Total length of all the to be removed buffers.
1337         let mut accumulated_len = 0;
1338         for buf in bufs.iter() {
1339             if accumulated_len + buf.len() > n {
1340                 break;
1341             } else {
1342                 accumulated_len += buf.len();
1343                 remove += 1;
1344             }
1345         }
1346 
1347         *bufs = &mut take(bufs)[remove..];
1348         if bufs.is_empty() {
1349             assert!(n == accumulated_len, "advancing io slices beyond their length");
1350         } else {
1351             bufs[0].advance(n - accumulated_len)
1352         }
1353     }
1354 }
1355 
1356 #[stable(feature = "iovec", since = "1.36.0")]
1357 impl<'a> Deref for IoSlice<'a> {
1358     type Target = [u8];
1359 
1360     #[inline]
deref(&self) -> &[u8]1361     fn deref(&self) -> &[u8] {
1362         self.0.as_slice()
1363     }
1364 }
1365 
1366 /// A trait for objects which are byte-oriented sinks.
1367 ///
1368 /// Implementors of the `Write` trait are sometimes called 'writers'.
1369 ///
1370 /// Writers are defined by two required methods, [`write`] and [`flush`]:
1371 ///
1372 /// * The [`write`] method will attempt to write some data into the object,
1373 ///   returning how many bytes were successfully written.
1374 ///
1375 /// * The [`flush`] method is useful for adapters and explicit buffers
1376 ///   themselves for ensuring that all buffered data has been pushed out to the
1377 ///   'true sink'.
1378 ///
1379 /// Writers are intended to be composable with one another. Many implementors
1380 /// throughout [`std::io`] take and provide types which implement the `Write`
1381 /// trait.
1382 ///
1383 /// [`write`]: Write::write
1384 /// [`flush`]: Write::flush
1385 /// [`std::io`]: self
1386 ///
1387 /// # Examples
1388 ///
1389 /// ```no_run
1390 /// use std::io::prelude::*;
1391 /// use std::fs::File;
1392 ///
1393 /// fn main() -> std::io::Result<()> {
1394 ///     let data = b"some bytes";
1395 ///
1396 ///     let mut pos = 0;
1397 ///     let mut buffer = File::create("foo.txt")?;
1398 ///
1399 ///     while pos < data.len() {
1400 ///         let bytes_written = buffer.write(&data[pos..])?;
1401 ///         pos += bytes_written;
1402 ///     }
1403 ///     Ok(())
1404 /// }
1405 /// ```
1406 ///
1407 /// The trait also provides convenience methods like [`write_all`], which calls
1408 /// `write` in a loop until its entire input has been written.
1409 ///
1410 /// [`write_all`]: Write::write_all
1411 #[stable(feature = "rust1", since = "1.0.0")]
1412 #[doc(notable_trait)]
1413 #[cfg_attr(not(test), rustc_diagnostic_item = "IoWrite")]
1414 pub trait Write {
1415     /// Write a buffer into this writer, returning how many bytes were written.
1416     ///
1417     /// This function will attempt to write the entire contents of `buf`, but
1418     /// the entire write might not succeed, or the write may also generate an
1419     /// error. Typically, a call to `write` represents one attempt to write to
1420     /// any wrapped object.
1421     ///
1422     /// Calls to `write` are not guaranteed to block waiting for data to be
1423     /// written, and a write which would otherwise block can be indicated through
1424     /// an [`Err`] variant.
1425     ///
1426     /// If this method consumed `n > 0` bytes of `buf` it must return [`Ok(n)`].
1427     /// If the return value is `Ok(n)` then `n` must satisfy `n <= buf.len()`.
1428     /// A return value of `Ok(0)` typically means that the underlying object is
1429     /// no longer able to accept bytes and will likely not be able to in the
1430     /// future as well, or that the buffer provided is empty.
1431     ///
1432     /// # Errors
1433     ///
1434     /// Each call to `write` may generate an I/O error indicating that the
1435     /// operation could not be completed. If an error is returned then no bytes
1436     /// in the buffer were written to this writer.
1437     ///
1438     /// It is **not** considered an error if the entire buffer could not be
1439     /// written to this writer.
1440     ///
1441     /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the
1442     /// write operation should be retried if there is nothing else to do.
1443     ///
1444     /// # Examples
1445     ///
1446     /// ```no_run
1447     /// use std::io::prelude::*;
1448     /// use std::fs::File;
1449     ///
1450     /// fn main() -> std::io::Result<()> {
1451     ///     let mut buffer = File::create("foo.txt")?;
1452     ///
1453     ///     // Writes some prefix of the byte string, not necessarily all of it.
1454     ///     buffer.write(b"some bytes")?;
1455     ///     Ok(())
1456     /// }
1457     /// ```
1458     ///
1459     /// [`Ok(n)`]: Ok
1460     #[stable(feature = "rust1", since = "1.0.0")]
write(&mut self, buf: &[u8]) -> Result<usize>1461     fn write(&mut self, buf: &[u8]) -> Result<usize>;
1462 
1463     /// Like [`write`], except that it writes from a slice of buffers.
1464     ///
1465     /// Data is copied from each buffer in order, with the final buffer
1466     /// read from possibly being only partially consumed. This method must
1467     /// behave as a call to [`write`] with the buffers concatenated would.
1468     ///
1469     /// The default implementation calls [`write`] with either the first nonempty
1470     /// buffer provided, or an empty one if none exists.
1471     ///
1472     /// # Examples
1473     ///
1474     /// ```no_run
1475     /// use std::io::IoSlice;
1476     /// use std::io::prelude::*;
1477     /// use std::fs::File;
1478     ///
1479     /// fn main() -> std::io::Result<()> {
1480     ///     let data1 = [1; 8];
1481     ///     let data2 = [15; 8];
1482     ///     let io_slice1 = IoSlice::new(&data1);
1483     ///     let io_slice2 = IoSlice::new(&data2);
1484     ///
1485     ///     let mut buffer = File::create("foo.txt")?;
1486     ///
1487     ///     // Writes some prefix of the byte string, not necessarily all of it.
1488     ///     buffer.write_vectored(&[io_slice1, io_slice2])?;
1489     ///     Ok(())
1490     /// }
1491     /// ```
1492     ///
1493     /// [`write`]: Write::write
1494     #[stable(feature = "iovec", since = "1.36.0")]
write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize>1495     fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize> {
1496         default_write_vectored(|b| self.write(b), bufs)
1497     }
1498 
1499     /// Determines if this `Write`r has an efficient [`write_vectored`]
1500     /// implementation.
1501     ///
1502     /// If a `Write`r does not override the default [`write_vectored`]
1503     /// implementation, code using it may want to avoid the method all together
1504     /// and coalesce writes into a single buffer for higher performance.
1505     ///
1506     /// The default implementation returns `false`.
1507     ///
1508     /// [`write_vectored`]: Write::write_vectored
1509     #[unstable(feature = "can_vector", issue = "69941")]
is_write_vectored(&self) -> bool1510     fn is_write_vectored(&self) -> bool {
1511         false
1512     }
1513 
1514     /// Flush this output stream, ensuring that all intermediately buffered
1515     /// contents reach their destination.
1516     ///
1517     /// # Errors
1518     ///
1519     /// It is considered an error if not all bytes could be written due to
1520     /// I/O errors or EOF being reached.
1521     ///
1522     /// # Examples
1523     ///
1524     /// ```no_run
1525     /// use std::io::prelude::*;
1526     /// use std::io::BufWriter;
1527     /// use std::fs::File;
1528     ///
1529     /// fn main() -> std::io::Result<()> {
1530     ///     let mut buffer = BufWriter::new(File::create("foo.txt")?);
1531     ///
1532     ///     buffer.write_all(b"some bytes")?;
1533     ///     buffer.flush()?;
1534     ///     Ok(())
1535     /// }
1536     /// ```
1537     #[stable(feature = "rust1", since = "1.0.0")]
flush(&mut self) -> Result<()>1538     fn flush(&mut self) -> Result<()>;
1539 
1540     /// Attempts to write an entire buffer into this writer.
1541     ///
1542     /// This method will continuously call [`write`] until there is no more data
1543     /// to be written or an error of non-[`ErrorKind::Interrupted`] kind is
1544     /// returned. This method will not return until the entire buffer has been
1545     /// successfully written or such an error occurs. The first error that is
1546     /// not of [`ErrorKind::Interrupted`] kind generated from this method will be
1547     /// returned.
1548     ///
1549     /// If the buffer contains no data, this will never call [`write`].
1550     ///
1551     /// # Errors
1552     ///
1553     /// This function will return the first error of
1554     /// non-[`ErrorKind::Interrupted`] kind that [`write`] returns.
1555     ///
1556     /// [`write`]: Write::write
1557     ///
1558     /// # Examples
1559     ///
1560     /// ```no_run
1561     /// use std::io::prelude::*;
1562     /// use std::fs::File;
1563     ///
1564     /// fn main() -> std::io::Result<()> {
1565     ///     let mut buffer = File::create("foo.txt")?;
1566     ///
1567     ///     buffer.write_all(b"some bytes")?;
1568     ///     Ok(())
1569     /// }
1570     /// ```
1571     #[stable(feature = "rust1", since = "1.0.0")]
write_all(&mut self, mut buf: &[u8]) -> Result<()>1572     fn write_all(&mut self, mut buf: &[u8]) -> Result<()> {
1573         while !buf.is_empty() {
1574             match self.write(buf) {
1575                 Ok(0) => {
1576                     return Err(error::const_io_error!(
1577                         ErrorKind::WriteZero,
1578                         "failed to write whole buffer",
1579                     ));
1580                 }
1581                 Ok(n) => buf = &buf[n..],
1582                 Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
1583                 Err(e) => return Err(e),
1584             }
1585         }
1586         Ok(())
1587     }
1588 
1589     /// Attempts to write multiple buffers into this writer.
1590     ///
1591     /// This method will continuously call [`write_vectored`] until there is no
1592     /// more data to be written or an error of non-[`ErrorKind::Interrupted`]
1593     /// kind is returned. This method will not return until all buffers have
1594     /// been successfully written or such an error occurs. The first error that
1595     /// is not of [`ErrorKind::Interrupted`] kind generated from this method
1596     /// will be returned.
1597     ///
1598     /// If the buffer contains no data, this will never call [`write_vectored`].
1599     ///
1600     /// # Notes
1601     ///
1602     /// Unlike [`write_vectored`], this takes a *mutable* reference to
1603     /// a slice of [`IoSlice`]s, not an immutable one. That's because we need to
1604     /// modify the slice to keep track of the bytes already written.
1605     ///
1606     /// Once this function returns, the contents of `bufs` are unspecified, as
1607     /// this depends on how many calls to [`write_vectored`] were necessary. It is
1608     /// best to understand this function as taking ownership of `bufs` and to
1609     /// not use `bufs` afterwards. The underlying buffers, to which the
1610     /// [`IoSlice`]s point (but not the [`IoSlice`]s themselves), are unchanged and
1611     /// can be reused.
1612     ///
1613     /// [`write_vectored`]: Write::write_vectored
1614     ///
1615     /// # Examples
1616     ///
1617     /// ```
1618     /// #![feature(write_all_vectored)]
1619     /// # fn main() -> std::io::Result<()> {
1620     ///
1621     /// use std::io::{Write, IoSlice};
1622     ///
1623     /// let mut writer = Vec::new();
1624     /// let bufs = &mut [
1625     ///     IoSlice::new(&[1]),
1626     ///     IoSlice::new(&[2, 3]),
1627     ///     IoSlice::new(&[4, 5, 6]),
1628     /// ];
1629     ///
1630     /// writer.write_all_vectored(bufs)?;
1631     /// // Note: the contents of `bufs` is now undefined, see the Notes section.
1632     ///
1633     /// assert_eq!(writer, &[1, 2, 3, 4, 5, 6]);
1634     /// # Ok(()) }
1635     /// ```
1636     #[unstable(feature = "write_all_vectored", issue = "70436")]
write_all_vectored(&mut self, mut bufs: &mut [IoSlice<'_>]) -> Result<()>1637     fn write_all_vectored(&mut self, mut bufs: &mut [IoSlice<'_>]) -> Result<()> {
1638         // Guarantee that bufs is empty if it contains no data,
1639         // to avoid calling write_vectored if there is no data to be written.
1640         IoSlice::advance_slices(&mut bufs, 0);
1641         while !bufs.is_empty() {
1642             match self.write_vectored(bufs) {
1643                 Ok(0) => {
1644                     return Err(error::const_io_error!(
1645                         ErrorKind::WriteZero,
1646                         "failed to write whole buffer",
1647                     ));
1648                 }
1649                 Ok(n) => IoSlice::advance_slices(&mut bufs, n),
1650                 Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
1651                 Err(e) => return Err(e),
1652             }
1653         }
1654         Ok(())
1655     }
1656 
1657     /// Writes a formatted string into this writer, returning any error
1658     /// encountered.
1659     ///
1660     /// This method is primarily used to interface with the
1661     /// [`format_args!()`] macro, and it is rare that this should
1662     /// explicitly be called. The [`write!()`] macro should be favored to
1663     /// invoke this method instead.
1664     ///
1665     /// This function internally uses the [`write_all`] method on
1666     /// this trait and hence will continuously write data so long as no errors
1667     /// are received. This also means that partial writes are not indicated in
1668     /// this signature.
1669     ///
1670     /// [`write_all`]: Write::write_all
1671     ///
1672     /// # Errors
1673     ///
1674     /// This function will return any I/O error reported while formatting.
1675     ///
1676     /// # Examples
1677     ///
1678     /// ```no_run
1679     /// use std::io::prelude::*;
1680     /// use std::fs::File;
1681     ///
1682     /// fn main() -> std::io::Result<()> {
1683     ///     let mut buffer = File::create("foo.txt")?;
1684     ///
1685     ///     // this call
1686     ///     write!(buffer, "{:.*}", 2, 1.234567)?;
1687     ///     // turns into this:
1688     ///     buffer.write_fmt(format_args!("{:.*}", 2, 1.234567))?;
1689     ///     Ok(())
1690     /// }
1691     /// ```
1692     #[stable(feature = "rust1", since = "1.0.0")]
write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> Result<()>1693     fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> Result<()> {
1694         // Create a shim which translates a Write to a fmt::Write and saves
1695         // off I/O errors. instead of discarding them
1696         struct Adapter<'a, T: ?Sized + 'a> {
1697             inner: &'a mut T,
1698             error: Result<()>,
1699         }
1700 
1701         impl<T: Write + ?Sized> fmt::Write for Adapter<'_, T> {
1702             fn write_str(&mut self, s: &str) -> fmt::Result {
1703                 match self.inner.write_all(s.as_bytes()) {
1704                     Ok(()) => Ok(()),
1705                     Err(e) => {
1706                         self.error = Err(e);
1707                         Err(fmt::Error)
1708                     }
1709                 }
1710             }
1711         }
1712 
1713         let mut output = Adapter { inner: self, error: Ok(()) };
1714         match fmt::write(&mut output, fmt) {
1715             Ok(()) => Ok(()),
1716             Err(..) => {
1717                 // check if the error came from the underlying `Write` or not
1718                 if output.error.is_err() {
1719                     output.error
1720                 } else {
1721                     Err(error::const_io_error!(ErrorKind::Uncategorized, "formatter error"))
1722                 }
1723             }
1724         }
1725     }
1726 
1727     /// Creates a "by reference" adapter for this instance of `Write`.
1728     ///
1729     /// The returned adapter also implements `Write` and will simply borrow this
1730     /// current writer.
1731     ///
1732     /// # Examples
1733     ///
1734     /// ```no_run
1735     /// use std::io::Write;
1736     /// use std::fs::File;
1737     ///
1738     /// fn main() -> std::io::Result<()> {
1739     ///     let mut buffer = File::create("foo.txt")?;
1740     ///
1741     ///     let reference = buffer.by_ref();
1742     ///
1743     ///     // we can use reference just like our original buffer
1744     ///     reference.write_all(b"some bytes")?;
1745     ///     Ok(())
1746     /// }
1747     /// ```
1748     #[stable(feature = "rust1", since = "1.0.0")]
by_ref(&mut self) -> &mut Self where Self: Sized,1749     fn by_ref(&mut self) -> &mut Self
1750     where
1751         Self: Sized,
1752     {
1753         self
1754     }
1755 }
1756 
1757 /// The `Seek` trait provides a cursor which can be moved within a stream of
1758 /// bytes.
1759 ///
1760 /// The stream typically has a fixed size, allowing seeking relative to either
1761 /// end or the current offset.
1762 ///
1763 /// # Examples
1764 ///
1765 /// [`File`]s implement `Seek`:
1766 ///
1767 /// [`File`]: crate::fs::File
1768 ///
1769 /// ```no_run
1770 /// use std::io;
1771 /// use std::io::prelude::*;
1772 /// use std::fs::File;
1773 /// use std::io::SeekFrom;
1774 ///
1775 /// fn main() -> io::Result<()> {
1776 ///     let mut f = File::open("foo.txt")?;
1777 ///
1778 ///     // move the cursor 42 bytes from the start of the file
1779 ///     f.seek(SeekFrom::Start(42))?;
1780 ///     Ok(())
1781 /// }
1782 /// ```
1783 #[stable(feature = "rust1", since = "1.0.0")]
1784 pub trait Seek {
1785     /// Seek to an offset, in bytes, in a stream.
1786     ///
1787     /// A seek beyond the end of a stream is allowed, but behavior is defined
1788     /// by the implementation.
1789     ///
1790     /// If the seek operation completed successfully,
1791     /// this method returns the new position from the start of the stream.
1792     /// That position can be used later with [`SeekFrom::Start`].
1793     ///
1794     /// # Errors
1795     ///
1796     /// Seeking can fail, for example because it might involve flushing a buffer.
1797     ///
1798     /// Seeking to a negative offset is considered an error.
1799     #[stable(feature = "rust1", since = "1.0.0")]
seek(&mut self, pos: SeekFrom) -> Result<u64>1800     fn seek(&mut self, pos: SeekFrom) -> Result<u64>;
1801 
1802     /// Rewind to the beginning of a stream.
1803     ///
1804     /// This is a convenience method, equivalent to `seek(SeekFrom::Start(0))`.
1805     ///
1806     /// # Errors
1807     ///
1808     /// Rewinding can fail, for example because it might involve flushing a buffer.
1809     ///
1810     /// # Example
1811     ///
1812     /// ```no_run
1813     /// use std::io::{Read, Seek, Write};
1814     /// use std::fs::OpenOptions;
1815     ///
1816     /// let mut f = OpenOptions::new()
1817     ///     .write(true)
1818     ///     .read(true)
1819     ///     .create(true)
1820     ///     .open("foo.txt").unwrap();
1821     ///
1822     /// let hello = "Hello!\n";
1823     /// write!(f, "{hello}").unwrap();
1824     /// f.rewind().unwrap();
1825     ///
1826     /// let mut buf = String::new();
1827     /// f.read_to_string(&mut buf).unwrap();
1828     /// assert_eq!(&buf, hello);
1829     /// ```
1830     #[stable(feature = "seek_rewind", since = "1.55.0")]
rewind(&mut self) -> Result<()>1831     fn rewind(&mut self) -> Result<()> {
1832         self.seek(SeekFrom::Start(0))?;
1833         Ok(())
1834     }
1835 
1836     /// Returns the length of this stream (in bytes).
1837     ///
1838     /// This method is implemented using up to three seek operations. If this
1839     /// method returns successfully, the seek position is unchanged (i.e. the
1840     /// position before calling this method is the same as afterwards).
1841     /// However, if this method returns an error, the seek position is
1842     /// unspecified.
1843     ///
1844     /// If you need to obtain the length of *many* streams and you don't care
1845     /// about the seek position afterwards, you can reduce the number of seek
1846     /// operations by simply calling `seek(SeekFrom::End(0))` and using its
1847     /// return value (it is also the stream length).
1848     ///
1849     /// Note that length of a stream can change over time (for example, when
1850     /// data is appended to a file). So calling this method multiple times does
1851     /// not necessarily return the same length each time.
1852     ///
1853     /// # Example
1854     ///
1855     /// ```no_run
1856     /// #![feature(seek_stream_len)]
1857     /// use std::{
1858     ///     io::{self, Seek},
1859     ///     fs::File,
1860     /// };
1861     ///
1862     /// fn main() -> io::Result<()> {
1863     ///     let mut f = File::open("foo.txt")?;
1864     ///
1865     ///     let len = f.stream_len()?;
1866     ///     println!("The file is currently {len} bytes long");
1867     ///     Ok(())
1868     /// }
1869     /// ```
1870     #[unstable(feature = "seek_stream_len", issue = "59359")]
stream_len(&mut self) -> Result<u64>1871     fn stream_len(&mut self) -> Result<u64> {
1872         let old_pos = self.stream_position()?;
1873         let len = self.seek(SeekFrom::End(0))?;
1874 
1875         // Avoid seeking a third time when we were already at the end of the
1876         // stream. The branch is usually way cheaper than a seek operation.
1877         if old_pos != len {
1878             self.seek(SeekFrom::Start(old_pos))?;
1879         }
1880 
1881         Ok(len)
1882     }
1883 
1884     /// Returns the current seek position from the start of the stream.
1885     ///
1886     /// This is equivalent to `self.seek(SeekFrom::Current(0))`.
1887     ///
1888     /// # Example
1889     ///
1890     /// ```no_run
1891     /// use std::{
1892     ///     io::{self, BufRead, BufReader, Seek},
1893     ///     fs::File,
1894     /// };
1895     ///
1896     /// fn main() -> io::Result<()> {
1897     ///     let mut f = BufReader::new(File::open("foo.txt")?);
1898     ///
1899     ///     let before = f.stream_position()?;
1900     ///     f.read_line(&mut String::new())?;
1901     ///     let after = f.stream_position()?;
1902     ///
1903     ///     println!("The first line was {} bytes long", after - before);
1904     ///     Ok(())
1905     /// }
1906     /// ```
1907     #[stable(feature = "seek_convenience", since = "1.51.0")]
stream_position(&mut self) -> Result<u64>1908     fn stream_position(&mut self) -> Result<u64> {
1909         self.seek(SeekFrom::Current(0))
1910     }
1911 }
1912 
1913 /// Enumeration of possible methods to seek within an I/O object.
1914 ///
1915 /// It is used by the [`Seek`] trait.
1916 #[derive(Copy, PartialEq, Eq, Clone, Debug)]
1917 #[stable(feature = "rust1", since = "1.0.0")]
1918 pub enum SeekFrom {
1919     /// Sets the offset to the provided number of bytes.
1920     #[stable(feature = "rust1", since = "1.0.0")]
1921     Start(#[stable(feature = "rust1", since = "1.0.0")] u64),
1922 
1923     /// Sets the offset to the size of this object plus the specified number of
1924     /// bytes.
1925     ///
1926     /// It is possible to seek beyond the end of an object, but it's an error to
1927     /// seek before byte 0.
1928     #[stable(feature = "rust1", since = "1.0.0")]
1929     End(#[stable(feature = "rust1", since = "1.0.0")] i64),
1930 
1931     /// Sets the offset to the current position plus the specified number of
1932     /// bytes.
1933     ///
1934     /// It is possible to seek beyond the end of an object, but it's an error to
1935     /// seek before byte 0.
1936     #[stable(feature = "rust1", since = "1.0.0")]
1937     Current(#[stable(feature = "rust1", since = "1.0.0")] i64),
1938 }
1939 
read_until<R: BufRead + ?Sized>(r: &mut R, delim: u8, buf: &mut Vec<u8>) -> Result<usize>1940 fn read_until<R: BufRead + ?Sized>(r: &mut R, delim: u8, buf: &mut Vec<u8>) -> Result<usize> {
1941     let mut read = 0;
1942     loop {
1943         let (done, used) = {
1944             let available = match r.fill_buf() {
1945                 Ok(n) => n,
1946                 Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
1947                 Err(e) => return Err(e),
1948             };
1949             match memchr::memchr(delim, available) {
1950                 Some(i) => {
1951                     buf.extend_from_slice(&available[..=i]);
1952                     (true, i + 1)
1953                 }
1954                 None => {
1955                     buf.extend_from_slice(available);
1956                     (false, available.len())
1957                 }
1958             }
1959         };
1960         r.consume(used);
1961         read += used;
1962         if done || used == 0 {
1963             return Ok(read);
1964         }
1965     }
1966 }
1967 
1968 /// A `BufRead` is a type of `Read`er which has an internal buffer, allowing it
1969 /// to perform extra ways of reading.
1970 ///
1971 /// For example, reading line-by-line is inefficient without using a buffer, so
1972 /// if you want to read by line, you'll need `BufRead`, which includes a
1973 /// [`read_line`] method as well as a [`lines`] iterator.
1974 ///
1975 /// # Examples
1976 ///
1977 /// A locked standard input implements `BufRead`:
1978 ///
1979 /// ```no_run
1980 /// use std::io;
1981 /// use std::io::prelude::*;
1982 ///
1983 /// let stdin = io::stdin();
1984 /// for line in stdin.lock().lines() {
1985 ///     println!("{}", line.unwrap());
1986 /// }
1987 /// ```
1988 ///
1989 /// If you have something that implements [`Read`], you can use the [`BufReader`
1990 /// type][`BufReader`] to turn it into a `BufRead`.
1991 ///
1992 /// For example, [`File`] implements [`Read`], but not `BufRead`.
1993 /// [`BufReader`] to the rescue!
1994 ///
1995 /// [`File`]: crate::fs::File
1996 /// [`read_line`]: BufRead::read_line
1997 /// [`lines`]: BufRead::lines
1998 ///
1999 /// ```no_run
2000 /// use std::io::{self, BufReader};
2001 /// use std::io::prelude::*;
2002 /// use std::fs::File;
2003 ///
2004 /// fn main() -> io::Result<()> {
2005 ///     let f = File::open("foo.txt")?;
2006 ///     let f = BufReader::new(f);
2007 ///
2008 ///     for line in f.lines() {
2009 ///         println!("{}", line.unwrap());
2010 ///     }
2011 ///
2012 ///     Ok(())
2013 /// }
2014 /// ```
2015 #[stable(feature = "rust1", since = "1.0.0")]
2016 pub trait BufRead: Read {
2017     /// Returns the contents of the internal buffer, filling it with more data
2018     /// from the inner reader if it is empty.
2019     ///
2020     /// This function is a lower-level call. It needs to be paired with the
2021     /// [`consume`] method to function properly. When calling this
2022     /// method, none of the contents will be "read" in the sense that later
2023     /// calling `read` may return the same contents. As such, [`consume`] must
2024     /// be called with the number of bytes that are consumed from this buffer to
2025     /// ensure that the bytes are never returned twice.
2026     ///
2027     /// [`consume`]: BufRead::consume
2028     ///
2029     /// An empty buffer returned indicates that the stream has reached EOF.
2030     ///
2031     /// # Errors
2032     ///
2033     /// This function will return an I/O error if the underlying reader was
2034     /// read, but returned an error.
2035     ///
2036     /// # Examples
2037     ///
2038     /// A locked standard input implements `BufRead`:
2039     ///
2040     /// ```no_run
2041     /// use std::io;
2042     /// use std::io::prelude::*;
2043     ///
2044     /// let stdin = io::stdin();
2045     /// let mut stdin = stdin.lock();
2046     ///
2047     /// let buffer = stdin.fill_buf().unwrap();
2048     ///
2049     /// // work with buffer
2050     /// println!("{buffer:?}");
2051     ///
2052     /// // ensure the bytes we worked with aren't returned again later
2053     /// let length = buffer.len();
2054     /// stdin.consume(length);
2055     /// ```
2056     #[stable(feature = "rust1", since = "1.0.0")]
fill_buf(&mut self) -> Result<&[u8]>2057     fn fill_buf(&mut self) -> Result<&[u8]>;
2058 
2059     /// Tells this buffer that `amt` bytes have been consumed from the buffer,
2060     /// so they should no longer be returned in calls to `read`.
2061     ///
2062     /// This function is a lower-level call. It needs to be paired with the
2063     /// [`fill_buf`] method to function properly. This function does
2064     /// not perform any I/O, it simply informs this object that some amount of
2065     /// its buffer, returned from [`fill_buf`], has been consumed and should
2066     /// no longer be returned. As such, this function may do odd things if
2067     /// [`fill_buf`] isn't called before calling it.
2068     ///
2069     /// The `amt` must be `<=` the number of bytes in the buffer returned by
2070     /// [`fill_buf`].
2071     ///
2072     /// # Examples
2073     ///
2074     /// Since `consume()` is meant to be used with [`fill_buf`],
2075     /// that method's example includes an example of `consume()`.
2076     ///
2077     /// [`fill_buf`]: BufRead::fill_buf
2078     #[stable(feature = "rust1", since = "1.0.0")]
consume(&mut self, amt: usize)2079     fn consume(&mut self, amt: usize);
2080 
2081     /// Check if the underlying `Read` has any data left to be read.
2082     ///
2083     /// This function may fill the buffer to check for data,
2084     /// so this functions returns `Result<bool>`, not `bool`.
2085     ///
2086     /// Default implementation calls `fill_buf` and checks that
2087     /// returned slice is empty (which means that there is no data left,
2088     /// since EOF is reached).
2089     ///
2090     /// Examples
2091     ///
2092     /// ```
2093     /// #![feature(buf_read_has_data_left)]
2094     /// use std::io;
2095     /// use std::io::prelude::*;
2096     ///
2097     /// let stdin = io::stdin();
2098     /// let mut stdin = stdin.lock();
2099     ///
2100     /// while stdin.has_data_left().unwrap() {
2101     ///     let mut line = String::new();
2102     ///     stdin.read_line(&mut line).unwrap();
2103     ///     // work with line
2104     ///     println!("{line:?}");
2105     /// }
2106     /// ```
2107     #[unstable(feature = "buf_read_has_data_left", reason = "recently added", issue = "86423")]
has_data_left(&mut self) -> Result<bool>2108     fn has_data_left(&mut self) -> Result<bool> {
2109         self.fill_buf().map(|b| !b.is_empty())
2110     }
2111 
2112     /// Read all bytes into `buf` until the delimiter `byte` or EOF is reached.
2113     ///
2114     /// This function will read bytes from the underlying stream until the
2115     /// delimiter or EOF is found. Once found, all bytes up to, and including,
2116     /// the delimiter (if found) will be appended to `buf`.
2117     ///
2118     /// If successful, this function will return the total number of bytes read.
2119     ///
2120     /// This function is blocking and should be used carefully: it is possible for
2121     /// an attacker to continuously send bytes without ever sending the delimiter
2122     /// or EOF.
2123     ///
2124     /// # Errors
2125     ///
2126     /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
2127     /// will otherwise return any errors returned by [`fill_buf`].
2128     ///
2129     /// If an I/O error is encountered then all bytes read so far will be
2130     /// present in `buf` and its length will have been adjusted appropriately.
2131     ///
2132     /// [`fill_buf`]: BufRead::fill_buf
2133     ///
2134     /// # Examples
2135     ///
2136     /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2137     /// this example, we use [`Cursor`] to read all the bytes in a byte slice
2138     /// in hyphen delimited segments:
2139     ///
2140     /// ```
2141     /// use std::io::{self, BufRead};
2142     ///
2143     /// let mut cursor = io::Cursor::new(b"lorem-ipsum");
2144     /// let mut buf = vec![];
2145     ///
2146     /// // cursor is at 'l'
2147     /// let num_bytes = cursor.read_until(b'-', &mut buf)
2148     ///     .expect("reading from cursor won't fail");
2149     /// assert_eq!(num_bytes, 6);
2150     /// assert_eq!(buf, b"lorem-");
2151     /// buf.clear();
2152     ///
2153     /// // cursor is at 'i'
2154     /// let num_bytes = cursor.read_until(b'-', &mut buf)
2155     ///     .expect("reading from cursor won't fail");
2156     /// assert_eq!(num_bytes, 5);
2157     /// assert_eq!(buf, b"ipsum");
2158     /// buf.clear();
2159     ///
2160     /// // cursor is at EOF
2161     /// let num_bytes = cursor.read_until(b'-', &mut buf)
2162     ///     .expect("reading from cursor won't fail");
2163     /// assert_eq!(num_bytes, 0);
2164     /// assert_eq!(buf, b"");
2165     /// ```
2166     #[stable(feature = "rust1", since = "1.0.0")]
read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize>2167     fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
2168         read_until(self, byte, buf)
2169     }
2170 
2171     /// Read all bytes until a newline (the `0xA` byte) is reached, and append
2172     /// them to the provided `String` buffer.
2173     ///
2174     /// Previous content of the buffer will be preserved. To avoid appending to
2175     /// the buffer, you need to [`clear`] it first.
2176     ///
2177     /// This function will read bytes from the underlying stream until the
2178     /// newline delimiter (the `0xA` byte) or EOF is found. Once found, all bytes
2179     /// up to, and including, the delimiter (if found) will be appended to
2180     /// `buf`.
2181     ///
2182     /// If successful, this function will return the total number of bytes read.
2183     ///
2184     /// If this function returns [`Ok(0)`], the stream has reached EOF.
2185     ///
2186     /// This function is blocking and should be used carefully: it is possible for
2187     /// an attacker to continuously send bytes without ever sending a newline
2188     /// or EOF. You can use [`take`] to limit the maximum number of bytes read.
2189     ///
2190     /// [`Ok(0)`]: Ok
2191     /// [`clear`]: String::clear
2192     /// [`take`]: crate::io::Read::take
2193     ///
2194     /// # Errors
2195     ///
2196     /// This function has the same error semantics as [`read_until`] and will
2197     /// also return an error if the read bytes are not valid UTF-8. If an I/O
2198     /// error is encountered then `buf` may contain some bytes already read in
2199     /// the event that all data read so far was valid UTF-8.
2200     ///
2201     /// [`read_until`]: BufRead::read_until
2202     ///
2203     /// # Examples
2204     ///
2205     /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2206     /// this example, we use [`Cursor`] to read all the lines in a byte slice:
2207     ///
2208     /// ```
2209     /// use std::io::{self, BufRead};
2210     ///
2211     /// let mut cursor = io::Cursor::new(b"foo\nbar");
2212     /// let mut buf = String::new();
2213     ///
2214     /// // cursor is at 'f'
2215     /// let num_bytes = cursor.read_line(&mut buf)
2216     ///     .expect("reading from cursor won't fail");
2217     /// assert_eq!(num_bytes, 4);
2218     /// assert_eq!(buf, "foo\n");
2219     /// buf.clear();
2220     ///
2221     /// // cursor is at 'b'
2222     /// let num_bytes = cursor.read_line(&mut buf)
2223     ///     .expect("reading from cursor won't fail");
2224     /// assert_eq!(num_bytes, 3);
2225     /// assert_eq!(buf, "bar");
2226     /// buf.clear();
2227     ///
2228     /// // cursor is at EOF
2229     /// let num_bytes = cursor.read_line(&mut buf)
2230     ///     .expect("reading from cursor won't fail");
2231     /// assert_eq!(num_bytes, 0);
2232     /// assert_eq!(buf, "");
2233     /// ```
2234     #[stable(feature = "rust1", since = "1.0.0")]
read_line(&mut self, buf: &mut String) -> Result<usize>2235     fn read_line(&mut self, buf: &mut String) -> Result<usize> {
2236         // Note that we are not calling the `.read_until` method here, but
2237         // rather our hardcoded implementation. For more details as to why, see
2238         // the comments in `read_to_end`.
2239         unsafe { append_to_string(buf, |b| read_until(self, b'\n', b)) }
2240     }
2241 
2242     /// Returns an iterator over the contents of this reader split on the byte
2243     /// `byte`.
2244     ///
2245     /// The iterator returned from this function will return instances of
2246     /// <code>[io::Result]<[Vec]\<u8>></code>. Each vector returned will *not* have
2247     /// the delimiter byte at the end.
2248     ///
2249     /// This function will yield errors whenever [`read_until`] would have
2250     /// also yielded an error.
2251     ///
2252     /// [io::Result]: self::Result "io::Result"
2253     /// [`read_until`]: BufRead::read_until
2254     ///
2255     /// # Examples
2256     ///
2257     /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2258     /// this example, we use [`Cursor`] to iterate over all hyphen delimited
2259     /// segments in a byte slice
2260     ///
2261     /// ```
2262     /// use std::io::{self, BufRead};
2263     ///
2264     /// let cursor = io::Cursor::new(b"lorem-ipsum-dolor");
2265     ///
2266     /// let mut split_iter = cursor.split(b'-').map(|l| l.unwrap());
2267     /// assert_eq!(split_iter.next(), Some(b"lorem".to_vec()));
2268     /// assert_eq!(split_iter.next(), Some(b"ipsum".to_vec()));
2269     /// assert_eq!(split_iter.next(), Some(b"dolor".to_vec()));
2270     /// assert_eq!(split_iter.next(), None);
2271     /// ```
2272     #[stable(feature = "rust1", since = "1.0.0")]
split(self, byte: u8) -> Split<Self> where Self: Sized,2273     fn split(self, byte: u8) -> Split<Self>
2274     where
2275         Self: Sized,
2276     {
2277         Split { buf: self, delim: byte }
2278     }
2279 
2280     /// Returns an iterator over the lines of this reader.
2281     ///
2282     /// The iterator returned from this function will yield instances of
2283     /// <code>[io::Result]<[String]></code>. Each string returned will *not* have a newline
2284     /// byte (the `0xA` byte) or `CRLF` (`0xD`, `0xA` bytes) at the end.
2285     ///
2286     /// [io::Result]: self::Result "io::Result"
2287     ///
2288     /// # Examples
2289     ///
2290     /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2291     /// this example, we use [`Cursor`] to iterate over all the lines in a byte
2292     /// slice.
2293     ///
2294     /// ```
2295     /// use std::io::{self, BufRead};
2296     ///
2297     /// let cursor = io::Cursor::new(b"lorem\nipsum\r\ndolor");
2298     ///
2299     /// let mut lines_iter = cursor.lines().map(|l| l.unwrap());
2300     /// assert_eq!(lines_iter.next(), Some(String::from("lorem")));
2301     /// assert_eq!(lines_iter.next(), Some(String::from("ipsum")));
2302     /// assert_eq!(lines_iter.next(), Some(String::from("dolor")));
2303     /// assert_eq!(lines_iter.next(), None);
2304     /// ```
2305     ///
2306     /// # Errors
2307     ///
2308     /// Each line of the iterator has the same error semantics as [`BufRead::read_line`].
2309     #[stable(feature = "rust1", since = "1.0.0")]
lines(self) -> Lines<Self> where Self: Sized,2310     fn lines(self) -> Lines<Self>
2311     where
2312         Self: Sized,
2313     {
2314         Lines { buf: self }
2315     }
2316 }
2317 
2318 /// Adapter to chain together two readers.
2319 ///
2320 /// This struct is generally created by calling [`chain`] on a reader.
2321 /// Please see the documentation of [`chain`] for more details.
2322 ///
2323 /// [`chain`]: Read::chain
2324 #[stable(feature = "rust1", since = "1.0.0")]
2325 #[derive(Debug)]
2326 pub struct Chain<T, U> {
2327     first: T,
2328     second: U,
2329     done_first: bool,
2330 }
2331 
2332 impl<T, U> Chain<T, U> {
2333     /// Consumes the `Chain`, returning the wrapped readers.
2334     ///
2335     /// # Examples
2336     ///
2337     /// ```no_run
2338     /// use std::io;
2339     /// use std::io::prelude::*;
2340     /// use std::fs::File;
2341     ///
2342     /// fn main() -> io::Result<()> {
2343     ///     let mut foo_file = File::open("foo.txt")?;
2344     ///     let mut bar_file = File::open("bar.txt")?;
2345     ///
2346     ///     let chain = foo_file.chain(bar_file);
2347     ///     let (foo_file, bar_file) = chain.into_inner();
2348     ///     Ok(())
2349     /// }
2350     /// ```
2351     #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
into_inner(self) -> (T, U)2352     pub fn into_inner(self) -> (T, U) {
2353         (self.first, self.second)
2354     }
2355 
2356     /// Gets references to the underlying readers in this `Chain`.
2357     ///
2358     /// # Examples
2359     ///
2360     /// ```no_run
2361     /// use std::io;
2362     /// use std::io::prelude::*;
2363     /// use std::fs::File;
2364     ///
2365     /// fn main() -> io::Result<()> {
2366     ///     let mut foo_file = File::open("foo.txt")?;
2367     ///     let mut bar_file = File::open("bar.txt")?;
2368     ///
2369     ///     let chain = foo_file.chain(bar_file);
2370     ///     let (foo_file, bar_file) = chain.get_ref();
2371     ///     Ok(())
2372     /// }
2373     /// ```
2374     #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
get_ref(&self) -> (&T, &U)2375     pub fn get_ref(&self) -> (&T, &U) {
2376         (&self.first, &self.second)
2377     }
2378 
2379     /// Gets mutable references to the underlying readers in this `Chain`.
2380     ///
2381     /// Care should be taken to avoid modifying the internal I/O state of the
2382     /// underlying readers as doing so may corrupt the internal state of this
2383     /// `Chain`.
2384     ///
2385     /// # Examples
2386     ///
2387     /// ```no_run
2388     /// use std::io;
2389     /// use std::io::prelude::*;
2390     /// use std::fs::File;
2391     ///
2392     /// fn main() -> io::Result<()> {
2393     ///     let mut foo_file = File::open("foo.txt")?;
2394     ///     let mut bar_file = File::open("bar.txt")?;
2395     ///
2396     ///     let mut chain = foo_file.chain(bar_file);
2397     ///     let (foo_file, bar_file) = chain.get_mut();
2398     ///     Ok(())
2399     /// }
2400     /// ```
2401     #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
get_mut(&mut self) -> (&mut T, &mut U)2402     pub fn get_mut(&mut self) -> (&mut T, &mut U) {
2403         (&mut self.first, &mut self.second)
2404     }
2405 }
2406 
2407 #[stable(feature = "rust1", since = "1.0.0")]
2408 impl<T: Read, U: Read> Read for Chain<T, U> {
read(&mut self, buf: &mut [u8]) -> Result<usize>2409     fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
2410         if !self.done_first {
2411             match self.first.read(buf)? {
2412                 0 if !buf.is_empty() => self.done_first = true,
2413                 n => return Ok(n),
2414             }
2415         }
2416         self.second.read(buf)
2417     }
2418 
read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize>2419     fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
2420         if !self.done_first {
2421             match self.first.read_vectored(bufs)? {
2422                 0 if bufs.iter().any(|b| !b.is_empty()) => self.done_first = true,
2423                 n => return Ok(n),
2424             }
2425         }
2426         self.second.read_vectored(bufs)
2427     }
2428 }
2429 
2430 #[stable(feature = "chain_bufread", since = "1.9.0")]
2431 impl<T: BufRead, U: BufRead> BufRead for Chain<T, U> {
fill_buf(&mut self) -> Result<&[u8]>2432     fn fill_buf(&mut self) -> Result<&[u8]> {
2433         if !self.done_first {
2434             match self.first.fill_buf()? {
2435                 buf if buf.is_empty() => {
2436                     self.done_first = true;
2437                 }
2438                 buf => return Ok(buf),
2439             }
2440         }
2441         self.second.fill_buf()
2442     }
2443 
consume(&mut self, amt: usize)2444     fn consume(&mut self, amt: usize) {
2445         if !self.done_first { self.first.consume(amt) } else { self.second.consume(amt) }
2446     }
2447 }
2448 
2449 impl<T, U> SizeHint for Chain<T, U> {
2450     #[inline]
lower_bound(&self) -> usize2451     fn lower_bound(&self) -> usize {
2452         SizeHint::lower_bound(&self.first) + SizeHint::lower_bound(&self.second)
2453     }
2454 
2455     #[inline]
upper_bound(&self) -> Option<usize>2456     fn upper_bound(&self) -> Option<usize> {
2457         match (SizeHint::upper_bound(&self.first), SizeHint::upper_bound(&self.second)) {
2458             (Some(first), Some(second)) => first.checked_add(second),
2459             _ => None,
2460         }
2461     }
2462 }
2463 
2464 /// Reader adapter which limits the bytes read from an underlying reader.
2465 ///
2466 /// This struct is generally created by calling [`take`] on a reader.
2467 /// Please see the documentation of [`take`] for more details.
2468 ///
2469 /// [`take`]: Read::take
2470 #[stable(feature = "rust1", since = "1.0.0")]
2471 #[derive(Debug)]
2472 pub struct Take<T> {
2473     inner: T,
2474     limit: u64,
2475 }
2476 
2477 impl<T> Take<T> {
2478     /// Returns the number of bytes that can be read before this instance will
2479     /// return EOF.
2480     ///
2481     /// # Note
2482     ///
2483     /// This instance may reach `EOF` after reading fewer bytes than indicated by
2484     /// this method if the underlying [`Read`] instance reaches EOF.
2485     ///
2486     /// # Examples
2487     ///
2488     /// ```no_run
2489     /// use std::io;
2490     /// use std::io::prelude::*;
2491     /// use std::fs::File;
2492     ///
2493     /// fn main() -> io::Result<()> {
2494     ///     let f = File::open("foo.txt")?;
2495     ///
2496     ///     // read at most five bytes
2497     ///     let handle = f.take(5);
2498     ///
2499     ///     println!("limit: {}", handle.limit());
2500     ///     Ok(())
2501     /// }
2502     /// ```
2503     #[stable(feature = "rust1", since = "1.0.0")]
limit(&self) -> u642504     pub fn limit(&self) -> u64 {
2505         self.limit
2506     }
2507 
2508     /// Sets the number of bytes that can be read before this instance will
2509     /// return EOF. This is the same as constructing a new `Take` instance, so
2510     /// the amount of bytes read and the previous limit value don't matter when
2511     /// calling this method.
2512     ///
2513     /// # Examples
2514     ///
2515     /// ```no_run
2516     /// use std::io;
2517     /// use std::io::prelude::*;
2518     /// use std::fs::File;
2519     ///
2520     /// fn main() -> io::Result<()> {
2521     ///     let f = File::open("foo.txt")?;
2522     ///
2523     ///     // read at most five bytes
2524     ///     let mut handle = f.take(5);
2525     ///     handle.set_limit(10);
2526     ///
2527     ///     assert_eq!(handle.limit(), 10);
2528     ///     Ok(())
2529     /// }
2530     /// ```
2531     #[stable(feature = "take_set_limit", since = "1.27.0")]
set_limit(&mut self, limit: u64)2532     pub fn set_limit(&mut self, limit: u64) {
2533         self.limit = limit;
2534     }
2535 
2536     /// Consumes the `Take`, returning the wrapped reader.
2537     ///
2538     /// # Examples
2539     ///
2540     /// ```no_run
2541     /// use std::io;
2542     /// use std::io::prelude::*;
2543     /// use std::fs::File;
2544     ///
2545     /// fn main() -> io::Result<()> {
2546     ///     let mut file = File::open("foo.txt")?;
2547     ///
2548     ///     let mut buffer = [0; 5];
2549     ///     let mut handle = file.take(5);
2550     ///     handle.read(&mut buffer)?;
2551     ///
2552     ///     let file = handle.into_inner();
2553     ///     Ok(())
2554     /// }
2555     /// ```
2556     #[stable(feature = "io_take_into_inner", since = "1.15.0")]
into_inner(self) -> T2557     pub fn into_inner(self) -> T {
2558         self.inner
2559     }
2560 
2561     /// Gets a reference to the underlying reader.
2562     ///
2563     /// # Examples
2564     ///
2565     /// ```no_run
2566     /// use std::io;
2567     /// use std::io::prelude::*;
2568     /// use std::fs::File;
2569     ///
2570     /// fn main() -> io::Result<()> {
2571     ///     let mut file = File::open("foo.txt")?;
2572     ///
2573     ///     let mut buffer = [0; 5];
2574     ///     let mut handle = file.take(5);
2575     ///     handle.read(&mut buffer)?;
2576     ///
2577     ///     let file = handle.get_ref();
2578     ///     Ok(())
2579     /// }
2580     /// ```
2581     #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
get_ref(&self) -> &T2582     pub fn get_ref(&self) -> &T {
2583         &self.inner
2584     }
2585 
2586     /// Gets a mutable reference to the underlying reader.
2587     ///
2588     /// Care should be taken to avoid modifying the internal I/O state of the
2589     /// underlying reader as doing so may corrupt the internal limit of this
2590     /// `Take`.
2591     ///
2592     /// # Examples
2593     ///
2594     /// ```no_run
2595     /// use std::io;
2596     /// use std::io::prelude::*;
2597     /// use std::fs::File;
2598     ///
2599     /// fn main() -> io::Result<()> {
2600     ///     let mut file = File::open("foo.txt")?;
2601     ///
2602     ///     let mut buffer = [0; 5];
2603     ///     let mut handle = file.take(5);
2604     ///     handle.read(&mut buffer)?;
2605     ///
2606     ///     let file = handle.get_mut();
2607     ///     Ok(())
2608     /// }
2609     /// ```
2610     #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
get_mut(&mut self) -> &mut T2611     pub fn get_mut(&mut self) -> &mut T {
2612         &mut self.inner
2613     }
2614 }
2615 
2616 #[stable(feature = "rust1", since = "1.0.0")]
2617 impl<T: Read> Read for Take<T> {
read(&mut self, buf: &mut [u8]) -> Result<usize>2618     fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
2619         // Don't call into inner reader at all at EOF because it may still block
2620         if self.limit == 0 {
2621             return Ok(0);
2622         }
2623 
2624         let max = cmp::min(buf.len() as u64, self.limit) as usize;
2625         let n = self.inner.read(&mut buf[..max])?;
2626         assert!(n as u64 <= self.limit, "number of read bytes exceeds limit");
2627         self.limit -= n as u64;
2628         Ok(n)
2629     }
2630 
read_buf(&mut self, mut buf: BorrowedCursor<'_>) -> Result<()>2631     fn read_buf(&mut self, mut buf: BorrowedCursor<'_>) -> Result<()> {
2632         // Don't call into inner reader at all at EOF because it may still block
2633         if self.limit == 0 {
2634             return Ok(());
2635         }
2636 
2637         if self.limit <= buf.capacity() as u64 {
2638             // if we just use an as cast to convert, limit may wrap around on a 32 bit target
2639             let limit = cmp::min(self.limit, usize::MAX as u64) as usize;
2640 
2641             let extra_init = cmp::min(limit as usize, buf.init_ref().len());
2642 
2643             // SAFETY: no uninit data is written to ibuf
2644             let ibuf = unsafe { &mut buf.as_mut()[..limit] };
2645 
2646             let mut sliced_buf: BorrowedBuf<'_> = ibuf.into();
2647 
2648             // SAFETY: extra_init bytes of ibuf are known to be initialized
2649             unsafe {
2650                 sliced_buf.set_init(extra_init);
2651             }
2652 
2653             let mut cursor = sliced_buf.unfilled();
2654             self.inner.read_buf(cursor.reborrow())?;
2655 
2656             let new_init = cursor.init_ref().len();
2657             let filled = sliced_buf.len();
2658 
2659             // cursor / sliced_buf / ibuf must drop here
2660 
2661             unsafe {
2662                 // SAFETY: filled bytes have been filled and therefore initialized
2663                 buf.advance(filled);
2664                 // SAFETY: new_init bytes of buf's unfilled buffer have been initialized
2665                 buf.set_init(new_init);
2666             }
2667 
2668             self.limit -= filled as u64;
2669         } else {
2670             let written = buf.written();
2671             self.inner.read_buf(buf.reborrow())?;
2672             self.limit -= (buf.written() - written) as u64;
2673         }
2674 
2675         Ok(())
2676     }
2677 }
2678 
2679 #[stable(feature = "rust1", since = "1.0.0")]
2680 impl<T: BufRead> BufRead for Take<T> {
fill_buf(&mut self) -> Result<&[u8]>2681     fn fill_buf(&mut self) -> Result<&[u8]> {
2682         // Don't call into inner reader at all at EOF because it may still block
2683         if self.limit == 0 {
2684             return Ok(&[]);
2685         }
2686 
2687         let buf = self.inner.fill_buf()?;
2688         let cap = cmp::min(buf.len() as u64, self.limit) as usize;
2689         Ok(&buf[..cap])
2690     }
2691 
consume(&mut self, amt: usize)2692     fn consume(&mut self, amt: usize) {
2693         // Don't let callers reset the limit by passing an overlarge value
2694         let amt = cmp::min(amt as u64, self.limit) as usize;
2695         self.limit -= amt as u64;
2696         self.inner.consume(amt);
2697     }
2698 }
2699 
2700 impl<T> SizeHint for Take<T> {
2701     #[inline]
lower_bound(&self) -> usize2702     fn lower_bound(&self) -> usize {
2703         cmp::min(SizeHint::lower_bound(&self.inner) as u64, self.limit) as usize
2704     }
2705 
2706     #[inline]
upper_bound(&self) -> Option<usize>2707     fn upper_bound(&self) -> Option<usize> {
2708         match SizeHint::upper_bound(&self.inner) {
2709             Some(upper_bound) => Some(cmp::min(upper_bound as u64, self.limit) as usize),
2710             None => self.limit.try_into().ok(),
2711         }
2712     }
2713 }
2714 
2715 /// An iterator over `u8` values of a reader.
2716 ///
2717 /// This struct is generally created by calling [`bytes`] on a reader.
2718 /// Please see the documentation of [`bytes`] for more details.
2719 ///
2720 /// [`bytes`]: Read::bytes
2721 #[stable(feature = "rust1", since = "1.0.0")]
2722 #[derive(Debug)]
2723 pub struct Bytes<R> {
2724     inner: R,
2725 }
2726 
2727 #[stable(feature = "rust1", since = "1.0.0")]
2728 impl<R: Read> Iterator for Bytes<R> {
2729     type Item = Result<u8>;
2730 
next(&mut self) -> Option<Result<u8>>2731     fn next(&mut self) -> Option<Result<u8>> {
2732         let mut byte = 0;
2733         loop {
2734             return match self.inner.read(slice::from_mut(&mut byte)) {
2735                 Ok(0) => None,
2736                 Ok(..) => Some(Ok(byte)),
2737                 Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
2738                 Err(e) => Some(Err(e)),
2739             };
2740         }
2741     }
2742 
size_hint(&self) -> (usize, Option<usize>)2743     fn size_hint(&self) -> (usize, Option<usize>) {
2744         SizeHint::size_hint(&self.inner)
2745     }
2746 }
2747 
2748 trait SizeHint {
lower_bound(&self) -> usize2749     fn lower_bound(&self) -> usize;
2750 
upper_bound(&self) -> Option<usize>2751     fn upper_bound(&self) -> Option<usize>;
2752 
size_hint(&self) -> (usize, Option<usize>)2753     fn size_hint(&self) -> (usize, Option<usize>) {
2754         (self.lower_bound(), self.upper_bound())
2755     }
2756 }
2757 
2758 impl<T: ?Sized> SizeHint for T {
2759     #[inline]
lower_bound(&self) -> usize2760     default fn lower_bound(&self) -> usize {
2761         0
2762     }
2763 
2764     #[inline]
upper_bound(&self) -> Option<usize>2765     default fn upper_bound(&self) -> Option<usize> {
2766         None
2767     }
2768 }
2769 
2770 impl<T> SizeHint for &mut T {
2771     #[inline]
lower_bound(&self) -> usize2772     fn lower_bound(&self) -> usize {
2773         SizeHint::lower_bound(*self)
2774     }
2775 
2776     #[inline]
upper_bound(&self) -> Option<usize>2777     fn upper_bound(&self) -> Option<usize> {
2778         SizeHint::upper_bound(*self)
2779     }
2780 }
2781 
2782 impl<T> SizeHint for Box<T> {
2783     #[inline]
lower_bound(&self) -> usize2784     fn lower_bound(&self) -> usize {
2785         SizeHint::lower_bound(&**self)
2786     }
2787 
2788     #[inline]
upper_bound(&self) -> Option<usize>2789     fn upper_bound(&self) -> Option<usize> {
2790         SizeHint::upper_bound(&**self)
2791     }
2792 }
2793 
2794 impl SizeHint for &[u8] {
2795     #[inline]
lower_bound(&self) -> usize2796     fn lower_bound(&self) -> usize {
2797         self.len()
2798     }
2799 
2800     #[inline]
upper_bound(&self) -> Option<usize>2801     fn upper_bound(&self) -> Option<usize> {
2802         Some(self.len())
2803     }
2804 }
2805 
2806 /// An iterator over the contents of an instance of `BufRead` split on a
2807 /// particular byte.
2808 ///
2809 /// This struct is generally created by calling [`split`] on a `BufRead`.
2810 /// Please see the documentation of [`split`] for more details.
2811 ///
2812 /// [`split`]: BufRead::split
2813 #[stable(feature = "rust1", since = "1.0.0")]
2814 #[derive(Debug)]
2815 pub struct Split<B> {
2816     buf: B,
2817     delim: u8,
2818 }
2819 
2820 #[stable(feature = "rust1", since = "1.0.0")]
2821 impl<B: BufRead> Iterator for Split<B> {
2822     type Item = Result<Vec<u8>>;
2823 
next(&mut self) -> Option<Result<Vec<u8>>>2824     fn next(&mut self) -> Option<Result<Vec<u8>>> {
2825         let mut buf = Vec::new();
2826         match self.buf.read_until(self.delim, &mut buf) {
2827             Ok(0) => None,
2828             Ok(_n) => {
2829                 if buf[buf.len() - 1] == self.delim {
2830                     buf.pop();
2831                 }
2832                 Some(Ok(buf))
2833             }
2834             Err(e) => Some(Err(e)),
2835         }
2836     }
2837 }
2838 
2839 /// An iterator over the lines of an instance of `BufRead`.
2840 ///
2841 /// This struct is generally created by calling [`lines`] on a `BufRead`.
2842 /// Please see the documentation of [`lines`] for more details.
2843 ///
2844 /// [`lines`]: BufRead::lines
2845 #[stable(feature = "rust1", since = "1.0.0")]
2846 #[derive(Debug)]
2847 pub struct Lines<B> {
2848     buf: B,
2849 }
2850 
2851 #[stable(feature = "rust1", since = "1.0.0")]
2852 impl<B: BufRead> Iterator for Lines<B> {
2853     type Item = Result<String>;
2854 
next(&mut self) -> Option<Result<String>>2855     fn next(&mut self) -> Option<Result<String>> {
2856         let mut buf = String::new();
2857         match self.buf.read_line(&mut buf) {
2858             Ok(0) => None,
2859             Ok(_n) => {
2860                 if buf.ends_with('\n') {
2861                     buf.pop();
2862                     if buf.ends_with('\r') {
2863                         buf.pop();
2864                     }
2865                 }
2866                 Some(Ok(buf))
2867             }
2868             Err(e) => Some(Err(e)),
2869         }
2870     }
2871 }
2872