• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6 
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9 
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32 
33 struct bpf_verifier_env;
34 struct bpf_verifier_log;
35 struct perf_event;
36 struct bpf_prog;
37 struct bpf_prog_aux;
38 struct bpf_map;
39 struct sock;
40 struct seq_file;
41 struct btf;
42 struct btf_type;
43 struct exception_table_entry;
44 struct seq_operations;
45 struct bpf_iter_aux_info;
46 struct bpf_local_storage;
47 struct bpf_local_storage_map;
48 struct kobject;
49 struct mem_cgroup;
50 struct module;
51 struct bpf_func_state;
52 struct ftrace_ops;
53 struct cgroup;
54 
55 extern struct idr btf_idr;
56 extern spinlock_t btf_idr_lock;
57 extern struct kobject *btf_kobj;
58 extern struct bpf_mem_alloc bpf_global_ma;
59 extern bool bpf_global_ma_set;
60 
61 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
62 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
63 					struct bpf_iter_aux_info *aux);
64 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
65 typedef unsigned int (*bpf_func_t)(const void *,
66 				   const struct bpf_insn *);
67 struct bpf_iter_seq_info {
68 	const struct seq_operations *seq_ops;
69 	bpf_iter_init_seq_priv_t init_seq_private;
70 	bpf_iter_fini_seq_priv_t fini_seq_private;
71 	u32 seq_priv_size;
72 };
73 
74 /* map is generic key/value storage optionally accessible by eBPF programs */
75 struct bpf_map_ops {
76 	/* funcs callable from userspace (via syscall) */
77 	int (*map_alloc_check)(union bpf_attr *attr);
78 	struct bpf_map *(*map_alloc)(union bpf_attr *attr);
79 	void (*map_release)(struct bpf_map *map, struct file *map_file);
80 	void (*map_free)(struct bpf_map *map);
81 	int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
82 	void (*map_release_uref)(struct bpf_map *map);
83 	void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
84 	int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
85 				union bpf_attr __user *uattr);
86 	int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
87 					  void *value, u64 flags);
88 	int (*map_lookup_and_delete_batch)(struct bpf_map *map,
89 					   const union bpf_attr *attr,
90 					   union bpf_attr __user *uattr);
91 	int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
92 				const union bpf_attr *attr,
93 				union bpf_attr __user *uattr);
94 	int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
95 				union bpf_attr __user *uattr);
96 
97 	/* funcs callable from userspace and from eBPF programs */
98 	void *(*map_lookup_elem)(struct bpf_map *map, void *key);
99 	long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
100 	long (*map_delete_elem)(struct bpf_map *map, void *key);
101 	long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
102 	long (*map_pop_elem)(struct bpf_map *map, void *value);
103 	long (*map_peek_elem)(struct bpf_map *map, void *value);
104 	void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
105 
106 	/* funcs called by prog_array and perf_event_array map */
107 	void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
108 				int fd);
109 	/* If need_defer is true, the implementation should guarantee that
110 	 * the to-be-put element is still alive before the bpf program, which
111 	 * may manipulate it, exists.
112 	 */
113 	void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
114 	int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
115 	u32 (*map_fd_sys_lookup_elem)(void *ptr);
116 	void (*map_seq_show_elem)(struct bpf_map *map, void *key,
117 				  struct seq_file *m);
118 	int (*map_check_btf)(const struct bpf_map *map,
119 			     const struct btf *btf,
120 			     const struct btf_type *key_type,
121 			     const struct btf_type *value_type);
122 
123 	/* Prog poke tracking helpers. */
124 	int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
125 	void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
126 	void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
127 			     struct bpf_prog *new);
128 
129 	/* Direct value access helpers. */
130 	int (*map_direct_value_addr)(const struct bpf_map *map,
131 				     u64 *imm, u32 off);
132 	int (*map_direct_value_meta)(const struct bpf_map *map,
133 				     u64 imm, u32 *off);
134 	int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
135 	__poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
136 			     struct poll_table_struct *pts);
137 
138 	/* Functions called by bpf_local_storage maps */
139 	int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
140 					void *owner, u32 size);
141 	void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
142 					   void *owner, u32 size);
143 	struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
144 
145 	/* Misc helpers.*/
146 	long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
147 
148 	/* map_meta_equal must be implemented for maps that can be
149 	 * used as an inner map.  It is a runtime check to ensure
150 	 * an inner map can be inserted to an outer map.
151 	 *
152 	 * Some properties of the inner map has been used during the
153 	 * verification time.  When inserting an inner map at the runtime,
154 	 * map_meta_equal has to ensure the inserting map has the same
155 	 * properties that the verifier has used earlier.
156 	 */
157 	bool (*map_meta_equal)(const struct bpf_map *meta0,
158 			       const struct bpf_map *meta1);
159 
160 
161 	int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
162 					      struct bpf_func_state *caller,
163 					      struct bpf_func_state *callee);
164 	long (*map_for_each_callback)(struct bpf_map *map,
165 				     bpf_callback_t callback_fn,
166 				     void *callback_ctx, u64 flags);
167 
168 	u64 (*map_mem_usage)(const struct bpf_map *map);
169 
170 	/* BTF id of struct allocated by map_alloc */
171 	int *map_btf_id;
172 
173 	/* bpf_iter info used to open a seq_file */
174 	const struct bpf_iter_seq_info *iter_seq_info;
175 };
176 
177 enum {
178 	/* Support at most 10 fields in a BTF type */
179 	BTF_FIELDS_MAX	   = 10,
180 };
181 
182 enum btf_field_type {
183 	BPF_SPIN_LOCK  = (1 << 0),
184 	BPF_TIMER      = (1 << 1),
185 	BPF_KPTR_UNREF = (1 << 2),
186 	BPF_KPTR_REF   = (1 << 3),
187 	BPF_KPTR       = BPF_KPTR_UNREF | BPF_KPTR_REF,
188 	BPF_LIST_HEAD  = (1 << 4),
189 	BPF_LIST_NODE  = (1 << 5),
190 	BPF_RB_ROOT    = (1 << 6),
191 	BPF_RB_NODE    = (1 << 7),
192 	BPF_GRAPH_NODE_OR_ROOT = BPF_LIST_NODE | BPF_LIST_HEAD |
193 				 BPF_RB_NODE | BPF_RB_ROOT,
194 	BPF_REFCOUNT   = (1 << 8),
195 };
196 
197 typedef void (*btf_dtor_kfunc_t)(void *);
198 
199 struct btf_field_kptr {
200 	struct btf *btf;
201 	struct module *module;
202 	/* dtor used if btf_is_kernel(btf), otherwise the type is
203 	 * program-allocated, dtor is NULL,  and __bpf_obj_drop_impl is used
204 	 */
205 	btf_dtor_kfunc_t dtor;
206 	u32 btf_id;
207 };
208 
209 struct btf_field_graph_root {
210 	struct btf *btf;
211 	u32 value_btf_id;
212 	u32 node_offset;
213 	struct btf_record *value_rec;
214 };
215 
216 struct btf_field {
217 	u32 offset;
218 	u32 size;
219 	enum btf_field_type type;
220 	union {
221 		struct btf_field_kptr kptr;
222 		struct btf_field_graph_root graph_root;
223 	};
224 };
225 
226 struct btf_record {
227 	u32 cnt;
228 	u32 field_mask;
229 	int spin_lock_off;
230 	int timer_off;
231 	int refcount_off;
232 	struct btf_field fields[];
233 };
234 
235 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
236 struct bpf_rb_node_kern {
237 	struct rb_node rb_node;
238 	void *owner;
239 } __attribute__((aligned(8)));
240 
241 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
242 struct bpf_list_node_kern {
243 	struct list_head list_head;
244 	void *owner;
245 } __attribute__((aligned(8)));
246 
247 struct bpf_map {
248 	/* The first two cachelines with read-mostly members of which some
249 	 * are also accessed in fast-path (e.g. ops, max_entries).
250 	 */
251 	const struct bpf_map_ops *ops ____cacheline_aligned;
252 	struct bpf_map *inner_map_meta;
253 #ifdef CONFIG_SECURITY
254 	void *security;
255 #endif
256 	enum bpf_map_type map_type;
257 	u32 key_size;
258 	u32 value_size;
259 	u32 max_entries;
260 	u64 map_extra; /* any per-map-type extra fields */
261 	u32 map_flags;
262 	u32 id;
263 	struct btf_record *record;
264 	int numa_node;
265 	u32 btf_key_type_id;
266 	u32 btf_value_type_id;
267 	u32 btf_vmlinux_value_type_id;
268 	struct btf *btf;
269 #ifdef CONFIG_MEMCG_KMEM
270 	struct obj_cgroup *objcg;
271 #endif
272 	char name[BPF_OBJ_NAME_LEN];
273 	/* The 3rd and 4th cacheline with misc members to avoid false sharing
274 	 * particularly with refcounting.
275 	 */
276 	atomic64_t refcnt ____cacheline_aligned;
277 	atomic64_t usercnt;
278 	/* rcu is used before freeing and work is only used during freeing */
279 	union {
280 		struct work_struct work;
281 		struct rcu_head rcu;
282 	};
283 	struct mutex freeze_mutex;
284 	atomic64_t writecnt;
285 	/* 'Ownership' of program-containing map is claimed by the first program
286 	 * that is going to use this map or by the first program which FD is
287 	 * stored in the map to make sure that all callers and callees have the
288 	 * same prog type, JITed flag and xdp_has_frags flag.
289 	 */
290 	struct {
291 		const struct btf_type *attach_func_proto;
292 		spinlock_t lock;
293 		enum bpf_prog_type type;
294 		bool jited;
295 		bool xdp_has_frags;
296 	} owner;
297 	bool bypass_spec_v1;
298 	bool frozen; /* write-once; write-protected by freeze_mutex */
299 	bool free_after_mult_rcu_gp;
300 	bool free_after_rcu_gp;
301 	atomic64_t sleepable_refcnt;
302 	s64 __percpu *elem_count;
303 };
304 
btf_field_type_name(enum btf_field_type type)305 static inline const char *btf_field_type_name(enum btf_field_type type)
306 {
307 	switch (type) {
308 	case BPF_SPIN_LOCK:
309 		return "bpf_spin_lock";
310 	case BPF_TIMER:
311 		return "bpf_timer";
312 	case BPF_KPTR_UNREF:
313 	case BPF_KPTR_REF:
314 		return "kptr";
315 	case BPF_LIST_HEAD:
316 		return "bpf_list_head";
317 	case BPF_LIST_NODE:
318 		return "bpf_list_node";
319 	case BPF_RB_ROOT:
320 		return "bpf_rb_root";
321 	case BPF_RB_NODE:
322 		return "bpf_rb_node";
323 	case BPF_REFCOUNT:
324 		return "bpf_refcount";
325 	default:
326 		WARN_ON_ONCE(1);
327 		return "unknown";
328 	}
329 }
330 
btf_field_type_size(enum btf_field_type type)331 static inline u32 btf_field_type_size(enum btf_field_type type)
332 {
333 	switch (type) {
334 	case BPF_SPIN_LOCK:
335 		return sizeof(struct bpf_spin_lock);
336 	case BPF_TIMER:
337 		return sizeof(struct bpf_timer);
338 	case BPF_KPTR_UNREF:
339 	case BPF_KPTR_REF:
340 		return sizeof(u64);
341 	case BPF_LIST_HEAD:
342 		return sizeof(struct bpf_list_head);
343 	case BPF_LIST_NODE:
344 		return sizeof(struct bpf_list_node);
345 	case BPF_RB_ROOT:
346 		return sizeof(struct bpf_rb_root);
347 	case BPF_RB_NODE:
348 		return sizeof(struct bpf_rb_node);
349 	case BPF_REFCOUNT:
350 		return sizeof(struct bpf_refcount);
351 	default:
352 		WARN_ON_ONCE(1);
353 		return 0;
354 	}
355 }
356 
btf_field_type_align(enum btf_field_type type)357 static inline u32 btf_field_type_align(enum btf_field_type type)
358 {
359 	switch (type) {
360 	case BPF_SPIN_LOCK:
361 		return __alignof__(struct bpf_spin_lock);
362 	case BPF_TIMER:
363 		return __alignof__(struct bpf_timer);
364 	case BPF_KPTR_UNREF:
365 	case BPF_KPTR_REF:
366 		return __alignof__(u64);
367 	case BPF_LIST_HEAD:
368 		return __alignof__(struct bpf_list_head);
369 	case BPF_LIST_NODE:
370 		return __alignof__(struct bpf_list_node);
371 	case BPF_RB_ROOT:
372 		return __alignof__(struct bpf_rb_root);
373 	case BPF_RB_NODE:
374 		return __alignof__(struct bpf_rb_node);
375 	case BPF_REFCOUNT:
376 		return __alignof__(struct bpf_refcount);
377 	default:
378 		WARN_ON_ONCE(1);
379 		return 0;
380 	}
381 }
382 
bpf_obj_init_field(const struct btf_field * field,void * addr)383 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
384 {
385 	memset(addr, 0, field->size);
386 
387 	switch (field->type) {
388 	case BPF_REFCOUNT:
389 		refcount_set((refcount_t *)addr, 1);
390 		break;
391 	case BPF_RB_NODE:
392 		RB_CLEAR_NODE((struct rb_node *)addr);
393 		break;
394 	case BPF_LIST_HEAD:
395 	case BPF_LIST_NODE:
396 		INIT_LIST_HEAD((struct list_head *)addr);
397 		break;
398 	case BPF_RB_ROOT:
399 		/* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
400 	case BPF_SPIN_LOCK:
401 	case BPF_TIMER:
402 	case BPF_KPTR_UNREF:
403 	case BPF_KPTR_REF:
404 		break;
405 	default:
406 		WARN_ON_ONCE(1);
407 		return;
408 	}
409 }
410 
btf_record_has_field(const struct btf_record * rec,enum btf_field_type type)411 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
412 {
413 	if (IS_ERR_OR_NULL(rec))
414 		return false;
415 	return rec->field_mask & type;
416 }
417 
bpf_obj_init(const struct btf_record * rec,void * obj)418 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
419 {
420 	int i;
421 
422 	if (IS_ERR_OR_NULL(rec))
423 		return;
424 	for (i = 0; i < rec->cnt; i++)
425 		bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
426 }
427 
428 /* 'dst' must be a temporary buffer and should not point to memory that is being
429  * used in parallel by a bpf program or bpf syscall, otherwise the access from
430  * the bpf program or bpf syscall may be corrupted by the reinitialization,
431  * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
432  * allocator, it is still possible for 'dst' to be used in parallel by a bpf
433  * program or bpf syscall.
434  */
check_and_init_map_value(struct bpf_map * map,void * dst)435 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
436 {
437 	bpf_obj_init(map->record, dst);
438 }
439 
440 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
441  * forced to use 'long' read/writes to try to atomically copy long counters.
442  * Best-effort only.  No barriers here, since it _will_ race with concurrent
443  * updates from BPF programs. Called from bpf syscall and mostly used with
444  * size 8 or 16 bytes, so ask compiler to inline it.
445  */
bpf_long_memcpy(void * dst,const void * src,u32 size)446 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
447 {
448 	const long *lsrc = src;
449 	long *ldst = dst;
450 
451 	size /= sizeof(long);
452 	while (size--)
453 		data_race(*ldst++ = *lsrc++);
454 }
455 
456 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
bpf_obj_memcpy(struct btf_record * rec,void * dst,void * src,u32 size,bool long_memcpy)457 static inline void bpf_obj_memcpy(struct btf_record *rec,
458 				  void *dst, void *src, u32 size,
459 				  bool long_memcpy)
460 {
461 	u32 curr_off = 0;
462 	int i;
463 
464 	if (IS_ERR_OR_NULL(rec)) {
465 		if (long_memcpy)
466 			bpf_long_memcpy(dst, src, round_up(size, 8));
467 		else
468 			memcpy(dst, src, size);
469 		return;
470 	}
471 
472 	for (i = 0; i < rec->cnt; i++) {
473 		u32 next_off = rec->fields[i].offset;
474 		u32 sz = next_off - curr_off;
475 
476 		memcpy(dst + curr_off, src + curr_off, sz);
477 		curr_off += rec->fields[i].size + sz;
478 	}
479 	memcpy(dst + curr_off, src + curr_off, size - curr_off);
480 }
481 
copy_map_value(struct bpf_map * map,void * dst,void * src)482 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
483 {
484 	bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
485 }
486 
copy_map_value_long(struct bpf_map * map,void * dst,void * src)487 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
488 {
489 	bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
490 }
491 
bpf_obj_memzero(struct btf_record * rec,void * dst,u32 size)492 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
493 {
494 	u32 curr_off = 0;
495 	int i;
496 
497 	if (IS_ERR_OR_NULL(rec)) {
498 		memset(dst, 0, size);
499 		return;
500 	}
501 
502 	for (i = 0; i < rec->cnt; i++) {
503 		u32 next_off = rec->fields[i].offset;
504 		u32 sz = next_off - curr_off;
505 
506 		memset(dst + curr_off, 0, sz);
507 		curr_off += rec->fields[i].size + sz;
508 	}
509 	memset(dst + curr_off, 0, size - curr_off);
510 }
511 
zero_map_value(struct bpf_map * map,void * dst)512 static inline void zero_map_value(struct bpf_map *map, void *dst)
513 {
514 	bpf_obj_memzero(map->record, dst, map->value_size);
515 }
516 
517 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
518 			   bool lock_src);
519 void bpf_timer_cancel_and_free(void *timer);
520 void bpf_list_head_free(const struct btf_field *field, void *list_head,
521 			struct bpf_spin_lock *spin_lock);
522 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
523 		      struct bpf_spin_lock *spin_lock);
524 
525 
526 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
527 
528 struct bpf_offload_dev;
529 struct bpf_offloaded_map;
530 
531 struct bpf_map_dev_ops {
532 	int (*map_get_next_key)(struct bpf_offloaded_map *map,
533 				void *key, void *next_key);
534 	int (*map_lookup_elem)(struct bpf_offloaded_map *map,
535 			       void *key, void *value);
536 	int (*map_update_elem)(struct bpf_offloaded_map *map,
537 			       void *key, void *value, u64 flags);
538 	int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
539 };
540 
541 struct bpf_offloaded_map {
542 	struct bpf_map map;
543 	struct net_device *netdev;
544 	const struct bpf_map_dev_ops *dev_ops;
545 	void *dev_priv;
546 	struct list_head offloads;
547 };
548 
map_to_offmap(struct bpf_map * map)549 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
550 {
551 	return container_of(map, struct bpf_offloaded_map, map);
552 }
553 
bpf_map_offload_neutral(const struct bpf_map * map)554 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
555 {
556 	return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
557 }
558 
bpf_map_support_seq_show(const struct bpf_map * map)559 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
560 {
561 	return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
562 		map->ops->map_seq_show_elem;
563 }
564 
565 int map_check_no_btf(const struct bpf_map *map,
566 		     const struct btf *btf,
567 		     const struct btf_type *key_type,
568 		     const struct btf_type *value_type);
569 
570 bool bpf_map_meta_equal(const struct bpf_map *meta0,
571 			const struct bpf_map *meta1);
572 
573 extern const struct bpf_map_ops bpf_map_offload_ops;
574 
575 /* bpf_type_flag contains a set of flags that are applicable to the values of
576  * arg_type, ret_type and reg_type. For example, a pointer value may be null,
577  * or a memory is read-only. We classify types into two categories: base types
578  * and extended types. Extended types are base types combined with a type flag.
579  *
580  * Currently there are no more than 32 base types in arg_type, ret_type and
581  * reg_types.
582  */
583 #define BPF_BASE_TYPE_BITS	8
584 
585 enum bpf_type_flag {
586 	/* PTR may be NULL. */
587 	PTR_MAYBE_NULL		= BIT(0 + BPF_BASE_TYPE_BITS),
588 
589 	/* MEM is read-only. When applied on bpf_arg, it indicates the arg is
590 	 * compatible with both mutable and immutable memory.
591 	 */
592 	MEM_RDONLY		= BIT(1 + BPF_BASE_TYPE_BITS),
593 
594 	/* MEM points to BPF ring buffer reservation. */
595 	MEM_RINGBUF		= BIT(2 + BPF_BASE_TYPE_BITS),
596 
597 	/* MEM is in user address space. */
598 	MEM_USER		= BIT(3 + BPF_BASE_TYPE_BITS),
599 
600 	/* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
601 	 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
602 	 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
603 	 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
604 	 * to the specified cpu.
605 	 */
606 	MEM_PERCPU		= BIT(4 + BPF_BASE_TYPE_BITS),
607 
608 	/* Indicates that the argument will be released. */
609 	OBJ_RELEASE		= BIT(5 + BPF_BASE_TYPE_BITS),
610 
611 	/* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
612 	 * unreferenced and referenced kptr loaded from map value using a load
613 	 * instruction, so that they can only be dereferenced but not escape the
614 	 * BPF program into the kernel (i.e. cannot be passed as arguments to
615 	 * kfunc or bpf helpers).
616 	 */
617 	PTR_UNTRUSTED		= BIT(6 + BPF_BASE_TYPE_BITS),
618 
619 	/* MEM can be uninitialized. */
620 	MEM_UNINIT		= BIT(7 + BPF_BASE_TYPE_BITS),
621 
622 	/* DYNPTR points to memory local to the bpf program. */
623 	DYNPTR_TYPE_LOCAL	= BIT(8 + BPF_BASE_TYPE_BITS),
624 
625 	/* DYNPTR points to a kernel-produced ringbuf record. */
626 	DYNPTR_TYPE_RINGBUF	= BIT(9 + BPF_BASE_TYPE_BITS),
627 
628 	/* Size is known at compile time. */
629 	MEM_FIXED_SIZE		= BIT(10 + BPF_BASE_TYPE_BITS),
630 
631 	/* MEM is of an allocated object of type in program BTF. This is used to
632 	 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
633 	 */
634 	MEM_ALLOC		= BIT(11 + BPF_BASE_TYPE_BITS),
635 
636 	/* PTR was passed from the kernel in a trusted context, and may be
637 	 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
638 	 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
639 	 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
640 	 * without invoking bpf_kptr_xchg(). What we really need to know is
641 	 * whether a pointer is safe to pass to a kfunc or BPF helper function.
642 	 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
643 	 * helpers, they do not cover all possible instances of unsafe
644 	 * pointers. For example, a pointer that was obtained from walking a
645 	 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
646 	 * fact that it may be NULL, invalid, etc. This is due to backwards
647 	 * compatibility requirements, as this was the behavior that was first
648 	 * introduced when kptrs were added. The behavior is now considered
649 	 * deprecated, and PTR_UNTRUSTED will eventually be removed.
650 	 *
651 	 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
652 	 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
653 	 * For example, pointers passed to tracepoint arguments are considered
654 	 * PTR_TRUSTED, as are pointers that are passed to struct_ops
655 	 * callbacks. As alluded to above, pointers that are obtained from
656 	 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
657 	 * struct task_struct *task is PTR_TRUSTED, then accessing
658 	 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
659 	 * in a BPF register. Similarly, pointers passed to certain programs
660 	 * types such as kretprobes are not guaranteed to be valid, as they may
661 	 * for example contain an object that was recently freed.
662 	 */
663 	PTR_TRUSTED		= BIT(12 + BPF_BASE_TYPE_BITS),
664 
665 	/* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
666 	MEM_RCU			= BIT(13 + BPF_BASE_TYPE_BITS),
667 
668 	/* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
669 	 * Currently only valid for linked-list and rbtree nodes. If the nodes
670 	 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
671 	 */
672 	NON_OWN_REF		= BIT(14 + BPF_BASE_TYPE_BITS),
673 
674 	/* DYNPTR points to sk_buff */
675 	DYNPTR_TYPE_SKB		= BIT(15 + BPF_BASE_TYPE_BITS),
676 
677 	/* DYNPTR points to xdp_buff */
678 	DYNPTR_TYPE_XDP		= BIT(16 + BPF_BASE_TYPE_BITS),
679 
680 	/* Memory must be aligned on some architectures, used in combination with
681 	 * MEM_FIXED_SIZE.
682 	 */
683 	MEM_ALIGNED		= BIT(17 + BPF_BASE_TYPE_BITS),
684 
685 	/* MEM is being written to, often combined with MEM_UNINIT. Non-presence
686 	 * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the
687 	 * MEM_UNINIT means that memory needs to be initialized since it is also
688 	 * read.
689 	 */
690 	MEM_WRITE		= BIT(18 + BPF_BASE_TYPE_BITS),
691 
692 	__BPF_TYPE_FLAG_MAX,
693 	__BPF_TYPE_LAST_FLAG	= __BPF_TYPE_FLAG_MAX - 1,
694 };
695 
696 #define DYNPTR_TYPE_FLAG_MASK	(DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
697 				 | DYNPTR_TYPE_XDP)
698 
699 /* Max number of base types. */
700 #define BPF_BASE_TYPE_LIMIT	(1UL << BPF_BASE_TYPE_BITS)
701 
702 /* Max number of all types. */
703 #define BPF_TYPE_LIMIT		(__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
704 
705 /* function argument constraints */
706 enum bpf_arg_type {
707 	ARG_DONTCARE = 0,	/* unused argument in helper function */
708 
709 	/* the following constraints used to prototype
710 	 * bpf_map_lookup/update/delete_elem() functions
711 	 */
712 	ARG_CONST_MAP_PTR,	/* const argument used as pointer to bpf_map */
713 	ARG_PTR_TO_MAP_KEY,	/* pointer to stack used as map key */
714 	ARG_PTR_TO_MAP_VALUE,	/* pointer to stack used as map value */
715 
716 	/* Used to prototype bpf_memcmp() and other functions that access data
717 	 * on eBPF program stack
718 	 */
719 	ARG_PTR_TO_MEM,		/* pointer to valid memory (stack, packet, map value) */
720 
721 	ARG_CONST_SIZE,		/* number of bytes accessed from memory */
722 	ARG_CONST_SIZE_OR_ZERO,	/* number of bytes accessed from memory or 0 */
723 
724 	ARG_PTR_TO_CTX,		/* pointer to context */
725 	ARG_ANYTHING,		/* any (initialized) argument is ok */
726 	ARG_PTR_TO_SPIN_LOCK,	/* pointer to bpf_spin_lock */
727 	ARG_PTR_TO_SOCK_COMMON,	/* pointer to sock_common */
728 	ARG_PTR_TO_SOCKET,	/* pointer to bpf_sock (fullsock) */
729 	ARG_PTR_TO_BTF_ID,	/* pointer to in-kernel struct */
730 	ARG_PTR_TO_RINGBUF_MEM,	/* pointer to dynamically reserved ringbuf memory */
731 	ARG_CONST_ALLOC_SIZE_OR_ZERO,	/* number of allocated bytes requested */
732 	ARG_PTR_TO_BTF_ID_SOCK_COMMON,	/* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
733 	ARG_PTR_TO_PERCPU_BTF_ID,	/* pointer to in-kernel percpu type */
734 	ARG_PTR_TO_FUNC,	/* pointer to a bpf program function */
735 	ARG_PTR_TO_STACK,	/* pointer to stack */
736 	ARG_PTR_TO_CONST_STR,	/* pointer to a null terminated read-only string */
737 	ARG_PTR_TO_TIMER,	/* pointer to bpf_timer */
738 	ARG_PTR_TO_KPTR,	/* pointer to referenced kptr */
739 	ARG_PTR_TO_DYNPTR,      /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
740 	__BPF_ARG_TYPE_MAX,
741 
742 	/* Extended arg_types. */
743 	ARG_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
744 	ARG_PTR_TO_MEM_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
745 	ARG_PTR_TO_CTX_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
746 	ARG_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
747 	ARG_PTR_TO_STACK_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
748 	ARG_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
749 	/* Pointer to memory does not need to be initialized, since helper function
750 	 * fills all bytes or clears them in error case.
751 	 */
752 	ARG_PTR_TO_UNINIT_MEM		= MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM,
753 	/* Pointer to valid memory of size known at compile time. */
754 	ARG_PTR_TO_FIXED_SIZE_MEM	= MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
755 
756 	/* This must be the last entry. Its purpose is to ensure the enum is
757 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
758 	 */
759 	__BPF_ARG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
760 };
761 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
762 
763 /* type of values returned from helper functions */
764 enum bpf_return_type {
765 	RET_INTEGER,			/* function returns integer */
766 	RET_VOID,			/* function doesn't return anything */
767 	RET_PTR_TO_MAP_VALUE,		/* returns a pointer to map elem value */
768 	RET_PTR_TO_SOCKET,		/* returns a pointer to a socket */
769 	RET_PTR_TO_TCP_SOCK,		/* returns a pointer to a tcp_sock */
770 	RET_PTR_TO_SOCK_COMMON,		/* returns a pointer to a sock_common */
771 	RET_PTR_TO_MEM,			/* returns a pointer to memory */
772 	RET_PTR_TO_MEM_OR_BTF_ID,	/* returns a pointer to a valid memory or a btf_id */
773 	RET_PTR_TO_BTF_ID,		/* returns a pointer to a btf_id */
774 	__BPF_RET_TYPE_MAX,
775 
776 	/* Extended ret_types. */
777 	RET_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
778 	RET_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
779 	RET_PTR_TO_TCP_SOCK_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
780 	RET_PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
781 	RET_PTR_TO_RINGBUF_MEM_OR_NULL	= PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
782 	RET_PTR_TO_DYNPTR_MEM_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MEM,
783 	RET_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
784 	RET_PTR_TO_BTF_ID_TRUSTED	= PTR_TRUSTED	 | RET_PTR_TO_BTF_ID,
785 
786 	/* This must be the last entry. Its purpose is to ensure the enum is
787 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
788 	 */
789 	__BPF_RET_TYPE_LIMIT	= BPF_TYPE_LIMIT,
790 };
791 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
792 
793 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
794  * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
795  * instructions after verifying
796  */
797 struct bpf_func_proto {
798 	u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
799 	bool gpl_only;
800 	bool pkt_access;
801 	bool might_sleep;
802 	enum bpf_return_type ret_type;
803 	union {
804 		struct {
805 			enum bpf_arg_type arg1_type;
806 			enum bpf_arg_type arg2_type;
807 			enum bpf_arg_type arg3_type;
808 			enum bpf_arg_type arg4_type;
809 			enum bpf_arg_type arg5_type;
810 		};
811 		enum bpf_arg_type arg_type[5];
812 	};
813 	union {
814 		struct {
815 			u32 *arg1_btf_id;
816 			u32 *arg2_btf_id;
817 			u32 *arg3_btf_id;
818 			u32 *arg4_btf_id;
819 			u32 *arg5_btf_id;
820 		};
821 		u32 *arg_btf_id[5];
822 		struct {
823 			size_t arg1_size;
824 			size_t arg2_size;
825 			size_t arg3_size;
826 			size_t arg4_size;
827 			size_t arg5_size;
828 		};
829 		size_t arg_size[5];
830 	};
831 	int *ret_btf_id; /* return value btf_id */
832 	bool (*allowed)(const struct bpf_prog *prog);
833 };
834 
835 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
836  * the first argument to eBPF programs.
837  * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
838  */
839 struct bpf_context;
840 
841 enum bpf_access_type {
842 	BPF_READ = 1,
843 	BPF_WRITE = 2
844 };
845 
846 /* types of values stored in eBPF registers */
847 /* Pointer types represent:
848  * pointer
849  * pointer + imm
850  * pointer + (u16) var
851  * pointer + (u16) var + imm
852  * if (range > 0) then [ptr, ptr + range - off) is safe to access
853  * if (id > 0) means that some 'var' was added
854  * if (off > 0) means that 'imm' was added
855  */
856 enum bpf_reg_type {
857 	NOT_INIT = 0,		 /* nothing was written into register */
858 	SCALAR_VALUE,		 /* reg doesn't contain a valid pointer */
859 	PTR_TO_CTX,		 /* reg points to bpf_context */
860 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
861 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
862 	PTR_TO_MAP_KEY,		 /* reg points to a map element key */
863 	PTR_TO_STACK,		 /* reg == frame_pointer + offset */
864 	PTR_TO_PACKET_META,	 /* skb->data - meta_len */
865 	PTR_TO_PACKET,		 /* reg points to skb->data */
866 	PTR_TO_PACKET_END,	 /* skb->data + headlen */
867 	PTR_TO_FLOW_KEYS,	 /* reg points to bpf_flow_keys */
868 	PTR_TO_SOCKET,		 /* reg points to struct bpf_sock */
869 	PTR_TO_SOCK_COMMON,	 /* reg points to sock_common */
870 	PTR_TO_TCP_SOCK,	 /* reg points to struct tcp_sock */
871 	PTR_TO_TP_BUFFER,	 /* reg points to a writable raw tp's buffer */
872 	PTR_TO_XDP_SOCK,	 /* reg points to struct xdp_sock */
873 	/* PTR_TO_BTF_ID points to a kernel struct that does not need
874 	 * to be null checked by the BPF program. This does not imply the
875 	 * pointer is _not_ null and in practice this can easily be a null
876 	 * pointer when reading pointer chains. The assumption is program
877 	 * context will handle null pointer dereference typically via fault
878 	 * handling. The verifier must keep this in mind and can make no
879 	 * assumptions about null or non-null when doing branch analysis.
880 	 * Further, when passed into helpers the helpers can not, without
881 	 * additional context, assume the value is non-null.
882 	 */
883 	PTR_TO_BTF_ID,
884 	/* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
885 	 * been checked for null. Used primarily to inform the verifier
886 	 * an explicit null check is required for this struct.
887 	 */
888 	PTR_TO_MEM,		 /* reg points to valid memory region */
889 	PTR_TO_BUF,		 /* reg points to a read/write buffer */
890 	PTR_TO_FUNC,		 /* reg points to a bpf program function */
891 	CONST_PTR_TO_DYNPTR,	 /* reg points to a const struct bpf_dynptr */
892 	__BPF_REG_TYPE_MAX,
893 
894 	/* Extended reg_types. */
895 	PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
896 	PTR_TO_SOCKET_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_SOCKET,
897 	PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
898 	PTR_TO_TCP_SOCK_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
899 	PTR_TO_BTF_ID_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_BTF_ID,
900 
901 	/* This must be the last entry. Its purpose is to ensure the enum is
902 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
903 	 */
904 	__BPF_REG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
905 };
906 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
907 
908 /* The information passed from prog-specific *_is_valid_access
909  * back to the verifier.
910  */
911 struct bpf_insn_access_aux {
912 	enum bpf_reg_type reg_type;
913 	union {
914 		int ctx_field_size;
915 		struct {
916 			struct btf *btf;
917 			u32 btf_id;
918 		};
919 	};
920 	struct bpf_verifier_log *log; /* for verbose logs */
921 };
922 
923 static inline void
bpf_ctx_record_field_size(struct bpf_insn_access_aux * aux,u32 size)924 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
925 {
926 	aux->ctx_field_size = size;
927 }
928 
bpf_is_ldimm64(const struct bpf_insn * insn)929 static bool bpf_is_ldimm64(const struct bpf_insn *insn)
930 {
931 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
932 }
933 
bpf_pseudo_func(const struct bpf_insn * insn)934 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
935 {
936 	return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
937 }
938 
939 struct bpf_prog_ops {
940 	int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
941 			union bpf_attr __user *uattr);
942 };
943 
944 struct bpf_reg_state;
945 struct bpf_verifier_ops {
946 	/* return eBPF function prototype for verification */
947 	const struct bpf_func_proto *
948 	(*get_func_proto)(enum bpf_func_id func_id,
949 			  const struct bpf_prog *prog);
950 
951 	/* return true if 'size' wide access at offset 'off' within bpf_context
952 	 * with 'type' (read or write) is allowed
953 	 */
954 	bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
955 				const struct bpf_prog *prog,
956 				struct bpf_insn_access_aux *info);
957 	int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
958 			    const struct bpf_prog *prog);
959 	int (*gen_ld_abs)(const struct bpf_insn *orig,
960 			  struct bpf_insn *insn_buf);
961 	u32 (*convert_ctx_access)(enum bpf_access_type type,
962 				  const struct bpf_insn *src,
963 				  struct bpf_insn *dst,
964 				  struct bpf_prog *prog, u32 *target_size);
965 	int (*btf_struct_access)(struct bpf_verifier_log *log,
966 				 const struct bpf_reg_state *reg,
967 				 int off, int size);
968 };
969 
970 struct bpf_prog_offload_ops {
971 	/* verifier basic callbacks */
972 	int (*insn_hook)(struct bpf_verifier_env *env,
973 			 int insn_idx, int prev_insn_idx);
974 	int (*finalize)(struct bpf_verifier_env *env);
975 	/* verifier optimization callbacks (called after .finalize) */
976 	int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
977 			    struct bpf_insn *insn);
978 	int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
979 	/* program management callbacks */
980 	int (*prepare)(struct bpf_prog *prog);
981 	int (*translate)(struct bpf_prog *prog);
982 	void (*destroy)(struct bpf_prog *prog);
983 };
984 
985 struct bpf_prog_offload {
986 	struct bpf_prog		*prog;
987 	struct net_device	*netdev;
988 	struct bpf_offload_dev	*offdev;
989 	void			*dev_priv;
990 	struct list_head	offloads;
991 	bool			dev_state;
992 	bool			opt_failed;
993 	void			*jited_image;
994 	u32			jited_len;
995 };
996 
997 enum bpf_cgroup_storage_type {
998 	BPF_CGROUP_STORAGE_SHARED,
999 	BPF_CGROUP_STORAGE_PERCPU,
1000 	__BPF_CGROUP_STORAGE_MAX
1001 };
1002 
1003 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
1004 
1005 /* The longest tracepoint has 12 args.
1006  * See include/trace/bpf_probe.h
1007  */
1008 #define MAX_BPF_FUNC_ARGS 12
1009 
1010 /* The maximum number of arguments passed through registers
1011  * a single function may have.
1012  */
1013 #define MAX_BPF_FUNC_REG_ARGS 5
1014 
1015 /* The argument is a structure. */
1016 #define BTF_FMODEL_STRUCT_ARG		BIT(0)
1017 
1018 /* The argument is signed. */
1019 #define BTF_FMODEL_SIGNED_ARG		BIT(1)
1020 
1021 struct btf_func_model {
1022 	u8 ret_size;
1023 	u8 ret_flags;
1024 	u8 nr_args;
1025 	u8 arg_size[MAX_BPF_FUNC_ARGS];
1026 	u8 arg_flags[MAX_BPF_FUNC_ARGS];
1027 };
1028 
1029 /* Restore arguments before returning from trampoline to let original function
1030  * continue executing. This flag is used for fentry progs when there are no
1031  * fexit progs.
1032  */
1033 #define BPF_TRAMP_F_RESTORE_REGS	BIT(0)
1034 /* Call original function after fentry progs, but before fexit progs.
1035  * Makes sense for fentry/fexit, normal calls and indirect calls.
1036  */
1037 #define BPF_TRAMP_F_CALL_ORIG		BIT(1)
1038 /* Skip current frame and return to parent.  Makes sense for fentry/fexit
1039  * programs only. Should not be used with normal calls and indirect calls.
1040  */
1041 #define BPF_TRAMP_F_SKIP_FRAME		BIT(2)
1042 /* Store IP address of the caller on the trampoline stack,
1043  * so it's available for trampoline's programs.
1044  */
1045 #define BPF_TRAMP_F_IP_ARG		BIT(3)
1046 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1047 #define BPF_TRAMP_F_RET_FENTRY_RET	BIT(4)
1048 
1049 /* Get original function from stack instead of from provided direct address.
1050  * Makes sense for trampolines with fexit or fmod_ret programs.
1051  */
1052 #define BPF_TRAMP_F_ORIG_STACK		BIT(5)
1053 
1054 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1055  * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1056  */
1057 #define BPF_TRAMP_F_SHARE_IPMODIFY	BIT(6)
1058 
1059 /* Indicate that current trampoline is in a tail call context. Then, it has to
1060  * cache and restore tail_call_cnt to avoid infinite tail call loop.
1061  */
1062 #define BPF_TRAMP_F_TAIL_CALL_CTX	BIT(7)
1063 
1064 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1065  * bytes on x86.
1066  */
1067 enum {
1068 #if defined(__s390x__)
1069 	BPF_MAX_TRAMP_LINKS = 27,
1070 #else
1071 	BPF_MAX_TRAMP_LINKS = 38,
1072 #endif
1073 };
1074 
1075 struct bpf_tramp_links {
1076 	struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1077 	int nr_links;
1078 };
1079 
1080 struct bpf_tramp_run_ctx;
1081 
1082 /* Different use cases for BPF trampoline:
1083  * 1. replace nop at the function entry (kprobe equivalent)
1084  *    flags = BPF_TRAMP_F_RESTORE_REGS
1085  *    fentry = a set of programs to run before returning from trampoline
1086  *
1087  * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1088  *    flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1089  *    orig_call = fentry_ip + MCOUNT_INSN_SIZE
1090  *    fentry = a set of program to run before calling original function
1091  *    fexit = a set of program to run after original function
1092  *
1093  * 3. replace direct call instruction anywhere in the function body
1094  *    or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1095  *    With flags = 0
1096  *      fentry = a set of programs to run before returning from trampoline
1097  *    With flags = BPF_TRAMP_F_CALL_ORIG
1098  *      orig_call = original callback addr or direct function addr
1099  *      fentry = a set of program to run before calling original function
1100  *      fexit = a set of program to run after original function
1101  */
1102 struct bpf_tramp_image;
1103 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
1104 				const struct btf_func_model *m, u32 flags,
1105 				struct bpf_tramp_links *tlinks,
1106 				void *orig_call);
1107 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1108 					     struct bpf_tramp_run_ctx *run_ctx);
1109 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1110 					     struct bpf_tramp_run_ctx *run_ctx);
1111 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1112 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1113 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1114 				      struct bpf_tramp_run_ctx *run_ctx);
1115 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1116 				      struct bpf_tramp_run_ctx *run_ctx);
1117 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1118 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1119 
1120 struct bpf_ksym {
1121 	unsigned long		 start;
1122 	unsigned long		 end;
1123 	char			 name[KSYM_NAME_LEN];
1124 	struct list_head	 lnode;
1125 	struct latch_tree_node	 tnode;
1126 	bool			 prog;
1127 };
1128 
1129 enum bpf_tramp_prog_type {
1130 	BPF_TRAMP_FENTRY,
1131 	BPF_TRAMP_FEXIT,
1132 	BPF_TRAMP_MODIFY_RETURN,
1133 	BPF_TRAMP_MAX,
1134 	BPF_TRAMP_REPLACE, /* more than MAX */
1135 };
1136 
1137 struct bpf_tramp_image {
1138 	void *image;
1139 	struct bpf_ksym ksym;
1140 	struct percpu_ref pcref;
1141 	void *ip_after_call;
1142 	void *ip_epilogue;
1143 	union {
1144 		struct rcu_head rcu;
1145 		struct work_struct work;
1146 	};
1147 };
1148 
1149 struct bpf_trampoline {
1150 	/* hlist for trampoline_table */
1151 	struct hlist_node hlist;
1152 	struct ftrace_ops *fops;
1153 	/* serializes access to fields of this trampoline */
1154 	struct mutex mutex;
1155 	refcount_t refcnt;
1156 	u32 flags;
1157 	u64 key;
1158 	struct {
1159 		struct btf_func_model model;
1160 		void *addr;
1161 		bool ftrace_managed;
1162 	} func;
1163 	/* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1164 	 * program by replacing one of its functions. func.addr is the address
1165 	 * of the function it replaced.
1166 	 */
1167 	struct bpf_prog *extension_prog;
1168 	/* list of BPF programs using this trampoline */
1169 	struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1170 	/* Number of attached programs. A counter per kind. */
1171 	int progs_cnt[BPF_TRAMP_MAX];
1172 	/* Executable image of trampoline */
1173 	struct bpf_tramp_image *cur_image;
1174 	struct module *mod;
1175 };
1176 
1177 struct bpf_attach_target_info {
1178 	struct btf_func_model fmodel;
1179 	long tgt_addr;
1180 	struct module *tgt_mod;
1181 	const char *tgt_name;
1182 	const struct btf_type *tgt_type;
1183 };
1184 
1185 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1186 
1187 struct bpf_dispatcher_prog {
1188 	struct bpf_prog *prog;
1189 	refcount_t users;
1190 };
1191 
1192 struct bpf_dispatcher {
1193 	/* dispatcher mutex */
1194 	struct mutex mutex;
1195 	void *func;
1196 	struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1197 	int num_progs;
1198 	void *image;
1199 	void *rw_image;
1200 	u32 image_off;
1201 	struct bpf_ksym ksym;
1202 #ifdef CONFIG_HAVE_STATIC_CALL
1203 	struct static_call_key *sc_key;
1204 	void *sc_tramp;
1205 #endif
1206 };
1207 
bpf_dispatcher_nop_func(const void * ctx,const struct bpf_insn * insnsi,bpf_func_t bpf_func)1208 static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func(
1209 	const void *ctx,
1210 	const struct bpf_insn *insnsi,
1211 	bpf_func_t bpf_func)
1212 {
1213 	return bpf_func(ctx, insnsi);
1214 }
1215 
1216 /* the implementation of the opaque uapi struct bpf_dynptr */
1217 struct bpf_dynptr_kern {
1218 	void *data;
1219 	/* Size represents the number of usable bytes of dynptr data.
1220 	 * If for example the offset is at 4 for a local dynptr whose data is
1221 	 * of type u64, the number of usable bytes is 4.
1222 	 *
1223 	 * The upper 8 bits are reserved. It is as follows:
1224 	 * Bits 0 - 23 = size
1225 	 * Bits 24 - 30 = dynptr type
1226 	 * Bit 31 = whether dynptr is read-only
1227 	 */
1228 	u32 size;
1229 	u32 offset;
1230 } __aligned(8);
1231 
1232 enum bpf_dynptr_type {
1233 	BPF_DYNPTR_TYPE_INVALID,
1234 	/* Points to memory that is local to the bpf program */
1235 	BPF_DYNPTR_TYPE_LOCAL,
1236 	/* Underlying data is a ringbuf record */
1237 	BPF_DYNPTR_TYPE_RINGBUF,
1238 	/* Underlying data is a sk_buff */
1239 	BPF_DYNPTR_TYPE_SKB,
1240 	/* Underlying data is a xdp_buff */
1241 	BPF_DYNPTR_TYPE_XDP,
1242 };
1243 
1244 int bpf_dynptr_check_size(u32 size);
1245 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1246 
1247 #ifdef CONFIG_BPF_JIT
1248 int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1249 			     struct bpf_trampoline *tr,
1250 			     struct bpf_prog *tgt_prog);
1251 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1252 			       struct bpf_trampoline *tr,
1253 			       struct bpf_prog *tgt_prog);
1254 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1255 					  struct bpf_attach_target_info *tgt_info);
1256 void bpf_trampoline_put(struct bpf_trampoline *tr);
1257 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1258 
1259 /*
1260  * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1261  * indirection with a direct call to the bpf program. If the architecture does
1262  * not have STATIC_CALL, avoid a double-indirection.
1263  */
1264 #ifdef CONFIG_HAVE_STATIC_CALL
1265 
1266 #define __BPF_DISPATCHER_SC_INIT(_name)				\
1267 	.sc_key = &STATIC_CALL_KEY(_name),			\
1268 	.sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1269 
1270 #define __BPF_DISPATCHER_SC(name)				\
1271 	DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1272 
1273 #define __BPF_DISPATCHER_CALL(name)				\
1274 	static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1275 
1276 #define __BPF_DISPATCHER_UPDATE(_d, _new)			\
1277 	__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1278 
1279 #else
1280 #define __BPF_DISPATCHER_SC_INIT(name)
1281 #define __BPF_DISPATCHER_SC(name)
1282 #define __BPF_DISPATCHER_CALL(name)		bpf_func(ctx, insnsi)
1283 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1284 #endif
1285 
1286 #define BPF_DISPATCHER_INIT(_name) {				\
1287 	.mutex = __MUTEX_INITIALIZER(_name.mutex),		\
1288 	.func = &_name##_func,					\
1289 	.progs = {},						\
1290 	.num_progs = 0,						\
1291 	.image = NULL,						\
1292 	.image_off = 0,						\
1293 	.ksym = {						\
1294 		.name  = #_name,				\
1295 		.lnode = LIST_HEAD_INIT(_name.ksym.lnode),	\
1296 	},							\
1297 	__BPF_DISPATCHER_SC_INIT(_name##_call)			\
1298 }
1299 
1300 #define DEFINE_BPF_DISPATCHER(name)					\
1301 	__BPF_DISPATCHER_SC(name);					\
1302 	noinline __nocfi unsigned int bpf_dispatcher_##name##_func(	\
1303 		const void *ctx,					\
1304 		const struct bpf_insn *insnsi,				\
1305 		bpf_func_t bpf_func)					\
1306 	{								\
1307 		return __BPF_DISPATCHER_CALL(name);			\
1308 	}								\
1309 	EXPORT_SYMBOL(bpf_dispatcher_##name##_func);			\
1310 	struct bpf_dispatcher bpf_dispatcher_##name =			\
1311 		BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1312 
1313 #define DECLARE_BPF_DISPATCHER(name)					\
1314 	unsigned int bpf_dispatcher_##name##_func(			\
1315 		const void *ctx,					\
1316 		const struct bpf_insn *insnsi,				\
1317 		bpf_func_t bpf_func);					\
1318 	extern struct bpf_dispatcher bpf_dispatcher_##name;
1319 
1320 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1321 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1322 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1323 				struct bpf_prog *to);
1324 /* Called only from JIT-enabled code, so there's no need for stubs. */
1325 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym);
1326 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1327 void bpf_ksym_add(struct bpf_ksym *ksym);
1328 void bpf_ksym_del(struct bpf_ksym *ksym);
1329 int bpf_jit_charge_modmem(u32 size);
1330 void bpf_jit_uncharge_modmem(u32 size);
1331 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1332 #else
bpf_trampoline_link_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr,struct bpf_prog * tgt_prog)1333 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1334 					   struct bpf_trampoline *tr,
1335 					   struct bpf_prog *tgt_prog)
1336 {
1337 	return -ENOTSUPP;
1338 }
bpf_trampoline_unlink_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr,struct bpf_prog * tgt_prog)1339 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1340 					     struct bpf_trampoline *tr,
1341 					     struct bpf_prog *tgt_prog)
1342 {
1343 	return -ENOTSUPP;
1344 }
bpf_trampoline_get(u64 key,struct bpf_attach_target_info * tgt_info)1345 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1346 							struct bpf_attach_target_info *tgt_info)
1347 {
1348 	return NULL;
1349 }
bpf_trampoline_put(struct bpf_trampoline * tr)1350 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1351 #define DEFINE_BPF_DISPATCHER(name)
1352 #define DECLARE_BPF_DISPATCHER(name)
1353 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1354 #define BPF_DISPATCHER_PTR(name) NULL
bpf_dispatcher_change_prog(struct bpf_dispatcher * d,struct bpf_prog * from,struct bpf_prog * to)1355 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1356 					      struct bpf_prog *from,
1357 					      struct bpf_prog *to) {}
is_bpf_image_address(unsigned long address)1358 static inline bool is_bpf_image_address(unsigned long address)
1359 {
1360 	return false;
1361 }
bpf_prog_has_trampoline(const struct bpf_prog * prog)1362 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1363 {
1364 	return false;
1365 }
1366 #endif
1367 
1368 struct bpf_func_info_aux {
1369 	u16 linkage;
1370 	bool unreliable;
1371 };
1372 
1373 enum bpf_jit_poke_reason {
1374 	BPF_POKE_REASON_TAIL_CALL,
1375 };
1376 
1377 /* Descriptor of pokes pointing /into/ the JITed image. */
1378 struct bpf_jit_poke_descriptor {
1379 	void *tailcall_target;
1380 	void *tailcall_bypass;
1381 	void *bypass_addr;
1382 	void *aux;
1383 	union {
1384 		struct {
1385 			struct bpf_map *map;
1386 			u32 key;
1387 		} tail_call;
1388 	};
1389 	bool tailcall_target_stable;
1390 	u8 adj_off;
1391 	u16 reason;
1392 	u32 insn_idx;
1393 };
1394 
1395 /* reg_type info for ctx arguments */
1396 struct bpf_ctx_arg_aux {
1397 	u32 offset;
1398 	enum bpf_reg_type reg_type;
1399 	u32 btf_id;
1400 };
1401 
1402 struct btf_mod_pair {
1403 	struct btf *btf;
1404 	struct module *module;
1405 };
1406 
1407 struct bpf_kfunc_desc_tab;
1408 
1409 struct bpf_prog_aux {
1410 	atomic64_t refcnt;
1411 	u32 used_map_cnt;
1412 	u32 used_btf_cnt;
1413 	u32 max_ctx_offset;
1414 	u32 max_pkt_offset;
1415 	u32 max_tp_access;
1416 	u32 stack_depth;
1417 	u32 id;
1418 	u32 func_cnt; /* used by non-func prog as the number of func progs */
1419 	u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1420 	u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1421 	u32 ctx_arg_info_size;
1422 	u32 max_rdonly_access;
1423 	u32 max_rdwr_access;
1424 	struct btf *attach_btf;
1425 	const struct bpf_ctx_arg_aux *ctx_arg_info;
1426 	struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1427 	struct bpf_prog *dst_prog;
1428 	struct bpf_trampoline *dst_trampoline;
1429 	enum bpf_prog_type saved_dst_prog_type;
1430 	enum bpf_attach_type saved_dst_attach_type;
1431 	bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1432 	bool dev_bound; /* Program is bound to the netdev. */
1433 	bool offload_requested; /* Program is bound and offloaded to the netdev. */
1434 	bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1435 	bool func_proto_unreliable;
1436 	bool sleepable;
1437 	bool tail_call_reachable;
1438 	bool xdp_has_frags;
1439 	bool is_extended; /* true if extended by freplace program */
1440 	u64 prog_array_member_cnt; /* counts how many times as member of prog_array */
1441 	struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */
1442 	/* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1443 	const struct btf_type *attach_func_proto;
1444 	/* function name for valid attach_btf_id */
1445 	const char *attach_func_name;
1446 	struct bpf_prog **func;
1447 	void *jit_data; /* JIT specific data. arch dependent */
1448 	struct bpf_jit_poke_descriptor *poke_tab;
1449 	struct bpf_kfunc_desc_tab *kfunc_tab;
1450 	struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1451 	u32 size_poke_tab;
1452 	struct bpf_ksym ksym;
1453 	const struct bpf_prog_ops *ops;
1454 	struct bpf_map **used_maps;
1455 	struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1456 	struct btf_mod_pair *used_btfs;
1457 	struct bpf_prog *prog;
1458 	struct user_struct *user;
1459 	u64 load_time; /* ns since boottime */
1460 	u32 verified_insns;
1461 	int cgroup_atype; /* enum cgroup_bpf_attach_type */
1462 	struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1463 	char name[BPF_OBJ_NAME_LEN];
1464 #ifdef CONFIG_SECURITY
1465 	void *security;
1466 #endif
1467 	struct bpf_prog_offload *offload;
1468 	struct btf *btf;
1469 	struct bpf_func_info *func_info;
1470 	struct bpf_func_info_aux *func_info_aux;
1471 	/* bpf_line_info loaded from userspace.  linfo->insn_off
1472 	 * has the xlated insn offset.
1473 	 * Both the main and sub prog share the same linfo.
1474 	 * The subprog can access its first linfo by
1475 	 * using the linfo_idx.
1476 	 */
1477 	struct bpf_line_info *linfo;
1478 	/* jited_linfo is the jited addr of the linfo.  It has a
1479 	 * one to one mapping to linfo:
1480 	 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1481 	 * Both the main and sub prog share the same jited_linfo.
1482 	 * The subprog can access its first jited_linfo by
1483 	 * using the linfo_idx.
1484 	 */
1485 	void **jited_linfo;
1486 	u32 func_info_cnt;
1487 	u32 nr_linfo;
1488 	/* subprog can use linfo_idx to access its first linfo and
1489 	 * jited_linfo.
1490 	 * main prog always has linfo_idx == 0
1491 	 */
1492 	u32 linfo_idx;
1493 	struct module *mod;
1494 	u32 num_exentries;
1495 	struct exception_table_entry *extable;
1496 	union {
1497 		struct work_struct work;
1498 		struct rcu_head	rcu;
1499 	};
1500 };
1501 
1502 struct bpf_prog {
1503 	u16			pages;		/* Number of allocated pages */
1504 	u16			jited:1,	/* Is our filter JIT'ed? */
1505 				jit_requested:1,/* archs need to JIT the prog */
1506 				gpl_compatible:1, /* Is filter GPL compatible? */
1507 				cb_access:1,	/* Is control block accessed? */
1508 				dst_needed:1,	/* Do we need dst entry? */
1509 				blinding_requested:1, /* needs constant blinding */
1510 				blinded:1,	/* Was blinded */
1511 				is_func:1,	/* program is a bpf function */
1512 				kprobe_override:1, /* Do we override a kprobe? */
1513 				has_callchain_buf:1, /* callchain buffer allocated? */
1514 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1515 				call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1516 				call_get_func_ip:1, /* Do we call get_func_ip() */
1517 				tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */
1518 	enum bpf_prog_type	type;		/* Type of BPF program */
1519 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
1520 	u32			len;		/* Number of filter blocks */
1521 	u32			jited_len;	/* Size of jited insns in bytes */
1522 	u8			tag[BPF_TAG_SIZE];
1523 	struct bpf_prog_stats __percpu *stats;
1524 	int __percpu		*active;
1525 	unsigned int		(*bpf_func)(const void *ctx,
1526 					    const struct bpf_insn *insn);
1527 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
1528 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
1529 	/* Instructions for interpreter */
1530 	union {
1531 		DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1532 		DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1533 	};
1534 };
1535 
1536 struct bpf_array_aux {
1537 	/* Programs with direct jumps into programs part of this array. */
1538 	struct list_head poke_progs;
1539 	struct bpf_map *map;
1540 	struct mutex poke_mutex;
1541 	struct work_struct work;
1542 };
1543 
1544 struct bpf_link {
1545 	atomic64_t refcnt;
1546 	u32 id;
1547 	enum bpf_link_type type;
1548 	const struct bpf_link_ops *ops;
1549 	struct bpf_prog *prog;
1550 	/* rcu is used before freeing, work can be used to schedule that
1551 	 * RCU-based freeing before that, so they never overlap
1552 	 */
1553 	union {
1554 		struct rcu_head rcu;
1555 		struct work_struct work;
1556 	};
1557 };
1558 
1559 struct bpf_link_ops {
1560 	void (*release)(struct bpf_link *link);
1561 	/* deallocate link resources callback, called without RCU grace period
1562 	 * waiting
1563 	 */
1564 	void (*dealloc)(struct bpf_link *link);
1565 	/* deallocate link resources callback, called after RCU grace period;
1566 	 * if underlying BPF program is sleepable we go through tasks trace
1567 	 * RCU GP and then "classic" RCU GP
1568 	 */
1569 	void (*dealloc_deferred)(struct bpf_link *link);
1570 	int (*detach)(struct bpf_link *link);
1571 	int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1572 			   struct bpf_prog *old_prog);
1573 	void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1574 	int (*fill_link_info)(const struct bpf_link *link,
1575 			      struct bpf_link_info *info);
1576 	int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1577 			  struct bpf_map *old_map);
1578 };
1579 
1580 struct bpf_tramp_link {
1581 	struct bpf_link link;
1582 	struct hlist_node tramp_hlist;
1583 	u64 cookie;
1584 };
1585 
1586 struct bpf_shim_tramp_link {
1587 	struct bpf_tramp_link link;
1588 	struct bpf_trampoline *trampoline;
1589 };
1590 
1591 struct bpf_tracing_link {
1592 	struct bpf_tramp_link link;
1593 	enum bpf_attach_type attach_type;
1594 	struct bpf_trampoline *trampoline;
1595 	struct bpf_prog *tgt_prog;
1596 };
1597 
1598 struct bpf_link_primer {
1599 	struct bpf_link *link;
1600 	struct file *file;
1601 	int fd;
1602 	u32 id;
1603 };
1604 
1605 struct bpf_struct_ops_value;
1606 struct btf_member;
1607 
1608 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1609 /**
1610  * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1611  *			   define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1612  *			   of BPF_PROG_TYPE_STRUCT_OPS progs.
1613  * @verifier_ops: A structure of callbacks that are invoked by the verifier
1614  *		  when determining whether the struct_ops progs in the
1615  *		  struct_ops map are valid.
1616  * @init: A callback that is invoked a single time, and before any other
1617  *	  callback, to initialize the structure. A nonzero return value means
1618  *	  the subsystem could not be initialized.
1619  * @check_member: When defined, a callback invoked by the verifier to allow
1620  *		  the subsystem to determine if an entry in the struct_ops map
1621  *		  is valid. A nonzero return value means that the map is
1622  *		  invalid and should be rejected by the verifier.
1623  * @init_member: A callback that is invoked for each member of the struct_ops
1624  *		 map to allow the subsystem to initialize the member. A nonzero
1625  *		 value means the member could not be initialized. This callback
1626  *		 is exclusive with the @type, @type_id, @value_type, and
1627  *		 @value_id fields.
1628  * @reg: A callback that is invoked when the struct_ops map has been
1629  *	 initialized and is being attached to. Zero means the struct_ops map
1630  *	 has been successfully registered and is live. A nonzero return value
1631  *	 means the struct_ops map could not be registered.
1632  * @unreg: A callback that is invoked when the struct_ops map should be
1633  *	   unregistered.
1634  * @update: A callback that is invoked when the live struct_ops map is being
1635  *	    updated to contain new values. This callback is only invoked when
1636  *	    the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1637  *	    it is assumed that the struct_ops map cannot be updated.
1638  * @validate: A callback that is invoked after all of the members have been
1639  *	      initialized. This callback should perform static checks on the
1640  *	      map, meaning that it should either fail or succeed
1641  *	      deterministically. A struct_ops map that has been validated may
1642  *	      not necessarily succeed in being registered if the call to @reg
1643  *	      fails. For example, a valid struct_ops map may be loaded, but
1644  *	      then fail to be registered due to there being another active
1645  *	      struct_ops map on the system in the subsystem already. For this
1646  *	      reason, if this callback is not defined, the check is skipped as
1647  *	      the struct_ops map will have final verification performed in
1648  *	      @reg.
1649  * @type: BTF type.
1650  * @value_type: Value type.
1651  * @name: The name of the struct bpf_struct_ops object.
1652  * @func_models: Func models
1653  * @type_id: BTF type id.
1654  * @value_id: BTF value id.
1655  */
1656 struct bpf_struct_ops {
1657 	const struct bpf_verifier_ops *verifier_ops;
1658 	int (*init)(struct btf *btf);
1659 	int (*check_member)(const struct btf_type *t,
1660 			    const struct btf_member *member,
1661 			    const struct bpf_prog *prog);
1662 	int (*init_member)(const struct btf_type *t,
1663 			   const struct btf_member *member,
1664 			   void *kdata, const void *udata);
1665 	int (*reg)(void *kdata);
1666 	void (*unreg)(void *kdata);
1667 	int (*update)(void *kdata, void *old_kdata);
1668 	int (*validate)(void *kdata);
1669 	const struct btf_type *type;
1670 	const struct btf_type *value_type;
1671 	const char *name;
1672 	struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1673 	u32 type_id;
1674 	u32 value_id;
1675 };
1676 
1677 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1678 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1679 const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id);
1680 void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log);
1681 bool bpf_struct_ops_get(const void *kdata);
1682 void bpf_struct_ops_put(const void *kdata);
1683 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1684 				       void *value);
1685 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1686 				      struct bpf_tramp_link *link,
1687 				      const struct btf_func_model *model,
1688 				      void *image, void *image_end);
bpf_try_module_get(const void * data,struct module * owner)1689 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1690 {
1691 	if (owner == BPF_MODULE_OWNER)
1692 		return bpf_struct_ops_get(data);
1693 	else
1694 		return try_module_get(owner);
1695 }
bpf_module_put(const void * data,struct module * owner)1696 static inline void bpf_module_put(const void *data, struct module *owner)
1697 {
1698 	if (owner == BPF_MODULE_OWNER)
1699 		bpf_struct_ops_put(data);
1700 	else
1701 		module_put(owner);
1702 }
1703 int bpf_struct_ops_link_create(union bpf_attr *attr);
1704 
1705 #ifdef CONFIG_NET
1706 /* Define it here to avoid the use of forward declaration */
1707 struct bpf_dummy_ops_state {
1708 	int val;
1709 };
1710 
1711 struct bpf_dummy_ops {
1712 	int (*test_1)(struct bpf_dummy_ops_state *cb);
1713 	int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1714 		      char a3, unsigned long a4);
1715 	int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1716 };
1717 
1718 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1719 			    union bpf_attr __user *uattr);
1720 #endif
1721 #else
bpf_struct_ops_find(u32 type_id)1722 static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id)
1723 {
1724 	return NULL;
1725 }
bpf_struct_ops_init(struct btf * btf,struct bpf_verifier_log * log)1726 static inline void bpf_struct_ops_init(struct btf *btf,
1727 				       struct bpf_verifier_log *log)
1728 {
1729 }
bpf_try_module_get(const void * data,struct module * owner)1730 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1731 {
1732 	return try_module_get(owner);
1733 }
bpf_module_put(const void * data,struct module * owner)1734 static inline void bpf_module_put(const void *data, struct module *owner)
1735 {
1736 	module_put(owner);
1737 }
bpf_struct_ops_map_sys_lookup_elem(struct bpf_map * map,void * key,void * value)1738 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1739 						     void *key,
1740 						     void *value)
1741 {
1742 	return -EINVAL;
1743 }
bpf_struct_ops_link_create(union bpf_attr * attr)1744 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1745 {
1746 	return -EOPNOTSUPP;
1747 }
1748 
1749 #endif
1750 
1751 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1752 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1753 				    int cgroup_atype);
1754 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1755 #else
bpf_trampoline_link_cgroup_shim(struct bpf_prog * prog,int cgroup_atype)1756 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1757 						  int cgroup_atype)
1758 {
1759 	return -EOPNOTSUPP;
1760 }
bpf_trampoline_unlink_cgroup_shim(struct bpf_prog * prog)1761 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1762 {
1763 }
1764 #endif
1765 
1766 struct bpf_array {
1767 	struct bpf_map map;
1768 	u32 elem_size;
1769 	u32 index_mask;
1770 	struct bpf_array_aux *aux;
1771 	union {
1772 		DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1773 		DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1774 		DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1775 	};
1776 };
1777 
1778 #define BPF_COMPLEXITY_LIMIT_INSNS      1000000 /* yes. 1M insns */
1779 #define MAX_TAIL_CALL_CNT 33
1780 
1781 /* Maximum number of loops for bpf_loop and bpf_iter_num.
1782  * It's enum to expose it (and thus make it discoverable) through BTF.
1783  */
1784 enum {
1785 	BPF_MAX_LOOPS = 8 * 1024 * 1024,
1786 };
1787 
1788 #define BPF_F_ACCESS_MASK	(BPF_F_RDONLY |		\
1789 				 BPF_F_RDONLY_PROG |	\
1790 				 BPF_F_WRONLY |		\
1791 				 BPF_F_WRONLY_PROG)
1792 
1793 #define BPF_MAP_CAN_READ	BIT(0)
1794 #define BPF_MAP_CAN_WRITE	BIT(1)
1795 
1796 /* Maximum number of user-producer ring buffer samples that can be drained in
1797  * a call to bpf_user_ringbuf_drain().
1798  */
1799 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1800 
bpf_map_flags_to_cap(struct bpf_map * map)1801 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1802 {
1803 	u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1804 
1805 	/* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1806 	 * not possible.
1807 	 */
1808 	if (access_flags & BPF_F_RDONLY_PROG)
1809 		return BPF_MAP_CAN_READ;
1810 	else if (access_flags & BPF_F_WRONLY_PROG)
1811 		return BPF_MAP_CAN_WRITE;
1812 	else
1813 		return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1814 }
1815 
bpf_map_flags_access_ok(u32 access_flags)1816 static inline bool bpf_map_flags_access_ok(u32 access_flags)
1817 {
1818 	return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1819 	       (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1820 }
1821 
1822 struct bpf_event_entry {
1823 	struct perf_event *event;
1824 	struct file *perf_file;
1825 	struct file *map_file;
1826 	struct rcu_head rcu;
1827 };
1828 
map_type_contains_progs(struct bpf_map * map)1829 static inline bool map_type_contains_progs(struct bpf_map *map)
1830 {
1831 	return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1832 	       map->map_type == BPF_MAP_TYPE_DEVMAP ||
1833 	       map->map_type == BPF_MAP_TYPE_CPUMAP;
1834 }
1835 
1836 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1837 int bpf_prog_calc_tag(struct bpf_prog *fp);
1838 
1839 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1840 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1841 
1842 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1843 					unsigned long off, unsigned long len);
1844 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1845 					const struct bpf_insn *src,
1846 					struct bpf_insn *dst,
1847 					struct bpf_prog *prog,
1848 					u32 *target_size);
1849 
1850 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1851 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
1852 
1853 /* an array of programs to be executed under rcu_lock.
1854  *
1855  * Typical usage:
1856  * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
1857  *
1858  * the structure returned by bpf_prog_array_alloc() should be populated
1859  * with program pointers and the last pointer must be NULL.
1860  * The user has to keep refcnt on the program and make sure the program
1861  * is removed from the array before bpf_prog_put().
1862  * The 'struct bpf_prog_array *' should only be replaced with xchg()
1863  * since other cpus are walking the array of pointers in parallel.
1864  */
1865 struct bpf_prog_array_item {
1866 	struct bpf_prog *prog;
1867 	union {
1868 		struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1869 		u64 bpf_cookie;
1870 	};
1871 };
1872 
1873 struct bpf_prog_array {
1874 	struct rcu_head rcu;
1875 	struct bpf_prog_array_item items[];
1876 };
1877 
1878 struct bpf_empty_prog_array {
1879 	struct bpf_prog_array hdr;
1880 	struct bpf_prog *null_prog;
1881 };
1882 
1883 /* to avoid allocating empty bpf_prog_array for cgroups that
1884  * don't have bpf program attached use one global 'bpf_empty_prog_array'
1885  * It will not be modified the caller of bpf_prog_array_alloc()
1886  * (since caller requested prog_cnt == 0)
1887  * that pointer should be 'freed' by bpf_prog_array_free()
1888  */
1889 extern struct bpf_empty_prog_array bpf_empty_prog_array;
1890 
1891 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
1892 void bpf_prog_array_free(struct bpf_prog_array *progs);
1893 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
1894 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
1895 int bpf_prog_array_length(struct bpf_prog_array *progs);
1896 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
1897 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
1898 				__u32 __user *prog_ids, u32 cnt);
1899 
1900 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
1901 				struct bpf_prog *old_prog);
1902 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
1903 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
1904 			     struct bpf_prog *prog);
1905 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
1906 			     u32 *prog_ids, u32 request_cnt,
1907 			     u32 *prog_cnt);
1908 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1909 			struct bpf_prog *exclude_prog,
1910 			struct bpf_prog *include_prog,
1911 			u64 bpf_cookie,
1912 			struct bpf_prog_array **new_array);
1913 
1914 struct bpf_run_ctx {};
1915 
1916 struct bpf_cg_run_ctx {
1917 	struct bpf_run_ctx run_ctx;
1918 	const struct bpf_prog_array_item *prog_item;
1919 	int retval;
1920 };
1921 
1922 struct bpf_trace_run_ctx {
1923 	struct bpf_run_ctx run_ctx;
1924 	u64 bpf_cookie;
1925 	bool is_uprobe;
1926 };
1927 
1928 struct bpf_tramp_run_ctx {
1929 	struct bpf_run_ctx run_ctx;
1930 	u64 bpf_cookie;
1931 	struct bpf_run_ctx *saved_run_ctx;
1932 };
1933 
bpf_set_run_ctx(struct bpf_run_ctx * new_ctx)1934 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
1935 {
1936 	struct bpf_run_ctx *old_ctx = NULL;
1937 
1938 #ifdef CONFIG_BPF_SYSCALL
1939 	old_ctx = current->bpf_ctx;
1940 	current->bpf_ctx = new_ctx;
1941 #endif
1942 	return old_ctx;
1943 }
1944 
bpf_reset_run_ctx(struct bpf_run_ctx * old_ctx)1945 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
1946 {
1947 #ifdef CONFIG_BPF_SYSCALL
1948 	current->bpf_ctx = old_ctx;
1949 #endif
1950 }
1951 
1952 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
1953 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE			(1 << 0)
1954 /* BPF program asks to set CN on the packet. */
1955 #define BPF_RET_SET_CN						(1 << 0)
1956 
1957 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
1958 
1959 static __always_inline u32
bpf_prog_run_array(const struct bpf_prog_array * array,const void * ctx,bpf_prog_run_fn run_prog)1960 bpf_prog_run_array(const struct bpf_prog_array *array,
1961 		   const void *ctx, bpf_prog_run_fn run_prog)
1962 {
1963 	const struct bpf_prog_array_item *item;
1964 	const struct bpf_prog *prog;
1965 	struct bpf_run_ctx *old_run_ctx;
1966 	struct bpf_trace_run_ctx run_ctx;
1967 	u32 ret = 1;
1968 
1969 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
1970 
1971 	if (unlikely(!array))
1972 		return ret;
1973 
1974 	run_ctx.is_uprobe = false;
1975 
1976 	migrate_disable();
1977 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1978 	item = &array->items[0];
1979 	while ((prog = READ_ONCE(item->prog))) {
1980 		run_ctx.bpf_cookie = item->bpf_cookie;
1981 		ret &= run_prog(prog, ctx);
1982 		item++;
1983 	}
1984 	bpf_reset_run_ctx(old_run_ctx);
1985 	migrate_enable();
1986 	return ret;
1987 }
1988 
1989 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
1990  *
1991  * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
1992  * overall. As a result, we must use the bpf_prog_array_free_sleepable
1993  * in order to use the tasks_trace rcu grace period.
1994  *
1995  * When a non-sleepable program is inside the array, we take the rcu read
1996  * section and disable preemption for that program alone, so it can access
1997  * rcu-protected dynamically sized maps.
1998  */
1999 static __always_inline u32
bpf_prog_run_array_uprobe(const struct bpf_prog_array * array,const void * ctx,bpf_prog_run_fn run_prog)2000 bpf_prog_run_array_uprobe(const struct bpf_prog_array *array,
2001 			  const void *ctx, bpf_prog_run_fn run_prog)
2002 {
2003 	const struct bpf_prog_array_item *item;
2004 	const struct bpf_prog *prog;
2005 	struct bpf_run_ctx *old_run_ctx;
2006 	struct bpf_trace_run_ctx run_ctx;
2007 	u32 ret = 1;
2008 
2009 	might_fault();
2010 	RCU_LOCKDEP_WARN(!rcu_read_lock_trace_held(), "no rcu lock held");
2011 
2012 	if (unlikely(!array))
2013 		return ret;
2014 
2015 	migrate_disable();
2016 
2017 	run_ctx.is_uprobe = true;
2018 
2019 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2020 	item = &array->items[0];
2021 	while ((prog = READ_ONCE(item->prog))) {
2022 		if (!prog->aux->sleepable)
2023 			rcu_read_lock();
2024 
2025 		run_ctx.bpf_cookie = item->bpf_cookie;
2026 		ret &= run_prog(prog, ctx);
2027 		item++;
2028 
2029 		if (!prog->aux->sleepable)
2030 			rcu_read_unlock();
2031 	}
2032 	bpf_reset_run_ctx(old_run_ctx);
2033 	migrate_enable();
2034 	return ret;
2035 }
2036 
2037 #ifdef CONFIG_BPF_SYSCALL
2038 DECLARE_PER_CPU(int, bpf_prog_active);
2039 extern struct mutex bpf_stats_enabled_mutex;
2040 
2041 /*
2042  * Block execution of BPF programs attached to instrumentation (perf,
2043  * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2044  * these events can happen inside a region which holds a map bucket lock
2045  * and can deadlock on it.
2046  */
bpf_disable_instrumentation(void)2047 static inline void bpf_disable_instrumentation(void)
2048 {
2049 	migrate_disable();
2050 	this_cpu_inc(bpf_prog_active);
2051 }
2052 
bpf_enable_instrumentation(void)2053 static inline void bpf_enable_instrumentation(void)
2054 {
2055 	this_cpu_dec(bpf_prog_active);
2056 	migrate_enable();
2057 }
2058 
2059 extern const struct file_operations bpf_map_fops;
2060 extern const struct file_operations bpf_prog_fops;
2061 extern const struct file_operations bpf_iter_fops;
2062 
2063 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2064 	extern const struct bpf_prog_ops _name ## _prog_ops; \
2065 	extern const struct bpf_verifier_ops _name ## _verifier_ops;
2066 #define BPF_MAP_TYPE(_id, _ops) \
2067 	extern const struct bpf_map_ops _ops;
2068 #define BPF_LINK_TYPE(_id, _name)
2069 #include <linux/bpf_types.h>
2070 #undef BPF_PROG_TYPE
2071 #undef BPF_MAP_TYPE
2072 #undef BPF_LINK_TYPE
2073 
2074 extern const struct bpf_prog_ops bpf_offload_prog_ops;
2075 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2076 extern const struct bpf_verifier_ops xdp_analyzer_ops;
2077 
2078 struct bpf_prog *bpf_prog_get(u32 ufd);
2079 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2080 				       bool attach_drv);
2081 void bpf_prog_add(struct bpf_prog *prog, int i);
2082 void bpf_prog_sub(struct bpf_prog *prog, int i);
2083 void bpf_prog_inc(struct bpf_prog *prog);
2084 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2085 void bpf_prog_put(struct bpf_prog *prog);
2086 
2087 void bpf_prog_free_id(struct bpf_prog *prog);
2088 void bpf_map_free_id(struct bpf_map *map);
2089 
2090 struct btf_field *btf_record_find(const struct btf_record *rec,
2091 				  u32 offset, u32 field_mask);
2092 void btf_record_free(struct btf_record *rec);
2093 void bpf_map_free_record(struct bpf_map *map);
2094 struct btf_record *btf_record_dup(const struct btf_record *rec);
2095 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2096 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2097 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2098 
2099 struct bpf_map *bpf_map_get(u32 ufd);
2100 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2101 struct bpf_map *__bpf_map_get(struct fd f);
2102 void bpf_map_inc(struct bpf_map *map);
2103 void bpf_map_inc_with_uref(struct bpf_map *map);
2104 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2105 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2106 void bpf_map_put_with_uref(struct bpf_map *map);
2107 void bpf_map_put(struct bpf_map *map);
2108 void *bpf_map_area_alloc(u64 size, int numa_node);
2109 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2110 void bpf_map_area_free(void *base);
2111 bool bpf_map_write_active(const struct bpf_map *map);
2112 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2113 int  generic_map_lookup_batch(struct bpf_map *map,
2114 			      const union bpf_attr *attr,
2115 			      union bpf_attr __user *uattr);
2116 int  generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2117 			      const union bpf_attr *attr,
2118 			      union bpf_attr __user *uattr);
2119 int  generic_map_delete_batch(struct bpf_map *map,
2120 			      const union bpf_attr *attr,
2121 			      union bpf_attr __user *uattr);
2122 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2123 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2124 
2125 #ifdef CONFIG_MEMCG_KMEM
2126 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2127 			   int node);
2128 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2129 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2130 		       gfp_t flags);
2131 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2132 				    size_t align, gfp_t flags);
2133 #else
2134 static inline void *
bpf_map_kmalloc_node(const struct bpf_map * map,size_t size,gfp_t flags,int node)2135 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2136 		     int node)
2137 {
2138 	return kmalloc_node(size, flags, node);
2139 }
2140 
2141 static inline void *
bpf_map_kzalloc(const struct bpf_map * map,size_t size,gfp_t flags)2142 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
2143 {
2144 	return kzalloc(size, flags);
2145 }
2146 
2147 static inline void *
bpf_map_kvcalloc(struct bpf_map * map,size_t n,size_t size,gfp_t flags)2148 bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags)
2149 {
2150 	return kvcalloc(n, size, flags);
2151 }
2152 
2153 static inline void __percpu *
bpf_map_alloc_percpu(const struct bpf_map * map,size_t size,size_t align,gfp_t flags)2154 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align,
2155 		     gfp_t flags)
2156 {
2157 	return __alloc_percpu_gfp(size, align, flags);
2158 }
2159 #endif
2160 
2161 static inline int
bpf_map_init_elem_count(struct bpf_map * map)2162 bpf_map_init_elem_count(struct bpf_map *map)
2163 {
2164 	size_t size = sizeof(*map->elem_count), align = size;
2165 	gfp_t flags = GFP_USER | __GFP_NOWARN;
2166 
2167 	map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2168 	if (!map->elem_count)
2169 		return -ENOMEM;
2170 
2171 	return 0;
2172 }
2173 
2174 static inline void
bpf_map_free_elem_count(struct bpf_map * map)2175 bpf_map_free_elem_count(struct bpf_map *map)
2176 {
2177 	free_percpu(map->elem_count);
2178 }
2179 
bpf_map_inc_elem_count(struct bpf_map * map)2180 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2181 {
2182 	this_cpu_inc(*map->elem_count);
2183 }
2184 
bpf_map_dec_elem_count(struct bpf_map * map)2185 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2186 {
2187 	this_cpu_dec(*map->elem_count);
2188 }
2189 
2190 extern int sysctl_unprivileged_bpf_disabled;
2191 
bpf_allow_ptr_leaks(void)2192 static inline bool bpf_allow_ptr_leaks(void)
2193 {
2194 	return perfmon_capable();
2195 }
2196 
bpf_allow_uninit_stack(void)2197 static inline bool bpf_allow_uninit_stack(void)
2198 {
2199 	return perfmon_capable();
2200 }
2201 
bpf_bypass_spec_v1(void)2202 static inline bool bpf_bypass_spec_v1(void)
2203 {
2204 	return perfmon_capable();
2205 }
2206 
bpf_bypass_spec_v4(void)2207 static inline bool bpf_bypass_spec_v4(void)
2208 {
2209 	return perfmon_capable();
2210 }
2211 
2212 int bpf_map_new_fd(struct bpf_map *map, int flags);
2213 int bpf_prog_new_fd(struct bpf_prog *prog);
2214 
2215 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2216 		   const struct bpf_link_ops *ops, struct bpf_prog *prog);
2217 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2218 int bpf_link_settle(struct bpf_link_primer *primer);
2219 void bpf_link_cleanup(struct bpf_link_primer *primer);
2220 void bpf_link_inc(struct bpf_link *link);
2221 void bpf_link_put(struct bpf_link *link);
2222 int bpf_link_new_fd(struct bpf_link *link);
2223 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2224 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2225 
2226 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2227 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2228 
2229 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2230 #define DEFINE_BPF_ITER_FUNC(target, args...)			\
2231 	extern int bpf_iter_ ## target(args);			\
2232 	int __init bpf_iter_ ## target(args) { return 0; }
2233 
2234 /*
2235  * The task type of iterators.
2236  *
2237  * For BPF task iterators, they can be parameterized with various
2238  * parameters to visit only some of tasks.
2239  *
2240  * BPF_TASK_ITER_ALL (default)
2241  *	Iterate over resources of every task.
2242  *
2243  * BPF_TASK_ITER_TID
2244  *	Iterate over resources of a task/tid.
2245  *
2246  * BPF_TASK_ITER_TGID
2247  *	Iterate over resources of every task of a process / task group.
2248  */
2249 enum bpf_iter_task_type {
2250 	BPF_TASK_ITER_ALL = 0,
2251 	BPF_TASK_ITER_TID,
2252 	BPF_TASK_ITER_TGID,
2253 };
2254 
2255 struct bpf_iter_aux_info {
2256 	/* for map_elem iter */
2257 	struct bpf_map *map;
2258 
2259 	/* for cgroup iter */
2260 	struct {
2261 		struct cgroup *start; /* starting cgroup */
2262 		enum bpf_cgroup_iter_order order;
2263 	} cgroup;
2264 	struct {
2265 		enum bpf_iter_task_type	type;
2266 		u32 pid;
2267 	} task;
2268 };
2269 
2270 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2271 					union bpf_iter_link_info *linfo,
2272 					struct bpf_iter_aux_info *aux);
2273 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2274 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2275 					struct seq_file *seq);
2276 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2277 					 struct bpf_link_info *info);
2278 typedef const struct bpf_func_proto *
2279 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2280 			     const struct bpf_prog *prog);
2281 
2282 enum bpf_iter_feature {
2283 	BPF_ITER_RESCHED	= BIT(0),
2284 };
2285 
2286 #define BPF_ITER_CTX_ARG_MAX 2
2287 struct bpf_iter_reg {
2288 	const char *target;
2289 	bpf_iter_attach_target_t attach_target;
2290 	bpf_iter_detach_target_t detach_target;
2291 	bpf_iter_show_fdinfo_t show_fdinfo;
2292 	bpf_iter_fill_link_info_t fill_link_info;
2293 	bpf_iter_get_func_proto_t get_func_proto;
2294 	u32 ctx_arg_info_size;
2295 	u32 feature;
2296 	struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2297 	const struct bpf_iter_seq_info *seq_info;
2298 };
2299 
2300 struct bpf_iter_meta {
2301 	__bpf_md_ptr(struct seq_file *, seq);
2302 	u64 session_id;
2303 	u64 seq_num;
2304 };
2305 
2306 struct bpf_iter__bpf_map_elem {
2307 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2308 	__bpf_md_ptr(struct bpf_map *, map);
2309 	__bpf_md_ptr(void *, key);
2310 	__bpf_md_ptr(void *, value);
2311 };
2312 
2313 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2314 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2315 bool bpf_iter_prog_supported(struct bpf_prog *prog);
2316 const struct bpf_func_proto *
2317 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2318 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2319 int bpf_iter_new_fd(struct bpf_link *link);
2320 bool bpf_link_is_iter(struct bpf_link *link);
2321 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2322 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2323 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2324 			      struct seq_file *seq);
2325 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2326 				struct bpf_link_info *info);
2327 
2328 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2329 				   struct bpf_func_state *caller,
2330 				   struct bpf_func_state *callee);
2331 
2332 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2333 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2334 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2335 			   u64 flags);
2336 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2337 			    u64 flags);
2338 
2339 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2340 
2341 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2342 				 void *key, void *value, u64 map_flags);
2343 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2344 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2345 				void *key, void *value, u64 map_flags);
2346 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2347 
2348 int bpf_get_file_flag(int flags);
2349 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2350 			     size_t actual_size);
2351 
2352 /* verify correctness of eBPF program */
2353 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2354 
2355 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2356 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2357 #endif
2358 
2359 struct btf *bpf_get_btf_vmlinux(void);
2360 
2361 /* Map specifics */
2362 struct xdp_frame;
2363 struct sk_buff;
2364 struct bpf_dtab_netdev;
2365 struct bpf_cpu_map_entry;
2366 
2367 void __dev_flush(void);
2368 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2369 		    struct net_device *dev_rx);
2370 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2371 		    struct net_device *dev_rx);
2372 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2373 			  struct bpf_map *map, bool exclude_ingress);
2374 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2375 			     struct bpf_prog *xdp_prog);
2376 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2377 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2378 			   bool exclude_ingress);
2379 
2380 void __cpu_map_flush(void);
2381 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2382 		    struct net_device *dev_rx);
2383 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2384 			     struct sk_buff *skb);
2385 
2386 /* Return map's numa specified by userspace */
bpf_map_attr_numa_node(const union bpf_attr * attr)2387 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2388 {
2389 	return (attr->map_flags & BPF_F_NUMA_NODE) ?
2390 		attr->numa_node : NUMA_NO_NODE;
2391 }
2392 
2393 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2394 int array_map_alloc_check(union bpf_attr *attr);
2395 
2396 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2397 			  union bpf_attr __user *uattr);
2398 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2399 			  union bpf_attr __user *uattr);
2400 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2401 			      const union bpf_attr *kattr,
2402 			      union bpf_attr __user *uattr);
2403 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2404 				     const union bpf_attr *kattr,
2405 				     union bpf_attr __user *uattr);
2406 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2407 			     const union bpf_attr *kattr,
2408 			     union bpf_attr __user *uattr);
2409 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2410 				const union bpf_attr *kattr,
2411 				union bpf_attr __user *uattr);
2412 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2413 			 const union bpf_attr *kattr,
2414 			 union bpf_attr __user *uattr);
2415 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2416 		    const struct bpf_prog *prog,
2417 		    struct bpf_insn_access_aux *info);
2418 
bpf_tracing_ctx_access(int off,int size,enum bpf_access_type type)2419 static inline bool bpf_tracing_ctx_access(int off, int size,
2420 					  enum bpf_access_type type)
2421 {
2422 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2423 		return false;
2424 	if (type != BPF_READ)
2425 		return false;
2426 	if (off % size != 0)
2427 		return false;
2428 	return true;
2429 }
2430 
bpf_tracing_btf_ctx_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2431 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2432 					      enum bpf_access_type type,
2433 					      const struct bpf_prog *prog,
2434 					      struct bpf_insn_access_aux *info)
2435 {
2436 	if (!bpf_tracing_ctx_access(off, size, type))
2437 		return false;
2438 	return btf_ctx_access(off, size, type, prog, info);
2439 }
2440 
2441 int btf_struct_access(struct bpf_verifier_log *log,
2442 		      const struct bpf_reg_state *reg,
2443 		      int off, int size, enum bpf_access_type atype,
2444 		      u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2445 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2446 			  const struct btf *btf, u32 id, int off,
2447 			  const struct btf *need_btf, u32 need_type_id,
2448 			  bool strict);
2449 
2450 int btf_distill_func_proto(struct bpf_verifier_log *log,
2451 			   struct btf *btf,
2452 			   const struct btf_type *func_proto,
2453 			   const char *func_name,
2454 			   struct btf_func_model *m);
2455 
2456 struct bpf_reg_state;
2457 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
2458 				struct bpf_reg_state *regs);
2459 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
2460 			   struct bpf_reg_state *regs);
2461 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
2462 			  struct bpf_reg_state *reg);
2463 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2464 			 struct btf *btf, const struct btf_type *t);
2465 
2466 struct bpf_prog *bpf_prog_by_id(u32 id);
2467 struct bpf_link *bpf_link_by_id(u32 id);
2468 
2469 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id);
2470 void bpf_task_storage_free(struct task_struct *task);
2471 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2472 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2473 const struct btf_func_model *
2474 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2475 			 const struct bpf_insn *insn);
2476 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2477 		       u16 btf_fd_idx, u8 **func_addr);
2478 
2479 struct bpf_core_ctx {
2480 	struct bpf_verifier_log *log;
2481 	const struct btf *btf;
2482 };
2483 
2484 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2485 				const struct bpf_reg_state *reg,
2486 				const char *field_name, u32 btf_id, const char *suffix);
2487 
2488 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2489 			       const struct btf *reg_btf, u32 reg_id,
2490 			       const struct btf *arg_btf, u32 arg_id);
2491 
2492 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2493 		   int relo_idx, void *insn);
2494 
unprivileged_ebpf_enabled(void)2495 static inline bool unprivileged_ebpf_enabled(void)
2496 {
2497 	return !sysctl_unprivileged_bpf_disabled;
2498 }
2499 
2500 /* Not all bpf prog type has the bpf_ctx.
2501  * For the bpf prog type that has initialized the bpf_ctx,
2502  * this function can be used to decide if a kernel function
2503  * is called by a bpf program.
2504  */
has_current_bpf_ctx(void)2505 static inline bool has_current_bpf_ctx(void)
2506 {
2507 	return !!current->bpf_ctx;
2508 }
2509 
2510 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2511 
2512 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2513 		     enum bpf_dynptr_type type, u32 offset, u32 size);
2514 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2515 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2516 #else /* !CONFIG_BPF_SYSCALL */
bpf_prog_get(u32 ufd)2517 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2518 {
2519 	return ERR_PTR(-EOPNOTSUPP);
2520 }
2521 
bpf_prog_get_type_dev(u32 ufd,enum bpf_prog_type type,bool attach_drv)2522 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2523 						     enum bpf_prog_type type,
2524 						     bool attach_drv)
2525 {
2526 	return ERR_PTR(-EOPNOTSUPP);
2527 }
2528 
bpf_prog_add(struct bpf_prog * prog,int i)2529 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2530 {
2531 }
2532 
bpf_prog_sub(struct bpf_prog * prog,int i)2533 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2534 {
2535 }
2536 
bpf_prog_put(struct bpf_prog * prog)2537 static inline void bpf_prog_put(struct bpf_prog *prog)
2538 {
2539 }
2540 
bpf_prog_inc(struct bpf_prog * prog)2541 static inline void bpf_prog_inc(struct bpf_prog *prog)
2542 {
2543 }
2544 
2545 static inline struct bpf_prog *__must_check
bpf_prog_inc_not_zero(struct bpf_prog * prog)2546 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2547 {
2548 	return ERR_PTR(-EOPNOTSUPP);
2549 }
2550 
bpf_link_init(struct bpf_link * link,enum bpf_link_type type,const struct bpf_link_ops * ops,struct bpf_prog * prog)2551 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2552 				 const struct bpf_link_ops *ops,
2553 				 struct bpf_prog *prog)
2554 {
2555 }
2556 
bpf_link_prime(struct bpf_link * link,struct bpf_link_primer * primer)2557 static inline int bpf_link_prime(struct bpf_link *link,
2558 				 struct bpf_link_primer *primer)
2559 {
2560 	return -EOPNOTSUPP;
2561 }
2562 
bpf_link_settle(struct bpf_link_primer * primer)2563 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2564 {
2565 	return -EOPNOTSUPP;
2566 }
2567 
bpf_link_cleanup(struct bpf_link_primer * primer)2568 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2569 {
2570 }
2571 
bpf_link_inc(struct bpf_link * link)2572 static inline void bpf_link_inc(struct bpf_link *link)
2573 {
2574 }
2575 
bpf_link_put(struct bpf_link * link)2576 static inline void bpf_link_put(struct bpf_link *link)
2577 {
2578 }
2579 
bpf_obj_get_user(const char __user * pathname,int flags)2580 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2581 {
2582 	return -EOPNOTSUPP;
2583 }
2584 
__dev_flush(void)2585 static inline void __dev_flush(void)
2586 {
2587 }
2588 
2589 struct xdp_frame;
2590 struct bpf_dtab_netdev;
2591 struct bpf_cpu_map_entry;
2592 
2593 static inline
dev_xdp_enqueue(struct net_device * dev,struct xdp_frame * xdpf,struct net_device * dev_rx)2594 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2595 		    struct net_device *dev_rx)
2596 {
2597 	return 0;
2598 }
2599 
2600 static inline
dev_map_enqueue(struct bpf_dtab_netdev * dst,struct xdp_frame * xdpf,struct net_device * dev_rx)2601 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2602 		    struct net_device *dev_rx)
2603 {
2604 	return 0;
2605 }
2606 
2607 static inline
dev_map_enqueue_multi(struct xdp_frame * xdpf,struct net_device * dev_rx,struct bpf_map * map,bool exclude_ingress)2608 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2609 			  struct bpf_map *map, bool exclude_ingress)
2610 {
2611 	return 0;
2612 }
2613 
2614 struct sk_buff;
2615 
dev_map_generic_redirect(struct bpf_dtab_netdev * dst,struct sk_buff * skb,struct bpf_prog * xdp_prog)2616 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2617 					   struct sk_buff *skb,
2618 					   struct bpf_prog *xdp_prog)
2619 {
2620 	return 0;
2621 }
2622 
2623 static inline
dev_map_redirect_multi(struct net_device * dev,struct sk_buff * skb,struct bpf_prog * xdp_prog,struct bpf_map * map,bool exclude_ingress)2624 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2625 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2626 			   bool exclude_ingress)
2627 {
2628 	return 0;
2629 }
2630 
__cpu_map_flush(void)2631 static inline void __cpu_map_flush(void)
2632 {
2633 }
2634 
cpu_map_enqueue(struct bpf_cpu_map_entry * rcpu,struct xdp_frame * xdpf,struct net_device * dev_rx)2635 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2636 				  struct xdp_frame *xdpf,
2637 				  struct net_device *dev_rx)
2638 {
2639 	return 0;
2640 }
2641 
cpu_map_generic_redirect(struct bpf_cpu_map_entry * rcpu,struct sk_buff * skb)2642 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2643 					   struct sk_buff *skb)
2644 {
2645 	return -EOPNOTSUPP;
2646 }
2647 
bpf_prog_get_type_path(const char * name,enum bpf_prog_type type)2648 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2649 				enum bpf_prog_type type)
2650 {
2651 	return ERR_PTR(-EOPNOTSUPP);
2652 }
2653 
bpf_prog_test_run_xdp(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2654 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2655 					const union bpf_attr *kattr,
2656 					union bpf_attr __user *uattr)
2657 {
2658 	return -ENOTSUPP;
2659 }
2660 
bpf_prog_test_run_skb(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2661 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2662 					const union bpf_attr *kattr,
2663 					union bpf_attr __user *uattr)
2664 {
2665 	return -ENOTSUPP;
2666 }
2667 
bpf_prog_test_run_tracing(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2668 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2669 					    const union bpf_attr *kattr,
2670 					    union bpf_attr __user *uattr)
2671 {
2672 	return -ENOTSUPP;
2673 }
2674 
bpf_prog_test_run_flow_dissector(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2675 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2676 						   const union bpf_attr *kattr,
2677 						   union bpf_attr __user *uattr)
2678 {
2679 	return -ENOTSUPP;
2680 }
2681 
bpf_prog_test_run_sk_lookup(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2682 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2683 					      const union bpf_attr *kattr,
2684 					      union bpf_attr __user *uattr)
2685 {
2686 	return -ENOTSUPP;
2687 }
2688 
bpf_map_put(struct bpf_map * map)2689 static inline void bpf_map_put(struct bpf_map *map)
2690 {
2691 }
2692 
bpf_prog_by_id(u32 id)2693 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2694 {
2695 	return ERR_PTR(-ENOTSUPP);
2696 }
2697 
btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size,enum bpf_access_type atype,u32 * next_btf_id,enum bpf_type_flag * flag,const char ** field_name)2698 static inline int btf_struct_access(struct bpf_verifier_log *log,
2699 				    const struct bpf_reg_state *reg,
2700 				    int off, int size, enum bpf_access_type atype,
2701 				    u32 *next_btf_id, enum bpf_type_flag *flag,
2702 				    const char **field_name)
2703 {
2704 	return -EACCES;
2705 }
2706 
2707 static inline const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)2708 bpf_base_func_proto(enum bpf_func_id func_id)
2709 {
2710 	return NULL;
2711 }
2712 
bpf_task_storage_free(struct task_struct * task)2713 static inline void bpf_task_storage_free(struct task_struct *task)
2714 {
2715 }
2716 
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)2717 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2718 {
2719 	return false;
2720 }
2721 
2722 static inline const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)2723 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2724 			 const struct bpf_insn *insn)
2725 {
2726 	return NULL;
2727 }
2728 
2729 static inline int
bpf_get_kfunc_addr(const struct bpf_prog * prog,u32 func_id,u16 btf_fd_idx,u8 ** func_addr)2730 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2731 		   u16 btf_fd_idx, u8 **func_addr)
2732 {
2733 	return -ENOTSUPP;
2734 }
2735 
unprivileged_ebpf_enabled(void)2736 static inline bool unprivileged_ebpf_enabled(void)
2737 {
2738 	return false;
2739 }
2740 
has_current_bpf_ctx(void)2741 static inline bool has_current_bpf_ctx(void)
2742 {
2743 	return false;
2744 }
2745 
bpf_prog_inc_misses_counter(struct bpf_prog * prog)2746 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2747 {
2748 }
2749 
bpf_cgrp_storage_free(struct cgroup * cgroup)2750 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2751 {
2752 }
2753 
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)2754 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2755 				   enum bpf_dynptr_type type, u32 offset, u32 size)
2756 {
2757 }
2758 
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)2759 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2760 {
2761 }
2762 
bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)2763 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2764 {
2765 }
2766 #endif /* CONFIG_BPF_SYSCALL */
2767 
2768 static __always_inline int
bpf_probe_read_kernel_common(void * dst,u32 size,const void * unsafe_ptr)2769 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
2770 {
2771 	int ret = -EFAULT;
2772 
2773 	if (IS_ENABLED(CONFIG_BPF_EVENTS))
2774 		ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
2775 	if (unlikely(ret < 0))
2776 		memset(dst, 0, size);
2777 	return ret;
2778 }
2779 
2780 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2781 			  struct btf_mod_pair *used_btfs, u32 len);
2782 
bpf_prog_get_type(u32 ufd,enum bpf_prog_type type)2783 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2784 						 enum bpf_prog_type type)
2785 {
2786 	return bpf_prog_get_type_dev(ufd, type, false);
2787 }
2788 
2789 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2790 			  struct bpf_map **used_maps, u32 len);
2791 
2792 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2793 
2794 int bpf_prog_offload_compile(struct bpf_prog *prog);
2795 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
2796 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2797 			       struct bpf_prog *prog);
2798 
2799 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2800 
2801 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2802 int bpf_map_offload_update_elem(struct bpf_map *map,
2803 				void *key, void *value, u64 flags);
2804 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2805 int bpf_map_offload_get_next_key(struct bpf_map *map,
2806 				 void *key, void *next_key);
2807 
2808 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
2809 
2810 struct bpf_offload_dev *
2811 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
2812 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
2813 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
2814 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
2815 				    struct net_device *netdev);
2816 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
2817 				       struct net_device *netdev);
2818 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
2819 
2820 void unpriv_ebpf_notify(int new_state);
2821 
2822 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
2823 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2824 			      struct bpf_prog_aux *prog_aux);
2825 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
2826 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
2827 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
2828 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
2829 
bpf_prog_is_dev_bound(const struct bpf_prog_aux * aux)2830 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2831 {
2832 	return aux->dev_bound;
2833 }
2834 
bpf_prog_is_offloaded(const struct bpf_prog_aux * aux)2835 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
2836 {
2837 	return aux->offload_requested;
2838 }
2839 
2840 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
2841 
bpf_map_is_offloaded(struct bpf_map * map)2842 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2843 {
2844 	return unlikely(map->ops == &bpf_map_offload_ops);
2845 }
2846 
2847 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
2848 void bpf_map_offload_map_free(struct bpf_map *map);
2849 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
2850 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2851 			      const union bpf_attr *kattr,
2852 			      union bpf_attr __user *uattr);
2853 
2854 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
2855 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
2856 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
2857 int sock_map_bpf_prog_query(const union bpf_attr *attr,
2858 			    union bpf_attr __user *uattr);
2859 
2860 void sock_map_unhash(struct sock *sk);
2861 void sock_map_destroy(struct sock *sk);
2862 void sock_map_close(struct sock *sk, long timeout);
2863 #else
bpf_dev_bound_kfunc_check(struct bpf_verifier_log * log,struct bpf_prog_aux * prog_aux)2864 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2865 					    struct bpf_prog_aux *prog_aux)
2866 {
2867 	return -EOPNOTSUPP;
2868 }
2869 
bpf_dev_bound_resolve_kfunc(struct bpf_prog * prog,u32 func_id)2870 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
2871 						u32 func_id)
2872 {
2873 	return NULL;
2874 }
2875 
bpf_prog_dev_bound_init(struct bpf_prog * prog,union bpf_attr * attr)2876 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
2877 					  union bpf_attr *attr)
2878 {
2879 	return -EOPNOTSUPP;
2880 }
2881 
bpf_prog_dev_bound_inherit(struct bpf_prog * new_prog,struct bpf_prog * old_prog)2882 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
2883 					     struct bpf_prog *old_prog)
2884 {
2885 	return -EOPNOTSUPP;
2886 }
2887 
bpf_dev_bound_netdev_unregister(struct net_device * dev)2888 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
2889 {
2890 }
2891 
bpf_prog_is_dev_bound(const struct bpf_prog_aux * aux)2892 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2893 {
2894 	return false;
2895 }
2896 
bpf_prog_is_offloaded(struct bpf_prog_aux * aux)2897 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
2898 {
2899 	return false;
2900 }
2901 
bpf_prog_dev_bound_match(const struct bpf_prog * lhs,const struct bpf_prog * rhs)2902 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
2903 {
2904 	return false;
2905 }
2906 
bpf_map_is_offloaded(struct bpf_map * map)2907 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2908 {
2909 	return false;
2910 }
2911 
bpf_map_offload_map_alloc(union bpf_attr * attr)2912 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
2913 {
2914 	return ERR_PTR(-EOPNOTSUPP);
2915 }
2916 
bpf_map_offload_map_free(struct bpf_map * map)2917 static inline void bpf_map_offload_map_free(struct bpf_map *map)
2918 {
2919 }
2920 
bpf_map_offload_map_mem_usage(const struct bpf_map * map)2921 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
2922 {
2923 	return 0;
2924 }
2925 
bpf_prog_test_run_syscall(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2926 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2927 					    const union bpf_attr *kattr,
2928 					    union bpf_attr __user *uattr)
2929 {
2930 	return -ENOTSUPP;
2931 }
2932 
2933 #ifdef CONFIG_BPF_SYSCALL
sock_map_get_from_fd(const union bpf_attr * attr,struct bpf_prog * prog)2934 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
2935 				       struct bpf_prog *prog)
2936 {
2937 	return -EINVAL;
2938 }
2939 
sock_map_prog_detach(const union bpf_attr * attr,enum bpf_prog_type ptype)2940 static inline int sock_map_prog_detach(const union bpf_attr *attr,
2941 				       enum bpf_prog_type ptype)
2942 {
2943 	return -EOPNOTSUPP;
2944 }
2945 
sock_map_update_elem_sys(struct bpf_map * map,void * key,void * value,u64 flags)2946 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
2947 					   u64 flags)
2948 {
2949 	return -EOPNOTSUPP;
2950 }
2951 
sock_map_bpf_prog_query(const union bpf_attr * attr,union bpf_attr __user * uattr)2952 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
2953 					  union bpf_attr __user *uattr)
2954 {
2955 	return -EINVAL;
2956 }
2957 #endif /* CONFIG_BPF_SYSCALL */
2958 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
2959 
2960 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
2961 void bpf_sk_reuseport_detach(struct sock *sk);
2962 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
2963 				       void *value);
2964 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
2965 				       void *value, u64 map_flags);
2966 #else
bpf_sk_reuseport_detach(struct sock * sk)2967 static inline void bpf_sk_reuseport_detach(struct sock *sk)
2968 {
2969 }
2970 
2971 #ifdef CONFIG_BPF_SYSCALL
bpf_fd_reuseport_array_lookup_elem(struct bpf_map * map,void * key,void * value)2972 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
2973 						     void *key, void *value)
2974 {
2975 	return -EOPNOTSUPP;
2976 }
2977 
bpf_fd_reuseport_array_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)2978 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
2979 						     void *key, void *value,
2980 						     u64 map_flags)
2981 {
2982 	return -EOPNOTSUPP;
2983 }
2984 #endif /* CONFIG_BPF_SYSCALL */
2985 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
2986 
2987 /* verifier prototypes for helper functions called from eBPF programs */
2988 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
2989 extern const struct bpf_func_proto bpf_map_update_elem_proto;
2990 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
2991 extern const struct bpf_func_proto bpf_map_push_elem_proto;
2992 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
2993 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
2994 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
2995 
2996 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
2997 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
2998 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
2999 extern const struct bpf_func_proto bpf_tail_call_proto;
3000 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
3001 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
3002 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
3003 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
3004 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
3005 extern const struct bpf_func_proto bpf_get_current_comm_proto;
3006 extern const struct bpf_func_proto bpf_get_stackid_proto;
3007 extern const struct bpf_func_proto bpf_get_stack_proto;
3008 extern const struct bpf_func_proto bpf_get_task_stack_proto;
3009 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3010 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3011 extern const struct bpf_func_proto bpf_sock_map_update_proto;
3012 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3013 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3014 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3015 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3016 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3017 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3018 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3019 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3020 extern const struct bpf_func_proto bpf_spin_lock_proto;
3021 extern const struct bpf_func_proto bpf_spin_unlock_proto;
3022 extern const struct bpf_func_proto bpf_get_local_storage_proto;
3023 extern const struct bpf_func_proto bpf_strtol_proto;
3024 extern const struct bpf_func_proto bpf_strtoul_proto;
3025 extern const struct bpf_func_proto bpf_tcp_sock_proto;
3026 extern const struct bpf_func_proto bpf_jiffies64_proto;
3027 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3028 extern const struct bpf_func_proto bpf_event_output_data_proto;
3029 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3030 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3031 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3032 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3033 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3034 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3035 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3036 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3037 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3038 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3039 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3040 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3041 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3042 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3043 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3044 extern const struct bpf_func_proto bpf_copy_from_user_proto;
3045 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3046 extern const struct bpf_func_proto bpf_snprintf_proto;
3047 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3048 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3049 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3050 extern const struct bpf_func_proto bpf_sock_from_file_proto;
3051 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3052 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3053 extern const struct bpf_func_proto bpf_task_storage_get_proto;
3054 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3055 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3056 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3057 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3058 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3059 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3060 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3061 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3062 extern const struct bpf_func_proto bpf_find_vma_proto;
3063 extern const struct bpf_func_proto bpf_loop_proto;
3064 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3065 extern const struct bpf_func_proto bpf_set_retval_proto;
3066 extern const struct bpf_func_proto bpf_get_retval_proto;
3067 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3068 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3069 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3070 
3071 const struct bpf_func_proto *tracing_prog_func_proto(
3072   enum bpf_func_id func_id, const struct bpf_prog *prog);
3073 
3074 /* Shared helpers among cBPF and eBPF. */
3075 void bpf_user_rnd_init_once(void);
3076 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3077 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3078 
3079 #if defined(CONFIG_NET)
3080 bool bpf_sock_common_is_valid_access(int off, int size,
3081 				     enum bpf_access_type type,
3082 				     struct bpf_insn_access_aux *info);
3083 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3084 			      struct bpf_insn_access_aux *info);
3085 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3086 				const struct bpf_insn *si,
3087 				struct bpf_insn *insn_buf,
3088 				struct bpf_prog *prog,
3089 				u32 *target_size);
3090 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3091 			       struct bpf_dynptr_kern *ptr);
3092 #else
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3093 static inline bool bpf_sock_common_is_valid_access(int off, int size,
3094 						   enum bpf_access_type type,
3095 						   struct bpf_insn_access_aux *info)
3096 {
3097 	return false;
3098 }
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3099 static inline bool bpf_sock_is_valid_access(int off, int size,
3100 					    enum bpf_access_type type,
3101 					    struct bpf_insn_access_aux *info)
3102 {
3103 	return false;
3104 }
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3105 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3106 					      const struct bpf_insn *si,
3107 					      struct bpf_insn *insn_buf,
3108 					      struct bpf_prog *prog,
3109 					      u32 *target_size)
3110 {
3111 	return 0;
3112 }
bpf_dynptr_from_skb_rdonly(struct sk_buff * skb,u64 flags,struct bpf_dynptr_kern * ptr)3113 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3114 					     struct bpf_dynptr_kern *ptr)
3115 {
3116 	return -EOPNOTSUPP;
3117 }
3118 #endif
3119 
3120 #ifdef CONFIG_INET
3121 struct sk_reuseport_kern {
3122 	struct sk_buff *skb;
3123 	struct sock *sk;
3124 	struct sock *selected_sk;
3125 	struct sock *migrating_sk;
3126 	void *data_end;
3127 	u32 hash;
3128 	u32 reuseport_id;
3129 	bool bind_inany;
3130 };
3131 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3132 				  struct bpf_insn_access_aux *info);
3133 
3134 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3135 				    const struct bpf_insn *si,
3136 				    struct bpf_insn *insn_buf,
3137 				    struct bpf_prog *prog,
3138 				    u32 *target_size);
3139 
3140 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3141 				  struct bpf_insn_access_aux *info);
3142 
3143 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3144 				    const struct bpf_insn *si,
3145 				    struct bpf_insn *insn_buf,
3146 				    struct bpf_prog *prog,
3147 				    u32 *target_size);
3148 #else
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3149 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3150 						enum bpf_access_type type,
3151 						struct bpf_insn_access_aux *info)
3152 {
3153 	return false;
3154 }
3155 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3156 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3157 						  const struct bpf_insn *si,
3158 						  struct bpf_insn *insn_buf,
3159 						  struct bpf_prog *prog,
3160 						  u32 *target_size)
3161 {
3162 	return 0;
3163 }
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3164 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3165 						enum bpf_access_type type,
3166 						struct bpf_insn_access_aux *info)
3167 {
3168 	return false;
3169 }
3170 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3171 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3172 						  const struct bpf_insn *si,
3173 						  struct bpf_insn *insn_buf,
3174 						  struct bpf_prog *prog,
3175 						  u32 *target_size)
3176 {
3177 	return 0;
3178 }
3179 #endif /* CONFIG_INET */
3180 
3181 enum bpf_text_poke_type {
3182 	BPF_MOD_CALL,
3183 	BPF_MOD_JUMP,
3184 };
3185 
3186 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3187 		       void *addr1, void *addr2);
3188 
3189 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3190 			       struct bpf_prog *new, struct bpf_prog *old);
3191 
3192 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3193 int bpf_arch_text_invalidate(void *dst, size_t len);
3194 
3195 struct btf_id_set;
3196 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3197 
3198 #define MAX_BPRINTF_VARARGS		12
3199 #define MAX_BPRINTF_BUF			1024
3200 
3201 struct bpf_bprintf_data {
3202 	u32 *bin_args;
3203 	char *buf;
3204 	bool get_bin_args;
3205 	bool get_buf;
3206 };
3207 
3208 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3209 			u32 num_args, struct bpf_bprintf_data *data);
3210 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3211 
3212 #ifdef CONFIG_BPF_LSM
3213 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3214 void bpf_cgroup_atype_put(int cgroup_atype);
3215 #else
bpf_cgroup_atype_get(u32 attach_btf_id,int cgroup_atype)3216 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
bpf_cgroup_atype_put(int cgroup_atype)3217 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3218 #endif /* CONFIG_BPF_LSM */
3219 
3220 struct key;
3221 
3222 #ifdef CONFIG_KEYS
3223 struct bpf_key {
3224 	struct key *key;
3225 	bool has_ref;
3226 };
3227 #endif /* CONFIG_KEYS */
3228 
type_is_alloc(u32 type)3229 static inline bool type_is_alloc(u32 type)
3230 {
3231 	return type & MEM_ALLOC;
3232 }
3233 
bpf_memcg_flags(gfp_t flags)3234 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3235 {
3236 	if (memcg_bpf_enabled())
3237 		return flags | __GFP_ACCOUNT;
3238 	return flags;
3239 }
3240 
3241 #endif /* _LINUX_BPF_H */
3242