• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Broadcom BCMSDH to gSPI Protocol Conversion Layer
4  *
5  * Copyright (C) 1999-2019, Broadcom.
6  *
7  *      Unless you and Broadcom execute a separate written software license
8  * agreement governing use of this software, this software is licensed to you
9  * under the terms of the GNU General Public License version 2 (the "GPL"),
10  * available at http://www.broadcom.com/licenses/GPLv2.php, with the
11  * following added to such license:
12  *
13  *      As a special exception, the copyright holders of this software give you
14  * permission to link this software with independent modules, and to copy and
15  * distribute the resulting executable under terms of your choice, provided that
16  * you also meet, for each linked independent module, the terms and conditions of
17  * the license of that module.  An independent module is a module which is not
18  * derived from this software.  The special exception does not apply to any
19  * modifications of the software.
20  *
21  *      Notwithstanding the above, under no circumstances may you combine this
22  * software in any way with any other Broadcom software provided under a license
23  * other than the GPL, without Broadcom's express prior written consent.
24  *
25  *
26  * <<Broadcom-WL-IPTag/Open:>>
27  *
28  * $Id: bcmspibrcm.c 700323 2017-05-18 16:12:11Z $
29  */
30 
31 #define HSMODE
32 
33 #include <typedefs.h>
34 
35 #include <bcmdevs.h>
36 #include <bcmendian.h>
37 #include <bcmutils.h>
38 #include <osl.h>
39 #include <hndsoc.h>
40 #include <siutils.h>
41 #include <sbchipc.h>
42 #include <sbsdio.h>	/* SDIO device core hardware definitions. */
43 #include <spid.h>
44 
45 #include <bcmsdbus.h>	/* bcmsdh to/from specific controller APIs */
46 #include <sdiovar.h>	/* ioctl/iovars */
47 #include <sdio.h>	/* SDIO Device and Protocol Specs */
48 
49 #include <pcicfg.h>
50 
51 #include <bcmspibrcm.h>
52 #ifdef BCMSPI_ANDROID
53 extern void spi_sendrecv(sdioh_info_t *sd, uint8 *msg_out, uint8 *msg_in, int msglen);
54 #else
55 #include <bcmspi.h>
56 #endif /* BCMSPI_ANDROID */
57 
58 /* these are for the older cores... for newer cores we have control for each of them */
59 #define F0_RESPONSE_DELAY	16
60 #define F1_RESPONSE_DELAY	16
61 #define F2_RESPONSE_DELAY	F0_RESPONSE_DELAY
62 
63 #define GSPI_F0_RESP_DELAY		0
64 #define GSPI_F1_RESP_DELAY		F1_RESPONSE_DELAY
65 #define GSPI_F2_RESP_DELAY		0
66 #define GSPI_F3_RESP_DELAY		0
67 
68 #define CMDLEN		4
69 
70 /* Globals */
71 #if defined(DHD_DEBUG)
72 uint sd_msglevel = SDH_ERROR_VAL;
73 #else
74 uint sd_msglevel = 0;
75 #endif // endif
76 
77 uint sd_hiok = FALSE;		/* Use hi-speed mode if available? */
78 uint sd_sdmode = SDIOH_MODE_SPI;		/* Use SD4 mode by default */
79 uint sd_f2_blocksize = 64;		/* Default blocksize */
80 
81 uint sd_divisor = 2;
82 uint sd_power = 1;		/* Default to SD Slot powered ON */
83 uint sd_clock = 1;		/* Default to SD Clock turned ON */
84 uint sd_crc = 0;		/* Default to SPI CRC Check turned OFF */
85 uint sd_pci_slot = 0xFFFFffff; /* Used to force selection of a particular PCI slot */
86 
87 uint8	spi_outbuf[SPI_MAX_PKT_LEN];
88 uint8	spi_inbuf[SPI_MAX_PKT_LEN];
89 
90 /* 128bytes buffer is enough to clear data-not-available and program response-delay F0 bits
91  * assuming we will not exceed F0 response delay > 100 bytes at 48MHz.
92  */
93 #define BUF2_PKT_LEN	128
94 uint8	spi_outbuf2[BUF2_PKT_LEN];
95 uint8	spi_inbuf2[BUF2_PKT_LEN];
96 #ifdef BCMSPI_ANDROID
97 uint *dhd_spi_lockcount = NULL;
98 #endif /* BCMSPI_ANDROID */
99 
100 #if !(defined(SPI_PIO_RW_BIGENDIAN) && defined(SPI_PIO_32BIT_RW))
101 #define SPISWAP_WD4(x) bcmswap32(x);
102 #define SPISWAP_WD2(x) (bcmswap16(x & 0xffff)) | \
103 						(bcmswap16((x & 0xffff0000) >> 16) << 16);
104 #else
105 #define SPISWAP_WD4(x) x;
106 #define SPISWAP_WD2(x) bcmswap32by16(x);
107 #endif // endif
108 
109 /* Prototypes */
110 static bool bcmspi_test_card(sdioh_info_t *sd);
111 static bool bcmspi_host_device_init_adapt(sdioh_info_t *sd);
112 static int bcmspi_set_highspeed_mode(sdioh_info_t *sd, bool hsmode);
113 static int bcmspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd_arg,
114                            uint32 *data, uint32 datalen);
115 static int bcmspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr,
116                               int regsize, uint32 *data);
117 static int bcmspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr,
118                                int regsize, uint32 data);
119 static int bcmspi_card_bytewrite(sdioh_info_t *sd, int func, uint32 regaddr,
120                                uint8 *data);
121 static int bcmspi_driver_init(sdioh_info_t *sd);
122 static int bcmspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo,
123                           uint32 addr, int nbytes, uint32 *data);
124 static int bcmspi_card_regread_fixedaddr(sdioh_info_t *sd, int func, uint32 regaddr, int regsize,
125                                  uint32 *data);
126 static void bcmspi_cmd_getdstatus(sdioh_info_t *sd, uint32 *dstatus_buffer);
127 static int bcmspi_update_stats(sdioh_info_t *sd, uint32 cmd_arg);
128 
129 /*
130  *  Public entry points & extern's
131  */
132 extern sdioh_info_t *
sdioh_attach(osl_t * osh,void * bar0,uint irq)133 sdioh_attach(osl_t *osh, void *bar0, uint irq)
134 {
135 	sdioh_info_t *sd;
136 
137 	sd_trace(("%s\n", __FUNCTION__));
138 	if ((sd = (sdioh_info_t *)MALLOC(osh, sizeof(sdioh_info_t))) == NULL) {
139 		sd_err(("%s: out of memory, malloced %d bytes\n", __FUNCTION__, MALLOCED(osh)));
140 		return NULL;
141 	}
142 	bzero((char *)sd, sizeof(sdioh_info_t));
143 	sd->osh = osh;
144 	if (spi_osinit(sd) != 0) {
145 		sd_err(("%s: spi_osinit() failed\n", __FUNCTION__));
146 		MFREE(sd->osh, sd, sizeof(sdioh_info_t));
147 		return NULL;
148 	}
149 
150 #ifndef BCMSPI_ANDROID
151 	sd->bar0 = bar0;
152 #endif /* !BCMSPI_ANDROID */
153 	sd->irq = irq;
154 #ifndef BCMSPI_ANDROID
155 	sd->intr_handler = NULL;
156 	sd->intr_handler_arg = NULL;
157 	sd->intr_handler_valid = FALSE;
158 #endif /* !BCMSPI_ANDROID */
159 
160 	/* Set defaults */
161 	sd->use_client_ints = TRUE;
162 	sd->sd_use_dma = FALSE;	/* DMA Not supported */
163 
164 	/* Spi device default is 16bit mode, change to 4 when device is changed to 32bit
165 	 * mode
166 	 */
167 	sd->wordlen = 2;
168 
169 #ifdef BCMSPI_ANDROID
170 	dhd_spi_lockcount = &sd->lockcount;
171 #endif /* BCMSPI_ANDROID */
172 
173 #ifndef BCMSPI_ANDROID
174 	if (!spi_hw_attach(sd)) {
175 		sd_err(("%s: spi_hw_attach() failed\n", __FUNCTION__));
176 		spi_osfree(sd);
177 		MFREE(sd->osh, sd, sizeof(sdioh_info_t));
178 		return (NULL);
179 	}
180 #endif /* !BCMSPI_ANDROID */
181 
182 	if (bcmspi_driver_init(sd) != SUCCESS) {
183 		sd_err(("%s: bcmspi_driver_init() failed()\n", __FUNCTION__));
184 #ifndef BCMSPI_ANDROID
185 		spi_hw_detach(sd);
186 #endif /* !BCMSPI_ANDROID */
187 		spi_osfree(sd);
188 		MFREE(sd->osh, sd, sizeof(sdioh_info_t));
189 		return (NULL);
190 	}
191 
192 	if (spi_register_irq(sd, irq) != SUCCESS) {
193 		sd_err(("%s: spi_register_irq() failed for irq = %d\n", __FUNCTION__, irq));
194 #ifndef BCMSPI_ANDROID
195 		spi_hw_detach(sd);
196 #endif /* !BCMSPI_ANDROID */
197 		spi_osfree(sd);
198 		MFREE(sd->osh, sd, sizeof(sdioh_info_t));
199 		return (NULL);
200 	}
201 
202 	sd_trace(("%s: Done\n", __FUNCTION__));
203 
204 	return sd;
205 }
206 
207 extern SDIOH_API_RC
sdioh_detach(osl_t * osh,sdioh_info_t * sd)208 sdioh_detach(osl_t *osh, sdioh_info_t *sd)
209 {
210 	sd_trace(("%s\n", __FUNCTION__));
211 	if (sd) {
212 		sd_err(("%s: detaching from hardware\n", __FUNCTION__));
213 		spi_free_irq(sd->irq, sd);
214 #ifndef BCMSPI_ANDROID
215 		spi_hw_detach(sd);
216 #endif /* !BCMSPI_ANDROID */
217 		spi_osfree(sd);
218 #ifdef BCMSPI_ANDROID
219 		dhd_spi_lockcount = NULL;
220 #endif /* !BCMSPI_ANDROID */
221 		MFREE(sd->osh, sd, sizeof(sdioh_info_t));
222 	}
223 	return SDIOH_API_RC_SUCCESS;
224 }
225 
226 /* Configure callback to client when we recieve client interrupt */
227 extern SDIOH_API_RC
sdioh_interrupt_register(sdioh_info_t * sd,sdioh_cb_fn_t fn,void * argh)228 sdioh_interrupt_register(sdioh_info_t *sd, sdioh_cb_fn_t fn, void *argh)
229 {
230 	sd_trace(("%s: Entering\n", __FUNCTION__));
231 #if !defined(OOB_INTR_ONLY)
232 	sd->intr_handler = fn;
233 	sd->intr_handler_arg = argh;
234 	sd->intr_handler_valid = TRUE;
235 #endif /* !defined(OOB_INTR_ONLY) */
236 	return SDIOH_API_RC_SUCCESS;
237 }
238 
239 extern SDIOH_API_RC
sdioh_interrupt_deregister(sdioh_info_t * sd)240 sdioh_interrupt_deregister(sdioh_info_t *sd)
241 {
242 	sd_trace(("%s: Entering\n", __FUNCTION__));
243 #if !defined(OOB_INTR_ONLY)
244 	sd->intr_handler_valid = FALSE;
245 	sd->intr_handler = NULL;
246 	sd->intr_handler_arg = NULL;
247 #endif /* !defined(OOB_INTR_ONLY) */
248 	return SDIOH_API_RC_SUCCESS;
249 }
250 
251 extern SDIOH_API_RC
sdioh_interrupt_query(sdioh_info_t * sd,bool * onoff)252 sdioh_interrupt_query(sdioh_info_t *sd, bool *onoff)
253 {
254 #ifndef BCMSPI_ANDROID
255 	sd_trace(("%s: Entering\n", __FUNCTION__));
256 	*onoff = sd->client_intr_enabled;
257 #endif /* !BCMSPI_ANDROID */
258 	return SDIOH_API_RC_SUCCESS;
259 }
260 
261 #if defined(DHD_DEBUG)
262 extern bool
sdioh_interrupt_pending(sdioh_info_t * sd)263 sdioh_interrupt_pending(sdioh_info_t *sd)
264 {
265 	return 0;
266 }
267 #endif // endif
268 
269 /* Provide dstatus bits of spi-transaction for dhd layers. */
270 extern uint32
sdioh_get_dstatus(sdioh_info_t * sd)271 sdioh_get_dstatus(sdioh_info_t *sd)
272 {
273 	return sd->card_dstatus;
274 }
275 
276 extern void
sdioh_chipinfo(sdioh_info_t * sd,uint32 chip,uint32 chiprev)277 sdioh_chipinfo(sdioh_info_t *sd, uint32 chip, uint32 chiprev)
278 {
279 	sd->chip = chip;
280 	sd->chiprev = chiprev;
281 }
282 
283 extern void
sdioh_dwordmode(sdioh_info_t * sd,bool set)284 sdioh_dwordmode(sdioh_info_t *sd, bool set)
285 {
286 	uint8 reg = 0;
287 	int status;
288 
289 	if ((status = sdioh_request_byte(sd, SDIOH_READ, SPI_FUNC_0, SPID_STATUS_ENABLE, &reg)) !=
290 	     SUCCESS) {
291 		sd_err(("%s: Failed to set dwordmode in gSPI\n", __FUNCTION__));
292 		return;
293 	}
294 
295 	if (set) {
296 		reg |= DWORD_PKT_LEN_EN;
297 		sd->dwordmode = TRUE;
298 		sd->client_block_size[SPI_FUNC_2] = 4096; /* h2spi's limit is 4KB, we support 8KB */
299 	} else {
300 		reg &= ~DWORD_PKT_LEN_EN;
301 		sd->dwordmode = FALSE;
302 		sd->client_block_size[SPI_FUNC_2] = 2048;
303 	}
304 
305 	if ((status = sdioh_request_byte(sd, SDIOH_WRITE, SPI_FUNC_0, SPID_STATUS_ENABLE, &reg)) !=
306 	     SUCCESS) {
307 		sd_err(("%s: Failed to set dwordmode in gSPI\n", __FUNCTION__));
308 		return;
309 	}
310 }
311 
312 uint
sdioh_query_iofnum(sdioh_info_t * sd)313 sdioh_query_iofnum(sdioh_info_t *sd)
314 {
315 	return sd->num_funcs;
316 }
317 
318 /* IOVar table */
319 enum {
320 	IOV_MSGLEVEL = 1,
321 	IOV_BLOCKMODE,
322 	IOV_BLOCKSIZE,
323 	IOV_DMA,
324 	IOV_USEINTS,
325 	IOV_NUMINTS,
326 	IOV_NUMLOCALINTS,
327 	IOV_HOSTREG,
328 	IOV_DEVREG,
329 	IOV_DIVISOR,
330 	IOV_SDMODE,
331 	IOV_HISPEED,
332 	IOV_HCIREGS,
333 	IOV_POWER,
334 	IOV_CLOCK,
335 	IOV_SPIERRSTATS,
336 	IOV_RESP_DELAY_ALL
337 };
338 
339 const bcm_iovar_t sdioh_iovars[] = {
340 	{"sd_msglevel",	IOV_MSGLEVEL, 	0,	IOVT_UINT32,	0 },
341 	{"sd_blocksize", IOV_BLOCKSIZE, 0,	IOVT_UINT32,	0 }, /* ((fn << 16) | size) */
342 	{"sd_dma",	IOV_DMA,	0,	IOVT_BOOL,	0 },
343 	{"sd_ints",	IOV_USEINTS,	0,	IOVT_BOOL,	0 },
344 	{"sd_numints",	IOV_NUMINTS,	0,	IOVT_UINT32,	0 },
345 	{"sd_numlocalints", IOV_NUMLOCALINTS, 0, IOVT_UINT32,	0 },
346 	{"sd_hostreg",	IOV_HOSTREG,	0,	IOVT_BUFFER,	sizeof(sdreg_t) },
347 	{"sd_devreg",	IOV_DEVREG,	0,	IOVT_BUFFER,	sizeof(sdreg_t)	},
348 	{"sd_divisor",	IOV_DIVISOR,	0,	IOVT_UINT32,	0 },
349 	{"sd_power",	IOV_POWER,	0,	IOVT_UINT32,	0 },
350 	{"sd_clock",	IOV_CLOCK,	0,	IOVT_UINT32,	0 },
351 	{"sd_mode",	IOV_SDMODE,	0,	IOVT_UINT32,	100},
352 	{"sd_highspeed",	IOV_HISPEED,	0,	IOVT_UINT32,	0},
353 	{"spi_errstats", IOV_SPIERRSTATS, 0, IOVT_BUFFER, sizeof(struct spierrstats_t) },
354 	{"spi_respdelay",	IOV_RESP_DELAY_ALL,	0,	IOVT_BOOL,	0 },
355 	{NULL, 0, 0, 0, 0 }
356 };
357 
358 int
sdioh_iovar_op(sdioh_info_t * si,const char * name,void * params,int plen,void * arg,int len,bool set)359 sdioh_iovar_op(sdioh_info_t *si, const char *name,
360                void *params, int plen, void *arg, int len, bool set)
361 {
362 	const bcm_iovar_t *vi = NULL;
363 	int bcmerror = 0;
364 	int val_size;
365 	int32 int_val = 0;
366 	bool bool_val;
367 	uint32 actionid;
368 /*
369 	sdioh_regs_t *regs;
370 */
371 
372 	ASSERT(name);
373 	ASSERT(len >= 0);
374 
375 	/* Get must have return space; Set does not take qualifiers */
376 	ASSERT(set || (arg && len));
377 	ASSERT(!set || (!params && !plen));
378 
379 	sd_trace(("%s: Enter (%s %s)\n", __FUNCTION__, (set ? "set" : "get"), name));
380 
381 	if ((vi = bcm_iovar_lookup(sdioh_iovars, name)) == NULL) {
382 		bcmerror = BCME_UNSUPPORTED;
383 		goto exit;
384 	}
385 
386 	if ((bcmerror = bcm_iovar_lencheck(vi, arg, len, set)) != 0)
387 		goto exit;
388 
389 	/* Set up params so get and set can share the convenience variables */
390 	if (params == NULL) {
391 		params = arg;
392 		plen = len;
393 	}
394 
395 	if (vi->type == IOVT_VOID)
396 		val_size = 0;
397 	else if (vi->type == IOVT_BUFFER)
398 		val_size = len;
399 	else
400 		val_size = sizeof(int);
401 
402 	if (plen >= (int)sizeof(int_val))
403 		bcopy(params, &int_val, sizeof(int_val));
404 
405 	bool_val = (int_val != 0) ? TRUE : FALSE;
406 
407 	actionid = set ? IOV_SVAL(vi->varid) : IOV_GVAL(vi->varid);
408 	switch (actionid) {
409 	case IOV_GVAL(IOV_MSGLEVEL):
410 		int_val = (int32)sd_msglevel;
411 		bcopy(&int_val, arg, val_size);
412 		break;
413 
414 	case IOV_SVAL(IOV_MSGLEVEL):
415 		sd_msglevel = int_val;
416 		break;
417 
418 	case IOV_GVAL(IOV_BLOCKSIZE):
419 		if ((uint32)int_val > si->num_funcs) {
420 			bcmerror = BCME_BADARG;
421 			break;
422 		}
423 		int_val = (int32)si->client_block_size[int_val];
424 		bcopy(&int_val, arg, val_size);
425 		break;
426 
427 	case IOV_GVAL(IOV_DMA):
428 		int_val = (int32)si->sd_use_dma;
429 		bcopy(&int_val, arg, val_size);
430 		break;
431 
432 	case IOV_SVAL(IOV_DMA):
433 		si->sd_use_dma = (bool)int_val;
434 		break;
435 
436 	case IOV_GVAL(IOV_USEINTS):
437 		int_val = (int32)si->use_client_ints;
438 		bcopy(&int_val, arg, val_size);
439 		break;
440 
441 	case IOV_SVAL(IOV_USEINTS):
442 		break;
443 
444 	case IOV_GVAL(IOV_DIVISOR):
445 		int_val = (uint32)sd_divisor;
446 		bcopy(&int_val, arg, val_size);
447 		break;
448 
449 #ifndef BCMSPI_ANDROID
450 	case IOV_SVAL(IOV_DIVISOR):
451 		sd_divisor = int_val;
452 		if (!spi_start_clock(si, (uint16)sd_divisor)) {
453 			sd_err(("%s: set clock failed\n", __FUNCTION__));
454 			bcmerror = BCME_ERROR;
455 		}
456 		break;
457 #endif /* !BCMSPI_ANDROID */
458 
459 	case IOV_GVAL(IOV_POWER):
460 		int_val = (uint32)sd_power;
461 		bcopy(&int_val, arg, val_size);
462 		break;
463 
464 	case IOV_SVAL(IOV_POWER):
465 		sd_power = int_val;
466 		break;
467 
468 	case IOV_GVAL(IOV_CLOCK):
469 		int_val = (uint32)sd_clock;
470 		bcopy(&int_val, arg, val_size);
471 		break;
472 
473 	case IOV_SVAL(IOV_CLOCK):
474 		sd_clock = int_val;
475 		break;
476 
477 	case IOV_GVAL(IOV_SDMODE):
478 		int_val = (uint32)sd_sdmode;
479 		bcopy(&int_val, arg, val_size);
480 		break;
481 
482 	case IOV_SVAL(IOV_SDMODE):
483 		sd_sdmode = int_val;
484 		break;
485 
486 	case IOV_GVAL(IOV_HISPEED):
487 		int_val = (uint32)sd_hiok;
488 		bcopy(&int_val, arg, val_size);
489 		break;
490 
491 	case IOV_SVAL(IOV_HISPEED):
492 		sd_hiok = int_val;
493 
494 		if (!bcmspi_set_highspeed_mode(si, (bool)sd_hiok)) {
495 			sd_err(("%s: Failed changing highspeed mode to %d.\n",
496 			        __FUNCTION__, sd_hiok));
497 			bcmerror = BCME_ERROR;
498 			return ERROR;
499 		}
500 		break;
501 
502 	case IOV_GVAL(IOV_NUMINTS):
503 		int_val = (int32)si->intrcount;
504 		bcopy(&int_val, arg, val_size);
505 		break;
506 
507 	case IOV_GVAL(IOV_NUMLOCALINTS):
508 		int_val = (int32)si->local_intrcount;
509 		bcopy(&int_val, arg, val_size);
510 		break;
511 	case IOV_GVAL(IOV_DEVREG):
512 	{
513 		sdreg_t *sd_ptr = (sdreg_t *)params;
514 		uint8 data;
515 
516 		if (sdioh_cfg_read(si, sd_ptr->func, sd_ptr->offset, &data)) {
517 			bcmerror = BCME_SDIO_ERROR;
518 			break;
519 		}
520 
521 		int_val = (int)data;
522 		bcopy(&int_val, arg, sizeof(int_val));
523 		break;
524 	}
525 
526 	case IOV_SVAL(IOV_DEVREG):
527 	{
528 		sdreg_t *sd_ptr = (sdreg_t *)params;
529 		uint8 data = (uint8)sd_ptr->value;
530 
531 		if (sdioh_cfg_write(si, sd_ptr->func, sd_ptr->offset, &data)) {
532 			bcmerror = BCME_SDIO_ERROR;
533 			break;
534 		}
535 		break;
536 	}
537 
538 	case IOV_GVAL(IOV_SPIERRSTATS):
539 	{
540 		bcopy(&si->spierrstats, arg, sizeof(struct spierrstats_t));
541 		break;
542 	}
543 
544 	case IOV_SVAL(IOV_SPIERRSTATS):
545 	{
546 		bzero(&si->spierrstats, sizeof(struct spierrstats_t));
547 		break;
548 	}
549 
550 	case IOV_GVAL(IOV_RESP_DELAY_ALL):
551 		int_val = (int32)si->resp_delay_all;
552 		bcopy(&int_val, arg, val_size);
553 		break;
554 
555 	case IOV_SVAL(IOV_RESP_DELAY_ALL):
556 		si->resp_delay_all = (bool)int_val;
557 		int_val = STATUS_ENABLE|INTR_WITH_STATUS;
558 		if (si->resp_delay_all)
559 			int_val |= RESP_DELAY_ALL;
560 		else {
561 			if (bcmspi_card_regwrite(si, SPI_FUNC_0, SPID_RESPONSE_DELAY, 1,
562 			     F1_RESPONSE_DELAY) != SUCCESS) {
563 				sd_err(("%s: Unable to set response delay.\n", __FUNCTION__));
564 				bcmerror = BCME_SDIO_ERROR;
565 				break;
566 			}
567 		}
568 
569 		if (bcmspi_card_regwrite(si, SPI_FUNC_0, SPID_STATUS_ENABLE, 1, int_val)
570 		     != SUCCESS) {
571 			sd_err(("%s: Unable to set response delay.\n", __FUNCTION__));
572 			bcmerror = BCME_SDIO_ERROR;
573 			break;
574 		}
575 		break;
576 
577 	default:
578 		bcmerror = BCME_UNSUPPORTED;
579 		break;
580 	}
581 exit:
582 
583 	return bcmerror;
584 }
585 
586 extern SDIOH_API_RC
sdioh_cfg_read(sdioh_info_t * sd,uint fnc_num,uint32 addr,uint8 * data)587 sdioh_cfg_read(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data)
588 {
589 	SDIOH_API_RC status;
590 	/* No lock needed since sdioh_request_byte does locking */
591 	status = sdioh_request_byte(sd, SDIOH_READ, fnc_num, addr, data);
592 	return status;
593 }
594 
595 extern SDIOH_API_RC
sdioh_cfg_write(sdioh_info_t * sd,uint fnc_num,uint32 addr,uint8 * data)596 sdioh_cfg_write(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data)
597 {
598 	/* No lock needed since sdioh_request_byte does locking */
599 	SDIOH_API_RC status;
600 
601 	if ((fnc_num == SPI_FUNC_1) && (addr == SBSDIO_FUNC1_FRAMECTRL)) {
602 		uint8 dummy_data;
603 		status = sdioh_cfg_read(sd, fnc_num, addr, &dummy_data);
604 		if (status) {
605 			sd_err(("sdioh_cfg_read() failed.\n"));
606 			return status;
607 		}
608 	}
609 
610 	status = sdioh_request_byte(sd, SDIOH_WRITE, fnc_num, addr, data);
611 	return status;
612 }
613 
614 extern SDIOH_API_RC
sdioh_cis_read(sdioh_info_t * sd,uint func,uint8 * cisd,uint32 length)615 sdioh_cis_read(sdioh_info_t *sd, uint func, uint8 *cisd, uint32 length)
616 {
617 	uint32 count;
618 	int offset;
619 	uint32 cis_byte;
620 	uint16 *cis = (uint16 *)cisd;
621 	uint bar0 = SI_ENUM_BASE(sd->sih);
622 	int status;
623 	uint8 data;
624 
625 	sd_trace(("%s: Func %d\n", __FUNCTION__, func));
626 
627 	spi_lock(sd);
628 
629 	/* Set sb window address to 0x18000000 */
630 	data = (bar0 >> 8) & SBSDIO_SBADDRLOW_MASK;
631 	status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRLOW, &data);
632 	if (status == SUCCESS) {
633 		data = (bar0 >> 16) & SBSDIO_SBADDRMID_MASK;
634 		status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRMID, &data);
635 	} else {
636 		sd_err(("%s: Unable to set sb-addr-windows\n", __FUNCTION__));
637 		spi_unlock(sd);
638 		return (BCME_ERROR);
639 	}
640 	if (status == SUCCESS) {
641 		data = (bar0 >> 24) & SBSDIO_SBADDRHIGH_MASK;
642 		status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRHIGH, &data);
643 	} else {
644 		sd_err(("%s: Unable to set sb-addr-windows\n", __FUNCTION__));
645 		spi_unlock(sd);
646 		return (BCME_ERROR);
647 	}
648 
649 	offset =  CC_SROM_OTP; /* OTP offset in chipcommon. */
650 	for (count = 0; count < length/2; count++) {
651 		if (bcmspi_card_regread (sd, SDIO_FUNC_1, offset, 2, &cis_byte) < 0) {
652 			sd_err(("%s: regread failed: Can't read CIS\n", __FUNCTION__));
653 			spi_unlock(sd);
654 			return (BCME_ERROR);
655 		}
656 
657 		*cis = (uint16)cis_byte;
658 		cis++;
659 		offset += 2;
660 	}
661 
662 	spi_unlock(sd);
663 
664 	return (BCME_OK);
665 }
666 
667 extern SDIOH_API_RC
sdioh_request_byte(sdioh_info_t * sd,uint rw,uint func,uint regaddr,uint8 * byte)668 sdioh_request_byte(sdioh_info_t *sd, uint rw, uint func, uint regaddr, uint8 *byte)
669 {
670 	int status;
671 	uint32 cmd_arg;
672 	uint32 dstatus;
673 	uint32 data = (uint32)(*byte);
674 
675 	spi_lock(sd);
676 
677 	cmd_arg = 0;
678 	cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
679 	cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);	/* Incremental access */
680 	cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
681 	cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, rw == SDIOH_READ ? 0 : 1);
682 	cmd_arg = SFIELD(cmd_arg, SPI_LEN, 1);
683 
684 	if (rw == SDIOH_READ) {
685 		sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x\n",
686 		          __FUNCTION__, cmd_arg, func, regaddr));
687 	} else {
688 		sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x data=0x%x\n",
689 		          __FUNCTION__, cmd_arg, func, regaddr, data));
690 	}
691 
692 	if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, 1)) != SUCCESS) {
693 		spi_unlock(sd);
694 		return status;
695 	}
696 
697 	if (rw == SDIOH_READ) {
698 		*byte = (uint8)data;
699 		sd_trace(("%s: RD result=0x%x\n", __FUNCTION__, *byte));
700 	}
701 
702 	bcmspi_cmd_getdstatus(sd, &dstatus);
703 	if (dstatus)
704 		sd_trace(("dstatus=0x%x\n", dstatus));
705 
706 	spi_unlock(sd);
707 	return SDIOH_API_RC_SUCCESS;
708 }
709 
710 extern SDIOH_API_RC
sdioh_request_word(sdioh_info_t * sd,uint cmd_type,uint rw,uint func,uint addr,uint32 * word,uint nbytes)711 sdioh_request_word(sdioh_info_t *sd, uint cmd_type, uint rw, uint func, uint addr,
712                    uint32 *word, uint nbytes)
713 {
714 	int status;
715 
716 	spi_lock(sd);
717 
718 	if (rw == SDIOH_READ)
719 		status = bcmspi_card_regread(sd, func, addr, nbytes, word);
720 	else
721 		status = bcmspi_card_regwrite(sd, func, addr, nbytes, *word);
722 
723 	spi_unlock(sd);
724 	return (status == SUCCESS ?  SDIOH_API_RC_SUCCESS : SDIOH_API_RC_FAIL);
725 }
726 
727 extern SDIOH_API_RC
sdioh_request_buffer(sdioh_info_t * sd,uint pio_dma,uint fix_inc,uint rw,uint func,uint addr,uint reg_width,uint buflen_u,uint8 * buffer,void * pkt)728 sdioh_request_buffer(sdioh_info_t *sd, uint pio_dma, uint fix_inc, uint rw, uint func,
729                      uint addr, uint reg_width, uint buflen_u, uint8 *buffer, void *pkt)
730 {
731 	int len;
732 	int buflen = (int)buflen_u;
733 	bool fifo = (fix_inc == SDIOH_DATA_FIX);
734 
735 	spi_lock(sd);
736 
737 	ASSERT(reg_width == 4);
738 	ASSERT(buflen_u < (1 << 30));
739 	ASSERT(sd->client_block_size[func]);
740 
741 	sd_data(("%s: %c len %d r_cnt %d t_cnt %d, pkt @0x%p\n",
742 	         __FUNCTION__, rw == SDIOH_READ ? 'R' : 'W',
743 	         buflen_u, sd->r_cnt, sd->t_cnt, pkt));
744 
745 	/* Break buffer down into blocksize chunks. */
746 	while (buflen > 0) {
747 		len = MIN(sd->client_block_size[func], buflen);
748 		if (bcmspi_card_buf(sd, rw, func, fifo, addr, len, (uint32 *)buffer) != SUCCESS) {
749 			sd_err(("%s: bcmspi_card_buf %s failed\n",
750 				__FUNCTION__, rw == SDIOH_READ ? "Read" : "Write"));
751 			spi_unlock(sd);
752 			return SDIOH_API_RC_FAIL;
753 		}
754 		buffer += len;
755 		buflen -= len;
756 		if (!fifo)
757 			addr += len;
758 	}
759 	spi_unlock(sd);
760 	return SDIOH_API_RC_SUCCESS;
761 }
762 
763 /* This function allows write to gspi bus when another rd/wr function is deep down the call stack.
764  * Its main aim is to have simpler spi writes rather than recursive writes.
765  * e.g. When there is a need to program response delay on the fly after detecting the SPI-func
766  * this call will allow to program the response delay.
767  */
768 static int
bcmspi_card_byterewrite(sdioh_info_t * sd,int func,uint32 regaddr,uint8 byte)769 bcmspi_card_byterewrite(sdioh_info_t *sd, int func, uint32 regaddr, uint8 byte)
770 {
771 	uint32 cmd_arg;
772 	uint32 datalen = 1;
773 	uint32 hostlen;
774 
775 	cmd_arg = 0;
776 
777 	cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1);
778 	cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);	/* Incremental access */
779 	cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
780 	cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
781 	cmd_arg = SFIELD(cmd_arg, SPI_LEN, datalen);
782 
783 	sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg));
784 
785 	/* Set up and issue the SPI command.  MSByte goes out on bus first.  Increase datalen
786 	 * according to the wordlen mode(16/32bit) the device is in.
787 	 */
788 	ASSERT(sd->wordlen == 4 || sd->wordlen == 2);
789 	datalen = ROUNDUP(datalen, sd->wordlen);
790 
791 	/* Start by copying command in the spi-outbuffer */
792 	if (sd->wordlen == 4) { /* 32bit spid */
793 		*(uint32 *)spi_outbuf2 = SPISWAP_WD4(cmd_arg);
794 		if (datalen & 0x3)
795 			datalen += (4 - (datalen & 0x3));
796 	} else if (sd->wordlen == 2) { /* 16bit spid */
797 		*(uint32 *)spi_outbuf2 = SPISWAP_WD2(cmd_arg);
798 		if (datalen & 0x1)
799 			datalen++;
800 	} else {
801 		sd_err(("%s: Host is %d bit spid, could not create SPI command.\n",
802 		        __FUNCTION__, 8 * sd->wordlen));
803 		return ERROR;
804 	}
805 
806 	/* for Write, put the data into the output buffer  */
807 	if (datalen != 0) {
808 			if (sd->wordlen == 4) { /* 32bit spid */
809 				*(uint32 *)&spi_outbuf2[CMDLEN] = SPISWAP_WD4(byte);
810 			} else if (sd->wordlen == 2) { /* 16bit spid */
811 				*(uint32 *)&spi_outbuf2[CMDLEN] = SPISWAP_WD2(byte);
812 			}
813 	}
814 
815 	/* +4 for cmd, +4 for dstatus */
816 	hostlen = datalen + 8;
817 	hostlen += (4 - (hostlen & 0x3));
818 	spi_sendrecv(sd, spi_outbuf2, spi_inbuf2, hostlen);
819 
820 	/* Last 4bytes are dstatus.  Device is configured to return status bits. */
821 	if (sd->wordlen == 4) { /* 32bit spid */
822 		sd->card_dstatus = SPISWAP_WD4(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]);
823 	} else if (sd->wordlen == 2) { /* 16bit spid */
824 		sd->card_dstatus = SPISWAP_WD2(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]);
825 	} else {
826 		sd_err(("%s: Host is %d bit machine, could not read SPI dstatus.\n",
827 		        __FUNCTION__, 8 * sd->wordlen));
828 		return ERROR;
829 	}
830 
831 	if (sd->card_dstatus)
832 		sd_trace(("dstatus after byte rewrite = 0x%x\n", sd->card_dstatus));
833 
834 	return (BCME_OK);
835 }
836 
837 /* Program the response delay corresponding to the spi function */
838 static int
bcmspi_prog_resp_delay(sdioh_info_t * sd,int func,uint8 resp_delay)839 bcmspi_prog_resp_delay(sdioh_info_t *sd, int func, uint8 resp_delay)
840 {
841 	if (sd->resp_delay_all == FALSE)
842 		return (BCME_OK);
843 
844 	if (sd->prev_fun == func)
845 		return (BCME_OK);
846 
847 	if (F0_RESPONSE_DELAY == F1_RESPONSE_DELAY)
848 		return (BCME_OK);
849 
850 	bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_RESPONSE_DELAY, resp_delay);
851 
852 	/* Remember function for which to avoid reprogramming resp-delay in next iteration */
853 	sd->prev_fun = func;
854 
855 	return (BCME_OK);
856 
857 }
858 
859 #define GSPI_RESYNC_PATTERN	0x0
860 
861 /* A resync pattern is a 32bit MOSI line with all zeros. Its a special command in gSPI.
862  * It resets the spi-bkplane logic so that all F1 related ping-pong buffer logic is
863  * synchronised and all queued resuests are cancelled.
864  */
865 static int
bcmspi_resync_f1(sdioh_info_t * sd)866 bcmspi_resync_f1(sdioh_info_t *sd)
867 {
868 	uint32 cmd_arg = GSPI_RESYNC_PATTERN, data = 0, datalen = 0;
869 
870 	/* Set up and issue the SPI command.  MSByte goes out on bus first.  Increase datalen
871 	 * according to the wordlen mode(16/32bit) the device is in.
872 	 */
873 	ASSERT(sd->wordlen == 4 || sd->wordlen == 2);
874 	datalen = ROUNDUP(datalen, sd->wordlen);
875 
876 	/* Start by copying command in the spi-outbuffer */
877 	*(uint32 *)spi_outbuf2 = cmd_arg;
878 
879 	/* for Write, put the data into the output buffer  */
880 	*(uint32 *)&spi_outbuf2[CMDLEN] = data;
881 
882 	/* +4 for cmd, +4 for dstatus */
883 	spi_sendrecv(sd, spi_outbuf2, spi_inbuf2, datalen + 8);
884 
885 	/* Last 4bytes are dstatus.  Device is configured to return status bits. */
886 	if (sd->wordlen == 4) { /* 32bit spid */
887 		sd->card_dstatus = SPISWAP_WD4(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]);
888 	} else if (sd->wordlen == 2) { /* 16bit spid */
889 		sd->card_dstatus = SPISWAP_WD2(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]);
890 	} else {
891 		sd_err(("%s: Host is %d bit machine, could not read SPI dstatus.\n",
892 		        __FUNCTION__, 8 * sd->wordlen));
893 		return ERROR;
894 	}
895 
896 	if (sd->card_dstatus)
897 		sd_trace(("dstatus after resync pattern write = 0x%x\n", sd->card_dstatus));
898 
899 	return (BCME_OK);
900 }
901 
902 uint32 dstatus_count = 0;
903 
904 static int
bcmspi_update_stats(sdioh_info_t * sd,uint32 cmd_arg)905 bcmspi_update_stats(sdioh_info_t *sd, uint32 cmd_arg)
906 {
907 	uint32 dstatus = sd->card_dstatus;
908 	struct spierrstats_t *spierrstats = &sd->spierrstats;
909 	int err = SUCCESS;
910 
911 	sd_trace(("cmd = 0x%x, dstatus = 0x%x\n", cmd_arg, dstatus));
912 
913 	/* Store dstatus of last few gSPI transactions */
914 	spierrstats->dstatus[dstatus_count % NUM_PREV_TRANSACTIONS] = dstatus;
915 	spierrstats->spicmd[dstatus_count % NUM_PREV_TRANSACTIONS] = cmd_arg;
916 	dstatus_count++;
917 
918 	if (sd->card_init_done == FALSE)
919 		return err;
920 
921 	if (dstatus & STATUS_DATA_NOT_AVAILABLE) {
922 		spierrstats->dna++;
923 		sd_trace(("Read data not available on F1 addr = 0x%x\n",
924 		        GFIELD(cmd_arg, SPI_REG_ADDR)));
925 		/* Clear dna bit */
926 		bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_INTR_REG, DATA_UNAVAILABLE);
927 	}
928 
929 	if (dstatus & STATUS_UNDERFLOW) {
930 		spierrstats->rdunderflow++;
931 		sd_err(("FIFO underflow happened due to current F2 read command.\n"));
932 	}
933 
934 	if (dstatus & STATUS_OVERFLOW) {
935 		spierrstats->wroverflow++;
936 		sd_err(("FIFO overflow happened due to current (F1/F2) write command.\n"));
937 		bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_INTR_REG, F1_OVERFLOW);
938 		bcmspi_resync_f1(sd);
939 		sd_err(("Recovering from F1 FIFO overflow.\n"));
940 	}
941 
942 	if (dstatus & STATUS_F2_INTR) {
943 		spierrstats->f2interrupt++;
944 		sd_trace(("Interrupt from F2.  SW should clear corresponding IntStatus bits\n"));
945 	}
946 
947 	if (dstatus & STATUS_F3_INTR) {
948 		spierrstats->f3interrupt++;
949 		sd_err(("Interrupt from F3.  SW should clear corresponding IntStatus bits\n"));
950 	}
951 
952 	if (dstatus & STATUS_HOST_CMD_DATA_ERR) {
953 		spierrstats->hostcmddataerr++;
954 		sd_err(("Error in CMD or Host data, detected by CRC/Checksum (optional)\n"));
955 	}
956 
957 	if (dstatus & STATUS_F2_PKT_AVAILABLE) {
958 		spierrstats->f2pktavailable++;
959 		sd_trace(("Packet is available/ready in F2 TX FIFO\n"));
960 		sd_trace(("Packet length = %d\n", sd->dwordmode ?
961 		         ((dstatus & STATUS_F2_PKT_LEN_MASK) >> (STATUS_F2_PKT_LEN_SHIFT - 2)) :
962 		         ((dstatus & STATUS_F2_PKT_LEN_MASK) >> STATUS_F2_PKT_LEN_SHIFT)));
963 	}
964 
965 	if (dstatus & STATUS_F3_PKT_AVAILABLE) {
966 		spierrstats->f3pktavailable++;
967 		sd_err(("Packet is available/ready in F3 TX FIFO\n"));
968 		sd_err(("Packet length = %d\n",
969 		        (dstatus & STATUS_F3_PKT_LEN_MASK) >> STATUS_F3_PKT_LEN_SHIFT));
970 	}
971 
972 	return err;
973 }
974 
975 extern int
sdioh_abort(sdioh_info_t * sd,uint func)976 sdioh_abort(sdioh_info_t *sd, uint func)
977 {
978 	return 0;
979 }
980 
981 int
sdioh_start(sdioh_info_t * sd,int stage)982 sdioh_start(sdioh_info_t *sd, int stage)
983 {
984 	return SUCCESS;
985 }
986 
987 int
sdioh_stop(sdioh_info_t * sd)988 sdioh_stop(sdioh_info_t *sd)
989 {
990 	return SUCCESS;
991 }
992 
993 int
sdioh_waitlockfree(sdioh_info_t * sd)994 sdioh_waitlockfree(sdioh_info_t *sd)
995 {
996 	return SUCCESS;
997 }
998 
999 /*
1000  * Private/Static work routines
1001  */
1002 static int
bcmspi_host_init(sdioh_info_t * sd)1003 bcmspi_host_init(sdioh_info_t *sd)
1004 {
1005 
1006 	/* Default power on mode */
1007 	sd->sd_mode = SDIOH_MODE_SPI;
1008 	sd->polled_mode = TRUE;
1009 	sd->host_init_done = TRUE;
1010 	sd->card_init_done = FALSE;
1011 	sd->adapter_slot = 1;
1012 
1013 	return (SUCCESS);
1014 }
1015 
1016 static int
get_client_blocksize(sdioh_info_t * sd)1017 get_client_blocksize(sdioh_info_t *sd)
1018 {
1019 	uint32 regdata[2];
1020 	int status;
1021 
1022 	/* Find F1/F2/F3 max packet size */
1023 	if ((status = bcmspi_card_regread(sd, 0, SPID_F1_INFO_REG,
1024 	                                 8, regdata)) != SUCCESS) {
1025 		return status;
1026 	}
1027 
1028 	sd_trace(("pkt_size regdata[0] = 0x%x, regdata[1] = 0x%x\n",
1029 	        regdata[0], regdata[1]));
1030 
1031 	sd->client_block_size[1] = (regdata[0] & F1_MAX_PKT_SIZE) >> 2;
1032 	sd_trace(("Func1 blocksize = %d\n", sd->client_block_size[1]));
1033 	ASSERT(sd->client_block_size[1] == BLOCK_SIZE_F1);
1034 
1035 	sd->client_block_size[2] = ((regdata[0] >> 16) & F2_MAX_PKT_SIZE) >> 2;
1036 	sd_trace(("Func2 blocksize = %d\n", sd->client_block_size[2]));
1037 	ASSERT(sd->client_block_size[2] == BLOCK_SIZE_F2);
1038 
1039 	sd->client_block_size[3] = (regdata[1] & F3_MAX_PKT_SIZE) >> 2;
1040 	sd_trace(("Func3 blocksize = %d\n", sd->client_block_size[3]));
1041 	ASSERT(sd->client_block_size[3] == BLOCK_SIZE_F3);
1042 
1043 	return 0;
1044 }
1045 
1046 static int
bcmspi_client_init(sdioh_info_t * sd)1047 bcmspi_client_init(sdioh_info_t *sd)
1048 {
1049 	uint32	status_en_reg = 0;
1050 	sd_trace(("%s: Powering up slot %d\n", __FUNCTION__, sd->adapter_slot));
1051 
1052 #ifndef BCMSPI_ANDROID
1053 #ifdef HSMODE
1054 	if (!spi_start_clock(sd, (uint16)sd_divisor)) {
1055 		sd_err(("spi_start_clock failed\n"));
1056 		return ERROR;
1057 	}
1058 #else
1059 	/* Start at ~400KHz clock rate for initialization */
1060 	if (!spi_start_clock(sd, 128)) {
1061 		sd_err(("spi_start_clock failed\n"));
1062 		return ERROR;
1063 	}
1064 #endif /* HSMODE */
1065 #endif /* !BCMSPI_ANDROID */
1066 
1067 	if (!bcmspi_host_device_init_adapt(sd)) {
1068 		sd_err(("bcmspi_host_device_init_adapt failed\n"));
1069 		return ERROR;
1070 	}
1071 
1072 	if (!bcmspi_test_card(sd)) {
1073 		sd_err(("bcmspi_test_card failed\n"));
1074 		return ERROR;
1075 	}
1076 
1077 	sd->num_funcs = SPI_MAX_IOFUNCS;
1078 
1079 	get_client_blocksize(sd);
1080 
1081 	/* Apply resync pattern cmd with all zeros to reset spi-bkplane F1 logic */
1082 	bcmspi_resync_f1(sd);
1083 
1084 	sd->dwordmode = FALSE;
1085 
1086 	bcmspi_card_regread(sd, 0, SPID_STATUS_ENABLE, 1, &status_en_reg);
1087 
1088 	sd_trace(("%s: Enabling interrupt with dstatus \n", __FUNCTION__));
1089 	status_en_reg |= INTR_WITH_STATUS;
1090 
1091 	if (bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_STATUS_ENABLE, 1,
1092 	    status_en_reg & 0xff) != SUCCESS) {
1093 		sd_err(("%s: Unable to set response delay for all fun's.\n", __FUNCTION__));
1094 		return ERROR;
1095 	}
1096 
1097 #ifndef HSMODE
1098 #ifndef BCMSPI_ANDROID
1099 	/* After configuring for High-Speed mode, set the desired clock rate. */
1100 	if (!spi_start_clock(sd, 4)) {
1101 		sd_err(("spi_start_clock failed\n"));
1102 		return ERROR;
1103 	}
1104 #endif /* !BCMSPI_ANDROID */
1105 #endif /* HSMODE */
1106 
1107 	/* check to see if the response delay needs to be programmed properly */
1108 	{
1109 		uint32 f1_respdelay = 0;
1110 		bcmspi_card_regread(sd, 0, SPID_RESP_DELAY_F1, 1, &f1_respdelay);
1111 		if ((f1_respdelay == 0) || (f1_respdelay == 0xFF)) {
1112 			/* older sdiodevice core and has no separte resp delay for each of */
1113 			sd_err(("older corerev < 4 so use the same resp delay for all funcs\n"));
1114 			sd->resp_delay_new = FALSE;
1115 		}
1116 		else {
1117 			/* older sdiodevice core and has no separte resp delay for each of */
1118 			int ret_val;
1119 			sd->resp_delay_new = TRUE;
1120 			sd_err(("new corerev >= 4 so set the resp delay for each of the funcs\n"));
1121 			sd_trace(("resp delay for funcs f0(%d), f1(%d), f2(%d), f3(%d)\n",
1122 				GSPI_F0_RESP_DELAY, GSPI_F1_RESP_DELAY,
1123 				GSPI_F2_RESP_DELAY, GSPI_F3_RESP_DELAY));
1124 			ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F0, 1,
1125 				GSPI_F0_RESP_DELAY);
1126 			if (ret_val != SUCCESS) {
1127 				sd_err(("%s: Unable to set response delay for F0\n", __FUNCTION__));
1128 				return ERROR;
1129 			}
1130 			ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F1, 1,
1131 				GSPI_F1_RESP_DELAY);
1132 			if (ret_val != SUCCESS) {
1133 				sd_err(("%s: Unable to set response delay for F1\n", __FUNCTION__));
1134 				return ERROR;
1135 			}
1136 			ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F2, 1,
1137 				GSPI_F2_RESP_DELAY);
1138 			if (ret_val != SUCCESS) {
1139 				sd_err(("%s: Unable to set response delay for F2\n", __FUNCTION__));
1140 				return ERROR;
1141 			}
1142 			ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F3, 1,
1143 				GSPI_F3_RESP_DELAY);
1144 			if (ret_val != SUCCESS) {
1145 				sd_err(("%s: Unable to set response delay for F2\n", __FUNCTION__));
1146 				return ERROR;
1147 			}
1148 		}
1149 	}
1150 
1151 	sd->card_init_done = TRUE;
1152 
1153 	/* get the device rev to program the prop respdelays */
1154 
1155 	return SUCCESS;
1156 }
1157 
1158 static int
bcmspi_set_highspeed_mode(sdioh_info_t * sd,bool hsmode)1159 bcmspi_set_highspeed_mode(sdioh_info_t *sd, bool hsmode)
1160 {
1161 	uint32 regdata;
1162 	int status;
1163 
1164 	if ((status = bcmspi_card_regread(sd, 0, SPID_CONFIG,
1165 	                                 4, &regdata)) != SUCCESS)
1166 		return status;
1167 
1168 	sd_trace(("In %s spih-ctrl = 0x%x \n", __FUNCTION__, regdata));
1169 
1170 	if (hsmode == TRUE) {
1171 		sd_trace(("Attempting to enable High-Speed mode.\n"));
1172 
1173 		if (regdata & HIGH_SPEED_MODE) {
1174 			sd_trace(("Device is already in High-Speed mode.\n"));
1175 			return status;
1176 		} else {
1177 			regdata |= HIGH_SPEED_MODE;
1178 			sd_trace(("Writing %08x to device at %08x\n", regdata, SPID_CONFIG));
1179 			if ((status = bcmspi_card_regwrite(sd, 0, SPID_CONFIG,
1180 			                                  4, regdata)) != SUCCESS) {
1181 				return status;
1182 			}
1183 		}
1184 	} else {
1185 		sd_trace(("Attempting to disable High-Speed mode.\n"));
1186 
1187 		if (regdata & HIGH_SPEED_MODE) {
1188 			regdata &= ~HIGH_SPEED_MODE;
1189 			sd_trace(("Writing %08x to device at %08x\n", regdata, SPID_CONFIG));
1190 			if ((status = bcmspi_card_regwrite(sd, 0, SPID_CONFIG,
1191 			                                  4, regdata)) != SUCCESS)
1192 				return status;
1193 		}
1194 		 else {
1195 			sd_trace(("Device is already in Low-Speed mode.\n"));
1196 			return status;
1197 		}
1198 	}
1199 #ifndef BCMSPI_ANDROID
1200 	spi_controller_highspeed_mode(sd, hsmode);
1201 #endif /* !BCMSPI_ANDROID */
1202 
1203 	return TRUE;
1204 }
1205 
1206 #define bcmspi_find_curr_mode(sd) { \
1207 	sd->wordlen = 2; \
1208 	status = bcmspi_card_regread_fixedaddr(sd, 0, SPID_TEST_READ, 4, &regdata); \
1209 	regdata &= 0xff; \
1210 	if ((regdata == 0xad) || (regdata == 0x5b) || \
1211 	    (regdata == 0x5d) || (regdata == 0x5a)) \
1212 		break; \
1213 	sd->wordlen = 4; \
1214 	status = bcmspi_card_regread_fixedaddr(sd, 0, SPID_TEST_READ, 4, &regdata); \
1215 	regdata &= 0xff; \
1216 	if ((regdata == 0xad) || (regdata == 0x5b) || \
1217 	    (regdata == 0x5d) || (regdata == 0x5a)) \
1218 		break; \
1219 	sd_trace(("Silicon testability issue: regdata = 0x%x." \
1220 		" Expected 0xad, 0x5a, 0x5b or 0x5d.\n", regdata)); \
1221 	OSL_DELAY(100000); \
1222 }
1223 
1224 #define INIT_ADAPT_LOOP		100
1225 
1226 /* Adapt clock-phase-speed-bitwidth between host and device */
1227 static bool
bcmspi_host_device_init_adapt(sdioh_info_t * sd)1228 bcmspi_host_device_init_adapt(sdioh_info_t *sd)
1229 {
1230 	uint32 wrregdata, regdata = 0;
1231 	int status;
1232 	int i;
1233 
1234 	/* Due to a silicon testability issue, the first command from the Host
1235 	 * to the device will get corrupted (first bit will be lost). So the
1236 	 * Host should poll the device with a safe read request. ie: The Host
1237 	 * should try to read F0 addr 0x14 using the Fixed address mode
1238 	 * (This will prevent a unintended write command to be detected by device)
1239 	 */
1240 	for (i = 0; i < INIT_ADAPT_LOOP; i++) {
1241 	/* If device was not power-cycled it will stay in 32bit mode with
1242 	 * response-delay-all bit set.  Alternate the iteration so that
1243 	 * read either with or without response-delay for F0 to succeed.
1244 	 */
1245 		bcmspi_find_curr_mode(sd);
1246 		sd->resp_delay_all = (i & 0x1) ? TRUE : FALSE;
1247 
1248 		bcmspi_find_curr_mode(sd);
1249 		sd->dwordmode = TRUE;
1250 
1251 		bcmspi_find_curr_mode(sd);
1252 		sd->dwordmode = FALSE;
1253 	}
1254 
1255 	/* Bail out, device not detected */
1256 	if (i == INIT_ADAPT_LOOP)
1257 		return FALSE;
1258 
1259 	/* Softreset the spid logic */
1260 	if ((sd->dwordmode) || (sd->wordlen == 4)) {
1261 		bcmspi_card_regwrite(sd, 0, SPID_RESET_BP, 1, RESET_ON_WLAN_BP_RESET|RESET_SPI);
1262 		bcmspi_card_regread(sd, 0, SPID_RESET_BP, 1, &regdata);
1263 		sd_trace(("reset reg read = 0x%x\n", regdata));
1264 		sd_trace(("dwordmode = %d, wordlen = %d, resp_delay_all = %d\n", sd->dwordmode,
1265 		       sd->wordlen, sd->resp_delay_all));
1266 		/* Restore default state after softreset */
1267 		sd->wordlen = 2;
1268 		sd->dwordmode = FALSE;
1269 	}
1270 
1271 	if (sd->wordlen == 4) {
1272 		if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, &regdata)) !=
1273 		     SUCCESS)
1274 				return FALSE;
1275 		if (regdata == TEST_RO_DATA_32BIT_LE) {
1276 			sd_trace(("Spid is already in 32bit LE mode. Value read = 0x%x\n",
1277 			          regdata));
1278 			sd_trace(("Spid power was left on.\n"));
1279 		} else {
1280 			sd_err(("Spid power was left on but signature read failed."
1281 			        " Value read = 0x%x\n", regdata));
1282 			return FALSE;
1283 		}
1284 	} else {
1285 		sd->wordlen = 2;
1286 
1287 #define CTRL_REG_DEFAULT	0x00010430 /* according to the host m/c */
1288 
1289 		wrregdata = (CTRL_REG_DEFAULT);
1290 
1291 		if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, &regdata)) != SUCCESS)
1292 			return FALSE;
1293 		sd_trace(("(we are still in 16bit mode) 32bit READ LE regdata = 0x%x\n", regdata));
1294 
1295 #ifndef HSMODE
1296 		wrregdata |= (CLOCK_PHASE | CLOCK_POLARITY);
1297 		wrregdata &= ~HIGH_SPEED_MODE;
1298 		bcmspi_card_regwrite(sd, 0, SPID_CONFIG, 4, wrregdata);
1299 #endif /* HSMODE */
1300 
1301 		for (i = 0; i < INIT_ADAPT_LOOP; i++) {
1302 			if ((regdata == 0xfdda7d5b) || (regdata == 0xfdda7d5a)) {
1303 				sd_trace(("0xfeedbead was leftshifted by 1-bit.\n"));
1304 				if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4,
1305 				     &regdata)) != SUCCESS)
1306 					return FALSE;
1307 			}
1308 			OSL_DELAY(1000);
1309 		}
1310 
1311 #if defined(CHANGE_SPI_INTR_POLARITY_ACTIVE_HIGH)
1312 		/* Change to host controller intr-polarity of active-high */
1313 		wrregdata |= INTR_POLARITY;
1314 #else
1315 		/* Change to host controller intr-polarity of active-low */
1316 		wrregdata &= ~INTR_POLARITY;
1317 #endif /* CHANGE_SPI_INTR_POLARITY_ACTIVE_HIGH */
1318 
1319 		sd_trace(("(we are still in 16bit mode) 32bit Write LE reg-ctrl-data = 0x%x\n",
1320 		        wrregdata));
1321 		/* Change to 32bit mode */
1322 		wrregdata |= WORD_LENGTH_32;
1323 		bcmspi_card_regwrite(sd, 0, SPID_CONFIG, 4, wrregdata);
1324 
1325 		/* Change command/data packaging in 32bit LE mode */
1326 		sd->wordlen = 4;
1327 
1328 		if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, &regdata)) != SUCCESS)
1329 			return FALSE;
1330 
1331 		if (regdata == TEST_RO_DATA_32BIT_LE) {
1332 			sd_trace(("Read spid passed. Value read = 0x%x\n", regdata));
1333 			sd_trace(("Spid had power-on cycle OR spi was soft-resetted \n"));
1334 		} else {
1335 			sd_err(("Stale spid reg values read as it was kept powered. Value read ="
1336 			  "0x%x\n", regdata));
1337 			return FALSE;
1338 		}
1339 	}
1340 
1341 	return TRUE;
1342 }
1343 
1344 static bool
bcmspi_test_card(sdioh_info_t * sd)1345 bcmspi_test_card(sdioh_info_t *sd)
1346 {
1347 	uint32 regdata;
1348 	int status;
1349 
1350 	if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, &regdata)) != SUCCESS)
1351 		return FALSE;
1352 
1353 	if (regdata == (TEST_RO_DATA_32BIT_LE))
1354 		sd_trace(("32bit LE regdata = 0x%x\n", regdata));
1355 	else {
1356 		sd_trace(("Incorrect 32bit LE regdata = 0x%x\n", regdata));
1357 		return FALSE;
1358 	}
1359 
1360 #define RW_PATTERN1	0xA0A1A2A3
1361 #define RW_PATTERN2	0x4B5B6B7B
1362 
1363 	regdata = RW_PATTERN1;
1364 	if ((status = bcmspi_card_regwrite(sd, 0, SPID_TEST_RW, 4, regdata)) != SUCCESS)
1365 		return FALSE;
1366 	regdata = 0;
1367 	if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_RW, 4, &regdata)) != SUCCESS)
1368 		return FALSE;
1369 	if (regdata != RW_PATTERN1) {
1370 		sd_err(("Write-Read spid failed. Value wrote = 0x%x, Value read = 0x%x\n",
1371 			RW_PATTERN1, regdata));
1372 		return FALSE;
1373 	} else
1374 		sd_trace(("R/W spid passed. Value read = 0x%x\n", regdata));
1375 
1376 	regdata = RW_PATTERN2;
1377 	if ((status = bcmspi_card_regwrite(sd, 0, SPID_TEST_RW, 4, regdata)) != SUCCESS)
1378 		return FALSE;
1379 	regdata = 0;
1380 	if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_RW, 4, &regdata)) != SUCCESS)
1381 		return FALSE;
1382 	if (regdata != RW_PATTERN2) {
1383 		sd_err(("Write-Read spid failed. Value wrote = 0x%x, Value read = 0x%x\n",
1384 			RW_PATTERN2, regdata));
1385 		return FALSE;
1386 	} else
1387 		sd_trace(("R/W spid passed. Value read = 0x%x\n", regdata));
1388 
1389 	return TRUE;
1390 }
1391 
1392 static int
bcmspi_driver_init(sdioh_info_t * sd)1393 bcmspi_driver_init(sdioh_info_t *sd)
1394 {
1395 	sd_trace(("%s\n", __FUNCTION__));
1396 	if ((bcmspi_host_init(sd)) != SUCCESS) {
1397 		return ERROR;
1398 	}
1399 
1400 	if (bcmspi_client_init(sd) != SUCCESS) {
1401 		return ERROR;
1402 	}
1403 
1404 	return SUCCESS;
1405 }
1406 
1407 /* Read device reg */
1408 static int
bcmspi_card_regread(sdioh_info_t * sd,int func,uint32 regaddr,int regsize,uint32 * data)1409 bcmspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data)
1410 {
1411 	int status;
1412 	uint32 cmd_arg, dstatus;
1413 
1414 	ASSERT(regsize);
1415 
1416 	if (func == 2)
1417 		sd_trace(("Reg access on F2 will generate error indication in dstatus bits.\n"));
1418 
1419 	cmd_arg = 0;
1420 	cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 0);
1421 	cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);	/* Incremental access */
1422 	cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
1423 	cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
1424 	cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize == BLOCK_SIZE_F2 ? 0 : regsize);
1425 
1426 	sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d\n",
1427 	          __FUNCTION__, cmd_arg, func, regaddr, regsize));
1428 
1429 	if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, regsize)) != SUCCESS)
1430 		return status;
1431 
1432 	bcmspi_cmd_getdstatus(sd, &dstatus);
1433 	if (dstatus)
1434 		sd_trace(("dstatus =0x%x\n", dstatus));
1435 
1436 	return SUCCESS;
1437 }
1438 
1439 static int
bcmspi_card_regread_fixedaddr(sdioh_info_t * sd,int func,uint32 regaddr,int regsize,uint32 * data)1440 bcmspi_card_regread_fixedaddr(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data)
1441 {
1442 
1443 	int status;
1444 	uint32 cmd_arg;
1445 	uint32 dstatus;
1446 
1447 	ASSERT(regsize);
1448 
1449 	if (func == 2)
1450 		sd_trace(("Reg access on F2 will generate error indication in dstatus bits.\n"));
1451 
1452 	cmd_arg = 0;
1453 	cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 0);
1454 	cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 0);	/* Fixed access */
1455 	cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
1456 	cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
1457 	cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize);
1458 
1459 	sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d\n",
1460 	          __FUNCTION__, cmd_arg, func, regaddr, regsize));
1461 
1462 	if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, regsize)) != SUCCESS)
1463 		return status;
1464 
1465 	sd_trace(("%s: RD result=0x%x\n", __FUNCTION__, *data));
1466 
1467 	bcmspi_cmd_getdstatus(sd, &dstatus);
1468 	sd_trace(("dstatus =0x%x\n", dstatus));
1469 	return SUCCESS;
1470 }
1471 
1472 /* write a device register */
1473 static int
bcmspi_card_regwrite(sdioh_info_t * sd,int func,uint32 regaddr,int regsize,uint32 data)1474 bcmspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 data)
1475 {
1476 	int status;
1477 	uint32 cmd_arg, dstatus;
1478 
1479 	ASSERT(regsize);
1480 
1481 	cmd_arg = 0;
1482 
1483 	cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1);
1484 	cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);	/* Incremental access */
1485 	cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
1486 	cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
1487 	cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize == BLOCK_SIZE_F2 ? 0 : regsize);
1488 
1489 	sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d data=0x%x\n",
1490 	          __FUNCTION__, cmd_arg, func, regaddr, regsize, data));
1491 
1492 	if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, regsize)) != SUCCESS)
1493 		return status;
1494 
1495 	bcmspi_cmd_getdstatus(sd, &dstatus);
1496 	if (dstatus)
1497 		sd_trace(("dstatus=0x%x\n", dstatus));
1498 
1499 	return SUCCESS;
1500 }
1501 
1502 /* write a device register - 1 byte */
1503 static int
bcmspi_card_bytewrite(sdioh_info_t * sd,int func,uint32 regaddr,uint8 * byte)1504 bcmspi_card_bytewrite(sdioh_info_t *sd, int func, uint32 regaddr, uint8 *byte)
1505 {
1506 	int status;
1507 	uint32 cmd_arg;
1508 	uint32 dstatus;
1509 	uint32 data = (uint32)(*byte);
1510 
1511 	cmd_arg = 0;
1512 	cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
1513 	cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);	/* Incremental access */
1514 	cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
1515 	cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1);
1516 	cmd_arg = SFIELD(cmd_arg, SPI_LEN, 1);
1517 
1518 	sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x data=0x%x\n",
1519 	          __FUNCTION__, cmd_arg, func, regaddr, data));
1520 
1521 	if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, 1)) != SUCCESS)
1522 		return status;
1523 
1524 	bcmspi_cmd_getdstatus(sd, &dstatus);
1525 	if (dstatus)
1526 		sd_trace(("dstatus =0x%x\n", dstatus));
1527 
1528 	return SUCCESS;
1529 }
1530 
1531 void
bcmspi_cmd_getdstatus(sdioh_info_t * sd,uint32 * dstatus_buffer)1532 bcmspi_cmd_getdstatus(sdioh_info_t *sd, uint32 *dstatus_buffer)
1533 {
1534 	*dstatus_buffer = sd->card_dstatus;
1535 }
1536 
1537 /* 'data' is of type uint32 whereas other buffers are of type uint8 */
1538 static int
bcmspi_cmd_issue(sdioh_info_t * sd,bool use_dma,uint32 cmd_arg,uint32 * data,uint32 datalen)1539 bcmspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd_arg,
1540                 uint32 *data, uint32 datalen)
1541 {
1542 	uint32	i, j;
1543 	uint8	resp_delay = 0;
1544 	int	err = SUCCESS;
1545 	uint32	hostlen;
1546 	uint32 spilen = 0;
1547 	uint32 dstatus_idx = 0;
1548 	uint16 templen, buslen, len, *ptr = NULL;
1549 
1550 	sd_trace(("spi cmd = 0x%x\n", cmd_arg));
1551 
1552 	/* Set up and issue the SPI command.  MSByte goes out on bus first.  Increase datalen
1553 	 * according to the wordlen mode(16/32bit) the device is in.
1554 	 */
1555 	if (sd->wordlen == 4) { /* 32bit spid */
1556 		*(uint32 *)spi_outbuf = SPISWAP_WD4(cmd_arg);
1557 		if (datalen & 0x3)
1558 			datalen += (4 - (datalen & 0x3));
1559 	} else if (sd->wordlen == 2) { /* 16bit spid */
1560 		*(uint32 *)spi_outbuf = SPISWAP_WD2(cmd_arg);
1561 		if (datalen & 0x1)
1562 			datalen++;
1563 		if (datalen < 4)
1564 			datalen = ROUNDUP(datalen, 4);
1565 	} else {
1566 		sd_err(("Host is %d bit spid, could not create SPI command.\n",
1567 			8 * sd->wordlen));
1568 		return ERROR;
1569 	}
1570 
1571 	/* for Write, put the data into the output buffer */
1572 	if (GFIELD(cmd_arg, SPI_RW_FLAG) == 1) {
1573 		/* We send len field of hw-header always a mod16 size, both from host and dongle */
1574 		if (datalen != 0) {
1575 			for (i = 0; i < datalen/4; i++) {
1576 				if (sd->wordlen == 4) { /* 32bit spid */
1577 					*(uint32 *)&spi_outbuf[i * 4 + CMDLEN] =
1578 						SPISWAP_WD4(data[i]);
1579 				} else if (sd->wordlen == 2) { /* 16bit spid */
1580 					*(uint32 *)&spi_outbuf[i * 4 + CMDLEN] =
1581 						SPISWAP_WD2(data[i]);
1582 				}
1583 			}
1584 		}
1585 	}
1586 
1587 	/* Append resp-delay number of bytes and clock them out for F0/1/2 reads. */
1588 	if ((GFIELD(cmd_arg, SPI_RW_FLAG) == 0)) {
1589 		int func = GFIELD(cmd_arg, SPI_FUNCTION);
1590 		switch (func) {
1591 			case 0:
1592 				if (sd->resp_delay_new)
1593 					resp_delay = GSPI_F0_RESP_DELAY;
1594 				else
1595 					resp_delay = sd->resp_delay_all ? F0_RESPONSE_DELAY : 0;
1596 				break;
1597 			case 1:
1598 				if (sd->resp_delay_new)
1599 					resp_delay = GSPI_F1_RESP_DELAY;
1600 				else
1601 					resp_delay = F1_RESPONSE_DELAY;
1602 				break;
1603 			case 2:
1604 				if (sd->resp_delay_new)
1605 					resp_delay = GSPI_F2_RESP_DELAY;
1606 				else
1607 					resp_delay = sd->resp_delay_all ? F2_RESPONSE_DELAY : 0;
1608 				break;
1609 			default:
1610 				ASSERT(0);
1611 				break;
1612 		}
1613 		/* Program response delay */
1614 		if (sd->resp_delay_new == FALSE)
1615 			bcmspi_prog_resp_delay(sd, func, resp_delay);
1616 	}
1617 
1618 	/* +4 for cmd and +4 for dstatus */
1619 	hostlen = datalen + 8 + resp_delay;
1620 	hostlen += dstatus_idx;
1621 #ifdef BCMSPI_ANDROID
1622 	if (hostlen%4) {
1623 		sd_err(("Unaligned data len %d, hostlen %d\n",
1624 			datalen, hostlen));
1625 #endif /* BCMSPI_ANDROID */
1626 	hostlen += (4 - (hostlen & 0x3));
1627 #ifdef BCMSPI_ANDROID
1628 	}
1629 #endif /* BCMSPI_ANDROID */
1630 	spi_sendrecv(sd, spi_outbuf, spi_inbuf, hostlen);
1631 
1632 	/* for Read, get the data into the input buffer */
1633 	if (datalen != 0) {
1634 		if (GFIELD(cmd_arg, SPI_RW_FLAG) == 0) { /* if read cmd */
1635 			for (j = 0; j < datalen/4; j++) {
1636 				if (sd->wordlen == 4) { /* 32bit spid */
1637 					data[j] = SPISWAP_WD4(*(uint32 *)&spi_inbuf[j * 4 +
1638 					            CMDLEN + resp_delay]);
1639 				} else if (sd->wordlen == 2) { /* 16bit spid */
1640 					data[j] = SPISWAP_WD2(*(uint32 *)&spi_inbuf[j * 4 +
1641 					            CMDLEN + resp_delay]);
1642 				}
1643 			}
1644 		}
1645 	}
1646 
1647 	dstatus_idx += (datalen + CMDLEN + resp_delay);
1648 	/* Last 4bytes are dstatus.  Device is configured to return status bits. */
1649 	if (sd->wordlen == 4) { /* 32bit spid */
1650 		sd->card_dstatus = SPISWAP_WD4(*(uint32 *)&spi_inbuf[dstatus_idx]);
1651 	} else if (sd->wordlen == 2) { /* 16bit spid */
1652 		sd->card_dstatus = SPISWAP_WD2(*(uint32 *)&spi_inbuf[dstatus_idx]);
1653 	} else {
1654 		sd_err(("Host is %d bit machine, could not read SPI dstatus.\n",
1655 			8 * sd->wordlen));
1656 		return ERROR;
1657 	}
1658 	if (sd->card_dstatus == 0xffffffff) {
1659 		sd_err(("looks like not a GSPI device or device is not powered.\n"));
1660 	}
1661 
1662 	err = bcmspi_update_stats(sd, cmd_arg);
1663 
1664 	return err;
1665 
1666 }
1667 
1668 static int
bcmspi_card_buf(sdioh_info_t * sd,int rw,int func,bool fifo,uint32 addr,int nbytes,uint32 * data)1669 bcmspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo,
1670                 uint32 addr, int nbytes, uint32 *data)
1671 {
1672 	int status;
1673 	uint32 cmd_arg;
1674 	bool write = rw == SDIOH_READ ? 0 : 1;
1675 	uint retries = 0;
1676 
1677 	bool enable;
1678 	uint32	spilen;
1679 
1680 	cmd_arg = 0;
1681 
1682 	ASSERT(nbytes);
1683 	ASSERT(nbytes <= sd->client_block_size[func]);
1684 
1685 	if (write) sd->t_cnt++; else sd->r_cnt++;
1686 
1687 	if (func == 2) {
1688 		/* Frame len check limited by gSPI. */
1689 		if ((nbytes > 2000) && write) {
1690 			sd_trace((">2KB write: F2 wr of %d bytes\n", nbytes));
1691 		}
1692 		/* ASSERT(nbytes <= 2048); Fix bigger len gspi issue and uncomment. */
1693 		/* If F2 fifo on device is not ready to receive data, don't do F2 transfer */
1694 		if (write) {
1695 			uint32 dstatus;
1696 			/* check F2 ready with cached one */
1697 			bcmspi_cmd_getdstatus(sd, &dstatus);
1698 			if ((dstatus & STATUS_F2_RX_READY) == 0) {
1699 				retries = WAIT_F2RXFIFORDY;
1700 				enable = 0;
1701 				while (retries-- && !enable) {
1702 					OSL_DELAY(WAIT_F2RXFIFORDY_DELAY * 1000);
1703 					bcmspi_card_regread(sd, SPI_FUNC_0, SPID_STATUS_REG, 4,
1704 					                   &dstatus);
1705 					if (dstatus & STATUS_F2_RX_READY)
1706 						enable = TRUE;
1707 				}
1708 				if (!enable) {
1709 					struct spierrstats_t *spierrstats = &sd->spierrstats;
1710 					spierrstats->f2rxnotready++;
1711 					sd_err(("F2 FIFO is not ready to receive data.\n"));
1712 					return ERROR;
1713 				}
1714 				sd_trace(("No of retries on F2 ready %d\n",
1715 					(WAIT_F2RXFIFORDY - retries)));
1716 			}
1717 		}
1718 	}
1719 
1720 	/* F2 transfers happen on 0 addr */
1721 	addr = (func == 2) ? 0 : addr;
1722 
1723 	/* In pio mode buffer is read using fixed address fifo in func 1 */
1724 	if ((func == 1) && (fifo))
1725 		cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 0);
1726 	else
1727 		cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);
1728 
1729 	cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
1730 	cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, addr);
1731 	cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, write);
1732 	spilen = sd->data_xfer_count = MIN(sd->client_block_size[func], nbytes);
1733 	if ((sd->dwordmode == TRUE) && (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2)) {
1734 		/* convert len to mod4 size */
1735 		spilen = spilen + ((spilen & 0x3) ? (4 - (spilen & 0x3)): 0);
1736 		cmd_arg = SFIELD(cmd_arg, SPI_LEN, (spilen >> 2));
1737 	} else
1738 		cmd_arg = SFIELD(cmd_arg, SPI_LEN, spilen);
1739 
1740 	if ((func == 2) && (fifo == 1)) {
1741 		sd_data(("%s: %s func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n",
1742 		          __FUNCTION__, write ? "Wr" : "Rd", func, "INCR",
1743 		          addr, nbytes, sd->r_cnt, sd->t_cnt));
1744 	}
1745 
1746 	sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg));
1747 	sd_data(("%s: %s func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n",
1748 	         __FUNCTION__, write ? "Wd" : "Rd", func, "INCR",
1749 	         addr, nbytes, sd->r_cnt, sd->t_cnt));
1750 
1751 	if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, nbytes)) != SUCCESS) {
1752 		sd_err(("%s: cmd_issue failed for %s\n", __FUNCTION__,
1753 			(write ? "write" : "read")));
1754 		return status;
1755 	}
1756 
1757 	/* gSPI expects that hw-header-len is equal to spi-command-len */
1758 	if ((func == 2) && (rw == SDIOH_WRITE) && (sd->dwordmode == FALSE)) {
1759 		ASSERT((uint16)sd->data_xfer_count == (uint16)(*data & 0xffff));
1760 		ASSERT((uint16)sd->data_xfer_count == (uint16)(~((*data & 0xffff0000) >> 16)));
1761 	}
1762 
1763 	if ((nbytes > 2000) && !write) {
1764 		sd_trace((">2KB read: F2 rd of %d bytes\n", nbytes));
1765 	}
1766 
1767 	return SUCCESS;
1768 }
1769 
1770 /* Reset and re-initialize the device */
1771 int
sdioh_sdio_reset(sdioh_info_t * si)1772 sdioh_sdio_reset(sdioh_info_t *si)
1773 {
1774 	si->card_init_done = FALSE;
1775 	return bcmspi_client_init(si);
1776 }
1777 
1778 SDIOH_API_RC
sdioh_gpioouten(sdioh_info_t * sd,uint32 gpio)1779 sdioh_gpioouten(sdioh_info_t *sd, uint32 gpio)
1780 {
1781 	return SDIOH_API_RC_FAIL;
1782 }
1783 
1784 SDIOH_API_RC
sdioh_gpioout(sdioh_info_t * sd,uint32 gpio,bool enab)1785 sdioh_gpioout(sdioh_info_t *sd, uint32 gpio, bool enab)
1786 {
1787 	return SDIOH_API_RC_FAIL;
1788 }
1789 
1790 bool
sdioh_gpioin(sdioh_info_t * sd,uint32 gpio)1791 sdioh_gpioin(sdioh_info_t *sd, uint32 gpio)
1792 {
1793 	return FALSE;
1794 }
1795 
1796 SDIOH_API_RC
sdioh_gpio_init(sdioh_info_t * sd)1797 sdioh_gpio_init(sdioh_info_t *sd)
1798 {
1799 	return SDIOH_API_RC_FAIL;
1800 }
1801