1 use hir::def_id::DefId;
2 use rustc_hir as hir;
3 use rustc_index::bit_set::BitSet;
4 use rustc_index::{IndexSlice, IndexVec};
5 use rustc_middle::mir::{GeneratorLayout, GeneratorSavedLocal};
6 use rustc_middle::query::Providers;
7 use rustc_middle::ty::layout::{
8 IntegerExt, LayoutCx, LayoutError, LayoutOf, TyAndLayout, MAX_SIMD_LANES,
9 };
10 use rustc_middle::ty::{
11 self, subst::SubstsRef, AdtDef, EarlyBinder, ReprOptions, Ty, TyCtxt, TypeVisitableExt,
12 };
13 use rustc_session::{DataTypeKind, FieldInfo, FieldKind, SizeKind, VariantInfo};
14 use rustc_span::symbol::Symbol;
15 use rustc_span::DUMMY_SP;
16 use rustc_target::abi::*;
17
18 use std::fmt::Debug;
19 use std::iter;
20
21 use crate::errors::{
22 MultipleArrayFieldsSimdType, NonPrimitiveSimdType, OversizedSimdType, ZeroLengthSimdType,
23 };
24 use crate::layout_sanity_check::sanity_check_layout;
25
provide(providers: &mut Providers)26 pub fn provide(providers: &mut Providers) {
27 *providers = Providers { layout_of, ..*providers };
28 }
29
30 #[instrument(skip(tcx, query), level = "debug")]
layout_of<'tcx>( tcx: TyCtxt<'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>, ) -> Result<TyAndLayout<'tcx>, &'tcx LayoutError<'tcx>>31 fn layout_of<'tcx>(
32 tcx: TyCtxt<'tcx>,
33 query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
34 ) -> Result<TyAndLayout<'tcx>, &'tcx LayoutError<'tcx>> {
35 let (param_env, ty) = query.into_parts();
36 debug!(?ty);
37
38 let param_env = param_env.with_reveal_all_normalized(tcx);
39 let unnormalized_ty = ty;
40
41 // FIXME: We might want to have two different versions of `layout_of`:
42 // One that can be called after typecheck has completed and can use
43 // `normalize_erasing_regions` here and another one that can be called
44 // before typecheck has completed and uses `try_normalize_erasing_regions`.
45 let ty = match tcx.try_normalize_erasing_regions(param_env, ty) {
46 Ok(t) => t,
47 Err(normalization_error) => {
48 return Err(tcx
49 .arena
50 .alloc(LayoutError::NormalizationFailure(ty, normalization_error)));
51 }
52 };
53
54 if ty != unnormalized_ty {
55 // Ensure this layout is also cached for the normalized type.
56 return tcx.layout_of(param_env.and(ty));
57 }
58
59 let cx = LayoutCx { tcx, param_env };
60
61 let layout = layout_of_uncached(&cx, ty)?;
62 let layout = TyAndLayout { ty, layout };
63
64 record_layout_for_printing(&cx, layout);
65
66 sanity_check_layout(&cx, &layout);
67
68 Ok(layout)
69 }
70
error<'tcx>( cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, err: LayoutError<'tcx>, ) -> &'tcx LayoutError<'tcx>71 fn error<'tcx>(
72 cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
73 err: LayoutError<'tcx>,
74 ) -> &'tcx LayoutError<'tcx> {
75 cx.tcx.arena.alloc(err)
76 }
77
univariant_uninterned<'tcx>( cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, ty: Ty<'tcx>, fields: &IndexSlice<FieldIdx, Layout<'_>>, repr: &ReprOptions, kind: StructKind, ) -> Result<LayoutS, &'tcx LayoutError<'tcx>>78 fn univariant_uninterned<'tcx>(
79 cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
80 ty: Ty<'tcx>,
81 fields: &IndexSlice<FieldIdx, Layout<'_>>,
82 repr: &ReprOptions,
83 kind: StructKind,
84 ) -> Result<LayoutS, &'tcx LayoutError<'tcx>> {
85 let dl = cx.data_layout();
86 let pack = repr.pack;
87 if pack.is_some() && repr.align.is_some() {
88 cx.tcx.sess.delay_span_bug(DUMMY_SP, "struct cannot be packed and aligned");
89 return Err(cx.tcx.arena.alloc(LayoutError::Unknown(ty)));
90 }
91
92 cx.univariant(dl, fields, repr, kind).ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))
93 }
94
layout_of_uncached<'tcx>( cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, ty: Ty<'tcx>, ) -> Result<Layout<'tcx>, &'tcx LayoutError<'tcx>>95 fn layout_of_uncached<'tcx>(
96 cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
97 ty: Ty<'tcx>,
98 ) -> Result<Layout<'tcx>, &'tcx LayoutError<'tcx>> {
99 let tcx = cx.tcx;
100 let param_env = cx.param_env;
101 let dl = cx.data_layout();
102 let scalar_unit = |value: Primitive| {
103 let size = value.size(dl);
104 assert!(size.bits() <= 128);
105 Scalar::Initialized { value, valid_range: WrappingRange::full(size) }
106 };
107 let scalar = |value: Primitive| tcx.mk_layout(LayoutS::scalar(cx, scalar_unit(value)));
108
109 let univariant = |fields: &IndexSlice<FieldIdx, Layout<'_>>, repr: &ReprOptions, kind| {
110 Ok(tcx.mk_layout(univariant_uninterned(cx, ty, fields, repr, kind)?))
111 };
112 debug_assert!(!ty.has_non_region_infer());
113
114 Ok(match *ty.kind() {
115 // Basic scalars.
116 ty::Bool => tcx.mk_layout(LayoutS::scalar(
117 cx,
118 Scalar::Initialized {
119 value: Int(I8, false),
120 valid_range: WrappingRange { start: 0, end: 1 },
121 },
122 )),
123 ty::Char => tcx.mk_layout(LayoutS::scalar(
124 cx,
125 Scalar::Initialized {
126 value: Int(I32, false),
127 valid_range: WrappingRange { start: 0, end: 0x10FFFF },
128 },
129 )),
130 ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)),
131 ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)),
132 ty::Float(fty) => scalar(match fty {
133 ty::FloatTy::F32 => F32,
134 ty::FloatTy::F64 => F64,
135 }),
136 ty::FnPtr(_) => {
137 let mut ptr = scalar_unit(Pointer(dl.instruction_address_space));
138 ptr.valid_range_mut().start = 1;
139 tcx.mk_layout(LayoutS::scalar(cx, ptr))
140 }
141
142 // The never type.
143 ty::Never => tcx.mk_layout(cx.layout_of_never_type()),
144
145 // Potentially-wide pointers.
146 ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
147 let mut data_ptr = scalar_unit(Pointer(AddressSpace::DATA));
148 if !ty.is_unsafe_ptr() {
149 data_ptr.valid_range_mut().start = 1;
150 }
151
152 let pointee = tcx.normalize_erasing_regions(param_env, pointee);
153 if pointee.is_sized(tcx, param_env) {
154 return Ok(tcx.mk_layout(LayoutS::scalar(cx, data_ptr)));
155 }
156
157 let metadata = if let Some(metadata_def_id) = tcx.lang_items().metadata_type()
158 // Projection eagerly bails out when the pointee references errors,
159 // fall back to structurally deducing metadata.
160 && !pointee.references_error()
161 {
162 let pointee_metadata = Ty::new_projection(tcx,metadata_def_id, [pointee]);
163 let metadata_ty = match tcx.try_normalize_erasing_regions(
164 param_env,
165 pointee_metadata,
166 ) {
167 Ok(metadata_ty) => metadata_ty,
168 Err(mut err) => {
169 // Usually `<Ty as Pointee>::Metadata` can't be normalized because
170 // its struct tail cannot be normalized either, so try to get a
171 // more descriptive layout error here, which will lead to less confusing
172 // diagnostics.
173 match tcx.try_normalize_erasing_regions(
174 param_env,
175 tcx.struct_tail_without_normalization(pointee),
176 ) {
177 Ok(_) => {},
178 Err(better_err) => {
179 err = better_err;
180 }
181 }
182 return Err(error(cx, LayoutError::NormalizationFailure(pointee, err)));
183 },
184 };
185
186 let metadata_layout = cx.layout_of(metadata_ty)?;
187 // If the metadata is a 1-zst, then the pointer is thin.
188 if metadata_layout.is_zst() && metadata_layout.align.abi.bytes() == 1 {
189 return Ok(tcx.mk_layout(LayoutS::scalar(cx, data_ptr)));
190 }
191
192 let Abi::Scalar(metadata) = metadata_layout.abi else {
193 return Err(error(cx, LayoutError::Unknown(pointee)));
194 };
195
196 metadata
197 } else {
198 let unsized_part = tcx.struct_tail_erasing_lifetimes(pointee, param_env);
199
200 match unsized_part.kind() {
201 ty::Foreign(..) => {
202 return Ok(tcx.mk_layout(LayoutS::scalar(cx, data_ptr)));
203 }
204 ty::Slice(_) | ty::Str => scalar_unit(Int(dl.ptr_sized_integer(), false)),
205 ty::Dynamic(..) => {
206 let mut vtable = scalar_unit(Pointer(AddressSpace::DATA));
207 vtable.valid_range_mut().start = 1;
208 vtable
209 }
210 _ => {
211 return Err(error(cx, LayoutError::Unknown(pointee)));
212 }
213 }
214 };
215
216 // Effectively a (ptr, meta) tuple.
217 tcx.mk_layout(cx.scalar_pair(data_ptr, metadata))
218 }
219
220 ty::Dynamic(_, _, ty::DynStar) => {
221 let mut data = scalar_unit(Pointer(AddressSpace::DATA));
222 data.valid_range_mut().start = 0;
223 let mut vtable = scalar_unit(Pointer(AddressSpace::DATA));
224 vtable.valid_range_mut().start = 1;
225 tcx.mk_layout(cx.scalar_pair(data, vtable))
226 }
227
228 // Arrays and slices.
229 ty::Array(element, mut count) => {
230 if count.has_projections() {
231 count = tcx.normalize_erasing_regions(param_env, count);
232 if count.has_projections() {
233 return Err(error(cx, LayoutError::Unknown(ty)));
234 }
235 }
236
237 let count = count
238 .try_eval_target_usize(tcx, param_env)
239 .ok_or_else(|| error(cx, LayoutError::Unknown(ty)))?;
240 let element = cx.layout_of(element)?;
241 let size = element
242 .size
243 .checked_mul(count, dl)
244 .ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?;
245
246 let abi = if count != 0 && ty.is_privately_uninhabited(tcx, param_env) {
247 Abi::Uninhabited
248 } else {
249 Abi::Aggregate { sized: true }
250 };
251
252 let largest_niche = if count != 0 { element.largest_niche } else { None };
253
254 tcx.mk_layout(LayoutS {
255 variants: Variants::Single { index: FIRST_VARIANT },
256 fields: FieldsShape::Array { stride: element.size, count },
257 abi,
258 largest_niche,
259 align: element.align,
260 size,
261 })
262 }
263 ty::Slice(element) => {
264 let element = cx.layout_of(element)?;
265 tcx.mk_layout(LayoutS {
266 variants: Variants::Single { index: FIRST_VARIANT },
267 fields: FieldsShape::Array { stride: element.size, count: 0 },
268 abi: Abi::Aggregate { sized: false },
269 largest_niche: None,
270 align: element.align,
271 size: Size::ZERO,
272 })
273 }
274 ty::Str => tcx.mk_layout(LayoutS {
275 variants: Variants::Single { index: FIRST_VARIANT },
276 fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 },
277 abi: Abi::Aggregate { sized: false },
278 largest_niche: None,
279 align: dl.i8_align,
280 size: Size::ZERO,
281 }),
282
283 // Odd unit types.
284 ty::FnDef(..) => {
285 univariant(IndexSlice::empty(), &ReprOptions::default(), StructKind::AlwaysSized)?
286 }
287 ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => {
288 let mut unit = univariant_uninterned(
289 cx,
290 ty,
291 IndexSlice::empty(),
292 &ReprOptions::default(),
293 StructKind::AlwaysSized,
294 )?;
295 match unit.abi {
296 Abi::Aggregate { ref mut sized } => *sized = false,
297 _ => bug!(),
298 }
299 tcx.mk_layout(unit)
300 }
301
302 ty::Generator(def_id, substs, _) => generator_layout(cx, ty, def_id, substs)?,
303
304 ty::Closure(_, ref substs) => {
305 let tys = substs.as_closure().upvar_tys();
306 univariant(
307 &tys.map(|ty| Ok(cx.layout_of(ty)?.layout)).try_collect::<IndexVec<_, _>>()?,
308 &ReprOptions::default(),
309 StructKind::AlwaysSized,
310 )?
311 }
312
313 ty::Tuple(tys) => {
314 let kind =
315 if tys.len() == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized };
316
317 univariant(
318 &tys.iter().map(|k| Ok(cx.layout_of(k)?.layout)).try_collect::<IndexVec<_, _>>()?,
319 &ReprOptions::default(),
320 kind,
321 )?
322 }
323
324 // SIMD vector types.
325 ty::Adt(def, substs) if def.repr().simd() => {
326 if !def.is_struct() {
327 // Should have yielded E0517 by now.
328 tcx.sess.delay_span_bug(
329 DUMMY_SP,
330 "#[repr(simd)] was applied to an ADT that is not a struct",
331 );
332 return Err(error(cx, LayoutError::Unknown(ty)));
333 }
334
335 let fields = &def.non_enum_variant().fields;
336
337 // Supported SIMD vectors are homogeneous ADTs with at least one field:
338 //
339 // * #[repr(simd)] struct S(T, T, T, T);
340 // * #[repr(simd)] struct S { x: T, y: T, z: T, w: T }
341 // * #[repr(simd)] struct S([T; 4])
342 //
343 // where T is a primitive scalar (integer/float/pointer).
344
345 // SIMD vectors with zero fields are not supported.
346 // (should be caught by typeck)
347 if fields.is_empty() {
348 tcx.sess.emit_fatal(ZeroLengthSimdType { ty })
349 }
350
351 // Type of the first ADT field:
352 let f0_ty = fields[FieldIdx::from_u32(0)].ty(tcx, substs);
353
354 // Heterogeneous SIMD vectors are not supported:
355 // (should be caught by typeck)
356 for fi in fields {
357 if fi.ty(tcx, substs) != f0_ty {
358 tcx.sess.delay_span_bug(
359 DUMMY_SP,
360 "#[repr(simd)] was applied to an ADT with heterogeneous field type",
361 );
362 return Err(error(cx, LayoutError::Unknown(ty)));
363 }
364 }
365
366 // The element type and number of elements of the SIMD vector
367 // are obtained from:
368 //
369 // * the element type and length of the single array field, if
370 // the first field is of array type, or
371 //
372 // * the homogeneous field type and the number of fields.
373 let (e_ty, e_len, is_array) = if let ty::Array(e_ty, _) = f0_ty.kind() {
374 // First ADT field is an array:
375
376 // SIMD vectors with multiple array fields are not supported:
377 // Can't be caught by typeck with a generic simd type.
378 if def.non_enum_variant().fields.len() != 1 {
379 tcx.sess.emit_fatal(MultipleArrayFieldsSimdType { ty });
380 }
381
382 // Extract the number of elements from the layout of the array field:
383 let FieldsShape::Array { count, .. } = cx.layout_of(f0_ty)?.layout.fields() else {
384 return Err(error(cx, LayoutError::Unknown(ty)));
385 };
386
387 (*e_ty, *count, true)
388 } else {
389 // First ADT field is not an array:
390 (f0_ty, def.non_enum_variant().fields.len() as _, false)
391 };
392
393 // SIMD vectors of zero length are not supported.
394 // Additionally, lengths are capped at 2^16 as a fixed maximum backends must
395 // support.
396 //
397 // Can't be caught in typeck if the array length is generic.
398 if e_len == 0 {
399 tcx.sess.emit_fatal(ZeroLengthSimdType { ty });
400 } else if e_len > MAX_SIMD_LANES {
401 tcx.sess.emit_fatal(OversizedSimdType { ty, max_lanes: MAX_SIMD_LANES });
402 }
403
404 // Compute the ABI of the element type:
405 let e_ly = cx.layout_of(e_ty)?;
406 let Abi::Scalar(e_abi) = e_ly.abi else {
407 // This error isn't caught in typeck, e.g., if
408 // the element type of the vector is generic.
409 tcx.sess.emit_fatal(NonPrimitiveSimdType { ty, e_ty });
410 };
411
412 // Compute the size and alignment of the vector:
413 let size = e_ly
414 .size
415 .checked_mul(e_len, dl)
416 .ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?;
417 let align = dl.vector_align(size);
418 let size = size.align_to(align.abi);
419
420 // Compute the placement of the vector fields:
421 let fields = if is_array {
422 FieldsShape::Arbitrary { offsets: [Size::ZERO].into(), memory_index: [0].into() }
423 } else {
424 FieldsShape::Array { stride: e_ly.size, count: e_len }
425 };
426
427 tcx.mk_layout(LayoutS {
428 variants: Variants::Single { index: FIRST_VARIANT },
429 fields,
430 abi: Abi::Vector { element: e_abi, count: e_len },
431 largest_niche: e_ly.largest_niche,
432 size,
433 align,
434 })
435 }
436
437 // ADTs.
438 ty::Adt(def, substs) => {
439 // Cache the field layouts.
440 let variants = def
441 .variants()
442 .iter()
443 .map(|v| {
444 v.fields
445 .iter()
446 .map(|field| Ok(cx.layout_of(field.ty(tcx, substs))?.layout))
447 .try_collect::<IndexVec<_, _>>()
448 })
449 .try_collect::<IndexVec<VariantIdx, _>>()?;
450
451 if def.is_union() {
452 if def.repr().pack.is_some() && def.repr().align.is_some() {
453 cx.tcx.sess.delay_span_bug(
454 tcx.def_span(def.did()),
455 "union cannot be packed and aligned",
456 );
457 return Err(error(cx, LayoutError::Unknown(ty)));
458 }
459
460 return Ok(tcx.mk_layout(
461 cx.layout_of_union(&def.repr(), &variants)
462 .ok_or_else(|| error(cx, LayoutError::Unknown(ty)))?,
463 ));
464 }
465
466 let get_discriminant_type =
467 |min, max| Integer::repr_discr(tcx, ty, &def.repr(), min, max);
468
469 let discriminants_iter = || {
470 def.is_enum()
471 .then(|| def.discriminants(tcx).map(|(v, d)| (v, d.val as i128)))
472 .into_iter()
473 .flatten()
474 };
475
476 let dont_niche_optimize_enum = def.repr().inhibit_enum_layout_opt()
477 || def
478 .variants()
479 .iter_enumerated()
480 .any(|(i, v)| v.discr != ty::VariantDiscr::Relative(i.as_u32()));
481
482 let maybe_unsized = def.is_struct()
483 && def.non_enum_variant().tail_opt().is_some_and(|last_field| {
484 let param_env = tcx.param_env(def.did());
485 !tcx.type_of(last_field.did).subst_identity().is_sized(tcx, param_env)
486 });
487
488 let Some(layout) = cx.layout_of_struct_or_enum(
489 &def.repr(),
490 &variants,
491 def.is_enum(),
492 def.is_unsafe_cell(),
493 tcx.layout_scalar_valid_range(def.did()),
494 get_discriminant_type,
495 discriminants_iter(),
496 dont_niche_optimize_enum,
497 !maybe_unsized,
498 ) else {
499 return Err(error(cx, LayoutError::SizeOverflow(ty)));
500 };
501
502 // If the struct tail is sized and can be unsized, check that unsizing doesn't move the fields around.
503 if cfg!(debug_assertions)
504 && maybe_unsized
505 && def.non_enum_variant().tail().ty(tcx, substs).is_sized(tcx, cx.param_env)
506 {
507 let mut variants = variants;
508 let tail_replacement = cx.layout_of(Ty::new_slice(tcx, tcx.types.u8)).unwrap();
509 *variants[FIRST_VARIANT].raw.last_mut().unwrap() = tail_replacement.layout;
510
511 let Some(unsized_layout) = cx.layout_of_struct_or_enum(
512 &def.repr(),
513 &variants,
514 def.is_enum(),
515 def.is_unsafe_cell(),
516 tcx.layout_scalar_valid_range(def.did()),
517 get_discriminant_type,
518 discriminants_iter(),
519 dont_niche_optimize_enum,
520 !maybe_unsized,
521 ) else {
522 bug!("failed to compute unsized layout of {ty:?}");
523 };
524
525 let FieldsShape::Arbitrary { offsets: sized_offsets, .. } = &layout.fields else {
526 bug!("unexpected FieldsShape for sized layout of {ty:?}: {:?}", layout.fields);
527 };
528 let FieldsShape::Arbitrary { offsets: unsized_offsets, .. } = &unsized_layout.fields else {
529 bug!("unexpected FieldsShape for unsized layout of {ty:?}: {:?}", unsized_layout.fields);
530 };
531
532 let (sized_tail, sized_fields) = sized_offsets.raw.split_last().unwrap();
533 let (unsized_tail, unsized_fields) = unsized_offsets.raw.split_last().unwrap();
534
535 if sized_fields != unsized_fields {
536 bug!("unsizing {ty:?} changed field order!\n{layout:?}\n{unsized_layout:?}");
537 }
538
539 if sized_tail < unsized_tail {
540 bug!("unsizing {ty:?} moved tail backwards!\n{layout:?}\n{unsized_layout:?}");
541 }
542 }
543
544 tcx.mk_layout(layout)
545 }
546
547 // Types with no meaningful known layout.
548 ty::Alias(..) => {
549 // NOTE(eddyb) `layout_of` query should've normalized these away,
550 // if that was possible, so there's no reason to try again here.
551 return Err(error(cx, LayoutError::Unknown(ty)));
552 }
553
554 ty::Bound(..) | ty::GeneratorWitness(..) | ty::GeneratorWitnessMIR(..) | ty::Infer(_) => {
555 bug!("Layout::compute: unexpected type `{}`", ty)
556 }
557
558 ty::Placeholder(..) | ty::Param(_) | ty::Error(_) => {
559 return Err(error(cx, LayoutError::Unknown(ty)));
560 }
561 })
562 }
563
564 /// Overlap eligibility and variant assignment for each GeneratorSavedLocal.
565 #[derive(Clone, Debug, PartialEq)]
566 enum SavedLocalEligibility {
567 Unassigned,
568 Assigned(VariantIdx),
569 Ineligible(Option<FieldIdx>),
570 }
571
572 // When laying out generators, we divide our saved local fields into two
573 // categories: overlap-eligible and overlap-ineligible.
574 //
575 // Those fields which are ineligible for overlap go in a "prefix" at the
576 // beginning of the layout, and always have space reserved for them.
577 //
578 // Overlap-eligible fields are only assigned to one variant, so we lay
579 // those fields out for each variant and put them right after the
580 // prefix.
581 //
582 // Finally, in the layout details, we point to the fields from the
583 // variants they are assigned to. It is possible for some fields to be
584 // included in multiple variants. No field ever "moves around" in the
585 // layout; its offset is always the same.
586 //
587 // Also included in the layout are the upvars and the discriminant.
588 // These are included as fields on the "outer" layout; they are not part
589 // of any variant.
590
591 /// Compute the eligibility and assignment of each local.
generator_saved_local_eligibility( info: &GeneratorLayout<'_>, ) -> (BitSet<GeneratorSavedLocal>, IndexVec<GeneratorSavedLocal, SavedLocalEligibility>)592 fn generator_saved_local_eligibility(
593 info: &GeneratorLayout<'_>,
594 ) -> (BitSet<GeneratorSavedLocal>, IndexVec<GeneratorSavedLocal, SavedLocalEligibility>) {
595 use SavedLocalEligibility::*;
596
597 let mut assignments: IndexVec<GeneratorSavedLocal, SavedLocalEligibility> =
598 IndexVec::from_elem(Unassigned, &info.field_tys);
599
600 // The saved locals not eligible for overlap. These will get
601 // "promoted" to the prefix of our generator.
602 let mut ineligible_locals = BitSet::new_empty(info.field_tys.len());
603
604 // Figure out which of our saved locals are fields in only
605 // one variant. The rest are deemed ineligible for overlap.
606 for (variant_index, fields) in info.variant_fields.iter_enumerated() {
607 for local in fields {
608 match assignments[*local] {
609 Unassigned => {
610 assignments[*local] = Assigned(variant_index);
611 }
612 Assigned(idx) => {
613 // We've already seen this local at another suspension
614 // point, so it is no longer a candidate.
615 trace!(
616 "removing local {:?} in >1 variant ({:?}, {:?})",
617 local,
618 variant_index,
619 idx
620 );
621 ineligible_locals.insert(*local);
622 assignments[*local] = Ineligible(None);
623 }
624 Ineligible(_) => {}
625 }
626 }
627 }
628
629 // Next, check every pair of eligible locals to see if they
630 // conflict.
631 for local_a in info.storage_conflicts.rows() {
632 let conflicts_a = info.storage_conflicts.count(local_a);
633 if ineligible_locals.contains(local_a) {
634 continue;
635 }
636
637 for local_b in info.storage_conflicts.iter(local_a) {
638 // local_a and local_b are storage live at the same time, therefore they
639 // cannot overlap in the generator layout. The only way to guarantee
640 // this is if they are in the same variant, or one is ineligible
641 // (which means it is stored in every variant).
642 if ineligible_locals.contains(local_b) || assignments[local_a] == assignments[local_b] {
643 continue;
644 }
645
646 // If they conflict, we will choose one to make ineligible.
647 // This is not always optimal; it's just a greedy heuristic that
648 // seems to produce good results most of the time.
649 let conflicts_b = info.storage_conflicts.count(local_b);
650 let (remove, other) =
651 if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) };
652 ineligible_locals.insert(remove);
653 assignments[remove] = Ineligible(None);
654 trace!("removing local {:?} due to conflict with {:?}", remove, other);
655 }
656 }
657
658 // Count the number of variants in use. If only one of them, then it is
659 // impossible to overlap any locals in our layout. In this case it's
660 // always better to make the remaining locals ineligible, so we can
661 // lay them out with the other locals in the prefix and eliminate
662 // unnecessary padding bytes.
663 {
664 let mut used_variants = BitSet::new_empty(info.variant_fields.len());
665 for assignment in &assignments {
666 if let Assigned(idx) = assignment {
667 used_variants.insert(*idx);
668 }
669 }
670 if used_variants.count() < 2 {
671 for assignment in assignments.iter_mut() {
672 *assignment = Ineligible(None);
673 }
674 ineligible_locals.insert_all();
675 }
676 }
677
678 // Write down the order of our locals that will be promoted to the prefix.
679 {
680 for (idx, local) in ineligible_locals.iter().enumerate() {
681 assignments[local] = Ineligible(Some(FieldIdx::from_usize(idx)));
682 }
683 }
684 debug!("generator saved local assignments: {:?}", assignments);
685
686 (ineligible_locals, assignments)
687 }
688
689 /// Compute the full generator layout.
generator_layout<'tcx>( cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, ty: Ty<'tcx>, def_id: hir::def_id::DefId, substs: SubstsRef<'tcx>, ) -> Result<Layout<'tcx>, &'tcx LayoutError<'tcx>>690 fn generator_layout<'tcx>(
691 cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
692 ty: Ty<'tcx>,
693 def_id: hir::def_id::DefId,
694 substs: SubstsRef<'tcx>,
695 ) -> Result<Layout<'tcx>, &'tcx LayoutError<'tcx>> {
696 use SavedLocalEligibility::*;
697 let tcx = cx.tcx;
698 let subst_field = |ty: Ty<'tcx>| EarlyBinder::bind(ty).subst(tcx, substs);
699
700 let Some(info) = tcx.generator_layout(def_id) else {
701 return Err(error(cx, LayoutError::Unknown(ty)));
702 };
703 let (ineligible_locals, assignments) = generator_saved_local_eligibility(&info);
704
705 // Build a prefix layout, including "promoting" all ineligible
706 // locals as part of the prefix. We compute the layout of all of
707 // these fields at once to get optimal packing.
708 let tag_index = substs.as_generator().prefix_tys().count();
709
710 // `info.variant_fields` already accounts for the reserved variants, so no need to add them.
711 let max_discr = (info.variant_fields.len() - 1) as u128;
712 let discr_int = Integer::fit_unsigned(max_discr);
713 let tag = Scalar::Initialized {
714 value: Primitive::Int(discr_int, false),
715 valid_range: WrappingRange { start: 0, end: max_discr },
716 };
717 let tag_layout = cx.tcx.mk_layout(LayoutS::scalar(cx, tag));
718
719 let promoted_layouts = ineligible_locals
720 .iter()
721 .map(|local| subst_field(info.field_tys[local].ty))
722 .map(|ty| Ty::new_maybe_uninit(tcx, ty))
723 .map(|ty| Ok(cx.layout_of(ty)?.layout));
724 let prefix_layouts = substs
725 .as_generator()
726 .prefix_tys()
727 .map(|ty| Ok(cx.layout_of(ty)?.layout))
728 .chain(iter::once(Ok(tag_layout)))
729 .chain(promoted_layouts)
730 .try_collect::<IndexVec<_, _>>()?;
731 let prefix = univariant_uninterned(
732 cx,
733 ty,
734 &prefix_layouts,
735 &ReprOptions::default(),
736 StructKind::AlwaysSized,
737 )?;
738
739 let (prefix_size, prefix_align) = (prefix.size, prefix.align);
740
741 // Split the prefix layout into the "outer" fields (upvars and
742 // discriminant) and the "promoted" fields. Promoted fields will
743 // get included in each variant that requested them in
744 // GeneratorLayout.
745 debug!("prefix = {:#?}", prefix);
746 let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields {
747 FieldsShape::Arbitrary { mut offsets, memory_index } => {
748 let mut inverse_memory_index = memory_index.invert_bijective_mapping();
749
750 // "a" (`0..b_start`) and "b" (`b_start..`) correspond to
751 // "outer" and "promoted" fields respectively.
752 let b_start = FieldIdx::from_usize(tag_index + 1);
753 let offsets_b = IndexVec::from_raw(offsets.raw.split_off(b_start.as_usize()));
754 let offsets_a = offsets;
755
756 // Disentangle the "a" and "b" components of `inverse_memory_index`
757 // by preserving the order but keeping only one disjoint "half" each.
758 // FIXME(eddyb) build a better abstraction for permutations, if possible.
759 let inverse_memory_index_b: IndexVec<u32, FieldIdx> = inverse_memory_index
760 .iter()
761 .filter_map(|&i| i.as_u32().checked_sub(b_start.as_u32()).map(FieldIdx::from_u32))
762 .collect();
763 inverse_memory_index.raw.retain(|&i| i < b_start);
764 let inverse_memory_index_a = inverse_memory_index;
765
766 // Since `inverse_memory_index_{a,b}` each only refer to their
767 // respective fields, they can be safely inverted
768 let memory_index_a = inverse_memory_index_a.invert_bijective_mapping();
769 let memory_index_b = inverse_memory_index_b.invert_bijective_mapping();
770
771 let outer_fields =
772 FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a };
773 (outer_fields, offsets_b, memory_index_b)
774 }
775 _ => bug!(),
776 };
777
778 let mut size = prefix.size;
779 let mut align = prefix.align;
780 let variants = info
781 .variant_fields
782 .iter_enumerated()
783 .map(|(index, variant_fields)| {
784 // Only include overlap-eligible fields when we compute our variant layout.
785 let variant_only_tys = variant_fields
786 .iter()
787 .filter(|local| match assignments[**local] {
788 Unassigned => bug!(),
789 Assigned(v) if v == index => true,
790 Assigned(_) => bug!("assignment does not match variant"),
791 Ineligible(_) => false,
792 })
793 .map(|local| subst_field(info.field_tys[*local].ty));
794
795 let mut variant = univariant_uninterned(
796 cx,
797 ty,
798 &variant_only_tys
799 .map(|ty| Ok(cx.layout_of(ty)?.layout))
800 .try_collect::<IndexVec<_, _>>()?,
801 &ReprOptions::default(),
802 StructKind::Prefixed(prefix_size, prefix_align.abi),
803 )?;
804 variant.variants = Variants::Single { index };
805
806 let FieldsShape::Arbitrary { offsets, memory_index } = variant.fields else {
807 bug!();
808 };
809
810 // Now, stitch the promoted and variant-only fields back together in
811 // the order they are mentioned by our GeneratorLayout.
812 // Because we only use some subset (that can differ between variants)
813 // of the promoted fields, we can't just pick those elements of the
814 // `promoted_memory_index` (as we'd end up with gaps).
815 // So instead, we build an "inverse memory_index", as if all of the
816 // promoted fields were being used, but leave the elements not in the
817 // subset as `INVALID_FIELD_IDX`, which we can filter out later to
818 // obtain a valid (bijective) mapping.
819 const INVALID_FIELD_IDX: FieldIdx = FieldIdx::MAX;
820 debug_assert!(variant_fields.next_index() <= INVALID_FIELD_IDX);
821
822 let mut combined_inverse_memory_index = IndexVec::from_elem_n(
823 INVALID_FIELD_IDX,
824 promoted_memory_index.len() + memory_index.len(),
825 );
826 let mut offsets_and_memory_index = iter::zip(offsets, memory_index);
827 let combined_offsets = variant_fields
828 .iter_enumerated()
829 .map(|(i, local)| {
830 let (offset, memory_index) = match assignments[*local] {
831 Unassigned => bug!(),
832 Assigned(_) => {
833 let (offset, memory_index) = offsets_and_memory_index.next().unwrap();
834 (offset, promoted_memory_index.len() as u32 + memory_index)
835 }
836 Ineligible(field_idx) => {
837 let field_idx = field_idx.unwrap();
838 (promoted_offsets[field_idx], promoted_memory_index[field_idx])
839 }
840 };
841 combined_inverse_memory_index[memory_index] = i;
842 offset
843 })
844 .collect();
845
846 // Remove the unused slots and invert the mapping to obtain the
847 // combined `memory_index` (also see previous comment).
848 combined_inverse_memory_index.raw.retain(|&i| i != INVALID_FIELD_IDX);
849 let combined_memory_index = combined_inverse_memory_index.invert_bijective_mapping();
850
851 variant.fields = FieldsShape::Arbitrary {
852 offsets: combined_offsets,
853 memory_index: combined_memory_index,
854 };
855
856 size = size.max(variant.size);
857 align = align.max(variant.align);
858 Ok(variant)
859 })
860 .try_collect::<IndexVec<VariantIdx, _>>()?;
861
862 size = size.align_to(align.abi);
863
864 let abi = if prefix.abi.is_uninhabited() || variants.iter().all(|v| v.abi.is_uninhabited()) {
865 Abi::Uninhabited
866 } else {
867 Abi::Aggregate { sized: true }
868 };
869
870 let layout = tcx.mk_layout(LayoutS {
871 variants: Variants::Multiple {
872 tag,
873 tag_encoding: TagEncoding::Direct,
874 tag_field: tag_index,
875 variants,
876 },
877 fields: outer_fields,
878 abi,
879 largest_niche: prefix.largest_niche,
880 size,
881 align,
882 });
883 debug!("generator layout ({:?}): {:#?}", ty, layout);
884 Ok(layout)
885 }
886
887 /// This is invoked by the `layout_of` query to record the final
888 /// layout of each type.
889 #[inline(always)]
record_layout_for_printing<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: TyAndLayout<'tcx>)890 fn record_layout_for_printing<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: TyAndLayout<'tcx>) {
891 // If we are running with `-Zprint-type-sizes`, maybe record layouts
892 // for dumping later.
893 if cx.tcx.sess.opts.unstable_opts.print_type_sizes {
894 record_layout_for_printing_outlined(cx, layout)
895 }
896 }
897
record_layout_for_printing_outlined<'tcx>( cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: TyAndLayout<'tcx>, )898 fn record_layout_for_printing_outlined<'tcx>(
899 cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
900 layout: TyAndLayout<'tcx>,
901 ) {
902 // Ignore layouts that are done with non-empty environments or
903 // non-monomorphic layouts, as the user only wants to see the stuff
904 // resulting from the final codegen session.
905 if layout.ty.has_non_region_param() || !cx.param_env.caller_bounds().is_empty() {
906 return;
907 }
908
909 // (delay format until we actually need it)
910 let record = |kind, packed, opt_discr_size, variants| {
911 let type_desc = format!("{:?}", layout.ty);
912 cx.tcx.sess.code_stats.record_type_size(
913 kind,
914 type_desc,
915 layout.align.abi,
916 layout.size,
917 packed,
918 opt_discr_size,
919 variants,
920 );
921 };
922
923 match *layout.ty.kind() {
924 ty::Adt(adt_def, _) => {
925 debug!("print-type-size t: `{:?}` process adt", layout.ty);
926 let adt_kind = adt_def.adt_kind();
927 let adt_packed = adt_def.repr().pack.is_some();
928 let (variant_infos, opt_discr_size) = variant_info_for_adt(cx, layout, adt_def);
929 record(adt_kind.into(), adt_packed, opt_discr_size, variant_infos);
930 }
931
932 ty::Generator(def_id, substs, _) => {
933 debug!("print-type-size t: `{:?}` record generator", layout.ty);
934 // Generators always have a begin/poisoned/end state with additional suspend points
935 let (variant_infos, opt_discr_size) =
936 variant_info_for_generator(cx, layout, def_id, substs);
937 record(DataTypeKind::Generator, false, opt_discr_size, variant_infos);
938 }
939
940 ty::Closure(..) => {
941 debug!("print-type-size t: `{:?}` record closure", layout.ty);
942 record(DataTypeKind::Closure, false, None, vec![]);
943 }
944
945 _ => {
946 debug!("print-type-size t: `{:?}` skip non-nominal", layout.ty);
947 }
948 };
949 }
950
variant_info_for_adt<'tcx>( cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: TyAndLayout<'tcx>, adt_def: AdtDef<'tcx>, ) -> (Vec<VariantInfo>, Option<Size>)951 fn variant_info_for_adt<'tcx>(
952 cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
953 layout: TyAndLayout<'tcx>,
954 adt_def: AdtDef<'tcx>,
955 ) -> (Vec<VariantInfo>, Option<Size>) {
956 let build_variant_info = |n: Option<Symbol>, flds: &[Symbol], layout: TyAndLayout<'tcx>| {
957 let mut min_size = Size::ZERO;
958 let field_info: Vec<_> = flds
959 .iter()
960 .enumerate()
961 .map(|(i, &name)| {
962 let field_layout = layout.field(cx, i);
963 let offset = layout.fields.offset(i);
964 min_size = min_size.max(offset + field_layout.size);
965 FieldInfo {
966 kind: FieldKind::AdtField,
967 name,
968 offset: offset.bytes(),
969 size: field_layout.size.bytes(),
970 align: field_layout.align.abi.bytes(),
971 }
972 })
973 .collect();
974
975 VariantInfo {
976 name: n,
977 kind: if layout.is_unsized() { SizeKind::Min } else { SizeKind::Exact },
978 align: layout.align.abi.bytes(),
979 size: if min_size.bytes() == 0 { layout.size.bytes() } else { min_size.bytes() },
980 fields: field_info,
981 }
982 };
983
984 match layout.variants {
985 Variants::Single { index } => {
986 if !adt_def.variants().is_empty() && layout.fields != FieldsShape::Primitive {
987 debug!("print-type-size `{:#?}` variant {}", layout, adt_def.variant(index).name);
988 let variant_def = &adt_def.variant(index);
989 let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
990 (vec![build_variant_info(Some(variant_def.name), &fields, layout)], None)
991 } else {
992 (vec![], None)
993 }
994 }
995
996 Variants::Multiple { tag, ref tag_encoding, .. } => {
997 debug!(
998 "print-type-size `{:#?}` adt general variants def {}",
999 layout.ty,
1000 adt_def.variants().len()
1001 );
1002 let variant_infos: Vec<_> = adt_def
1003 .variants()
1004 .iter_enumerated()
1005 .map(|(i, variant_def)| {
1006 let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
1007 build_variant_info(Some(variant_def.name), &fields, layout.for_variant(cx, i))
1008 })
1009 .collect();
1010
1011 (
1012 variant_infos,
1013 match tag_encoding {
1014 TagEncoding::Direct => Some(tag.size(cx)),
1015 _ => None,
1016 },
1017 )
1018 }
1019 }
1020 }
1021
variant_info_for_generator<'tcx>( cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: TyAndLayout<'tcx>, def_id: DefId, substs: ty::SubstsRef<'tcx>, ) -> (Vec<VariantInfo>, Option<Size>)1022 fn variant_info_for_generator<'tcx>(
1023 cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
1024 layout: TyAndLayout<'tcx>,
1025 def_id: DefId,
1026 substs: ty::SubstsRef<'tcx>,
1027 ) -> (Vec<VariantInfo>, Option<Size>) {
1028 let Variants::Multiple { tag, ref tag_encoding, tag_field, .. } = layout.variants else {
1029 return (vec![], None);
1030 };
1031
1032 let generator = cx.tcx.optimized_mir(def_id).generator_layout().unwrap();
1033 let upvar_names = cx.tcx.closure_saved_names_of_captured_variables(def_id);
1034
1035 let mut upvars_size = Size::ZERO;
1036 let upvar_fields: Vec<_> = substs
1037 .as_generator()
1038 .upvar_tys()
1039 .zip(upvar_names)
1040 .enumerate()
1041 .map(|(field_idx, (_, name))| {
1042 let field_layout = layout.field(cx, field_idx);
1043 let offset = layout.fields.offset(field_idx);
1044 upvars_size = upvars_size.max(offset + field_layout.size);
1045 FieldInfo {
1046 kind: FieldKind::Upvar,
1047 name: *name,
1048 offset: offset.bytes(),
1049 size: field_layout.size.bytes(),
1050 align: field_layout.align.abi.bytes(),
1051 }
1052 })
1053 .collect();
1054
1055 let mut variant_infos: Vec<_> = generator
1056 .variant_fields
1057 .iter_enumerated()
1058 .map(|(variant_idx, variant_def)| {
1059 let variant_layout = layout.for_variant(cx, variant_idx);
1060 let mut variant_size = Size::ZERO;
1061 let fields = variant_def
1062 .iter()
1063 .enumerate()
1064 .map(|(field_idx, local)| {
1065 let field_layout = variant_layout.field(cx, field_idx);
1066 let offset = variant_layout.fields.offset(field_idx);
1067 // The struct is as large as the last field's end
1068 variant_size = variant_size.max(offset + field_layout.size);
1069 FieldInfo {
1070 kind: FieldKind::GeneratorLocal,
1071 name: generator.field_names[*local].unwrap_or(Symbol::intern(&format!(
1072 ".generator_field{}",
1073 local.as_usize()
1074 ))),
1075 offset: offset.bytes(),
1076 size: field_layout.size.bytes(),
1077 align: field_layout.align.abi.bytes(),
1078 }
1079 })
1080 .chain(upvar_fields.iter().copied())
1081 .collect();
1082
1083 // If the variant has no state-specific fields, then it's the size of the upvars.
1084 if variant_size == Size::ZERO {
1085 variant_size = upvars_size;
1086 }
1087
1088 // This `if` deserves some explanation.
1089 //
1090 // The layout code has a choice of where to place the discriminant of this generator.
1091 // If the discriminant of the generator is placed early in the layout (before the
1092 // variant's own fields), then it'll implicitly be counted towards the size of the
1093 // variant, since we use the maximum offset to calculate size.
1094 // (side-note: I know this is a bit problematic given upvars placement, etc).
1095 //
1096 // This is important, since the layout printing code always subtracts this discriminant
1097 // size from the variant size if the struct is "enum"-like, so failing to account for it
1098 // will either lead to numerical underflow, or an underreported variant size...
1099 //
1100 // However, if the discriminant is placed past the end of the variant, then we need
1101 // to factor in the size of the discriminant manually. This really should be refactored
1102 // better, but this "works" for now.
1103 if layout.fields.offset(tag_field) >= variant_size {
1104 variant_size += match tag_encoding {
1105 TagEncoding::Direct => tag.size(cx),
1106 _ => Size::ZERO,
1107 };
1108 }
1109
1110 VariantInfo {
1111 name: Some(Symbol::intern(&ty::GeneratorSubsts::variant_name(variant_idx))),
1112 kind: SizeKind::Exact,
1113 size: variant_size.bytes(),
1114 align: variant_layout.align.abi.bytes(),
1115 fields,
1116 }
1117 })
1118 .collect();
1119
1120 // The first three variants are hardcoded to be `UNRESUMED`, `RETURNED` and `POISONED`.
1121 // We will move the `RETURNED` and `POISONED` elements to the end so we
1122 // are left with a sorting order according to the generators yield points:
1123 // First `Unresumed`, then the `SuspendN` followed by `Returned` and `Panicked` (POISONED).
1124 let end_states = variant_infos.drain(1..=2);
1125 let end_states: Vec<_> = end_states.collect();
1126 variant_infos.extend(end_states);
1127
1128 (
1129 variant_infos,
1130 match tag_encoding {
1131 TagEncoding::Direct => Some(tag.size(cx)),
1132 _ => None,
1133 },
1134 )
1135 }
1136