• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! Edit distances.
2 //!
3 //! The [edit distance] is a metric for measuring the difference between two strings.
4 //!
5 //! [edit distance]: https://en.wikipedia.org/wiki/Edit_distance
6 
7 // The current implementation is the restricted Damerau-Levenshtein algorithm. It is restricted
8 // because it does not permit modifying characters that have already been transposed. The specific
9 // algorithm should not matter to the caller of the methods, which is why it is not noted in the
10 // documentation.
11 
12 use crate::symbol::Symbol;
13 use std::{cmp, mem};
14 
15 #[cfg(test)]
16 mod tests;
17 
18 /// Finds the [edit distance] between two strings.
19 ///
20 /// Returns `None` if the distance exceeds the limit.
21 ///
22 /// [edit distance]: https://en.wikipedia.org/wiki/Edit_distance
edit_distance(a: &str, b: &str, limit: usize) -> Option<usize>23 pub fn edit_distance(a: &str, b: &str, limit: usize) -> Option<usize> {
24     let mut a = &a.chars().collect::<Vec<_>>()[..];
25     let mut b = &b.chars().collect::<Vec<_>>()[..];
26 
27     // Ensure that `b` is the shorter string, minimizing memory use.
28     if a.len() < b.len() {
29         mem::swap(&mut a, &mut b);
30     }
31 
32     let min_dist = a.len() - b.len();
33     // If we know the limit will be exceeded, we can return early.
34     if min_dist > limit {
35         return None;
36     }
37 
38     // Strip common prefix.
39     while let Some(((b_char, b_rest), (a_char, a_rest))) = b.split_first().zip(a.split_first())
40         && a_char == b_char
41     {
42         a = a_rest;
43         b = b_rest;
44     }
45     // Strip common suffix.
46     while let Some(((b_char, b_rest), (a_char, a_rest))) = b.split_last().zip(a.split_last())
47         && a_char == b_char
48     {
49         a = a_rest;
50         b = b_rest;
51     }
52 
53     // If either string is empty, the distance is the length of the other.
54     // We know that `b` is the shorter string, so we don't need to check `a`.
55     if b.len() == 0 {
56         return Some(min_dist);
57     }
58 
59     let mut prev_prev = vec![usize::MAX; b.len() + 1];
60     let mut prev = (0..=b.len()).collect::<Vec<_>>();
61     let mut current = vec![0; b.len() + 1];
62 
63     // row by row
64     for i in 1..=a.len() {
65         current[0] = i;
66         let a_idx = i - 1;
67 
68         // column by column
69         for j in 1..=b.len() {
70             let b_idx = j - 1;
71 
72             // There is no cost to substitute a character with itself.
73             let substitution_cost = if a[a_idx] == b[b_idx] { 0 } else { 1 };
74 
75             current[j] = cmp::min(
76                 // deletion
77                 prev[j] + 1,
78                 cmp::min(
79                     // insertion
80                     current[j - 1] + 1,
81                     // substitution
82                     prev[j - 1] + substitution_cost,
83                 ),
84             );
85 
86             if (i > 1) && (j > 1) && (a[a_idx] == b[b_idx - 1]) && (a[a_idx - 1] == b[b_idx]) {
87                 // transposition
88                 current[j] = cmp::min(current[j], prev_prev[j - 2] + 1);
89             }
90         }
91 
92         // Rotate the buffers, reusing the memory.
93         [prev_prev, prev, current] = [prev, current, prev_prev];
94     }
95 
96     // `prev` because we already rotated the buffers.
97     let distance = prev[b.len()];
98     (distance <= limit).then_some(distance)
99 }
100 
101 /// Provides a word similarity score between two words that accounts for substrings being more
102 /// meaningful than a typical edit distance. The lower the score, the closer the match. 0 is an
103 /// identical match.
104 ///
105 /// Uses the edit distance between the two strings and removes the cost of the length difference.
106 /// If this is 0 then it is either a substring match or a full word match, in the substring match
107 /// case we detect this and return `1`. To prevent finding meaningless substrings, eg. "in" in
108 /// "shrink", we only perform this subtraction of length difference if one of the words is not
109 /// greater than twice the length of the other. For cases where the words are close in size but not
110 /// an exact substring then the cost of the length difference is discounted by half.
111 ///
112 /// Returns `None` if the distance exceeds the limit.
edit_distance_with_substrings(a: &str, b: &str, limit: usize) -> Option<usize>113 pub fn edit_distance_with_substrings(a: &str, b: &str, limit: usize) -> Option<usize> {
114     let n = a.chars().count();
115     let m = b.chars().count();
116 
117     // Check one isn't less than half the length of the other. If this is true then there is a
118     // big difference in length.
119     let big_len_diff = (n * 2) < m || (m * 2) < n;
120     let len_diff = if n < m { m - n } else { n - m };
121     let distance = edit_distance(a, b, limit + len_diff)?;
122 
123     // This is the crux, subtracting length difference means exact substring matches will now be 0
124     let score = distance - len_diff;
125 
126     // If the score is 0 but the words have different lengths then it's a substring match not a full
127     // word match
128     let score = if score == 0 && len_diff > 0 && !big_len_diff {
129         1 // Exact substring match, but not a total word match so return non-zero
130     } else if !big_len_diff {
131         // Not a big difference in length, discount cost of length difference
132         score + (len_diff + 1) / 2
133     } else {
134         // A big difference in length, add back the difference in length to the score
135         score + len_diff
136     };
137 
138     (score <= limit).then_some(score)
139 }
140 
141 /// Finds the best match for given word in the given iterator where substrings are meaningful.
142 ///
143 /// A version of [`find_best_match_for_name`] that uses [`edit_distance_with_substrings`] as the
144 /// score for word similarity. This takes an optional distance limit which defaults to one-third of
145 /// the given word.
146 ///
147 /// We use case insensitive comparison to improve accuracy on an edge case with a lower(upper)case
148 /// letters mismatch.
find_best_match_for_name_with_substrings( candidates: &[Symbol], lookup: Symbol, dist: Option<usize>, ) -> Option<Symbol>149 pub fn find_best_match_for_name_with_substrings(
150     candidates: &[Symbol],
151     lookup: Symbol,
152     dist: Option<usize>,
153 ) -> Option<Symbol> {
154     find_best_match_for_name_impl(true, candidates, lookup, dist)
155 }
156 
157 /// Finds the best match for a given word in the given iterator.
158 ///
159 /// As a loose rule to avoid the obviously incorrect suggestions, it takes
160 /// an optional limit for the maximum allowable edit distance, which defaults
161 /// to one-third of the given word.
162 ///
163 /// We use case insensitive comparison to improve accuracy on an edge case with a lower(upper)case
164 /// letters mismatch.
find_best_match_for_name( candidates: &[Symbol], lookup: Symbol, dist: Option<usize>, ) -> Option<Symbol>165 pub fn find_best_match_for_name(
166     candidates: &[Symbol],
167     lookup: Symbol,
168     dist: Option<usize>,
169 ) -> Option<Symbol> {
170     find_best_match_for_name_impl(false, candidates, lookup, dist)
171 }
172 
173 #[cold]
find_best_match_for_name_impl( use_substring_score: bool, candidates: &[Symbol], lookup_symbol: Symbol, dist: Option<usize>, ) -> Option<Symbol>174 fn find_best_match_for_name_impl(
175     use_substring_score: bool,
176     candidates: &[Symbol],
177     lookup_symbol: Symbol,
178     dist: Option<usize>,
179 ) -> Option<Symbol> {
180     let lookup = lookup_symbol.as_str();
181     let lookup_uppercase = lookup.to_uppercase();
182 
183     // Priority of matches:
184     // 1. Exact case insensitive match
185     // 2. Edit distance match
186     // 3. Sorted word match
187     if let Some(c) = candidates.iter().find(|c| c.as_str().to_uppercase() == lookup_uppercase) {
188         return Some(*c);
189     }
190 
191     let mut dist = dist.unwrap_or_else(|| cmp::max(lookup.len(), 3) / 3);
192     let mut best = None;
193     // store the candidates with the same distance, only for `use_substring_score` current.
194     let mut next_candidates = vec![];
195     for c in candidates {
196         match if use_substring_score {
197             edit_distance_with_substrings(lookup, c.as_str(), dist)
198         } else {
199             edit_distance(lookup, c.as_str(), dist)
200         } {
201             Some(0) => return Some(*c),
202             Some(d) => {
203                 if use_substring_score {
204                     if d < dist {
205                         dist = d;
206                         next_candidates.clear();
207                     } else {
208                         // `d == dist` here, we need to store the candidates with the same distance
209                         // so we won't decrease the distance in the next loop.
210                     }
211                     next_candidates.push(*c);
212                 } else {
213                     dist = d - 1;
214                 }
215                 best = Some(*c);
216             }
217             None => {}
218         }
219     }
220 
221     // We have a tie among several candidates, try to select the best among them ignoring substrings.
222     // For example, the candidates list `force_capture`, `capture`, and user inputted `forced_capture`,
223     // we select `force_capture` with a extra round of edit distance calculation.
224     if next_candidates.len() > 1 {
225         debug_assert!(use_substring_score);
226         best = find_best_match_for_name_impl(
227             false,
228             &next_candidates,
229             lookup_symbol,
230             Some(lookup.len()),
231         );
232     }
233     if best.is_some() {
234         return best;
235     }
236 
237     find_match_by_sorted_words(candidates, lookup)
238 }
239 
find_match_by_sorted_words(iter_names: &[Symbol], lookup: &str) -> Option<Symbol>240 fn find_match_by_sorted_words(iter_names: &[Symbol], lookup: &str) -> Option<Symbol> {
241     iter_names.iter().fold(None, |result, candidate| {
242         if sort_by_words(candidate.as_str()) == sort_by_words(lookup) {
243             Some(*candidate)
244         } else {
245             result
246         }
247     })
248 }
249 
sort_by_words(name: &str) -> String250 fn sort_by_words(name: &str) -> String {
251     let mut split_words: Vec<&str> = name.split('_').collect();
252     // We are sorting primitive &strs and can use unstable sort here.
253     split_words.sort_unstable();
254     split_words.join("_")
255 }
256