1 //! Types for tracking pieces of source code within a crate.
2 //!
3 //! The [`SourceMap`] tracks all the source code used within a single crate, mapping
4 //! from integer byte positions to the original source code location. Each bit
5 //! of source parsed during crate parsing (typically files, in-memory strings,
6 //! or various bits of macro expansion) cover a continuous range of bytes in the
7 //! `SourceMap` and are represented by [`SourceFile`]s. Byte positions are stored in
8 //! [`Span`] and used pervasively in the compiler. They are absolute positions
9 //! within the `SourceMap`, which upon request can be converted to line and column
10 //! information, source code snippets, etc.
11
12 pub use crate::hygiene::{ExpnData, ExpnKind};
13 pub use crate::*;
14
15 use rustc_data_structures::fx::FxHashMap;
16 use rustc_data_structures::stable_hasher::{Hash128, Hash64, StableHasher};
17 use rustc_data_structures::sync::{
18 AtomicU32, IntoDynSyncSend, Lrc, MappedReadGuard, ReadGuard, RwLock,
19 };
20 use std::cmp;
21 use std::hash::Hash;
22 use std::path::{self, Path, PathBuf};
23 use std::sync::atomic::Ordering;
24
25 use std::fs;
26 use std::io;
27
28 #[cfg(test)]
29 mod tests;
30
31 /// Returns the span itself if it doesn't come from a macro expansion,
32 /// otherwise return the call site span up to the `enclosing_sp` by
33 /// following the `expn_data` chain.
original_sp(sp: Span, enclosing_sp: Span) -> Span34 pub fn original_sp(sp: Span, enclosing_sp: Span) -> Span {
35 let expn_data1 = sp.ctxt().outer_expn_data();
36 let expn_data2 = enclosing_sp.ctxt().outer_expn_data();
37 if expn_data1.is_root() || !expn_data2.is_root() && expn_data1.call_site == expn_data2.call_site
38 {
39 sp
40 } else {
41 original_sp(expn_data1.call_site, enclosing_sp)
42 }
43 }
44
45 pub mod monotonic {
46 use std::ops::{Deref, DerefMut};
47
48 /// A `MonotonicVec` is a `Vec` which can only be grown.
49 /// Once inserted, an element can never be removed or swapped,
50 /// guaranteeing that any indices into a `MonotonicVec` are stable
51 // This is declared in its own module to ensure that the private
52 // field is inaccessible
53 pub struct MonotonicVec<T>(Vec<T>);
54 impl<T> MonotonicVec<T> {
new(val: Vec<T>) -> MonotonicVec<T>55 pub fn new(val: Vec<T>) -> MonotonicVec<T> {
56 MonotonicVec(val)
57 }
58
push(&mut self, val: T)59 pub fn push(&mut self, val: T) {
60 self.0.push(val);
61 }
62 }
63
64 impl<T> Default for MonotonicVec<T> {
default() -> Self65 fn default() -> Self {
66 MonotonicVec::new(vec![])
67 }
68 }
69
70 impl<T> Deref for MonotonicVec<T> {
71 type Target = Vec<T>;
deref(&self) -> &Self::Target72 fn deref(&self) -> &Self::Target {
73 &self.0
74 }
75 }
76
77 impl<T> !DerefMut for MonotonicVec<T> {}
78 }
79
80 #[derive(Clone, Encodable, Decodable, Debug, Copy, HashStable_Generic)]
81 pub struct Spanned<T> {
82 pub node: T,
83 pub span: Span,
84 }
85
respan<T>(sp: Span, t: T) -> Spanned<T>86 pub fn respan<T>(sp: Span, t: T) -> Spanned<T> {
87 Spanned { node: t, span: sp }
88 }
89
dummy_spanned<T>(t: T) -> Spanned<T>90 pub fn dummy_spanned<T>(t: T) -> Spanned<T> {
91 respan(DUMMY_SP, t)
92 }
93
94 // _____________________________________________________________________________
95 // SourceFile, MultiByteChar, FileName, FileLines
96 //
97
98 /// An abstraction over the fs operations used by the Parser.
99 pub trait FileLoader {
100 /// Query the existence of a file.
file_exists(&self, path: &Path) -> bool101 fn file_exists(&self, path: &Path) -> bool;
102
103 /// Read the contents of a UTF-8 file into memory.
read_file(&self, path: &Path) -> io::Result<String>104 fn read_file(&self, path: &Path) -> io::Result<String>;
105
106 /// Read the contents of a potentially non-UTF-8 file into memory.
read_binary_file(&self, path: &Path) -> io::Result<Vec<u8>>107 fn read_binary_file(&self, path: &Path) -> io::Result<Vec<u8>>;
108 }
109
110 /// A FileLoader that uses std::fs to load real files.
111 pub struct RealFileLoader;
112
113 impl FileLoader for RealFileLoader {
file_exists(&self, path: &Path) -> bool114 fn file_exists(&self, path: &Path) -> bool {
115 path.exists()
116 }
117
read_file(&self, path: &Path) -> io::Result<String>118 fn read_file(&self, path: &Path) -> io::Result<String> {
119 fs::read_to_string(path)
120 }
121
read_binary_file(&self, path: &Path) -> io::Result<Vec<u8>>122 fn read_binary_file(&self, path: &Path) -> io::Result<Vec<u8>> {
123 fs::read(path)
124 }
125 }
126
127 /// This is a [SourceFile] identifier that is used to correlate source files between
128 /// subsequent compilation sessions (which is something we need to do during
129 /// incremental compilation).
130 ///
131 /// The [StableSourceFileId] also contains the CrateNum of the crate the source
132 /// file was originally parsed for. This way we get two separate entries in
133 /// the [SourceMap] if the same file is part of both the local and an upstream
134 /// crate. Trying to only have one entry for both cases is problematic because
135 /// at the point where we discover that there's a local use of the file in
136 /// addition to the upstream one, we might already have made decisions based on
137 /// the assumption that it's an upstream file. Treating the two files as
138 /// different has no real downsides.
139 #[derive(Copy, Clone, PartialEq, Eq, Hash, Encodable, Decodable, Debug)]
140 pub struct StableSourceFileId {
141 /// A hash of the source file's [`FileName`]. This is hash so that it's size
142 /// is more predictable than if we included the actual [`FileName`] value.
143 pub file_name_hash: Hash64,
144
145 /// The [`CrateNum`] of the crate this source file was originally parsed for.
146 /// We cannot include this information in the hash because at the time
147 /// of hashing we don't have the context to map from the [`CrateNum`]'s numeric
148 /// value to a `StableCrateId`.
149 pub cnum: CrateNum,
150 }
151
152 // FIXME: we need a more globally consistent approach to the problem solved by
153 // StableSourceFileId, perhaps built atop source_file.name_hash.
154 impl StableSourceFileId {
new(source_file: &SourceFile) -> StableSourceFileId155 pub fn new(source_file: &SourceFile) -> StableSourceFileId {
156 StableSourceFileId::new_from_name(&source_file.name, source_file.cnum)
157 }
158
new_from_name(name: &FileName, cnum: CrateNum) -> StableSourceFileId159 fn new_from_name(name: &FileName, cnum: CrateNum) -> StableSourceFileId {
160 let mut hasher = StableHasher::new();
161 name.hash(&mut hasher);
162 StableSourceFileId { file_name_hash: hasher.finish(), cnum }
163 }
164 }
165
166 // _____________________________________________________________________________
167 // SourceMap
168 //
169
170 #[derive(Default)]
171 pub(super) struct SourceMapFiles {
172 source_files: monotonic::MonotonicVec<Lrc<SourceFile>>,
173 stable_id_to_source_file: FxHashMap<StableSourceFileId, Lrc<SourceFile>>,
174 }
175
176 pub struct SourceMap {
177 /// The address space below this value is currently used by the files in the source map.
178 used_address_space: AtomicU32,
179
180 files: RwLock<SourceMapFiles>,
181 file_loader: IntoDynSyncSend<Box<dyn FileLoader + Sync + Send>>,
182 // This is used to apply the file path remapping as specified via
183 // `--remap-path-prefix` to all `SourceFile`s allocated within this `SourceMap`.
184 path_mapping: FilePathMapping,
185
186 /// The algorithm used for hashing the contents of each source file.
187 hash_kind: SourceFileHashAlgorithm,
188 }
189
190 impl SourceMap {
new(path_mapping: FilePathMapping) -> SourceMap191 pub fn new(path_mapping: FilePathMapping) -> SourceMap {
192 Self::with_file_loader_and_hash_kind(
193 Box::new(RealFileLoader),
194 path_mapping,
195 SourceFileHashAlgorithm::Md5,
196 )
197 }
198
with_file_loader_and_hash_kind( file_loader: Box<dyn FileLoader + Sync + Send>, path_mapping: FilePathMapping, hash_kind: SourceFileHashAlgorithm, ) -> SourceMap199 pub fn with_file_loader_and_hash_kind(
200 file_loader: Box<dyn FileLoader + Sync + Send>,
201 path_mapping: FilePathMapping,
202 hash_kind: SourceFileHashAlgorithm,
203 ) -> SourceMap {
204 SourceMap {
205 used_address_space: AtomicU32::new(0),
206 files: Default::default(),
207 file_loader: IntoDynSyncSend(file_loader),
208 path_mapping,
209 hash_kind,
210 }
211 }
212
path_mapping(&self) -> &FilePathMapping213 pub fn path_mapping(&self) -> &FilePathMapping {
214 &self.path_mapping
215 }
216
file_exists(&self, path: &Path) -> bool217 pub fn file_exists(&self, path: &Path) -> bool {
218 self.file_loader.file_exists(path)
219 }
220
load_file(&self, path: &Path) -> io::Result<Lrc<SourceFile>>221 pub fn load_file(&self, path: &Path) -> io::Result<Lrc<SourceFile>> {
222 let src = self.file_loader.read_file(path)?;
223 let filename = path.to_owned().into();
224 Ok(self.new_source_file(filename, src))
225 }
226
227 /// Loads source file as a binary blob.
228 ///
229 /// Unlike `load_file`, guarantees that no normalization like BOM-removal
230 /// takes place.
load_binary_file(&self, path: &Path) -> io::Result<Vec<u8>>231 pub fn load_binary_file(&self, path: &Path) -> io::Result<Vec<u8>> {
232 let bytes = self.file_loader.read_binary_file(path)?;
233
234 // We need to add file to the `SourceMap`, so that it is present
235 // in dep-info. There's also an edge case that file might be both
236 // loaded as a binary via `include_bytes!` and as proper `SourceFile`
237 // via `mod`, so we try to use real file contents and not just an
238 // empty string.
239 let text = std::str::from_utf8(&bytes).unwrap_or("").to_string();
240 self.new_source_file(path.to_owned().into(), text);
241 Ok(bytes)
242 }
243
244 // By returning a `MonotonicVec`, we ensure that consumers cannot invalidate
245 // any existing indices pointing into `files`.
files(&self) -> MappedReadGuard<'_, monotonic::MonotonicVec<Lrc<SourceFile>>>246 pub fn files(&self) -> MappedReadGuard<'_, monotonic::MonotonicVec<Lrc<SourceFile>>> {
247 ReadGuard::map(self.files.borrow(), |files| &files.source_files)
248 }
249
source_file_by_stable_id( &self, stable_id: StableSourceFileId, ) -> Option<Lrc<SourceFile>>250 pub fn source_file_by_stable_id(
251 &self,
252 stable_id: StableSourceFileId,
253 ) -> Option<Lrc<SourceFile>> {
254 self.files.borrow().stable_id_to_source_file.get(&stable_id).cloned()
255 }
256
allocate_address_space(&self, size: usize) -> Result<usize, OffsetOverflowError>257 fn allocate_address_space(&self, size: usize) -> Result<usize, OffsetOverflowError> {
258 let size = u32::try_from(size).map_err(|_| OffsetOverflowError)?;
259
260 loop {
261 let current = self.used_address_space.load(Ordering::Relaxed);
262 let next = current
263 .checked_add(size)
264 // Add one so there is some space between files. This lets us distinguish
265 // positions in the `SourceMap`, even in the presence of zero-length files.
266 .and_then(|next| next.checked_add(1))
267 .ok_or(OffsetOverflowError)?;
268
269 if self
270 .used_address_space
271 .compare_exchange(current, next, Ordering::Relaxed, Ordering::Relaxed)
272 .is_ok()
273 {
274 return Ok(usize::try_from(current).unwrap());
275 }
276 }
277 }
278
279 /// Creates a new `SourceFile`.
280 /// If a file already exists in the `SourceMap` with the same ID, that file is returned
281 /// unmodified.
new_source_file(&self, filename: FileName, src: String) -> Lrc<SourceFile>282 pub fn new_source_file(&self, filename: FileName, src: String) -> Lrc<SourceFile> {
283 self.try_new_source_file(filename, src).unwrap_or_else(|OffsetOverflowError| {
284 eprintln!("fatal error: rustc does not support files larger than 4GB");
285 crate::fatal_error::FatalError.raise()
286 })
287 }
288
try_new_source_file( &self, filename: FileName, src: String, ) -> Result<Lrc<SourceFile>, OffsetOverflowError>289 fn try_new_source_file(
290 &self,
291 filename: FileName,
292 src: String,
293 ) -> Result<Lrc<SourceFile>, OffsetOverflowError> {
294 // Note that filename may not be a valid path, eg it may be `<anon>` etc,
295 // but this is okay because the directory determined by `path.pop()` will
296 // be empty, so the working directory will be used.
297 let (filename, _) = self.path_mapping.map_filename_prefix(&filename);
298
299 let file_id = StableSourceFileId::new_from_name(&filename, LOCAL_CRATE);
300
301 let lrc_sf = match self.source_file_by_stable_id(file_id) {
302 Some(lrc_sf) => lrc_sf,
303 None => {
304 let start_pos = self.allocate_address_space(src.len())?;
305
306 let source_file = Lrc::new(SourceFile::new(
307 filename,
308 src,
309 Pos::from_usize(start_pos),
310 self.hash_kind,
311 ));
312
313 // Let's make sure the file_id we generated above actually matches
314 // the ID we generate for the SourceFile we just created.
315 debug_assert_eq!(StableSourceFileId::new(&source_file), file_id);
316
317 let mut files = self.files.borrow_mut();
318
319 files.source_files.push(source_file.clone());
320 files.stable_id_to_source_file.insert(file_id, source_file.clone());
321
322 source_file
323 }
324 };
325 Ok(lrc_sf)
326 }
327
328 /// Allocates a new `SourceFile` representing a source file from an external
329 /// crate. The source code of such an "imported `SourceFile`" is not available,
330 /// but we still know enough to generate accurate debuginfo location
331 /// information for things inlined from other crates.
new_imported_source_file( &self, filename: FileName, src_hash: SourceFileHash, name_hash: Hash128, source_len: usize, cnum: CrateNum, file_local_lines: Lock<SourceFileLines>, mut file_local_multibyte_chars: Vec<MultiByteChar>, mut file_local_non_narrow_chars: Vec<NonNarrowChar>, mut file_local_normalized_pos: Vec<NormalizedPos>, original_start_pos: BytePos, metadata_index: u32, ) -> Lrc<SourceFile>332 pub fn new_imported_source_file(
333 &self,
334 filename: FileName,
335 src_hash: SourceFileHash,
336 name_hash: Hash128,
337 source_len: usize,
338 cnum: CrateNum,
339 file_local_lines: Lock<SourceFileLines>,
340 mut file_local_multibyte_chars: Vec<MultiByteChar>,
341 mut file_local_non_narrow_chars: Vec<NonNarrowChar>,
342 mut file_local_normalized_pos: Vec<NormalizedPos>,
343 original_start_pos: BytePos,
344 metadata_index: u32,
345 ) -> Lrc<SourceFile> {
346 let start_pos = self
347 .allocate_address_space(source_len)
348 .expect("not enough address space for imported source file");
349
350 let end_pos = Pos::from_usize(start_pos + source_len);
351 let start_pos = Pos::from_usize(start_pos);
352
353 // Translate these positions into the new global frame of reference,
354 // now that the offset of the SourceFile is known.
355 //
356 // These are all unsigned values. `original_start_pos` may be larger or
357 // smaller than `start_pos`, but `pos` is always larger than both.
358 // Therefore, `(pos - original_start_pos) + start_pos` won't overflow
359 // but `start_pos - original_start_pos` might. So we use the former
360 // form rather than pre-computing the offset into a local variable. The
361 // compiler backend can optimize away the repeated computations in a
362 // way that won't trigger overflow checks.
363 match &mut *file_local_lines.borrow_mut() {
364 SourceFileLines::Lines(lines) => {
365 for pos in lines {
366 *pos = (*pos - original_start_pos) + start_pos;
367 }
368 }
369 SourceFileLines::Diffs(SourceFileDiffs { line_start, .. }) => {
370 *line_start = (*line_start - original_start_pos) + start_pos;
371 }
372 }
373 for mbc in &mut file_local_multibyte_chars {
374 mbc.pos = (mbc.pos - original_start_pos) + start_pos;
375 }
376 for swc in &mut file_local_non_narrow_chars {
377 *swc = (*swc - original_start_pos) + start_pos;
378 }
379 for nc in &mut file_local_normalized_pos {
380 nc.pos = (nc.pos - original_start_pos) + start_pos;
381 }
382
383 let source_file = Lrc::new(SourceFile {
384 name: filename,
385 src: None,
386 src_hash,
387 external_src: Lock::new(ExternalSource::Foreign {
388 kind: ExternalSourceKind::AbsentOk,
389 metadata_index,
390 }),
391 start_pos,
392 end_pos,
393 lines: file_local_lines,
394 multibyte_chars: file_local_multibyte_chars,
395 non_narrow_chars: file_local_non_narrow_chars,
396 normalized_pos: file_local_normalized_pos,
397 name_hash,
398 cnum,
399 });
400
401 let mut files = self.files.borrow_mut();
402
403 files.source_files.push(source_file.clone());
404 files
405 .stable_id_to_source_file
406 .insert(StableSourceFileId::new(&source_file), source_file.clone());
407
408 source_file
409 }
410
411 /// If there is a doctest offset, applies it to the line.
doctest_offset_line(&self, file: &FileName, orig: usize) -> usize412 pub fn doctest_offset_line(&self, file: &FileName, orig: usize) -> usize {
413 match file {
414 FileName::DocTest(_, offset) => {
415 if *offset < 0 {
416 orig - (-(*offset)) as usize
417 } else {
418 orig + *offset as usize
419 }
420 }
421 _ => orig,
422 }
423 }
424
425 /// Return the SourceFile that contains the given `BytePos`
lookup_source_file(&self, pos: BytePos) -> Lrc<SourceFile>426 pub fn lookup_source_file(&self, pos: BytePos) -> Lrc<SourceFile> {
427 let idx = self.lookup_source_file_idx(pos);
428 (*self.files.borrow().source_files)[idx].clone()
429 }
430
431 /// Looks up source information about a `BytePos`.
lookup_char_pos(&self, pos: BytePos) -> Loc432 pub fn lookup_char_pos(&self, pos: BytePos) -> Loc {
433 let sf = self.lookup_source_file(pos);
434 let (line, col, col_display) = sf.lookup_file_pos_with_col_display(pos);
435 Loc { file: sf, line, col, col_display }
436 }
437
438 /// If the corresponding `SourceFile` is empty, does not return a line number.
lookup_line(&self, pos: BytePos) -> Result<SourceFileAndLine, Lrc<SourceFile>>439 pub fn lookup_line(&self, pos: BytePos) -> Result<SourceFileAndLine, Lrc<SourceFile>> {
440 let f = self.lookup_source_file(pos);
441
442 match f.lookup_line(pos) {
443 Some(line) => Ok(SourceFileAndLine { sf: f, line }),
444 None => Err(f),
445 }
446 }
447
span_to_string( &self, sp: Span, filename_display_pref: FileNameDisplayPreference, ) -> String448 pub fn span_to_string(
449 &self,
450 sp: Span,
451 filename_display_pref: FileNameDisplayPreference,
452 ) -> String {
453 let (source_file, lo_line, lo_col, hi_line, hi_col) = self.span_to_location_info(sp);
454
455 let file_name = match source_file {
456 Some(sf) => sf.name.display(filename_display_pref).to_string(),
457 None => return "no-location".to_string(),
458 };
459
460 format!(
461 "{file_name}:{lo_line}:{lo_col}{}",
462 if let FileNameDisplayPreference::Short = filename_display_pref {
463 String::new()
464 } else {
465 format!(": {hi_line}:{hi_col}")
466 }
467 )
468 }
469
span_to_location_info( &self, sp: Span, ) -> (Option<Lrc<SourceFile>>, usize, usize, usize, usize)470 pub fn span_to_location_info(
471 &self,
472 sp: Span,
473 ) -> (Option<Lrc<SourceFile>>, usize, usize, usize, usize) {
474 if self.files.borrow().source_files.is_empty() || sp.is_dummy() {
475 return (None, 0, 0, 0, 0);
476 }
477
478 let lo = self.lookup_char_pos(sp.lo());
479 let hi = self.lookup_char_pos(sp.hi());
480 (Some(lo.file), lo.line, lo.col.to_usize() + 1, hi.line, hi.col.to_usize() + 1)
481 }
482
483 /// Format the span location suitable for embedding in build artifacts
span_to_embeddable_string(&self, sp: Span) -> String484 pub fn span_to_embeddable_string(&self, sp: Span) -> String {
485 self.span_to_string(sp, FileNameDisplayPreference::Remapped)
486 }
487
488 /// Format the span location suitable for pretty printing annotations with relative line numbers
span_to_relative_line_string(&self, sp: Span, relative_to: Span) -> String489 pub fn span_to_relative_line_string(&self, sp: Span, relative_to: Span) -> String {
490 if self.files.borrow().source_files.is_empty() || sp.is_dummy() || relative_to.is_dummy() {
491 return "no-location".to_string();
492 }
493
494 let lo = self.lookup_char_pos(sp.lo());
495 let hi = self.lookup_char_pos(sp.hi());
496 let offset = self.lookup_char_pos(relative_to.lo());
497
498 if lo.file.name != offset.file.name || !relative_to.contains(sp) {
499 return self.span_to_embeddable_string(sp);
500 }
501
502 let lo_line = lo.line.saturating_sub(offset.line);
503 let hi_line = hi.line.saturating_sub(offset.line);
504
505 format!(
506 "{}:+{}:{}: +{}:{}",
507 lo.file.name.display(FileNameDisplayPreference::Remapped),
508 lo_line,
509 lo.col.to_usize() + 1,
510 hi_line,
511 hi.col.to_usize() + 1,
512 )
513 }
514
515 /// Format the span location to be printed in diagnostics. Must not be emitted
516 /// to build artifacts as this may leak local file paths. Use span_to_embeddable_string
517 /// for string suitable for embedding.
span_to_diagnostic_string(&self, sp: Span) -> String518 pub fn span_to_diagnostic_string(&self, sp: Span) -> String {
519 self.span_to_string(sp, self.path_mapping.filename_display_for_diagnostics)
520 }
521
span_to_filename(&self, sp: Span) -> FileName522 pub fn span_to_filename(&self, sp: Span) -> FileName {
523 self.lookup_char_pos(sp.lo()).file.name.clone()
524 }
525
filename_for_diagnostics<'a>(&self, filename: &'a FileName) -> FileNameDisplay<'a>526 pub fn filename_for_diagnostics<'a>(&self, filename: &'a FileName) -> FileNameDisplay<'a> {
527 filename.display(self.path_mapping.filename_display_for_diagnostics)
528 }
529
is_multiline(&self, sp: Span) -> bool530 pub fn is_multiline(&self, sp: Span) -> bool {
531 let lo = self.lookup_source_file_idx(sp.lo());
532 let hi = self.lookup_source_file_idx(sp.hi());
533 if lo != hi {
534 return true;
535 }
536 let f = (*self.files.borrow().source_files)[lo].clone();
537 f.lookup_line(sp.lo()) != f.lookup_line(sp.hi())
538 }
539
540 #[instrument(skip(self), level = "trace")]
is_valid_span(&self, sp: Span) -> Result<(Loc, Loc), SpanLinesError>541 pub fn is_valid_span(&self, sp: Span) -> Result<(Loc, Loc), SpanLinesError> {
542 let lo = self.lookup_char_pos(sp.lo());
543 trace!(?lo);
544 let hi = self.lookup_char_pos(sp.hi());
545 trace!(?hi);
546 if lo.file.start_pos != hi.file.start_pos {
547 return Err(SpanLinesError::DistinctSources(Box::new(DistinctSources {
548 begin: (lo.file.name.clone(), lo.file.start_pos),
549 end: (hi.file.name.clone(), hi.file.start_pos),
550 })));
551 }
552 Ok((lo, hi))
553 }
554
is_line_before_span_empty(&self, sp: Span) -> bool555 pub fn is_line_before_span_empty(&self, sp: Span) -> bool {
556 match self.span_to_prev_source(sp) {
557 Ok(s) => s.rsplit_once('\n').unwrap_or(("", &s)).1.trim_start().is_empty(),
558 Err(_) => false,
559 }
560 }
561
span_to_lines(&self, sp: Span) -> FileLinesResult562 pub fn span_to_lines(&self, sp: Span) -> FileLinesResult {
563 debug!("span_to_lines(sp={:?})", sp);
564 let (lo, hi) = self.is_valid_span(sp)?;
565 assert!(hi.line >= lo.line);
566
567 if sp.is_dummy() {
568 return Ok(FileLines { file: lo.file, lines: Vec::new() });
569 }
570
571 let mut lines = Vec::with_capacity(hi.line - lo.line + 1);
572
573 // The span starts partway through the first line,
574 // but after that it starts from offset 0.
575 let mut start_col = lo.col;
576
577 // For every line but the last, it extends from `start_col`
578 // and to the end of the line. Be careful because the line
579 // numbers in Loc are 1-based, so we subtract 1 to get 0-based
580 // lines.
581 //
582 // FIXME: now that we handle DUMMY_SP up above, we should consider
583 // asserting that the line numbers here are all indeed 1-based.
584 let hi_line = hi.line.saturating_sub(1);
585 for line_index in lo.line.saturating_sub(1)..hi_line {
586 let line_len = lo.file.get_line(line_index).map_or(0, |s| s.chars().count());
587 lines.push(LineInfo { line_index, start_col, end_col: CharPos::from_usize(line_len) });
588 start_col = CharPos::from_usize(0);
589 }
590
591 // For the last line, it extends from `start_col` to `hi.col`:
592 lines.push(LineInfo { line_index: hi_line, start_col, end_col: hi.col });
593
594 Ok(FileLines { file: lo.file, lines })
595 }
596
597 /// Extracts the source surrounding the given `Span` using the `extract_source` function. The
598 /// extract function takes three arguments: a string slice containing the source, an index in
599 /// the slice for the beginning of the span and an index in the slice for the end of the span.
span_to_source<F, T>(&self, sp: Span, extract_source: F) -> Result<T, SpanSnippetError> where F: Fn(&str, usize, usize) -> Result<T, SpanSnippetError>,600 fn span_to_source<F, T>(&self, sp: Span, extract_source: F) -> Result<T, SpanSnippetError>
601 where
602 F: Fn(&str, usize, usize) -> Result<T, SpanSnippetError>,
603 {
604 let local_begin = self.lookup_byte_offset(sp.lo());
605 let local_end = self.lookup_byte_offset(sp.hi());
606
607 if local_begin.sf.start_pos != local_end.sf.start_pos {
608 Err(SpanSnippetError::DistinctSources(Box::new(DistinctSources {
609 begin: (local_begin.sf.name.clone(), local_begin.sf.start_pos),
610 end: (local_end.sf.name.clone(), local_end.sf.start_pos),
611 })))
612 } else {
613 self.ensure_source_file_source_present(local_begin.sf.clone());
614
615 let start_index = local_begin.pos.to_usize();
616 let end_index = local_end.pos.to_usize();
617 let source_len = (local_begin.sf.end_pos - local_begin.sf.start_pos).to_usize();
618
619 if start_index > end_index || end_index > source_len {
620 return Err(SpanSnippetError::MalformedForSourcemap(MalformedSourceMapPositions {
621 name: local_begin.sf.name.clone(),
622 source_len,
623 begin_pos: local_begin.pos,
624 end_pos: local_end.pos,
625 }));
626 }
627
628 if let Some(ref src) = local_begin.sf.src {
629 extract_source(src, start_index, end_index)
630 } else if let Some(src) = local_begin.sf.external_src.borrow().get_source() {
631 extract_source(src, start_index, end_index)
632 } else {
633 Err(SpanSnippetError::SourceNotAvailable { filename: local_begin.sf.name.clone() })
634 }
635 }
636 }
637
is_span_accessible(&self, sp: Span) -> bool638 pub fn is_span_accessible(&self, sp: Span) -> bool {
639 self.span_to_source(sp, |src, start_index, end_index| {
640 Ok(src.get(start_index..end_index).is_some())
641 })
642 .is_ok_and(|is_accessible| is_accessible)
643 }
644
645 /// Returns the source snippet as `String` corresponding to the given `Span`.
span_to_snippet(&self, sp: Span) -> Result<String, SpanSnippetError>646 pub fn span_to_snippet(&self, sp: Span) -> Result<String, SpanSnippetError> {
647 self.span_to_source(sp, |src, start_index, end_index| {
648 src.get(start_index..end_index)
649 .map(|s| s.to_string())
650 .ok_or(SpanSnippetError::IllFormedSpan(sp))
651 })
652 }
653
span_to_margin(&self, sp: Span) -> Option<usize>654 pub fn span_to_margin(&self, sp: Span) -> Option<usize> {
655 Some(self.indentation_before(sp)?.len())
656 }
657
indentation_before(&self, sp: Span) -> Option<String>658 pub fn indentation_before(&self, sp: Span) -> Option<String> {
659 self.span_to_source(sp, |src, start_index, _| {
660 let before = &src[..start_index];
661 let last_line = before.rsplit_once('\n').map_or(before, |(_, last)| last);
662 Ok(last_line
663 .split_once(|c: char| !c.is_whitespace())
664 .map_or(last_line, |(indent, _)| indent)
665 .to_string())
666 })
667 .ok()
668 }
669
670 /// Returns the source snippet as `String` before the given `Span`.
span_to_prev_source(&self, sp: Span) -> Result<String, SpanSnippetError>671 pub fn span_to_prev_source(&self, sp: Span) -> Result<String, SpanSnippetError> {
672 self.span_to_source(sp, |src, start_index, _| {
673 src.get(..start_index).map(|s| s.to_string()).ok_or(SpanSnippetError::IllFormedSpan(sp))
674 })
675 }
676
677 /// Extends the given `Span` to just after the previous occurrence of `c`. Return the same span
678 /// if no character could be found or if an error occurred while retrieving the code snippet.
span_extend_to_prev_char(&self, sp: Span, c: char, accept_newlines: bool) -> Span679 pub fn span_extend_to_prev_char(&self, sp: Span, c: char, accept_newlines: bool) -> Span {
680 if let Ok(prev_source) = self.span_to_prev_source(sp) {
681 let prev_source = prev_source.rsplit(c).next().unwrap_or("");
682 if !prev_source.is_empty() && (accept_newlines || !prev_source.contains('\n')) {
683 return sp.with_lo(BytePos(sp.lo().0 - prev_source.len() as u32));
684 }
685 }
686
687 sp
688 }
689
690 /// Extends the given `Span` to just after the previous occurrence of `pat` when surrounded by
691 /// whitespace. Returns None if the pattern could not be found or if an error occurred while
692 /// retrieving the code snippet.
span_extend_to_prev_str( &self, sp: Span, pat: &str, accept_newlines: bool, include_whitespace: bool, ) -> Option<Span>693 pub fn span_extend_to_prev_str(
694 &self,
695 sp: Span,
696 pat: &str,
697 accept_newlines: bool,
698 include_whitespace: bool,
699 ) -> Option<Span> {
700 // assure that the pattern is delimited, to avoid the following
701 // fn my_fn()
702 // ^^^^ returned span without the check
703 // ---------- correct span
704 let prev_source = self.span_to_prev_source(sp).ok()?;
705 for ws in &[" ", "\t", "\n"] {
706 let pat = pat.to_owned() + ws;
707 if let Some(pat_pos) = prev_source.rfind(&pat) {
708 let just_after_pat_pos = pat_pos + pat.len() - 1;
709 let just_after_pat_plus_ws = if include_whitespace {
710 just_after_pat_pos
711 + prev_source[just_after_pat_pos..]
712 .find(|c: char| !c.is_whitespace())
713 .unwrap_or(0)
714 } else {
715 just_after_pat_pos
716 };
717 let len = prev_source.len() - just_after_pat_plus_ws;
718 let prev_source = &prev_source[just_after_pat_plus_ws..];
719 if accept_newlines || !prev_source.trim_start().contains('\n') {
720 return Some(sp.with_lo(BytePos(sp.lo().0 - len as u32)));
721 }
722 }
723 }
724
725 None
726 }
727
728 /// Returns the source snippet as `String` after the given `Span`.
span_to_next_source(&self, sp: Span) -> Result<String, SpanSnippetError>729 pub fn span_to_next_source(&self, sp: Span) -> Result<String, SpanSnippetError> {
730 self.span_to_source(sp, |src, _, end_index| {
731 src.get(end_index..).map(|s| s.to_string()).ok_or(SpanSnippetError::IllFormedSpan(sp))
732 })
733 }
734
735 /// Extends the given `Span` while the next character matches the predicate
span_extend_while( &self, span: Span, f: impl Fn(char) -> bool, ) -> Result<Span, SpanSnippetError>736 pub fn span_extend_while(
737 &self,
738 span: Span,
739 f: impl Fn(char) -> bool,
740 ) -> Result<Span, SpanSnippetError> {
741 self.span_to_source(span, |s, _start, end| {
742 let n = s[end..].char_indices().find(|&(_, c)| !f(c)).map_or(s.len() - end, |(i, _)| i);
743 Ok(span.with_hi(span.hi() + BytePos(n as u32)))
744 })
745 }
746
747 /// Extends the given `Span` to previous character while the previous character matches the predicate
span_extend_prev_while( &self, span: Span, f: impl Fn(char) -> bool, ) -> Result<Span, SpanSnippetError>748 pub fn span_extend_prev_while(
749 &self,
750 span: Span,
751 f: impl Fn(char) -> bool,
752 ) -> Result<Span, SpanSnippetError> {
753 self.span_to_source(span, |s, start, _end| {
754 let n = s[..start]
755 .char_indices()
756 .rfind(|&(_, c)| !f(c))
757 .map_or(start, |(i, _)| start - i - 1);
758 Ok(span.with_lo(span.lo() - BytePos(n as u32)))
759 })
760 }
761
762 /// Extends the given `Span` to just before the next occurrence of `c`.
span_extend_to_next_char(&self, sp: Span, c: char, accept_newlines: bool) -> Span763 pub fn span_extend_to_next_char(&self, sp: Span, c: char, accept_newlines: bool) -> Span {
764 if let Ok(next_source) = self.span_to_next_source(sp) {
765 let next_source = next_source.split(c).next().unwrap_or("");
766 if !next_source.is_empty() && (accept_newlines || !next_source.contains('\n')) {
767 return sp.with_hi(BytePos(sp.hi().0 + next_source.len() as u32));
768 }
769 }
770
771 sp
772 }
773
774 /// Extends the given `Span` to contain the entire line it is on.
span_extend_to_line(&self, sp: Span) -> Span775 pub fn span_extend_to_line(&self, sp: Span) -> Span {
776 self.span_extend_to_prev_char(self.span_extend_to_next_char(sp, '\n', true), '\n', true)
777 }
778
779 /// Given a `Span`, tries to get a shorter span ending before the first occurrence of `char`
780 /// `c`.
span_until_char(&self, sp: Span, c: char) -> Span781 pub fn span_until_char(&self, sp: Span, c: char) -> Span {
782 match self.span_to_snippet(sp) {
783 Ok(snippet) => {
784 let snippet = snippet.split(c).next().unwrap_or("").trim_end();
785 if !snippet.is_empty() && !snippet.contains('\n') {
786 sp.with_hi(BytePos(sp.lo().0 + snippet.len() as u32))
787 } else {
788 sp
789 }
790 }
791 _ => sp,
792 }
793 }
794
795 /// Given a 'Span', tries to tell if it's wrapped by "<>" or "()"
796 /// the algorithm searches if the next character is '>' or ')' after skipping white space
797 /// then searches the previous character to match '<' or '(' after skipping white space
798 /// return true if wrapped by '<>' or '()'
span_wrapped_by_angle_or_parentheses(&self, span: Span) -> bool799 pub fn span_wrapped_by_angle_or_parentheses(&self, span: Span) -> bool {
800 self.span_to_source(span, |src, start_index, end_index| {
801 if src.get(start_index..end_index).is_none() {
802 return Ok(false);
803 }
804 // test the right side to match '>' after skipping white space
805 let end_src = &src[end_index..];
806 let mut i = 0;
807 let mut found_right_parentheses = false;
808 let mut found_right_angle = false;
809 while let Some(cc) = end_src.chars().nth(i) {
810 if cc == ' ' {
811 i = i + 1;
812 } else if cc == '>' {
813 // found > in the right;
814 found_right_angle = true;
815 break;
816 } else if cc == ')' {
817 found_right_parentheses = true;
818 break;
819 } else {
820 // failed to find '>' return false immediately
821 return Ok(false);
822 }
823 }
824 // test the left side to match '<' after skipping white space
825 i = start_index;
826 let start_src = &src[0..start_index];
827 while let Some(cc) = start_src.chars().nth(i) {
828 if cc == ' ' {
829 if i == 0 {
830 return Ok(false);
831 }
832 i = i - 1;
833 } else if cc == '<' {
834 // found < in the left
835 if !found_right_angle {
836 // skip something like "(< )>"
837 return Ok(false);
838 }
839 break;
840 } else if cc == '(' {
841 if !found_right_parentheses {
842 // skip something like "<(>)"
843 return Ok(false);
844 }
845 break;
846 } else {
847 // failed to find '<' return false immediately
848 return Ok(false);
849 }
850 }
851 return Ok(true);
852 })
853 .is_ok_and(|is_accessible| is_accessible)
854 }
855
856 /// Given a `Span`, tries to get a shorter span ending just after the first occurrence of `char`
857 /// `c`.
span_through_char(&self, sp: Span, c: char) -> Span858 pub fn span_through_char(&self, sp: Span, c: char) -> Span {
859 if let Ok(snippet) = self.span_to_snippet(sp) {
860 if let Some(offset) = snippet.find(c) {
861 return sp.with_hi(BytePos(sp.lo().0 + (offset + c.len_utf8()) as u32));
862 }
863 }
864 sp
865 }
866
867 /// Given a `Span`, gets a new `Span` covering the first token and all its trailing whitespace
868 /// or the original `Span`.
869 ///
870 /// If `sp` points to `"let mut x"`, then a span pointing at `"let "` will be returned.
span_until_non_whitespace(&self, sp: Span) -> Span871 pub fn span_until_non_whitespace(&self, sp: Span) -> Span {
872 let mut whitespace_found = false;
873
874 self.span_take_while(sp, |c| {
875 if !whitespace_found && c.is_whitespace() {
876 whitespace_found = true;
877 }
878
879 !whitespace_found || c.is_whitespace()
880 })
881 }
882
883 /// Given a `Span`, gets a new `Span` covering the first token without its trailing whitespace
884 /// or the original `Span` in case of error.
885 ///
886 /// If `sp` points to `"let mut x"`, then a span pointing at `"let"` will be returned.
span_until_whitespace(&self, sp: Span) -> Span887 pub fn span_until_whitespace(&self, sp: Span) -> Span {
888 self.span_take_while(sp, |c| !c.is_whitespace())
889 }
890
891 /// Given a `Span`, gets a shorter one until `predicate` yields `false`.
span_take_while<P>(&self, sp: Span, predicate: P) -> Span where P: for<'r> FnMut(&'r char) -> bool,892 pub fn span_take_while<P>(&self, sp: Span, predicate: P) -> Span
893 where
894 P: for<'r> FnMut(&'r char) -> bool,
895 {
896 if let Ok(snippet) = self.span_to_snippet(sp) {
897 let offset = snippet.chars().take_while(predicate).map(|c| c.len_utf8()).sum::<usize>();
898
899 sp.with_hi(BytePos(sp.lo().0 + (offset as u32)))
900 } else {
901 sp
902 }
903 }
904
905 /// Given a `Span`, return a span ending in the closest `{`. This is useful when you have a
906 /// `Span` enclosing a whole item but we need to point at only the head (usually the first
907 /// line) of that item.
908 ///
909 /// *Only suitable for diagnostics.*
guess_head_span(&self, sp: Span) -> Span910 pub fn guess_head_span(&self, sp: Span) -> Span {
911 // FIXME: extend the AST items to have a head span, or replace callers with pointing at
912 // the item's ident when appropriate.
913 self.span_until_char(sp, '{')
914 }
915
916 /// Returns a new span representing just the first character of the given span.
start_point(&self, sp: Span) -> Span917 pub fn start_point(&self, sp: Span) -> Span {
918 let width = {
919 let sp = sp.data();
920 let local_begin = self.lookup_byte_offset(sp.lo);
921 let start_index = local_begin.pos.to_usize();
922 let src = local_begin.sf.external_src.borrow();
923
924 let snippet = if let Some(ref src) = local_begin.sf.src {
925 Some(&src[start_index..])
926 } else {
927 src.get_source().map(|src| &src[start_index..])
928 };
929
930 match snippet {
931 None => 1,
932 Some(snippet) => match snippet.chars().next() {
933 None => 1,
934 Some(c) => c.len_utf8(),
935 },
936 }
937 };
938
939 sp.with_hi(BytePos(sp.lo().0 + width as u32))
940 }
941
942 /// Returns a new span representing just the last character of this span.
end_point(&self, sp: Span) -> Span943 pub fn end_point(&self, sp: Span) -> Span {
944 let pos = sp.hi().0;
945
946 let width = self.find_width_of_character_at_span(sp, false);
947 let corrected_end_position = pos.checked_sub(width).unwrap_or(pos);
948
949 let end_point = BytePos(cmp::max(corrected_end_position, sp.lo().0));
950 sp.with_lo(end_point)
951 }
952
953 /// Returns a new span representing the next character after the end-point of this span.
954 /// Special cases:
955 /// - if span is a dummy one, returns the same span
956 /// - if next_point reached the end of source, return a span exceeding the end of source,
957 /// which means sm.span_to_snippet(next_point) will get `Err`
958 /// - respect multi-byte characters
next_point(&self, sp: Span) -> Span959 pub fn next_point(&self, sp: Span) -> Span {
960 if sp.is_dummy() {
961 return sp;
962 }
963 let start_of_next_point = sp.hi().0;
964
965 let width = self.find_width_of_character_at_span(sp, true);
966 // If the width is 1, then the next span should only contain the next char besides current ending.
967 // However, in the case of a multibyte character, where the width != 1, the next span should
968 // span multiple bytes to include the whole character.
969 let end_of_next_point =
970 start_of_next_point.checked_add(width).unwrap_or(start_of_next_point);
971
972 let end_of_next_point = BytePos(cmp::max(start_of_next_point + 1, end_of_next_point));
973 Span::new(BytePos(start_of_next_point), end_of_next_point, sp.ctxt(), None)
974 }
975
976 /// Returns a new span to check next none-whitespace character or some specified expected character
977 /// If `expect` is none, the first span of non-whitespace character is returned.
978 /// If `expect` presented, the first span of the character `expect` is returned
979 /// Otherwise, the span reached to limit is returned.
span_look_ahead(&self, span: Span, expect: Option<&str>, limit: Option<usize>) -> Span980 pub fn span_look_ahead(&self, span: Span, expect: Option<&str>, limit: Option<usize>) -> Span {
981 let mut sp = span;
982 for _ in 0..limit.unwrap_or(100_usize) {
983 sp = self.next_point(sp);
984 if let Ok(ref snippet) = self.span_to_snippet(sp) {
985 if expect.is_some_and(|es| snippet == es) {
986 break;
987 }
988 if expect.is_none() && snippet.chars().any(|c| !c.is_whitespace()) {
989 break;
990 }
991 }
992 }
993 sp
994 }
995
996 /// Finds the width of the character, either before or after the end of provided span,
997 /// depending on the `forwards` parameter.
998 #[instrument(skip(self, sp))]
find_width_of_character_at_span(&self, sp: Span, forwards: bool) -> u32999 fn find_width_of_character_at_span(&self, sp: Span, forwards: bool) -> u32 {
1000 let sp = sp.data();
1001
1002 if sp.lo == sp.hi && !forwards {
1003 debug!("early return empty span");
1004 return 1;
1005 }
1006
1007 let local_begin = self.lookup_byte_offset(sp.lo);
1008 let local_end = self.lookup_byte_offset(sp.hi);
1009 debug!("local_begin=`{:?}`, local_end=`{:?}`", local_begin, local_end);
1010
1011 if local_begin.sf.start_pos != local_end.sf.start_pos {
1012 debug!("begin and end are in different files");
1013 return 1;
1014 }
1015
1016 let start_index = local_begin.pos.to_usize();
1017 let end_index = local_end.pos.to_usize();
1018 debug!("start_index=`{:?}`, end_index=`{:?}`", start_index, end_index);
1019
1020 // Disregard indexes that are at the start or end of their spans, they can't fit bigger
1021 // characters.
1022 if (!forwards && end_index == usize::MIN) || (forwards && start_index == usize::MAX) {
1023 debug!("start or end of span, cannot be multibyte");
1024 return 1;
1025 }
1026
1027 let source_len = (local_begin.sf.end_pos - local_begin.sf.start_pos).to_usize();
1028 debug!("source_len=`{:?}`", source_len);
1029 // Ensure indexes are also not malformed.
1030 if start_index > end_index || end_index > source_len - 1 {
1031 debug!("source indexes are malformed");
1032 return 1;
1033 }
1034
1035 let src = local_begin.sf.external_src.borrow();
1036
1037 let snippet = if let Some(src) = &local_begin.sf.src {
1038 src
1039 } else if let Some(src) = src.get_source() {
1040 src
1041 } else {
1042 return 1;
1043 };
1044
1045 if forwards {
1046 (snippet.ceil_char_boundary(end_index + 1) - end_index) as u32
1047 } else {
1048 (end_index - snippet.floor_char_boundary(end_index - 1)) as u32
1049 }
1050 }
1051
get_source_file(&self, filename: &FileName) -> Option<Lrc<SourceFile>>1052 pub fn get_source_file(&self, filename: &FileName) -> Option<Lrc<SourceFile>> {
1053 // Remap filename before lookup
1054 let filename = self.path_mapping().map_filename_prefix(filename).0;
1055 for sf in self.files.borrow().source_files.iter() {
1056 if filename == sf.name {
1057 return Some(sf.clone());
1058 }
1059 }
1060 None
1061 }
1062
1063 /// For a global `BytePos`, computes the local offset within the containing `SourceFile`.
lookup_byte_offset(&self, bpos: BytePos) -> SourceFileAndBytePos1064 pub fn lookup_byte_offset(&self, bpos: BytePos) -> SourceFileAndBytePos {
1065 let idx = self.lookup_source_file_idx(bpos);
1066 let sf = (*self.files.borrow().source_files)[idx].clone();
1067 let offset = bpos - sf.start_pos;
1068 SourceFileAndBytePos { sf, pos: offset }
1069 }
1070
1071 /// Returns the index of the [`SourceFile`] (in `self.files`) that contains `pos`.
1072 /// This index is guaranteed to be valid for the lifetime of this `SourceMap`,
1073 /// since `source_files` is a `MonotonicVec`
lookup_source_file_idx(&self, pos: BytePos) -> usize1074 pub fn lookup_source_file_idx(&self, pos: BytePos) -> usize {
1075 self.files.borrow().source_files.partition_point(|x| x.start_pos <= pos) - 1
1076 }
1077
count_lines(&self) -> usize1078 pub fn count_lines(&self) -> usize {
1079 self.files().iter().fold(0, |a, f| a + f.count_lines())
1080 }
1081
ensure_source_file_source_present(&self, source_file: Lrc<SourceFile>) -> bool1082 pub fn ensure_source_file_source_present(&self, source_file: Lrc<SourceFile>) -> bool {
1083 source_file.add_external_src(|| {
1084 let FileName::Real(ref name) = source_file.name else {
1085 return None;
1086 };
1087
1088 let local_path: Cow<'_, Path> = match name {
1089 RealFileName::LocalPath(local_path) => local_path.into(),
1090 RealFileName::Remapped { local_path: Some(local_path), .. } => local_path.into(),
1091 RealFileName::Remapped { local_path: None, virtual_name } => {
1092 // The compiler produces better error messages if the sources of dependencies
1093 // are available. Attempt to undo any path mapping so we can find remapped
1094 // dependencies.
1095 // We can only use the heuristic because `add_external_src` checks the file
1096 // content hash.
1097 self.path_mapping.reverse_map_prefix_heuristically(virtual_name)?.into()
1098 }
1099 };
1100
1101 self.file_loader.read_file(&local_path).ok()
1102 })
1103 }
1104
is_imported(&self, sp: Span) -> bool1105 pub fn is_imported(&self, sp: Span) -> bool {
1106 let source_file_index = self.lookup_source_file_idx(sp.lo());
1107 let source_file = &self.files()[source_file_index];
1108 source_file.is_imported()
1109 }
1110
1111 /// Gets the span of a statement. If the statement is a macro expansion, the
1112 /// span in the context of the block span is found. The trailing semicolon is included
1113 /// on a best-effort basis.
stmt_span(&self, stmt_span: Span, block_span: Span) -> Span1114 pub fn stmt_span(&self, stmt_span: Span, block_span: Span) -> Span {
1115 if !stmt_span.from_expansion() {
1116 return stmt_span;
1117 }
1118 let mac_call = original_sp(stmt_span, block_span);
1119 self.mac_call_stmt_semi_span(mac_call).map_or(mac_call, |s| mac_call.with_hi(s.hi()))
1120 }
1121
1122 /// Tries to find the span of the semicolon of a macro call statement.
1123 /// The input must be the *call site* span of a statement from macro expansion.
1124 /// ```ignore (illustrative)
1125 /// // v output
1126 /// mac!();
1127 /// // ^^^^^^ input
1128 /// ```
mac_call_stmt_semi_span(&self, mac_call: Span) -> Option<Span>1129 pub fn mac_call_stmt_semi_span(&self, mac_call: Span) -> Option<Span> {
1130 let span = self.span_extend_while(mac_call, char::is_whitespace).ok()?;
1131 let span = span.shrink_to_hi().with_hi(BytePos(span.hi().0.checked_add(1)?));
1132 if self.span_to_snippet(span).as_deref() != Ok(";") {
1133 return None;
1134 }
1135 Some(span)
1136 }
1137 }
1138
1139 #[derive(Clone)]
1140 pub struct FilePathMapping {
1141 mapping: Vec<(PathBuf, PathBuf)>,
1142 filename_display_for_diagnostics: FileNameDisplayPreference,
1143 }
1144
1145 impl FilePathMapping {
empty() -> FilePathMapping1146 pub fn empty() -> FilePathMapping {
1147 FilePathMapping::new(Vec::new())
1148 }
1149
new(mapping: Vec<(PathBuf, PathBuf)>) -> FilePathMapping1150 pub fn new(mapping: Vec<(PathBuf, PathBuf)>) -> FilePathMapping {
1151 let filename_display_for_diagnostics = if mapping.is_empty() {
1152 FileNameDisplayPreference::Local
1153 } else {
1154 FileNameDisplayPreference::Remapped
1155 };
1156
1157 FilePathMapping { mapping, filename_display_for_diagnostics }
1158 }
1159
1160 /// Applies any path prefix substitution as defined by the mapping.
1161 /// The return value is the remapped path and a boolean indicating whether
1162 /// the path was affected by the mapping.
map_prefix<'a>(&'a self, path: impl Into<Cow<'a, Path>>) -> (Cow<'a, Path>, bool)1163 pub fn map_prefix<'a>(&'a self, path: impl Into<Cow<'a, Path>>) -> (Cow<'a, Path>, bool) {
1164 let path = path.into();
1165 if path.as_os_str().is_empty() {
1166 // Exit early if the path is empty and therefore there's nothing to remap.
1167 // This is mostly to reduce spam for `RUSTC_LOG=[remap_path_prefix]`.
1168 return (path, false);
1169 }
1170
1171 return remap_path_prefix(&self.mapping, path);
1172
1173 #[instrument(level = "debug", skip(mapping), ret)]
1174 fn remap_path_prefix<'a>(
1175 mapping: &'a [(PathBuf, PathBuf)],
1176 path: Cow<'a, Path>,
1177 ) -> (Cow<'a, Path>, bool) {
1178 // NOTE: We are iterating over the mapping entries from last to first
1179 // because entries specified later on the command line should
1180 // take precedence.
1181 for (from, to) in mapping.iter().rev() {
1182 debug!("Trying to apply {from:?} => {to:?}");
1183
1184 if let Ok(rest) = path.strip_prefix(from) {
1185 let remapped = if rest.as_os_str().is_empty() {
1186 // This is subtle, joining an empty path onto e.g. `foo/bar` will
1187 // result in `foo/bar/`, that is, there'll be an additional directory
1188 // separator at the end. This can lead to duplicated directory separators
1189 // in remapped paths down the line.
1190 // So, if we have an exact match, we just return that without a call
1191 // to `Path::join()`.
1192 to.into()
1193 } else {
1194 to.join(rest).into()
1195 };
1196 debug!("Match - remapped");
1197
1198 return (remapped, true);
1199 } else {
1200 debug!("No match - prefix {from:?} does not match");
1201 }
1202 }
1203
1204 debug!("not remapped");
1205 (path, false)
1206 }
1207 }
1208
map_filename_prefix(&self, file: &FileName) -> (FileName, bool)1209 fn map_filename_prefix(&self, file: &FileName) -> (FileName, bool) {
1210 match file {
1211 FileName::Real(realfile) if let RealFileName::LocalPath(local_path) = realfile => {
1212 let (mapped_path, mapped) = self.map_prefix(local_path);
1213 let realfile = if mapped {
1214 RealFileName::Remapped {
1215 local_path: Some(local_path.clone()),
1216 virtual_name: mapped_path.into_owned(),
1217 }
1218 } else {
1219 realfile.clone()
1220 };
1221 (FileName::Real(realfile), mapped)
1222 }
1223 FileName::Real(_) => unreachable!("attempted to remap an already remapped filename"),
1224 other => (other.clone(), false),
1225 }
1226 }
1227
1228 /// Expand a relative path to an absolute path with remapping taken into account.
1229 /// Use this when absolute paths are required (e.g. debuginfo or crate metadata).
1230 ///
1231 /// The resulting `RealFileName` will have its `local_path` portion erased if
1232 /// possible (i.e. if there's also a remapped path).
to_embeddable_absolute_path( &self, file_path: RealFileName, working_directory: &RealFileName, ) -> RealFileName1233 pub fn to_embeddable_absolute_path(
1234 &self,
1235 file_path: RealFileName,
1236 working_directory: &RealFileName,
1237 ) -> RealFileName {
1238 match file_path {
1239 // Anything that's already remapped we don't modify, except for erasing
1240 // the `local_path` portion.
1241 RealFileName::Remapped { local_path: _, virtual_name } => {
1242 RealFileName::Remapped {
1243 // We do not want any local path to be exported into metadata
1244 local_path: None,
1245 // We use the remapped name verbatim, even if it looks like a relative
1246 // path. The assumption is that the user doesn't want us to further
1247 // process paths that have gone through remapping.
1248 virtual_name,
1249 }
1250 }
1251
1252 RealFileName::LocalPath(unmapped_file_path) => {
1253 // If no remapping has been applied yet, try to do so
1254 let (new_path, was_remapped) = self.map_prefix(unmapped_file_path);
1255 if was_remapped {
1256 // It was remapped, so don't modify further
1257 return RealFileName::Remapped {
1258 local_path: None,
1259 virtual_name: new_path.into_owned(),
1260 };
1261 }
1262
1263 if new_path.is_absolute() {
1264 // No remapping has applied to this path and it is absolute,
1265 // so the working directory cannot influence it either, so
1266 // we are done.
1267 return RealFileName::LocalPath(new_path.into_owned());
1268 }
1269
1270 debug_assert!(new_path.is_relative());
1271 let unmapped_file_path_rel = new_path;
1272
1273 match working_directory {
1274 RealFileName::LocalPath(unmapped_working_dir_abs) => {
1275 let file_path_abs = unmapped_working_dir_abs.join(unmapped_file_path_rel);
1276
1277 // Although neither `working_directory` nor the file name were subject
1278 // to path remapping, the concatenation between the two may be. Hence
1279 // we need to do a remapping here.
1280 let (file_path_abs, was_remapped) = self.map_prefix(file_path_abs);
1281 if was_remapped {
1282 RealFileName::Remapped {
1283 // Erase the actual path
1284 local_path: None,
1285 virtual_name: file_path_abs.into_owned(),
1286 }
1287 } else {
1288 // No kind of remapping applied to this path, so
1289 // we leave it as it is.
1290 RealFileName::LocalPath(file_path_abs.into_owned())
1291 }
1292 }
1293 RealFileName::Remapped {
1294 local_path: _,
1295 virtual_name: remapped_working_dir_abs,
1296 } => {
1297 // If working_directory has been remapped, then we emit
1298 // Remapped variant as the expanded path won't be valid
1299 RealFileName::Remapped {
1300 local_path: None,
1301 virtual_name: Path::new(remapped_working_dir_abs)
1302 .join(unmapped_file_path_rel),
1303 }
1304 }
1305 }
1306 }
1307 }
1308 }
1309
1310 /// Attempts to (heuristically) reverse a prefix mapping.
1311 ///
1312 /// Returns [`Some`] if there is exactly one mapping where the "to" part is
1313 /// a prefix of `path` and has at least one non-empty
1314 /// [`Normal`](path::Component::Normal) component. The component
1315 /// restriction exists to avoid reverse mapping overly generic paths like
1316 /// `/` or `.`).
1317 ///
1318 /// This is a heuristic and not guaranteed to return the actual original
1319 /// path! Do not rely on the result unless you have other means to verify
1320 /// that the mapping is correct (e.g. by checking the file content hash).
1321 #[instrument(level = "debug", skip(self), ret)]
reverse_map_prefix_heuristically(&self, path: &Path) -> Option<PathBuf>1322 fn reverse_map_prefix_heuristically(&self, path: &Path) -> Option<PathBuf> {
1323 let mut found = None;
1324
1325 for (from, to) in self.mapping.iter() {
1326 let has_normal_component = to.components().any(|c| match c {
1327 path::Component::Normal(s) => !s.is_empty(),
1328 _ => false,
1329 });
1330
1331 if !has_normal_component {
1332 continue;
1333 }
1334
1335 let Ok(rest) = path.strip_prefix(to) else {
1336 continue;
1337 };
1338
1339 if found.is_some() {
1340 return None;
1341 }
1342
1343 found = Some(from.join(rest));
1344 }
1345
1346 found
1347 }
1348 }
1349