1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4
5 #include <linux/mm_types_task.h>
6
7 #include <linux/auxvec.h>
8 #include <linux/kref.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/maple_tree.h>
13 #include <linux/rwsem.h>
14 #include <linux/completion.h>
15 #include <linux/cpumask.h>
16 #include <linux/uprobes.h>
17 #include <linux/rcupdate.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/workqueue.h>
20 #include <linux/seqlock.h>
21 #include <linux/percpu_counter.h>
22 #include <linux/xpm_types.h>
23
24 #include <asm/mmu.h>
25
26 #ifndef AT_VECTOR_SIZE_ARCH
27 #define AT_VECTOR_SIZE_ARCH 0
28 #endif
29 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
30
31 #define INIT_PASID 0
32
33 struct address_space;
34 struct mem_cgroup;
35
36 /*
37 * Each physical page in the system has a struct page associated with
38 * it to keep track of whatever it is we are using the page for at the
39 * moment. Note that we have no way to track which tasks are using
40 * a page, though if it is a pagecache page, rmap structures can tell us
41 * who is mapping it.
42 *
43 * If you allocate the page using alloc_pages(), you can use some of the
44 * space in struct page for your own purposes. The five words in the main
45 * union are available, except for bit 0 of the first word which must be
46 * kept clear. Many users use this word to store a pointer to an object
47 * which is guaranteed to be aligned. If you use the same storage as
48 * page->mapping, you must restore it to NULL before freeing the page.
49 *
50 * If your page will not be mapped to userspace, you can also use the four
51 * bytes in the mapcount union, but you must call page_mapcount_reset()
52 * before freeing it.
53 *
54 * If you want to use the refcount field, it must be used in such a way
55 * that other CPUs temporarily incrementing and then decrementing the
56 * refcount does not cause problems. On receiving the page from
57 * alloc_pages(), the refcount will be positive.
58 *
59 * If you allocate pages of order > 0, you can use some of the fields
60 * in each subpage, but you may need to restore some of their values
61 * afterwards.
62 *
63 * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
64 * That requires that freelist & counters in struct slab be adjacent and
65 * double-word aligned. Because struct slab currently just reinterprets the
66 * bits of struct page, we align all struct pages to double-word boundaries,
67 * and ensure that 'freelist' is aligned within struct slab.
68 */
69 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
70 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long))
71 #else
72 #define _struct_page_alignment __aligned(sizeof(unsigned long))
73 #endif
74
75 struct page {
76 unsigned long flags; /* Atomic flags, some possibly
77 * updated asynchronously */
78 /*
79 * Five words (20/40 bytes) are available in this union.
80 * WARNING: bit 0 of the first word is used for PageTail(). That
81 * means the other users of this union MUST NOT use the bit to
82 * avoid collision and false-positive PageTail().
83 */
84 union {
85 struct { /* Page cache and anonymous pages */
86 /**
87 * @lru: Pageout list, eg. active_list protected by
88 * lruvec->lru_lock. Sometimes used as a generic list
89 * by the page owner.
90 */
91 union {
92 struct list_head lru;
93
94 /* Or, for the Unevictable "LRU list" slot */
95 struct {
96 /* Always even, to negate PageTail */
97 void *__filler;
98 /* Count page's or folio's mlocks */
99 unsigned int mlock_count;
100 };
101
102 /* Or, free page */
103 struct list_head buddy_list;
104 struct list_head pcp_list;
105 };
106 /* See page-flags.h for PAGE_MAPPING_FLAGS */
107 struct address_space *mapping;
108 union {
109 pgoff_t index; /* Our offset within mapping. */
110 unsigned long share; /* share count for fsdax */
111 };
112 /**
113 * @private: Mapping-private opaque data.
114 * Usually used for buffer_heads if PagePrivate.
115 * Used for swp_entry_t if PageSwapCache.
116 * Indicates order in the buddy system if PageBuddy.
117 */
118 unsigned long private;
119 };
120 struct { /* page_pool used by netstack */
121 /**
122 * @pp_magic: magic value to avoid recycling non
123 * page_pool allocated pages.
124 */
125 unsigned long pp_magic;
126 struct page_pool *pp;
127 unsigned long _pp_mapping_pad;
128 unsigned long dma_addr;
129 union {
130 /**
131 * dma_addr_upper: might require a 64-bit
132 * value on 32-bit architectures.
133 */
134 unsigned long dma_addr_upper;
135 /**
136 * For frag page support, not supported in
137 * 32-bit architectures with 64-bit DMA.
138 */
139 atomic_long_t pp_frag_count;
140 };
141 };
142 struct { /* Tail pages of compound page */
143 unsigned long compound_head; /* Bit zero is set */
144 };
145 struct { /* ZONE_DEVICE pages */
146 /** @pgmap: Points to the hosting device page map. */
147 struct dev_pagemap *pgmap;
148 void *zone_device_data;
149 /*
150 * ZONE_DEVICE private pages are counted as being
151 * mapped so the next 3 words hold the mapping, index,
152 * and private fields from the source anonymous or
153 * page cache page while the page is migrated to device
154 * private memory.
155 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
156 * use the mapping, index, and private fields when
157 * pmem backed DAX files are mapped.
158 */
159 };
160
161 /** @rcu_head: You can use this to free a page by RCU. */
162 struct rcu_head rcu_head;
163 };
164
165 union { /* This union is 4 bytes in size. */
166 /*
167 * If the page can be mapped to userspace, encodes the number
168 * of times this page is referenced by a page table.
169 */
170 atomic_t _mapcount;
171
172 /*
173 * If the page is neither PageSlab nor mappable to userspace,
174 * the value stored here may help determine what this page
175 * is used for. See page-flags.h for a list of page types
176 * which are currently stored here.
177 */
178 unsigned int page_type;
179 };
180
181 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
182 atomic_t _refcount;
183
184 #ifdef CONFIG_MEMCG
185 unsigned long memcg_data;
186 #endif
187
188 /*
189 * On machines where all RAM is mapped into kernel address space,
190 * we can simply calculate the virtual address. On machines with
191 * highmem some memory is mapped into kernel virtual memory
192 * dynamically, so we need a place to store that address.
193 * Note that this field could be 16 bits on x86 ... ;)
194 *
195 * Architectures with slow multiplication can define
196 * WANT_PAGE_VIRTUAL in asm/page.h
197 */
198 #if defined(WANT_PAGE_VIRTUAL)
199 void *virtual; /* Kernel virtual address (NULL if
200 not kmapped, ie. highmem) */
201 #endif /* WANT_PAGE_VIRTUAL */
202
203 #ifdef CONFIG_KMSAN
204 /*
205 * KMSAN metadata for this page:
206 * - shadow page: every bit indicates whether the corresponding
207 * bit of the original page is initialized (0) or not (1);
208 * - origin page: every 4 bytes contain an id of the stack trace
209 * where the uninitialized value was created.
210 */
211 struct page *kmsan_shadow;
212 struct page *kmsan_origin;
213 #endif
214
215 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
216 int _last_cpupid;
217 #endif
218 } _struct_page_alignment;
219
220 /*
221 * struct encoded_page - a nonexistent type marking this pointer
222 *
223 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but
224 * with the low bits of the pointer indicating extra context-dependent
225 * information. Not super-common, but happens in mmu_gather and mlock
226 * handling, and this acts as a type system check on that use.
227 *
228 * We only really have two guaranteed bits in general, although you could
229 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
230 * for more.
231 *
232 * Use the supplied helper functions to endcode/decode the pointer and bits.
233 */
234 struct encoded_page;
235 #define ENCODE_PAGE_BITS 3ul
encode_page(struct page * page,unsigned long flags)236 static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags)
237 {
238 BUILD_BUG_ON(flags > ENCODE_PAGE_BITS);
239 return (struct encoded_page *)(flags | (unsigned long)page);
240 }
241
encoded_page_flags(struct encoded_page * page)242 static inline unsigned long encoded_page_flags(struct encoded_page *page)
243 {
244 return ENCODE_PAGE_BITS & (unsigned long)page;
245 }
246
encoded_page_ptr(struct encoded_page * page)247 static inline struct page *encoded_page_ptr(struct encoded_page *page)
248 {
249 return (struct page *)(~ENCODE_PAGE_BITS & (unsigned long)page);
250 }
251
252 /*
253 * A swap entry has to fit into a "unsigned long", as the entry is hidden
254 * in the "index" field of the swapper address space.
255 */
256 typedef struct {
257 unsigned long val;
258 } swp_entry_t;
259
260 /**
261 * struct folio - Represents a contiguous set of bytes.
262 * @flags: Identical to the page flags.
263 * @lru: Least Recently Used list; tracks how recently this folio was used.
264 * @mlock_count: Number of times this folio has been pinned by mlock().
265 * @mapping: The file this page belongs to, or refers to the anon_vma for
266 * anonymous memory.
267 * @index: Offset within the file, in units of pages. For anonymous memory,
268 * this is the index from the beginning of the mmap.
269 * @private: Filesystem per-folio data (see folio_attach_private()).
270 * @swap: Used for swp_entry_t if folio_test_swapcache().
271 * @_mapcount: Do not access this member directly. Use folio_mapcount() to
272 * find out how many times this folio is mapped by userspace.
273 * @_refcount: Do not access this member directly. Use folio_ref_count()
274 * to find how many references there are to this folio.
275 * @memcg_data: Memory Control Group data.
276 * @_entire_mapcount: Do not use directly, call folio_entire_mapcount().
277 * @_nr_pages_mapped: Do not use directly, call folio_mapcount().
278 * @_pincount: Do not use directly, call folio_maybe_dma_pinned().
279 * @_folio_nr_pages: Do not use directly, call folio_nr_pages().
280 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h.
281 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h.
282 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h.
283 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head().
284 * @_deferred_list: Folios to be split under memory pressure.
285 *
286 * A folio is a physically, virtually and logically contiguous set
287 * of bytes. It is a power-of-two in size, and it is aligned to that
288 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is
289 * in the page cache, it is at a file offset which is a multiple of that
290 * power-of-two. It may be mapped into userspace at an address which is
291 * at an arbitrary page offset, but its kernel virtual address is aligned
292 * to its size.
293 */
294 struct folio {
295 /* private: don't document the anon union */
296 union {
297 struct {
298 /* public: */
299 unsigned long flags;
300 union {
301 struct list_head lru;
302 /* private: avoid cluttering the output */
303 struct {
304 void *__filler;
305 /* public: */
306 unsigned int mlock_count;
307 /* private: */
308 };
309 /* public: */
310 };
311 struct address_space *mapping;
312 pgoff_t index;
313 union {
314 void *private;
315 swp_entry_t swap;
316 };
317 atomic_t _mapcount;
318 atomic_t _refcount;
319 #ifdef CONFIG_MEMCG
320 unsigned long memcg_data;
321 #endif
322 /* private: the union with struct page is transitional */
323 };
324 struct page page;
325 };
326 union {
327 struct {
328 unsigned long _flags_1;
329 unsigned long _head_1;
330 unsigned long _folio_avail;
331 /* public: */
332 atomic_t _entire_mapcount;
333 atomic_t _nr_pages_mapped;
334 atomic_t _pincount;
335 #ifdef CONFIG_64BIT
336 unsigned int _folio_nr_pages;
337 #endif
338 /* private: the union with struct page is transitional */
339 };
340 struct page __page_1;
341 };
342 union {
343 struct {
344 unsigned long _flags_2;
345 unsigned long _head_2;
346 /* public: */
347 void *_hugetlb_subpool;
348 void *_hugetlb_cgroup;
349 void *_hugetlb_cgroup_rsvd;
350 void *_hugetlb_hwpoison;
351 /* private: the union with struct page is transitional */
352 };
353 struct {
354 unsigned long _flags_2a;
355 unsigned long _head_2a;
356 /* public: */
357 struct list_head _deferred_list;
358 /* private: the union with struct page is transitional */
359 };
360 struct page __page_2;
361 };
362 };
363
364 #define FOLIO_MATCH(pg, fl) \
365 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
366 FOLIO_MATCH(flags, flags);
367 FOLIO_MATCH(lru, lru);
368 FOLIO_MATCH(mapping, mapping);
369 FOLIO_MATCH(compound_head, lru);
370 FOLIO_MATCH(index, index);
371 FOLIO_MATCH(private, private);
372 FOLIO_MATCH(_mapcount, _mapcount);
373 FOLIO_MATCH(_refcount, _refcount);
374 #ifdef CONFIG_MEMCG
375 FOLIO_MATCH(memcg_data, memcg_data);
376 #endif
377 #undef FOLIO_MATCH
378 #define FOLIO_MATCH(pg, fl) \
379 static_assert(offsetof(struct folio, fl) == \
380 offsetof(struct page, pg) + sizeof(struct page))
381 FOLIO_MATCH(flags, _flags_1);
382 FOLIO_MATCH(compound_head, _head_1);
383 #undef FOLIO_MATCH
384 #define FOLIO_MATCH(pg, fl) \
385 static_assert(offsetof(struct folio, fl) == \
386 offsetof(struct page, pg) + 2 * sizeof(struct page))
387 FOLIO_MATCH(flags, _flags_2);
388 FOLIO_MATCH(compound_head, _head_2);
389 FOLIO_MATCH(flags, _flags_2a);
390 FOLIO_MATCH(compound_head, _head_2a);
391 #undef FOLIO_MATCH
392
393 /**
394 * struct ptdesc - Memory descriptor for page tables.
395 * @__page_flags: Same as page flags. Unused for page tables.
396 * @pt_rcu_head: For freeing page table pages.
397 * @pt_list: List of used page tables. Used for s390 and x86.
398 * @_pt_pad_1: Padding that aliases with page's compound head.
399 * @pmd_huge_pte: Protected by ptdesc->ptl, used for THPs.
400 * @__page_mapping: Aliases with page->mapping. Unused for page tables.
401 * @pt_mm: Used for x86 pgds.
402 * @pt_frag_refcount: For fragmented page table tracking. Powerpc only.
403 * @pt_share_count: Used for HugeTLB PMD page table share count.
404 * @_pt_pad_2: Padding to ensure proper alignment.
405 * @ptl: Lock for the page table.
406 * @__page_type: Same as page->page_type. Unused for page tables.
407 * @_refcount: Same as page refcount.
408 * @pt_memcg_data: Memcg data. Tracked for page tables here.
409 *
410 * This struct overlays struct page for now. Do not modify without a good
411 * understanding of the issues.
412 */
413 struct ptdesc {
414 unsigned long __page_flags;
415
416 union {
417 struct rcu_head pt_rcu_head;
418 struct list_head pt_list;
419 struct {
420 unsigned long _pt_pad_1;
421 pgtable_t pmd_huge_pte;
422 };
423 };
424 unsigned long __page_mapping;
425
426 union {
427 struct mm_struct *pt_mm;
428 atomic_t pt_frag_refcount;
429 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
430 atomic_t pt_share_count;
431 #endif
432 };
433
434 union {
435 unsigned long _pt_pad_2;
436 #if ALLOC_SPLIT_PTLOCKS
437 spinlock_t *ptl;
438 #else
439 spinlock_t ptl;
440 #endif
441 };
442 unsigned int __page_type;
443 atomic_t _refcount;
444 #ifdef CONFIG_MEMCG
445 unsigned long pt_memcg_data;
446 #endif
447 };
448
449 #define TABLE_MATCH(pg, pt) \
450 static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt))
451 TABLE_MATCH(flags, __page_flags);
452 TABLE_MATCH(compound_head, pt_list);
453 TABLE_MATCH(compound_head, _pt_pad_1);
454 TABLE_MATCH(mapping, __page_mapping);
455 TABLE_MATCH(rcu_head, pt_rcu_head);
456 TABLE_MATCH(page_type, __page_type);
457 TABLE_MATCH(_refcount, _refcount);
458 #ifdef CONFIG_MEMCG
459 TABLE_MATCH(memcg_data, pt_memcg_data);
460 #endif
461 #undef TABLE_MATCH
462 static_assert(sizeof(struct ptdesc) <= sizeof(struct page));
463
464 #define ptdesc_page(pt) (_Generic((pt), \
465 const struct ptdesc *: (const struct page *)(pt), \
466 struct ptdesc *: (struct page *)(pt)))
467
468 #define ptdesc_folio(pt) (_Generic((pt), \
469 const struct ptdesc *: (const struct folio *)(pt), \
470 struct ptdesc *: (struct folio *)(pt)))
471
472 #define page_ptdesc(p) (_Generic((p), \
473 const struct page *: (const struct ptdesc *)(p), \
474 struct page *: (struct ptdesc *)(p)))
475
476 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
ptdesc_pmd_pts_init(struct ptdesc * ptdesc)477 static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc)
478 {
479 atomic_set(&ptdesc->pt_share_count, 0);
480 }
481
ptdesc_pmd_pts_inc(struct ptdesc * ptdesc)482 static inline void ptdesc_pmd_pts_inc(struct ptdesc *ptdesc)
483 {
484 atomic_inc(&ptdesc->pt_share_count);
485 }
486
ptdesc_pmd_pts_dec(struct ptdesc * ptdesc)487 static inline void ptdesc_pmd_pts_dec(struct ptdesc *ptdesc)
488 {
489 atomic_dec(&ptdesc->pt_share_count);
490 }
491
ptdesc_pmd_pts_count(struct ptdesc * ptdesc)492 static inline int ptdesc_pmd_pts_count(struct ptdesc *ptdesc)
493 {
494 return atomic_read(&ptdesc->pt_share_count);
495 }
496 #else
ptdesc_pmd_pts_init(struct ptdesc * ptdesc)497 static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc)
498 {
499 }
500 #endif
501
502 /*
503 * Used for sizing the vmemmap region on some architectures
504 */
505 #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page)))
506
507 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK)
508 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE)
509
510 /*
511 * page_private can be used on tail pages. However, PagePrivate is only
512 * checked by the VM on the head page. So page_private on the tail pages
513 * should be used for data that's ancillary to the head page (eg attaching
514 * buffer heads to tail pages after attaching buffer heads to the head page)
515 */
516 #define page_private(page) ((page)->private)
517
set_page_private(struct page * page,unsigned long private)518 static inline void set_page_private(struct page *page, unsigned long private)
519 {
520 page->private = private;
521 }
522
folio_get_private(struct folio * folio)523 static inline void *folio_get_private(struct folio *folio)
524 {
525 return folio->private;
526 }
527
528 struct page_frag_cache {
529 void * va;
530 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
531 __u16 offset;
532 __u16 size;
533 #else
534 __u32 offset;
535 #endif
536 /* we maintain a pagecount bias, so that we dont dirty cache line
537 * containing page->_refcount every time we allocate a fragment.
538 */
539 unsigned int pagecnt_bias;
540 bool pfmemalloc;
541 };
542
543 typedef unsigned long vm_flags_t;
544
545 /*
546 * A region containing a mapping of a non-memory backed file under NOMMU
547 * conditions. These are held in a global tree and are pinned by the VMAs that
548 * map parts of them.
549 */
550 struct vm_region {
551 struct rb_node vm_rb; /* link in global region tree */
552 vm_flags_t vm_flags; /* VMA vm_flags */
553 unsigned long vm_start; /* start address of region */
554 unsigned long vm_end; /* region initialised to here */
555 unsigned long vm_top; /* region allocated to here */
556 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
557 struct file *vm_file; /* the backing file or NULL */
558
559 int vm_usage; /* region usage count (access under nommu_region_sem) */
560 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
561 * this region */
562 };
563
564 #ifdef CONFIG_USERFAULTFD
565 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
566 struct vm_userfaultfd_ctx {
567 struct userfaultfd_ctx *ctx;
568 };
569 #else /* CONFIG_USERFAULTFD */
570 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
571 struct vm_userfaultfd_ctx {};
572 #endif /* CONFIG_USERFAULTFD */
573
574 struct anon_vma_name {
575 struct kref kref;
576 /* The name needs to be at the end because it is dynamically sized. */
577 char name[];
578 };
579
580 struct vma_lock {
581 struct rw_semaphore lock;
582 };
583
584 struct vma_numab_state {
585 /*
586 * Initialised as time in 'jiffies' after which VMA
587 * should be scanned. Delays first scan of new VMA by at
588 * least sysctl_numa_balancing_scan_delay:
589 */
590 unsigned long next_scan;
591
592 /*
593 * Time in jiffies when pids_active[] is reset to
594 * detect phase change behaviour:
595 */
596 unsigned long pids_active_reset;
597
598 /*
599 * Approximate tracking of PIDs that trapped a NUMA hinting
600 * fault. May produce false positives due to hash collisions.
601 *
602 * [0] Previous PID tracking
603 * [1] Current PID tracking
604 *
605 * Window moves after next_pid_reset has expired approximately
606 * every VMA_PID_RESET_PERIOD jiffies:
607 */
608 unsigned long pids_active[2];
609
610 /* MM scan sequence ID when scan first started after VMA creation */
611 int start_scan_seq;
612
613 /*
614 * MM scan sequence ID when the VMA was last completely scanned.
615 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq
616 */
617 int prev_scan_seq;
618 };
619
620 /*
621 * This struct describes a virtual memory area. There is one of these
622 * per VM-area/task. A VM area is any part of the process virtual memory
623 * space that has a special rule for the page-fault handlers (ie a shared
624 * library, the executable area etc).
625 */
626 struct vm_area_struct {
627 /* The first cache line has the info for VMA tree walking. */
628
629 union {
630 struct {
631 /* VMA covers [vm_start; vm_end) addresses within mm */
632 unsigned long vm_start;
633 unsigned long vm_end;
634 };
635 #ifdef CONFIG_PER_VMA_LOCK
636 struct rcu_head vm_rcu; /* Used for deferred freeing. */
637 #endif
638 };
639
640 struct mm_struct *vm_mm; /* The address space we belong to. */
641 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
642
643 /*
644 * Flags, see mm.h.
645 * To modify use vm_flags_{init|reset|set|clear|mod} functions.
646 */
647 union {
648 const vm_flags_t vm_flags;
649 vm_flags_t __private __vm_flags;
650 };
651
652 #ifdef CONFIG_PER_VMA_LOCK
653 /*
654 * Can only be written (using WRITE_ONCE()) while holding both:
655 * - mmap_lock (in write mode)
656 * - vm_lock->lock (in write mode)
657 * Can be read reliably while holding one of:
658 * - mmap_lock (in read or write mode)
659 * - vm_lock->lock (in read or write mode)
660 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout
661 * while holding nothing (except RCU to keep the VMA struct allocated).
662 *
663 * This sequence counter is explicitly allowed to overflow; sequence
664 * counter reuse can only lead to occasional unnecessary use of the
665 * slowpath.
666 */
667 int vm_lock_seq;
668 struct vma_lock *vm_lock;
669
670 /* Flag to indicate areas detached from the mm->mm_mt tree */
671 bool detached;
672 #endif
673
674 /*
675 * For areas with an address space and backing store,
676 * linkage into the address_space->i_mmap interval tree.
677 *
678 */
679 struct {
680 struct rb_node rb;
681 unsigned long rb_subtree_last;
682 } shared;
683
684 /*
685 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
686 * list, after a COW of one of the file pages. A MAP_SHARED vma
687 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
688 * or brk vma (with NULL file) can only be in an anon_vma list.
689 */
690 struct list_head anon_vma_chain; /* Serialized by mmap_lock &
691 * page_table_lock */
692 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
693
694 /* Function pointers to deal with this struct. */
695 const struct vm_operations_struct *vm_ops;
696
697 /* Information about our backing store: */
698 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
699 units */
700 struct file * vm_file; /* File we map to (can be NULL). */
701 void * vm_private_data; /* was vm_pte (shared mem) */
702
703 #ifdef CONFIG_ANON_VMA_NAME
704 /*
705 * For private and shared anonymous mappings, a pointer to a null
706 * terminated string containing the name given to the vma, or NULL if
707 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access.
708 */
709 struct anon_vma_name *anon_name;
710 #endif
711 #ifdef CONFIG_SWAP
712 atomic_long_t swap_readahead_info;
713 #endif
714 #ifndef CONFIG_MMU
715 struct vm_region *vm_region; /* NOMMU mapping region */
716 #endif
717 #ifdef CONFIG_NUMA
718 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
719 #endif
720 #ifdef CONFIG_NUMA_BALANCING
721 struct vma_numab_state *numab_state; /* NUMA Balancing state */
722 #endif
723 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
724 } __randomize_layout;
725
726 #ifdef CONFIG_SCHED_MM_CID
727 struct mm_cid {
728 u64 time;
729 int cid;
730 };
731 #endif
732
733 struct kioctx_table;
734 struct mm_struct {
735 struct {
736 /*
737 * Fields which are often written to are placed in a separate
738 * cache line.
739 */
740 struct {
741 /**
742 * @mm_count: The number of references to &struct
743 * mm_struct (@mm_users count as 1).
744 *
745 * Use mmgrab()/mmdrop() to modify. When this drops to
746 * 0, the &struct mm_struct is freed.
747 */
748 atomic_t mm_count;
749 } ____cacheline_aligned_in_smp;
750
751 struct maple_tree mm_mt;
752 #ifdef CONFIG_MMU
753 unsigned long (*get_unmapped_area) (struct file *filp,
754 unsigned long addr, unsigned long len,
755 unsigned long pgoff, unsigned long flags);
756 #endif
757 unsigned long mmap_base; /* base of mmap area */
758 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
759 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
760 /* Base addresses for compatible mmap() */
761 unsigned long mmap_compat_base;
762 unsigned long mmap_compat_legacy_base;
763 #endif
764 unsigned long task_size; /* size of task vm space */
765 pgd_t * pgd;
766 #ifdef CONFIG_MEM_PURGEABLE
767 void *uxpgd;
768 spinlock_t uxpgd_lock;
769 #endif
770
771 #ifdef CONFIG_MEMBARRIER
772 /**
773 * @membarrier_state: Flags controlling membarrier behavior.
774 *
775 * This field is close to @pgd to hopefully fit in the same
776 * cache-line, which needs to be touched by switch_mm().
777 */
778 atomic_t membarrier_state;
779 #endif
780
781 /**
782 * @mm_users: The number of users including userspace.
783 *
784 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
785 * drops to 0 (i.e. when the task exits and there are no other
786 * temporary reference holders), we also release a reference on
787 * @mm_count (which may then free the &struct mm_struct if
788 * @mm_count also drops to 0).
789 */
790 atomic_t mm_users;
791
792 #ifdef CONFIG_SCHED_MM_CID
793 /**
794 * @pcpu_cid: Per-cpu current cid.
795 *
796 * Keep track of the currently allocated mm_cid for each cpu.
797 * The per-cpu mm_cid values are serialized by their respective
798 * runqueue locks.
799 */
800 struct mm_cid __percpu *pcpu_cid;
801 /*
802 * @mm_cid_next_scan: Next mm_cid scan (in jiffies).
803 *
804 * When the next mm_cid scan is due (in jiffies).
805 */
806 unsigned long mm_cid_next_scan;
807 #endif
808 #ifdef CONFIG_MMU
809 atomic_long_t pgtables_bytes; /* size of all page tables */
810 #endif
811 int map_count; /* number of VMAs */
812
813 spinlock_t page_table_lock; /* Protects page tables and some
814 * counters
815 */
816 /*
817 * With some kernel config, the current mmap_lock's offset
818 * inside 'mm_struct' is at 0x120, which is very optimal, as
819 * its two hot fields 'count' and 'owner' sit in 2 different
820 * cachelines, and when mmap_lock is highly contended, both
821 * of the 2 fields will be accessed frequently, current layout
822 * will help to reduce cache bouncing.
823 *
824 * So please be careful with adding new fields before
825 * mmap_lock, which can easily push the 2 fields into one
826 * cacheline.
827 */
828 struct rw_semaphore mmap_lock;
829
830 struct list_head mmlist; /* List of maybe swapped mm's. These
831 * are globally strung together off
832 * init_mm.mmlist, and are protected
833 * by mmlist_lock
834 */
835 #ifdef CONFIG_PER_VMA_LOCK
836 /*
837 * This field has lock-like semantics, meaning it is sometimes
838 * accessed with ACQUIRE/RELEASE semantics.
839 * Roughly speaking, incrementing the sequence number is
840 * equivalent to releasing locks on VMAs; reading the sequence
841 * number can be part of taking a read lock on a VMA.
842 *
843 * Can be modified under write mmap_lock using RELEASE
844 * semantics.
845 * Can be read with no other protection when holding write
846 * mmap_lock.
847 * Can be read with ACQUIRE semantics if not holding write
848 * mmap_lock.
849 */
850 int mm_lock_seq;
851 #endif
852
853
854 unsigned long hiwater_rss; /* High-watermark of RSS usage */
855 unsigned long hiwater_vm; /* High-water virtual memory usage */
856
857 unsigned long total_vm; /* Total pages mapped */
858 unsigned long locked_vm; /* Pages that have PG_mlocked set */
859 atomic64_t pinned_vm; /* Refcount permanently increased */
860 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
861 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
862 unsigned long stack_vm; /* VM_STACK */
863 unsigned long def_flags;
864
865 /**
866 * @write_protect_seq: Locked when any thread is write
867 * protecting pages mapped by this mm to enforce a later COW,
868 * for instance during page table copying for fork().
869 */
870 seqcount_t write_protect_seq;
871
872 spinlock_t arg_lock; /* protect the below fields */
873
874 unsigned long start_code, end_code, start_data, end_data;
875 unsigned long start_brk, brk, start_stack;
876 unsigned long arg_start, arg_end, env_start, env_end;
877
878 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
879
880 struct percpu_counter rss_stat[NR_MM_COUNTERS];
881
882 struct linux_binfmt *binfmt;
883
884 /* Architecture-specific MM context */
885 mm_context_t context;
886
887 unsigned long flags; /* Must use atomic bitops to access */
888
889 #ifdef CONFIG_AIO
890 spinlock_t ioctx_lock;
891 struct kioctx_table __rcu *ioctx_table;
892 #endif
893 #ifdef CONFIG_MEMCG
894 /*
895 * "owner" points to a task that is regarded as the canonical
896 * user/owner of this mm. All of the following must be true in
897 * order for it to be changed:
898 *
899 * current == mm->owner
900 * current->mm != mm
901 * new_owner->mm == mm
902 * new_owner->alloc_lock is held
903 */
904 struct task_struct __rcu *owner;
905 #endif
906 struct user_namespace *user_ns;
907
908 /* store ref to file /proc/<pid>/exe symlink points to */
909 struct file __rcu *exe_file;
910 #ifdef CONFIG_MMU_NOTIFIER
911 struct mmu_notifier_subscriptions *notifier_subscriptions;
912 #endif
913 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
914 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
915 #endif
916 #ifdef CONFIG_NUMA_BALANCING
917 /*
918 * numa_next_scan is the next time that PTEs will be remapped
919 * PROT_NONE to trigger NUMA hinting faults; such faults gather
920 * statistics and migrate pages to new nodes if necessary.
921 */
922 unsigned long numa_next_scan;
923
924 /* Restart point for scanning and remapping PTEs. */
925 unsigned long numa_scan_offset;
926
927 /* numa_scan_seq prevents two threads remapping PTEs. */
928 int numa_scan_seq;
929 #endif
930 /*
931 * An operation with batched TLB flushing is going on. Anything
932 * that can move process memory needs to flush the TLB when
933 * moving a PROT_NONE mapped page.
934 */
935 atomic_t tlb_flush_pending;
936 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
937 /* See flush_tlb_batched_pending() */
938 atomic_t tlb_flush_batched;
939 #endif
940 struct uprobes_state uprobes_state;
941 #ifdef CONFIG_PREEMPT_RT
942 struct rcu_head delayed_drop;
943 #endif
944 #ifdef CONFIG_HUGETLB_PAGE
945 atomic_long_t hugetlb_usage;
946 #endif
947 struct work_struct async_put_work;
948
949 #ifdef CONFIG_IOMMU_SVA
950 u32 pasid;
951 #endif
952 #ifdef CONFIG_KSM
953 /*
954 * Represent how many pages of this process are involved in KSM
955 * merging (not including ksm_zero_pages).
956 */
957 unsigned long ksm_merging_pages;
958 /*
959 * Represent how many pages are checked for ksm merging
960 * including merged and not merged.
961 */
962 unsigned long ksm_rmap_items;
963 /*
964 * Represent how many empty pages are merged with kernel zero
965 * pages when enabling KSM use_zero_pages.
966 */
967 atomic_long_t ksm_zero_pages;
968 #endif /* CONFIG_KSM */
969 #ifdef CONFIG_LRU_GEN
970 struct {
971 /* this mm_struct is on lru_gen_mm_list */
972 struct list_head list;
973 /*
974 * Set when switching to this mm_struct, as a hint of
975 * whether it has been used since the last time per-node
976 * page table walkers cleared the corresponding bits.
977 */
978 unsigned long bitmap;
979 #ifdef CONFIG_MEMCG
980 /* points to the memcg of "owner" above */
981 struct mem_cgroup *memcg;
982 #endif
983 } lru_gen;
984 #endif /* CONFIG_LRU_GEN */
985
986 #ifdef CONFIG_SECURITY_XPM
987 struct xpm_region xpm_region;
988 #endif
989
990 #ifdef CONFIG_SECURITY_CODE_SIGN
991 struct cs_info pcs_info;
992 #endif
993 } __randomize_layout;
994
995 /*
996 * The mm_cpumask needs to be at the end of mm_struct, because it
997 * is dynamically sized based on nr_cpu_ids.
998 */
999 unsigned long cpu_bitmap[];
1000 };
1001
1002 #define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \
1003 MT_FLAGS_USE_RCU)
1004 extern struct mm_struct init_mm;
1005
1006 /* Pointer magic because the dynamic array size confuses some compilers. */
mm_init_cpumask(struct mm_struct * mm)1007 static inline void mm_init_cpumask(struct mm_struct *mm)
1008 {
1009 unsigned long cpu_bitmap = (unsigned long)mm;
1010
1011 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
1012 cpumask_clear((struct cpumask *)cpu_bitmap);
1013 }
1014
1015 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)1016 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
1017 {
1018 return (struct cpumask *)&mm->cpu_bitmap;
1019 }
1020
1021 #ifdef CONFIG_LRU_GEN
1022
1023 struct lru_gen_mm_list {
1024 /* mm_struct list for page table walkers */
1025 struct list_head fifo;
1026 /* protects the list above */
1027 spinlock_t lock;
1028 };
1029
1030 void lru_gen_add_mm(struct mm_struct *mm);
1031 void lru_gen_del_mm(struct mm_struct *mm);
1032 #ifdef CONFIG_MEMCG
1033 void lru_gen_migrate_mm(struct mm_struct *mm);
1034 #endif
1035
lru_gen_init_mm(struct mm_struct * mm)1036 static inline void lru_gen_init_mm(struct mm_struct *mm)
1037 {
1038 INIT_LIST_HEAD(&mm->lru_gen.list);
1039 mm->lru_gen.bitmap = 0;
1040 #ifdef CONFIG_MEMCG
1041 mm->lru_gen.memcg = NULL;
1042 #endif
1043 }
1044
lru_gen_use_mm(struct mm_struct * mm)1045 static inline void lru_gen_use_mm(struct mm_struct *mm)
1046 {
1047 /*
1048 * When the bitmap is set, page reclaim knows this mm_struct has been
1049 * used since the last time it cleared the bitmap. So it might be worth
1050 * walking the page tables of this mm_struct to clear the accessed bit.
1051 */
1052 WRITE_ONCE(mm->lru_gen.bitmap, -1);
1053 }
1054
1055 #else /* !CONFIG_LRU_GEN */
1056
lru_gen_add_mm(struct mm_struct * mm)1057 static inline void lru_gen_add_mm(struct mm_struct *mm)
1058 {
1059 }
1060
lru_gen_del_mm(struct mm_struct * mm)1061 static inline void lru_gen_del_mm(struct mm_struct *mm)
1062 {
1063 }
1064
1065 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)1066 static inline void lru_gen_migrate_mm(struct mm_struct *mm)
1067 {
1068 }
1069 #endif
1070
lru_gen_init_mm(struct mm_struct * mm)1071 static inline void lru_gen_init_mm(struct mm_struct *mm)
1072 {
1073 }
1074
lru_gen_use_mm(struct mm_struct * mm)1075 static inline void lru_gen_use_mm(struct mm_struct *mm)
1076 {
1077 }
1078
1079 #endif /* CONFIG_LRU_GEN */
1080
1081 struct vma_iterator {
1082 struct ma_state mas;
1083 };
1084
1085 #define VMA_ITERATOR(name, __mm, __addr) \
1086 struct vma_iterator name = { \
1087 .mas = { \
1088 .tree = &(__mm)->mm_mt, \
1089 .index = __addr, \
1090 .node = MAS_START, \
1091 }, \
1092 }
1093
vma_iter_init(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long addr)1094 static inline void vma_iter_init(struct vma_iterator *vmi,
1095 struct mm_struct *mm, unsigned long addr)
1096 {
1097 mas_init(&vmi->mas, &mm->mm_mt, addr);
1098 }
1099
1100 #ifdef CONFIG_SCHED_MM_CID
1101
1102 enum mm_cid_state {
1103 MM_CID_UNSET = -1U, /* Unset state has lazy_put flag set. */
1104 MM_CID_LAZY_PUT = (1U << 31),
1105 };
1106
mm_cid_is_unset(int cid)1107 static inline bool mm_cid_is_unset(int cid)
1108 {
1109 return cid == MM_CID_UNSET;
1110 }
1111
mm_cid_is_lazy_put(int cid)1112 static inline bool mm_cid_is_lazy_put(int cid)
1113 {
1114 return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT);
1115 }
1116
mm_cid_is_valid(int cid)1117 static inline bool mm_cid_is_valid(int cid)
1118 {
1119 return !(cid & MM_CID_LAZY_PUT);
1120 }
1121
mm_cid_set_lazy_put(int cid)1122 static inline int mm_cid_set_lazy_put(int cid)
1123 {
1124 return cid | MM_CID_LAZY_PUT;
1125 }
1126
mm_cid_clear_lazy_put(int cid)1127 static inline int mm_cid_clear_lazy_put(int cid)
1128 {
1129 return cid & ~MM_CID_LAZY_PUT;
1130 }
1131
1132 /* Accessor for struct mm_struct's cidmask. */
mm_cidmask(struct mm_struct * mm)1133 static inline cpumask_t *mm_cidmask(struct mm_struct *mm)
1134 {
1135 unsigned long cid_bitmap = (unsigned long)mm;
1136
1137 cid_bitmap += offsetof(struct mm_struct, cpu_bitmap);
1138 /* Skip cpu_bitmap */
1139 cid_bitmap += cpumask_size();
1140 return (struct cpumask *)cid_bitmap;
1141 }
1142
mm_init_cid(struct mm_struct * mm)1143 static inline void mm_init_cid(struct mm_struct *mm)
1144 {
1145 int i;
1146
1147 for_each_possible_cpu(i) {
1148 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i);
1149
1150 pcpu_cid->cid = MM_CID_UNSET;
1151 pcpu_cid->time = 0;
1152 }
1153 cpumask_clear(mm_cidmask(mm));
1154 }
1155
mm_alloc_cid(struct mm_struct * mm)1156 static inline int mm_alloc_cid(struct mm_struct *mm)
1157 {
1158 mm->pcpu_cid = alloc_percpu(struct mm_cid);
1159 if (!mm->pcpu_cid)
1160 return -ENOMEM;
1161 mm_init_cid(mm);
1162 return 0;
1163 }
1164
mm_destroy_cid(struct mm_struct * mm)1165 static inline void mm_destroy_cid(struct mm_struct *mm)
1166 {
1167 free_percpu(mm->pcpu_cid);
1168 mm->pcpu_cid = NULL;
1169 }
1170
mm_cid_size(void)1171 static inline unsigned int mm_cid_size(void)
1172 {
1173 return cpumask_size();
1174 }
1175 #else /* CONFIG_SCHED_MM_CID */
mm_init_cid(struct mm_struct * mm)1176 static inline void mm_init_cid(struct mm_struct *mm) { }
mm_alloc_cid(struct mm_struct * mm)1177 static inline int mm_alloc_cid(struct mm_struct *mm) { return 0; }
mm_destroy_cid(struct mm_struct * mm)1178 static inline void mm_destroy_cid(struct mm_struct *mm) { }
mm_cid_size(void)1179 static inline unsigned int mm_cid_size(void)
1180 {
1181 return 0;
1182 }
1183 #endif /* CONFIG_SCHED_MM_CID */
1184
1185 struct mmu_gather;
1186 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
1187 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
1188 extern void tlb_finish_mmu(struct mmu_gather *tlb);
1189
1190 struct vm_fault;
1191
1192 /**
1193 * typedef vm_fault_t - Return type for page fault handlers.
1194 *
1195 * Page fault handlers return a bitmask of %VM_FAULT values.
1196 */
1197 typedef __bitwise unsigned int vm_fault_t;
1198
1199 /**
1200 * enum vm_fault_reason - Page fault handlers return a bitmask of
1201 * these values to tell the core VM what happened when handling the
1202 * fault. Used to decide whether a process gets delivered SIGBUS or
1203 * just gets major/minor fault counters bumped up.
1204 *
1205 * @VM_FAULT_OOM: Out Of Memory
1206 * @VM_FAULT_SIGBUS: Bad access
1207 * @VM_FAULT_MAJOR: Page read from storage
1208 * @VM_FAULT_HWPOISON: Hit poisoned small page
1209 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded
1210 * in upper bits
1211 * @VM_FAULT_SIGSEGV: segmentation fault
1212 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page
1213 * @VM_FAULT_LOCKED: ->fault locked the returned page
1214 * @VM_FAULT_RETRY: ->fault blocked, must retry
1215 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small
1216 * @VM_FAULT_DONE_COW: ->fault has fully handled COW
1217 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs
1218 * fsync() to complete (for synchronous page faults
1219 * in DAX)
1220 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released
1221 * @VM_FAULT_HINDEX_MASK: mask HINDEX value
1222 *
1223 */
1224 enum vm_fault_reason {
1225 VM_FAULT_OOM = (__force vm_fault_t)0x000001,
1226 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002,
1227 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004,
1228 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010,
1229 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
1230 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040,
1231 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100,
1232 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200,
1233 VM_FAULT_RETRY = (__force vm_fault_t)0x000400,
1234 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800,
1235 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000,
1236 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000,
1237 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000,
1238 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000,
1239 };
1240
1241 /* Encode hstate index for a hwpoisoned large page */
1242 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
1243 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
1244
1245 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \
1246 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \
1247 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
1248
1249 #define VM_FAULT_RESULT_TRACE \
1250 { VM_FAULT_OOM, "OOM" }, \
1251 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1252 { VM_FAULT_MAJOR, "MAJOR" }, \
1253 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1254 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1255 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1256 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1257 { VM_FAULT_LOCKED, "LOCKED" }, \
1258 { VM_FAULT_RETRY, "RETRY" }, \
1259 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1260 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1261 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }, \
1262 { VM_FAULT_COMPLETED, "COMPLETED" }
1263
1264 struct vm_special_mapping {
1265 const char *name; /* The name, e.g. "[vdso]". */
1266
1267 /*
1268 * If .fault is not provided, this points to a
1269 * NULL-terminated array of pages that back the special mapping.
1270 *
1271 * This must not be NULL unless .fault is provided.
1272 */
1273 struct page **pages;
1274
1275 /*
1276 * If non-NULL, then this is called to resolve page faults
1277 * on the special mapping. If used, .pages is not checked.
1278 */
1279 vm_fault_t (*fault)(const struct vm_special_mapping *sm,
1280 struct vm_area_struct *vma,
1281 struct vm_fault *vmf);
1282
1283 int (*mremap)(const struct vm_special_mapping *sm,
1284 struct vm_area_struct *new_vma);
1285 };
1286
1287 enum tlb_flush_reason {
1288 TLB_FLUSH_ON_TASK_SWITCH,
1289 TLB_REMOTE_SHOOTDOWN,
1290 TLB_LOCAL_SHOOTDOWN,
1291 TLB_LOCAL_MM_SHOOTDOWN,
1292 TLB_REMOTE_SEND_IPI,
1293 NR_TLB_FLUSH_REASONS,
1294 };
1295
1296 /**
1297 * enum fault_flag - Fault flag definitions.
1298 * @FAULT_FLAG_WRITE: Fault was a write fault.
1299 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
1300 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
1301 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
1302 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
1303 * @FAULT_FLAG_TRIED: The fault has been tried once.
1304 * @FAULT_FLAG_USER: The fault originated in userspace.
1305 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
1306 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
1307 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
1308 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a
1309 * COW mapping, making sure that an exclusive anon page is
1310 * mapped after the fault.
1311 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
1312 * We should only access orig_pte if this flag set.
1313 * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock.
1314 *
1315 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
1316 * whether we would allow page faults to retry by specifying these two
1317 * fault flags correctly. Currently there can be three legal combinations:
1318 *
1319 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
1320 * this is the first try
1321 *
1322 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
1323 * we've already tried at least once
1324 *
1325 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
1326 *
1327 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
1328 * be used. Note that page faults can be allowed to retry for multiple times,
1329 * in which case we'll have an initial fault with flags (a) then later on
1330 * continuous faults with flags (b). We should always try to detect pending
1331 * signals before a retry to make sure the continuous page faults can still be
1332 * interrupted if necessary.
1333 *
1334 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
1335 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
1336 * applied to mappings that are not COW mappings.
1337 */
1338 enum fault_flag {
1339 FAULT_FLAG_WRITE = 1 << 0,
1340 FAULT_FLAG_MKWRITE = 1 << 1,
1341 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
1342 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
1343 FAULT_FLAG_KILLABLE = 1 << 4,
1344 FAULT_FLAG_TRIED = 1 << 5,
1345 FAULT_FLAG_USER = 1 << 6,
1346 FAULT_FLAG_REMOTE = 1 << 7,
1347 FAULT_FLAG_INSTRUCTION = 1 << 8,
1348 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
1349 FAULT_FLAG_UNSHARE = 1 << 10,
1350 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11,
1351 FAULT_FLAG_VMA_LOCK = 1 << 12,
1352 };
1353
1354 typedef unsigned int __bitwise zap_flags_t;
1355
1356 /*
1357 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
1358 * other. Here is what they mean, and how to use them:
1359 *
1360 *
1361 * FIXME: For pages which are part of a filesystem, mappings are subject to the
1362 * lifetime enforced by the filesystem and we need guarantees that longterm
1363 * users like RDMA and V4L2 only establish mappings which coordinate usage with
1364 * the filesystem. Ideas for this coordination include revoking the longterm
1365 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
1366 * added after the problem with filesystems was found FS DAX VMAs are
1367 * specifically failed. Filesystem pages are still subject to bugs and use of
1368 * FOLL_LONGTERM should be avoided on those pages.
1369 *
1370 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
1371 * that region. And so, CMA attempts to migrate the page before pinning, when
1372 * FOLL_LONGTERM is specified.
1373 *
1374 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
1375 * but an additional pin counting system) will be invoked. This is intended for
1376 * anything that gets a page reference and then touches page data (for example,
1377 * Direct IO). This lets the filesystem know that some non-file-system entity is
1378 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
1379 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
1380 * a call to unpin_user_page().
1381 *
1382 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
1383 * and separate refcounting mechanisms, however, and that means that each has
1384 * its own acquire and release mechanisms:
1385 *
1386 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
1387 *
1388 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
1389 *
1390 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
1391 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
1392 * calls applied to them, and that's perfectly OK. This is a constraint on the
1393 * callers, not on the pages.)
1394 *
1395 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
1396 * directly by the caller. That's in order to help avoid mismatches when
1397 * releasing pages: get_user_pages*() pages must be released via put_page(),
1398 * while pin_user_pages*() pages must be released via unpin_user_page().
1399 *
1400 * Please see Documentation/core-api/pin_user_pages.rst for more information.
1401 */
1402
1403 enum {
1404 /* check pte is writable */
1405 FOLL_WRITE = 1 << 0,
1406 /* do get_page on page */
1407 FOLL_GET = 1 << 1,
1408 /* give error on hole if it would be zero */
1409 FOLL_DUMP = 1 << 2,
1410 /* get_user_pages read/write w/o permission */
1411 FOLL_FORCE = 1 << 3,
1412 /*
1413 * if a disk transfer is needed, start the IO and return without waiting
1414 * upon it
1415 */
1416 FOLL_NOWAIT = 1 << 4,
1417 /* do not fault in pages */
1418 FOLL_NOFAULT = 1 << 5,
1419 /* check page is hwpoisoned */
1420 FOLL_HWPOISON = 1 << 6,
1421 /* don't do file mappings */
1422 FOLL_ANON = 1 << 7,
1423 /*
1424 * FOLL_LONGTERM indicates that the page will be held for an indefinite
1425 * time period _often_ under userspace control. This is in contrast to
1426 * iov_iter_get_pages(), whose usages are transient.
1427 */
1428 FOLL_LONGTERM = 1 << 8,
1429 /* split huge pmd before returning */
1430 FOLL_SPLIT_PMD = 1 << 9,
1431 /* allow returning PCI P2PDMA pages */
1432 FOLL_PCI_P2PDMA = 1 << 10,
1433 /* allow interrupts from generic signals */
1434 FOLL_INTERRUPTIBLE = 1 << 11,
1435 /*
1436 * Always honor (trigger) NUMA hinting faults.
1437 *
1438 * FOLL_WRITE implicitly honors NUMA hinting faults because a
1439 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE
1440 * apply). get_user_pages_fast_only() always implicitly honors NUMA
1441 * hinting faults.
1442 */
1443 FOLL_HONOR_NUMA_FAULT = 1 << 12,
1444
1445 /* See also internal only FOLL flags in mm/internal.h */
1446 };
1447
1448 #endif /* _LINUX_MM_TYPES_H */
1449