1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <asm/page.h>
26
27 /* Free memory management - zoned buddy allocator. */
28 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
29 #define MAX_ORDER 10
30 #else
31 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
32 #endif
33 #define MAX_ORDER_NR_PAGES (1 << MAX_ORDER)
34
35 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
36
37 #define NR_PAGE_ORDERS (MAX_ORDER + 1)
38
39 /*
40 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
41 * costly to service. That is between allocation orders which should
42 * coalesce naturally under reasonable reclaim pressure and those which
43 * will not.
44 */
45 #define PAGE_ALLOC_COSTLY_ORDER 3
46
47 enum migratetype {
48 MIGRATE_UNMOVABLE,
49 MIGRATE_MOVABLE,
50 MIGRATE_RECLAIMABLE,
51 #ifdef CONFIG_CMA_REUSE
52 MIGRATE_CMA,
53 #endif
54 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
55 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
56 #if defined(CONFIG_CMA) && !defined(CONFIG_CMA_REUSE)
57 /*
58 * MIGRATE_CMA migration type is designed to mimic the way
59 * ZONE_MOVABLE works. Only movable pages can be allocated
60 * from MIGRATE_CMA pageblocks and page allocator never
61 * implicitly change migration type of MIGRATE_CMA pageblock.
62 *
63 * The way to use it is to change migratetype of a range of
64 * pageblocks to MIGRATE_CMA which can be done by
65 * __free_pageblock_cma() function.
66 */
67 MIGRATE_CMA,
68 #endif
69 #ifdef CONFIG_MEMORY_ISOLATION
70 MIGRATE_ISOLATE, /* can't allocate from here */
71 #endif
72 MIGRATE_TYPES
73 };
74
75 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
76 extern const char * const migratetype_names[MIGRATE_TYPES];
77
78 #ifdef CONFIG_CMA
79 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
80 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
81 #else
82 # define is_migrate_cma(migratetype) false
83 # define is_migrate_cma_page(_page) false
84 #endif
85
86 #ifdef CONFIG_CMA_REUSE
87 # define get_cma_migratetype() MIGRATE_CMA
88 #else
89 # define get_cma_migratetype() MIGRATE_MOVABLE
90 #endif
91
is_migrate_movable(int mt)92 static inline bool is_migrate_movable(int mt)
93 {
94 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
95 }
96
97 /*
98 * Check whether a migratetype can be merged with another migratetype.
99 *
100 * It is only mergeable when it can fall back to other migratetypes for
101 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
102 */
migratetype_is_mergeable(int mt)103 static inline bool migratetype_is_mergeable(int mt)
104 {
105 return mt < MIGRATE_PCPTYPES;
106 }
107
108 #define for_each_migratetype_order(order, type) \
109 for (order = 0; order < NR_PAGE_ORDERS; order++) \
110 for (type = 0; type < MIGRATE_TYPES; type++)
111
112 extern int page_group_by_mobility_disabled;
113
114 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
115
116 #define get_pageblock_migratetype(page) \
117 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
118
119 #define folio_migratetype(folio) \
120 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \
121 MIGRATETYPE_MASK)
122 struct free_area {
123 struct list_head free_list[MIGRATE_TYPES];
124 unsigned long nr_free;
125 };
126
127 struct pglist_data;
128
129 #ifdef CONFIG_NUMA
130 enum numa_stat_item {
131 NUMA_HIT, /* allocated in intended node */
132 NUMA_MISS, /* allocated in non intended node */
133 NUMA_FOREIGN, /* was intended here, hit elsewhere */
134 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
135 NUMA_LOCAL, /* allocation from local node */
136 NUMA_OTHER, /* allocation from other node */
137 NR_VM_NUMA_EVENT_ITEMS
138 };
139 #else
140 #define NR_VM_NUMA_EVENT_ITEMS 0
141 #endif
142
143 enum zone_stat_item {
144 /* First 128 byte cacheline (assuming 64 bit words) */
145 NR_FREE_PAGES,
146 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
147 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
148 NR_ZONE_ACTIVE_ANON,
149 NR_ZONE_INACTIVE_FILE,
150 NR_ZONE_ACTIVE_FILE,
151 #ifdef CONFIG_MEM_PURGEABLE
152 NR_ZONE_INACTIVE_PURGEABLE,
153 NR_ZONE_ACTIVE_PURGEABLE,
154 #endif
155 NR_ZONE_UNEVICTABLE,
156 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
157 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
158 /* Second 128 byte cacheline */
159 NR_BOUNCE,
160 #if IS_ENABLED(CONFIG_ZSMALLOC)
161 NR_ZSPAGES, /* allocated in zsmalloc */
162 #endif
163 NR_FREE_CMA_PAGES,
164 #ifdef CONFIG_UNACCEPTED_MEMORY
165 NR_UNACCEPTED,
166 #endif
167 NR_VM_ZONE_STAT_ITEMS };
168
169 enum node_stat_item {
170 NR_LRU_BASE,
171 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
172 NR_ACTIVE_ANON, /* " " " " " */
173 NR_INACTIVE_FILE, /* " " " " " */
174 NR_ACTIVE_FILE, /* " " " " " */
175 #ifdef CONFIG_MEM_PURGEABLE
176 NR_INACTIVE_PURGEABLE,
177 NR_ACTIVE_PURGEABLE,
178 #endif
179 NR_UNEVICTABLE, /* " " " " " */
180 NR_SLAB_RECLAIMABLE_B,
181 NR_SLAB_UNRECLAIMABLE_B,
182 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
183 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
184 WORKINGSET_NODES,
185 WORKINGSET_REFAULT_BASE,
186 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
187 WORKINGSET_REFAULT_FILE,
188 WORKINGSET_ACTIVATE_BASE,
189 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
190 WORKINGSET_ACTIVATE_FILE,
191 WORKINGSET_RESTORE_BASE,
192 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
193 WORKINGSET_RESTORE_FILE,
194 WORKINGSET_NODERECLAIM,
195 NR_ANON_MAPPED, /* Mapped anonymous pages */
196 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
197 only modified from process context */
198 NR_FILE_PAGES,
199 NR_FILE_DIRTY,
200 NR_WRITEBACK,
201 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
202 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
203 NR_SHMEM_THPS,
204 NR_SHMEM_PMDMAPPED,
205 NR_FILE_THPS,
206 NR_FILE_PMDMAPPED,
207 NR_ANON_THPS,
208 NR_VMSCAN_WRITE,
209 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
210 NR_DIRTIED, /* page dirtyings since bootup */
211 NR_WRITTEN, /* page writings since bootup */
212 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
213 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
214 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
215 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
216 NR_KERNEL_STACK_KB, /* measured in KiB */
217 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
218 NR_KERNEL_SCS_KB, /* measured in KiB */
219 #endif
220 NR_PAGETABLE, /* used for pagetables */
221 NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
222 #ifdef CONFIG_SWAP
223 NR_SWAPCACHE,
224 #endif
225 #ifdef CONFIG_NUMA_BALANCING
226 PGPROMOTE_SUCCESS, /* promote successfully */
227 PGPROMOTE_CANDIDATE, /* candidate pages to promote */
228 #endif
229 NR_VM_NODE_STAT_ITEMS
230 };
231
232 /*
233 * Returns true if the item should be printed in THPs (/proc/vmstat
234 * currently prints number of anon, file and shmem THPs. But the item
235 * is charged in pages).
236 */
vmstat_item_print_in_thp(enum node_stat_item item)237 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
238 {
239 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
240 return false;
241
242 return item == NR_ANON_THPS ||
243 item == NR_FILE_THPS ||
244 item == NR_SHMEM_THPS ||
245 item == NR_SHMEM_PMDMAPPED ||
246 item == NR_FILE_PMDMAPPED;
247 }
248
249 /*
250 * Returns true if the value is measured in bytes (most vmstat values are
251 * measured in pages). This defines the API part, the internal representation
252 * might be different.
253 */
vmstat_item_in_bytes(int idx)254 static __always_inline bool vmstat_item_in_bytes(int idx)
255 {
256 /*
257 * Global and per-node slab counters track slab pages.
258 * It's expected that changes are multiples of PAGE_SIZE.
259 * Internally values are stored in pages.
260 *
261 * Per-memcg and per-lruvec counters track memory, consumed
262 * by individual slab objects. These counters are actually
263 * byte-precise.
264 */
265 return (idx == NR_SLAB_RECLAIMABLE_B ||
266 idx == NR_SLAB_UNRECLAIMABLE_B);
267 }
268
269 /*
270 * We do arithmetic on the LRU lists in various places in the code,
271 * so it is important to keep the active lists LRU_ACTIVE higher in
272 * the array than the corresponding inactive lists, and to keep
273 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
274 *
275 * This has to be kept in sync with the statistics in zone_stat_item
276 * above and the descriptions in vmstat_text in mm/vmstat.c
277 */
278 #define LRU_BASE 0
279 #define LRU_ACTIVE 1
280 #define LRU_FILE 2
281 #ifdef CONFIG_MEM_PURGEABLE
282 #define LRU_PURGEABLE 4
283 #endif
284
285 enum lru_list {
286 LRU_INACTIVE_ANON = LRU_BASE,
287 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
288 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
289 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
290 #ifdef CONFIG_MEM_PURGEABLE
291 LRU_INACTIVE_PURGEABLE = LRU_BASE + LRU_PURGEABLE,
292 LRU_ACTIVE_PURGEABLE = LRU_BASE + LRU_PURGEABLE + LRU_ACTIVE,
293 #endif
294 LRU_UNEVICTABLE,
295 NR_LRU_LISTS
296 };
297
298 enum vmscan_throttle_state {
299 VMSCAN_THROTTLE_WRITEBACK,
300 VMSCAN_THROTTLE_ISOLATED,
301 VMSCAN_THROTTLE_NOPROGRESS,
302 VMSCAN_THROTTLE_CONGESTED,
303 NR_VMSCAN_THROTTLE,
304 };
305
306 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
307
308 #define for_each_evictable_lru(lru) for (lru = 0; lru < LRU_UNEVICTABLE; lru++)
309
is_file_lru(enum lru_list lru)310 static inline bool is_file_lru(enum lru_list lru)
311 {
312 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
313 }
314
is_active_lru(enum lru_list lru)315 static inline bool is_active_lru(enum lru_list lru)
316 {
317 #ifdef CONFIG_MEM_PURGEABLE
318 if (lru == LRU_ACTIVE_PURGEABLE)
319 return true;
320 #endif
321 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
322 }
323
324 #define WORKINGSET_ANON 0
325 #define WORKINGSET_FILE 1
326 #define ANON_AND_FILE 2
327
328 enum lruvec_flags {
329 /*
330 * An lruvec has many dirty pages backed by a congested BDI:
331 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
332 * It can be cleared by cgroup reclaim or kswapd.
333 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
334 * It can only be cleared by kswapd.
335 *
336 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
337 * reclaim, but not vice versa. This only applies to the root cgroup.
338 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
339 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
340 * by kswapd).
341 */
342 LRUVEC_CGROUP_CONGESTED,
343 LRUVEC_NODE_CONGESTED,
344 };
345
346 #endif /* !__GENERATING_BOUNDS_H */
347
348 /*
349 * Evictable pages are divided into multiple generations. The youngest and the
350 * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
351 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
352 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
353 * corresponding generation. The gen counter in folio->flags stores gen+1 while
354 * a page is on one of lrugen->folios[]. Otherwise it stores 0.
355 *
356 * A page is added to the youngest generation on faulting. The aging needs to
357 * check the accessed bit at least twice before handing this page over to the
358 * eviction. The first check takes care of the accessed bit set on the initial
359 * fault; the second check makes sure this page hasn't been used since then.
360 * This process, AKA second chance, requires a minimum of two generations,
361 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
362 * LRU, e.g., /proc/vmstat, these two generations are considered active; the
363 * rest of generations, if they exist, are considered inactive. See
364 * lru_gen_is_active().
365 *
366 * PG_active is always cleared while a page is on one of lrugen->folios[] so
367 * that the aging needs not to worry about it. And it's set again when a page
368 * considered active is isolated for non-reclaiming purposes, e.g., migration.
369 * See lru_gen_add_folio() and lru_gen_del_folio().
370 *
371 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
372 * number of categories of the active/inactive LRU when keeping track of
373 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
374 * in folio->flags.
375 */
376 #define MIN_NR_GENS 2U
377 #define MAX_NR_GENS 4U
378
379 /*
380 * Each generation is divided into multiple tiers. A page accessed N times
381 * through file descriptors is in tier order_base_2(N). A page in the first tier
382 * (N=0,1) is marked by PG_referenced unless it was faulted in through page
383 * tables or read ahead. A page in any other tier (N>1) is marked by
384 * PG_referenced and PG_workingset. This implies a minimum of two tiers is
385 * supported without using additional bits in folio->flags.
386 *
387 * In contrast to moving across generations which requires the LRU lock, moving
388 * across tiers only involves atomic operations on folio->flags and therefore
389 * has a negligible cost in the buffered access path. In the eviction path,
390 * comparisons of refaulted/(evicted+protected) from the first tier and the
391 * rest infer whether pages accessed multiple times through file descriptors
392 * are statistically hot and thus worth protecting.
393 *
394 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
395 * number of categories of the active/inactive LRU when keeping track of
396 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
397 * folio->flags.
398 */
399 #define MAX_NR_TIERS 4U
400
401 #ifndef __GENERATING_BOUNDS_H
402
403 struct lruvec;
404 struct page_vma_mapped_walk;
405
406 #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
407 #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
408
409 #ifdef CONFIG_LRU_GEN
410
411 enum {
412 LRU_GEN_ANON,
413 LRU_GEN_FILE,
414 };
415
416 enum {
417 LRU_GEN_CORE,
418 LRU_GEN_MM_WALK,
419 LRU_GEN_NONLEAF_YOUNG,
420 NR_LRU_GEN_CAPS
421 };
422
423 #define MIN_LRU_BATCH BITS_PER_LONG
424 #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64)
425
426 /* whether to keep historical stats from evicted generations */
427 #ifdef CONFIG_LRU_GEN_STATS
428 #define NR_HIST_GENS MAX_NR_GENS
429 #else
430 #define NR_HIST_GENS 1U
431 #endif
432
433 /*
434 * The youngest generation number is stored in max_seq for both anon and file
435 * types as they are aged on an equal footing. The oldest generation numbers are
436 * stored in min_seq[] separately for anon and file types as clean file pages
437 * can be evicted regardless of swap constraints.
438 *
439 * Normally anon and file min_seq are in sync. But if swapping is constrained,
440 * e.g., out of swap space, file min_seq is allowed to advance and leave anon
441 * min_seq behind.
442 *
443 * The number of pages in each generation is eventually consistent and therefore
444 * can be transiently negative when reset_batch_size() is pending.
445 */
446 struct lru_gen_folio {
447 /* the aging increments the youngest generation number */
448 unsigned long max_seq;
449 /* the eviction increments the oldest generation numbers */
450 unsigned long min_seq[ANON_AND_FILE];
451 /* the birth time of each generation in jiffies */
452 unsigned long timestamps[MAX_NR_GENS];
453 /* the multi-gen LRU lists, lazily sorted on eviction */
454 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
455 /* the multi-gen LRU sizes, eventually consistent */
456 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
457 /* the exponential moving average of refaulted */
458 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
459 /* the exponential moving average of evicted+protected */
460 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
461 /* the first tier doesn't need protection, hence the minus one */
462 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
463 /* can be modified without holding the LRU lock */
464 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
465 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
466 /* whether the multi-gen LRU is enabled */
467 bool enabled;
468 #ifdef CONFIG_MEMCG
469 /* the memcg generation this lru_gen_folio belongs to */
470 u8 gen;
471 /* the list segment this lru_gen_folio belongs to */
472 u8 seg;
473 /* per-node lru_gen_folio list for global reclaim */
474 struct hlist_nulls_node list;
475 #endif
476 };
477
478 enum {
479 MM_LEAF_TOTAL, /* total leaf entries */
480 MM_LEAF_OLD, /* old leaf entries */
481 MM_LEAF_YOUNG, /* young leaf entries */
482 MM_NONLEAF_TOTAL, /* total non-leaf entries */
483 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */
484 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */
485 NR_MM_STATS
486 };
487
488 /* double-buffering Bloom filters */
489 #define NR_BLOOM_FILTERS 2
490
491 struct lru_gen_mm_state {
492 /* set to max_seq after each iteration */
493 unsigned long seq;
494 /* where the current iteration continues after */
495 struct list_head *head;
496 /* where the last iteration ended before */
497 struct list_head *tail;
498 /* Bloom filters flip after each iteration */
499 unsigned long *filters[NR_BLOOM_FILTERS];
500 /* the mm stats for debugging */
501 unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
502 };
503
504 struct lru_gen_mm_walk {
505 /* the lruvec under reclaim */
506 struct lruvec *lruvec;
507 /* unstable max_seq from lru_gen_folio */
508 unsigned long max_seq;
509 /* the next address within an mm to scan */
510 unsigned long next_addr;
511 /* to batch promoted pages */
512 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
513 /* to batch the mm stats */
514 int mm_stats[NR_MM_STATS];
515 /* total batched items */
516 int batched;
517 bool can_swap;
518 bool force_scan;
519 };
520
521 void lru_gen_init_lruvec(struct lruvec *lruvec);
522 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
523
524 #ifdef CONFIG_MEMCG
525
526 /*
527 * For each node, memcgs are divided into two generations: the old and the
528 * young. For each generation, memcgs are randomly sharded into multiple bins
529 * to improve scalability. For each bin, the hlist_nulls is virtually divided
530 * into three segments: the head, the tail and the default.
531 *
532 * An onlining memcg is added to the tail of a random bin in the old generation.
533 * The eviction starts at the head of a random bin in the old generation. The
534 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
535 * the old generation, is incremented when all its bins become empty.
536 *
537 * There are four operations:
538 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
539 * current generation (old or young) and updates its "seg" to "head";
540 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
541 * current generation (old or young) and updates its "seg" to "tail";
542 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
543 * generation, updates its "gen" to "old" and resets its "seg" to "default";
544 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
545 * young generation, updates its "gen" to "young" and resets its "seg" to
546 * "default".
547 *
548 * The events that trigger the above operations are:
549 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
550 * 2. The first attempt to reclaim a memcg below low, which triggers
551 * MEMCG_LRU_TAIL;
552 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
553 * threshold, which triggers MEMCG_LRU_TAIL;
554 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
555 * threshold, which triggers MEMCG_LRU_YOUNG;
556 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
557 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
558 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
559 *
560 * Notes:
561 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
562 * of their max_seq counters ensures the eventual fairness to all eligible
563 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
564 * 2. There are only two valid generations: old (seq) and young (seq+1).
565 * MEMCG_NR_GENS is set to three so that when reading the generation counter
566 * locklessly, a stale value (seq-1) does not wraparound to young.
567 */
568 #define MEMCG_NR_GENS 3
569 #define MEMCG_NR_BINS 8
570
571 struct lru_gen_memcg {
572 /* the per-node memcg generation counter */
573 unsigned long seq;
574 /* each memcg has one lru_gen_folio per node */
575 unsigned long nr_memcgs[MEMCG_NR_GENS];
576 /* per-node lru_gen_folio list for global reclaim */
577 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
578 /* protects the above */
579 spinlock_t lock;
580 };
581
582 void lru_gen_init_pgdat(struct pglist_data *pgdat);
583
584 void lru_gen_init_memcg(struct mem_cgroup *memcg);
585 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
586 void lru_gen_online_memcg(struct mem_cgroup *memcg);
587 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
588 void lru_gen_release_memcg(struct mem_cgroup *memcg);
589 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
590
591 #else /* !CONFIG_MEMCG */
592
593 #define MEMCG_NR_GENS 1
594
595 struct lru_gen_memcg {
596 };
597
lru_gen_init_pgdat(struct pglist_data * pgdat)598 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
599 {
600 }
601
602 #endif /* CONFIG_MEMCG */
603
604 #else /* !CONFIG_LRU_GEN */
605
lru_gen_init_pgdat(struct pglist_data * pgdat)606 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
607 {
608 }
609
lru_gen_init_lruvec(struct lruvec * lruvec)610 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
611 {
612 }
613
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)614 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
615 {
616 }
617
618 #ifdef CONFIG_MEMCG
619
lru_gen_init_memcg(struct mem_cgroup * memcg)620 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
621 {
622 }
623
lru_gen_exit_memcg(struct mem_cgroup * memcg)624 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
625 {
626 }
627
lru_gen_online_memcg(struct mem_cgroup * memcg)628 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
629 {
630 }
631
lru_gen_offline_memcg(struct mem_cgroup * memcg)632 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
633 {
634 }
635
lru_gen_release_memcg(struct mem_cgroup * memcg)636 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
637 {
638 }
639
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)640 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
641 {
642 }
643
644 #endif /* CONFIG_MEMCG */
645
646 #endif /* CONFIG_LRU_GEN */
647
648 struct lruvec {
649 struct list_head lists[NR_LRU_LISTS];
650 /* per lruvec lru_lock for memcg */
651 spinlock_t lru_lock;
652 /*
653 * These track the cost of reclaiming one LRU - file or anon -
654 * over the other. As the observed cost of reclaiming one LRU
655 * increases, the reclaim scan balance tips toward the other.
656 */
657 unsigned long anon_cost;
658 unsigned long file_cost;
659 /* Non-resident age, driven by LRU movement */
660 atomic_long_t nonresident_age;
661 /* Refaults at the time of last reclaim cycle */
662 unsigned long refaults[ANON_AND_FILE];
663 /* Various lruvec state flags (enum lruvec_flags) */
664 unsigned long flags;
665 #ifdef CONFIG_LRU_GEN
666 /* evictable pages divided into generations */
667 struct lru_gen_folio lrugen;
668 /* to concurrently iterate lru_gen_mm_list */
669 struct lru_gen_mm_state mm_state;
670 #endif
671 #ifdef CONFIG_MEMCG
672 struct pglist_data *pgdat;
673 #endif
674 };
675
676 /* Isolate unmapped pages */
677 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
678 /* Isolate for asynchronous migration */
679 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
680 /* Isolate unevictable pages */
681 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
682
683 /* LRU Isolation modes. */
684 typedef unsigned __bitwise isolate_mode_t;
685
686 enum zone_watermarks {
687 WMARK_MIN,
688 WMARK_LOW,
689 WMARK_HIGH,
690 WMARK_PROMO,
691 NR_WMARK
692 };
693
694 /*
695 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists
696 * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list
697 * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE.
698 */
699 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
700 #define NR_PCP_THP 2
701 #else
702 #define NR_PCP_THP 0
703 #endif
704 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
705 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
706
707 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
708 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
709 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
710 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
711
712 struct per_cpu_pages {
713 spinlock_t lock; /* Protects lists field */
714 int count; /* number of pages in the list */
715 int high; /* high watermark, emptying needed */
716 int batch; /* chunk size for buddy add/remove */
717 short free_factor; /* batch scaling factor during free */
718 #ifdef CONFIG_NUMA
719 short expire; /* When 0, remote pagesets are drained */
720 #endif
721
722 /* Lists of pages, one per migrate type stored on the pcp-lists */
723 struct list_head lists[NR_PCP_LISTS];
724 } ____cacheline_aligned_in_smp;
725
726 struct per_cpu_zonestat {
727 #ifdef CONFIG_SMP
728 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
729 s8 stat_threshold;
730 #endif
731 #ifdef CONFIG_NUMA
732 /*
733 * Low priority inaccurate counters that are only folded
734 * on demand. Use a large type to avoid the overhead of
735 * folding during refresh_cpu_vm_stats.
736 */
737 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
738 #endif
739 };
740
741 struct per_cpu_nodestat {
742 s8 stat_threshold;
743 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
744 };
745
746 #endif /* !__GENERATING_BOUNDS.H */
747
748 enum zone_type {
749 /*
750 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
751 * to DMA to all of the addressable memory (ZONE_NORMAL).
752 * On architectures where this area covers the whole 32 bit address
753 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
754 * DMA addressing constraints. This distinction is important as a 32bit
755 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
756 * platforms may need both zones as they support peripherals with
757 * different DMA addressing limitations.
758 */
759 #ifdef CONFIG_ZONE_DMA
760 ZONE_DMA,
761 #endif
762 #ifdef CONFIG_ZONE_DMA32
763 ZONE_DMA32,
764 #endif
765 /*
766 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
767 * performed on pages in ZONE_NORMAL if the DMA devices support
768 * transfers to all addressable memory.
769 */
770 ZONE_NORMAL,
771 #ifdef CONFIG_HIGHMEM
772 /*
773 * A memory area that is only addressable by the kernel through
774 * mapping portions into its own address space. This is for example
775 * used by i386 to allow the kernel to address the memory beyond
776 * 900MB. The kernel will set up special mappings (page
777 * table entries on i386) for each page that the kernel needs to
778 * access.
779 */
780 ZONE_HIGHMEM,
781 #endif
782 /*
783 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
784 * movable pages with few exceptional cases described below. Main use
785 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
786 * likely to succeed, and to locally limit unmovable allocations - e.g.,
787 * to increase the number of THP/huge pages. Notable special cases are:
788 *
789 * 1. Pinned pages: (long-term) pinning of movable pages might
790 * essentially turn such pages unmovable. Therefore, we do not allow
791 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
792 * faulted, they come from the right zone right away. However, it is
793 * still possible that address space already has pages in
794 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
795 * touches that memory before pinning). In such case we migrate them
796 * to a different zone. When migration fails - pinning fails.
797 * 2. memblock allocations: kernelcore/movablecore setups might create
798 * situations where ZONE_MOVABLE contains unmovable allocations
799 * after boot. Memory offlining and allocations fail early.
800 * 3. Memory holes: kernelcore/movablecore setups might create very rare
801 * situations where ZONE_MOVABLE contains memory holes after boot,
802 * for example, if we have sections that are only partially
803 * populated. Memory offlining and allocations fail early.
804 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
805 * memory offlining, such pages cannot be allocated.
806 * 5. Unmovable PG_offline pages: in paravirtualized environments,
807 * hotplugged memory blocks might only partially be managed by the
808 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
809 * parts not manged by the buddy are unmovable PG_offline pages. In
810 * some cases (virtio-mem), such pages can be skipped during
811 * memory offlining, however, cannot be moved/allocated. These
812 * techniques might use alloc_contig_range() to hide previously
813 * exposed pages from the buddy again (e.g., to implement some sort
814 * of memory unplug in virtio-mem).
815 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
816 * situations where ZERO_PAGE(0) which is allocated differently
817 * on different platforms may end up in a movable zone. ZERO_PAGE(0)
818 * cannot be migrated.
819 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
820 * memory to the MOVABLE zone, the vmemmap pages are also placed in
821 * such zone. Such pages cannot be really moved around as they are
822 * self-stored in the range, but they are treated as movable when
823 * the range they describe is about to be offlined.
824 *
825 * In general, no unmovable allocations that degrade memory offlining
826 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
827 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
828 * if has_unmovable_pages() states that there are no unmovable pages,
829 * there can be false negatives).
830 */
831 ZONE_MOVABLE,
832 #ifdef CONFIG_ZONE_DEVICE
833 ZONE_DEVICE,
834 #endif
835 __MAX_NR_ZONES
836
837 };
838
839 #ifndef __GENERATING_BOUNDS_H
840
841 #define ASYNC_AND_SYNC 2
842
843 struct zone {
844 /* Read-mostly fields */
845
846 /* zone watermarks, access with *_wmark_pages(zone) macros */
847 unsigned long _watermark[NR_WMARK];
848 unsigned long watermark_boost;
849
850 unsigned long nr_reserved_highatomic;
851
852 /*
853 * We don't know if the memory that we're going to allocate will be
854 * freeable or/and it will be released eventually, so to avoid totally
855 * wasting several GB of ram we must reserve some of the lower zone
856 * memory (otherwise we risk to run OOM on the lower zones despite
857 * there being tons of freeable ram on the higher zones). This array is
858 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
859 * changes.
860 */
861 long lowmem_reserve[MAX_NR_ZONES];
862
863 #ifdef CONFIG_NUMA
864 int node;
865 #endif
866 struct pglist_data *zone_pgdat;
867 struct per_cpu_pages __percpu *per_cpu_pageset;
868 struct per_cpu_zonestat __percpu *per_cpu_zonestats;
869 /*
870 * the high and batch values are copied to individual pagesets for
871 * faster access
872 */
873 int pageset_high;
874 int pageset_batch;
875
876 #ifndef CONFIG_SPARSEMEM
877 /*
878 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
879 * In SPARSEMEM, this map is stored in struct mem_section
880 */
881 unsigned long *pageblock_flags;
882 #endif /* CONFIG_SPARSEMEM */
883
884 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
885 unsigned long zone_start_pfn;
886
887 /*
888 * spanned_pages is the total pages spanned by the zone, including
889 * holes, which is calculated as:
890 * spanned_pages = zone_end_pfn - zone_start_pfn;
891 *
892 * present_pages is physical pages existing within the zone, which
893 * is calculated as:
894 * present_pages = spanned_pages - absent_pages(pages in holes);
895 *
896 * present_early_pages is present pages existing within the zone
897 * located on memory available since early boot, excluding hotplugged
898 * memory.
899 *
900 * managed_pages is present pages managed by the buddy system, which
901 * is calculated as (reserved_pages includes pages allocated by the
902 * bootmem allocator):
903 * managed_pages = present_pages - reserved_pages;
904 *
905 * cma pages is present pages that are assigned for CMA use
906 * (MIGRATE_CMA).
907 *
908 * So present_pages may be used by memory hotplug or memory power
909 * management logic to figure out unmanaged pages by checking
910 * (present_pages - managed_pages). And managed_pages should be used
911 * by page allocator and vm scanner to calculate all kinds of watermarks
912 * and thresholds.
913 *
914 * Locking rules:
915 *
916 * zone_start_pfn and spanned_pages are protected by span_seqlock.
917 * It is a seqlock because it has to be read outside of zone->lock,
918 * and it is done in the main allocator path. But, it is written
919 * quite infrequently.
920 *
921 * The span_seq lock is declared along with zone->lock because it is
922 * frequently read in proximity to zone->lock. It's good to
923 * give them a chance of being in the same cacheline.
924 *
925 * Write access to present_pages at runtime should be protected by
926 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
927 * present_pages should use get_online_mems() to get a stable value.
928 */
929 atomic_long_t managed_pages;
930 unsigned long spanned_pages;
931 unsigned long present_pages;
932 #if defined(CONFIG_MEMORY_HOTPLUG)
933 unsigned long present_early_pages;
934 #endif
935 #ifdef CONFIG_CMA
936 unsigned long cma_pages;
937 #endif
938
939 const char *name;
940
941 #ifdef CONFIG_MEMORY_ISOLATION
942 /*
943 * Number of isolated pageblock. It is used to solve incorrect
944 * freepage counting problem due to racy retrieving migratetype
945 * of pageblock. Protected by zone->lock.
946 */
947 unsigned long nr_isolate_pageblock;
948 #endif
949
950 #ifdef CONFIG_MEMORY_HOTPLUG
951 /* see spanned/present_pages for more description */
952 seqlock_t span_seqlock;
953 #endif
954
955 int initialized;
956
957 /* Write-intensive fields used from the page allocator */
958 CACHELINE_PADDING(_pad1_);
959
960 /* free areas of different sizes */
961 struct free_area free_area[NR_PAGE_ORDERS];
962
963 #ifdef CONFIG_UNACCEPTED_MEMORY
964 /* Pages to be accepted. All pages on the list are MAX_ORDER */
965 struct list_head unaccepted_pages;
966 #endif
967
968 /* zone flags, see below */
969 unsigned long flags;
970
971 /* Primarily protects free_area */
972 spinlock_t lock;
973
974 /* Write-intensive fields used by compaction and vmstats. */
975 CACHELINE_PADDING(_pad2_);
976
977 /*
978 * When free pages are below this point, additional steps are taken
979 * when reading the number of free pages to avoid per-cpu counter
980 * drift allowing watermarks to be breached
981 */
982 unsigned long percpu_drift_mark;
983
984 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
985 /* pfn where compaction free scanner should start */
986 unsigned long compact_cached_free_pfn;
987 /* pfn where compaction migration scanner should start */
988 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
989 unsigned long compact_init_migrate_pfn;
990 unsigned long compact_init_free_pfn;
991 #endif
992
993 #ifdef CONFIG_COMPACTION
994 /*
995 * On compaction failure, 1<<compact_defer_shift compactions
996 * are skipped before trying again. The number attempted since
997 * last failure is tracked with compact_considered.
998 * compact_order_failed is the minimum compaction failed order.
999 */
1000 unsigned int compact_considered;
1001 unsigned int compact_defer_shift;
1002 int compact_order_failed;
1003 #endif
1004
1005 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
1006 /* Set to true when the PG_migrate_skip bits should be cleared */
1007 bool compact_blockskip_flush;
1008 #endif
1009
1010 bool contiguous;
1011
1012 CACHELINE_PADDING(_pad3_);
1013 /* Zone statistics */
1014 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
1015 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
1016 } ____cacheline_internodealigned_in_smp;
1017
1018 enum pgdat_flags {
1019 PGDAT_DIRTY, /* reclaim scanning has recently found
1020 * many dirty file pages at the tail
1021 * of the LRU.
1022 */
1023 PGDAT_WRITEBACK, /* reclaim scanning has recently found
1024 * many pages under writeback
1025 */
1026 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
1027 };
1028
1029 enum zone_flags {
1030 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
1031 * Cleared when kswapd is woken.
1032 */
1033 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
1034 };
1035
zone_managed_pages(struct zone * zone)1036 static inline unsigned long zone_managed_pages(struct zone *zone)
1037 {
1038 return (unsigned long)atomic_long_read(&zone->managed_pages);
1039 }
1040
zone_cma_pages(struct zone * zone)1041 static inline unsigned long zone_cma_pages(struct zone *zone)
1042 {
1043 #ifdef CONFIG_CMA
1044 return zone->cma_pages;
1045 #else
1046 return 0;
1047 #endif
1048 }
1049
zone_end_pfn(const struct zone * zone)1050 static inline unsigned long zone_end_pfn(const struct zone *zone)
1051 {
1052 return zone->zone_start_pfn + zone->spanned_pages;
1053 }
1054
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1055 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1056 {
1057 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1058 }
1059
zone_is_initialized(struct zone * zone)1060 static inline bool zone_is_initialized(struct zone *zone)
1061 {
1062 return zone->initialized;
1063 }
1064
zone_is_empty(struct zone * zone)1065 static inline bool zone_is_empty(struct zone *zone)
1066 {
1067 return zone->spanned_pages == 0;
1068 }
1069
1070 #ifndef BUILD_VDSO32_64
1071 /*
1072 * The zone field is never updated after free_area_init_core()
1073 * sets it, so none of the operations on it need to be atomic.
1074 */
1075
1076 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1077 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1078 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1079 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1080 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1081 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1082 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1083 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1084
1085 /*
1086 * Define the bit shifts to access each section. For non-existent
1087 * sections we define the shift as 0; that plus a 0 mask ensures
1088 * the compiler will optimise away reference to them.
1089 */
1090 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1091 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1092 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1093 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1094 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1095
1096 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1097 #ifdef NODE_NOT_IN_PAGE_FLAGS
1098 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1099 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1100 SECTIONS_PGOFF : ZONES_PGOFF)
1101 #else
1102 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1103 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \
1104 NODES_PGOFF : ZONES_PGOFF)
1105 #endif
1106
1107 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1108
1109 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1110 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1111 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1112 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1113 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1114 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1115
page_zonenum(const struct page * page)1116 static inline enum zone_type page_zonenum(const struct page *page)
1117 {
1118 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1119 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1120 }
1121
folio_zonenum(const struct folio * folio)1122 static inline enum zone_type folio_zonenum(const struct folio *folio)
1123 {
1124 return page_zonenum(&folio->page);
1125 }
1126
1127 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1128 static inline bool is_zone_device_page(const struct page *page)
1129 {
1130 return page_zonenum(page) == ZONE_DEVICE;
1131 }
1132
1133 /*
1134 * Consecutive zone device pages should not be merged into the same sgl
1135 * or bvec segment with other types of pages or if they belong to different
1136 * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1137 * without scanning the entire segment. This helper returns true either if
1138 * both pages are not zone device pages or both pages are zone device pages
1139 * with the same pgmap.
1140 */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1141 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1142 const struct page *b)
1143 {
1144 if (is_zone_device_page(a) != is_zone_device_page(b))
1145 return false;
1146 if (!is_zone_device_page(a))
1147 return true;
1148 return a->pgmap == b->pgmap;
1149 }
1150
1151 extern void memmap_init_zone_device(struct zone *, unsigned long,
1152 unsigned long, struct dev_pagemap *);
1153 #else
is_zone_device_page(const struct page * page)1154 static inline bool is_zone_device_page(const struct page *page)
1155 {
1156 return false;
1157 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1158 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1159 const struct page *b)
1160 {
1161 return true;
1162 }
1163 #endif
1164
folio_is_zone_device(const struct folio * folio)1165 static inline bool folio_is_zone_device(const struct folio *folio)
1166 {
1167 return is_zone_device_page(&folio->page);
1168 }
1169
is_zone_movable_page(const struct page * page)1170 static inline bool is_zone_movable_page(const struct page *page)
1171 {
1172 return page_zonenum(page) == ZONE_MOVABLE;
1173 }
1174
folio_is_zone_movable(const struct folio * folio)1175 static inline bool folio_is_zone_movable(const struct folio *folio)
1176 {
1177 return folio_zonenum(folio) == ZONE_MOVABLE;
1178 }
1179 #endif
1180
1181 /*
1182 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1183 * intersection with the given zone
1184 */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1185 static inline bool zone_intersects(struct zone *zone,
1186 unsigned long start_pfn, unsigned long nr_pages)
1187 {
1188 if (zone_is_empty(zone))
1189 return false;
1190 if (start_pfn >= zone_end_pfn(zone) ||
1191 start_pfn + nr_pages <= zone->zone_start_pfn)
1192 return false;
1193
1194 return true;
1195 }
1196
1197 /*
1198 * The "priority" of VM scanning is how much of the queues we will scan in one
1199 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1200 * queues ("queue_length >> 12") during an aging round.
1201 */
1202 #define DEF_PRIORITY 12
1203
1204 /* Maximum number of zones on a zonelist */
1205 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1206
1207 enum {
1208 ZONELIST_FALLBACK, /* zonelist with fallback */
1209 #ifdef CONFIG_NUMA
1210 /*
1211 * The NUMA zonelists are doubled because we need zonelists that
1212 * restrict the allocations to a single node for __GFP_THISNODE.
1213 */
1214 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
1215 #endif
1216 MAX_ZONELISTS
1217 };
1218
1219 /*
1220 * This struct contains information about a zone in a zonelist. It is stored
1221 * here to avoid dereferences into large structures and lookups of tables
1222 */
1223 struct zoneref {
1224 struct zone *zone; /* Pointer to actual zone */
1225 int zone_idx; /* zone_idx(zoneref->zone) */
1226 };
1227
1228 /*
1229 * One allocation request operates on a zonelist. A zonelist
1230 * is a list of zones, the first one is the 'goal' of the
1231 * allocation, the other zones are fallback zones, in decreasing
1232 * priority.
1233 *
1234 * To speed the reading of the zonelist, the zonerefs contain the zone index
1235 * of the entry being read. Helper functions to access information given
1236 * a struct zoneref are
1237 *
1238 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
1239 * zonelist_zone_idx() - Return the index of the zone for an entry
1240 * zonelist_node_idx() - Return the index of the node for an entry
1241 */
1242 struct zonelist {
1243 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1244 };
1245
1246 /*
1247 * The array of struct pages for flatmem.
1248 * It must be declared for SPARSEMEM as well because there are configurations
1249 * that rely on that.
1250 */
1251 extern struct page *mem_map;
1252
1253 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1254 struct deferred_split {
1255 spinlock_t split_queue_lock;
1256 struct list_head split_queue;
1257 unsigned long split_queue_len;
1258 };
1259 #endif
1260
1261 #ifdef CONFIG_MEMORY_FAILURE
1262 /*
1263 * Per NUMA node memory failure handling statistics.
1264 */
1265 struct memory_failure_stats {
1266 /*
1267 * Number of raw pages poisoned.
1268 * Cases not accounted: memory outside kernel control, offline page,
1269 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1270 * error events, and unpoison actions from hwpoison_unpoison.
1271 */
1272 unsigned long total;
1273 /*
1274 * Recovery results of poisoned raw pages handled by memory_failure,
1275 * in sync with mf_result.
1276 * total = ignored + failed + delayed + recovered.
1277 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1278 */
1279 unsigned long ignored;
1280 unsigned long failed;
1281 unsigned long delayed;
1282 unsigned long recovered;
1283 };
1284 #endif
1285
1286 /*
1287 * On NUMA machines, each NUMA node would have a pg_data_t to describe
1288 * it's memory layout. On UMA machines there is a single pglist_data which
1289 * describes the whole memory.
1290 *
1291 * Memory statistics and page replacement data structures are maintained on a
1292 * per-zone basis.
1293 */
1294 typedef struct pglist_data {
1295 /*
1296 * node_zones contains just the zones for THIS node. Not all of the
1297 * zones may be populated, but it is the full list. It is referenced by
1298 * this node's node_zonelists as well as other node's node_zonelists.
1299 */
1300 struct zone node_zones[MAX_NR_ZONES];
1301
1302 /*
1303 * node_zonelists contains references to all zones in all nodes.
1304 * Generally the first zones will be references to this node's
1305 * node_zones.
1306 */
1307 struct zonelist node_zonelists[MAX_ZONELISTS];
1308
1309 int nr_zones; /* number of populated zones in this node */
1310 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
1311 struct page *node_mem_map;
1312 #ifdef CONFIG_PAGE_EXTENSION
1313 struct page_ext *node_page_ext;
1314 #endif
1315 #endif
1316 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1317 /*
1318 * Must be held any time you expect node_start_pfn,
1319 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1320 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1321 * init.
1322 *
1323 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1324 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1325 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1326 *
1327 * Nests above zone->lock and zone->span_seqlock
1328 */
1329 spinlock_t node_size_lock;
1330 #endif
1331 unsigned long node_start_pfn;
1332 unsigned long node_present_pages; /* total number of physical pages */
1333 unsigned long node_spanned_pages; /* total size of physical page
1334 range, including holes */
1335 int node_id;
1336 wait_queue_head_t kswapd_wait;
1337 wait_queue_head_t pfmemalloc_wait;
1338
1339 /* workqueues for throttling reclaim for different reasons. */
1340 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1341
1342 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1343 unsigned long nr_reclaim_start; /* nr pages written while throttled
1344 * when throttling started. */
1345 #ifdef CONFIG_MEMORY_HOTPLUG
1346 struct mutex kswapd_lock;
1347 #endif
1348 struct task_struct *kswapd; /* Protected by kswapd_lock */
1349 int kswapd_order;
1350 enum zone_type kswapd_highest_zoneidx;
1351
1352 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
1353
1354 #ifdef CONFIG_HYPERHOLD_ZSWAPD
1355 wait_queue_head_t zswapd_wait;
1356 atomic_t zswapd_wait_flag;
1357 struct task_struct *zswapd;
1358 #endif
1359
1360 #ifdef CONFIG_COMPACTION
1361 int kcompactd_max_order;
1362 enum zone_type kcompactd_highest_zoneidx;
1363 wait_queue_head_t kcompactd_wait;
1364 struct task_struct *kcompactd;
1365 bool proactive_compact_trigger;
1366 #endif
1367 /*
1368 * This is a per-node reserve of pages that are not available
1369 * to userspace allocations.
1370 */
1371 unsigned long totalreserve_pages;
1372
1373 #ifdef CONFIG_NUMA
1374 /*
1375 * node reclaim becomes active if more unmapped pages exist.
1376 */
1377 unsigned long min_unmapped_pages;
1378 unsigned long min_slab_pages;
1379 #endif /* CONFIG_NUMA */
1380
1381 /* Write-intensive fields used by page reclaim */
1382 CACHELINE_PADDING(_pad1_);
1383
1384 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1385 /*
1386 * If memory initialisation on large machines is deferred then this
1387 * is the first PFN that needs to be initialised.
1388 */
1389 unsigned long first_deferred_pfn;
1390 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1391
1392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1393 struct deferred_split deferred_split_queue;
1394 #endif
1395
1396 #ifdef CONFIG_NUMA_BALANCING
1397 /* start time in ms of current promote rate limit period */
1398 unsigned int nbp_rl_start;
1399 /* number of promote candidate pages at start time of current rate limit period */
1400 unsigned long nbp_rl_nr_cand;
1401 /* promote threshold in ms */
1402 unsigned int nbp_threshold;
1403 /* start time in ms of current promote threshold adjustment period */
1404 unsigned int nbp_th_start;
1405 /*
1406 * number of promote candidate pages at start time of current promote
1407 * threshold adjustment period
1408 */
1409 unsigned long nbp_th_nr_cand;
1410 #endif
1411 /* Fields commonly accessed by the page reclaim scanner */
1412
1413 /*
1414 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1415 *
1416 * Use mem_cgroup_lruvec() to look up lruvecs.
1417 */
1418 struct lruvec __lruvec;
1419
1420 unsigned long flags;
1421
1422 #ifdef CONFIG_LRU_GEN
1423 /* kswap mm walk data */
1424 struct lru_gen_mm_walk mm_walk;
1425 /* lru_gen_folio list */
1426 struct lru_gen_memcg memcg_lru;
1427 #endif
1428
1429 CACHELINE_PADDING(_pad2_);
1430
1431 /* Per-node vmstats */
1432 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1433 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
1434 #ifdef CONFIG_NUMA
1435 struct memory_tier __rcu *memtier;
1436 #endif
1437 #ifdef CONFIG_MEMORY_FAILURE
1438 struct memory_failure_stats mf_stats;
1439 #endif
1440 } pg_data_t;
1441
1442 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
1443 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
1444
1445 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
1446 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1447
node_lruvec(struct pglist_data * pgdat)1448 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
1449 {
1450 return &pgdat->__lruvec;
1451 }
1452
pgdat_end_pfn(pg_data_t * pgdat)1453 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1454 {
1455 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1456 }
1457
1458 #include <linux/memory_hotplug.h>
1459
1460 void build_all_zonelists(pg_data_t *pgdat);
1461 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1462 enum zone_type highest_zoneidx);
1463 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1464 int highest_zoneidx, unsigned int alloc_flags,
1465 long free_pages);
1466 bool zone_watermark_ok(struct zone *z, unsigned int order,
1467 unsigned long mark, int highest_zoneidx,
1468 unsigned int alloc_flags);
1469 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1470 unsigned long mark, int highest_zoneidx);
1471 /*
1472 * Memory initialization context, use to differentiate memory added by
1473 * the platform statically or via memory hotplug interface.
1474 */
1475 enum meminit_context {
1476 MEMINIT_EARLY,
1477 MEMINIT_HOTPLUG,
1478 };
1479
1480 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1481 unsigned long size);
1482
1483 extern void lruvec_init(struct lruvec *lruvec);
1484
lruvec_pgdat(struct lruvec * lruvec)1485 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1486 {
1487 #ifdef CONFIG_MEMCG
1488 return lruvec->pgdat;
1489 #else
1490 return container_of(lruvec, struct pglist_data, __lruvec);
1491 #endif
1492 }
1493
1494 #ifdef CONFIG_HYPERHOLD_FILE_LRU
is_node_lruvec(struct lruvec * lruvec)1495 static inline int is_node_lruvec(struct lruvec *lruvec)
1496 {
1497 return &lruvec_pgdat(lruvec)->__lruvec == lruvec;
1498 }
1499 #endif
1500
1501 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
1502
1503 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1504 int local_memory_node(int node_id);
1505 #else
local_memory_node(int node_id)1506 static inline int local_memory_node(int node_id) { return node_id; };
1507 #endif
1508
1509 /*
1510 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1511 */
1512 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
1513
1514 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1515 static inline bool zone_is_zone_device(struct zone *zone)
1516 {
1517 return zone_idx(zone) == ZONE_DEVICE;
1518 }
1519 #else
zone_is_zone_device(struct zone * zone)1520 static inline bool zone_is_zone_device(struct zone *zone)
1521 {
1522 return false;
1523 }
1524 #endif
1525
1526 /*
1527 * Returns true if a zone has pages managed by the buddy allocator.
1528 * All the reclaim decisions have to use this function rather than
1529 * populated_zone(). If the whole zone is reserved then we can easily
1530 * end up with populated_zone() && !managed_zone().
1531 */
managed_zone(struct zone * zone)1532 static inline bool managed_zone(struct zone *zone)
1533 {
1534 return zone_managed_pages(zone);
1535 }
1536
1537 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1538 static inline bool populated_zone(struct zone *zone)
1539 {
1540 return zone->present_pages;
1541 }
1542
1543 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1544 static inline int zone_to_nid(struct zone *zone)
1545 {
1546 return zone->node;
1547 }
1548
zone_set_nid(struct zone * zone,int nid)1549 static inline void zone_set_nid(struct zone *zone, int nid)
1550 {
1551 zone->node = nid;
1552 }
1553 #else
zone_to_nid(struct zone * zone)1554 static inline int zone_to_nid(struct zone *zone)
1555 {
1556 return 0;
1557 }
1558
zone_set_nid(struct zone * zone,int nid)1559 static inline void zone_set_nid(struct zone *zone, int nid) {}
1560 #endif
1561
1562 extern int movable_zone;
1563
is_highmem_idx(enum zone_type idx)1564 static inline int is_highmem_idx(enum zone_type idx)
1565 {
1566 #ifdef CONFIG_HIGHMEM
1567 return (idx == ZONE_HIGHMEM ||
1568 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1569 #else
1570 return 0;
1571 #endif
1572 }
1573
1574 /**
1575 * is_highmem - helper function to quickly check if a struct zone is a
1576 * highmem zone or not. This is an attempt to keep references
1577 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1578 * @zone: pointer to struct zone variable
1579 * Return: 1 for a highmem zone, 0 otherwise
1580 */
is_highmem(struct zone * zone)1581 static inline int is_highmem(struct zone *zone)
1582 {
1583 return is_highmem_idx(zone_idx(zone));
1584 }
1585
1586 #ifdef CONFIG_ZONE_DMA
1587 bool has_managed_dma(void);
1588 #else
has_managed_dma(void)1589 static inline bool has_managed_dma(void)
1590 {
1591 return false;
1592 }
1593 #endif
1594
1595
1596 #ifndef CONFIG_NUMA
1597
1598 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1599 static inline struct pglist_data *NODE_DATA(int nid)
1600 {
1601 return &contig_page_data;
1602 }
1603
1604 #else /* CONFIG_NUMA */
1605
1606 #include <asm/mmzone.h>
1607
1608 #endif /* !CONFIG_NUMA */
1609
1610 extern struct pglist_data *first_online_pgdat(void);
1611 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1612 extern struct zone *next_zone(struct zone *zone);
1613
1614 /**
1615 * for_each_online_pgdat - helper macro to iterate over all online nodes
1616 * @pgdat: pointer to a pg_data_t variable
1617 */
1618 #define for_each_online_pgdat(pgdat) \
1619 for (pgdat = first_online_pgdat(); \
1620 pgdat; \
1621 pgdat = next_online_pgdat(pgdat))
1622 /**
1623 * for_each_zone - helper macro to iterate over all memory zones
1624 * @zone: pointer to struct zone variable
1625 *
1626 * The user only needs to declare the zone variable, for_each_zone
1627 * fills it in.
1628 */
1629 #define for_each_zone(zone) \
1630 for (zone = (first_online_pgdat())->node_zones; \
1631 zone; \
1632 zone = next_zone(zone))
1633
1634 #define for_each_populated_zone(zone) \
1635 for (zone = (first_online_pgdat())->node_zones; \
1636 zone; \
1637 zone = next_zone(zone)) \
1638 if (!populated_zone(zone)) \
1639 ; /* do nothing */ \
1640 else
1641
zonelist_zone(struct zoneref * zoneref)1642 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1643 {
1644 return zoneref->zone;
1645 }
1646
zonelist_zone_idx(struct zoneref * zoneref)1647 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1648 {
1649 return zoneref->zone_idx;
1650 }
1651
zonelist_node_idx(struct zoneref * zoneref)1652 static inline int zonelist_node_idx(struct zoneref *zoneref)
1653 {
1654 return zone_to_nid(zoneref->zone);
1655 }
1656
1657 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1658 enum zone_type highest_zoneidx,
1659 nodemask_t *nodes);
1660
1661 /**
1662 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1663 * @z: The cursor used as a starting point for the search
1664 * @highest_zoneidx: The zone index of the highest zone to return
1665 * @nodes: An optional nodemask to filter the zonelist with
1666 *
1667 * This function returns the next zone at or below a given zone index that is
1668 * within the allowed nodemask using a cursor as the starting point for the
1669 * search. The zoneref returned is a cursor that represents the current zone
1670 * being examined. It should be advanced by one before calling
1671 * next_zones_zonelist again.
1672 *
1673 * Return: the next zone at or below highest_zoneidx within the allowed
1674 * nodemask using a cursor within a zonelist as a starting point
1675 */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1676 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1677 enum zone_type highest_zoneidx,
1678 nodemask_t *nodes)
1679 {
1680 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1681 return z;
1682 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1683 }
1684
1685 /**
1686 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1687 * @zonelist: The zonelist to search for a suitable zone
1688 * @highest_zoneidx: The zone index of the highest zone to return
1689 * @nodes: An optional nodemask to filter the zonelist with
1690 *
1691 * This function returns the first zone at or below a given zone index that is
1692 * within the allowed nodemask. The zoneref returned is a cursor that can be
1693 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1694 * one before calling.
1695 *
1696 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1697 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1698 * update due to cpuset modification.
1699 *
1700 * Return: Zoneref pointer for the first suitable zone found
1701 */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1702 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1703 enum zone_type highest_zoneidx,
1704 nodemask_t *nodes)
1705 {
1706 return next_zones_zonelist(zonelist->_zonerefs,
1707 highest_zoneidx, nodes);
1708 }
1709
1710 /**
1711 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1712 * @zone: The current zone in the iterator
1713 * @z: The current pointer within zonelist->_zonerefs being iterated
1714 * @zlist: The zonelist being iterated
1715 * @highidx: The zone index of the highest zone to return
1716 * @nodemask: Nodemask allowed by the allocator
1717 *
1718 * This iterator iterates though all zones at or below a given zone index and
1719 * within a given nodemask
1720 */
1721 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1722 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1723 zone; \
1724 z = next_zones_zonelist(++z, highidx, nodemask), \
1725 zone = zonelist_zone(z))
1726
1727 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1728 for (zone = z->zone; \
1729 zone; \
1730 z = next_zones_zonelist(++z, highidx, nodemask), \
1731 zone = zonelist_zone(z))
1732
1733
1734 /**
1735 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1736 * @zone: The current zone in the iterator
1737 * @z: The current pointer within zonelist->zones being iterated
1738 * @zlist: The zonelist being iterated
1739 * @highidx: The zone index of the highest zone to return
1740 *
1741 * This iterator iterates though all zones at or below a given zone index.
1742 */
1743 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1744 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1745
1746 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1747 static inline bool movable_only_nodes(nodemask_t *nodes)
1748 {
1749 struct zonelist *zonelist;
1750 struct zoneref *z;
1751 int nid;
1752
1753 if (nodes_empty(*nodes))
1754 return false;
1755
1756 /*
1757 * We can chose arbitrary node from the nodemask to get a
1758 * zonelist as they are interlinked. We just need to find
1759 * at least one zone that can satisfy kernel allocations.
1760 */
1761 nid = first_node(*nodes);
1762 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1763 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
1764 return (!z->zone) ? true : false;
1765 }
1766
1767
1768 #ifdef CONFIG_SPARSEMEM
1769 #include <asm/sparsemem.h>
1770 #endif
1771
1772 #ifdef CONFIG_FLATMEM
1773 #define pfn_to_nid(pfn) (0)
1774 #endif
1775
1776 #ifdef CONFIG_SPARSEMEM
1777
1778 /*
1779 * PA_SECTION_SHIFT physical address to/from section number
1780 * PFN_SECTION_SHIFT pfn to/from section number
1781 */
1782 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1783 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1784
1785 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1786
1787 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1788 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1789
1790 #define SECTION_BLOCKFLAGS_BITS \
1791 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1792
1793 #if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1794 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1795 #endif
1796
pfn_to_section_nr(unsigned long pfn)1797 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1798 {
1799 return pfn >> PFN_SECTION_SHIFT;
1800 }
section_nr_to_pfn(unsigned long sec)1801 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1802 {
1803 return sec << PFN_SECTION_SHIFT;
1804 }
1805
1806 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1807 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1808
1809 #define SUBSECTION_SHIFT 21
1810 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1811
1812 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1813 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1814 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1815
1816 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1817 #error Subsection size exceeds section size
1818 #else
1819 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1820 #endif
1821
1822 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1823 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1824
1825 struct mem_section_usage {
1826 struct rcu_head rcu;
1827 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1828 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1829 #endif
1830 /* See declaration of similar field in struct zone */
1831 unsigned long pageblock_flags[0];
1832 };
1833
1834 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1835
1836 struct page;
1837 struct page_ext;
1838 struct mem_section {
1839 /*
1840 * This is, logically, a pointer to an array of struct
1841 * pages. However, it is stored with some other magic.
1842 * (see sparse.c::sparse_init_one_section())
1843 *
1844 * Additionally during early boot we encode node id of
1845 * the location of the section here to guide allocation.
1846 * (see sparse.c::memory_present())
1847 *
1848 * Making it a UL at least makes someone do a cast
1849 * before using it wrong.
1850 */
1851 unsigned long section_mem_map;
1852
1853 struct mem_section_usage *usage;
1854 #ifdef CONFIG_PAGE_EXTENSION
1855 /*
1856 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1857 * section. (see page_ext.h about this.)
1858 */
1859 struct page_ext *page_ext;
1860 unsigned long pad;
1861 #endif
1862 /*
1863 * WARNING: mem_section must be a power-of-2 in size for the
1864 * calculation and use of SECTION_ROOT_MASK to make sense.
1865 */
1866 };
1867
1868 #ifdef CONFIG_SPARSEMEM_EXTREME
1869 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1870 #else
1871 #define SECTIONS_PER_ROOT 1
1872 #endif
1873
1874 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1875 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1876 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1877
1878 #ifdef CONFIG_SPARSEMEM_EXTREME
1879 extern struct mem_section **mem_section;
1880 #else
1881 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1882 #endif
1883
section_to_usemap(struct mem_section * ms)1884 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1885 {
1886 return ms->usage->pageblock_flags;
1887 }
1888
__nr_to_section(unsigned long nr)1889 static inline struct mem_section *__nr_to_section(unsigned long nr)
1890 {
1891 unsigned long root = SECTION_NR_TO_ROOT(nr);
1892
1893 if (unlikely(root >= NR_SECTION_ROOTS))
1894 return NULL;
1895
1896 #ifdef CONFIG_SPARSEMEM_EXTREME
1897 if (!mem_section || !mem_section[root])
1898 return NULL;
1899 #endif
1900 return &mem_section[root][nr & SECTION_ROOT_MASK];
1901 }
1902 extern size_t mem_section_usage_size(void);
1903
1904 /*
1905 * We use the lower bits of the mem_map pointer to store
1906 * a little bit of information. The pointer is calculated
1907 * as mem_map - section_nr_to_pfn(pnum). The result is
1908 * aligned to the minimum alignment of the two values:
1909 * 1. All mem_map arrays are page-aligned.
1910 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1911 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1912 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1913 * worst combination is powerpc with 256k pages,
1914 * which results in PFN_SECTION_SHIFT equal 6.
1915 * To sum it up, at least 6 bits are available on all architectures.
1916 * However, we can exceed 6 bits on some other architectures except
1917 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1918 * with the worst case of 64K pages on arm64) if we make sure the
1919 * exceeded bit is not applicable to powerpc.
1920 */
1921 enum {
1922 SECTION_MARKED_PRESENT_BIT,
1923 SECTION_HAS_MEM_MAP_BIT,
1924 SECTION_IS_ONLINE_BIT,
1925 SECTION_IS_EARLY_BIT,
1926 #ifdef CONFIG_ZONE_DEVICE
1927 SECTION_TAINT_ZONE_DEVICE_BIT,
1928 #endif
1929 SECTION_MAP_LAST_BIT,
1930 };
1931
1932 #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT)
1933 #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT)
1934 #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT)
1935 #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT)
1936 #ifdef CONFIG_ZONE_DEVICE
1937 #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1938 #endif
1939 #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1))
1940 #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT
1941
__section_mem_map_addr(struct mem_section * section)1942 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1943 {
1944 unsigned long map = section->section_mem_map;
1945 map &= SECTION_MAP_MASK;
1946 return (struct page *)map;
1947 }
1948
present_section(struct mem_section * section)1949 static inline int present_section(struct mem_section *section)
1950 {
1951 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1952 }
1953
present_section_nr(unsigned long nr)1954 static inline int present_section_nr(unsigned long nr)
1955 {
1956 return present_section(__nr_to_section(nr));
1957 }
1958
valid_section(struct mem_section * section)1959 static inline int valid_section(struct mem_section *section)
1960 {
1961 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1962 }
1963
early_section(struct mem_section * section)1964 static inline int early_section(struct mem_section *section)
1965 {
1966 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1967 }
1968
valid_section_nr(unsigned long nr)1969 static inline int valid_section_nr(unsigned long nr)
1970 {
1971 return valid_section(__nr_to_section(nr));
1972 }
1973
online_section(struct mem_section * section)1974 static inline int online_section(struct mem_section *section)
1975 {
1976 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1977 }
1978
1979 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)1980 static inline int online_device_section(struct mem_section *section)
1981 {
1982 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1983
1984 return section && ((section->section_mem_map & flags) == flags);
1985 }
1986 #else
online_device_section(struct mem_section * section)1987 static inline int online_device_section(struct mem_section *section)
1988 {
1989 return 0;
1990 }
1991 #endif
1992
online_section_nr(unsigned long nr)1993 static inline int online_section_nr(unsigned long nr)
1994 {
1995 return online_section(__nr_to_section(nr));
1996 }
1997
1998 #ifdef CONFIG_MEMORY_HOTPLUG
1999 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2000 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2001 #endif
2002
__pfn_to_section(unsigned long pfn)2003 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
2004 {
2005 return __nr_to_section(pfn_to_section_nr(pfn));
2006 }
2007
2008 extern unsigned long __highest_present_section_nr;
2009
subsection_map_index(unsigned long pfn)2010 static inline int subsection_map_index(unsigned long pfn)
2011 {
2012 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
2013 }
2014
2015 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2016 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2017 {
2018 int idx = subsection_map_index(pfn);
2019 struct mem_section_usage *usage = READ_ONCE(ms->usage);
2020
2021 return usage ? test_bit(idx, usage->subsection_map) : 0;
2022 }
2023 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2024 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2025 {
2026 return 1;
2027 }
2028 #endif
2029
2030 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
2031 /**
2032 * pfn_valid - check if there is a valid memory map entry for a PFN
2033 * @pfn: the page frame number to check
2034 *
2035 * Check if there is a valid memory map entry aka struct page for the @pfn.
2036 * Note, that availability of the memory map entry does not imply that
2037 * there is actual usable memory at that @pfn. The struct page may
2038 * represent a hole or an unusable page frame.
2039 *
2040 * Return: 1 for PFNs that have memory map entries and 0 otherwise
2041 */
pfn_valid(unsigned long pfn)2042 static inline int pfn_valid(unsigned long pfn)
2043 {
2044 struct mem_section *ms;
2045 int ret;
2046
2047 /*
2048 * Ensure the upper PAGE_SHIFT bits are clear in the
2049 * pfn. Else it might lead to false positives when
2050 * some of the upper bits are set, but the lower bits
2051 * match a valid pfn.
2052 */
2053 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2054 return 0;
2055
2056 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2057 return 0;
2058 ms = __pfn_to_section(pfn);
2059 rcu_read_lock_sched();
2060 if (!valid_section(ms)) {
2061 rcu_read_unlock_sched();
2062 return 0;
2063 }
2064 /*
2065 * Traditionally early sections always returned pfn_valid() for
2066 * the entire section-sized span.
2067 */
2068 ret = early_section(ms) || pfn_section_valid(ms, pfn);
2069 rcu_read_unlock_sched();
2070
2071 return ret;
2072 }
2073 #endif
2074
pfn_in_present_section(unsigned long pfn)2075 static inline int pfn_in_present_section(unsigned long pfn)
2076 {
2077 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2078 return 0;
2079 return present_section(__pfn_to_section(pfn));
2080 }
2081
next_present_section_nr(unsigned long section_nr)2082 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2083 {
2084 while (++section_nr <= __highest_present_section_nr) {
2085 if (present_section_nr(section_nr))
2086 return section_nr;
2087 }
2088
2089 return -1;
2090 }
2091
2092 /*
2093 * These are _only_ used during initialisation, therefore they
2094 * can use __initdata ... They could have names to indicate
2095 * this restriction.
2096 */
2097 #ifdef CONFIG_NUMA
2098 #define pfn_to_nid(pfn) \
2099 ({ \
2100 unsigned long __pfn_to_nid_pfn = (pfn); \
2101 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
2102 })
2103 #else
2104 #define pfn_to_nid(pfn) (0)
2105 #endif
2106
2107 void sparse_init(void);
2108 #else
2109 #define sparse_init() do {} while (0)
2110 #define sparse_index_init(_sec, _nid) do {} while (0)
2111 #define pfn_in_present_section pfn_valid
2112 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2113 #endif /* CONFIG_SPARSEMEM */
2114
2115 #endif /* !__GENERATING_BOUNDS.H */
2116 #endif /* !__ASSEMBLY__ */
2117 #endif /* _LINUX_MMZONE_H */
2118