• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <asm/page.h>
26 
27 /* Free memory management - zoned buddy allocator.  */
28 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
29 #define MAX_ORDER 10
30 #else
31 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
32 #endif
33 #define MAX_ORDER_NR_PAGES (1 << MAX_ORDER)
34 
35 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
36 
37 #define NR_PAGE_ORDERS (MAX_ORDER + 1)
38 
39 /*
40  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
41  * costly to service.  That is between allocation orders which should
42  * coalesce naturally under reasonable reclaim pressure and those which
43  * will not.
44  */
45 #define PAGE_ALLOC_COSTLY_ORDER 3
46 
47 enum migratetype {
48 	MIGRATE_UNMOVABLE,
49 	MIGRATE_MOVABLE,
50 	MIGRATE_RECLAIMABLE,
51 #ifdef CONFIG_CMA_REUSE
52 	MIGRATE_CMA,
53 #endif
54 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
55 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
56 #if defined(CONFIG_CMA) && !defined(CONFIG_CMA_REUSE)
57 	/*
58 	 * MIGRATE_CMA migration type is designed to mimic the way
59 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
60 	 * from MIGRATE_CMA pageblocks and page allocator never
61 	 * implicitly change migration type of MIGRATE_CMA pageblock.
62 	 *
63 	 * The way to use it is to change migratetype of a range of
64 	 * pageblocks to MIGRATE_CMA which can be done by
65 	 * __free_pageblock_cma() function.
66 	 */
67 	MIGRATE_CMA,
68 #endif
69 #ifdef CONFIG_MEMORY_ISOLATION
70 	MIGRATE_ISOLATE,	/* can't allocate from here */
71 #endif
72 	MIGRATE_TYPES
73 };
74 
75 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
76 extern const char * const migratetype_names[MIGRATE_TYPES];
77 
78 #ifdef CONFIG_CMA
79 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
80 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
81 #else
82 #  define is_migrate_cma(migratetype) false
83 #  define is_migrate_cma_page(_page) false
84 #endif
85 
86 #ifdef CONFIG_CMA_REUSE
87 #  define get_cma_migratetype() MIGRATE_CMA
88 #else
89 #  define get_cma_migratetype() MIGRATE_MOVABLE
90 #endif
91 
is_migrate_movable(int mt)92 static inline bool is_migrate_movable(int mt)
93 {
94 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
95 }
96 
97 /*
98  * Check whether a migratetype can be merged with another migratetype.
99  *
100  * It is only mergeable when it can fall back to other migratetypes for
101  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
102  */
migratetype_is_mergeable(int mt)103 static inline bool migratetype_is_mergeable(int mt)
104 {
105 	return mt < MIGRATE_PCPTYPES;
106 }
107 
108 #define for_each_migratetype_order(order, type) \
109 	for (order = 0; order < NR_PAGE_ORDERS; order++) \
110 		for (type = 0; type < MIGRATE_TYPES; type++)
111 
112 extern int page_group_by_mobility_disabled;
113 
114 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
115 
116 #define get_pageblock_migratetype(page)					\
117 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
118 
119 #define folio_migratetype(folio)				\
120 	get_pfnblock_flags_mask(&folio->page, folio_pfn(folio),		\
121 			MIGRATETYPE_MASK)
122 struct free_area {
123 	struct list_head	free_list[MIGRATE_TYPES];
124 	unsigned long		nr_free;
125 };
126 
127 struct pglist_data;
128 
129 #ifdef CONFIG_NUMA
130 enum numa_stat_item {
131 	NUMA_HIT,		/* allocated in intended node */
132 	NUMA_MISS,		/* allocated in non intended node */
133 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
134 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
135 	NUMA_LOCAL,		/* allocation from local node */
136 	NUMA_OTHER,		/* allocation from other node */
137 	NR_VM_NUMA_EVENT_ITEMS
138 };
139 #else
140 #define NR_VM_NUMA_EVENT_ITEMS 0
141 #endif
142 
143 enum zone_stat_item {
144 	/* First 128 byte cacheline (assuming 64 bit words) */
145 	NR_FREE_PAGES,
146 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
147 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
148 	NR_ZONE_ACTIVE_ANON,
149 	NR_ZONE_INACTIVE_FILE,
150 	NR_ZONE_ACTIVE_FILE,
151 #ifdef CONFIG_MEM_PURGEABLE
152 	NR_ZONE_INACTIVE_PURGEABLE,
153 	NR_ZONE_ACTIVE_PURGEABLE,
154 #endif
155 	NR_ZONE_UNEVICTABLE,
156 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
157 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
158 	/* Second 128 byte cacheline */
159 	NR_BOUNCE,
160 #if IS_ENABLED(CONFIG_ZSMALLOC)
161 	NR_ZSPAGES,		/* allocated in zsmalloc */
162 #endif
163 	NR_FREE_CMA_PAGES,
164 #ifdef CONFIG_UNACCEPTED_MEMORY
165 	NR_UNACCEPTED,
166 #endif
167 	NR_VM_ZONE_STAT_ITEMS };
168 
169 enum node_stat_item {
170 	NR_LRU_BASE,
171 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
172 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
173 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
174 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
175 #ifdef CONFIG_MEM_PURGEABLE
176 	NR_INACTIVE_PURGEABLE,
177 	NR_ACTIVE_PURGEABLE,
178 #endif
179 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
180 	NR_SLAB_RECLAIMABLE_B,
181 	NR_SLAB_UNRECLAIMABLE_B,
182 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
183 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
184 	WORKINGSET_NODES,
185 	WORKINGSET_REFAULT_BASE,
186 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
187 	WORKINGSET_REFAULT_FILE,
188 	WORKINGSET_ACTIVATE_BASE,
189 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
190 	WORKINGSET_ACTIVATE_FILE,
191 	WORKINGSET_RESTORE_BASE,
192 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
193 	WORKINGSET_RESTORE_FILE,
194 	WORKINGSET_NODERECLAIM,
195 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
196 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
197 			   only modified from process context */
198 	NR_FILE_PAGES,
199 	NR_FILE_DIRTY,
200 	NR_WRITEBACK,
201 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
202 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
203 	NR_SHMEM_THPS,
204 	NR_SHMEM_PMDMAPPED,
205 	NR_FILE_THPS,
206 	NR_FILE_PMDMAPPED,
207 	NR_ANON_THPS,
208 	NR_VMSCAN_WRITE,
209 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
210 	NR_DIRTIED,		/* page dirtyings since bootup */
211 	NR_WRITTEN,		/* page writings since bootup */
212 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
213 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
214 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
215 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
216 	NR_KERNEL_STACK_KB,	/* measured in KiB */
217 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
218 	NR_KERNEL_SCS_KB,	/* measured in KiB */
219 #endif
220 	NR_PAGETABLE,		/* used for pagetables */
221 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
222 #ifdef CONFIG_SWAP
223 	NR_SWAPCACHE,
224 #endif
225 #ifdef CONFIG_NUMA_BALANCING
226 	PGPROMOTE_SUCCESS,	/* promote successfully */
227 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
228 #endif
229 	NR_VM_NODE_STAT_ITEMS
230 };
231 
232 /*
233  * Returns true if the item should be printed in THPs (/proc/vmstat
234  * currently prints number of anon, file and shmem THPs. But the item
235  * is charged in pages).
236  */
vmstat_item_print_in_thp(enum node_stat_item item)237 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
238 {
239 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
240 		return false;
241 
242 	return item == NR_ANON_THPS ||
243 	       item == NR_FILE_THPS ||
244 	       item == NR_SHMEM_THPS ||
245 	       item == NR_SHMEM_PMDMAPPED ||
246 	       item == NR_FILE_PMDMAPPED;
247 }
248 
249 /*
250  * Returns true if the value is measured in bytes (most vmstat values are
251  * measured in pages). This defines the API part, the internal representation
252  * might be different.
253  */
vmstat_item_in_bytes(int idx)254 static __always_inline bool vmstat_item_in_bytes(int idx)
255 {
256 	/*
257 	 * Global and per-node slab counters track slab pages.
258 	 * It's expected that changes are multiples of PAGE_SIZE.
259 	 * Internally values are stored in pages.
260 	 *
261 	 * Per-memcg and per-lruvec counters track memory, consumed
262 	 * by individual slab objects. These counters are actually
263 	 * byte-precise.
264 	 */
265 	return (idx == NR_SLAB_RECLAIMABLE_B ||
266 		idx == NR_SLAB_UNRECLAIMABLE_B);
267 }
268 
269 /*
270  * We do arithmetic on the LRU lists in various places in the code,
271  * so it is important to keep the active lists LRU_ACTIVE higher in
272  * the array than the corresponding inactive lists, and to keep
273  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
274  *
275  * This has to be kept in sync with the statistics in zone_stat_item
276  * above and the descriptions in vmstat_text in mm/vmstat.c
277  */
278 #define LRU_BASE 0
279 #define LRU_ACTIVE 1
280 #define LRU_FILE 2
281 #ifdef CONFIG_MEM_PURGEABLE
282 #define LRU_PURGEABLE 4
283 #endif
284 
285 enum lru_list {
286 	LRU_INACTIVE_ANON = LRU_BASE,
287 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
288 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
289 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
290 #ifdef CONFIG_MEM_PURGEABLE
291 	LRU_INACTIVE_PURGEABLE = LRU_BASE + LRU_PURGEABLE,
292 	LRU_ACTIVE_PURGEABLE = LRU_BASE + LRU_PURGEABLE + LRU_ACTIVE,
293 #endif
294 	LRU_UNEVICTABLE,
295 	NR_LRU_LISTS
296 };
297 
298 enum vmscan_throttle_state {
299 	VMSCAN_THROTTLE_WRITEBACK,
300 	VMSCAN_THROTTLE_ISOLATED,
301 	VMSCAN_THROTTLE_NOPROGRESS,
302 	VMSCAN_THROTTLE_CONGESTED,
303 	NR_VMSCAN_THROTTLE,
304 };
305 
306 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
307 
308 #define for_each_evictable_lru(lru) for (lru = 0; lru < LRU_UNEVICTABLE; lru++)
309 
is_file_lru(enum lru_list lru)310 static inline bool is_file_lru(enum lru_list lru)
311 {
312 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
313 }
314 
is_active_lru(enum lru_list lru)315 static inline bool is_active_lru(enum lru_list lru)
316 {
317 #ifdef CONFIG_MEM_PURGEABLE
318 	if (lru == LRU_ACTIVE_PURGEABLE)
319 		return true;
320 #endif
321 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
322 }
323 
324 #define WORKINGSET_ANON 0
325 #define WORKINGSET_FILE 1
326 #define ANON_AND_FILE 2
327 
328 enum lruvec_flags {
329 	/*
330 	 * An lruvec has many dirty pages backed by a congested BDI:
331 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
332 	 *    It can be cleared by cgroup reclaim or kswapd.
333 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
334 	 *    It can only be cleared by kswapd.
335 	 *
336 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
337 	 * reclaim, but not vice versa. This only applies to the root cgroup.
338 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
339 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
340 	 * by kswapd).
341 	 */
342 	LRUVEC_CGROUP_CONGESTED,
343 	LRUVEC_NODE_CONGESTED,
344 };
345 
346 #endif /* !__GENERATING_BOUNDS_H */
347 
348 /*
349  * Evictable pages are divided into multiple generations. The youngest and the
350  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
351  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
352  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
353  * corresponding generation. The gen counter in folio->flags stores gen+1 while
354  * a page is on one of lrugen->folios[]. Otherwise it stores 0.
355  *
356  * A page is added to the youngest generation on faulting. The aging needs to
357  * check the accessed bit at least twice before handing this page over to the
358  * eviction. The first check takes care of the accessed bit set on the initial
359  * fault; the second check makes sure this page hasn't been used since then.
360  * This process, AKA second chance, requires a minimum of two generations,
361  * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
362  * LRU, e.g., /proc/vmstat, these two generations are considered active; the
363  * rest of generations, if they exist, are considered inactive. See
364  * lru_gen_is_active().
365  *
366  * PG_active is always cleared while a page is on one of lrugen->folios[] so
367  * that the aging needs not to worry about it. And it's set again when a page
368  * considered active is isolated for non-reclaiming purposes, e.g., migration.
369  * See lru_gen_add_folio() and lru_gen_del_folio().
370  *
371  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
372  * number of categories of the active/inactive LRU when keeping track of
373  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
374  * in folio->flags.
375  */
376 #define MIN_NR_GENS		2U
377 #define MAX_NR_GENS		4U
378 
379 /*
380  * Each generation is divided into multiple tiers. A page accessed N times
381  * through file descriptors is in tier order_base_2(N). A page in the first tier
382  * (N=0,1) is marked by PG_referenced unless it was faulted in through page
383  * tables or read ahead. A page in any other tier (N>1) is marked by
384  * PG_referenced and PG_workingset. This implies a minimum of two tiers is
385  * supported without using additional bits in folio->flags.
386  *
387  * In contrast to moving across generations which requires the LRU lock, moving
388  * across tiers only involves atomic operations on folio->flags and therefore
389  * has a negligible cost in the buffered access path. In the eviction path,
390  * comparisons of refaulted/(evicted+protected) from the first tier and the
391  * rest infer whether pages accessed multiple times through file descriptors
392  * are statistically hot and thus worth protecting.
393  *
394  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
395  * number of categories of the active/inactive LRU when keeping track of
396  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
397  * folio->flags.
398  */
399 #define MAX_NR_TIERS		4U
400 
401 #ifndef __GENERATING_BOUNDS_H
402 
403 struct lruvec;
404 struct page_vma_mapped_walk;
405 
406 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
407 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
408 
409 #ifdef CONFIG_LRU_GEN
410 
411 enum {
412 	LRU_GEN_ANON,
413 	LRU_GEN_FILE,
414 };
415 
416 enum {
417 	LRU_GEN_CORE,
418 	LRU_GEN_MM_WALK,
419 	LRU_GEN_NONLEAF_YOUNG,
420 	NR_LRU_GEN_CAPS
421 };
422 
423 #define MIN_LRU_BATCH		BITS_PER_LONG
424 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
425 
426 /* whether to keep historical stats from evicted generations */
427 #ifdef CONFIG_LRU_GEN_STATS
428 #define NR_HIST_GENS		MAX_NR_GENS
429 #else
430 #define NR_HIST_GENS		1U
431 #endif
432 
433 /*
434  * The youngest generation number is stored in max_seq for both anon and file
435  * types as they are aged on an equal footing. The oldest generation numbers are
436  * stored in min_seq[] separately for anon and file types as clean file pages
437  * can be evicted regardless of swap constraints.
438  *
439  * Normally anon and file min_seq are in sync. But if swapping is constrained,
440  * e.g., out of swap space, file min_seq is allowed to advance and leave anon
441  * min_seq behind.
442  *
443  * The number of pages in each generation is eventually consistent and therefore
444  * can be transiently negative when reset_batch_size() is pending.
445  */
446 struct lru_gen_folio {
447 	/* the aging increments the youngest generation number */
448 	unsigned long max_seq;
449 	/* the eviction increments the oldest generation numbers */
450 	unsigned long min_seq[ANON_AND_FILE];
451 	/* the birth time of each generation in jiffies */
452 	unsigned long timestamps[MAX_NR_GENS];
453 	/* the multi-gen LRU lists, lazily sorted on eviction */
454 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
455 	/* the multi-gen LRU sizes, eventually consistent */
456 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
457 	/* the exponential moving average of refaulted */
458 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
459 	/* the exponential moving average of evicted+protected */
460 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
461 	/* the first tier doesn't need protection, hence the minus one */
462 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
463 	/* can be modified without holding the LRU lock */
464 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
465 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
466 	/* whether the multi-gen LRU is enabled */
467 	bool enabled;
468 #ifdef CONFIG_MEMCG
469 	/* the memcg generation this lru_gen_folio belongs to */
470 	u8 gen;
471 	/* the list segment this lru_gen_folio belongs to */
472 	u8 seg;
473 	/* per-node lru_gen_folio list for global reclaim */
474 	struct hlist_nulls_node list;
475 #endif
476 };
477 
478 enum {
479 	MM_LEAF_TOTAL,		/* total leaf entries */
480 	MM_LEAF_OLD,		/* old leaf entries */
481 	MM_LEAF_YOUNG,		/* young leaf entries */
482 	MM_NONLEAF_TOTAL,	/* total non-leaf entries */
483 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
484 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
485 	NR_MM_STATS
486 };
487 
488 /* double-buffering Bloom filters */
489 #define NR_BLOOM_FILTERS	2
490 
491 struct lru_gen_mm_state {
492 	/* set to max_seq after each iteration */
493 	unsigned long seq;
494 	/* where the current iteration continues after */
495 	struct list_head *head;
496 	/* where the last iteration ended before */
497 	struct list_head *tail;
498 	/* Bloom filters flip after each iteration */
499 	unsigned long *filters[NR_BLOOM_FILTERS];
500 	/* the mm stats for debugging */
501 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
502 };
503 
504 struct lru_gen_mm_walk {
505 	/* the lruvec under reclaim */
506 	struct lruvec *lruvec;
507 	/* unstable max_seq from lru_gen_folio */
508 	unsigned long max_seq;
509 	/* the next address within an mm to scan */
510 	unsigned long next_addr;
511 	/* to batch promoted pages */
512 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
513 	/* to batch the mm stats */
514 	int mm_stats[NR_MM_STATS];
515 	/* total batched items */
516 	int batched;
517 	bool can_swap;
518 	bool force_scan;
519 };
520 
521 void lru_gen_init_lruvec(struct lruvec *lruvec);
522 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
523 
524 #ifdef CONFIG_MEMCG
525 
526 /*
527  * For each node, memcgs are divided into two generations: the old and the
528  * young. For each generation, memcgs are randomly sharded into multiple bins
529  * to improve scalability. For each bin, the hlist_nulls is virtually divided
530  * into three segments: the head, the tail and the default.
531  *
532  * An onlining memcg is added to the tail of a random bin in the old generation.
533  * The eviction starts at the head of a random bin in the old generation. The
534  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
535  * the old generation, is incremented when all its bins become empty.
536  *
537  * There are four operations:
538  * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
539  *    current generation (old or young) and updates its "seg" to "head";
540  * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
541  *    current generation (old or young) and updates its "seg" to "tail";
542  * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
543  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
544  * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
545  *    young generation, updates its "gen" to "young" and resets its "seg" to
546  *    "default".
547  *
548  * The events that trigger the above operations are:
549  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
550  * 2. The first attempt to reclaim a memcg below low, which triggers
551  *    MEMCG_LRU_TAIL;
552  * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
553  *    threshold, which triggers MEMCG_LRU_TAIL;
554  * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
555  *    threshold, which triggers MEMCG_LRU_YOUNG;
556  * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
557  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
558  * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
559  *
560  * Notes:
561  * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
562  *    of their max_seq counters ensures the eventual fairness to all eligible
563  *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
564  * 2. There are only two valid generations: old (seq) and young (seq+1).
565  *    MEMCG_NR_GENS is set to three so that when reading the generation counter
566  *    locklessly, a stale value (seq-1) does not wraparound to young.
567  */
568 #define MEMCG_NR_GENS	3
569 #define MEMCG_NR_BINS	8
570 
571 struct lru_gen_memcg {
572 	/* the per-node memcg generation counter */
573 	unsigned long seq;
574 	/* each memcg has one lru_gen_folio per node */
575 	unsigned long nr_memcgs[MEMCG_NR_GENS];
576 	/* per-node lru_gen_folio list for global reclaim */
577 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
578 	/* protects the above */
579 	spinlock_t lock;
580 };
581 
582 void lru_gen_init_pgdat(struct pglist_data *pgdat);
583 
584 void lru_gen_init_memcg(struct mem_cgroup *memcg);
585 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
586 void lru_gen_online_memcg(struct mem_cgroup *memcg);
587 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
588 void lru_gen_release_memcg(struct mem_cgroup *memcg);
589 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
590 
591 #else /* !CONFIG_MEMCG */
592 
593 #define MEMCG_NR_GENS	1
594 
595 struct lru_gen_memcg {
596 };
597 
lru_gen_init_pgdat(struct pglist_data * pgdat)598 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
599 {
600 }
601 
602 #endif /* CONFIG_MEMCG */
603 
604 #else /* !CONFIG_LRU_GEN */
605 
lru_gen_init_pgdat(struct pglist_data * pgdat)606 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
607 {
608 }
609 
lru_gen_init_lruvec(struct lruvec * lruvec)610 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
611 {
612 }
613 
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)614 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
615 {
616 }
617 
618 #ifdef CONFIG_MEMCG
619 
lru_gen_init_memcg(struct mem_cgroup * memcg)620 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
621 {
622 }
623 
lru_gen_exit_memcg(struct mem_cgroup * memcg)624 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
625 {
626 }
627 
lru_gen_online_memcg(struct mem_cgroup * memcg)628 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
629 {
630 }
631 
lru_gen_offline_memcg(struct mem_cgroup * memcg)632 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
633 {
634 }
635 
lru_gen_release_memcg(struct mem_cgroup * memcg)636 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
637 {
638 }
639 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)640 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
641 {
642 }
643 
644 #endif /* CONFIG_MEMCG */
645 
646 #endif /* CONFIG_LRU_GEN */
647 
648 struct lruvec {
649 	struct list_head		lists[NR_LRU_LISTS];
650 	/* per lruvec lru_lock for memcg */
651 	spinlock_t			lru_lock;
652 	/*
653 	 * These track the cost of reclaiming one LRU - file or anon -
654 	 * over the other. As the observed cost of reclaiming one LRU
655 	 * increases, the reclaim scan balance tips toward the other.
656 	 */
657 	unsigned long			anon_cost;
658 	unsigned long			file_cost;
659 	/* Non-resident age, driven by LRU movement */
660 	atomic_long_t			nonresident_age;
661 	/* Refaults at the time of last reclaim cycle */
662 	unsigned long			refaults[ANON_AND_FILE];
663 	/* Various lruvec state flags (enum lruvec_flags) */
664 	unsigned long			flags;
665 #ifdef CONFIG_LRU_GEN
666 	/* evictable pages divided into generations */
667 	struct lru_gen_folio		lrugen;
668 	/* to concurrently iterate lru_gen_mm_list */
669 	struct lru_gen_mm_state		mm_state;
670 #endif
671 #ifdef CONFIG_MEMCG
672 	struct pglist_data *pgdat;
673 #endif
674 };
675 
676 /* Isolate unmapped pages */
677 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
678 /* Isolate for asynchronous migration */
679 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
680 /* Isolate unevictable pages */
681 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
682 
683 /* LRU Isolation modes. */
684 typedef unsigned __bitwise isolate_mode_t;
685 
686 enum zone_watermarks {
687 	WMARK_MIN,
688 	WMARK_LOW,
689 	WMARK_HIGH,
690 	WMARK_PROMO,
691 	NR_WMARK
692 };
693 
694 /*
695  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists
696  * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list
697  * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE.
698  */
699 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
700 #define NR_PCP_THP 2
701 #else
702 #define NR_PCP_THP 0
703 #endif
704 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
705 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
706 
707 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
708 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
709 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
710 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
711 
712 struct per_cpu_pages {
713 	spinlock_t lock;	/* Protects lists field */
714 	int count;		/* number of pages in the list */
715 	int high;		/* high watermark, emptying needed */
716 	int batch;		/* chunk size for buddy add/remove */
717 	short free_factor;	/* batch scaling factor during free */
718 #ifdef CONFIG_NUMA
719 	short expire;		/* When 0, remote pagesets are drained */
720 #endif
721 
722 	/* Lists of pages, one per migrate type stored on the pcp-lists */
723 	struct list_head lists[NR_PCP_LISTS];
724 } ____cacheline_aligned_in_smp;
725 
726 struct per_cpu_zonestat {
727 #ifdef CONFIG_SMP
728 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
729 	s8 stat_threshold;
730 #endif
731 #ifdef CONFIG_NUMA
732 	/*
733 	 * Low priority inaccurate counters that are only folded
734 	 * on demand. Use a large type to avoid the overhead of
735 	 * folding during refresh_cpu_vm_stats.
736 	 */
737 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
738 #endif
739 };
740 
741 struct per_cpu_nodestat {
742 	s8 stat_threshold;
743 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
744 };
745 
746 #endif /* !__GENERATING_BOUNDS.H */
747 
748 enum zone_type {
749 	/*
750 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
751 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
752 	 * On architectures where this area covers the whole 32 bit address
753 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
754 	 * DMA addressing constraints. This distinction is important as a 32bit
755 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
756 	 * platforms may need both zones as they support peripherals with
757 	 * different DMA addressing limitations.
758 	 */
759 #ifdef CONFIG_ZONE_DMA
760 	ZONE_DMA,
761 #endif
762 #ifdef CONFIG_ZONE_DMA32
763 	ZONE_DMA32,
764 #endif
765 	/*
766 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
767 	 * performed on pages in ZONE_NORMAL if the DMA devices support
768 	 * transfers to all addressable memory.
769 	 */
770 	ZONE_NORMAL,
771 #ifdef CONFIG_HIGHMEM
772 	/*
773 	 * A memory area that is only addressable by the kernel through
774 	 * mapping portions into its own address space. This is for example
775 	 * used by i386 to allow the kernel to address the memory beyond
776 	 * 900MB. The kernel will set up special mappings (page
777 	 * table entries on i386) for each page that the kernel needs to
778 	 * access.
779 	 */
780 	ZONE_HIGHMEM,
781 #endif
782 	/*
783 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
784 	 * movable pages with few exceptional cases described below. Main use
785 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
786 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
787 	 * to increase the number of THP/huge pages. Notable special cases are:
788 	 *
789 	 * 1. Pinned pages: (long-term) pinning of movable pages might
790 	 *    essentially turn such pages unmovable. Therefore, we do not allow
791 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
792 	 *    faulted, they come from the right zone right away. However, it is
793 	 *    still possible that address space already has pages in
794 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
795 	 *    touches that memory before pinning). In such case we migrate them
796 	 *    to a different zone. When migration fails - pinning fails.
797 	 * 2. memblock allocations: kernelcore/movablecore setups might create
798 	 *    situations where ZONE_MOVABLE contains unmovable allocations
799 	 *    after boot. Memory offlining and allocations fail early.
800 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
801 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
802 	 *    for example, if we have sections that are only partially
803 	 *    populated. Memory offlining and allocations fail early.
804 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
805 	 *    memory offlining, such pages cannot be allocated.
806 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
807 	 *    hotplugged memory blocks might only partially be managed by the
808 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
809 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
810 	 *    some cases (virtio-mem), such pages can be skipped during
811 	 *    memory offlining, however, cannot be moved/allocated. These
812 	 *    techniques might use alloc_contig_range() to hide previously
813 	 *    exposed pages from the buddy again (e.g., to implement some sort
814 	 *    of memory unplug in virtio-mem).
815 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
816 	 *    situations where ZERO_PAGE(0) which is allocated differently
817 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
818 	 *    cannot be migrated.
819 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
820 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
821 	 *    such zone. Such pages cannot be really moved around as they are
822 	 *    self-stored in the range, but they are treated as movable when
823 	 *    the range they describe is about to be offlined.
824 	 *
825 	 * In general, no unmovable allocations that degrade memory offlining
826 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
827 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
828 	 * if has_unmovable_pages() states that there are no unmovable pages,
829 	 * there can be false negatives).
830 	 */
831 	ZONE_MOVABLE,
832 #ifdef CONFIG_ZONE_DEVICE
833 	ZONE_DEVICE,
834 #endif
835 	__MAX_NR_ZONES
836 
837 };
838 
839 #ifndef __GENERATING_BOUNDS_H
840 
841 #define ASYNC_AND_SYNC 2
842 
843 struct zone {
844 	/* Read-mostly fields */
845 
846 	/* zone watermarks, access with *_wmark_pages(zone) macros */
847 	unsigned long _watermark[NR_WMARK];
848 	unsigned long watermark_boost;
849 
850 	unsigned long nr_reserved_highatomic;
851 
852 	/*
853 	 * We don't know if the memory that we're going to allocate will be
854 	 * freeable or/and it will be released eventually, so to avoid totally
855 	 * wasting several GB of ram we must reserve some of the lower zone
856 	 * memory (otherwise we risk to run OOM on the lower zones despite
857 	 * there being tons of freeable ram on the higher zones).  This array is
858 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
859 	 * changes.
860 	 */
861 	long lowmem_reserve[MAX_NR_ZONES];
862 
863 #ifdef CONFIG_NUMA
864 	int node;
865 #endif
866 	struct pglist_data	*zone_pgdat;
867 	struct per_cpu_pages	__percpu *per_cpu_pageset;
868 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
869 	/*
870 	 * the high and batch values are copied to individual pagesets for
871 	 * faster access
872 	 */
873 	int pageset_high;
874 	int pageset_batch;
875 
876 #ifndef CONFIG_SPARSEMEM
877 	/*
878 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
879 	 * In SPARSEMEM, this map is stored in struct mem_section
880 	 */
881 	unsigned long		*pageblock_flags;
882 #endif /* CONFIG_SPARSEMEM */
883 
884 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
885 	unsigned long		zone_start_pfn;
886 
887 	/*
888 	 * spanned_pages is the total pages spanned by the zone, including
889 	 * holes, which is calculated as:
890 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
891 	 *
892 	 * present_pages is physical pages existing within the zone, which
893 	 * is calculated as:
894 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
895 	 *
896 	 * present_early_pages is present pages existing within the zone
897 	 * located on memory available since early boot, excluding hotplugged
898 	 * memory.
899 	 *
900 	 * managed_pages is present pages managed by the buddy system, which
901 	 * is calculated as (reserved_pages includes pages allocated by the
902 	 * bootmem allocator):
903 	 *	managed_pages = present_pages - reserved_pages;
904 	 *
905 	 * cma pages is present pages that are assigned for CMA use
906 	 * (MIGRATE_CMA).
907 	 *
908 	 * So present_pages may be used by memory hotplug or memory power
909 	 * management logic to figure out unmanaged pages by checking
910 	 * (present_pages - managed_pages). And managed_pages should be used
911 	 * by page allocator and vm scanner to calculate all kinds of watermarks
912 	 * and thresholds.
913 	 *
914 	 * Locking rules:
915 	 *
916 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
917 	 * It is a seqlock because it has to be read outside of zone->lock,
918 	 * and it is done in the main allocator path.  But, it is written
919 	 * quite infrequently.
920 	 *
921 	 * The span_seq lock is declared along with zone->lock because it is
922 	 * frequently read in proximity to zone->lock.  It's good to
923 	 * give them a chance of being in the same cacheline.
924 	 *
925 	 * Write access to present_pages at runtime should be protected by
926 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
927 	 * present_pages should use get_online_mems() to get a stable value.
928 	 */
929 	atomic_long_t		managed_pages;
930 	unsigned long		spanned_pages;
931 	unsigned long		present_pages;
932 #if defined(CONFIG_MEMORY_HOTPLUG)
933 	unsigned long		present_early_pages;
934 #endif
935 #ifdef CONFIG_CMA
936 	unsigned long		cma_pages;
937 #endif
938 
939 	const char		*name;
940 
941 #ifdef CONFIG_MEMORY_ISOLATION
942 	/*
943 	 * Number of isolated pageblock. It is used to solve incorrect
944 	 * freepage counting problem due to racy retrieving migratetype
945 	 * of pageblock. Protected by zone->lock.
946 	 */
947 	unsigned long		nr_isolate_pageblock;
948 #endif
949 
950 #ifdef CONFIG_MEMORY_HOTPLUG
951 	/* see spanned/present_pages for more description */
952 	seqlock_t		span_seqlock;
953 #endif
954 
955 	int initialized;
956 
957 	/* Write-intensive fields used from the page allocator */
958 	CACHELINE_PADDING(_pad1_);
959 
960 	/* free areas of different sizes */
961 	struct free_area	free_area[NR_PAGE_ORDERS];
962 
963 #ifdef CONFIG_UNACCEPTED_MEMORY
964 	/* Pages to be accepted. All pages on the list are MAX_ORDER */
965 	struct list_head	unaccepted_pages;
966 #endif
967 
968 	/* zone flags, see below */
969 	unsigned long		flags;
970 
971 	/* Primarily protects free_area */
972 	spinlock_t		lock;
973 
974 	/* Write-intensive fields used by compaction and vmstats. */
975 	CACHELINE_PADDING(_pad2_);
976 
977 	/*
978 	 * When free pages are below this point, additional steps are taken
979 	 * when reading the number of free pages to avoid per-cpu counter
980 	 * drift allowing watermarks to be breached
981 	 */
982 	unsigned long percpu_drift_mark;
983 
984 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
985 	/* pfn where compaction free scanner should start */
986 	unsigned long		compact_cached_free_pfn;
987 	/* pfn where compaction migration scanner should start */
988 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
989 	unsigned long		compact_init_migrate_pfn;
990 	unsigned long		compact_init_free_pfn;
991 #endif
992 
993 #ifdef CONFIG_COMPACTION
994 	/*
995 	 * On compaction failure, 1<<compact_defer_shift compactions
996 	 * are skipped before trying again. The number attempted since
997 	 * last failure is tracked with compact_considered.
998 	 * compact_order_failed is the minimum compaction failed order.
999 	 */
1000 	unsigned int		compact_considered;
1001 	unsigned int		compact_defer_shift;
1002 	int			compact_order_failed;
1003 #endif
1004 
1005 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
1006 	/* Set to true when the PG_migrate_skip bits should be cleared */
1007 	bool			compact_blockskip_flush;
1008 #endif
1009 
1010 	bool			contiguous;
1011 
1012 	CACHELINE_PADDING(_pad3_);
1013 	/* Zone statistics */
1014 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
1015 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
1016 } ____cacheline_internodealigned_in_smp;
1017 
1018 enum pgdat_flags {
1019 	PGDAT_DIRTY,			/* reclaim scanning has recently found
1020 					 * many dirty file pages at the tail
1021 					 * of the LRU.
1022 					 */
1023 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1024 					 * many pages under writeback
1025 					 */
1026 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1027 };
1028 
1029 enum zone_flags {
1030 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1031 					 * Cleared when kswapd is woken.
1032 					 */
1033 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1034 };
1035 
zone_managed_pages(struct zone * zone)1036 static inline unsigned long zone_managed_pages(struct zone *zone)
1037 {
1038 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1039 }
1040 
zone_cma_pages(struct zone * zone)1041 static inline unsigned long zone_cma_pages(struct zone *zone)
1042 {
1043 #ifdef CONFIG_CMA
1044 	return zone->cma_pages;
1045 #else
1046 	return 0;
1047 #endif
1048 }
1049 
zone_end_pfn(const struct zone * zone)1050 static inline unsigned long zone_end_pfn(const struct zone *zone)
1051 {
1052 	return zone->zone_start_pfn + zone->spanned_pages;
1053 }
1054 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1055 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1056 {
1057 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1058 }
1059 
zone_is_initialized(struct zone * zone)1060 static inline bool zone_is_initialized(struct zone *zone)
1061 {
1062 	return zone->initialized;
1063 }
1064 
zone_is_empty(struct zone * zone)1065 static inline bool zone_is_empty(struct zone *zone)
1066 {
1067 	return zone->spanned_pages == 0;
1068 }
1069 
1070 #ifndef BUILD_VDSO32_64
1071 /*
1072  * The zone field is never updated after free_area_init_core()
1073  * sets it, so none of the operations on it need to be atomic.
1074  */
1075 
1076 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1077 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1078 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1079 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1080 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1081 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1082 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1083 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1084 
1085 /*
1086  * Define the bit shifts to access each section.  For non-existent
1087  * sections we define the shift as 0; that plus a 0 mask ensures
1088  * the compiler will optimise away reference to them.
1089  */
1090 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1091 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1092 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1093 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1094 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1095 
1096 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1097 #ifdef NODE_NOT_IN_PAGE_FLAGS
1098 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1099 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1100 						SECTIONS_PGOFF : ZONES_PGOFF)
1101 #else
1102 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1103 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1104 						NODES_PGOFF : ZONES_PGOFF)
1105 #endif
1106 
1107 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1108 
1109 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1110 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1111 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1112 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1113 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1114 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1115 
page_zonenum(const struct page * page)1116 static inline enum zone_type page_zonenum(const struct page *page)
1117 {
1118 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1119 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1120 }
1121 
folio_zonenum(const struct folio * folio)1122 static inline enum zone_type folio_zonenum(const struct folio *folio)
1123 {
1124 	return page_zonenum(&folio->page);
1125 }
1126 
1127 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1128 static inline bool is_zone_device_page(const struct page *page)
1129 {
1130 	return page_zonenum(page) == ZONE_DEVICE;
1131 }
1132 
1133 /*
1134  * Consecutive zone device pages should not be merged into the same sgl
1135  * or bvec segment with other types of pages or if they belong to different
1136  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1137  * without scanning the entire segment. This helper returns true either if
1138  * both pages are not zone device pages or both pages are zone device pages
1139  * with the same pgmap.
1140  */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1141 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1142 						     const struct page *b)
1143 {
1144 	if (is_zone_device_page(a) != is_zone_device_page(b))
1145 		return false;
1146 	if (!is_zone_device_page(a))
1147 		return true;
1148 	return a->pgmap == b->pgmap;
1149 }
1150 
1151 extern void memmap_init_zone_device(struct zone *, unsigned long,
1152 				    unsigned long, struct dev_pagemap *);
1153 #else
is_zone_device_page(const struct page * page)1154 static inline bool is_zone_device_page(const struct page *page)
1155 {
1156 	return false;
1157 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1158 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1159 						     const struct page *b)
1160 {
1161 	return true;
1162 }
1163 #endif
1164 
folio_is_zone_device(const struct folio * folio)1165 static inline bool folio_is_zone_device(const struct folio *folio)
1166 {
1167 	return is_zone_device_page(&folio->page);
1168 }
1169 
is_zone_movable_page(const struct page * page)1170 static inline bool is_zone_movable_page(const struct page *page)
1171 {
1172 	return page_zonenum(page) == ZONE_MOVABLE;
1173 }
1174 
folio_is_zone_movable(const struct folio * folio)1175 static inline bool folio_is_zone_movable(const struct folio *folio)
1176 {
1177 	return folio_zonenum(folio) == ZONE_MOVABLE;
1178 }
1179 #endif
1180 
1181 /*
1182  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1183  * intersection with the given zone
1184  */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1185 static inline bool zone_intersects(struct zone *zone,
1186 		unsigned long start_pfn, unsigned long nr_pages)
1187 {
1188 	if (zone_is_empty(zone))
1189 		return false;
1190 	if (start_pfn >= zone_end_pfn(zone) ||
1191 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1192 		return false;
1193 
1194 	return true;
1195 }
1196 
1197 /*
1198  * The "priority" of VM scanning is how much of the queues we will scan in one
1199  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1200  * queues ("queue_length >> 12") during an aging round.
1201  */
1202 #define DEF_PRIORITY 12
1203 
1204 /* Maximum number of zones on a zonelist */
1205 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1206 
1207 enum {
1208 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1209 #ifdef CONFIG_NUMA
1210 	/*
1211 	 * The NUMA zonelists are doubled because we need zonelists that
1212 	 * restrict the allocations to a single node for __GFP_THISNODE.
1213 	 */
1214 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1215 #endif
1216 	MAX_ZONELISTS
1217 };
1218 
1219 /*
1220  * This struct contains information about a zone in a zonelist. It is stored
1221  * here to avoid dereferences into large structures and lookups of tables
1222  */
1223 struct zoneref {
1224 	struct zone *zone;	/* Pointer to actual zone */
1225 	int zone_idx;		/* zone_idx(zoneref->zone) */
1226 };
1227 
1228 /*
1229  * One allocation request operates on a zonelist. A zonelist
1230  * is a list of zones, the first one is the 'goal' of the
1231  * allocation, the other zones are fallback zones, in decreasing
1232  * priority.
1233  *
1234  * To speed the reading of the zonelist, the zonerefs contain the zone index
1235  * of the entry being read. Helper functions to access information given
1236  * a struct zoneref are
1237  *
1238  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1239  * zonelist_zone_idx()	- Return the index of the zone for an entry
1240  * zonelist_node_idx()	- Return the index of the node for an entry
1241  */
1242 struct zonelist {
1243 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1244 };
1245 
1246 /*
1247  * The array of struct pages for flatmem.
1248  * It must be declared for SPARSEMEM as well because there are configurations
1249  * that rely on that.
1250  */
1251 extern struct page *mem_map;
1252 
1253 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1254 struct deferred_split {
1255 	spinlock_t split_queue_lock;
1256 	struct list_head split_queue;
1257 	unsigned long split_queue_len;
1258 };
1259 #endif
1260 
1261 #ifdef CONFIG_MEMORY_FAILURE
1262 /*
1263  * Per NUMA node memory failure handling statistics.
1264  */
1265 struct memory_failure_stats {
1266 	/*
1267 	 * Number of raw pages poisoned.
1268 	 * Cases not accounted: memory outside kernel control, offline page,
1269 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1270 	 * error events, and unpoison actions from hwpoison_unpoison.
1271 	 */
1272 	unsigned long total;
1273 	/*
1274 	 * Recovery results of poisoned raw pages handled by memory_failure,
1275 	 * in sync with mf_result.
1276 	 * total = ignored + failed + delayed + recovered.
1277 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1278 	 */
1279 	unsigned long ignored;
1280 	unsigned long failed;
1281 	unsigned long delayed;
1282 	unsigned long recovered;
1283 };
1284 #endif
1285 
1286 /*
1287  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1288  * it's memory layout. On UMA machines there is a single pglist_data which
1289  * describes the whole memory.
1290  *
1291  * Memory statistics and page replacement data structures are maintained on a
1292  * per-zone basis.
1293  */
1294 typedef struct pglist_data {
1295 	/*
1296 	 * node_zones contains just the zones for THIS node. Not all of the
1297 	 * zones may be populated, but it is the full list. It is referenced by
1298 	 * this node's node_zonelists as well as other node's node_zonelists.
1299 	 */
1300 	struct zone node_zones[MAX_NR_ZONES];
1301 
1302 	/*
1303 	 * node_zonelists contains references to all zones in all nodes.
1304 	 * Generally the first zones will be references to this node's
1305 	 * node_zones.
1306 	 */
1307 	struct zonelist node_zonelists[MAX_ZONELISTS];
1308 
1309 	int nr_zones; /* number of populated zones in this node */
1310 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1311 	struct page *node_mem_map;
1312 #ifdef CONFIG_PAGE_EXTENSION
1313 	struct page_ext *node_page_ext;
1314 #endif
1315 #endif
1316 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1317 	/*
1318 	 * Must be held any time you expect node_start_pfn,
1319 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1320 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1321 	 * init.
1322 	 *
1323 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1324 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1325 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1326 	 *
1327 	 * Nests above zone->lock and zone->span_seqlock
1328 	 */
1329 	spinlock_t node_size_lock;
1330 #endif
1331 	unsigned long node_start_pfn;
1332 	unsigned long node_present_pages; /* total number of physical pages */
1333 	unsigned long node_spanned_pages; /* total size of physical page
1334 					     range, including holes */
1335 	int node_id;
1336 	wait_queue_head_t kswapd_wait;
1337 	wait_queue_head_t pfmemalloc_wait;
1338 
1339 	/* workqueues for throttling reclaim for different reasons. */
1340 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1341 
1342 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1343 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1344 					 * when throttling started. */
1345 #ifdef CONFIG_MEMORY_HOTPLUG
1346 	struct mutex kswapd_lock;
1347 #endif
1348 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1349 	int kswapd_order;
1350 	enum zone_type kswapd_highest_zoneidx;
1351 
1352 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1353 
1354 #ifdef CONFIG_HYPERHOLD_ZSWAPD
1355 	wait_queue_head_t zswapd_wait;
1356 	atomic_t zswapd_wait_flag;
1357 	struct task_struct *zswapd;
1358 #endif
1359 
1360 #ifdef CONFIG_COMPACTION
1361 	int kcompactd_max_order;
1362 	enum zone_type kcompactd_highest_zoneidx;
1363 	wait_queue_head_t kcompactd_wait;
1364 	struct task_struct *kcompactd;
1365 	bool proactive_compact_trigger;
1366 #endif
1367 	/*
1368 	 * This is a per-node reserve of pages that are not available
1369 	 * to userspace allocations.
1370 	 */
1371 	unsigned long		totalreserve_pages;
1372 
1373 #ifdef CONFIG_NUMA
1374 	/*
1375 	 * node reclaim becomes active if more unmapped pages exist.
1376 	 */
1377 	unsigned long		min_unmapped_pages;
1378 	unsigned long		min_slab_pages;
1379 #endif /* CONFIG_NUMA */
1380 
1381 	/* Write-intensive fields used by page reclaim */
1382 	CACHELINE_PADDING(_pad1_);
1383 
1384 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1385 	/*
1386 	 * If memory initialisation on large machines is deferred then this
1387 	 * is the first PFN that needs to be initialised.
1388 	 */
1389 	unsigned long first_deferred_pfn;
1390 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1391 
1392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1393 	struct deferred_split deferred_split_queue;
1394 #endif
1395 
1396 #ifdef CONFIG_NUMA_BALANCING
1397 	/* start time in ms of current promote rate limit period */
1398 	unsigned int nbp_rl_start;
1399 	/* number of promote candidate pages at start time of current rate limit period */
1400 	unsigned long nbp_rl_nr_cand;
1401 	/* promote threshold in ms */
1402 	unsigned int nbp_threshold;
1403 	/* start time in ms of current promote threshold adjustment period */
1404 	unsigned int nbp_th_start;
1405 	/*
1406 	 * number of promote candidate pages at start time of current promote
1407 	 * threshold adjustment period
1408 	 */
1409 	unsigned long nbp_th_nr_cand;
1410 #endif
1411 	/* Fields commonly accessed by the page reclaim scanner */
1412 
1413 	/*
1414 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1415 	 *
1416 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1417 	 */
1418 	struct lruvec		__lruvec;
1419 
1420 	unsigned long		flags;
1421 
1422 #ifdef CONFIG_LRU_GEN
1423 	/* kswap mm walk data */
1424 	struct lru_gen_mm_walk mm_walk;
1425 	/* lru_gen_folio list */
1426 	struct lru_gen_memcg memcg_lru;
1427 #endif
1428 
1429 	CACHELINE_PADDING(_pad2_);
1430 
1431 	/* Per-node vmstats */
1432 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1433 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1434 #ifdef CONFIG_NUMA
1435 	struct memory_tier __rcu *memtier;
1436 #endif
1437 #ifdef CONFIG_MEMORY_FAILURE
1438 	struct memory_failure_stats mf_stats;
1439 #endif
1440 } pg_data_t;
1441 
1442 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1443 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1444 
1445 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1446 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1447 
node_lruvec(struct pglist_data * pgdat)1448 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
1449 {
1450 	return &pgdat->__lruvec;
1451 }
1452 
pgdat_end_pfn(pg_data_t * pgdat)1453 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1454 {
1455 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1456 }
1457 
1458 #include <linux/memory_hotplug.h>
1459 
1460 void build_all_zonelists(pg_data_t *pgdat);
1461 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1462 		   enum zone_type highest_zoneidx);
1463 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1464 			 int highest_zoneidx, unsigned int alloc_flags,
1465 			 long free_pages);
1466 bool zone_watermark_ok(struct zone *z, unsigned int order,
1467 		unsigned long mark, int highest_zoneidx,
1468 		unsigned int alloc_flags);
1469 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1470 		unsigned long mark, int highest_zoneidx);
1471 /*
1472  * Memory initialization context, use to differentiate memory added by
1473  * the platform statically or via memory hotplug interface.
1474  */
1475 enum meminit_context {
1476 	MEMINIT_EARLY,
1477 	MEMINIT_HOTPLUG,
1478 };
1479 
1480 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1481 				     unsigned long size);
1482 
1483 extern void lruvec_init(struct lruvec *lruvec);
1484 
lruvec_pgdat(struct lruvec * lruvec)1485 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1486 {
1487 #ifdef CONFIG_MEMCG
1488 	return lruvec->pgdat;
1489 #else
1490 	return container_of(lruvec, struct pglist_data, __lruvec);
1491 #endif
1492 }
1493 
1494 #ifdef CONFIG_HYPERHOLD_FILE_LRU
is_node_lruvec(struct lruvec * lruvec)1495 static inline int is_node_lruvec(struct lruvec *lruvec)
1496 {
1497 	return &lruvec_pgdat(lruvec)->__lruvec == lruvec;
1498 }
1499 #endif
1500 
1501 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
1502 
1503 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1504 int local_memory_node(int node_id);
1505 #else
local_memory_node(int node_id)1506 static inline int local_memory_node(int node_id) { return node_id; };
1507 #endif
1508 
1509 /*
1510  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1511  */
1512 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1513 
1514 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1515 static inline bool zone_is_zone_device(struct zone *zone)
1516 {
1517 	return zone_idx(zone) == ZONE_DEVICE;
1518 }
1519 #else
zone_is_zone_device(struct zone * zone)1520 static inline bool zone_is_zone_device(struct zone *zone)
1521 {
1522 	return false;
1523 }
1524 #endif
1525 
1526 /*
1527  * Returns true if a zone has pages managed by the buddy allocator.
1528  * All the reclaim decisions have to use this function rather than
1529  * populated_zone(). If the whole zone is reserved then we can easily
1530  * end up with populated_zone() && !managed_zone().
1531  */
managed_zone(struct zone * zone)1532 static inline bool managed_zone(struct zone *zone)
1533 {
1534 	return zone_managed_pages(zone);
1535 }
1536 
1537 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1538 static inline bool populated_zone(struct zone *zone)
1539 {
1540 	return zone->present_pages;
1541 }
1542 
1543 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1544 static inline int zone_to_nid(struct zone *zone)
1545 {
1546 	return zone->node;
1547 }
1548 
zone_set_nid(struct zone * zone,int nid)1549 static inline void zone_set_nid(struct zone *zone, int nid)
1550 {
1551 	zone->node = nid;
1552 }
1553 #else
zone_to_nid(struct zone * zone)1554 static inline int zone_to_nid(struct zone *zone)
1555 {
1556 	return 0;
1557 }
1558 
zone_set_nid(struct zone * zone,int nid)1559 static inline void zone_set_nid(struct zone *zone, int nid) {}
1560 #endif
1561 
1562 extern int movable_zone;
1563 
is_highmem_idx(enum zone_type idx)1564 static inline int is_highmem_idx(enum zone_type idx)
1565 {
1566 #ifdef CONFIG_HIGHMEM
1567 	return (idx == ZONE_HIGHMEM ||
1568 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1569 #else
1570 	return 0;
1571 #endif
1572 }
1573 
1574 /**
1575  * is_highmem - helper function to quickly check if a struct zone is a
1576  *              highmem zone or not.  This is an attempt to keep references
1577  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1578  * @zone: pointer to struct zone variable
1579  * Return: 1 for a highmem zone, 0 otherwise
1580  */
is_highmem(struct zone * zone)1581 static inline int is_highmem(struct zone *zone)
1582 {
1583 	return is_highmem_idx(zone_idx(zone));
1584 }
1585 
1586 #ifdef CONFIG_ZONE_DMA
1587 bool has_managed_dma(void);
1588 #else
has_managed_dma(void)1589 static inline bool has_managed_dma(void)
1590 {
1591 	return false;
1592 }
1593 #endif
1594 
1595 
1596 #ifndef CONFIG_NUMA
1597 
1598 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1599 static inline struct pglist_data *NODE_DATA(int nid)
1600 {
1601 	return &contig_page_data;
1602 }
1603 
1604 #else /* CONFIG_NUMA */
1605 
1606 #include <asm/mmzone.h>
1607 
1608 #endif /* !CONFIG_NUMA */
1609 
1610 extern struct pglist_data *first_online_pgdat(void);
1611 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1612 extern struct zone *next_zone(struct zone *zone);
1613 
1614 /**
1615  * for_each_online_pgdat - helper macro to iterate over all online nodes
1616  * @pgdat: pointer to a pg_data_t variable
1617  */
1618 #define for_each_online_pgdat(pgdat)			\
1619 	for (pgdat = first_online_pgdat();		\
1620 	     pgdat;					\
1621 	     pgdat = next_online_pgdat(pgdat))
1622 /**
1623  * for_each_zone - helper macro to iterate over all memory zones
1624  * @zone: pointer to struct zone variable
1625  *
1626  * The user only needs to declare the zone variable, for_each_zone
1627  * fills it in.
1628  */
1629 #define for_each_zone(zone)			        \
1630 	for (zone = (first_online_pgdat())->node_zones; \
1631 	     zone;					\
1632 	     zone = next_zone(zone))
1633 
1634 #define for_each_populated_zone(zone)		        \
1635 	for (zone = (first_online_pgdat())->node_zones; \
1636 	     zone;					\
1637 	     zone = next_zone(zone))			\
1638 		if (!populated_zone(zone))		\
1639 			; /* do nothing */		\
1640 		else
1641 
zonelist_zone(struct zoneref * zoneref)1642 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1643 {
1644 	return zoneref->zone;
1645 }
1646 
zonelist_zone_idx(struct zoneref * zoneref)1647 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1648 {
1649 	return zoneref->zone_idx;
1650 }
1651 
zonelist_node_idx(struct zoneref * zoneref)1652 static inline int zonelist_node_idx(struct zoneref *zoneref)
1653 {
1654 	return zone_to_nid(zoneref->zone);
1655 }
1656 
1657 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1658 					enum zone_type highest_zoneidx,
1659 					nodemask_t *nodes);
1660 
1661 /**
1662  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1663  * @z: The cursor used as a starting point for the search
1664  * @highest_zoneidx: The zone index of the highest zone to return
1665  * @nodes: An optional nodemask to filter the zonelist with
1666  *
1667  * This function returns the next zone at or below a given zone index that is
1668  * within the allowed nodemask using a cursor as the starting point for the
1669  * search. The zoneref returned is a cursor that represents the current zone
1670  * being examined. It should be advanced by one before calling
1671  * next_zones_zonelist again.
1672  *
1673  * Return: the next zone at or below highest_zoneidx within the allowed
1674  * nodemask using a cursor within a zonelist as a starting point
1675  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1676 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1677 					enum zone_type highest_zoneidx,
1678 					nodemask_t *nodes)
1679 {
1680 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1681 		return z;
1682 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1683 }
1684 
1685 /**
1686  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1687  * @zonelist: The zonelist to search for a suitable zone
1688  * @highest_zoneidx: The zone index of the highest zone to return
1689  * @nodes: An optional nodemask to filter the zonelist with
1690  *
1691  * This function returns the first zone at or below a given zone index that is
1692  * within the allowed nodemask. The zoneref returned is a cursor that can be
1693  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1694  * one before calling.
1695  *
1696  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1697  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1698  * update due to cpuset modification.
1699  *
1700  * Return: Zoneref pointer for the first suitable zone found
1701  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1702 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1703 					enum zone_type highest_zoneidx,
1704 					nodemask_t *nodes)
1705 {
1706 	return next_zones_zonelist(zonelist->_zonerefs,
1707 							highest_zoneidx, nodes);
1708 }
1709 
1710 /**
1711  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1712  * @zone: The current zone in the iterator
1713  * @z: The current pointer within zonelist->_zonerefs being iterated
1714  * @zlist: The zonelist being iterated
1715  * @highidx: The zone index of the highest zone to return
1716  * @nodemask: Nodemask allowed by the allocator
1717  *
1718  * This iterator iterates though all zones at or below a given zone index and
1719  * within a given nodemask
1720  */
1721 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1722 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1723 		zone;							\
1724 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1725 			zone = zonelist_zone(z))
1726 
1727 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1728 	for (zone = z->zone;	\
1729 		zone;							\
1730 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1731 			zone = zonelist_zone(z))
1732 
1733 
1734 /**
1735  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1736  * @zone: The current zone in the iterator
1737  * @z: The current pointer within zonelist->zones being iterated
1738  * @zlist: The zonelist being iterated
1739  * @highidx: The zone index of the highest zone to return
1740  *
1741  * This iterator iterates though all zones at or below a given zone index.
1742  */
1743 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1744 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1745 
1746 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1747 static inline bool movable_only_nodes(nodemask_t *nodes)
1748 {
1749 	struct zonelist *zonelist;
1750 	struct zoneref *z;
1751 	int nid;
1752 
1753 	if (nodes_empty(*nodes))
1754 		return false;
1755 
1756 	/*
1757 	 * We can chose arbitrary node from the nodemask to get a
1758 	 * zonelist as they are interlinked. We just need to find
1759 	 * at least one zone that can satisfy kernel allocations.
1760 	 */
1761 	nid = first_node(*nodes);
1762 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1763 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1764 	return (!z->zone) ? true : false;
1765 }
1766 
1767 
1768 #ifdef CONFIG_SPARSEMEM
1769 #include <asm/sparsemem.h>
1770 #endif
1771 
1772 #ifdef CONFIG_FLATMEM
1773 #define pfn_to_nid(pfn)		(0)
1774 #endif
1775 
1776 #ifdef CONFIG_SPARSEMEM
1777 
1778 /*
1779  * PA_SECTION_SHIFT		physical address to/from section number
1780  * PFN_SECTION_SHIFT		pfn to/from section number
1781  */
1782 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1783 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1784 
1785 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1786 
1787 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1788 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1789 
1790 #define SECTION_BLOCKFLAGS_BITS \
1791 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1792 
1793 #if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1794 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1795 #endif
1796 
pfn_to_section_nr(unsigned long pfn)1797 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1798 {
1799 	return pfn >> PFN_SECTION_SHIFT;
1800 }
section_nr_to_pfn(unsigned long sec)1801 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1802 {
1803 	return sec << PFN_SECTION_SHIFT;
1804 }
1805 
1806 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1807 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1808 
1809 #define SUBSECTION_SHIFT 21
1810 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1811 
1812 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1813 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1814 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1815 
1816 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1817 #error Subsection size exceeds section size
1818 #else
1819 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1820 #endif
1821 
1822 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1823 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1824 
1825 struct mem_section_usage {
1826 	struct rcu_head rcu;
1827 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1828 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1829 #endif
1830 	/* See declaration of similar field in struct zone */
1831 	unsigned long pageblock_flags[0];
1832 };
1833 
1834 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1835 
1836 struct page;
1837 struct page_ext;
1838 struct mem_section {
1839 	/*
1840 	 * This is, logically, a pointer to an array of struct
1841 	 * pages.  However, it is stored with some other magic.
1842 	 * (see sparse.c::sparse_init_one_section())
1843 	 *
1844 	 * Additionally during early boot we encode node id of
1845 	 * the location of the section here to guide allocation.
1846 	 * (see sparse.c::memory_present())
1847 	 *
1848 	 * Making it a UL at least makes someone do a cast
1849 	 * before using it wrong.
1850 	 */
1851 	unsigned long section_mem_map;
1852 
1853 	struct mem_section_usage *usage;
1854 #ifdef CONFIG_PAGE_EXTENSION
1855 	/*
1856 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1857 	 * section. (see page_ext.h about this.)
1858 	 */
1859 	struct page_ext *page_ext;
1860 	unsigned long pad;
1861 #endif
1862 	/*
1863 	 * WARNING: mem_section must be a power-of-2 in size for the
1864 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1865 	 */
1866 };
1867 
1868 #ifdef CONFIG_SPARSEMEM_EXTREME
1869 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1870 #else
1871 #define SECTIONS_PER_ROOT	1
1872 #endif
1873 
1874 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1875 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1876 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1877 
1878 #ifdef CONFIG_SPARSEMEM_EXTREME
1879 extern struct mem_section **mem_section;
1880 #else
1881 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1882 #endif
1883 
section_to_usemap(struct mem_section * ms)1884 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1885 {
1886 	return ms->usage->pageblock_flags;
1887 }
1888 
__nr_to_section(unsigned long nr)1889 static inline struct mem_section *__nr_to_section(unsigned long nr)
1890 {
1891 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1892 
1893 	if (unlikely(root >= NR_SECTION_ROOTS))
1894 		return NULL;
1895 
1896 #ifdef CONFIG_SPARSEMEM_EXTREME
1897 	if (!mem_section || !mem_section[root])
1898 		return NULL;
1899 #endif
1900 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1901 }
1902 extern size_t mem_section_usage_size(void);
1903 
1904 /*
1905  * We use the lower bits of the mem_map pointer to store
1906  * a little bit of information.  The pointer is calculated
1907  * as mem_map - section_nr_to_pfn(pnum).  The result is
1908  * aligned to the minimum alignment of the two values:
1909  *   1. All mem_map arrays are page-aligned.
1910  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1911  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1912  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1913  *      worst combination is powerpc with 256k pages,
1914  *      which results in PFN_SECTION_SHIFT equal 6.
1915  * To sum it up, at least 6 bits are available on all architectures.
1916  * However, we can exceed 6 bits on some other architectures except
1917  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1918  * with the worst case of 64K pages on arm64) if we make sure the
1919  * exceeded bit is not applicable to powerpc.
1920  */
1921 enum {
1922 	SECTION_MARKED_PRESENT_BIT,
1923 	SECTION_HAS_MEM_MAP_BIT,
1924 	SECTION_IS_ONLINE_BIT,
1925 	SECTION_IS_EARLY_BIT,
1926 #ifdef CONFIG_ZONE_DEVICE
1927 	SECTION_TAINT_ZONE_DEVICE_BIT,
1928 #endif
1929 	SECTION_MAP_LAST_BIT,
1930 };
1931 
1932 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1933 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1934 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1935 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1936 #ifdef CONFIG_ZONE_DEVICE
1937 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1938 #endif
1939 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1940 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1941 
__section_mem_map_addr(struct mem_section * section)1942 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1943 {
1944 	unsigned long map = section->section_mem_map;
1945 	map &= SECTION_MAP_MASK;
1946 	return (struct page *)map;
1947 }
1948 
present_section(struct mem_section * section)1949 static inline int present_section(struct mem_section *section)
1950 {
1951 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1952 }
1953 
present_section_nr(unsigned long nr)1954 static inline int present_section_nr(unsigned long nr)
1955 {
1956 	return present_section(__nr_to_section(nr));
1957 }
1958 
valid_section(struct mem_section * section)1959 static inline int valid_section(struct mem_section *section)
1960 {
1961 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1962 }
1963 
early_section(struct mem_section * section)1964 static inline int early_section(struct mem_section *section)
1965 {
1966 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1967 }
1968 
valid_section_nr(unsigned long nr)1969 static inline int valid_section_nr(unsigned long nr)
1970 {
1971 	return valid_section(__nr_to_section(nr));
1972 }
1973 
online_section(struct mem_section * section)1974 static inline int online_section(struct mem_section *section)
1975 {
1976 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1977 }
1978 
1979 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)1980 static inline int online_device_section(struct mem_section *section)
1981 {
1982 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1983 
1984 	return section && ((section->section_mem_map & flags) == flags);
1985 }
1986 #else
online_device_section(struct mem_section * section)1987 static inline int online_device_section(struct mem_section *section)
1988 {
1989 	return 0;
1990 }
1991 #endif
1992 
online_section_nr(unsigned long nr)1993 static inline int online_section_nr(unsigned long nr)
1994 {
1995 	return online_section(__nr_to_section(nr));
1996 }
1997 
1998 #ifdef CONFIG_MEMORY_HOTPLUG
1999 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2000 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2001 #endif
2002 
__pfn_to_section(unsigned long pfn)2003 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
2004 {
2005 	return __nr_to_section(pfn_to_section_nr(pfn));
2006 }
2007 
2008 extern unsigned long __highest_present_section_nr;
2009 
subsection_map_index(unsigned long pfn)2010 static inline int subsection_map_index(unsigned long pfn)
2011 {
2012 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
2013 }
2014 
2015 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2016 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2017 {
2018 	int idx = subsection_map_index(pfn);
2019 	struct mem_section_usage *usage = READ_ONCE(ms->usage);
2020 
2021 	return usage ? test_bit(idx, usage->subsection_map) : 0;
2022 }
2023 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2024 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2025 {
2026 	return 1;
2027 }
2028 #endif
2029 
2030 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
2031 /**
2032  * pfn_valid - check if there is a valid memory map entry for a PFN
2033  * @pfn: the page frame number to check
2034  *
2035  * Check if there is a valid memory map entry aka struct page for the @pfn.
2036  * Note, that availability of the memory map entry does not imply that
2037  * there is actual usable memory at that @pfn. The struct page may
2038  * represent a hole or an unusable page frame.
2039  *
2040  * Return: 1 for PFNs that have memory map entries and 0 otherwise
2041  */
pfn_valid(unsigned long pfn)2042 static inline int pfn_valid(unsigned long pfn)
2043 {
2044 	struct mem_section *ms;
2045 	int ret;
2046 
2047 	/*
2048 	 * Ensure the upper PAGE_SHIFT bits are clear in the
2049 	 * pfn. Else it might lead to false positives when
2050 	 * some of the upper bits are set, but the lower bits
2051 	 * match a valid pfn.
2052 	 */
2053 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2054 		return 0;
2055 
2056 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2057 		return 0;
2058 	ms = __pfn_to_section(pfn);
2059 	rcu_read_lock_sched();
2060 	if (!valid_section(ms)) {
2061 		rcu_read_unlock_sched();
2062 		return 0;
2063 	}
2064 	/*
2065 	 * Traditionally early sections always returned pfn_valid() for
2066 	 * the entire section-sized span.
2067 	 */
2068 	ret = early_section(ms) || pfn_section_valid(ms, pfn);
2069 	rcu_read_unlock_sched();
2070 
2071 	return ret;
2072 }
2073 #endif
2074 
pfn_in_present_section(unsigned long pfn)2075 static inline int pfn_in_present_section(unsigned long pfn)
2076 {
2077 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2078 		return 0;
2079 	return present_section(__pfn_to_section(pfn));
2080 }
2081 
next_present_section_nr(unsigned long section_nr)2082 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2083 {
2084 	while (++section_nr <= __highest_present_section_nr) {
2085 		if (present_section_nr(section_nr))
2086 			return section_nr;
2087 	}
2088 
2089 	return -1;
2090 }
2091 
2092 /*
2093  * These are _only_ used during initialisation, therefore they
2094  * can use __initdata ...  They could have names to indicate
2095  * this restriction.
2096  */
2097 #ifdef CONFIG_NUMA
2098 #define pfn_to_nid(pfn)							\
2099 ({									\
2100 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2101 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2102 })
2103 #else
2104 #define pfn_to_nid(pfn)		(0)
2105 #endif
2106 
2107 void sparse_init(void);
2108 #else
2109 #define sparse_init()	do {} while (0)
2110 #define sparse_index_init(_sec, _nid)  do {} while (0)
2111 #define pfn_in_present_section pfn_valid
2112 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2113 #endif /* CONFIG_SPARSEMEM */
2114 
2115 #endif /* !__GENERATING_BOUNDS.H */
2116 #endif /* !__ASSEMBLY__ */
2117 #endif /* _LINUX_MMZONE_H */
2118