1 //! Trait Resolution. See the [rustc dev guide] for more information on how this works.
2 //!
3 //! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html
4
5 pub mod auto_trait;
6 pub(crate) mod coherence;
7 pub mod const_evaluatable;
8 mod engine;
9 pub mod error_reporting;
10 mod fulfill;
11 pub mod misc;
12 mod object_safety;
13 pub mod outlives_bounds;
14 pub mod project;
15 pub mod query;
16 #[cfg_attr(not(bootstrap), allow(hidden_glob_reexports))]
17 mod select;
18 mod specialize;
19 mod structural_match;
20 mod structural_normalize;
21 #[cfg_attr(not(bootstrap), allow(hidden_glob_reexports))]
22 mod util;
23 pub mod vtable;
24 pub mod wf;
25
26 use crate::infer::outlives::env::OutlivesEnvironment;
27 use crate::infer::{InferCtxt, TyCtxtInferExt};
28 use crate::traits::error_reporting::TypeErrCtxtExt as _;
29 use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
30 use rustc_errors::ErrorGuaranteed;
31 use rustc_middle::query::Providers;
32 use rustc_middle::ty::fold::TypeFoldable;
33 use rustc_middle::ty::visit::{TypeVisitable, TypeVisitableExt};
34 use rustc_middle::ty::{self, ToPredicate, Ty, TyCtxt, TypeFolder, TypeSuperVisitable};
35 use rustc_middle::ty::{InternalSubsts, SubstsRef};
36 use rustc_span::def_id::DefId;
37 use rustc_span::Span;
38
39 use std::fmt::Debug;
40 use std::ops::ControlFlow;
41
42 pub(crate) use self::project::{needs_normalization, BoundVarReplacer, PlaceholderReplacer};
43
44 pub use self::FulfillmentErrorCode::*;
45 pub use self::ImplSource::*;
46 pub use self::ObligationCauseCode::*;
47 pub use self::SelectionError::*;
48
49 pub use self::coherence::{add_placeholder_note, orphan_check, overlapping_impls};
50 pub use self::coherence::{OrphanCheckErr, OverlapResult};
51 pub use self::engine::{ObligationCtxt, TraitEngineExt};
52 pub use self::fulfill::{FulfillmentContext, PendingPredicateObligation};
53 pub use self::object_safety::astconv_object_safety_violations;
54 pub use self::object_safety::is_vtable_safe_method;
55 pub use self::object_safety::MethodViolationCode;
56 pub use self::object_safety::ObjectSafetyViolation;
57 pub use self::project::NormalizeExt;
58 pub use self::project::{normalize_inherent_projection, normalize_projection_type};
59 pub use self::select::{EvaluationCache, SelectionCache, SelectionContext};
60 pub use self::select::{EvaluationResult, IntercrateAmbiguityCause, OverflowError};
61 pub use self::specialize::specialization_graph::FutureCompatOverlapError;
62 pub use self::specialize::specialization_graph::FutureCompatOverlapErrorKind;
63 pub use self::specialize::{
64 specialization_graph, translate_substs, translate_substs_with_cause, OverlapError,
65 };
66 pub use self::structural_match::search_for_structural_match_violation;
67 pub use self::structural_normalize::StructurallyNormalizeExt;
68 pub use self::util::elaborate;
69 pub use self::util::{
70 check_substs_compatible, supertrait_def_ids, supertraits, transitive_bounds,
71 transitive_bounds_that_define_assoc_item, SupertraitDefIds,
72 };
73 pub use self::util::{expand_trait_aliases, TraitAliasExpander};
74 pub use self::util::{get_vtable_index_of_object_method, impl_item_is_final, upcast_choices};
75
76 pub use rustc_infer::traits::*;
77
78 /// Whether to skip the leak check, as part of a future compatibility warning step.
79 ///
80 /// The "default" for skip-leak-check corresponds to the current
81 /// behavior (do not skip the leak check) -- not the behavior we are
82 /// transitioning into.
83 #[derive(Copy, Clone, PartialEq, Eq, Debug, Default)]
84 pub enum SkipLeakCheck {
85 Yes,
86 #[default]
87 No,
88 }
89
90 impl SkipLeakCheck {
is_yes(self) -> bool91 fn is_yes(self) -> bool {
92 self == SkipLeakCheck::Yes
93 }
94 }
95
96 /// The mode that trait queries run in.
97 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
98 pub enum TraitQueryMode {
99 /// Standard/un-canonicalized queries get accurate
100 /// spans etc. passed in and hence can do reasonable
101 /// error reporting on their own.
102 Standard,
103 /// Canonical queries get dummy spans and hence
104 /// must generally propagate errors to
105 /// pre-canonicalization callsites.
106 Canonical,
107 }
108
109 /// Creates predicate obligations from the generic bounds.
110 #[instrument(level = "debug", skip(cause, param_env))]
predicates_for_generics<'tcx>( cause: impl Fn(usize, Span) -> ObligationCause<'tcx>, param_env: ty::ParamEnv<'tcx>, generic_bounds: ty::InstantiatedPredicates<'tcx>, ) -> impl Iterator<Item = PredicateObligation<'tcx>>111 pub fn predicates_for_generics<'tcx>(
112 cause: impl Fn(usize, Span) -> ObligationCause<'tcx>,
113 param_env: ty::ParamEnv<'tcx>,
114 generic_bounds: ty::InstantiatedPredicates<'tcx>,
115 ) -> impl Iterator<Item = PredicateObligation<'tcx>> {
116 generic_bounds.into_iter().enumerate().map(move |(idx, (clause, span))| Obligation {
117 cause: cause(idx, span),
118 recursion_depth: 0,
119 param_env,
120 predicate: clause.as_predicate(),
121 })
122 }
123
124 /// Determines whether the type `ty` is known to meet `bound` and
125 /// returns true if so. Returns false if `ty` either does not meet
126 /// `bound` or is not known to meet bound (note that this is
127 /// conservative towards *no impl*, which is the opposite of the
128 /// `evaluate` methods).
type_known_to_meet_bound_modulo_regions<'tcx>( infcx: &InferCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>, def_id: DefId, ) -> bool129 pub fn type_known_to_meet_bound_modulo_regions<'tcx>(
130 infcx: &InferCtxt<'tcx>,
131 param_env: ty::ParamEnv<'tcx>,
132 ty: Ty<'tcx>,
133 def_id: DefId,
134 ) -> bool {
135 let trait_ref = ty::TraitRef::new(infcx.tcx, def_id, [ty]);
136 pred_known_to_hold_modulo_regions(infcx, param_env, trait_ref.without_const())
137 }
138
139 /// FIXME(@lcnr): this function doesn't seem right and shouldn't exist?
140 ///
141 /// Ping me on zulip if you want to use this method and need help with finding
142 /// an appropriate replacement.
143 #[instrument(level = "debug", skip(infcx, param_env, pred), ret)]
pred_known_to_hold_modulo_regions<'tcx>( infcx: &InferCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, pred: impl ToPredicate<'tcx>, ) -> bool144 fn pred_known_to_hold_modulo_regions<'tcx>(
145 infcx: &InferCtxt<'tcx>,
146 param_env: ty::ParamEnv<'tcx>,
147 pred: impl ToPredicate<'tcx>,
148 ) -> bool {
149 let obligation = Obligation::new(infcx.tcx, ObligationCause::dummy(), param_env, pred);
150
151 let result = infcx.evaluate_obligation_no_overflow(&obligation);
152 debug!(?result);
153
154 if result.must_apply_modulo_regions() {
155 true
156 } else if result.may_apply() {
157 // Sometimes obligations are ambiguous because the recursive evaluator
158 // is not smart enough, so we fall back to fulfillment when we're not certain
159 // that an obligation holds or not. Even still, we must make sure that
160 // the we do no inference in the process of checking this obligation.
161 let goal = infcx.resolve_vars_if_possible((obligation.predicate, obligation.param_env));
162 infcx.probe(|_| {
163 let ocx = ObligationCtxt::new(infcx);
164 ocx.register_obligation(obligation);
165
166 let errors = ocx.select_all_or_error();
167 match errors.as_slice() {
168 // Only known to hold if we did no inference.
169 [] => infcx.shallow_resolve(goal) == goal,
170
171 errors => {
172 debug!(?errors);
173 false
174 }
175 }
176 })
177 } else {
178 false
179 }
180 }
181
182 #[instrument(level = "debug", skip(tcx, elaborated_env))]
do_normalize_predicates<'tcx>( tcx: TyCtxt<'tcx>, cause: ObligationCause<'tcx>, elaborated_env: ty::ParamEnv<'tcx>, predicates: Vec<ty::Clause<'tcx>>, ) -> Result<Vec<ty::Clause<'tcx>>, ErrorGuaranteed>183 fn do_normalize_predicates<'tcx>(
184 tcx: TyCtxt<'tcx>,
185 cause: ObligationCause<'tcx>,
186 elaborated_env: ty::ParamEnv<'tcx>,
187 predicates: Vec<ty::Clause<'tcx>>,
188 ) -> Result<Vec<ty::Clause<'tcx>>, ErrorGuaranteed> {
189 let span = cause.span;
190 // FIXME. We should really... do something with these region
191 // obligations. But this call just continues the older
192 // behavior (i.e., doesn't cause any new bugs), and it would
193 // take some further refactoring to actually solve them. In
194 // particular, we would have to handle implied bounds
195 // properly, and that code is currently largely confined to
196 // regionck (though I made some efforts to extract it
197 // out). -nmatsakis
198 //
199 // @arielby: In any case, these obligations are checked
200 // by wfcheck anyway, so I'm not sure we have to check
201 // them here too, and we will remove this function when
202 // we move over to lazy normalization *anyway*.
203 let infcx = tcx.infer_ctxt().ignoring_regions().build();
204 let predicates = match fully_normalize(&infcx, cause, elaborated_env, predicates) {
205 Ok(predicates) => predicates,
206 Err(errors) => {
207 let reported = infcx.err_ctxt().report_fulfillment_errors(&errors);
208 return Err(reported);
209 }
210 };
211
212 debug!("do_normalize_predicates: normalized predicates = {:?}", predicates);
213
214 // We can use the `elaborated_env` here; the region code only
215 // cares about declarations like `'a: 'b`.
216 let outlives_env = OutlivesEnvironment::new(elaborated_env);
217
218 // FIXME: It's very weird that we ignore region obligations but apparently
219 // still need to use `resolve_regions` as we need the resolved regions in
220 // the normalized predicates.
221 let errors = infcx.resolve_regions(&outlives_env);
222 if !errors.is_empty() {
223 tcx.sess.delay_span_bug(
224 span,
225 format!("failed region resolution while normalizing {elaborated_env:?}: {errors:?}"),
226 );
227 }
228
229 match infcx.fully_resolve(predicates) {
230 Ok(predicates) => Ok(predicates),
231 Err(fixup_err) => {
232 // If we encounter a fixup error, it means that some type
233 // variable wound up unconstrained. I actually don't know
234 // if this can happen, and I certainly don't expect it to
235 // happen often, but if it did happen it probably
236 // represents a legitimate failure due to some kind of
237 // unconstrained variable.
238 //
239 // @lcnr: Let's still ICE here for now. I want a test case
240 // for that.
241 span_bug!(
242 span,
243 "inference variables in normalized parameter environment: {}",
244 fixup_err
245 );
246 }
247 }
248 }
249
250 // FIXME: this is gonna need to be removed ...
251 /// Normalizes the parameter environment, reporting errors if they occur.
252 #[instrument(level = "debug", skip(tcx))]
normalize_param_env_or_error<'tcx>( tcx: TyCtxt<'tcx>, unnormalized_env: ty::ParamEnv<'tcx>, cause: ObligationCause<'tcx>, ) -> ty::ParamEnv<'tcx>253 pub fn normalize_param_env_or_error<'tcx>(
254 tcx: TyCtxt<'tcx>,
255 unnormalized_env: ty::ParamEnv<'tcx>,
256 cause: ObligationCause<'tcx>,
257 ) -> ty::ParamEnv<'tcx> {
258 // I'm not wild about reporting errors here; I'd prefer to
259 // have the errors get reported at a defined place (e.g.,
260 // during typeck). Instead I have all parameter
261 // environments, in effect, going through this function
262 // and hence potentially reporting errors. This ensures of
263 // course that we never forget to normalize (the
264 // alternative seemed like it would involve a lot of
265 // manual invocations of this fn -- and then we'd have to
266 // deal with the errors at each of those sites).
267 //
268 // In any case, in practice, typeck constructs all the
269 // parameter environments once for every fn as it goes,
270 // and errors will get reported then; so outside of type inference we
271 // can be sure that no errors should occur.
272 let mut predicates: Vec<_> = util::elaborate(
273 tcx,
274 unnormalized_env.caller_bounds().into_iter().map(|predicate| {
275 if tcx.features().generic_const_exprs {
276 return predicate;
277 }
278
279 struct ConstNormalizer<'tcx>(TyCtxt<'tcx>);
280
281 impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ConstNormalizer<'tcx> {
282 fn interner(&self) -> TyCtxt<'tcx> {
283 self.0
284 }
285
286 fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> {
287 // While it is pretty sus to be evaluating things with an empty param env, it
288 // should actually be okay since without `feature(generic_const_exprs)` the only
289 // const arguments that have a non-empty param env are array repeat counts. These
290 // do not appear in the type system though.
291 c.eval(self.0, ty::ParamEnv::empty())
292 }
293 }
294
295 // This whole normalization step is a hack to work around the fact that
296 // `normalize_param_env_or_error` is fundamentally broken from using an
297 // unnormalized param env with a trait solver that expects the param env
298 // to be normalized.
299 //
300 // When normalizing the param env we can end up evaluating obligations
301 // that have been normalized but can only be proven via a where clause
302 // which is still in its unnormalized form. example:
303 //
304 // Attempting to prove `T: Trait<<u8 as Identity>::Assoc>` in a param env
305 // with a `T: Trait<<u8 as Identity>::Assoc>` where clause will fail because
306 // we first normalize obligations before proving them so we end up proving
307 // `T: Trait<u8>`. Since lazy normalization is not implemented equating `u8`
308 // with `<u8 as Identity>::Assoc` fails outright so we incorrectly believe that
309 // we cannot prove `T: Trait<u8>`.
310 //
311 // The same thing is true for const generics- attempting to prove
312 // `T: Trait<ConstKind::Unevaluated(...)>` with the same thing as a where clauses
313 // will fail. After normalization we may be attempting to prove `T: Trait<4>` with
314 // the unnormalized where clause `T: Trait<ConstKind::Unevaluated(...)>`. In order
315 // for the obligation to hold `4` must be equal to `ConstKind::Unevaluated(...)`
316 // but as we do not have lazy norm implemented, equating the two consts fails outright.
317 //
318 // Ideally we would not normalize consts here at all but it is required for backwards
319 // compatibility. Eventually when lazy norm is implemented this can just be removed.
320 // We do not normalize types here as there is no backwards compatibility requirement
321 // for us to do so.
322 //
323 // FIXME(-Ztrait-solver=next): remove this hack since we have deferred projection equality
324 predicate.fold_with(&mut ConstNormalizer(tcx))
325 }),
326 )
327 .collect();
328
329 debug!("normalize_param_env_or_error: elaborated-predicates={:?}", predicates);
330
331 let elaborated_env = ty::ParamEnv::new(
332 tcx.mk_clauses(&predicates),
333 unnormalized_env.reveal(),
334 unnormalized_env.constness(),
335 );
336
337 // HACK: we are trying to normalize the param-env inside *itself*. The problem is that
338 // normalization expects its param-env to be already normalized, which means we have
339 // a circularity.
340 //
341 // The way we handle this is by normalizing the param-env inside an unnormalized version
342 // of the param-env, which means that if the param-env contains unnormalized projections,
343 // we'll have some normalization failures. This is unfortunate.
344 //
345 // Lazy normalization would basically handle this by treating just the
346 // normalizing-a-trait-ref-requires-itself cycles as evaluation failures.
347 //
348 // Inferred outlives bounds can create a lot of `TypeOutlives` predicates for associated
349 // types, so to make the situation less bad, we normalize all the predicates *but*
350 // the `TypeOutlives` predicates first inside the unnormalized parameter environment, and
351 // then we normalize the `TypeOutlives` bounds inside the normalized parameter environment.
352 //
353 // This works fairly well because trait matching does not actually care about param-env
354 // TypeOutlives predicates - these are normally used by regionck.
355 let outlives_predicates: Vec<_> = predicates
356 .extract_if(|predicate| {
357 matches!(predicate.kind().skip_binder(), ty::ClauseKind::TypeOutlives(..))
358 })
359 .collect();
360
361 debug!(
362 "normalize_param_env_or_error: predicates=(non-outlives={:?}, outlives={:?})",
363 predicates, outlives_predicates
364 );
365 let Ok(non_outlives_predicates) = do_normalize_predicates(
366 tcx,
367 cause.clone(),
368 elaborated_env,
369 predicates,
370 ) else {
371 // An unnormalized env is better than nothing.
372 debug!("normalize_param_env_or_error: errored resolving non-outlives predicates");
373 return elaborated_env;
374 };
375
376 debug!("normalize_param_env_or_error: non-outlives predicates={:?}", non_outlives_predicates);
377
378 // Not sure whether it is better to include the unnormalized TypeOutlives predicates
379 // here. I believe they should not matter, because we are ignoring TypeOutlives param-env
380 // predicates here anyway. Keeping them here anyway because it seems safer.
381 let outlives_env = non_outlives_predicates.iter().chain(&outlives_predicates).cloned();
382 let outlives_env = ty::ParamEnv::new(
383 tcx.mk_clauses_from_iter(outlives_env),
384 unnormalized_env.reveal(),
385 unnormalized_env.constness(),
386 );
387 let Ok(outlives_predicates) = do_normalize_predicates(
388 tcx,
389 cause,
390 outlives_env,
391 outlives_predicates,
392 ) else {
393 // An unnormalized env is better than nothing.
394 debug!("normalize_param_env_or_error: errored resolving outlives predicates");
395 return elaborated_env;
396 };
397 debug!("normalize_param_env_or_error: outlives predicates={:?}", outlives_predicates);
398
399 let mut predicates = non_outlives_predicates;
400 predicates.extend(outlives_predicates);
401 debug!("normalize_param_env_or_error: final predicates={:?}", predicates);
402 ty::ParamEnv::new(
403 tcx.mk_clauses(&predicates),
404 unnormalized_env.reveal(),
405 unnormalized_env.constness(),
406 )
407 }
408
409 /// Normalize a type and process all resulting obligations, returning any errors.
410 ///
411 /// FIXME(-Ztrait-solver=next): This should be replaced by `At::deeply_normalize`
412 /// which has the same behavior with the new solver. Because using a separate
413 /// fulfillment context worsens caching in the old solver, `At::deeply_normalize`
414 /// is still lazy with the old solver as it otherwise negatively impacts perf.
415 #[instrument(skip_all)]
fully_normalize<'tcx, T>( infcx: &InferCtxt<'tcx>, cause: ObligationCause<'tcx>, param_env: ty::ParamEnv<'tcx>, value: T, ) -> Result<T, Vec<FulfillmentError<'tcx>>> where T: TypeFoldable<TyCtxt<'tcx>>,416 pub fn fully_normalize<'tcx, T>(
417 infcx: &InferCtxt<'tcx>,
418 cause: ObligationCause<'tcx>,
419 param_env: ty::ParamEnv<'tcx>,
420 value: T,
421 ) -> Result<T, Vec<FulfillmentError<'tcx>>>
422 where
423 T: TypeFoldable<TyCtxt<'tcx>>,
424 {
425 let ocx = ObligationCtxt::new(infcx);
426 debug!(?value);
427 let normalized_value = ocx.normalize(&cause, param_env, value);
428 debug!(?normalized_value);
429 debug!("select_all_or_error start");
430 let errors = ocx.select_all_or_error();
431 if !errors.is_empty() {
432 return Err(errors);
433 }
434 debug!("select_all_or_error complete");
435 let resolved_value = infcx.resolve_vars_if_possible(normalized_value);
436 debug!(?resolved_value);
437 Ok(resolved_value)
438 }
439
440 /// Normalizes the predicates and checks whether they hold in an empty environment. If this
441 /// returns true, then either normalize encountered an error or one of the predicates did not
442 /// hold. Used when creating vtables to check for unsatisfiable methods.
impossible_predicates<'tcx>(tcx: TyCtxt<'tcx>, predicates: Vec<ty::Clause<'tcx>>) -> bool443 pub fn impossible_predicates<'tcx>(tcx: TyCtxt<'tcx>, predicates: Vec<ty::Clause<'tcx>>) -> bool {
444 debug!("impossible_predicates(predicates={:?})", predicates);
445
446 let infcx = tcx.infer_ctxt().build();
447 let param_env = ty::ParamEnv::reveal_all();
448 let ocx = ObligationCtxt::new(&infcx);
449 let predicates = ocx.normalize(&ObligationCause::dummy(), param_env, predicates);
450 for predicate in predicates {
451 let obligation = Obligation::new(tcx, ObligationCause::dummy(), param_env, predicate);
452 ocx.register_obligation(obligation);
453 }
454 let errors = ocx.select_all_or_error();
455
456 let result = !errors.is_empty();
457 debug!("impossible_predicates = {:?}", result);
458 result
459 }
460
subst_and_check_impossible_predicates<'tcx>( tcx: TyCtxt<'tcx>, key: (DefId, SubstsRef<'tcx>), ) -> bool461 fn subst_and_check_impossible_predicates<'tcx>(
462 tcx: TyCtxt<'tcx>,
463 key: (DefId, SubstsRef<'tcx>),
464 ) -> bool {
465 debug!("subst_and_check_impossible_predicates(key={:?})", key);
466
467 let mut predicates = tcx.predicates_of(key.0).instantiate(tcx, key.1).predicates;
468
469 // Specifically check trait fulfillment to avoid an error when trying to resolve
470 // associated items.
471 if let Some(trait_def_id) = tcx.trait_of_item(key.0) {
472 let trait_ref = ty::TraitRef::from_method(tcx, trait_def_id, key.1);
473 predicates.push(ty::Binder::dummy(trait_ref).to_predicate(tcx));
474 }
475
476 predicates.retain(|predicate| !predicate.has_param());
477 let result = impossible_predicates(tcx, predicates);
478
479 debug!("subst_and_check_impossible_predicates(key={:?}) = {:?}", key, result);
480 result
481 }
482
483 /// Checks whether a trait's method is impossible to call on a given impl.
484 ///
485 /// This only considers predicates that reference the impl's generics, and not
486 /// those that reference the method's generics.
is_impossible_method(tcx: TyCtxt<'_>, (impl_def_id, trait_item_def_id): (DefId, DefId)) -> bool487 fn is_impossible_method(tcx: TyCtxt<'_>, (impl_def_id, trait_item_def_id): (DefId, DefId)) -> bool {
488 struct ReferencesOnlyParentGenerics<'tcx> {
489 tcx: TyCtxt<'tcx>,
490 generics: &'tcx ty::Generics,
491 trait_item_def_id: DefId,
492 }
493 impl<'tcx> ty::TypeVisitor<TyCtxt<'tcx>> for ReferencesOnlyParentGenerics<'tcx> {
494 type BreakTy = ();
495 fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
496 // If this is a parameter from the trait item's own generics, then bail
497 if let ty::Param(param) = t.kind()
498 && let param_def_id = self.generics.type_param(param, self.tcx).def_id
499 && self.tcx.parent(param_def_id) == self.trait_item_def_id
500 {
501 return ControlFlow::Break(());
502 }
503 t.super_visit_with(self)
504 }
505 fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
506 if let ty::ReEarlyBound(param) = r.kind()
507 && let param_def_id = self.generics.region_param(¶m, self.tcx).def_id
508 && self.tcx.parent(param_def_id) == self.trait_item_def_id
509 {
510 return ControlFlow::Break(());
511 }
512 ControlFlow::Continue(())
513 }
514 fn visit_const(&mut self, ct: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
515 if let ty::ConstKind::Param(param) = ct.kind()
516 && let param_def_id = self.generics.const_param(¶m, self.tcx).def_id
517 && self.tcx.parent(param_def_id) == self.trait_item_def_id
518 {
519 return ControlFlow::Break(());
520 }
521 ct.super_visit_with(self)
522 }
523 }
524
525 let generics = tcx.generics_of(trait_item_def_id);
526 let predicates = tcx.predicates_of(trait_item_def_id);
527 let impl_trait_ref = tcx
528 .impl_trait_ref(impl_def_id)
529 .expect("expected impl to correspond to trait")
530 .subst_identity();
531 let param_env = tcx.param_env(impl_def_id);
532
533 let mut visitor = ReferencesOnlyParentGenerics { tcx, generics, trait_item_def_id };
534 let predicates_for_trait = predicates.predicates.iter().filter_map(|(pred, span)| {
535 pred.visit_with(&mut visitor).is_continue().then(|| {
536 Obligation::new(
537 tcx,
538 ObligationCause::dummy_with_span(*span),
539 param_env,
540 ty::EarlyBinder::bind(*pred).subst(tcx, impl_trait_ref.substs),
541 )
542 })
543 });
544
545 let infcx = tcx.infer_ctxt().ignoring_regions().build();
546 for obligation in predicates_for_trait {
547 // Ignore overflow error, to be conservative.
548 if let Ok(result) = infcx.evaluate_obligation(&obligation)
549 && !result.may_apply()
550 {
551 return true;
552 }
553 }
554 false
555 }
556
provide(providers: &mut Providers)557 pub fn provide(providers: &mut Providers) {
558 object_safety::provide(providers);
559 vtable::provide(providers);
560 *providers = Providers {
561 specialization_graph_of: specialize::specialization_graph_provider,
562 specializes: specialize::specializes,
563 subst_and_check_impossible_predicates,
564 check_tys_might_be_eq: misc::check_tys_might_be_eq,
565 is_impossible_method,
566 ..*providers
567 };
568 }
569