• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! Optional values.
2 //!
3 //! Type [`Option`] represents an optional value: every [`Option`]
4 //! is either [`Some`] and contains a value, or [`None`], and
5 //! does not. [`Option`] types are very common in Rust code, as
6 //! they have a number of uses:
7 //!
8 //! * Initial values
9 //! * Return values for functions that are not defined
10 //!   over their entire input range (partial functions)
11 //! * Return value for otherwise reporting simple errors, where [`None`] is
12 //!   returned on error
13 //! * Optional struct fields
14 //! * Struct fields that can be loaned or "taken"
15 //! * Optional function arguments
16 //! * Nullable pointers
17 //! * Swapping things out of difficult situations
18 //!
19 //! [`Option`]s are commonly paired with pattern matching to query the presence
20 //! of a value and take action, always accounting for the [`None`] case.
21 //!
22 //! ```
23 //! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
24 //!     if denominator == 0.0 {
25 //!         None
26 //!     } else {
27 //!         Some(numerator / denominator)
28 //!     }
29 //! }
30 //!
31 //! // The return value of the function is an option
32 //! let result = divide(2.0, 3.0);
33 //!
34 //! // Pattern match to retrieve the value
35 //! match result {
36 //!     // The division was valid
37 //!     Some(x) => println!("Result: {x}"),
38 //!     // The division was invalid
39 //!     None    => println!("Cannot divide by 0"),
40 //! }
41 //! ```
42 //!
43 //
44 // FIXME: Show how `Option` is used in practice, with lots of methods
45 //
46 //! # Options and pointers ("nullable" pointers)
47 //!
48 //! Rust's pointer types must always point to a valid location; there are
49 //! no "null" references. Instead, Rust has *optional* pointers, like
50 //! the optional owned box, <code>[Option]<[Box\<T>]></code>.
51 //!
52 //! [Box\<T>]: ../../std/boxed/struct.Box.html
53 //!
54 //! The following example uses [`Option`] to create an optional box of
55 //! [`i32`]. Notice that in order to use the inner [`i32`] value, the
56 //! `check_optional` function first needs to use pattern matching to
57 //! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
58 //! not ([`None`]).
59 //!
60 //! ```
61 //! let optional = None;
62 //! check_optional(optional);
63 //!
64 //! let optional = Some(Box::new(9000));
65 //! check_optional(optional);
66 //!
67 //! fn check_optional(optional: Option<Box<i32>>) {
68 //!     match optional {
69 //!         Some(p) => println!("has value {p}"),
70 //!         None => println!("has no value"),
71 //!     }
72 //! }
73 //! ```
74 //!
75 //! # The question mark operator, `?`
76 //!
77 //! Similar to the [`Result`] type, when writing code that calls many functions that return the
78 //! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
79 //! operator, [`?`], hides some of the boilerplate of propagating values
80 //! up the call stack.
81 //!
82 //! It replaces this:
83 //!
84 //! ```
85 //! # #![allow(dead_code)]
86 //! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
87 //!     let a = stack.pop();
88 //!     let b = stack.pop();
89 //!
90 //!     match (a, b) {
91 //!         (Some(x), Some(y)) => Some(x + y),
92 //!         _ => None,
93 //!     }
94 //! }
95 //!
96 //! ```
97 //!
98 //! With this:
99 //!
100 //! ```
101 //! # #![allow(dead_code)]
102 //! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
103 //!     Some(stack.pop()? + stack.pop()?)
104 //! }
105 //! ```
106 //!
107 //! *It's much nicer!*
108 //!
109 //! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
110 //! result is [`None`], in which case [`None`] is returned early from the enclosing function.
111 //!
112 //! [`?`] can be used in functions that return [`Option`] because of the
113 //! early return of [`None`] that it provides.
114 //!
115 //! [`?`]: crate::ops::Try
116 //! [`Some`]: Some
117 //! [`None`]: None
118 //!
119 //! # Representation
120 //!
121 //! Rust guarantees to optimize the following types `T` such that
122 //! [`Option<T>`] has the same size as `T`:
123 //!
124 //! * [`Box<U>`]
125 //! * `&U`
126 //! * `&mut U`
127 //! * `fn`, `extern "C" fn`[^extern_fn]
128 //! * [`num::NonZero*`]
129 //! * [`ptr::NonNull<U>`]
130 //! * `#[repr(transparent)]` struct around one of the types in this list.
131 //!
132 //! [^extern_fn]: this remains true for any other ABI: `extern "abi" fn` (_e.g._, `extern "system" fn`)
133 //!
134 //! [`Box<U>`]: ../../std/boxed/struct.Box.html
135 //! [`num::NonZero*`]: crate::num
136 //! [`ptr::NonNull<U>`]: crate::ptr::NonNull
137 //!
138 //! This is called the "null pointer optimization" or NPO.
139 //!
140 //! It is further guaranteed that, for the cases above, one can
141 //! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
142 //! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
143 //! is undefined behaviour).
144 //!
145 //! # Method overview
146 //!
147 //! In addition to working with pattern matching, [`Option`] provides a wide
148 //! variety of different methods.
149 //!
150 //! ## Querying the variant
151 //!
152 //! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
153 //! is [`Some`] or [`None`], respectively.
154 //!
155 //! [`is_none`]: Option::is_none
156 //! [`is_some`]: Option::is_some
157 //!
158 //! ## Adapters for working with references
159 //!
160 //! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
161 //! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
162 //! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
163 //!   <code>[Option]<[&]T::[Target]></code>
164 //! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
165 //!   <code>[Option]<[&mut] T::[Target]></code>
166 //! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
167 //!   <code>[Option]<[Pin]<[&]T>></code>
168 //! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
169 //!   <code>[Option]<[Pin]<[&mut] T>></code>
170 //!
171 //! [&]: reference "shared reference"
172 //! [&mut]: reference "mutable reference"
173 //! [Target]: Deref::Target "ops::Deref::Target"
174 //! [`as_deref`]: Option::as_deref
175 //! [`as_deref_mut`]: Option::as_deref_mut
176 //! [`as_mut`]: Option::as_mut
177 //! [`as_pin_mut`]: Option::as_pin_mut
178 //! [`as_pin_ref`]: Option::as_pin_ref
179 //! [`as_ref`]: Option::as_ref
180 //!
181 //! ## Extracting the contained value
182 //!
183 //! These methods extract the contained value in an [`Option<T>`] when it
184 //! is the [`Some`] variant. If the [`Option`] is [`None`]:
185 //!
186 //! * [`expect`] panics with a provided custom message
187 //! * [`unwrap`] panics with a generic message
188 //! * [`unwrap_or`] returns the provided default value
189 //! * [`unwrap_or_default`] returns the default value of the type `T`
190 //!   (which must implement the [`Default`] trait)
191 //! * [`unwrap_or_else`] returns the result of evaluating the provided
192 //!   function
193 //!
194 //! [`expect`]: Option::expect
195 //! [`unwrap`]: Option::unwrap
196 //! [`unwrap_or`]: Option::unwrap_or
197 //! [`unwrap_or_default`]: Option::unwrap_or_default
198 //! [`unwrap_or_else`]: Option::unwrap_or_else
199 //!
200 //! ## Transforming contained values
201 //!
202 //! These methods transform [`Option`] to [`Result`]:
203 //!
204 //! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
205 //!   [`Err(err)`] using the provided default `err` value
206 //! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
207 //!   a value of [`Err`] using the provided function
208 //! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
209 //!   [`Result`] of an [`Option`]
210 //!
211 //! [`Err(err)`]: Err
212 //! [`Ok(v)`]: Ok
213 //! [`Some(v)`]: Some
214 //! [`ok_or`]: Option::ok_or
215 //! [`ok_or_else`]: Option::ok_or_else
216 //! [`transpose`]: Option::transpose
217 //!
218 //! These methods transform the [`Some`] variant:
219 //!
220 //! * [`filter`] calls the provided predicate function on the contained
221 //!   value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
222 //!   if the function returns `true`; otherwise, returns [`None`]
223 //! * [`flatten`] removes one level of nesting from an
224 //!   [`Option<Option<T>>`]
225 //! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
226 //!   provided function to the contained value of [`Some`] and leaving
227 //!   [`None`] values unchanged
228 //!
229 //! [`Some(t)`]: Some
230 //! [`filter`]: Option::filter
231 //! [`flatten`]: Option::flatten
232 //! [`map`]: Option::map
233 //!
234 //! These methods transform [`Option<T>`] to a value of a possibly
235 //! different type `U`:
236 //!
237 //! * [`map_or`] applies the provided function to the contained value of
238 //!   [`Some`], or returns the provided default value if the [`Option`] is
239 //!   [`None`]
240 //! * [`map_or_else`] applies the provided function to the contained value
241 //!   of [`Some`], or returns the result of evaluating the provided
242 //!   fallback function if the [`Option`] is [`None`]
243 //!
244 //! [`map_or`]: Option::map_or
245 //! [`map_or_else`]: Option::map_or_else
246 //!
247 //! These methods combine the [`Some`] variants of two [`Option`] values:
248 //!
249 //! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
250 //!   provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
251 //! * [`zip_with`] calls the provided function `f` and returns
252 //!   [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
253 //!   [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
254 //!
255 //! [`Some(f(s, o))`]: Some
256 //! [`Some(o)`]: Some
257 //! [`Some(s)`]: Some
258 //! [`Some((s, o))`]: Some
259 //! [`zip`]: Option::zip
260 //! [`zip_with`]: Option::zip_with
261 //!
262 //! ## Boolean operators
263 //!
264 //! These methods treat the [`Option`] as a boolean value, where [`Some`]
265 //! acts like [`true`] and [`None`] acts like [`false`]. There are two
266 //! categories of these methods: ones that take an [`Option`] as input, and
267 //! ones that take a function as input (to be lazily evaluated).
268 //!
269 //! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
270 //! input, and produce an [`Option`] as output. Only the [`and`] method can
271 //! produce an [`Option<U>`] value having a different inner type `U` than
272 //! [`Option<T>`].
273 //!
274 //! | method  | self      | input     | output    |
275 //! |---------|-----------|-----------|-----------|
276 //! | [`and`] | `None`    | (ignored) | `None`    |
277 //! | [`and`] | `Some(x)` | `None`    | `None`    |
278 //! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
279 //! | [`or`]  | `None`    | `None`    | `None`    |
280 //! | [`or`]  | `None`    | `Some(y)` | `Some(y)` |
281 //! | [`or`]  | `Some(x)` | (ignored) | `Some(x)` |
282 //! | [`xor`] | `None`    | `None`    | `None`    |
283 //! | [`xor`] | `None`    | `Some(y)` | `Some(y)` |
284 //! | [`xor`] | `Some(x)` | `None`    | `Some(x)` |
285 //! | [`xor`] | `Some(x)` | `Some(y)` | `None`    |
286 //!
287 //! [`and`]: Option::and
288 //! [`or`]: Option::or
289 //! [`xor`]: Option::xor
290 //!
291 //! The [`and_then`] and [`or_else`] methods take a function as input, and
292 //! only evaluate the function when they need to produce a new value. Only
293 //! the [`and_then`] method can produce an [`Option<U>`] value having a
294 //! different inner type `U` than [`Option<T>`].
295 //!
296 //! | method       | self      | function input | function result | output    |
297 //! |--------------|-----------|----------------|-----------------|-----------|
298 //! | [`and_then`] | `None`    | (not provided) | (not evaluated) | `None`    |
299 //! | [`and_then`] | `Some(x)` | `x`            | `None`          | `None`    |
300 //! | [`and_then`] | `Some(x)` | `x`            | `Some(y)`       | `Some(y)` |
301 //! | [`or_else`]  | `None`    | (not provided) | `None`          | `None`    |
302 //! | [`or_else`]  | `None`    | (not provided) | `Some(y)`       | `Some(y)` |
303 //! | [`or_else`]  | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
304 //!
305 //! [`and_then`]: Option::and_then
306 //! [`or_else`]: Option::or_else
307 //!
308 //! This is an example of using methods like [`and_then`] and [`or`] in a
309 //! pipeline of method calls. Early stages of the pipeline pass failure
310 //! values ([`None`]) through unchanged, and continue processing on
311 //! success values ([`Some`]). Toward the end, [`or`] substitutes an error
312 //! message if it receives [`None`].
313 //!
314 //! ```
315 //! # use std::collections::BTreeMap;
316 //! let mut bt = BTreeMap::new();
317 //! bt.insert(20u8, "foo");
318 //! bt.insert(42u8, "bar");
319 //! let res = [0u8, 1, 11, 200, 22]
320 //!     .into_iter()
321 //!     .map(|x| {
322 //!         // `checked_sub()` returns `None` on error
323 //!         x.checked_sub(1)
324 //!             // same with `checked_mul()`
325 //!             .and_then(|x| x.checked_mul(2))
326 //!             // `BTreeMap::get` returns `None` on error
327 //!             .and_then(|x| bt.get(&x))
328 //!             // Substitute an error message if we have `None` so far
329 //!             .or(Some(&"error!"))
330 //!             .copied()
331 //!             // Won't panic because we unconditionally used `Some` above
332 //!             .unwrap()
333 //!     })
334 //!     .collect::<Vec<_>>();
335 //! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
336 //! ```
337 //!
338 //! ## Comparison operators
339 //!
340 //! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
341 //! [`PartialOrd`] implementation.  With this order, [`None`] compares as
342 //! less than any [`Some`], and two [`Some`] compare the same way as their
343 //! contained values would in `T`.  If `T` also implements
344 //! [`Ord`], then so does [`Option<T>`].
345 //!
346 //! ```
347 //! assert!(None < Some(0));
348 //! assert!(Some(0) < Some(1));
349 //! ```
350 //!
351 //! ## Iterating over `Option`
352 //!
353 //! An [`Option`] can be iterated over. This can be helpful if you need an
354 //! iterator that is conditionally empty. The iterator will either produce
355 //! a single value (when the [`Option`] is [`Some`]), or produce no values
356 //! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
357 //! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
358 //! the [`Option`] is [`None`].
359 //!
360 //! [`Some(v)`]: Some
361 //! [`empty()`]: crate::iter::empty
362 //! [`once(v)`]: crate::iter::once
363 //!
364 //! Iterators over [`Option<T>`] come in three types:
365 //!
366 //! * [`into_iter`] consumes the [`Option`] and produces the contained
367 //!   value
368 //! * [`iter`] produces an immutable reference of type `&T` to the
369 //!   contained value
370 //! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
371 //!   contained value
372 //!
373 //! [`into_iter`]: Option::into_iter
374 //! [`iter`]: Option::iter
375 //! [`iter_mut`]: Option::iter_mut
376 //!
377 //! An iterator over [`Option`] can be useful when chaining iterators, for
378 //! example, to conditionally insert items. (It's not always necessary to
379 //! explicitly call an iterator constructor: many [`Iterator`] methods that
380 //! accept other iterators will also accept iterable types that implement
381 //! [`IntoIterator`], which includes [`Option`].)
382 //!
383 //! ```
384 //! let yep = Some(42);
385 //! let nope = None;
386 //! // chain() already calls into_iter(), so we don't have to do so
387 //! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
388 //! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
389 //! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
390 //! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
391 //! ```
392 //!
393 //! One reason to chain iterators in this way is that a function returning
394 //! `impl Iterator` must have all possible return values be of the same
395 //! concrete type. Chaining an iterated [`Option`] can help with that.
396 //!
397 //! ```
398 //! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
399 //!     // Explicit returns to illustrate return types matching
400 //!     match do_insert {
401 //!         true => return (0..4).chain(Some(42)).chain(4..8),
402 //!         false => return (0..4).chain(None).chain(4..8),
403 //!     }
404 //! }
405 //! println!("{:?}", make_iter(true).collect::<Vec<_>>());
406 //! println!("{:?}", make_iter(false).collect::<Vec<_>>());
407 //! ```
408 //!
409 //! If we try to do the same thing, but using [`once()`] and [`empty()`],
410 //! we can't return `impl Iterator` anymore because the concrete types of
411 //! the return values differ.
412 //!
413 //! [`empty()`]: crate::iter::empty
414 //! [`once()`]: crate::iter::once
415 //!
416 //! ```compile_fail,E0308
417 //! # use std::iter::{empty, once};
418 //! // This won't compile because all possible returns from the function
419 //! // must have the same concrete type.
420 //! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
421 //!     // Explicit returns to illustrate return types not matching
422 //!     match do_insert {
423 //!         true => return (0..4).chain(once(42)).chain(4..8),
424 //!         false => return (0..4).chain(empty()).chain(4..8),
425 //!     }
426 //! }
427 //! ```
428 //!
429 //! ## Collecting into `Option`
430 //!
431 //! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
432 //! which allows an iterator over [`Option`] values to be collected into an
433 //! [`Option`] of a collection of each contained value of the original
434 //! [`Option`] values, or [`None`] if any of the elements was [`None`].
435 //!
436 //! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
437 //!
438 //! ```
439 //! let v = [Some(2), Some(4), None, Some(8)];
440 //! let res: Option<Vec<_>> = v.into_iter().collect();
441 //! assert_eq!(res, None);
442 //! let v = [Some(2), Some(4), Some(8)];
443 //! let res: Option<Vec<_>> = v.into_iter().collect();
444 //! assert_eq!(res, Some(vec![2, 4, 8]));
445 //! ```
446 //!
447 //! [`Option`] also implements the [`Product`][impl-Product] and
448 //! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
449 //! to provide the [`product`][Iterator::product] and
450 //! [`sum`][Iterator::sum] methods.
451 //!
452 //! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
453 //! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
454 //!
455 //! ```
456 //! let v = [None, Some(1), Some(2), Some(3)];
457 //! let res: Option<i32> = v.into_iter().sum();
458 //! assert_eq!(res, None);
459 //! let v = [Some(1), Some(2), Some(21)];
460 //! let res: Option<i32> = v.into_iter().product();
461 //! assert_eq!(res, Some(42));
462 //! ```
463 //!
464 //! ## Modifying an [`Option`] in-place
465 //!
466 //! These methods return a mutable reference to the contained value of an
467 //! [`Option<T>`]:
468 //!
469 //! * [`insert`] inserts a value, dropping any old contents
470 //! * [`get_or_insert`] gets the current value, inserting a provided
471 //!   default value if it is [`None`]
472 //! * [`get_or_insert_default`] gets the current value, inserting the
473 //!   default value of type `T` (which must implement [`Default`]) if it is
474 //!   [`None`]
475 //! * [`get_or_insert_with`] gets the current value, inserting a default
476 //!   computed by the provided function if it is [`None`]
477 //!
478 //! [`get_or_insert`]: Option::get_or_insert
479 //! [`get_or_insert_default`]: Option::get_or_insert_default
480 //! [`get_or_insert_with`]: Option::get_or_insert_with
481 //! [`insert`]: Option::insert
482 //!
483 //! These methods transfer ownership of the contained value of an
484 //! [`Option`]:
485 //!
486 //! * [`take`] takes ownership of the contained value of an [`Option`], if
487 //!   any, replacing the [`Option`] with [`None`]
488 //! * [`replace`] takes ownership of the contained value of an [`Option`],
489 //!   if any, replacing the [`Option`] with a [`Some`] containing the
490 //!   provided value
491 //!
492 //! [`replace`]: Option::replace
493 //! [`take`]: Option::take
494 //!
495 //! # Examples
496 //!
497 //! Basic pattern matching on [`Option`]:
498 //!
499 //! ```
500 //! let msg = Some("howdy");
501 //!
502 //! // Take a reference to the contained string
503 //! if let Some(m) = &msg {
504 //!     println!("{}", *m);
505 //! }
506 //!
507 //! // Remove the contained string, destroying the Option
508 //! let unwrapped_msg = msg.unwrap_or("default message");
509 //! ```
510 //!
511 //! Initialize a result to [`None`] before a loop:
512 //!
513 //! ```
514 //! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
515 //!
516 //! // A list of data to search through.
517 //! let all_the_big_things = [
518 //!     Kingdom::Plant(250, "redwood"),
519 //!     Kingdom::Plant(230, "noble fir"),
520 //!     Kingdom::Plant(229, "sugar pine"),
521 //!     Kingdom::Animal(25, "blue whale"),
522 //!     Kingdom::Animal(19, "fin whale"),
523 //!     Kingdom::Animal(15, "north pacific right whale"),
524 //! ];
525 //!
526 //! // We're going to search for the name of the biggest animal,
527 //! // but to start with we've just got `None`.
528 //! let mut name_of_biggest_animal = None;
529 //! let mut size_of_biggest_animal = 0;
530 //! for big_thing in &all_the_big_things {
531 //!     match *big_thing {
532 //!         Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
533 //!             // Now we've found the name of some big animal
534 //!             size_of_biggest_animal = size;
535 //!             name_of_biggest_animal = Some(name);
536 //!         }
537 //!         Kingdom::Animal(..) | Kingdom::Plant(..) => ()
538 //!     }
539 //! }
540 //!
541 //! match name_of_biggest_animal {
542 //!     Some(name) => println!("the biggest animal is {name}"),
543 //!     None => println!("there are no animals :("),
544 //! }
545 //! ```
546 
547 #![stable(feature = "rust1", since = "1.0.0")]
548 
549 use crate::iter::{self, FromIterator, FusedIterator, TrustedLen};
550 use crate::panicking::{panic, panic_str};
551 use crate::pin::Pin;
552 use crate::{
553     cmp, convert, hint, mem,
554     ops::{self, ControlFlow, Deref, DerefMut},
555     slice,
556 };
557 
558 /// The `Option` type. See [the module level documentation](self) for more.
559 #[derive(Copy, PartialOrd, Eq, Ord, Debug, Hash)]
560 #[rustc_diagnostic_item = "Option"]
561 #[lang = "Option"]
562 #[stable(feature = "rust1", since = "1.0.0")]
563 pub enum Option<T> {
564     /// No value.
565     #[lang = "None"]
566     #[stable(feature = "rust1", since = "1.0.0")]
567     None,
568     /// Some value of type `T`.
569     #[lang = "Some"]
570     #[stable(feature = "rust1", since = "1.0.0")]
571     Some(#[stable(feature = "rust1", since = "1.0.0")] T),
572 }
573 
574 /////////////////////////////////////////////////////////////////////////////
575 // Type implementation
576 /////////////////////////////////////////////////////////////////////////////
577 
578 impl<T> Option<T> {
579     /////////////////////////////////////////////////////////////////////////
580     // Querying the contained values
581     /////////////////////////////////////////////////////////////////////////
582 
583     /// Returns `true` if the option is a [`Some`] value.
584     ///
585     /// # Examples
586     ///
587     /// ```
588     /// let x: Option<u32> = Some(2);
589     /// assert_eq!(x.is_some(), true);
590     ///
591     /// let x: Option<u32> = None;
592     /// assert_eq!(x.is_some(), false);
593     /// ```
594     #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
595     #[inline]
596     #[stable(feature = "rust1", since = "1.0.0")]
597     #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
is_some(&self) -> bool598     pub const fn is_some(&self) -> bool {
599         matches!(*self, Some(_))
600     }
601 
602     /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
603     ///
604     /// # Examples
605     ///
606     /// ```
607     /// let x: Option<u32> = Some(2);
608     /// assert_eq!(x.is_some_and(|x| x > 1), true);
609     ///
610     /// let x: Option<u32> = Some(0);
611     /// assert_eq!(x.is_some_and(|x| x > 1), false);
612     ///
613     /// let x: Option<u32> = None;
614     /// assert_eq!(x.is_some_and(|x| x > 1), false);
615     /// ```
616     #[must_use]
617     #[inline]
618     #[stable(feature = "is_some_and", since = "1.70.0")]
is_some_and(self, f: impl FnOnce(T) -> bool) -> bool619     pub fn is_some_and(self, f: impl FnOnce(T) -> bool) -> bool {
620         match self {
621             None => false,
622             Some(x) => f(x),
623         }
624     }
625 
626     /// Returns `true` if the option is a [`None`] value.
627     ///
628     /// # Examples
629     ///
630     /// ```
631     /// let x: Option<u32> = Some(2);
632     /// assert_eq!(x.is_none(), false);
633     ///
634     /// let x: Option<u32> = None;
635     /// assert_eq!(x.is_none(), true);
636     /// ```
637     #[must_use = "if you intended to assert that this doesn't have a value, consider \
638                   `.and_then(|_| panic!(\"`Option` had a value when expected `None`\"))` instead"]
639     #[inline]
640     #[stable(feature = "rust1", since = "1.0.0")]
641     #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
is_none(&self) -> bool642     pub const fn is_none(&self) -> bool {
643         !self.is_some()
644     }
645 
646     /////////////////////////////////////////////////////////////////////////
647     // Adapter for working with references
648     /////////////////////////////////////////////////////////////////////////
649 
650     /// Converts from `&Option<T>` to `Option<&T>`.
651     ///
652     /// # Examples
653     ///
654     /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
655     /// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
656     /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
657     /// reference to the value inside the original.
658     ///
659     /// [`map`]: Option::map
660     /// [String]: ../../std/string/struct.String.html "String"
661     /// [`String`]: ../../std/string/struct.String.html "String"
662     ///
663     /// ```
664     /// let text: Option<String> = Some("Hello, world!".to_string());
665     /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
666     /// // then consume *that* with `map`, leaving `text` on the stack.
667     /// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
668     /// println!("still can print text: {text:?}");
669     /// ```
670     #[inline]
671     #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
672     #[stable(feature = "rust1", since = "1.0.0")]
as_ref(&self) -> Option<&T>673     pub const fn as_ref(&self) -> Option<&T> {
674         match *self {
675             Some(ref x) => Some(x),
676             None => None,
677         }
678     }
679 
680     /// Converts from `&mut Option<T>` to `Option<&mut T>`.
681     ///
682     /// # Examples
683     ///
684     /// ```
685     /// let mut x = Some(2);
686     /// match x.as_mut() {
687     ///     Some(v) => *v = 42,
688     ///     None => {},
689     /// }
690     /// assert_eq!(x, Some(42));
691     /// ```
692     #[inline]
693     #[stable(feature = "rust1", since = "1.0.0")]
694     #[rustc_const_unstable(feature = "const_option", issue = "67441")]
as_mut(&mut self) -> Option<&mut T>695     pub const fn as_mut(&mut self) -> Option<&mut T> {
696         match *self {
697             Some(ref mut x) => Some(x),
698             None => None,
699         }
700     }
701 
702     /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
703     ///
704     /// [&]: reference "shared reference"
705     #[inline]
706     #[must_use]
707     #[stable(feature = "pin", since = "1.33.0")]
708     #[rustc_const_unstable(feature = "const_option_ext", issue = "91930")]
as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>>709     pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
710         match Pin::get_ref(self).as_ref() {
711             // SAFETY: `x` is guaranteed to be pinned because it comes from `self`
712             // which is pinned.
713             Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
714             None => None,
715         }
716     }
717 
718     /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
719     ///
720     /// [&mut]: reference "mutable reference"
721     #[inline]
722     #[must_use]
723     #[stable(feature = "pin", since = "1.33.0")]
724     #[rustc_const_unstable(feature = "const_option_ext", issue = "91930")]
as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>>725     pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
726         // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
727         // `x` is guaranteed to be pinned because it comes from `self` which is pinned.
728         unsafe {
729             match Pin::get_unchecked_mut(self).as_mut() {
730                 Some(x) => Some(Pin::new_unchecked(x)),
731                 None => None,
732             }
733         }
734     }
735 
736     /// Returns a slice of the contained value, if any. If this is `None`, an
737     /// empty slice is returned. This can be useful to have a single type of
738     /// iterator over an `Option` or slice.
739     ///
740     /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
741     /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
742     ///
743     /// # Examples
744     ///
745     /// ```rust
746     /// #![feature(option_as_slice)]
747     ///
748     /// assert_eq!(
749     ///     [Some(1234).as_slice(), None.as_slice()],
750     ///     [&[1234][..], &[][..]],
751     /// );
752     /// ```
753     ///
754     /// The inverse of this function is (discounting
755     /// borrowing) [`[_]::first`](slice::first):
756     ///
757     /// ```rust
758     /// #![feature(option_as_slice)]
759     ///
760     /// for i in [Some(1234_u16), None] {
761     ///     assert_eq!(i.as_ref(), i.as_slice().first());
762     /// }
763     /// ```
764     #[inline]
765     #[must_use]
766     #[unstable(feature = "option_as_slice", issue = "108545")]
as_slice(&self) -> &[T]767     pub fn as_slice(&self) -> &[T] {
768         // SAFETY: When the `Option` is `Some`, we're using the actual pointer
769         // to the payload, with a length of 1, so this is equivalent to
770         // `slice::from_ref`, and thus is safe.
771         // When the `Option` is `None`, the length used is 0, so to be safe it
772         // just needs to be aligned, which it is because `&self` is aligned and
773         // the offset used is a multiple of alignment.
774         //
775         // In the new version, the intrinsic always returns a pointer to an
776         // in-bounds and correctly aligned position for a `T` (even if in the
777         // `None` case it's just padding).
778         unsafe {
779             slice::from_raw_parts(
780                 crate::intrinsics::option_payload_ptr(crate::ptr::from_ref(self)),
781                 usize::from(self.is_some()),
782             )
783         }
784     }
785 
786     /// Returns a mutable slice of the contained value, if any. If this is
787     /// `None`, an empty slice is returned. This can be useful to have a
788     /// single type of iterator over an `Option` or slice.
789     ///
790     /// Note: Should you have an `Option<&mut T>` instead of a
791     /// `&mut Option<T>`, which this method takes, you can obtain a mutable
792     /// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
793     ///
794     /// # Examples
795     ///
796     /// ```rust
797     /// #![feature(option_as_slice)]
798     ///
799     /// assert_eq!(
800     ///     [Some(1234).as_mut_slice(), None.as_mut_slice()],
801     ///     [&mut [1234][..], &mut [][..]],
802     /// );
803     /// ```
804     ///
805     /// The result is a mutable slice of zero or one items that points into
806     /// our original `Option`:
807     ///
808     /// ```rust
809     /// #![feature(option_as_slice)]
810     ///
811     /// let mut x = Some(1234);
812     /// x.as_mut_slice()[0] += 1;
813     /// assert_eq!(x, Some(1235));
814     /// ```
815     ///
816     /// The inverse of this method (discounting borrowing)
817     /// is [`[_]::first_mut`](slice::first_mut):
818     ///
819     /// ```rust
820     /// #![feature(option_as_slice)]
821     ///
822     /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
823     /// ```
824     #[inline]
825     #[must_use]
826     #[unstable(feature = "option_as_slice", issue = "108545")]
as_mut_slice(&mut self) -> &mut [T]827     pub fn as_mut_slice(&mut self) -> &mut [T] {
828         // SAFETY: When the `Option` is `Some`, we're using the actual pointer
829         // to the payload, with a length of 1, so this is equivalent to
830         // `slice::from_mut`, and thus is safe.
831         // When the `Option` is `None`, the length used is 0, so to be safe it
832         // just needs to be aligned, which it is because `&self` is aligned and
833         // the offset used is a multiple of alignment.
834         //
835         // In the new version, the intrinsic creates a `*const T` from a
836         // mutable reference  so it is safe to cast back to a mutable pointer
837         // here. As with `as_slice`, the intrinsic always returns a pointer to
838         // an in-bounds and correctly aligned position for a `T` (even if in
839         // the `None` case it's just padding).
840         unsafe {
841             slice::from_raw_parts_mut(
842                 crate::intrinsics::option_payload_ptr(crate::ptr::from_mut(self).cast_const())
843                     .cast_mut(),
844                 usize::from(self.is_some()),
845             )
846         }
847     }
848 
849     /////////////////////////////////////////////////////////////////////////
850     // Getting to contained values
851     /////////////////////////////////////////////////////////////////////////
852 
853     /// Returns the contained [`Some`] value, consuming the `self` value.
854     ///
855     /// # Panics
856     ///
857     /// Panics if the value is a [`None`] with a custom panic message provided by
858     /// `msg`.
859     ///
860     /// # Examples
861     ///
862     /// ```
863     /// let x = Some("value");
864     /// assert_eq!(x.expect("fruits are healthy"), "value");
865     /// ```
866     ///
867     /// ```should_panic
868     /// let x: Option<&str> = None;
869     /// x.expect("fruits are healthy"); // panics with `fruits are healthy`
870     /// ```
871     ///
872     /// # Recommended Message Style
873     ///
874     /// We recommend that `expect` messages are used to describe the reason you
875     /// _expect_ the `Option` should be `Some`.
876     ///
877     /// ```should_panic
878     /// # let slice: &[u8] = &[];
879     /// let item = slice.get(0)
880     ///     .expect("slice should not be empty");
881     /// ```
882     ///
883     /// **Hint**: If you're having trouble remembering how to phrase expect
884     /// error messages remember to focus on the word "should" as in "env
885     /// variable should be set by blah" or "the given binary should be available
886     /// and executable by the current user".
887     ///
888     /// For more detail on expect message styles and the reasoning behind our
889     /// recommendation please refer to the section on ["Common Message
890     /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
891     #[inline]
892     #[track_caller]
893     #[stable(feature = "rust1", since = "1.0.0")]
894     #[rustc_const_unstable(feature = "const_option", issue = "67441")]
expect(self, msg: &str) -> T895     pub const fn expect(self, msg: &str) -> T {
896         match self {
897             Some(val) => val,
898             None => expect_failed(msg),
899         }
900     }
901 
902     /// Returns the contained [`Some`] value, consuming the `self` value.
903     ///
904     /// Because this function may panic, its use is generally discouraged.
905     /// Instead, prefer to use pattern matching and handle the [`None`]
906     /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
907     /// [`unwrap_or_default`].
908     ///
909     /// [`unwrap_or`]: Option::unwrap_or
910     /// [`unwrap_or_else`]: Option::unwrap_or_else
911     /// [`unwrap_or_default`]: Option::unwrap_or_default
912     ///
913     /// # Panics
914     ///
915     /// Panics if the self value equals [`None`].
916     ///
917     /// # Examples
918     ///
919     /// ```
920     /// let x = Some("air");
921     /// assert_eq!(x.unwrap(), "air");
922     /// ```
923     ///
924     /// ```should_panic
925     /// let x: Option<&str> = None;
926     /// assert_eq!(x.unwrap(), "air"); // fails
927     /// ```
928     #[inline]
929     #[track_caller]
930     #[stable(feature = "rust1", since = "1.0.0")]
931     #[rustc_const_unstable(feature = "const_option", issue = "67441")]
unwrap(self) -> T932     pub const fn unwrap(self) -> T {
933         match self {
934             Some(val) => val,
935             None => panic("called `Option::unwrap()` on a `None` value"),
936         }
937     }
938 
939     /// Returns the contained [`Some`] value or a provided default.
940     ///
941     /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
942     /// the result of a function call, it is recommended to use [`unwrap_or_else`],
943     /// which is lazily evaluated.
944     ///
945     /// [`unwrap_or_else`]: Option::unwrap_or_else
946     ///
947     /// # Examples
948     ///
949     /// ```
950     /// assert_eq!(Some("car").unwrap_or("bike"), "car");
951     /// assert_eq!(None.unwrap_or("bike"), "bike");
952     /// ```
953     #[inline]
954     #[stable(feature = "rust1", since = "1.0.0")]
unwrap_or(self, default: T) -> T955     pub fn unwrap_or(self, default: T) -> T {
956         match self {
957             Some(x) => x,
958             None => default,
959         }
960     }
961 
962     /// Returns the contained [`Some`] value or computes it from a closure.
963     ///
964     /// # Examples
965     ///
966     /// ```
967     /// let k = 10;
968     /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
969     /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
970     /// ```
971     #[inline]
972     #[stable(feature = "rust1", since = "1.0.0")]
unwrap_or_else<F>(self, f: F) -> T where F: FnOnce() -> T,973     pub fn unwrap_or_else<F>(self, f: F) -> T
974     where
975         F: FnOnce() -> T,
976     {
977         match self {
978             Some(x) => x,
979             None => f(),
980         }
981     }
982 
983     /// Returns the contained [`Some`] value or a default.
984     ///
985     /// Consumes the `self` argument then, if [`Some`], returns the contained
986     /// value, otherwise if [`None`], returns the [default value] for that
987     /// type.
988     ///
989     /// # Examples
990     ///
991     /// ```
992     /// let x: Option<u32> = None;
993     /// let y: Option<u32> = Some(12);
994     ///
995     /// assert_eq!(x.unwrap_or_default(), 0);
996     /// assert_eq!(y.unwrap_or_default(), 12);
997     /// ```
998     ///
999     /// [default value]: Default::default
1000     /// [`parse`]: str::parse
1001     /// [`FromStr`]: crate::str::FromStr
1002     #[inline]
1003     #[stable(feature = "rust1", since = "1.0.0")]
unwrap_or_default(self) -> T where T: Default,1004     pub fn unwrap_or_default(self) -> T
1005     where
1006         T: Default,
1007     {
1008         match self {
1009             Some(x) => x,
1010             None => T::default(),
1011         }
1012     }
1013 
1014     /// Returns the contained [`Some`] value, consuming the `self` value,
1015     /// without checking that the value is not [`None`].
1016     ///
1017     /// # Safety
1018     ///
1019     /// Calling this method on [`None`] is *[undefined behavior]*.
1020     ///
1021     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1022     ///
1023     /// # Examples
1024     ///
1025     /// ```
1026     /// let x = Some("air");
1027     /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
1028     /// ```
1029     ///
1030     /// ```no_run
1031     /// let x: Option<&str> = None;
1032     /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1033     /// ```
1034     #[inline]
1035     #[track_caller]
1036     #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1037     #[rustc_const_unstable(feature = "const_option_ext", issue = "91930")]
unwrap_unchecked(self) -> T1038     pub const unsafe fn unwrap_unchecked(self) -> T {
1039         debug_assert!(self.is_some());
1040         match self {
1041             Some(val) => val,
1042             // SAFETY: the safety contract must be upheld by the caller.
1043             None => unsafe { hint::unreachable_unchecked() },
1044         }
1045     }
1046 
1047     /////////////////////////////////////////////////////////////////////////
1048     // Transforming contained values
1049     /////////////////////////////////////////////////////////////////////////
1050 
1051     /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
1052     ///
1053     /// # Examples
1054     ///
1055     /// Calculates the length of an <code>Option<[String]></code> as an
1056     /// <code>Option<[usize]></code>, consuming the original:
1057     ///
1058     /// [String]: ../../std/string/struct.String.html "String"
1059     /// ```
1060     /// let maybe_some_string = Some(String::from("Hello, World!"));
1061     /// // `Option::map` takes self *by value*, consuming `maybe_some_string`
1062     /// let maybe_some_len = maybe_some_string.map(|s| s.len());
1063     /// assert_eq!(maybe_some_len, Some(13));
1064     ///
1065     /// let x: Option<&str> = None;
1066     /// assert_eq!(x.map(|s| s.len()), None);
1067     /// ```
1068     #[inline]
1069     #[stable(feature = "rust1", since = "1.0.0")]
map<U, F>(self, f: F) -> Option<U> where F: FnOnce(T) -> U,1070     pub fn map<U, F>(self, f: F) -> Option<U>
1071     where
1072         F: FnOnce(T) -> U,
1073     {
1074         match self {
1075             Some(x) => Some(f(x)),
1076             None => None,
1077         }
1078     }
1079 
1080     /// Calls the provided closure with a reference to the contained value (if [`Some`]).
1081     ///
1082     /// # Examples
1083     ///
1084     /// ```
1085     /// #![feature(result_option_inspect)]
1086     ///
1087     /// let v = vec![1, 2, 3, 4, 5];
1088     ///
1089     /// // prints "got: 4"
1090     /// let x: Option<&usize> = v.get(3).inspect(|x| println!("got: {x}"));
1091     ///
1092     /// // prints nothing
1093     /// let x: Option<&usize> = v.get(5).inspect(|x| println!("got: {x}"));
1094     /// ```
1095     #[inline]
1096     #[unstable(feature = "result_option_inspect", issue = "91345")]
inspect<F>(self, f: F) -> Self where F: FnOnce(&T),1097     pub fn inspect<F>(self, f: F) -> Self
1098     where
1099         F: FnOnce(&T),
1100     {
1101         if let Some(ref x) = self {
1102             f(x);
1103         }
1104 
1105         self
1106     }
1107 
1108     /// Returns the provided default result (if none),
1109     /// or applies a function to the contained value (if any).
1110     ///
1111     /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
1112     /// the result of a function call, it is recommended to use [`map_or_else`],
1113     /// which is lazily evaluated.
1114     ///
1115     /// [`map_or_else`]: Option::map_or_else
1116     ///
1117     /// # Examples
1118     ///
1119     /// ```
1120     /// let x = Some("foo");
1121     /// assert_eq!(x.map_or(42, |v| v.len()), 3);
1122     ///
1123     /// let x: Option<&str> = None;
1124     /// assert_eq!(x.map_or(42, |v| v.len()), 42);
1125     /// ```
1126     #[inline]
1127     #[stable(feature = "rust1", since = "1.0.0")]
map_or<U, F>(self, default: U, f: F) -> U where F: FnOnce(T) -> U,1128     pub fn map_or<U, F>(self, default: U, f: F) -> U
1129     where
1130         F: FnOnce(T) -> U,
1131     {
1132         match self {
1133             Some(t) => f(t),
1134             None => default,
1135         }
1136     }
1137 
1138     /// Computes a default function result (if none), or
1139     /// applies a different function to the contained value (if any).
1140     ///
1141     /// # Basic examples
1142     ///
1143     /// ```
1144     /// let k = 21;
1145     ///
1146     /// let x = Some("foo");
1147     /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
1148     ///
1149     /// let x: Option<&str> = None;
1150     /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
1151     /// ```
1152     ///
1153     /// # Handling a Result-based fallback
1154     ///
1155     /// A somewhat common occurrence when dealing with optional values
1156     /// in combination with [`Result<T, E>`] is the case where one wants to invoke
1157     /// a fallible fallback if the option is not present.  This example
1158     /// parses a command line argument (if present), or the contents of a file to
1159     /// an integer.  However, unlike accessing the command line argument, reading
1160     /// the file is fallible, so it must be wrapped with `Ok`.
1161     ///
1162     /// ```no_run
1163     /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1164     /// let v: u64 = std::env::args()
1165     ///    .nth(1)
1166     ///    .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
1167     ///    .parse()?;
1168     /// #   Ok(())
1169     /// # }
1170     /// ```
1171     #[inline]
1172     #[stable(feature = "rust1", since = "1.0.0")]
map_or_else<U, D, F>(self, default: D, f: F) -> U where D: FnOnce() -> U, F: FnOnce(T) -> U,1173     pub fn map_or_else<U, D, F>(self, default: D, f: F) -> U
1174     where
1175         D: FnOnce() -> U,
1176         F: FnOnce(T) -> U,
1177     {
1178         match self {
1179             Some(t) => f(t),
1180             None => default(),
1181         }
1182     }
1183 
1184     /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1185     /// [`Ok(v)`] and [`None`] to [`Err(err)`].
1186     ///
1187     /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
1188     /// result of a function call, it is recommended to use [`ok_or_else`], which is
1189     /// lazily evaluated.
1190     ///
1191     /// [`Ok(v)`]: Ok
1192     /// [`Err(err)`]: Err
1193     /// [`Some(v)`]: Some
1194     /// [`ok_or_else`]: Option::ok_or_else
1195     ///
1196     /// # Examples
1197     ///
1198     /// ```
1199     /// let x = Some("foo");
1200     /// assert_eq!(x.ok_or(0), Ok("foo"));
1201     ///
1202     /// let x: Option<&str> = None;
1203     /// assert_eq!(x.ok_or(0), Err(0));
1204     /// ```
1205     #[inline]
1206     #[stable(feature = "rust1", since = "1.0.0")]
ok_or<E>(self, err: E) -> Result<T, E>1207     pub fn ok_or<E>(self, err: E) -> Result<T, E> {
1208         match self {
1209             Some(v) => Ok(v),
1210             None => Err(err),
1211         }
1212     }
1213 
1214     /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1215     /// [`Ok(v)`] and [`None`] to [`Err(err())`].
1216     ///
1217     /// [`Ok(v)`]: Ok
1218     /// [`Err(err())`]: Err
1219     /// [`Some(v)`]: Some
1220     ///
1221     /// # Examples
1222     ///
1223     /// ```
1224     /// let x = Some("foo");
1225     /// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
1226     ///
1227     /// let x: Option<&str> = None;
1228     /// assert_eq!(x.ok_or_else(|| 0), Err(0));
1229     /// ```
1230     #[inline]
1231     #[stable(feature = "rust1", since = "1.0.0")]
ok_or_else<E, F>(self, err: F) -> Result<T, E> where F: FnOnce() -> E,1232     pub fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
1233     where
1234         F: FnOnce() -> E,
1235     {
1236         match self {
1237             Some(v) => Ok(v),
1238             None => Err(err()),
1239         }
1240     }
1241 
1242     /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
1243     ///
1244     /// Leaves the original Option in-place, creating a new one with a reference
1245     /// to the original one, additionally coercing the contents via [`Deref`].
1246     ///
1247     /// # Examples
1248     ///
1249     /// ```
1250     /// let x: Option<String> = Some("hey".to_owned());
1251     /// assert_eq!(x.as_deref(), Some("hey"));
1252     ///
1253     /// let x: Option<String> = None;
1254     /// assert_eq!(x.as_deref(), None);
1255     /// ```
1256     #[inline]
1257     #[stable(feature = "option_deref", since = "1.40.0")]
as_deref(&self) -> Option<&T::Target> where T: Deref,1258     pub fn as_deref(&self) -> Option<&T::Target>
1259     where
1260         T: Deref,
1261     {
1262         match self.as_ref() {
1263             Some(t) => Some(t.deref()),
1264             None => None,
1265         }
1266     }
1267 
1268     /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
1269     ///
1270     /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
1271     /// the inner type's [`Deref::Target`] type.
1272     ///
1273     /// # Examples
1274     ///
1275     /// ```
1276     /// let mut x: Option<String> = Some("hey".to_owned());
1277     /// assert_eq!(x.as_deref_mut().map(|x| {
1278     ///     x.make_ascii_uppercase();
1279     ///     x
1280     /// }), Some("HEY".to_owned().as_mut_str()));
1281     /// ```
1282     #[inline]
1283     #[stable(feature = "option_deref", since = "1.40.0")]
as_deref_mut(&mut self) -> Option<&mut T::Target> where T: DerefMut,1284     pub fn as_deref_mut(&mut self) -> Option<&mut T::Target>
1285     where
1286         T: DerefMut,
1287     {
1288         match self.as_mut() {
1289             Some(t) => Some(t.deref_mut()),
1290             None => None,
1291         }
1292     }
1293 
1294     /////////////////////////////////////////////////////////////////////////
1295     // Iterator constructors
1296     /////////////////////////////////////////////////////////////////////////
1297 
1298     /// Returns an iterator over the possibly contained value.
1299     ///
1300     /// # Examples
1301     ///
1302     /// ```
1303     /// let x = Some(4);
1304     /// assert_eq!(x.iter().next(), Some(&4));
1305     ///
1306     /// let x: Option<u32> = None;
1307     /// assert_eq!(x.iter().next(), None);
1308     /// ```
1309     #[inline]
1310     #[rustc_const_unstable(feature = "const_option", issue = "67441")]
1311     #[stable(feature = "rust1", since = "1.0.0")]
iter(&self) -> Iter<'_, T>1312     pub const fn iter(&self) -> Iter<'_, T> {
1313         Iter { inner: Item { opt: self.as_ref() } }
1314     }
1315 
1316     /// Returns a mutable iterator over the possibly contained value.
1317     ///
1318     /// # Examples
1319     ///
1320     /// ```
1321     /// let mut x = Some(4);
1322     /// match x.iter_mut().next() {
1323     ///     Some(v) => *v = 42,
1324     ///     None => {},
1325     /// }
1326     /// assert_eq!(x, Some(42));
1327     ///
1328     /// let mut x: Option<u32> = None;
1329     /// assert_eq!(x.iter_mut().next(), None);
1330     /// ```
1331     #[inline]
1332     #[stable(feature = "rust1", since = "1.0.0")]
iter_mut(&mut self) -> IterMut<'_, T>1333     pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1334         IterMut { inner: Item { opt: self.as_mut() } }
1335     }
1336 
1337     /////////////////////////////////////////////////////////////////////////
1338     // Boolean operations on the values, eager and lazy
1339     /////////////////////////////////////////////////////////////////////////
1340 
1341     /// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
1342     ///
1343     /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1344     /// result of a function call, it is recommended to use [`and_then`], which is
1345     /// lazily evaluated.
1346     ///
1347     /// [`and_then`]: Option::and_then
1348     ///
1349     /// # Examples
1350     ///
1351     /// ```
1352     /// let x = Some(2);
1353     /// let y: Option<&str> = None;
1354     /// assert_eq!(x.and(y), None);
1355     ///
1356     /// let x: Option<u32> = None;
1357     /// let y = Some("foo");
1358     /// assert_eq!(x.and(y), None);
1359     ///
1360     /// let x = Some(2);
1361     /// let y = Some("foo");
1362     /// assert_eq!(x.and(y), Some("foo"));
1363     ///
1364     /// let x: Option<u32> = None;
1365     /// let y: Option<&str> = None;
1366     /// assert_eq!(x.and(y), None);
1367     /// ```
1368     #[inline]
1369     #[stable(feature = "rust1", since = "1.0.0")]
and<U>(self, optb: Option<U>) -> Option<U>1370     pub fn and<U>(self, optb: Option<U>) -> Option<U> {
1371         match self {
1372             Some(_) => optb,
1373             None => None,
1374         }
1375     }
1376 
1377     /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
1378     /// wrapped value and returns the result.
1379     ///
1380     /// Some languages call this operation flatmap.
1381     ///
1382     /// # Examples
1383     ///
1384     /// ```
1385     /// fn sq_then_to_string(x: u32) -> Option<String> {
1386     ///     x.checked_mul(x).map(|sq| sq.to_string())
1387     /// }
1388     ///
1389     /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
1390     /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
1391     /// assert_eq!(None.and_then(sq_then_to_string), None);
1392     /// ```
1393     ///
1394     /// Often used to chain fallible operations that may return [`None`].
1395     ///
1396     /// ```
1397     /// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
1398     ///
1399     /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
1400     /// assert_eq!(item_0_1, Some(&"A1"));
1401     ///
1402     /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
1403     /// assert_eq!(item_2_0, None);
1404     /// ```
1405     #[doc(alias = "flatmap")]
1406     #[inline]
1407     #[stable(feature = "rust1", since = "1.0.0")]
and_then<U, F>(self, f: F) -> Option<U> where F: FnOnce(T) -> Option<U>,1408     pub fn and_then<U, F>(self, f: F) -> Option<U>
1409     where
1410         F: FnOnce(T) -> Option<U>,
1411     {
1412         match self {
1413             Some(x) => f(x),
1414             None => None,
1415         }
1416     }
1417 
1418     /// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
1419     /// with the wrapped value and returns:
1420     ///
1421     /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
1422     ///   value), and
1423     /// - [`None`] if `predicate` returns `false`.
1424     ///
1425     /// This function works similar to [`Iterator::filter()`]. You can imagine
1426     /// the `Option<T>` being an iterator over one or zero elements. `filter()`
1427     /// lets you decide which elements to keep.
1428     ///
1429     /// # Examples
1430     ///
1431     /// ```rust
1432     /// fn is_even(n: &i32) -> bool {
1433     ///     n % 2 == 0
1434     /// }
1435     ///
1436     /// assert_eq!(None.filter(is_even), None);
1437     /// assert_eq!(Some(3).filter(is_even), None);
1438     /// assert_eq!(Some(4).filter(is_even), Some(4));
1439     /// ```
1440     ///
1441     /// [`Some(t)`]: Some
1442     #[inline]
1443     #[stable(feature = "option_filter", since = "1.27.0")]
filter<P>(self, predicate: P) -> Self where P: FnOnce(&T) -> bool,1444     pub fn filter<P>(self, predicate: P) -> Self
1445     where
1446         P: FnOnce(&T) -> bool,
1447     {
1448         if let Some(x) = self {
1449             if predicate(&x) {
1450                 return Some(x);
1451             }
1452         }
1453         None
1454     }
1455 
1456     /// Returns the option if it contains a value, otherwise returns `optb`.
1457     ///
1458     /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1459     /// result of a function call, it is recommended to use [`or_else`], which is
1460     /// lazily evaluated.
1461     ///
1462     /// [`or_else`]: Option::or_else
1463     ///
1464     /// # Examples
1465     ///
1466     /// ```
1467     /// let x = Some(2);
1468     /// let y = None;
1469     /// assert_eq!(x.or(y), Some(2));
1470     ///
1471     /// let x = None;
1472     /// let y = Some(100);
1473     /// assert_eq!(x.or(y), Some(100));
1474     ///
1475     /// let x = Some(2);
1476     /// let y = Some(100);
1477     /// assert_eq!(x.or(y), Some(2));
1478     ///
1479     /// let x: Option<u32> = None;
1480     /// let y = None;
1481     /// assert_eq!(x.or(y), None);
1482     /// ```
1483     #[inline]
1484     #[stable(feature = "rust1", since = "1.0.0")]
or(self, optb: Option<T>) -> Option<T>1485     pub fn or(self, optb: Option<T>) -> Option<T> {
1486         match self {
1487             Some(x) => Some(x),
1488             None => optb,
1489         }
1490     }
1491 
1492     /// Returns the option if it contains a value, otherwise calls `f` and
1493     /// returns the result.
1494     ///
1495     /// # Examples
1496     ///
1497     /// ```
1498     /// fn nobody() -> Option<&'static str> { None }
1499     /// fn vikings() -> Option<&'static str> { Some("vikings") }
1500     ///
1501     /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
1502     /// assert_eq!(None.or_else(vikings), Some("vikings"));
1503     /// assert_eq!(None.or_else(nobody), None);
1504     /// ```
1505     #[inline]
1506     #[stable(feature = "rust1", since = "1.0.0")]
or_else<F>(self, f: F) -> Option<T> where F: FnOnce() -> Option<T>,1507     pub fn or_else<F>(self, f: F) -> Option<T>
1508     where
1509         F: FnOnce() -> Option<T>,
1510     {
1511         match self {
1512             Some(x) => Some(x),
1513             None => f(),
1514         }
1515     }
1516 
1517     /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
1518     ///
1519     /// # Examples
1520     ///
1521     /// ```
1522     /// let x = Some(2);
1523     /// let y: Option<u32> = None;
1524     /// assert_eq!(x.xor(y), Some(2));
1525     ///
1526     /// let x: Option<u32> = None;
1527     /// let y = Some(2);
1528     /// assert_eq!(x.xor(y), Some(2));
1529     ///
1530     /// let x = Some(2);
1531     /// let y = Some(2);
1532     /// assert_eq!(x.xor(y), None);
1533     ///
1534     /// let x: Option<u32> = None;
1535     /// let y: Option<u32> = None;
1536     /// assert_eq!(x.xor(y), None);
1537     /// ```
1538     #[inline]
1539     #[stable(feature = "option_xor", since = "1.37.0")]
xor(self, optb: Option<T>) -> Option<T>1540     pub fn xor(self, optb: Option<T>) -> Option<T> {
1541         match (self, optb) {
1542             (Some(a), None) => Some(a),
1543             (None, Some(b)) => Some(b),
1544             _ => None,
1545         }
1546     }
1547 
1548     /////////////////////////////////////////////////////////////////////////
1549     // Entry-like operations to insert a value and return a reference
1550     /////////////////////////////////////////////////////////////////////////
1551 
1552     /// Inserts `value` into the option, then returns a mutable reference to it.
1553     ///
1554     /// If the option already contains a value, the old value is dropped.
1555     ///
1556     /// See also [`Option::get_or_insert`], which doesn't update the value if
1557     /// the option already contains [`Some`].
1558     ///
1559     /// # Example
1560     ///
1561     /// ```
1562     /// let mut opt = None;
1563     /// let val = opt.insert(1);
1564     /// assert_eq!(*val, 1);
1565     /// assert_eq!(opt.unwrap(), 1);
1566     /// let val = opt.insert(2);
1567     /// assert_eq!(*val, 2);
1568     /// *val = 3;
1569     /// assert_eq!(opt.unwrap(), 3);
1570     /// ```
1571     #[must_use = "if you intended to set a value, consider assignment instead"]
1572     #[inline]
1573     #[stable(feature = "option_insert", since = "1.53.0")]
insert(&mut self, value: T) -> &mut T1574     pub fn insert(&mut self, value: T) -> &mut T {
1575         *self = Some(value);
1576 
1577         // SAFETY: the code above just filled the option
1578         unsafe { self.as_mut().unwrap_unchecked() }
1579     }
1580 
1581     /// Inserts `value` into the option if it is [`None`], then
1582     /// returns a mutable reference to the contained value.
1583     ///
1584     /// See also [`Option::insert`], which updates the value even if
1585     /// the option already contains [`Some`].
1586     ///
1587     /// # Examples
1588     ///
1589     /// ```
1590     /// let mut x = None;
1591     ///
1592     /// {
1593     ///     let y: &mut u32 = x.get_or_insert(5);
1594     ///     assert_eq!(y, &5);
1595     ///
1596     ///     *y = 7;
1597     /// }
1598     ///
1599     /// assert_eq!(x, Some(7));
1600     /// ```
1601     #[inline]
1602     #[stable(feature = "option_entry", since = "1.20.0")]
get_or_insert(&mut self, value: T) -> &mut T1603     pub fn get_or_insert(&mut self, value: T) -> &mut T {
1604         if let None = *self {
1605             *self = Some(value);
1606         }
1607 
1608         // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1609         // variant in the code above.
1610         unsafe { self.as_mut().unwrap_unchecked() }
1611     }
1612 
1613     /// Inserts the default value into the option if it is [`None`], then
1614     /// returns a mutable reference to the contained value.
1615     ///
1616     /// # Examples
1617     ///
1618     /// ```
1619     /// #![feature(option_get_or_insert_default)]
1620     ///
1621     /// let mut x = None;
1622     ///
1623     /// {
1624     ///     let y: &mut u32 = x.get_or_insert_default();
1625     ///     assert_eq!(y, &0);
1626     ///
1627     ///     *y = 7;
1628     /// }
1629     ///
1630     /// assert_eq!(x, Some(7));
1631     /// ```
1632     #[inline]
1633     #[unstable(feature = "option_get_or_insert_default", issue = "82901")]
get_or_insert_default(&mut self) -> &mut T where T: Default,1634     pub fn get_or_insert_default(&mut self) -> &mut T
1635     where
1636         T: Default,
1637     {
1638         self.get_or_insert_with(T::default)
1639     }
1640 
1641     /// Inserts a value computed from `f` into the option if it is [`None`],
1642     /// then returns a mutable reference to the contained value.
1643     ///
1644     /// # Examples
1645     ///
1646     /// ```
1647     /// let mut x = None;
1648     ///
1649     /// {
1650     ///     let y: &mut u32 = x.get_or_insert_with(|| 5);
1651     ///     assert_eq!(y, &5);
1652     ///
1653     ///     *y = 7;
1654     /// }
1655     ///
1656     /// assert_eq!(x, Some(7));
1657     /// ```
1658     #[inline]
1659     #[stable(feature = "option_entry", since = "1.20.0")]
get_or_insert_with<F>(&mut self, f: F) -> &mut T where F: FnOnce() -> T,1660     pub fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
1661     where
1662         F: FnOnce() -> T,
1663     {
1664         if let None = self {
1665             *self = Some(f());
1666         }
1667 
1668         // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1669         // variant in the code above.
1670         unsafe { self.as_mut().unwrap_unchecked() }
1671     }
1672 
1673     /////////////////////////////////////////////////////////////////////////
1674     // Misc
1675     /////////////////////////////////////////////////////////////////////////
1676 
1677     /// Takes the value out of the option, leaving a [`None`] in its place.
1678     ///
1679     /// # Examples
1680     ///
1681     /// ```
1682     /// let mut x = Some(2);
1683     /// let y = x.take();
1684     /// assert_eq!(x, None);
1685     /// assert_eq!(y, Some(2));
1686     ///
1687     /// let mut x: Option<u32> = None;
1688     /// let y = x.take();
1689     /// assert_eq!(x, None);
1690     /// assert_eq!(y, None);
1691     /// ```
1692     #[inline]
1693     #[stable(feature = "rust1", since = "1.0.0")]
1694     #[rustc_const_unstable(feature = "const_option", issue = "67441")]
take(&mut self) -> Option<T>1695     pub const fn take(&mut self) -> Option<T> {
1696         // FIXME replace `mem::replace` by `mem::take` when the latter is const ready
1697         mem::replace(self, None)
1698     }
1699 
1700     /// Replaces the actual value in the option by the value given in parameter,
1701     /// returning the old value if present,
1702     /// leaving a [`Some`] in its place without deinitializing either one.
1703     ///
1704     /// # Examples
1705     ///
1706     /// ```
1707     /// let mut x = Some(2);
1708     /// let old = x.replace(5);
1709     /// assert_eq!(x, Some(5));
1710     /// assert_eq!(old, Some(2));
1711     ///
1712     /// let mut x = None;
1713     /// let old = x.replace(3);
1714     /// assert_eq!(x, Some(3));
1715     /// assert_eq!(old, None);
1716     /// ```
1717     #[inline]
1718     #[rustc_const_unstable(feature = "const_option", issue = "67441")]
1719     #[stable(feature = "option_replace", since = "1.31.0")]
replace(&mut self, value: T) -> Option<T>1720     pub const fn replace(&mut self, value: T) -> Option<T> {
1721         mem::replace(self, Some(value))
1722     }
1723 
1724     /// Zips `self` with another `Option`.
1725     ///
1726     /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
1727     /// Otherwise, `None` is returned.
1728     ///
1729     /// # Examples
1730     ///
1731     /// ```
1732     /// let x = Some(1);
1733     /// let y = Some("hi");
1734     /// let z = None::<u8>;
1735     ///
1736     /// assert_eq!(x.zip(y), Some((1, "hi")));
1737     /// assert_eq!(x.zip(z), None);
1738     /// ```
1739     #[stable(feature = "option_zip_option", since = "1.46.0")]
zip<U>(self, other: Option<U>) -> Option<(T, U)>1740     pub fn zip<U>(self, other: Option<U>) -> Option<(T, U)> {
1741         match (self, other) {
1742             (Some(a), Some(b)) => Some((a, b)),
1743             _ => None,
1744         }
1745     }
1746 
1747     /// Zips `self` and another `Option` with function `f`.
1748     ///
1749     /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1750     /// Otherwise, `None` is returned.
1751     ///
1752     /// # Examples
1753     ///
1754     /// ```
1755     /// #![feature(option_zip)]
1756     ///
1757     /// #[derive(Debug, PartialEq)]
1758     /// struct Point {
1759     ///     x: f64,
1760     ///     y: f64,
1761     /// }
1762     ///
1763     /// impl Point {
1764     ///     fn new(x: f64, y: f64) -> Self {
1765     ///         Self { x, y }
1766     ///     }
1767     /// }
1768     ///
1769     /// let x = Some(17.5);
1770     /// let y = Some(42.7);
1771     ///
1772     /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
1773     /// assert_eq!(x.zip_with(None, Point::new), None);
1774     /// ```
1775     #[unstable(feature = "option_zip", issue = "70086")]
zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R> where F: FnOnce(T, U) -> R,1776     pub fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
1777     where
1778         F: FnOnce(T, U) -> R,
1779     {
1780         match (self, other) {
1781             (Some(a), Some(b)) => Some(f(a, b)),
1782             _ => None,
1783         }
1784     }
1785 }
1786 
1787 impl<T, U> Option<(T, U)> {
1788     /// Unzips an option containing a tuple of two options.
1789     ///
1790     /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
1791     /// Otherwise, `(None, None)` is returned.
1792     ///
1793     /// # Examples
1794     ///
1795     /// ```
1796     /// let x = Some((1, "hi"));
1797     /// let y = None::<(u8, u32)>;
1798     ///
1799     /// assert_eq!(x.unzip(), (Some(1), Some("hi")));
1800     /// assert_eq!(y.unzip(), (None, None));
1801     /// ```
1802     #[inline]
1803     #[stable(feature = "unzip_option", since = "1.66.0")]
unzip(self) -> (Option<T>, Option<U>)1804     pub fn unzip(self) -> (Option<T>, Option<U>) {
1805         match self {
1806             Some((a, b)) => (Some(a), Some(b)),
1807             None => (None, None),
1808         }
1809     }
1810 }
1811 
1812 impl<T> Option<&T> {
1813     /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
1814     /// option.
1815     ///
1816     /// # Examples
1817     ///
1818     /// ```
1819     /// let x = 12;
1820     /// let opt_x = Some(&x);
1821     /// assert_eq!(opt_x, Some(&12));
1822     /// let copied = opt_x.copied();
1823     /// assert_eq!(copied, Some(12));
1824     /// ```
1825     #[must_use = "`self` will be dropped if the result is not used"]
1826     #[stable(feature = "copied", since = "1.35.0")]
1827     #[rustc_const_unstable(feature = "const_option", issue = "67441")]
copied(self) -> Option<T> where T: Copy,1828     pub const fn copied(self) -> Option<T>
1829     where
1830         T: Copy,
1831     {
1832         // FIXME: this implementation, which sidesteps using `Option::map` since it's not const
1833         // ready yet, should be reverted when possible to avoid code repetition
1834         match self {
1835             Some(&v) => Some(v),
1836             None => None,
1837         }
1838     }
1839 
1840     /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
1841     /// option.
1842     ///
1843     /// # Examples
1844     ///
1845     /// ```
1846     /// let x = 12;
1847     /// let opt_x = Some(&x);
1848     /// assert_eq!(opt_x, Some(&12));
1849     /// let cloned = opt_x.cloned();
1850     /// assert_eq!(cloned, Some(12));
1851     /// ```
1852     #[must_use = "`self` will be dropped if the result is not used"]
1853     #[stable(feature = "rust1", since = "1.0.0")]
cloned(self) -> Option<T> where T: Clone,1854     pub fn cloned(self) -> Option<T>
1855     where
1856         T: Clone,
1857     {
1858         match self {
1859             Some(t) => Some(t.clone()),
1860             None => None,
1861         }
1862     }
1863 }
1864 
1865 impl<T> Option<&mut T> {
1866     /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
1867     /// option.
1868     ///
1869     /// # Examples
1870     ///
1871     /// ```
1872     /// let mut x = 12;
1873     /// let opt_x = Some(&mut x);
1874     /// assert_eq!(opt_x, Some(&mut 12));
1875     /// let copied = opt_x.copied();
1876     /// assert_eq!(copied, Some(12));
1877     /// ```
1878     #[must_use = "`self` will be dropped if the result is not used"]
1879     #[stable(feature = "copied", since = "1.35.0")]
1880     #[rustc_const_unstable(feature = "const_option_ext", issue = "91930")]
copied(self) -> Option<T> where T: Copy,1881     pub const fn copied(self) -> Option<T>
1882     where
1883         T: Copy,
1884     {
1885         match self {
1886             Some(&mut t) => Some(t),
1887             None => None,
1888         }
1889     }
1890 
1891     /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
1892     /// option.
1893     ///
1894     /// # Examples
1895     ///
1896     /// ```
1897     /// let mut x = 12;
1898     /// let opt_x = Some(&mut x);
1899     /// assert_eq!(opt_x, Some(&mut 12));
1900     /// let cloned = opt_x.cloned();
1901     /// assert_eq!(cloned, Some(12));
1902     /// ```
1903     #[must_use = "`self` will be dropped if the result is not used"]
1904     #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
cloned(self) -> Option<T> where T: Clone,1905     pub fn cloned(self) -> Option<T>
1906     where
1907         T: Clone,
1908     {
1909         match self {
1910             Some(t) => Some(t.clone()),
1911             None => None,
1912         }
1913     }
1914 }
1915 
1916 impl<T, E> Option<Result<T, E>> {
1917     /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
1918     ///
1919     /// [`None`] will be mapped to <code>[Ok]\([None])</code>.
1920     /// <code>[Some]\([Ok]\(\_))</code> and <code>[Some]\([Err]\(\_))</code> will be mapped to
1921     /// <code>[Ok]\([Some]\(\_))</code> and <code>[Err]\(\_)</code>.
1922     ///
1923     /// # Examples
1924     ///
1925     /// ```
1926     /// #[derive(Debug, Eq, PartialEq)]
1927     /// struct SomeErr;
1928     ///
1929     /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
1930     /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
1931     /// assert_eq!(x, y.transpose());
1932     /// ```
1933     #[inline]
1934     #[stable(feature = "transpose_result", since = "1.33.0")]
1935     #[rustc_const_unstable(feature = "const_option", issue = "67441")]
transpose(self) -> Result<Option<T>, E>1936     pub const fn transpose(self) -> Result<Option<T>, E> {
1937         match self {
1938             Some(Ok(x)) => Ok(Some(x)),
1939             Some(Err(e)) => Err(e),
1940             None => Ok(None),
1941         }
1942     }
1943 }
1944 
1945 // This is a separate function to reduce the code size of .expect() itself.
1946 #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
1947 #[cfg_attr(feature = "panic_immediate_abort", inline)]
1948 #[cold]
1949 #[track_caller]
1950 #[rustc_const_unstable(feature = "const_option", issue = "67441")]
expect_failed(msg: &str) -> !1951 const fn expect_failed(msg: &str) -> ! {
1952     panic_str(msg)
1953 }
1954 
1955 /////////////////////////////////////////////////////////////////////////////
1956 // Trait implementations
1957 /////////////////////////////////////////////////////////////////////////////
1958 
1959 #[stable(feature = "rust1", since = "1.0.0")]
1960 impl<T> Clone for Option<T>
1961 where
1962     T: Clone,
1963 {
1964     #[inline]
clone(&self) -> Self1965     fn clone(&self) -> Self {
1966         match self {
1967             Some(x) => Some(x.clone()),
1968             None => None,
1969         }
1970     }
1971 
1972     #[inline]
clone_from(&mut self, source: &Self)1973     fn clone_from(&mut self, source: &Self) {
1974         match (self, source) {
1975             (Some(to), Some(from)) => to.clone_from(from),
1976             (to, from) => *to = from.clone(),
1977         }
1978     }
1979 }
1980 
1981 #[stable(feature = "rust1", since = "1.0.0")]
1982 impl<T> Default for Option<T> {
1983     /// Returns [`None`][Option::None].
1984     ///
1985     /// # Examples
1986     ///
1987     /// ```
1988     /// let opt: Option<u32> = Option::default();
1989     /// assert!(opt.is_none());
1990     /// ```
1991     #[inline]
default() -> Option<T>1992     fn default() -> Option<T> {
1993         None
1994     }
1995 }
1996 
1997 #[stable(feature = "rust1", since = "1.0.0")]
1998 impl<T> IntoIterator for Option<T> {
1999     type Item = T;
2000     type IntoIter = IntoIter<T>;
2001 
2002     /// Returns a consuming iterator over the possibly contained value.
2003     ///
2004     /// # Examples
2005     ///
2006     /// ```
2007     /// let x = Some("string");
2008     /// let v: Vec<&str> = x.into_iter().collect();
2009     /// assert_eq!(v, ["string"]);
2010     ///
2011     /// let x = None;
2012     /// let v: Vec<&str> = x.into_iter().collect();
2013     /// assert!(v.is_empty());
2014     /// ```
2015     #[inline]
into_iter(self) -> IntoIter<T>2016     fn into_iter(self) -> IntoIter<T> {
2017         IntoIter { inner: Item { opt: self } }
2018     }
2019 }
2020 
2021 #[stable(since = "1.4.0", feature = "option_iter")]
2022 impl<'a, T> IntoIterator for &'a Option<T> {
2023     type Item = &'a T;
2024     type IntoIter = Iter<'a, T>;
2025 
into_iter(self) -> Iter<'a, T>2026     fn into_iter(self) -> Iter<'a, T> {
2027         self.iter()
2028     }
2029 }
2030 
2031 #[stable(since = "1.4.0", feature = "option_iter")]
2032 impl<'a, T> IntoIterator for &'a mut Option<T> {
2033     type Item = &'a mut T;
2034     type IntoIter = IterMut<'a, T>;
2035 
into_iter(self) -> IterMut<'a, T>2036     fn into_iter(self) -> IterMut<'a, T> {
2037         self.iter_mut()
2038     }
2039 }
2040 
2041 #[stable(since = "1.12.0", feature = "option_from")]
2042 impl<T> From<T> for Option<T> {
2043     /// Moves `val` into a new [`Some`].
2044     ///
2045     /// # Examples
2046     ///
2047     /// ```
2048     /// let o: Option<u8> = Option::from(67);
2049     ///
2050     /// assert_eq!(Some(67), o);
2051     /// ```
from(val: T) -> Option<T>2052     fn from(val: T) -> Option<T> {
2053         Some(val)
2054     }
2055 }
2056 
2057 #[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2058 impl<'a, T> From<&'a Option<T>> for Option<&'a T> {
2059     /// Converts from `&Option<T>` to `Option<&T>`.
2060     ///
2061     /// # Examples
2062     ///
2063     /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
2064     /// the original. The [`map`] method takes the `self` argument by value, consuming the original,
2065     /// so this technique uses `from` to first take an [`Option`] to a reference
2066     /// to the value inside the original.
2067     ///
2068     /// [`map`]: Option::map
2069     /// [String]: ../../std/string/struct.String.html "String"
2070     ///
2071     /// ```
2072     /// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
2073     /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
2074     ///
2075     /// println!("Can still print s: {s:?}");
2076     ///
2077     /// assert_eq!(o, Some(18));
2078     /// ```
from(o: &'a Option<T>) -> Option<&'a T>2079     fn from(o: &'a Option<T>) -> Option<&'a T> {
2080         o.as_ref()
2081     }
2082 }
2083 
2084 #[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2085 impl<'a, T> From<&'a mut Option<T>> for Option<&'a mut T> {
2086     /// Converts from `&mut Option<T>` to `Option<&mut T>`
2087     ///
2088     /// # Examples
2089     ///
2090     /// ```
2091     /// let mut s = Some(String::from("Hello"));
2092     /// let o: Option<&mut String> = Option::from(&mut s);
2093     ///
2094     /// match o {
2095     ///     Some(t) => *t = String::from("Hello, Rustaceans!"),
2096     ///     None => (),
2097     /// }
2098     ///
2099     /// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
2100     /// ```
from(o: &'a mut Option<T>) -> Option<&'a mut T>2101     fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
2102         o.as_mut()
2103     }
2104 }
2105 
2106 #[stable(feature = "rust1", since = "1.0.0")]
2107 impl<T> crate::marker::StructuralPartialEq for Option<T> {}
2108 #[stable(feature = "rust1", since = "1.0.0")]
2109 impl<T: PartialEq> PartialEq for Option<T> {
2110     #[inline]
eq(&self, other: &Self) -> bool2111     fn eq(&self, other: &Self) -> bool {
2112         SpecOptionPartialEq::eq(self, other)
2113     }
2114 }
2115 
2116 /// This specialization trait is a workaround for LLVM not currently (2023-01)
2117 /// being able to optimize this itself, even though Alive confirms that it would
2118 /// be legal to do so: <https://github.com/llvm/llvm-project/issues/52622>
2119 ///
2120 /// Once that's fixed, `Option` should go back to deriving `PartialEq`, as
2121 /// it used to do before <https://github.com/rust-lang/rust/pull/103556>.
2122 #[unstable(feature = "spec_option_partial_eq", issue = "none", reason = "exposed only for rustc")]
2123 #[doc(hidden)]
2124 pub trait SpecOptionPartialEq: Sized {
eq(l: &Option<Self>, other: &Option<Self>) -> bool2125     fn eq(l: &Option<Self>, other: &Option<Self>) -> bool;
2126 }
2127 
2128 #[unstable(feature = "spec_option_partial_eq", issue = "none", reason = "exposed only for rustc")]
2129 impl<T: PartialEq> SpecOptionPartialEq for T {
2130     #[inline]
eq(l: &Option<T>, r: &Option<T>) -> bool2131     default fn eq(l: &Option<T>, r: &Option<T>) -> bool {
2132         match (l, r) {
2133             (Some(l), Some(r)) => *l == *r,
2134             (None, None) => true,
2135             _ => false,
2136         }
2137     }
2138 }
2139 
2140 macro_rules! non_zero_option {
2141     ( $( #[$stability: meta] $NZ:ty; )+ ) => {
2142         $(
2143             #[$stability]
2144             impl SpecOptionPartialEq for $NZ {
2145                 #[inline]
2146                 fn eq(l: &Option<Self>, r: &Option<Self>) -> bool {
2147                     l.map(Self::get).unwrap_or(0) == r.map(Self::get).unwrap_or(0)
2148                 }
2149             }
2150         )+
2151     };
2152 }
2153 
2154 non_zero_option! {
2155     #[stable(feature = "nonzero", since = "1.28.0")] crate::num::NonZeroU8;
2156     #[stable(feature = "nonzero", since = "1.28.0")] crate::num::NonZeroU16;
2157     #[stable(feature = "nonzero", since = "1.28.0")] crate::num::NonZeroU32;
2158     #[stable(feature = "nonzero", since = "1.28.0")] crate::num::NonZeroU64;
2159     #[stable(feature = "nonzero", since = "1.28.0")] crate::num::NonZeroU128;
2160     #[stable(feature = "nonzero", since = "1.28.0")] crate::num::NonZeroUsize;
2161     #[stable(feature = "signed_nonzero", since = "1.34.0")] crate::num::NonZeroI8;
2162     #[stable(feature = "signed_nonzero", since = "1.34.0")] crate::num::NonZeroI16;
2163     #[stable(feature = "signed_nonzero", since = "1.34.0")] crate::num::NonZeroI32;
2164     #[stable(feature = "signed_nonzero", since = "1.34.0")] crate::num::NonZeroI64;
2165     #[stable(feature = "signed_nonzero", since = "1.34.0")] crate::num::NonZeroI128;
2166     #[stable(feature = "signed_nonzero", since = "1.34.0")] crate::num::NonZeroIsize;
2167 }
2168 
2169 #[stable(feature = "nonnull", since = "1.25.0")]
2170 impl<T> SpecOptionPartialEq for crate::ptr::NonNull<T> {
2171     #[inline]
eq(l: &Option<Self>, r: &Option<Self>) -> bool2172     fn eq(l: &Option<Self>, r: &Option<Self>) -> bool {
2173         l.map(Self::as_ptr).unwrap_or_else(|| crate::ptr::null_mut())
2174             == r.map(Self::as_ptr).unwrap_or_else(|| crate::ptr::null_mut())
2175     }
2176 }
2177 
2178 #[stable(feature = "rust1", since = "1.0.0")]
2179 impl SpecOptionPartialEq for cmp::Ordering {
2180     #[inline]
eq(l: &Option<Self>, r: &Option<Self>) -> bool2181     fn eq(l: &Option<Self>, r: &Option<Self>) -> bool {
2182         l.map_or(2, |x| x as i8) == r.map_or(2, |x| x as i8)
2183     }
2184 }
2185 
2186 /////////////////////////////////////////////////////////////////////////////
2187 // The Option Iterators
2188 /////////////////////////////////////////////////////////////////////////////
2189 
2190 #[derive(Clone, Debug)]
2191 struct Item<A> {
2192     opt: Option<A>,
2193 }
2194 
2195 impl<A> Iterator for Item<A> {
2196     type Item = A;
2197 
2198     #[inline]
next(&mut self) -> Option<A>2199     fn next(&mut self) -> Option<A> {
2200         self.opt.take()
2201     }
2202 
2203     #[inline]
size_hint(&self) -> (usize, Option<usize>)2204     fn size_hint(&self) -> (usize, Option<usize>) {
2205         match self.opt {
2206             Some(_) => (1, Some(1)),
2207             None => (0, Some(0)),
2208         }
2209     }
2210 }
2211 
2212 impl<A> DoubleEndedIterator for Item<A> {
2213     #[inline]
next_back(&mut self) -> Option<A>2214     fn next_back(&mut self) -> Option<A> {
2215         self.opt.take()
2216     }
2217 }
2218 
2219 impl<A> ExactSizeIterator for Item<A> {}
2220 impl<A> FusedIterator for Item<A> {}
2221 unsafe impl<A> TrustedLen for Item<A> {}
2222 
2223 /// An iterator over a reference to the [`Some`] variant of an [`Option`].
2224 ///
2225 /// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2226 ///
2227 /// This `struct` is created by the [`Option::iter`] function.
2228 #[stable(feature = "rust1", since = "1.0.0")]
2229 #[derive(Debug)]
2230 pub struct Iter<'a, A: 'a> {
2231     inner: Item<&'a A>,
2232 }
2233 
2234 #[stable(feature = "rust1", since = "1.0.0")]
2235 impl<'a, A> Iterator for Iter<'a, A> {
2236     type Item = &'a A;
2237 
2238     #[inline]
next(&mut self) -> Option<&'a A>2239     fn next(&mut self) -> Option<&'a A> {
2240         self.inner.next()
2241     }
2242     #[inline]
size_hint(&self) -> (usize, Option<usize>)2243     fn size_hint(&self) -> (usize, Option<usize>) {
2244         self.inner.size_hint()
2245     }
2246 }
2247 
2248 #[stable(feature = "rust1", since = "1.0.0")]
2249 impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
2250     #[inline]
next_back(&mut self) -> Option<&'a A>2251     fn next_back(&mut self) -> Option<&'a A> {
2252         self.inner.next_back()
2253     }
2254 }
2255 
2256 #[stable(feature = "rust1", since = "1.0.0")]
2257 impl<A> ExactSizeIterator for Iter<'_, A> {}
2258 
2259 #[stable(feature = "fused", since = "1.26.0")]
2260 impl<A> FusedIterator for Iter<'_, A> {}
2261 
2262 #[unstable(feature = "trusted_len", issue = "37572")]
2263 unsafe impl<A> TrustedLen for Iter<'_, A> {}
2264 
2265 #[stable(feature = "rust1", since = "1.0.0")]
2266 impl<A> Clone for Iter<'_, A> {
2267     #[inline]
clone(&self) -> Self2268     fn clone(&self) -> Self {
2269         Iter { inner: self.inner.clone() }
2270     }
2271 }
2272 
2273 /// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
2274 ///
2275 /// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2276 ///
2277 /// This `struct` is created by the [`Option::iter_mut`] function.
2278 #[stable(feature = "rust1", since = "1.0.0")]
2279 #[derive(Debug)]
2280 pub struct IterMut<'a, A: 'a> {
2281     inner: Item<&'a mut A>,
2282 }
2283 
2284 #[stable(feature = "rust1", since = "1.0.0")]
2285 impl<'a, A> Iterator for IterMut<'a, A> {
2286     type Item = &'a mut A;
2287 
2288     #[inline]
next(&mut self) -> Option<&'a mut A>2289     fn next(&mut self) -> Option<&'a mut A> {
2290         self.inner.next()
2291     }
2292     #[inline]
size_hint(&self) -> (usize, Option<usize>)2293     fn size_hint(&self) -> (usize, Option<usize>) {
2294         self.inner.size_hint()
2295     }
2296 }
2297 
2298 #[stable(feature = "rust1", since = "1.0.0")]
2299 impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
2300     #[inline]
next_back(&mut self) -> Option<&'a mut A>2301     fn next_back(&mut self) -> Option<&'a mut A> {
2302         self.inner.next_back()
2303     }
2304 }
2305 
2306 #[stable(feature = "rust1", since = "1.0.0")]
2307 impl<A> ExactSizeIterator for IterMut<'_, A> {}
2308 
2309 #[stable(feature = "fused", since = "1.26.0")]
2310 impl<A> FusedIterator for IterMut<'_, A> {}
2311 #[unstable(feature = "trusted_len", issue = "37572")]
2312 unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2313 
2314 /// An iterator over the value in [`Some`] variant of an [`Option`].
2315 ///
2316 /// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2317 ///
2318 /// This `struct` is created by the [`Option::into_iter`] function.
2319 #[derive(Clone, Debug)]
2320 #[stable(feature = "rust1", since = "1.0.0")]
2321 pub struct IntoIter<A> {
2322     inner: Item<A>,
2323 }
2324 
2325 #[stable(feature = "rust1", since = "1.0.0")]
2326 impl<A> Iterator for IntoIter<A> {
2327     type Item = A;
2328 
2329     #[inline]
next(&mut self) -> Option<A>2330     fn next(&mut self) -> Option<A> {
2331         self.inner.next()
2332     }
2333     #[inline]
size_hint(&self) -> (usize, Option<usize>)2334     fn size_hint(&self) -> (usize, Option<usize>) {
2335         self.inner.size_hint()
2336     }
2337 }
2338 
2339 #[stable(feature = "rust1", since = "1.0.0")]
2340 impl<A> DoubleEndedIterator for IntoIter<A> {
2341     #[inline]
next_back(&mut self) -> Option<A>2342     fn next_back(&mut self) -> Option<A> {
2343         self.inner.next_back()
2344     }
2345 }
2346 
2347 #[stable(feature = "rust1", since = "1.0.0")]
2348 impl<A> ExactSizeIterator for IntoIter<A> {}
2349 
2350 #[stable(feature = "fused", since = "1.26.0")]
2351 impl<A> FusedIterator for IntoIter<A> {}
2352 
2353 #[unstable(feature = "trusted_len", issue = "37572")]
2354 unsafe impl<A> TrustedLen for IntoIter<A> {}
2355 
2356 /////////////////////////////////////////////////////////////////////////////
2357 // FromIterator
2358 /////////////////////////////////////////////////////////////////////////////
2359 
2360 #[stable(feature = "rust1", since = "1.0.0")]
2361 impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
2362     /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
2363     /// no further elements are taken, and the [`None`][Option::None] is
2364     /// returned. Should no [`None`][Option::None] occur, a container of type
2365     /// `V` containing the values of each [`Option`] is returned.
2366     ///
2367     /// # Examples
2368     ///
2369     /// Here is an example which increments every integer in a vector.
2370     /// We use the checked variant of `add` that returns `None` when the
2371     /// calculation would result in an overflow.
2372     ///
2373     /// ```
2374     /// let items = vec![0_u16, 1, 2];
2375     ///
2376     /// let res: Option<Vec<u16>> = items
2377     ///     .iter()
2378     ///     .map(|x| x.checked_add(1))
2379     ///     .collect();
2380     ///
2381     /// assert_eq!(res, Some(vec![1, 2, 3]));
2382     /// ```
2383     ///
2384     /// As you can see, this will return the expected, valid items.
2385     ///
2386     /// Here is another example that tries to subtract one from another list
2387     /// of integers, this time checking for underflow:
2388     ///
2389     /// ```
2390     /// let items = vec![2_u16, 1, 0];
2391     ///
2392     /// let res: Option<Vec<u16>> = items
2393     ///     .iter()
2394     ///     .map(|x| x.checked_sub(1))
2395     ///     .collect();
2396     ///
2397     /// assert_eq!(res, None);
2398     /// ```
2399     ///
2400     /// Since the last element is zero, it would underflow. Thus, the resulting
2401     /// value is `None`.
2402     ///
2403     /// Here is a variation on the previous example, showing that no
2404     /// further elements are taken from `iter` after the first `None`.
2405     ///
2406     /// ```
2407     /// let items = vec![3_u16, 2, 1, 10];
2408     ///
2409     /// let mut shared = 0;
2410     ///
2411     /// let res: Option<Vec<u16>> = items
2412     ///     .iter()
2413     ///     .map(|x| { shared += x; x.checked_sub(2) })
2414     ///     .collect();
2415     ///
2416     /// assert_eq!(res, None);
2417     /// assert_eq!(shared, 6);
2418     /// ```
2419     ///
2420     /// Since the third element caused an underflow, no further elements were taken,
2421     /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2422     #[inline]
from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V>2423     fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
2424         // FIXME(#11084): This could be replaced with Iterator::scan when this
2425         // performance bug is closed.
2426 
2427         iter::try_process(iter.into_iter(), |i| i.collect())
2428     }
2429 }
2430 
2431 #[unstable(feature = "try_trait_v2", issue = "84277")]
2432 impl<T> ops::Try for Option<T> {
2433     type Output = T;
2434     type Residual = Option<convert::Infallible>;
2435 
2436     #[inline]
from_output(output: Self::Output) -> Self2437     fn from_output(output: Self::Output) -> Self {
2438         Some(output)
2439     }
2440 
2441     #[inline]
branch(self) -> ControlFlow<Self::Residual, Self::Output>2442     fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2443         match self {
2444             Some(v) => ControlFlow::Continue(v),
2445             None => ControlFlow::Break(None),
2446         }
2447     }
2448 }
2449 
2450 #[unstable(feature = "try_trait_v2", issue = "84277")]
2451 impl<T> ops::FromResidual for Option<T> {
2452     #[inline]
from_residual(residual: Option<convert::Infallible>) -> Self2453     fn from_residual(residual: Option<convert::Infallible>) -> Self {
2454         match residual {
2455             None => None,
2456         }
2457     }
2458 }
2459 
2460 #[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2461 impl<T> ops::FromResidual<ops::Yeet<()>> for Option<T> {
2462     #[inline]
from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self2463     fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
2464         None
2465     }
2466 }
2467 
2468 #[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2469 impl<T> ops::Residual<T> for Option<convert::Infallible> {
2470     type TryType = Option<T>;
2471 }
2472 
2473 impl<T> Option<Option<T>> {
2474     /// Converts from `Option<Option<T>>` to `Option<T>`.
2475     ///
2476     /// # Examples
2477     ///
2478     /// Basic usage:
2479     ///
2480     /// ```
2481     /// let x: Option<Option<u32>> = Some(Some(6));
2482     /// assert_eq!(Some(6), x.flatten());
2483     ///
2484     /// let x: Option<Option<u32>> = Some(None);
2485     /// assert_eq!(None, x.flatten());
2486     ///
2487     /// let x: Option<Option<u32>> = None;
2488     /// assert_eq!(None, x.flatten());
2489     /// ```
2490     ///
2491     /// Flattening only removes one level of nesting at a time:
2492     ///
2493     /// ```
2494     /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
2495     /// assert_eq!(Some(Some(6)), x.flatten());
2496     /// assert_eq!(Some(6), x.flatten().flatten());
2497     /// ```
2498     #[inline]
2499     #[stable(feature = "option_flattening", since = "1.40.0")]
2500     #[rustc_const_unstable(feature = "const_option", issue = "67441")]
flatten(self) -> Option<T>2501     pub const fn flatten(self) -> Option<T> {
2502         match self {
2503             Some(inner) => inner,
2504             None => None,
2505         }
2506     }
2507 }
2508