• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 use crate::def::{CtorKind, DefKind, Res};
2 use crate::def_id::DefId;
3 pub(crate) use crate::hir_id::{HirId, ItemLocalId, OwnerId};
4 use crate::intravisit::FnKind;
5 use crate::LangItem;
6 
7 use rustc_ast as ast;
8 use rustc_ast::util::parser::ExprPrecedence;
9 use rustc_ast::{Attribute, FloatTy, IntTy, Label, LitKind, TraitObjectSyntax, UintTy};
10 pub use rustc_ast::{BindingAnnotation, BorrowKind, ByRef, ImplPolarity, IsAuto};
11 pub use rustc_ast::{CaptureBy, Movability, Mutability};
12 use rustc_ast::{InlineAsmOptions, InlineAsmTemplatePiece};
13 use rustc_data_structures::fingerprint::Fingerprint;
14 use rustc_data_structures::fx::FxHashMap;
15 use rustc_data_structures::sorted_map::SortedMap;
16 use rustc_error_messages::MultiSpan;
17 use rustc_index::IndexVec;
18 use rustc_macros::HashStable_Generic;
19 use rustc_span::hygiene::MacroKind;
20 use rustc_span::source_map::Spanned;
21 use rustc_span::symbol::{kw, sym, Ident, Symbol};
22 use rustc_span::{def_id::LocalDefId, BytePos, Span, DUMMY_SP};
23 use rustc_target::asm::InlineAsmRegOrRegClass;
24 use rustc_target::spec::abi::Abi;
25 
26 use smallvec::SmallVec;
27 use std::fmt;
28 
29 #[derive(Debug, Copy, Clone, HashStable_Generic)]
30 pub struct Lifetime {
31     pub hir_id: HirId,
32 
33     /// Either "`'a`", referring to a named lifetime definition,
34     /// `'_` referring to an anonymous lifetime (either explicitly `'_` or `&type`),
35     /// or "``" (i.e., `kw::Empty`) when appearing in path.
36     ///
37     /// See `Lifetime::suggestion_position` for practical use.
38     pub ident: Ident,
39 
40     /// Semantics of this lifetime.
41     pub res: LifetimeName,
42 }
43 
44 #[derive(Debug, Copy, Clone, HashStable_Generic)]
45 pub enum ParamName {
46     /// Some user-given name like `T` or `'x`.
47     Plain(Ident),
48 
49     /// Synthetic name generated when user elided a lifetime in an impl header.
50     ///
51     /// E.g., the lifetimes in cases like these:
52     /// ```ignore (fragment)
53     /// impl Foo for &u32
54     /// impl Foo<'_> for u32
55     /// ```
56     /// in that case, we rewrite to
57     /// ```ignore (fragment)
58     /// impl<'f> Foo for &'f u32
59     /// impl<'f> Foo<'f> for u32
60     /// ```
61     /// where `'f` is something like `Fresh(0)`. The indices are
62     /// unique per impl, but not necessarily continuous.
63     Fresh,
64 
65     /// Indicates an illegal name was given and an error has been
66     /// reported (so we should squelch other derived errors). Occurs
67     /// when, e.g., `'_` is used in the wrong place.
68     Error,
69 }
70 
71 impl ParamName {
ident(&self) -> Ident72     pub fn ident(&self) -> Ident {
73         match *self {
74             ParamName::Plain(ident) => ident,
75             ParamName::Fresh | ParamName::Error => Ident::with_dummy_span(kw::UnderscoreLifetime),
76         }
77     }
78 
normalize_to_macros_2_0(&self) -> ParamName79     pub fn normalize_to_macros_2_0(&self) -> ParamName {
80         match *self {
81             ParamName::Plain(ident) => ParamName::Plain(ident.normalize_to_macros_2_0()),
82             param_name => param_name,
83         }
84     }
85 }
86 
87 #[derive(Debug, Copy, Clone, PartialEq, Eq, HashStable_Generic)]
88 pub enum LifetimeName {
89     /// User-given names or fresh (synthetic) names.
90     Param(LocalDefId),
91 
92     /// Implicit lifetime in a context like `dyn Foo`. This is
93     /// distinguished from implicit lifetimes elsewhere because the
94     /// lifetime that they default to must appear elsewhere within the
95     /// enclosing type. This means that, in an `impl Trait` context, we
96     /// don't have to create a parameter for them. That is, `impl
97     /// Trait<Item = &u32>` expands to an opaque type like `type
98     /// Foo<'a> = impl Trait<Item = &'a u32>`, but `impl Trait<item =
99     /// dyn Bar>` expands to `type Foo = impl Trait<Item = dyn Bar +
100     /// 'static>`. The latter uses `ImplicitObjectLifetimeDefault` so
101     /// that surrounding code knows not to create a lifetime
102     /// parameter.
103     ImplicitObjectLifetimeDefault,
104 
105     /// Indicates an error during lowering (usually `'_` in wrong place)
106     /// that was already reported.
107     Error,
108 
109     /// User wrote an anonymous lifetime, either `'_` or nothing.
110     /// The semantics of this lifetime should be inferred by typechecking code.
111     Infer,
112 
113     /// User wrote `'static`.
114     Static,
115 }
116 
117 impl LifetimeName {
is_elided(&self) -> bool118     pub fn is_elided(&self) -> bool {
119         match self {
120             LifetimeName::ImplicitObjectLifetimeDefault | LifetimeName::Infer => true,
121 
122             // It might seem surprising that `Fresh` counts as not *elided*
123             // -- but this is because, as far as the code in the compiler is
124             // concerned -- `Fresh` variants act equivalently to "some fresh name".
125             // They correspond to early-bound regions on an impl, in other words.
126             LifetimeName::Error | LifetimeName::Param(..) | LifetimeName::Static => false,
127         }
128     }
129 }
130 
131 impl fmt::Display for Lifetime {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result132     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
133         if self.ident.name != kw::Empty { self.ident.name.fmt(f) } else { "'_".fmt(f) }
134     }
135 }
136 
137 pub enum LifetimeSuggestionPosition {
138     /// The user wrote `'a` or `'_`.
139     Normal,
140     /// The user wrote `&type` or `&mut type`.
141     Ampersand,
142     /// The user wrote `Path` and omitted the `<'_>`.
143     ElidedPath,
144     /// The user wrote `Path<T>`, and omitted the `'_,`.
145     ElidedPathArgument,
146     /// The user wrote `dyn Trait` and omitted the `+ '_`.
147     ObjectDefault,
148 }
149 
150 impl Lifetime {
is_elided(&self) -> bool151     pub fn is_elided(&self) -> bool {
152         self.res.is_elided()
153     }
154 
is_anonymous(&self) -> bool155     pub fn is_anonymous(&self) -> bool {
156         self.ident.name == kw::Empty || self.ident.name == kw::UnderscoreLifetime
157     }
158 
suggestion_position(&self) -> (LifetimeSuggestionPosition, Span)159     pub fn suggestion_position(&self) -> (LifetimeSuggestionPosition, Span) {
160         if self.ident.name == kw::Empty {
161             if self.ident.span.is_empty() {
162                 (LifetimeSuggestionPosition::ElidedPathArgument, self.ident.span)
163             } else {
164                 (LifetimeSuggestionPosition::ElidedPath, self.ident.span.shrink_to_hi())
165             }
166         } else if self.res == LifetimeName::ImplicitObjectLifetimeDefault {
167             (LifetimeSuggestionPosition::ObjectDefault, self.ident.span)
168         } else if self.ident.span.is_empty() {
169             (LifetimeSuggestionPosition::Ampersand, self.ident.span)
170         } else {
171             (LifetimeSuggestionPosition::Normal, self.ident.span)
172         }
173     }
174 
is_static(&self) -> bool175     pub fn is_static(&self) -> bool {
176         self.res == LifetimeName::Static
177     }
178 }
179 
180 /// A `Path` is essentially Rust's notion of a name; for instance,
181 /// `std::cmp::PartialEq`. It's represented as a sequence of identifiers,
182 /// along with a bunch of supporting information.
183 #[derive(Debug, Clone, Copy, HashStable_Generic)]
184 pub struct Path<'hir, R = Res> {
185     pub span: Span,
186     /// The resolution for the path.
187     pub res: R,
188     /// The segments in the path: the things separated by `::`.
189     pub segments: &'hir [PathSegment<'hir>],
190 }
191 
192 /// Up to three resolutions for type, value and macro namespaces.
193 pub type UsePath<'hir> = Path<'hir, SmallVec<[Res; 3]>>;
194 
195 impl Path<'_> {
is_global(&self) -> bool196     pub fn is_global(&self) -> bool {
197         !self.segments.is_empty() && self.segments[0].ident.name == kw::PathRoot
198     }
199 }
200 
201 /// A segment of a path: an identifier, an optional lifetime, and a set of
202 /// types.
203 #[derive(Debug, Clone, Copy, HashStable_Generic)]
204 pub struct PathSegment<'hir> {
205     /// The identifier portion of this path segment.
206     pub ident: Ident,
207     pub hir_id: HirId,
208     pub res: Res,
209 
210     /// Type/lifetime parameters attached to this path. They come in
211     /// two flavors: `Path<A,B,C>` and `Path(A,B) -> C`. Note that
212     /// this is more than just simple syntactic sugar; the use of
213     /// parens affects the region binding rules, so we preserve the
214     /// distinction.
215     pub args: Option<&'hir GenericArgs<'hir>>,
216 
217     /// Whether to infer remaining type parameters, if any.
218     /// This only applies to expression and pattern paths, and
219     /// out of those only the segments with no type parameters
220     /// to begin with, e.g., `Vec::new` is `<Vec<..>>::new::<..>`.
221     pub infer_args: bool,
222 }
223 
224 impl<'hir> PathSegment<'hir> {
225     /// Converts an identifier to the corresponding segment.
new(ident: Ident, hir_id: HirId, res: Res) -> PathSegment<'hir>226     pub fn new(ident: Ident, hir_id: HirId, res: Res) -> PathSegment<'hir> {
227         PathSegment { ident, hir_id, res, infer_args: true, args: None }
228     }
229 
invalid() -> Self230     pub fn invalid() -> Self {
231         Self::new(Ident::empty(), HirId::INVALID, Res::Err)
232     }
233 
args(&self) -> &GenericArgs<'hir>234     pub fn args(&self) -> &GenericArgs<'hir> {
235         if let Some(ref args) = self.args {
236             args
237         } else {
238             const DUMMY: &GenericArgs<'_> = &GenericArgs::none();
239             DUMMY
240         }
241     }
242 }
243 
244 #[derive(Clone, Copy, Debug, HashStable_Generic)]
245 pub struct ConstArg {
246     pub value: AnonConst,
247     pub span: Span,
248 }
249 
250 #[derive(Clone, Copy, Debug, HashStable_Generic)]
251 pub struct InferArg {
252     pub hir_id: HirId,
253     pub span: Span,
254 }
255 
256 impl InferArg {
to_ty(&self) -> Ty<'_>257     pub fn to_ty(&self) -> Ty<'_> {
258         Ty { kind: TyKind::Infer, span: self.span, hir_id: self.hir_id }
259     }
260 }
261 
262 #[derive(Debug, Clone, Copy, HashStable_Generic)]
263 pub enum GenericArg<'hir> {
264     Lifetime(&'hir Lifetime),
265     Type(&'hir Ty<'hir>),
266     Const(ConstArg),
267     Infer(InferArg),
268 }
269 
270 impl GenericArg<'_> {
span(&self) -> Span271     pub fn span(&self) -> Span {
272         match self {
273             GenericArg::Lifetime(l) => l.ident.span,
274             GenericArg::Type(t) => t.span,
275             GenericArg::Const(c) => c.span,
276             GenericArg::Infer(i) => i.span,
277         }
278     }
279 
hir_id(&self) -> HirId280     pub fn hir_id(&self) -> HirId {
281         match self {
282             GenericArg::Lifetime(l) => l.hir_id,
283             GenericArg::Type(t) => t.hir_id,
284             GenericArg::Const(c) => c.value.hir_id,
285             GenericArg::Infer(i) => i.hir_id,
286         }
287     }
288 
is_synthetic(&self) -> bool289     pub fn is_synthetic(&self) -> bool {
290         matches!(self, GenericArg::Lifetime(lifetime) if lifetime.ident == Ident::empty())
291     }
292 
descr(&self) -> &'static str293     pub fn descr(&self) -> &'static str {
294         match self {
295             GenericArg::Lifetime(_) => "lifetime",
296             GenericArg::Type(_) => "type",
297             GenericArg::Const(_) => "constant",
298             GenericArg::Infer(_) => "inferred",
299         }
300     }
301 
to_ord(&self) -> ast::ParamKindOrd302     pub fn to_ord(&self) -> ast::ParamKindOrd {
303         match self {
304             GenericArg::Lifetime(_) => ast::ParamKindOrd::Lifetime,
305             GenericArg::Type(_) | GenericArg::Const(_) | GenericArg::Infer(_) => {
306                 ast::ParamKindOrd::TypeOrConst
307             }
308         }
309     }
310 
is_ty_or_const(&self) -> bool311     pub fn is_ty_or_const(&self) -> bool {
312         match self {
313             GenericArg::Lifetime(_) => false,
314             GenericArg::Type(_) | GenericArg::Const(_) | GenericArg::Infer(_) => true,
315         }
316     }
317 }
318 
319 #[derive(Debug, Clone, Copy, HashStable_Generic)]
320 pub struct GenericArgs<'hir> {
321     /// The generic arguments for this path segment.
322     pub args: &'hir [GenericArg<'hir>],
323     /// Bindings (equality constraints) on associated types, if present.
324     /// E.g., `Foo<A = Bar>`.
325     pub bindings: &'hir [TypeBinding<'hir>],
326     /// Were arguments written in parenthesized form `Fn(T) -> U`?
327     /// This is required mostly for pretty-printing and diagnostics,
328     /// but also for changing lifetime elision rules to be "function-like".
329     pub parenthesized: GenericArgsParentheses,
330     /// The span encompassing arguments and the surrounding brackets `<>` or `()`
331     ///       Foo<A, B, AssocTy = D>           Fn(T, U, V) -> W
332     ///          ^^^^^^^^^^^^^^^^^^^             ^^^^^^^^^
333     /// Note that this may be:
334     /// - empty, if there are no generic brackets (but there may be hidden lifetimes)
335     /// - dummy, if this was generated while desugaring
336     pub span_ext: Span,
337 }
338 
339 impl<'hir> GenericArgs<'hir> {
none() -> Self340     pub const fn none() -> Self {
341         Self {
342             args: &[],
343             bindings: &[],
344             parenthesized: GenericArgsParentheses::No,
345             span_ext: DUMMY_SP,
346         }
347     }
348 
inputs(&self) -> &[Ty<'hir>]349     pub fn inputs(&self) -> &[Ty<'hir>] {
350         if self.parenthesized == GenericArgsParentheses::ParenSugar {
351             for arg in self.args {
352                 match arg {
353                     GenericArg::Lifetime(_) => {}
354                     GenericArg::Type(ref ty) => {
355                         if let TyKind::Tup(ref tys) = ty.kind {
356                             return tys;
357                         }
358                         break;
359                     }
360                     GenericArg::Const(_) => {}
361                     GenericArg::Infer(_) => {}
362                 }
363             }
364         }
365         panic!("GenericArgs::inputs: not a `Fn(T) -> U`");
366     }
367 
368     #[inline]
has_type_params(&self) -> bool369     pub fn has_type_params(&self) -> bool {
370         self.args.iter().any(|arg| matches!(arg, GenericArg::Type(_)))
371     }
372 
has_err(&self) -> bool373     pub fn has_err(&self) -> bool {
374         self.args.iter().any(|arg| match arg {
375             GenericArg::Type(ty) => matches!(ty.kind, TyKind::Err(_)),
376             _ => false,
377         }) || self.bindings.iter().any(|arg| match arg.kind {
378             TypeBindingKind::Equality { term: Term::Ty(ty) } => matches!(ty.kind, TyKind::Err(_)),
379             _ => false,
380         })
381     }
382 
383     #[inline]
num_type_params(&self) -> usize384     pub fn num_type_params(&self) -> usize {
385         self.args.iter().filter(|arg| matches!(arg, GenericArg::Type(_))).count()
386     }
387 
388     #[inline]
num_lifetime_params(&self) -> usize389     pub fn num_lifetime_params(&self) -> usize {
390         self.args.iter().filter(|arg| matches!(arg, GenericArg::Lifetime(_))).count()
391     }
392 
393     #[inline]
has_lifetime_params(&self) -> bool394     pub fn has_lifetime_params(&self) -> bool {
395         self.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_)))
396     }
397 
398     #[inline]
399     /// This function returns the number of type and const generic params.
400     /// It should only be used for diagnostics.
num_generic_params(&self) -> usize401     pub fn num_generic_params(&self) -> usize {
402         self.args.iter().filter(|arg| !matches!(arg, GenericArg::Lifetime(_))).count()
403     }
404 
405     /// The span encompassing the text inside the surrounding brackets.
406     /// It will also include bindings if they aren't in the form `-> Ret`
407     /// Returns `None` if the span is empty (e.g. no brackets) or dummy
span(&self) -> Option<Span>408     pub fn span(&self) -> Option<Span> {
409         let span_ext = self.span_ext()?;
410         Some(span_ext.with_lo(span_ext.lo() + BytePos(1)).with_hi(span_ext.hi() - BytePos(1)))
411     }
412 
413     /// Returns span encompassing arguments and their surrounding `<>` or `()`
span_ext(&self) -> Option<Span>414     pub fn span_ext(&self) -> Option<Span> {
415         Some(self.span_ext).filter(|span| !span.is_empty())
416     }
417 
is_empty(&self) -> bool418     pub fn is_empty(&self) -> bool {
419         self.args.is_empty()
420     }
421 }
422 
423 #[derive(Copy, Clone, PartialEq, Eq, Debug, HashStable_Generic)]
424 pub enum GenericArgsParentheses {
425     No,
426     /// Bounds for `feature(return_type_notation)`, like `T: Trait<method(..): Send>`,
427     /// where the args are explicitly elided with `..`
428     ReturnTypeNotation,
429     /// parenthesized function-family traits, like `T: Fn(u32) -> i32`
430     ParenSugar,
431 }
432 
433 /// A modifier on a bound, currently this is only used for `?Sized`, where the
434 /// modifier is `Maybe`. Negative bounds should also be handled here.
435 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
436 pub enum TraitBoundModifier {
437     None,
438     Negative,
439     Maybe,
440     MaybeConst,
441 }
442 
443 /// The AST represents all type param bounds as types.
444 /// `typeck::collect::compute_bounds` matches these against
445 /// the "special" built-in traits (see `middle::lang_items`) and
446 /// detects `Copy`, `Send` and `Sync`.
447 #[derive(Clone, Copy, Debug, HashStable_Generic)]
448 pub enum GenericBound<'hir> {
449     Trait(PolyTraitRef<'hir>, TraitBoundModifier),
450     // FIXME(davidtwco): Introduce `PolyTraitRef::LangItem`
451     LangItemTrait(LangItem, Span, HirId, &'hir GenericArgs<'hir>),
452     Outlives(&'hir Lifetime),
453 }
454 
455 impl GenericBound<'_> {
trait_ref(&self) -> Option<&TraitRef<'_>>456     pub fn trait_ref(&self) -> Option<&TraitRef<'_>> {
457         match self {
458             GenericBound::Trait(data, _) => Some(&data.trait_ref),
459             _ => None,
460         }
461     }
462 
span(&self) -> Span463     pub fn span(&self) -> Span {
464         match self {
465             GenericBound::Trait(t, ..) => t.span,
466             GenericBound::LangItemTrait(_, span, ..) => *span,
467             GenericBound::Outlives(l) => l.ident.span,
468         }
469     }
470 }
471 
472 pub type GenericBounds<'hir> = &'hir [GenericBound<'hir>];
473 
474 #[derive(Copy, Clone, Debug, HashStable_Generic)]
475 pub enum LifetimeParamKind {
476     // Indicates that the lifetime definition was explicitly declared (e.g., in
477     // `fn foo<'a>(x: &'a u8) -> &'a u8 { x }`).
478     Explicit,
479 
480     // Indication that the lifetime was elided (e.g., in both cases in
481     // `fn foo(x: &u8) -> &'_ u8 { x }`).
482     Elided,
483 
484     // Indication that the lifetime name was somehow in error.
485     Error,
486 }
487 
488 #[derive(Debug, Clone, Copy, HashStable_Generic)]
489 pub enum GenericParamKind<'hir> {
490     /// A lifetime definition (e.g., `'a: 'b + 'c + 'd`).
491     Lifetime {
492         kind: LifetimeParamKind,
493     },
494     Type {
495         default: Option<&'hir Ty<'hir>>,
496         synthetic: bool,
497     },
498     Const {
499         ty: &'hir Ty<'hir>,
500         /// Optional default value for the const generic param
501         default: Option<AnonConst>,
502     },
503 }
504 
505 #[derive(Debug, Clone, Copy, HashStable_Generic)]
506 pub struct GenericParam<'hir> {
507     pub hir_id: HirId,
508     pub def_id: LocalDefId,
509     pub name: ParamName,
510     pub span: Span,
511     pub pure_wrt_drop: bool,
512     pub kind: GenericParamKind<'hir>,
513     pub colon_span: Option<Span>,
514     pub source: GenericParamSource,
515 }
516 
517 impl<'hir> GenericParam<'hir> {
518     /// Synthetic type-parameters are inserted after normal ones.
519     /// In order for normal parameters to be able to refer to synthetic ones,
520     /// scans them first.
is_impl_trait(&self) -> bool521     pub fn is_impl_trait(&self) -> bool {
522         matches!(self.kind, GenericParamKind::Type { synthetic: true, .. })
523     }
524 
525     /// This can happen for `async fn`, e.g. `async fn f<'_>(&'_ self)`.
526     ///
527     /// See `lifetime_to_generic_param` in `rustc_ast_lowering` for more information.
is_elided_lifetime(&self) -> bool528     pub fn is_elided_lifetime(&self) -> bool {
529         matches!(self.kind, GenericParamKind::Lifetime { kind: LifetimeParamKind::Elided })
530     }
531 }
532 
533 /// Records where the generic parameter originated from.
534 ///
535 /// This can either be from an item's generics, in which case it's typically
536 /// early-bound (but can be a late-bound lifetime in functions, for example),
537 /// or from a `for<...>` binder, in which case it's late-bound (and notably,
538 /// does not show up in the parent item's generics).
539 #[derive(Debug, Clone, Copy, HashStable_Generic)]
540 pub enum GenericParamSource {
541     // Early or late-bound parameters defined on an item
542     Generics,
543     // Late-bound parameters defined via a `for<...>`
544     Binder,
545 }
546 
547 #[derive(Default)]
548 pub struct GenericParamCount {
549     pub lifetimes: usize,
550     pub types: usize,
551     pub consts: usize,
552     pub infer: usize,
553 }
554 
555 /// Represents lifetimes and type parameters attached to a declaration
556 /// of a function, enum, trait, etc.
557 #[derive(Debug, Clone, Copy, HashStable_Generic)]
558 pub struct Generics<'hir> {
559     pub params: &'hir [GenericParam<'hir>],
560     pub predicates: &'hir [WherePredicate<'hir>],
561     pub has_where_clause_predicates: bool,
562     pub where_clause_span: Span,
563     pub span: Span,
564 }
565 
566 impl<'hir> Generics<'hir> {
empty() -> &'hir Generics<'hir>567     pub const fn empty() -> &'hir Generics<'hir> {
568         const NOPE: Generics<'_> = Generics {
569             params: &[],
570             predicates: &[],
571             has_where_clause_predicates: false,
572             where_clause_span: DUMMY_SP,
573             span: DUMMY_SP,
574         };
575         &NOPE
576     }
577 
get_named(&self, name: Symbol) -> Option<&GenericParam<'hir>>578     pub fn get_named(&self, name: Symbol) -> Option<&GenericParam<'hir>> {
579         self.params.iter().find(|&param| name == param.name.ident().name)
580     }
581 
spans(&self) -> MultiSpan582     pub fn spans(&self) -> MultiSpan {
583         if self.params.is_empty() {
584             self.span.into()
585         } else {
586             self.params.iter().map(|p| p.span).collect::<Vec<Span>>().into()
587         }
588     }
589 
590     /// If there are generic parameters, return where to introduce a new one.
span_for_lifetime_suggestion(&self) -> Option<Span>591     pub fn span_for_lifetime_suggestion(&self) -> Option<Span> {
592         if let Some(first) = self.params.first()
593             && self.span.contains(first.span)
594         {
595             // `fn foo<A>(t: impl Trait)`
596             //         ^ suggest `'a, ` here
597             Some(first.span.shrink_to_lo())
598         } else {
599             None
600         }
601     }
602 
603     /// If there are generic parameters, return where to introduce a new one.
span_for_param_suggestion(&self) -> Option<Span>604     pub fn span_for_param_suggestion(&self) -> Option<Span> {
605         self.params.iter().any(|p| self.span.contains(p.span)).then(|| {
606             // `fn foo<A>(t: impl Trait)`
607             //          ^ suggest `, T: Trait` here
608             self.span.with_lo(self.span.hi() - BytePos(1)).shrink_to_lo()
609         })
610     }
611 
612     /// `Span` where further predicates would be suggested, accounting for trailing commas, like
613     ///  in `fn foo<T>(t: T) where T: Foo,` so we don't suggest two trailing commas.
tail_span_for_predicate_suggestion(&self) -> Span614     pub fn tail_span_for_predicate_suggestion(&self) -> Span {
615         let end = self.where_clause_span.shrink_to_hi();
616         if self.has_where_clause_predicates {
617             self.predicates
618                 .iter()
619                 .rfind(|&p| p.in_where_clause())
620                 .map_or(end, |p| p.span())
621                 .shrink_to_hi()
622                 .to(end)
623         } else {
624             end
625         }
626     }
627 
add_where_or_trailing_comma(&self) -> &'static str628     pub fn add_where_or_trailing_comma(&self) -> &'static str {
629         if self.has_where_clause_predicates {
630             ","
631         } else if self.where_clause_span.is_empty() {
632             " where"
633         } else {
634             // No where clause predicates, but we have `where` token
635             ""
636         }
637     }
638 
bounds_for_param( &self, param_def_id: LocalDefId, ) -> impl Iterator<Item = &WhereBoundPredicate<'hir>>639     pub fn bounds_for_param(
640         &self,
641         param_def_id: LocalDefId,
642     ) -> impl Iterator<Item = &WhereBoundPredicate<'hir>> {
643         self.predicates.iter().filter_map(move |pred| match pred {
644             WherePredicate::BoundPredicate(bp) if bp.is_param_bound(param_def_id.to_def_id()) => {
645                 Some(bp)
646             }
647             _ => None,
648         })
649     }
650 
outlives_for_param( &self, param_def_id: LocalDefId, ) -> impl Iterator<Item = &WhereRegionPredicate<'_>>651     pub fn outlives_for_param(
652         &self,
653         param_def_id: LocalDefId,
654     ) -> impl Iterator<Item = &WhereRegionPredicate<'_>> {
655         self.predicates.iter().filter_map(move |pred| match pred {
656             WherePredicate::RegionPredicate(rp) if rp.is_param_bound(param_def_id) => Some(rp),
657             _ => None,
658         })
659     }
660 
bounds_span_for_suggestions(&self, param_def_id: LocalDefId) -> Option<Span>661     pub fn bounds_span_for_suggestions(&self, param_def_id: LocalDefId) -> Option<Span> {
662         self.bounds_for_param(param_def_id).flat_map(|bp| bp.bounds.iter().rev()).find_map(
663             |bound| {
664                 // We include bounds that come from a `#[derive(_)]` but point at the user's code,
665                 // as we use this method to get a span appropriate for suggestions.
666                 let bs = bound.span();
667                 bs.can_be_used_for_suggestions().then(|| bs.shrink_to_hi())
668             },
669         )
670     }
671 
span_for_predicate_removal(&self, pos: usize) -> Span672     pub fn span_for_predicate_removal(&self, pos: usize) -> Span {
673         let predicate = &self.predicates[pos];
674         let span = predicate.span();
675 
676         if !predicate.in_where_clause() {
677             // <T: ?Sized, U>
678             //   ^^^^^^^^
679             return span;
680         }
681 
682         // We need to find out which comma to remove.
683         if pos < self.predicates.len() - 1 {
684             let next_pred = &self.predicates[pos + 1];
685             if next_pred.in_where_clause() {
686                 // where T: ?Sized, Foo: Bar,
687                 //       ^^^^^^^^^^^
688                 return span.until(next_pred.span());
689             }
690         }
691 
692         if pos > 0 {
693             let prev_pred = &self.predicates[pos - 1];
694             if prev_pred.in_where_clause() {
695                 // where Foo: Bar, T: ?Sized,
696                 //               ^^^^^^^^^^^
697                 return prev_pred.span().shrink_to_hi().to(span);
698             }
699         }
700 
701         // This is the only predicate in the where clause.
702         // where T: ?Sized
703         // ^^^^^^^^^^^^^^^
704         self.where_clause_span
705     }
706 
span_for_bound_removal(&self, predicate_pos: usize, bound_pos: usize) -> Span707     pub fn span_for_bound_removal(&self, predicate_pos: usize, bound_pos: usize) -> Span {
708         let predicate = &self.predicates[predicate_pos];
709         let bounds = predicate.bounds();
710 
711         if bounds.len() == 1 {
712             return self.span_for_predicate_removal(predicate_pos);
713         }
714 
715         let span = bounds[bound_pos].span();
716         if bound_pos == 0 {
717             // where T: ?Sized + Bar, Foo: Bar,
718             //          ^^^^^^^^^
719             span.to(bounds[1].span().shrink_to_lo())
720         } else {
721             // where T: Bar + ?Sized, Foo: Bar,
722             //             ^^^^^^^^^
723             bounds[bound_pos - 1].span().shrink_to_hi().to(span)
724         }
725     }
726 }
727 
728 /// A single predicate in a where-clause.
729 #[derive(Debug, Clone, Copy, HashStable_Generic)]
730 pub enum WherePredicate<'hir> {
731     /// A type binding (e.g., `for<'c> Foo: Send + Clone + 'c`).
732     BoundPredicate(WhereBoundPredicate<'hir>),
733     /// A lifetime predicate (e.g., `'a: 'b + 'c`).
734     RegionPredicate(WhereRegionPredicate<'hir>),
735     /// An equality predicate (unsupported).
736     EqPredicate(WhereEqPredicate<'hir>),
737 }
738 
739 impl<'hir> WherePredicate<'hir> {
span(&self) -> Span740     pub fn span(&self) -> Span {
741         match self {
742             WherePredicate::BoundPredicate(p) => p.span,
743             WherePredicate::RegionPredicate(p) => p.span,
744             WherePredicate::EqPredicate(p) => p.span,
745         }
746     }
747 
in_where_clause(&self) -> bool748     pub fn in_where_clause(&self) -> bool {
749         match self {
750             WherePredicate::BoundPredicate(p) => p.origin == PredicateOrigin::WhereClause,
751             WherePredicate::RegionPredicate(p) => p.in_where_clause,
752             WherePredicate::EqPredicate(_) => false,
753         }
754     }
755 
bounds(&self) -> GenericBounds<'hir>756     pub fn bounds(&self) -> GenericBounds<'hir> {
757         match self {
758             WherePredicate::BoundPredicate(p) => p.bounds,
759             WherePredicate::RegionPredicate(p) => p.bounds,
760             WherePredicate::EqPredicate(_) => &[],
761         }
762     }
763 }
764 
765 #[derive(Copy, Clone, Debug, HashStable_Generic, PartialEq, Eq)]
766 pub enum PredicateOrigin {
767     WhereClause,
768     GenericParam,
769     ImplTrait,
770 }
771 
772 /// A type bound (e.g., `for<'c> Foo: Send + Clone + 'c`).
773 #[derive(Debug, Clone, Copy, HashStable_Generic)]
774 pub struct WhereBoundPredicate<'hir> {
775     pub hir_id: HirId,
776     pub span: Span,
777     /// Origin of the predicate.
778     pub origin: PredicateOrigin,
779     /// Any generics from a `for` binding.
780     pub bound_generic_params: &'hir [GenericParam<'hir>],
781     /// The type being bounded.
782     pub bounded_ty: &'hir Ty<'hir>,
783     /// Trait and lifetime bounds (e.g., `Clone + Send + 'static`).
784     pub bounds: GenericBounds<'hir>,
785 }
786 
787 impl<'hir> WhereBoundPredicate<'hir> {
788     /// Returns `true` if `param_def_id` matches the `bounded_ty` of this predicate.
is_param_bound(&self, param_def_id: DefId) -> bool789     pub fn is_param_bound(&self, param_def_id: DefId) -> bool {
790         self.bounded_ty.as_generic_param().is_some_and(|(def_id, _)| def_id == param_def_id)
791     }
792 }
793 
794 /// A lifetime predicate (e.g., `'a: 'b + 'c`).
795 #[derive(Debug, Clone, Copy, HashStable_Generic)]
796 pub struct WhereRegionPredicate<'hir> {
797     pub span: Span,
798     pub in_where_clause: bool,
799     pub lifetime: &'hir Lifetime,
800     pub bounds: GenericBounds<'hir>,
801 }
802 
803 impl<'hir> WhereRegionPredicate<'hir> {
804     /// Returns `true` if `param_def_id` matches the `lifetime` of this predicate.
is_param_bound(&self, param_def_id: LocalDefId) -> bool805     pub fn is_param_bound(&self, param_def_id: LocalDefId) -> bool {
806         self.lifetime.res == LifetimeName::Param(param_def_id)
807     }
808 }
809 
810 /// An equality predicate (e.g., `T = int`); currently unsupported.
811 #[derive(Debug, Clone, Copy, HashStable_Generic)]
812 pub struct WhereEqPredicate<'hir> {
813     pub span: Span,
814     pub lhs_ty: &'hir Ty<'hir>,
815     pub rhs_ty: &'hir Ty<'hir>,
816 }
817 
818 /// HIR node coupled with its parent's id in the same HIR owner.
819 ///
820 /// The parent is trash when the node is a HIR owner.
821 #[derive(Clone, Copy, Debug)]
822 pub struct ParentedNode<'tcx> {
823     pub parent: ItemLocalId,
824     pub node: Node<'tcx>,
825 }
826 
827 /// Attributes owned by a HIR owner.
828 #[derive(Debug)]
829 pub struct AttributeMap<'tcx> {
830     pub map: SortedMap<ItemLocalId, &'tcx [Attribute]>,
831     // Only present when the crate hash is needed.
832     pub opt_hash: Option<Fingerprint>,
833 }
834 
835 impl<'tcx> AttributeMap<'tcx> {
836     pub const EMPTY: &'static AttributeMap<'static> =
837         &AttributeMap { map: SortedMap::new(), opt_hash: Some(Fingerprint::ZERO) };
838 
839     #[inline]
get(&self, id: ItemLocalId) -> &'tcx [Attribute]840     pub fn get(&self, id: ItemLocalId) -> &'tcx [Attribute] {
841         self.map.get(&id).copied().unwrap_or(&[])
842     }
843 }
844 
845 /// Map of all HIR nodes inside the current owner.
846 /// These nodes are mapped by `ItemLocalId` alongside the index of their parent node.
847 /// The HIR tree, including bodies, is pre-hashed.
848 pub struct OwnerNodes<'tcx> {
849     /// Pre-computed hash of the full HIR. Used in the crate hash. Only present
850     /// when incr. comp. is enabled.
851     pub opt_hash_including_bodies: Option<Fingerprint>,
852     /// Full HIR for the current owner.
853     // The zeroth node's parent should never be accessed: the owner's parent is computed by the
854     // hir_owner_parent query. It is set to `ItemLocalId::INVALID` to force an ICE if accidentally
855     // used.
856     pub nodes: IndexVec<ItemLocalId, Option<ParentedNode<'tcx>>>,
857     /// Content of local bodies.
858     pub bodies: SortedMap<ItemLocalId, &'tcx Body<'tcx>>,
859 }
860 
861 impl<'tcx> OwnerNodes<'tcx> {
node(&self) -> OwnerNode<'tcx>862     pub fn node(&self) -> OwnerNode<'tcx> {
863         use rustc_index::Idx;
864         let node = self.nodes[ItemLocalId::new(0)].as_ref().unwrap().node;
865         let node = node.as_owner().unwrap(); // Indexing must ensure it is an OwnerNode.
866         node
867     }
868 }
869 
870 impl fmt::Debug for OwnerNodes<'_> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result871     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
872         f.debug_struct("OwnerNodes")
873             // Do not print all the pointers to all the nodes, as it would be unreadable.
874             .field("node", &self.nodes[ItemLocalId::from_u32(0)])
875             .field(
876                 "parents",
877                 &self
878                     .nodes
879                     .iter_enumerated()
880                     .map(|(id, parented_node)| {
881                         let parented_node = parented_node.as_ref().map(|node| node.parent);
882 
883                         debug_fn(move |f| write!(f, "({id:?}, {parented_node:?})"))
884                     })
885                     .collect::<Vec<_>>(),
886             )
887             .field("bodies", &self.bodies)
888             .field("opt_hash_including_bodies", &self.opt_hash_including_bodies)
889             .finish()
890     }
891 }
892 
893 /// Full information resulting from lowering an AST node.
894 #[derive(Debug, HashStable_Generic)]
895 pub struct OwnerInfo<'hir> {
896     /// Contents of the HIR.
897     pub nodes: OwnerNodes<'hir>,
898     /// Map from each nested owner to its parent's local id.
899     pub parenting: FxHashMap<LocalDefId, ItemLocalId>,
900     /// Collected attributes of the HIR nodes.
901     pub attrs: AttributeMap<'hir>,
902     /// Map indicating what traits are in scope for places where this
903     /// is relevant; generated by resolve.
904     pub trait_map: FxHashMap<ItemLocalId, Box<[TraitCandidate]>>,
905 }
906 
907 impl<'tcx> OwnerInfo<'tcx> {
908     #[inline]
node(&self) -> OwnerNode<'tcx>909     pub fn node(&self) -> OwnerNode<'tcx> {
910         self.nodes.node()
911     }
912 }
913 
914 #[derive(Copy, Clone, Debug, HashStable_Generic)]
915 pub enum MaybeOwner<T> {
916     Owner(T),
917     NonOwner(HirId),
918     /// Used as a placeholder for unused LocalDefId.
919     Phantom,
920 }
921 
922 impl<T> MaybeOwner<T> {
as_owner(self) -> Option<T>923     pub fn as_owner(self) -> Option<T> {
924         match self {
925             MaybeOwner::Owner(i) => Some(i),
926             MaybeOwner::NonOwner(_) | MaybeOwner::Phantom => None,
927         }
928     }
929 
map<U>(self, f: impl FnOnce(T) -> U) -> MaybeOwner<U>930     pub fn map<U>(self, f: impl FnOnce(T) -> U) -> MaybeOwner<U> {
931         match self {
932             MaybeOwner::Owner(i) => MaybeOwner::Owner(f(i)),
933             MaybeOwner::NonOwner(hir_id) => MaybeOwner::NonOwner(hir_id),
934             MaybeOwner::Phantom => MaybeOwner::Phantom,
935         }
936     }
937 
unwrap(self) -> T938     pub fn unwrap(self) -> T {
939         match self {
940             MaybeOwner::Owner(i) => i,
941             MaybeOwner::NonOwner(_) | MaybeOwner::Phantom => panic!("Not a HIR owner"),
942         }
943     }
944 }
945 
946 /// The top-level data structure that stores the entire contents of
947 /// the crate currently being compiled.
948 ///
949 /// For more details, see the [rustc dev guide].
950 ///
951 /// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/hir.html
952 #[derive(Debug)]
953 pub struct Crate<'hir> {
954     pub owners: IndexVec<LocalDefId, MaybeOwner<&'hir OwnerInfo<'hir>>>,
955     // Only present when incr. comp. is enabled.
956     pub opt_hir_hash: Option<Fingerprint>,
957 }
958 
959 #[derive(Debug, Clone, Copy, HashStable_Generic)]
960 pub struct Closure<'hir> {
961     pub def_id: LocalDefId,
962     pub binder: ClosureBinder,
963     pub constness: Constness,
964     pub capture_clause: CaptureBy,
965     pub bound_generic_params: &'hir [GenericParam<'hir>],
966     pub fn_decl: &'hir FnDecl<'hir>,
967     pub body: BodyId,
968     /// The span of the declaration block: 'move |...| -> ...'
969     pub fn_decl_span: Span,
970     /// The span of the argument block `|...|`
971     pub fn_arg_span: Option<Span>,
972     pub movability: Option<Movability>,
973 }
974 
975 /// A block of statements `{ .. }`, which may have a label (in this case the
976 /// `targeted_by_break` field will be `true`) and may be `unsafe` by means of
977 /// the `rules` being anything but `DefaultBlock`.
978 #[derive(Debug, Clone, Copy, HashStable_Generic)]
979 pub struct Block<'hir> {
980     /// Statements in a block.
981     pub stmts: &'hir [Stmt<'hir>],
982     /// An expression at the end of the block
983     /// without a semicolon, if any.
984     pub expr: Option<&'hir Expr<'hir>>,
985     #[stable_hasher(ignore)]
986     pub hir_id: HirId,
987     /// Distinguishes between `unsafe { ... }` and `{ ... }`.
988     pub rules: BlockCheckMode,
989     pub span: Span,
990     /// If true, then there may exist `break 'a` values that aim to
991     /// break out of this block early.
992     /// Used by `'label: {}` blocks and by `try {}` blocks.
993     pub targeted_by_break: bool,
994 }
995 
996 impl<'hir> Block<'hir> {
innermost_block(&self) -> &Block<'hir>997     pub fn innermost_block(&self) -> &Block<'hir> {
998         let mut block = self;
999         while let Some(Expr { kind: ExprKind::Block(inner_block, _), .. }) = block.expr {
1000             block = inner_block;
1001         }
1002         block
1003     }
1004 }
1005 
1006 #[derive(Debug, Clone, Copy, HashStable_Generic)]
1007 pub struct Pat<'hir> {
1008     #[stable_hasher(ignore)]
1009     pub hir_id: HirId,
1010     pub kind: PatKind<'hir>,
1011     pub span: Span,
1012     /// Whether to use default binding modes.
1013     /// At present, this is false only for destructuring assignment.
1014     pub default_binding_modes: bool,
1015 }
1016 
1017 impl<'hir> Pat<'hir> {
walk_short_(&self, it: &mut impl FnMut(&Pat<'hir>) -> bool) -> bool1018     fn walk_short_(&self, it: &mut impl FnMut(&Pat<'hir>) -> bool) -> bool {
1019         if !it(self) {
1020             return false;
1021         }
1022 
1023         use PatKind::*;
1024         match self.kind {
1025             Wild | Lit(_) | Range(..) | Binding(.., None) | Path(_) => true,
1026             Box(s) | Ref(s, _) | Binding(.., Some(s)) => s.walk_short_(it),
1027             Struct(_, fields, _) => fields.iter().all(|field| field.pat.walk_short_(it)),
1028             TupleStruct(_, s, _) | Tuple(s, _) | Or(s) => s.iter().all(|p| p.walk_short_(it)),
1029             Slice(before, slice, after) => {
1030                 before.iter().chain(slice).chain(after.iter()).all(|p| p.walk_short_(it))
1031             }
1032         }
1033     }
1034 
1035     /// Walk the pattern in left-to-right order,
1036     /// short circuiting (with `.all(..)`) if `false` is returned.
1037     ///
1038     /// Note that when visiting e.g. `Tuple(ps)`,
1039     /// if visiting `ps[0]` returns `false`,
1040     /// then `ps[1]` will not be visited.
walk_short(&self, mut it: impl FnMut(&Pat<'hir>) -> bool) -> bool1041     pub fn walk_short(&self, mut it: impl FnMut(&Pat<'hir>) -> bool) -> bool {
1042         self.walk_short_(&mut it)
1043     }
1044 
walk_(&self, it: &mut impl FnMut(&Pat<'hir>) -> bool)1045     fn walk_(&self, it: &mut impl FnMut(&Pat<'hir>) -> bool) {
1046         if !it(self) {
1047             return;
1048         }
1049 
1050         use PatKind::*;
1051         match self.kind {
1052             Wild | Lit(_) | Range(..) | Binding(.., None) | Path(_) => {}
1053             Box(s) | Ref(s, _) | Binding(.., Some(s)) => s.walk_(it),
1054             Struct(_, fields, _) => fields.iter().for_each(|field| field.pat.walk_(it)),
1055             TupleStruct(_, s, _) | Tuple(s, _) | Or(s) => s.iter().for_each(|p| p.walk_(it)),
1056             Slice(before, slice, after) => {
1057                 before.iter().chain(slice).chain(after.iter()).for_each(|p| p.walk_(it))
1058             }
1059         }
1060     }
1061 
1062     /// Walk the pattern in left-to-right order.
1063     ///
1064     /// If `it(pat)` returns `false`, the children are not visited.
walk(&self, mut it: impl FnMut(&Pat<'hir>) -> bool)1065     pub fn walk(&self, mut it: impl FnMut(&Pat<'hir>) -> bool) {
1066         self.walk_(&mut it)
1067     }
1068 
1069     /// Walk the pattern in left-to-right order.
1070     ///
1071     /// If you always want to recurse, prefer this method over `walk`.
walk_always(&self, mut it: impl FnMut(&Pat<'_>))1072     pub fn walk_always(&self, mut it: impl FnMut(&Pat<'_>)) {
1073         self.walk(|p| {
1074             it(p);
1075             true
1076         })
1077     }
1078 }
1079 
1080 /// A single field in a struct pattern.
1081 ///
1082 /// Patterns like the fields of Foo `{ x, ref y, ref mut z }`
1083 /// are treated the same as` x: x, y: ref y, z: ref mut z`,
1084 /// except `is_shorthand` is true.
1085 #[derive(Debug, Clone, Copy, HashStable_Generic)]
1086 pub struct PatField<'hir> {
1087     #[stable_hasher(ignore)]
1088     pub hir_id: HirId,
1089     /// The identifier for the field.
1090     pub ident: Ident,
1091     /// The pattern the field is destructured to.
1092     pub pat: &'hir Pat<'hir>,
1093     pub is_shorthand: bool,
1094     pub span: Span,
1095 }
1096 
1097 #[derive(Copy, Clone, PartialEq, Debug, HashStable_Generic)]
1098 pub enum RangeEnd {
1099     Included,
1100     Excluded,
1101 }
1102 
1103 impl fmt::Display for RangeEnd {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1104     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1105         f.write_str(match self {
1106             RangeEnd::Included => "..=",
1107             RangeEnd::Excluded => "..",
1108         })
1109     }
1110 }
1111 
1112 // Equivalent to `Option<usize>`. That type takes up 16 bytes on 64-bit, but
1113 // this type only takes up 4 bytes, at the cost of being restricted to a
1114 // maximum value of `u32::MAX - 1`. In practice, this is more than enough.
1115 #[derive(Clone, Copy, PartialEq, Eq, Hash, HashStable_Generic)]
1116 pub struct DotDotPos(u32);
1117 
1118 impl DotDotPos {
1119     /// Panics if n >= u32::MAX.
new(n: Option<usize>) -> Self1120     pub fn new(n: Option<usize>) -> Self {
1121         match n {
1122             Some(n) => {
1123                 assert!(n < u32::MAX as usize);
1124                 Self(n as u32)
1125             }
1126             None => Self(u32::MAX),
1127         }
1128     }
1129 
as_opt_usize(&self) -> Option<usize>1130     pub fn as_opt_usize(&self) -> Option<usize> {
1131         if self.0 == u32::MAX { None } else { Some(self.0 as usize) }
1132     }
1133 }
1134 
1135 impl fmt::Debug for DotDotPos {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1136     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1137         self.as_opt_usize().fmt(f)
1138     }
1139 }
1140 
1141 #[derive(Debug, Clone, Copy, HashStable_Generic)]
1142 pub enum PatKind<'hir> {
1143     /// Represents a wildcard pattern (i.e., `_`).
1144     Wild,
1145 
1146     /// A fresh binding `ref mut binding @ OPT_SUBPATTERN`.
1147     /// The `HirId` is the canonical ID for the variable being bound,
1148     /// (e.g., in `Ok(x) | Err(x)`, both `x` use the same canonical ID),
1149     /// which is the pattern ID of the first `x`.
1150     Binding(BindingAnnotation, HirId, Ident, Option<&'hir Pat<'hir>>),
1151 
1152     /// A struct or struct variant pattern (e.g., `Variant {x, y, ..}`).
1153     /// The `bool` is `true` in the presence of a `..`.
1154     Struct(QPath<'hir>, &'hir [PatField<'hir>], bool),
1155 
1156     /// A tuple struct/variant pattern `Variant(x, y, .., z)`.
1157     /// If the `..` pattern fragment is present, then `DotDotPos` denotes its position.
1158     /// `0 <= position <= subpats.len()`
1159     TupleStruct(QPath<'hir>, &'hir [Pat<'hir>], DotDotPos),
1160 
1161     /// An or-pattern `A | B | C`.
1162     /// Invariant: `pats.len() >= 2`.
1163     Or(&'hir [Pat<'hir>]),
1164 
1165     /// A path pattern for a unit struct/variant or a (maybe-associated) constant.
1166     Path(QPath<'hir>),
1167 
1168     /// A tuple pattern (e.g., `(a, b)`).
1169     /// If the `..` pattern fragment is present, then `Option<usize>` denotes its position.
1170     /// `0 <= position <= subpats.len()`
1171     Tuple(&'hir [Pat<'hir>], DotDotPos),
1172 
1173     /// A `box` pattern.
1174     Box(&'hir Pat<'hir>),
1175 
1176     /// A reference pattern (e.g., `&mut (a, b)`).
1177     Ref(&'hir Pat<'hir>, Mutability),
1178 
1179     /// A literal.
1180     Lit(&'hir Expr<'hir>),
1181 
1182     /// A range pattern (e.g., `1..=2` or `1..2`).
1183     Range(Option<&'hir Expr<'hir>>, Option<&'hir Expr<'hir>>, RangeEnd),
1184 
1185     /// A slice pattern, `[before_0, ..., before_n, (slice, after_0, ..., after_n)?]`.
1186     ///
1187     /// Here, `slice` is lowered from the syntax `($binding_mode $ident @)? ..`.
1188     /// If `slice` exists, then `after` can be non-empty.
1189     ///
1190     /// The representation for e.g., `[a, b, .., c, d]` is:
1191     /// ```ignore (illustrative)
1192     /// PatKind::Slice([Binding(a), Binding(b)], Some(Wild), [Binding(c), Binding(d)])
1193     /// ```
1194     Slice(&'hir [Pat<'hir>], Option<&'hir Pat<'hir>>, &'hir [Pat<'hir>]),
1195 }
1196 
1197 #[derive(Copy, Clone, PartialEq, Debug, HashStable_Generic)]
1198 pub enum BinOpKind {
1199     /// The `+` operator (addition).
1200     Add,
1201     /// The `-` operator (subtraction).
1202     Sub,
1203     /// The `*` operator (multiplication).
1204     Mul,
1205     /// The `/` operator (division).
1206     Div,
1207     /// The `%` operator (modulus).
1208     Rem,
1209     /// The `&&` operator (logical and).
1210     And,
1211     /// The `||` operator (logical or).
1212     Or,
1213     /// The `^` operator (bitwise xor).
1214     BitXor,
1215     /// The `&` operator (bitwise and).
1216     BitAnd,
1217     /// The `|` operator (bitwise or).
1218     BitOr,
1219     /// The `<<` operator (shift left).
1220     Shl,
1221     /// The `>>` operator (shift right).
1222     Shr,
1223     /// The `==` operator (equality).
1224     Eq,
1225     /// The `<` operator (less than).
1226     Lt,
1227     /// The `<=` operator (less than or equal to).
1228     Le,
1229     /// The `!=` operator (not equal to).
1230     Ne,
1231     /// The `>=` operator (greater than or equal to).
1232     Ge,
1233     /// The `>` operator (greater than).
1234     Gt,
1235 }
1236 
1237 impl BinOpKind {
as_str(self) -> &'static str1238     pub fn as_str(self) -> &'static str {
1239         match self {
1240             BinOpKind::Add => "+",
1241             BinOpKind::Sub => "-",
1242             BinOpKind::Mul => "*",
1243             BinOpKind::Div => "/",
1244             BinOpKind::Rem => "%",
1245             BinOpKind::And => "&&",
1246             BinOpKind::Or => "||",
1247             BinOpKind::BitXor => "^",
1248             BinOpKind::BitAnd => "&",
1249             BinOpKind::BitOr => "|",
1250             BinOpKind::Shl => "<<",
1251             BinOpKind::Shr => ">>",
1252             BinOpKind::Eq => "==",
1253             BinOpKind::Lt => "<",
1254             BinOpKind::Le => "<=",
1255             BinOpKind::Ne => "!=",
1256             BinOpKind::Ge => ">=",
1257             BinOpKind::Gt => ">",
1258         }
1259     }
1260 
is_lazy(self) -> bool1261     pub fn is_lazy(self) -> bool {
1262         matches!(self, BinOpKind::And | BinOpKind::Or)
1263     }
1264 
is_shift(self) -> bool1265     pub fn is_shift(self) -> bool {
1266         matches!(self, BinOpKind::Shl | BinOpKind::Shr)
1267     }
1268 
is_comparison(self) -> bool1269     pub fn is_comparison(self) -> bool {
1270         match self {
1271             BinOpKind::Eq
1272             | BinOpKind::Lt
1273             | BinOpKind::Le
1274             | BinOpKind::Ne
1275             | BinOpKind::Gt
1276             | BinOpKind::Ge => true,
1277             BinOpKind::And
1278             | BinOpKind::Or
1279             | BinOpKind::Add
1280             | BinOpKind::Sub
1281             | BinOpKind::Mul
1282             | BinOpKind::Div
1283             | BinOpKind::Rem
1284             | BinOpKind::BitXor
1285             | BinOpKind::BitAnd
1286             | BinOpKind::BitOr
1287             | BinOpKind::Shl
1288             | BinOpKind::Shr => false,
1289         }
1290     }
1291 
1292     /// Returns `true` if the binary operator takes its arguments by value.
is_by_value(self) -> bool1293     pub fn is_by_value(self) -> bool {
1294         !self.is_comparison()
1295     }
1296 }
1297 
1298 impl Into<ast::BinOpKind> for BinOpKind {
into(self) -> ast::BinOpKind1299     fn into(self) -> ast::BinOpKind {
1300         match self {
1301             BinOpKind::Add => ast::BinOpKind::Add,
1302             BinOpKind::Sub => ast::BinOpKind::Sub,
1303             BinOpKind::Mul => ast::BinOpKind::Mul,
1304             BinOpKind::Div => ast::BinOpKind::Div,
1305             BinOpKind::Rem => ast::BinOpKind::Rem,
1306             BinOpKind::And => ast::BinOpKind::And,
1307             BinOpKind::Or => ast::BinOpKind::Or,
1308             BinOpKind::BitXor => ast::BinOpKind::BitXor,
1309             BinOpKind::BitAnd => ast::BinOpKind::BitAnd,
1310             BinOpKind::BitOr => ast::BinOpKind::BitOr,
1311             BinOpKind::Shl => ast::BinOpKind::Shl,
1312             BinOpKind::Shr => ast::BinOpKind::Shr,
1313             BinOpKind::Eq => ast::BinOpKind::Eq,
1314             BinOpKind::Lt => ast::BinOpKind::Lt,
1315             BinOpKind::Le => ast::BinOpKind::Le,
1316             BinOpKind::Ne => ast::BinOpKind::Ne,
1317             BinOpKind::Ge => ast::BinOpKind::Ge,
1318             BinOpKind::Gt => ast::BinOpKind::Gt,
1319         }
1320     }
1321 }
1322 
1323 pub type BinOp = Spanned<BinOpKind>;
1324 
1325 #[derive(Copy, Clone, PartialEq, Debug, HashStable_Generic)]
1326 pub enum UnOp {
1327     /// The `*` operator (dereferencing).
1328     Deref,
1329     /// The `!` operator (logical negation).
1330     Not,
1331     /// The `-` operator (negation).
1332     Neg,
1333 }
1334 
1335 impl UnOp {
as_str(self) -> &'static str1336     pub fn as_str(self) -> &'static str {
1337         match self {
1338             Self::Deref => "*",
1339             Self::Not => "!",
1340             Self::Neg => "-",
1341         }
1342     }
1343 
1344     /// Returns `true` if the unary operator takes its argument by value.
is_by_value(self) -> bool1345     pub fn is_by_value(self) -> bool {
1346         matches!(self, Self::Neg | Self::Not)
1347     }
1348 }
1349 
1350 /// A statement.
1351 #[derive(Debug, Clone, Copy, HashStable_Generic)]
1352 pub struct Stmt<'hir> {
1353     pub hir_id: HirId,
1354     pub kind: StmtKind<'hir>,
1355     pub span: Span,
1356 }
1357 
1358 /// The contents of a statement.
1359 #[derive(Debug, Clone, Copy, HashStable_Generic)]
1360 pub enum StmtKind<'hir> {
1361     /// A local (`let`) binding.
1362     Local(&'hir Local<'hir>),
1363 
1364     /// An item binding.
1365     Item(ItemId),
1366 
1367     /// An expression without a trailing semi-colon (must have unit type).
1368     Expr(&'hir Expr<'hir>),
1369 
1370     /// An expression with a trailing semi-colon (may have any type).
1371     Semi(&'hir Expr<'hir>),
1372 }
1373 
1374 /// Represents a `let` statement (i.e., `let <pat>:<ty> = <init>;`).
1375 #[derive(Debug, Clone, Copy, HashStable_Generic)]
1376 pub struct Local<'hir> {
1377     pub pat: &'hir Pat<'hir>,
1378     /// Type annotation, if any (otherwise the type will be inferred).
1379     pub ty: Option<&'hir Ty<'hir>>,
1380     /// Initializer expression to set the value, if any.
1381     pub init: Option<&'hir Expr<'hir>>,
1382     /// Else block for a `let...else` binding.
1383     pub els: Option<&'hir Block<'hir>>,
1384     pub hir_id: HirId,
1385     pub span: Span,
1386     /// Can be `ForLoopDesugar` if the `let` statement is part of a `for` loop
1387     /// desugaring. Otherwise will be `Normal`.
1388     pub source: LocalSource,
1389 }
1390 
1391 /// Represents a single arm of a `match` expression, e.g.
1392 /// `<pat> (if <guard>) => <body>`.
1393 #[derive(Debug, Clone, Copy, HashStable_Generic)]
1394 pub struct Arm<'hir> {
1395     #[stable_hasher(ignore)]
1396     pub hir_id: HirId,
1397     pub span: Span,
1398     /// If this pattern and the optional guard matches, then `body` is evaluated.
1399     pub pat: &'hir Pat<'hir>,
1400     /// Optional guard clause.
1401     pub guard: Option<Guard<'hir>>,
1402     /// The expression the arm evaluates to if this arm matches.
1403     pub body: &'hir Expr<'hir>,
1404 }
1405 
1406 /// Represents a `let <pat>[: <ty>] = <expr>` expression (not a Local), occurring in an `if-let` or
1407 /// `let-else`, evaluating to a boolean. Typically the pattern is refutable.
1408 ///
1409 /// In an if-let, imagine it as `if (let <pat> = <expr>) { ... }`; in a let-else, it is part of the
1410 /// desugaring to if-let. Only let-else supports the type annotation at present.
1411 #[derive(Debug, Clone, Copy, HashStable_Generic)]
1412 pub struct Let<'hir> {
1413     pub hir_id: HirId,
1414     pub span: Span,
1415     pub pat: &'hir Pat<'hir>,
1416     pub ty: Option<&'hir Ty<'hir>>,
1417     pub init: &'hir Expr<'hir>,
1418 }
1419 
1420 #[derive(Debug, Clone, Copy, HashStable_Generic)]
1421 pub enum Guard<'hir> {
1422     If(&'hir Expr<'hir>),
1423     IfLet(&'hir Let<'hir>),
1424 }
1425 
1426 impl<'hir> Guard<'hir> {
1427     /// Returns the body of the guard
1428     ///
1429     /// In other words, returns the e in either of the following:
1430     ///
1431     /// - `if e`
1432     /// - `if let x = e`
body(&self) -> &'hir Expr<'hir>1433     pub fn body(&self) -> &'hir Expr<'hir> {
1434         match self {
1435             Guard::If(e) | Guard::IfLet(Let { init: e, .. }) => e,
1436         }
1437     }
1438 }
1439 
1440 #[derive(Debug, Clone, Copy, HashStable_Generic)]
1441 pub struct ExprField<'hir> {
1442     #[stable_hasher(ignore)]
1443     pub hir_id: HirId,
1444     pub ident: Ident,
1445     pub expr: &'hir Expr<'hir>,
1446     pub span: Span,
1447     pub is_shorthand: bool,
1448 }
1449 
1450 #[derive(Copy, Clone, PartialEq, Debug, HashStable_Generic)]
1451 pub enum BlockCheckMode {
1452     DefaultBlock,
1453     UnsafeBlock(UnsafeSource),
1454 }
1455 
1456 #[derive(Copy, Clone, PartialEq, Debug, HashStable_Generic)]
1457 pub enum UnsafeSource {
1458     CompilerGenerated,
1459     UserProvided,
1460 }
1461 
1462 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
1463 pub struct BodyId {
1464     pub hir_id: HirId,
1465 }
1466 
1467 /// The body of a function, closure, or constant value. In the case of
1468 /// a function, the body contains not only the function body itself
1469 /// (which is an expression), but also the argument patterns, since
1470 /// those are something that the caller doesn't really care about.
1471 ///
1472 /// # Examples
1473 ///
1474 /// ```
1475 /// fn foo((x, y): (u32, u32)) -> u32 {
1476 ///     x + y
1477 /// }
1478 /// ```
1479 ///
1480 /// Here, the `Body` associated with `foo()` would contain:
1481 ///
1482 /// - an `params` array containing the `(x, y)` pattern
1483 /// - a `value` containing the `x + y` expression (maybe wrapped in a block)
1484 /// - `generator_kind` would be `None`
1485 ///
1486 /// All bodies have an **owner**, which can be accessed via the HIR
1487 /// map using `body_owner_def_id()`.
1488 #[derive(Debug, Clone, Copy, HashStable_Generic)]
1489 pub struct Body<'hir> {
1490     pub params: &'hir [Param<'hir>],
1491     pub value: &'hir Expr<'hir>,
1492     pub generator_kind: Option<GeneratorKind>,
1493 }
1494 
1495 impl<'hir> Body<'hir> {
id(&self) -> BodyId1496     pub fn id(&self) -> BodyId {
1497         BodyId { hir_id: self.value.hir_id }
1498     }
1499 
generator_kind(&self) -> Option<GeneratorKind>1500     pub fn generator_kind(&self) -> Option<GeneratorKind> {
1501         self.generator_kind
1502     }
1503 }
1504 
1505 /// The type of source expression that caused this generator to be created.
1506 #[derive(Clone, PartialEq, Eq, Debug, Copy, Hash)]
1507 #[derive(HashStable_Generic, Encodable, Decodable)]
1508 pub enum GeneratorKind {
1509     /// An explicit `async` block or the body of an async function.
1510     Async(AsyncGeneratorKind),
1511 
1512     /// A generator literal created via a `yield` inside a closure.
1513     Gen,
1514 }
1515 
1516 impl fmt::Display for GeneratorKind {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1517     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1518         match self {
1519             GeneratorKind::Async(k) => fmt::Display::fmt(k, f),
1520             GeneratorKind::Gen => f.write_str("generator"),
1521         }
1522     }
1523 }
1524 
1525 impl GeneratorKind {
descr(&self) -> &'static str1526     pub fn descr(&self) -> &'static str {
1527         match self {
1528             GeneratorKind::Async(ask) => ask.descr(),
1529             GeneratorKind::Gen => "generator",
1530         }
1531     }
1532 }
1533 
1534 /// In the case of a generator created as part of an async construct,
1535 /// which kind of async construct caused it to be created?
1536 ///
1537 /// This helps error messages but is also used to drive coercions in
1538 /// type-checking (see #60424).
1539 #[derive(Clone, PartialEq, Eq, Hash, Debug, Copy)]
1540 #[derive(HashStable_Generic, Encodable, Decodable)]
1541 pub enum AsyncGeneratorKind {
1542     /// An explicit `async` block written by the user.
1543     Block,
1544 
1545     /// An explicit `async` closure written by the user.
1546     Closure,
1547 
1548     /// The `async` block generated as the body of an async function.
1549     Fn,
1550 }
1551 
1552 impl fmt::Display for AsyncGeneratorKind {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1553     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1554         f.write_str(match self {
1555             AsyncGeneratorKind::Block => "async block",
1556             AsyncGeneratorKind::Closure => "async closure body",
1557             AsyncGeneratorKind::Fn => "async fn body",
1558         })
1559     }
1560 }
1561 
1562 impl AsyncGeneratorKind {
descr(&self) -> &'static str1563     pub fn descr(&self) -> &'static str {
1564         match self {
1565             AsyncGeneratorKind::Block => "`async` block",
1566             AsyncGeneratorKind::Closure => "`async` closure body",
1567             AsyncGeneratorKind::Fn => "`async fn` body",
1568         }
1569     }
1570 }
1571 
1572 #[derive(Copy, Clone, Debug)]
1573 pub enum BodyOwnerKind {
1574     /// Functions and methods.
1575     Fn,
1576 
1577     /// Closures
1578     Closure,
1579 
1580     /// Constants and associated constants.
1581     Const,
1582 
1583     /// Initializer of a `static` item.
1584     Static(Mutability),
1585 }
1586 
1587 impl BodyOwnerKind {
is_fn_or_closure(self) -> bool1588     pub fn is_fn_or_closure(self) -> bool {
1589         match self {
1590             BodyOwnerKind::Fn | BodyOwnerKind::Closure => true,
1591             BodyOwnerKind::Const | BodyOwnerKind::Static(_) => false,
1592         }
1593     }
1594 }
1595 
1596 /// The kind of an item that requires const-checking.
1597 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1598 pub enum ConstContext {
1599     /// A `const fn`.
1600     ConstFn,
1601 
1602     /// A `static` or `static mut`.
1603     Static(Mutability),
1604 
1605     /// A `const`, associated `const`, or other const context.
1606     ///
1607     /// Other contexts include:
1608     /// - Array length expressions
1609     /// - Enum discriminants
1610     /// - Const generics
1611     ///
1612     /// For the most part, other contexts are treated just like a regular `const`, so they are
1613     /// lumped into the same category.
1614     Const,
1615 }
1616 
1617 impl ConstContext {
1618     /// A description of this const context that can appear between backticks in an error message.
1619     ///
1620     /// E.g. `const` or `static mut`.
keyword_name(self) -> &'static str1621     pub fn keyword_name(self) -> &'static str {
1622         match self {
1623             Self::Const => "const",
1624             Self::Static(Mutability::Not) => "static",
1625             Self::Static(Mutability::Mut) => "static mut",
1626             Self::ConstFn => "const fn",
1627         }
1628     }
1629 }
1630 
1631 /// A colloquial, trivially pluralizable description of this const context for use in error
1632 /// messages.
1633 impl fmt::Display for ConstContext {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1634     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1635         match *self {
1636             Self::Const => write!(f, "constant"),
1637             Self::Static(_) => write!(f, "static"),
1638             Self::ConstFn => write!(f, "constant function"),
1639         }
1640     }
1641 }
1642 
1643 // NOTE: `IntoDiagnosticArg` impl for `ConstContext` lives in `rustc_errors`
1644 // due to a cyclical dependency between hir that crate.
1645 
1646 /// A literal.
1647 pub type Lit = Spanned<LitKind>;
1648 
1649 #[derive(Copy, Clone, Debug, HashStable_Generic)]
1650 pub enum ArrayLen {
1651     Infer(HirId, Span),
1652     Body(AnonConst),
1653 }
1654 
1655 impl ArrayLen {
hir_id(&self) -> HirId1656     pub fn hir_id(&self) -> HirId {
1657         match self {
1658             &ArrayLen::Infer(hir_id, _) | &ArrayLen::Body(AnonConst { hir_id, .. }) => hir_id,
1659         }
1660     }
1661 }
1662 
1663 /// A constant (expression) that's not an item or associated item,
1664 /// but needs its own `DefId` for type-checking, const-eval, etc.
1665 /// These are usually found nested inside types (e.g., array lengths)
1666 /// or expressions (e.g., repeat counts), and also used to define
1667 /// explicit discriminant values for enum variants.
1668 ///
1669 /// You can check if this anon const is a default in a const param
1670 /// `const N: usize = { ... }` with `tcx.hir().opt_const_param_default_param_def_id(..)`
1671 #[derive(Copy, Clone, Debug, HashStable_Generic)]
1672 pub struct AnonConst {
1673     pub hir_id: HirId,
1674     pub def_id: LocalDefId,
1675     pub body: BodyId,
1676 }
1677 
1678 /// An inline constant expression `const { something }`.
1679 #[derive(Copy, Clone, Debug, HashStable_Generic)]
1680 pub struct ConstBlock {
1681     pub hir_id: HirId,
1682     pub def_id: LocalDefId,
1683     pub body: BodyId,
1684 }
1685 
1686 /// An expression.
1687 #[derive(Debug, Clone, Copy, HashStable_Generic)]
1688 pub struct Expr<'hir> {
1689     pub hir_id: HirId,
1690     pub kind: ExprKind<'hir>,
1691     pub span: Span,
1692 }
1693 
1694 impl Expr<'_> {
precedence(&self) -> ExprPrecedence1695     pub fn precedence(&self) -> ExprPrecedence {
1696         match self.kind {
1697             ExprKind::ConstBlock(_) => ExprPrecedence::ConstBlock,
1698             ExprKind::Array(_) => ExprPrecedence::Array,
1699             ExprKind::Call(..) => ExprPrecedence::Call,
1700             ExprKind::MethodCall(..) => ExprPrecedence::MethodCall,
1701             ExprKind::Tup(_) => ExprPrecedence::Tup,
1702             ExprKind::Binary(op, ..) => ExprPrecedence::Binary(op.node.into()),
1703             ExprKind::Unary(..) => ExprPrecedence::Unary,
1704             ExprKind::Lit(_) => ExprPrecedence::Lit,
1705             ExprKind::Type(..) | ExprKind::Cast(..) => ExprPrecedence::Cast,
1706             ExprKind::DropTemps(ref expr, ..) => expr.precedence(),
1707             ExprKind::If(..) => ExprPrecedence::If,
1708             ExprKind::Let(..) => ExprPrecedence::Let,
1709             ExprKind::Loop(..) => ExprPrecedence::Loop,
1710             ExprKind::Match(..) => ExprPrecedence::Match,
1711             ExprKind::Closure { .. } => ExprPrecedence::Closure,
1712             ExprKind::Block(..) => ExprPrecedence::Block,
1713             ExprKind::Assign(..) => ExprPrecedence::Assign,
1714             ExprKind::AssignOp(..) => ExprPrecedence::AssignOp,
1715             ExprKind::Field(..) => ExprPrecedence::Field,
1716             ExprKind::Index(..) => ExprPrecedence::Index,
1717             ExprKind::Path(..) => ExprPrecedence::Path,
1718             ExprKind::AddrOf(..) => ExprPrecedence::AddrOf,
1719             ExprKind::Break(..) => ExprPrecedence::Break,
1720             ExprKind::Continue(..) => ExprPrecedence::Continue,
1721             ExprKind::Ret(..) => ExprPrecedence::Ret,
1722             ExprKind::Become(..) => ExprPrecedence::Become,
1723             ExprKind::InlineAsm(..) => ExprPrecedence::InlineAsm,
1724             ExprKind::OffsetOf(..) => ExprPrecedence::OffsetOf,
1725             ExprKind::Struct(..) => ExprPrecedence::Struct,
1726             ExprKind::Repeat(..) => ExprPrecedence::Repeat,
1727             ExprKind::Yield(..) => ExprPrecedence::Yield,
1728             ExprKind::Err(_) => ExprPrecedence::Err,
1729         }
1730     }
1731 
1732     /// Whether this looks like a place expr, without checking for deref
1733     /// adjustments.
1734     /// This will return `true` in some potentially surprising cases such as
1735     /// `CONSTANT.field`.
is_syntactic_place_expr(&self) -> bool1736     pub fn is_syntactic_place_expr(&self) -> bool {
1737         self.is_place_expr(|_| true)
1738     }
1739 
1740     /// Whether this is a place expression.
1741     ///
1742     /// `allow_projections_from` should return `true` if indexing a field or index expression based
1743     /// on the given expression should be considered a place expression.
is_place_expr(&self, mut allow_projections_from: impl FnMut(&Self) -> bool) -> bool1744     pub fn is_place_expr(&self, mut allow_projections_from: impl FnMut(&Self) -> bool) -> bool {
1745         match self.kind {
1746             ExprKind::Path(QPath::Resolved(_, ref path)) => {
1747                 matches!(path.res, Res::Local(..) | Res::Def(DefKind::Static(_), _) | Res::Err)
1748             }
1749 
1750             // Type ascription inherits its place expression kind from its
1751             // operand. See:
1752             // https://github.com/rust-lang/rfcs/blob/master/text/0803-type-ascription.md#type-ascription-and-temporaries
1753             ExprKind::Type(ref e, _) => e.is_place_expr(allow_projections_from),
1754 
1755             ExprKind::Unary(UnOp::Deref, _) => true,
1756 
1757             ExprKind::Field(ref base, _) | ExprKind::Index(ref base, _) => {
1758                 allow_projections_from(base) || base.is_place_expr(allow_projections_from)
1759             }
1760 
1761             // Lang item paths cannot currently be local variables or statics.
1762             ExprKind::Path(QPath::LangItem(..)) => false,
1763 
1764             // Partially qualified paths in expressions can only legally
1765             // refer to associated items which are always rvalues.
1766             ExprKind::Path(QPath::TypeRelative(..))
1767             | ExprKind::Call(..)
1768             | ExprKind::MethodCall(..)
1769             | ExprKind::Struct(..)
1770             | ExprKind::Tup(..)
1771             | ExprKind::If(..)
1772             | ExprKind::Match(..)
1773             | ExprKind::Closure { .. }
1774             | ExprKind::Block(..)
1775             | ExprKind::Repeat(..)
1776             | ExprKind::Array(..)
1777             | ExprKind::Break(..)
1778             | ExprKind::Continue(..)
1779             | ExprKind::Ret(..)
1780             | ExprKind::Become(..)
1781             | ExprKind::Let(..)
1782             | ExprKind::Loop(..)
1783             | ExprKind::Assign(..)
1784             | ExprKind::InlineAsm(..)
1785             | ExprKind::OffsetOf(..)
1786             | ExprKind::AssignOp(..)
1787             | ExprKind::Lit(_)
1788             | ExprKind::ConstBlock(..)
1789             | ExprKind::Unary(..)
1790             | ExprKind::AddrOf(..)
1791             | ExprKind::Binary(..)
1792             | ExprKind::Yield(..)
1793             | ExprKind::Cast(..)
1794             | ExprKind::DropTemps(..)
1795             | ExprKind::Err(_) => false,
1796         }
1797     }
1798 
1799     /// If `Self.kind` is `ExprKind::DropTemps(expr)`, drill down until we get a non-`DropTemps`
1800     /// `Expr`. This is used in suggestions to ignore this `ExprKind` as it is semantically
1801     /// silent, only signaling the ownership system. By doing this, suggestions that check the
1802     /// `ExprKind` of any given `Expr` for presentation don't have to care about `DropTemps`
1803     /// beyond remembering to call this function before doing analysis on it.
peel_drop_temps(&self) -> &Self1804     pub fn peel_drop_temps(&self) -> &Self {
1805         let mut expr = self;
1806         while let ExprKind::DropTemps(inner) = &expr.kind {
1807             expr = inner;
1808         }
1809         expr
1810     }
1811 
peel_blocks(&self) -> &Self1812     pub fn peel_blocks(&self) -> &Self {
1813         let mut expr = self;
1814         while let ExprKind::Block(Block { expr: Some(inner), .. }, _) = &expr.kind {
1815             expr = inner;
1816         }
1817         expr
1818     }
1819 
peel_borrows(&self) -> &Self1820     pub fn peel_borrows(&self) -> &Self {
1821         let mut expr = self;
1822         while let ExprKind::AddrOf(.., inner) = &expr.kind {
1823             expr = inner;
1824         }
1825         expr
1826     }
1827 
can_have_side_effects(&self) -> bool1828     pub fn can_have_side_effects(&self) -> bool {
1829         match self.peel_drop_temps().kind {
1830             ExprKind::Path(_) | ExprKind::Lit(_) | ExprKind::OffsetOf(..) => false,
1831             ExprKind::Type(base, _)
1832             | ExprKind::Unary(_, base)
1833             | ExprKind::Field(base, _)
1834             | ExprKind::Index(base, _)
1835             | ExprKind::AddrOf(.., base)
1836             | ExprKind::Cast(base, _) => {
1837                 // This isn't exactly true for `Index` and all `Unary`, but we are using this
1838                 // method exclusively for diagnostics and there's a *cultural* pressure against
1839                 // them being used only for its side-effects.
1840                 base.can_have_side_effects()
1841             }
1842             ExprKind::Struct(_, fields, init) => fields
1843                 .iter()
1844                 .map(|field| field.expr)
1845                 .chain(init.into_iter())
1846                 .all(|e| e.can_have_side_effects()),
1847 
1848             ExprKind::Array(args)
1849             | ExprKind::Tup(args)
1850             | ExprKind::Call(
1851                 Expr {
1852                     kind:
1853                         ExprKind::Path(QPath::Resolved(
1854                             None,
1855                             Path { res: Res::Def(DefKind::Ctor(_, CtorKind::Fn), _), .. },
1856                         )),
1857                     ..
1858                 },
1859                 args,
1860             ) => args.iter().all(|arg| arg.can_have_side_effects()),
1861             ExprKind::If(..)
1862             | ExprKind::Match(..)
1863             | ExprKind::MethodCall(..)
1864             | ExprKind::Call(..)
1865             | ExprKind::Closure { .. }
1866             | ExprKind::Block(..)
1867             | ExprKind::Repeat(..)
1868             | ExprKind::Break(..)
1869             | ExprKind::Continue(..)
1870             | ExprKind::Ret(..)
1871             | ExprKind::Become(..)
1872             | ExprKind::Let(..)
1873             | ExprKind::Loop(..)
1874             | ExprKind::Assign(..)
1875             | ExprKind::InlineAsm(..)
1876             | ExprKind::AssignOp(..)
1877             | ExprKind::ConstBlock(..)
1878             | ExprKind::Binary(..)
1879             | ExprKind::Yield(..)
1880             | ExprKind::DropTemps(..)
1881             | ExprKind::Err(_) => true,
1882         }
1883     }
1884 
1885     /// To a first-order approximation, is this a pattern?
is_approximately_pattern(&self) -> bool1886     pub fn is_approximately_pattern(&self) -> bool {
1887         match &self.kind {
1888             ExprKind::Array(_)
1889             | ExprKind::Call(..)
1890             | ExprKind::Tup(_)
1891             | ExprKind::Lit(_)
1892             | ExprKind::Path(_)
1893             | ExprKind::Struct(..) => true,
1894             _ => false,
1895         }
1896     }
1897 
method_ident(&self) -> Option<Ident>1898     pub fn method_ident(&self) -> Option<Ident> {
1899         match self.kind {
1900             ExprKind::MethodCall(receiver_method, ..) => Some(receiver_method.ident),
1901             ExprKind::Unary(_, expr) | ExprKind::AddrOf(.., expr) => expr.method_ident(),
1902             _ => None,
1903         }
1904     }
1905 }
1906 
1907 /// Checks if the specified expression is a built-in range literal.
1908 /// (See: `LoweringContext::lower_expr()`).
is_range_literal(expr: &Expr<'_>) -> bool1909 pub fn is_range_literal(expr: &Expr<'_>) -> bool {
1910     match expr.kind {
1911         // All built-in range literals but `..=` and `..` desugar to `Struct`s.
1912         ExprKind::Struct(ref qpath, _, _) => matches!(
1913             **qpath,
1914             QPath::LangItem(
1915                 LangItem::Range
1916                     | LangItem::RangeTo
1917                     | LangItem::RangeFrom
1918                     | LangItem::RangeFull
1919                     | LangItem::RangeToInclusive,
1920                 ..
1921             )
1922         ),
1923 
1924         // `..=` desugars into `::std::ops::RangeInclusive::new(...)`.
1925         ExprKind::Call(ref func, _) => {
1926             matches!(func.kind, ExprKind::Path(QPath::LangItem(LangItem::RangeInclusiveNew, ..)))
1927         }
1928 
1929         _ => false,
1930     }
1931 }
1932 
1933 #[derive(Debug, Clone, Copy, HashStable_Generic)]
1934 pub enum ExprKind<'hir> {
1935     /// Allow anonymous constants from an inline `const` block
1936     ConstBlock(ConstBlock),
1937     /// An array (e.g., `[a, b, c, d]`).
1938     Array(&'hir [Expr<'hir>]),
1939     /// A function call.
1940     ///
1941     /// The first field resolves to the function itself (usually an `ExprKind::Path`),
1942     /// and the second field is the list of arguments.
1943     /// This also represents calling the constructor of
1944     /// tuple-like ADTs such as tuple structs and enum variants.
1945     Call(&'hir Expr<'hir>, &'hir [Expr<'hir>]),
1946     /// A method call (e.g., `x.foo::<'static, Bar, Baz>(a, b, c, d)`).
1947     ///
1948     /// The `PathSegment` represents the method name and its generic arguments
1949     /// (within the angle brackets).
1950     /// The `&Expr` is the expression that evaluates
1951     /// to the object on which the method is being called on (the receiver),
1952     /// and the `&[Expr]` is the rest of the arguments.
1953     /// Thus, `x.foo::<Bar, Baz>(a, b, c, d)` is represented as
1954     /// `ExprKind::MethodCall(PathSegment { foo, [Bar, Baz] }, x, [a, b, c, d], span)`.
1955     /// The final `Span` represents the span of the function and arguments
1956     /// (e.g. `foo::<Bar, Baz>(a, b, c, d)` in `x.foo::<Bar, Baz>(a, b, c, d)`
1957     ///
1958     /// To resolve the called method to a `DefId`, call [`type_dependent_def_id`] with
1959     /// the `hir_id` of the `MethodCall` node itself.
1960     ///
1961     /// [`type_dependent_def_id`]: ../../rustc_middle/ty/struct.TypeckResults.html#method.type_dependent_def_id
1962     MethodCall(&'hir PathSegment<'hir>, &'hir Expr<'hir>, &'hir [Expr<'hir>], Span),
1963     /// A tuple (e.g., `(a, b, c, d)`).
1964     Tup(&'hir [Expr<'hir>]),
1965     /// A binary operation (e.g., `a + b`, `a * b`).
1966     Binary(BinOp, &'hir Expr<'hir>, &'hir Expr<'hir>),
1967     /// A unary operation (e.g., `!x`, `*x`).
1968     Unary(UnOp, &'hir Expr<'hir>),
1969     /// A literal (e.g., `1`, `"foo"`).
1970     Lit(&'hir Lit),
1971     /// A cast (e.g., `foo as f64`).
1972     Cast(&'hir Expr<'hir>, &'hir Ty<'hir>),
1973     /// A type ascription (e.g., `x: Foo`). See RFC 3307.
1974     Type(&'hir Expr<'hir>, &'hir Ty<'hir>),
1975     /// Wraps the expression in a terminating scope.
1976     /// This makes it semantically equivalent to `{ let _t = expr; _t }`.
1977     ///
1978     /// This construct only exists to tweak the drop order in HIR lowering.
1979     /// An example of that is the desugaring of `for` loops.
1980     DropTemps(&'hir Expr<'hir>),
1981     /// A `let $pat = $expr` expression.
1982     ///
1983     /// These are not `Local` and only occur as expressions.
1984     /// The `let Some(x) = foo()` in `if let Some(x) = foo()` is an example of `Let(..)`.
1985     Let(&'hir Let<'hir>),
1986     /// An `if` block, with an optional else block.
1987     ///
1988     /// I.e., `if <expr> { <expr> } else { <expr> }`.
1989     If(&'hir Expr<'hir>, &'hir Expr<'hir>, Option<&'hir Expr<'hir>>),
1990     /// A conditionless loop (can be exited with `break`, `continue`, or `return`).
1991     ///
1992     /// I.e., `'label: loop { <block> }`.
1993     ///
1994     /// The `Span` is the loop header (`for x in y`/`while let pat = expr`).
1995     Loop(&'hir Block<'hir>, Option<Label>, LoopSource, Span),
1996     /// A `match` block, with a source that indicates whether or not it is
1997     /// the result of a desugaring, and if so, which kind.
1998     Match(&'hir Expr<'hir>, &'hir [Arm<'hir>], MatchSource),
1999     /// A closure (e.g., `move |a, b, c| {a + b + c}`).
2000     ///
2001     /// The `Span` is the argument block `|...|`.
2002     ///
2003     /// This may also be a generator literal or an `async block` as indicated by the
2004     /// `Option<Movability>`.
2005     Closure(&'hir Closure<'hir>),
2006     /// A block (e.g., `'label: { ... }`).
2007     Block(&'hir Block<'hir>, Option<Label>),
2008 
2009     /// An assignment (e.g., `a = foo()`).
2010     Assign(&'hir Expr<'hir>, &'hir Expr<'hir>, Span),
2011     /// An assignment with an operator.
2012     ///
2013     /// E.g., `a += 1`.
2014     AssignOp(BinOp, &'hir Expr<'hir>, &'hir Expr<'hir>),
2015     /// Access of a named (e.g., `obj.foo`) or unnamed (e.g., `obj.0`) struct or tuple field.
2016     Field(&'hir Expr<'hir>, Ident),
2017     /// An indexing operation (`foo[2]`).
2018     Index(&'hir Expr<'hir>, &'hir Expr<'hir>),
2019 
2020     /// Path to a definition, possibly containing lifetime or type parameters.
2021     Path(QPath<'hir>),
2022 
2023     /// A referencing operation (i.e., `&a` or `&mut a`).
2024     AddrOf(BorrowKind, Mutability, &'hir Expr<'hir>),
2025     /// A `break`, with an optional label to break.
2026     Break(Destination, Option<&'hir Expr<'hir>>),
2027     /// A `continue`, with an optional label.
2028     Continue(Destination),
2029     /// A `return`, with an optional value to be returned.
2030     Ret(Option<&'hir Expr<'hir>>),
2031     /// A `become`, with the value to be returned.
2032     Become(&'hir Expr<'hir>),
2033 
2034     /// Inline assembly (from `asm!`), with its outputs and inputs.
2035     InlineAsm(&'hir InlineAsm<'hir>),
2036 
2037     /// Field offset (`offset_of!`)
2038     OffsetOf(&'hir Ty<'hir>, &'hir [Ident]),
2039 
2040     /// A struct or struct-like variant literal expression.
2041     ///
2042     /// E.g., `Foo {x: 1, y: 2}`, or `Foo {x: 1, .. base}`,
2043     /// where `base` is the `Option<Expr>`.
2044     Struct(&'hir QPath<'hir>, &'hir [ExprField<'hir>], Option<&'hir Expr<'hir>>),
2045 
2046     /// An array literal constructed from one repeated element.
2047     ///
2048     /// E.g., `[1; 5]`. The first expression is the element
2049     /// to be repeated; the second is the number of times to repeat it.
2050     Repeat(&'hir Expr<'hir>, ArrayLen),
2051 
2052     /// A suspension point for generators (i.e., `yield <expr>`).
2053     Yield(&'hir Expr<'hir>, YieldSource),
2054 
2055     /// A placeholder for an expression that wasn't syntactically well formed in some way.
2056     Err(rustc_span::ErrorGuaranteed),
2057 }
2058 
2059 /// Represents an optionally `Self`-qualified value/type path or associated extension.
2060 ///
2061 /// To resolve the path to a `DefId`, call [`qpath_res`].
2062 ///
2063 /// [`qpath_res`]: ../../rustc_middle/ty/struct.TypeckResults.html#method.qpath_res
2064 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2065 pub enum QPath<'hir> {
2066     /// Path to a definition, optionally "fully-qualified" with a `Self`
2067     /// type, if the path points to an associated item in a trait.
2068     ///
2069     /// E.g., an unqualified path like `Clone::clone` has `None` for `Self`,
2070     /// while `<Vec<T> as Clone>::clone` has `Some(Vec<T>)` for `Self`,
2071     /// even though they both have the same two-segment `Clone::clone` `Path`.
2072     Resolved(Option<&'hir Ty<'hir>>, &'hir Path<'hir>),
2073 
2074     /// Type-related paths (e.g., `<T>::default` or `<T>::Output`).
2075     /// Will be resolved by type-checking to an associated item.
2076     ///
2077     /// UFCS source paths can desugar into this, with `Vec::new` turning into
2078     /// `<Vec>::new`, and `T::X::Y::method` into `<<<T>::X>::Y>::method`,
2079     /// the `X` and `Y` nodes each being a `TyKind::Path(QPath::TypeRelative(..))`.
2080     TypeRelative(&'hir Ty<'hir>, &'hir PathSegment<'hir>),
2081 
2082     /// Reference to a `#[lang = "foo"]` item. `HirId` of the inner expr.
2083     LangItem(LangItem, Span, Option<HirId>),
2084 }
2085 
2086 impl<'hir> QPath<'hir> {
2087     /// Returns the span of this `QPath`.
span(&self) -> Span2088     pub fn span(&self) -> Span {
2089         match *self {
2090             QPath::Resolved(_, path) => path.span,
2091             QPath::TypeRelative(qself, ps) => qself.span.to(ps.ident.span),
2092             QPath::LangItem(_, span, _) => span,
2093         }
2094     }
2095 
2096     /// Returns the span of the qself of this `QPath`. For example, `()` in
2097     /// `<() as Trait>::method`.
qself_span(&self) -> Span2098     pub fn qself_span(&self) -> Span {
2099         match *self {
2100             QPath::Resolved(_, path) => path.span,
2101             QPath::TypeRelative(qself, _) => qself.span,
2102             QPath::LangItem(_, span, _) => span,
2103         }
2104     }
2105 
2106     /// Returns the span of the last segment of this `QPath`. For example, `method` in
2107     /// `<() as Trait>::method`.
last_segment_span(&self) -> Span2108     pub fn last_segment_span(&self) -> Span {
2109         match *self {
2110             QPath::Resolved(_, path) => path.segments.last().unwrap().ident.span,
2111             QPath::TypeRelative(_, segment) => segment.ident.span,
2112             QPath::LangItem(_, span, _) => span,
2113         }
2114     }
2115 }
2116 
2117 /// Hints at the original code for a let statement.
2118 #[derive(Copy, Clone, Debug, HashStable_Generic)]
2119 pub enum LocalSource {
2120     /// A `match _ { .. }`.
2121     Normal,
2122     /// When lowering async functions, we create locals within the `async move` so that
2123     /// all parameters are dropped after the future is polled.
2124     ///
2125     /// ```ignore (pseudo-Rust)
2126     /// async fn foo(<pattern> @ x: Type) {
2127     ///     async move {
2128     ///         let <pattern> = x;
2129     ///     }
2130     /// }
2131     /// ```
2132     AsyncFn,
2133     /// A desugared `<expr>.await`.
2134     AwaitDesugar,
2135     /// A desugared `expr = expr`, where the LHS is a tuple, struct or array.
2136     /// The span is that of the `=` sign.
2137     AssignDesugar(Span),
2138 }
2139 
2140 /// Hints at the original code for a `match _ { .. }`.
2141 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
2142 #[derive(HashStable_Generic, Encodable, Decodable)]
2143 pub enum MatchSource {
2144     /// A `match _ { .. }`.
2145     Normal,
2146     /// A desugared `for _ in _ { .. }` loop.
2147     ForLoopDesugar,
2148     /// A desugared `?` operator.
2149     TryDesugar,
2150     /// A desugared `<expr>.await`.
2151     AwaitDesugar,
2152     /// A desugared `format_args!()`.
2153     FormatArgs,
2154 }
2155 
2156 impl MatchSource {
2157     #[inline]
name(self) -> &'static str2158     pub const fn name(self) -> &'static str {
2159         use MatchSource::*;
2160         match self {
2161             Normal => "match",
2162             ForLoopDesugar => "for",
2163             TryDesugar => "?",
2164             AwaitDesugar => ".await",
2165             FormatArgs => "format_args!()",
2166         }
2167     }
2168 }
2169 
2170 /// The loop type that yielded an `ExprKind::Loop`.
2171 #[derive(Copy, Clone, PartialEq, Debug, HashStable_Generic)]
2172 pub enum LoopSource {
2173     /// A `loop { .. }` loop.
2174     Loop,
2175     /// A `while _ { .. }` loop.
2176     While,
2177     /// A `for _ in _ { .. }` loop.
2178     ForLoop,
2179 }
2180 
2181 impl LoopSource {
name(self) -> &'static str2182     pub fn name(self) -> &'static str {
2183         match self {
2184             LoopSource::Loop => "loop",
2185             LoopSource::While => "while",
2186             LoopSource::ForLoop => "for",
2187         }
2188     }
2189 }
2190 
2191 #[derive(Copy, Clone, Debug, HashStable_Generic)]
2192 pub enum LoopIdError {
2193     OutsideLoopScope,
2194     UnlabeledCfInWhileCondition,
2195     UnresolvedLabel,
2196 }
2197 
2198 impl fmt::Display for LoopIdError {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result2199     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2200         f.write_str(match self {
2201             LoopIdError::OutsideLoopScope => "not inside loop scope",
2202             LoopIdError::UnlabeledCfInWhileCondition => {
2203                 "unlabeled control flow (break or continue) in while condition"
2204             }
2205             LoopIdError::UnresolvedLabel => "label not found",
2206         })
2207     }
2208 }
2209 
2210 #[derive(Copy, Clone, Debug, HashStable_Generic)]
2211 pub struct Destination {
2212     /// This is `Some(_)` iff there is an explicit user-specified 'label
2213     pub label: Option<Label>,
2214 
2215     /// These errors are caught and then reported during the diagnostics pass in
2216     /// `librustc_passes/loops.rs`
2217     pub target_id: Result<HirId, LoopIdError>,
2218 }
2219 
2220 /// The yield kind that caused an `ExprKind::Yield`.
2221 #[derive(Copy, Clone, Debug, HashStable_Generic)]
2222 pub enum YieldSource {
2223     /// An `<expr>.await`.
2224     Await { expr: Option<HirId> },
2225     /// A plain `yield`.
2226     Yield,
2227 }
2228 
2229 impl YieldSource {
is_await(&self) -> bool2230     pub fn is_await(&self) -> bool {
2231         matches!(self, YieldSource::Await { .. })
2232     }
2233 }
2234 
2235 impl fmt::Display for YieldSource {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result2236     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2237         f.write_str(match self {
2238             YieldSource::Await { .. } => "`await`",
2239             YieldSource::Yield => "`yield`",
2240         })
2241     }
2242 }
2243 
2244 impl From<GeneratorKind> for YieldSource {
from(kind: GeneratorKind) -> Self2245     fn from(kind: GeneratorKind) -> Self {
2246         match kind {
2247             // Guess based on the kind of the current generator.
2248             GeneratorKind::Gen => Self::Yield,
2249             GeneratorKind::Async(_) => Self::Await { expr: None },
2250         }
2251     }
2252 }
2253 
2254 // N.B., if you change this, you'll probably want to change the corresponding
2255 // type structure in middle/ty.rs as well.
2256 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2257 pub struct MutTy<'hir> {
2258     pub ty: &'hir Ty<'hir>,
2259     pub mutbl: Mutability,
2260 }
2261 
2262 /// Represents a function's signature in a trait declaration,
2263 /// trait implementation, or a free function.
2264 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2265 pub struct FnSig<'hir> {
2266     pub header: FnHeader,
2267     pub decl: &'hir FnDecl<'hir>,
2268     pub span: Span,
2269 }
2270 
2271 // The bodies for items are stored "out of line", in a separate
2272 // hashmap in the `Crate`. Here we just record the hir-id of the item
2273 // so it can fetched later.
2274 #[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)]
2275 pub struct TraitItemId {
2276     pub owner_id: OwnerId,
2277 }
2278 
2279 impl TraitItemId {
2280     #[inline]
hir_id(&self) -> HirId2281     pub fn hir_id(&self) -> HirId {
2282         // Items are always HIR owners.
2283         HirId::make_owner(self.owner_id.def_id)
2284     }
2285 }
2286 
2287 /// Represents an item declaration within a trait declaration,
2288 /// possibly including a default implementation. A trait item is
2289 /// either required (meaning it doesn't have an implementation, just a
2290 /// signature) or provided (meaning it has a default implementation).
2291 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2292 pub struct TraitItem<'hir> {
2293     pub ident: Ident,
2294     pub owner_id: OwnerId,
2295     pub generics: &'hir Generics<'hir>,
2296     pub kind: TraitItemKind<'hir>,
2297     pub span: Span,
2298     pub defaultness: Defaultness,
2299 }
2300 
2301 impl<'hir> TraitItem<'hir> {
2302     #[inline]
hir_id(&self) -> HirId2303     pub fn hir_id(&self) -> HirId {
2304         // Items are always HIR owners.
2305         HirId::make_owner(self.owner_id.def_id)
2306     }
2307 
trait_item_id(&self) -> TraitItemId2308     pub fn trait_item_id(&self) -> TraitItemId {
2309         TraitItemId { owner_id: self.owner_id }
2310     }
2311 
2312     /// Expect an [`TraitItemKind::Const`] or panic.
2313     #[track_caller]
expect_const(&self) -> (&'hir Ty<'hir>, Option<BodyId>)2314     pub fn expect_const(&self) -> (&'hir Ty<'hir>, Option<BodyId>) {
2315         let TraitItemKind::Const(ty, body) = self.kind else { self.expect_failed("a constant") };
2316         (ty, body)
2317     }
2318 
2319     /// Expect an [`TraitItemKind::Fn`] or panic.
2320     #[track_caller]
expect_fn(&self) -> (&FnSig<'hir>, &TraitFn<'hir>)2321     pub fn expect_fn(&self) -> (&FnSig<'hir>, &TraitFn<'hir>) {
2322         let TraitItemKind::Fn(ty, trfn) = &self.kind else { self.expect_failed("a function") };
2323         (ty, trfn)
2324     }
2325 
2326     /// Expect an [`TraitItemKind::Type`] or panic.
2327     #[track_caller]
expect_type(&self) -> (GenericBounds<'hir>, Option<&'hir Ty<'hir>>)2328     pub fn expect_type(&self) -> (GenericBounds<'hir>, Option<&'hir Ty<'hir>>) {
2329         let TraitItemKind::Type(bounds, ty) = self.kind else { self.expect_failed("a type") };
2330         (bounds, ty)
2331     }
2332 
2333     #[track_caller]
expect_failed(&self, expected: &'static str) -> !2334     fn expect_failed(&self, expected: &'static str) -> ! {
2335         panic!("expected {expected} item, found {self:?}")
2336     }
2337 }
2338 
2339 /// Represents a trait method's body (or just argument names).
2340 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2341 pub enum TraitFn<'hir> {
2342     /// No default body in the trait, just a signature.
2343     Required(&'hir [Ident]),
2344 
2345     /// Both signature and body are provided in the trait.
2346     Provided(BodyId),
2347 }
2348 
2349 /// Represents a trait method or associated constant or type
2350 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2351 pub enum TraitItemKind<'hir> {
2352     /// An associated constant with an optional value (otherwise `impl`s must contain a value).
2353     Const(&'hir Ty<'hir>, Option<BodyId>),
2354     /// An associated function with an optional body.
2355     Fn(FnSig<'hir>, TraitFn<'hir>),
2356     /// An associated type with (possibly empty) bounds and optional concrete
2357     /// type.
2358     Type(GenericBounds<'hir>, Option<&'hir Ty<'hir>>),
2359 }
2360 
2361 // The bodies for items are stored "out of line", in a separate
2362 // hashmap in the `Crate`. Here we just record the hir-id of the item
2363 // so it can fetched later.
2364 #[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)]
2365 pub struct ImplItemId {
2366     pub owner_id: OwnerId,
2367 }
2368 
2369 impl ImplItemId {
2370     #[inline]
hir_id(&self) -> HirId2371     pub fn hir_id(&self) -> HirId {
2372         // Items are always HIR owners.
2373         HirId::make_owner(self.owner_id.def_id)
2374     }
2375 }
2376 
2377 /// Represents anything within an `impl` block.
2378 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2379 pub struct ImplItem<'hir> {
2380     pub ident: Ident,
2381     pub owner_id: OwnerId,
2382     pub generics: &'hir Generics<'hir>,
2383     pub kind: ImplItemKind<'hir>,
2384     pub defaultness: Defaultness,
2385     pub span: Span,
2386     pub vis_span: Span,
2387 }
2388 
2389 impl<'hir> ImplItem<'hir> {
2390     #[inline]
hir_id(&self) -> HirId2391     pub fn hir_id(&self) -> HirId {
2392         // Items are always HIR owners.
2393         HirId::make_owner(self.owner_id.def_id)
2394     }
2395 
impl_item_id(&self) -> ImplItemId2396     pub fn impl_item_id(&self) -> ImplItemId {
2397         ImplItemId { owner_id: self.owner_id }
2398     }
2399 
2400     /// Expect an [`ImplItemKind::Const`] or panic.
2401     #[track_caller]
expect_const(&self) -> (&'hir Ty<'hir>, BodyId)2402     pub fn expect_const(&self) -> (&'hir Ty<'hir>, BodyId) {
2403         let ImplItemKind::Const(ty, body) = self.kind else { self.expect_failed("a constant") };
2404         (ty, body)
2405     }
2406 
2407     /// Expect an [`ImplItemKind::Fn`] or panic.
2408     #[track_caller]
expect_fn(&self) -> (&FnSig<'hir>, BodyId)2409     pub fn expect_fn(&self) -> (&FnSig<'hir>, BodyId) {
2410         let ImplItemKind::Fn(ty, body) = &self.kind else { self.expect_failed("a function") };
2411         (ty, *body)
2412     }
2413 
2414     /// Expect an [`ImplItemKind::Type`] or panic.
2415     #[track_caller]
expect_type(&self) -> &'hir Ty<'hir>2416     pub fn expect_type(&self) -> &'hir Ty<'hir> {
2417         let ImplItemKind::Type(ty) = self.kind else { self.expect_failed("a type") };
2418         ty
2419     }
2420 
2421     #[track_caller]
expect_failed(&self, expected: &'static str) -> !2422     fn expect_failed(&self, expected: &'static str) -> ! {
2423         panic!("expected {expected} item, found {self:?}")
2424     }
2425 }
2426 
2427 /// Represents various kinds of content within an `impl`.
2428 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2429 pub enum ImplItemKind<'hir> {
2430     /// An associated constant of the given type, set to the constant result
2431     /// of the expression.
2432     Const(&'hir Ty<'hir>, BodyId),
2433     /// An associated function implementation with the given signature and body.
2434     Fn(FnSig<'hir>, BodyId),
2435     /// An associated type.
2436     Type(&'hir Ty<'hir>),
2437 }
2438 
2439 /// The name of the associated type for `Fn` return types.
2440 pub const FN_OUTPUT_NAME: Symbol = sym::Output;
2441 
2442 /// Bind a type to an associated type (i.e., `A = Foo`).
2443 ///
2444 /// Bindings like `A: Debug` are represented as a special type `A =
2445 /// $::Debug` that is understood by the astconv code.
2446 ///
2447 /// FIXME(alexreg): why have a separate type for the binding case,
2448 /// wouldn't it be better to make the `ty` field an enum like the
2449 /// following?
2450 ///
2451 /// ```ignore (pseudo-rust)
2452 /// enum TypeBindingKind {
2453 ///    Equals(...),
2454 ///    Binding(...),
2455 /// }
2456 /// ```
2457 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2458 pub struct TypeBinding<'hir> {
2459     pub hir_id: HirId,
2460     pub ident: Ident,
2461     pub gen_args: &'hir GenericArgs<'hir>,
2462     pub kind: TypeBindingKind<'hir>,
2463     pub span: Span,
2464 }
2465 
2466 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2467 pub enum Term<'hir> {
2468     Ty(&'hir Ty<'hir>),
2469     Const(AnonConst),
2470 }
2471 
2472 impl<'hir> From<&'hir Ty<'hir>> for Term<'hir> {
from(ty: &'hir Ty<'hir>) -> Self2473     fn from(ty: &'hir Ty<'hir>) -> Self {
2474         Term::Ty(ty)
2475     }
2476 }
2477 
2478 impl<'hir> From<AnonConst> for Term<'hir> {
from(c: AnonConst) -> Self2479     fn from(c: AnonConst) -> Self {
2480         Term::Const(c)
2481     }
2482 }
2483 
2484 // Represents the two kinds of type bindings.
2485 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2486 pub enum TypeBindingKind<'hir> {
2487     /// E.g., `Foo<Bar: Send>`.
2488     Constraint { bounds: &'hir [GenericBound<'hir>] },
2489     /// E.g., `Foo<Bar = ()>`, `Foo<Bar = ()>`
2490     Equality { term: Term<'hir> },
2491 }
2492 
2493 impl TypeBinding<'_> {
ty(&self) -> &Ty<'_>2494     pub fn ty(&self) -> &Ty<'_> {
2495         match self.kind {
2496             TypeBindingKind::Equality { term: Term::Ty(ref ty) } => ty,
2497             _ => panic!("expected equality type binding for parenthesized generic args"),
2498         }
2499     }
opt_const(&self) -> Option<&'_ AnonConst>2500     pub fn opt_const(&self) -> Option<&'_ AnonConst> {
2501         match self.kind {
2502             TypeBindingKind::Equality { term: Term::Const(ref c) } => Some(c),
2503             _ => None,
2504         }
2505     }
2506 }
2507 
2508 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2509 pub struct Ty<'hir> {
2510     pub hir_id: HirId,
2511     pub kind: TyKind<'hir>,
2512     pub span: Span,
2513 }
2514 
2515 impl<'hir> Ty<'hir> {
2516     /// Returns `true` if `param_def_id` matches the `bounded_ty` of this predicate.
as_generic_param(&self) -> Option<(DefId, Ident)>2517     pub fn as_generic_param(&self) -> Option<(DefId, Ident)> {
2518         let TyKind::Path(QPath::Resolved(None, path)) = self.kind else {
2519             return None;
2520         };
2521         let [segment] = &path.segments else {
2522             return None;
2523         };
2524         match path.res {
2525             Res::Def(DefKind::TyParam, def_id) | Res::SelfTyParam { trait_: def_id } => {
2526                 Some((def_id, segment.ident))
2527             }
2528             _ => None,
2529         }
2530     }
2531 
peel_refs(&self) -> &Self2532     pub fn peel_refs(&self) -> &Self {
2533         let mut final_ty = self;
2534         while let TyKind::Ref(_, MutTy { ty, .. }) = &final_ty.kind {
2535             final_ty = ty;
2536         }
2537         final_ty
2538     }
2539 
find_self_aliases(&self) -> Vec<Span>2540     pub fn find_self_aliases(&self) -> Vec<Span> {
2541         use crate::intravisit::Visitor;
2542         struct MyVisitor(Vec<Span>);
2543         impl<'v> Visitor<'v> for MyVisitor {
2544             fn visit_ty(&mut self, t: &'v Ty<'v>) {
2545                 if matches!(
2546                     &t.kind,
2547                     TyKind::Path(QPath::Resolved(
2548                         _,
2549                         Path { res: crate::def::Res::SelfTyAlias { .. }, .. },
2550                     ))
2551                 ) {
2552                     self.0.push(t.span);
2553                     return;
2554                 }
2555                 crate::intravisit::walk_ty(self, t);
2556             }
2557         }
2558 
2559         let mut my_visitor = MyVisitor(vec![]);
2560         my_visitor.visit_ty(self);
2561         my_visitor.0
2562     }
2563 }
2564 
2565 /// Not represented directly in the AST; referred to by name through a `ty_path`.
2566 #[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Hash, Debug)]
2567 #[derive(HashStable_Generic)]
2568 pub enum PrimTy {
2569     Int(IntTy),
2570     Uint(UintTy),
2571     Float(FloatTy),
2572     Str,
2573     Bool,
2574     Char,
2575 }
2576 
2577 impl PrimTy {
2578     /// All of the primitive types
2579     pub const ALL: [Self; 17] = [
2580         // any changes here should also be reflected in `PrimTy::from_name`
2581         Self::Int(IntTy::I8),
2582         Self::Int(IntTy::I16),
2583         Self::Int(IntTy::I32),
2584         Self::Int(IntTy::I64),
2585         Self::Int(IntTy::I128),
2586         Self::Int(IntTy::Isize),
2587         Self::Uint(UintTy::U8),
2588         Self::Uint(UintTy::U16),
2589         Self::Uint(UintTy::U32),
2590         Self::Uint(UintTy::U64),
2591         Self::Uint(UintTy::U128),
2592         Self::Uint(UintTy::Usize),
2593         Self::Float(FloatTy::F32),
2594         Self::Float(FloatTy::F64),
2595         Self::Bool,
2596         Self::Char,
2597         Self::Str,
2598     ];
2599 
2600     /// Like [`PrimTy::name`], but returns a &str instead of a symbol.
2601     ///
2602     /// Used by clippy.
name_str(self) -> &'static str2603     pub fn name_str(self) -> &'static str {
2604         match self {
2605             PrimTy::Int(i) => i.name_str(),
2606             PrimTy::Uint(u) => u.name_str(),
2607             PrimTy::Float(f) => f.name_str(),
2608             PrimTy::Str => "str",
2609             PrimTy::Bool => "bool",
2610             PrimTy::Char => "char",
2611         }
2612     }
2613 
name(self) -> Symbol2614     pub fn name(self) -> Symbol {
2615         match self {
2616             PrimTy::Int(i) => i.name(),
2617             PrimTy::Uint(u) => u.name(),
2618             PrimTy::Float(f) => f.name(),
2619             PrimTy::Str => sym::str,
2620             PrimTy::Bool => sym::bool,
2621             PrimTy::Char => sym::char,
2622         }
2623     }
2624 
2625     /// Returns the matching `PrimTy` for a `Symbol` such as "str" or "i32".
2626     /// Returns `None` if no matching type is found.
from_name(name: Symbol) -> Option<Self>2627     pub fn from_name(name: Symbol) -> Option<Self> {
2628         let ty = match name {
2629             // any changes here should also be reflected in `PrimTy::ALL`
2630             sym::i8 => Self::Int(IntTy::I8),
2631             sym::i16 => Self::Int(IntTy::I16),
2632             sym::i32 => Self::Int(IntTy::I32),
2633             sym::i64 => Self::Int(IntTy::I64),
2634             sym::i128 => Self::Int(IntTy::I128),
2635             sym::isize => Self::Int(IntTy::Isize),
2636             sym::u8 => Self::Uint(UintTy::U8),
2637             sym::u16 => Self::Uint(UintTy::U16),
2638             sym::u32 => Self::Uint(UintTy::U32),
2639             sym::u64 => Self::Uint(UintTy::U64),
2640             sym::u128 => Self::Uint(UintTy::U128),
2641             sym::usize => Self::Uint(UintTy::Usize),
2642             sym::f32 => Self::Float(FloatTy::F32),
2643             sym::f64 => Self::Float(FloatTy::F64),
2644             sym::bool => Self::Bool,
2645             sym::char => Self::Char,
2646             sym::str => Self::Str,
2647             _ => return None,
2648         };
2649         Some(ty)
2650     }
2651 }
2652 
2653 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2654 pub struct BareFnTy<'hir> {
2655     pub unsafety: Unsafety,
2656     pub abi: Abi,
2657     pub generic_params: &'hir [GenericParam<'hir>],
2658     pub decl: &'hir FnDecl<'hir>,
2659     pub param_names: &'hir [Ident],
2660 }
2661 
2662 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2663 pub struct OpaqueTy<'hir> {
2664     pub generics: &'hir Generics<'hir>,
2665     pub bounds: GenericBounds<'hir>,
2666     pub origin: OpaqueTyOrigin,
2667     // Opaques have duplicated lifetimes, this mapping connects the original lifetime with the copy
2668     // so we can later generate bidirectional outlives predicates to enforce that these lifetimes
2669     // stay in sync.
2670     pub lifetime_mapping: &'hir [(Lifetime, LocalDefId)],
2671     pub in_trait: bool,
2672 }
2673 
2674 /// From whence the opaque type came.
2675 #[derive(Copy, Clone, PartialEq, Eq, Debug, HashStable_Generic)]
2676 pub enum OpaqueTyOrigin {
2677     /// `-> impl Trait`
2678     FnReturn(LocalDefId),
2679     /// `async fn`
2680     AsyncFn(LocalDefId),
2681     /// type aliases: `type Foo = impl Trait;`
2682     TyAlias {
2683         /// associated types in impl blocks for traits.
2684         in_assoc_ty: bool,
2685     },
2686 }
2687 
2688 /// The various kinds of types recognized by the compiler.
2689 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2690 pub enum TyKind<'hir> {
2691     /// A variable length slice (i.e., `[T]`).
2692     Slice(&'hir Ty<'hir>),
2693     /// A fixed length array (i.e., `[T; n]`).
2694     Array(&'hir Ty<'hir>, ArrayLen),
2695     /// A raw pointer (i.e., `*const T` or `*mut T`).
2696     Ptr(MutTy<'hir>),
2697     /// A reference (i.e., `&'a T` or `&'a mut T`).
2698     Ref(&'hir Lifetime, MutTy<'hir>),
2699     /// A bare function (e.g., `fn(usize) -> bool`).
2700     BareFn(&'hir BareFnTy<'hir>),
2701     /// The never type (`!`).
2702     Never,
2703     /// A tuple (`(A, B, C, D, ...)`).
2704     Tup(&'hir [Ty<'hir>]),
2705     /// A path to a type definition (`module::module::...::Type`), or an
2706     /// associated type (e.g., `<Vec<T> as Trait>::Type` or `<T>::Target`).
2707     ///
2708     /// Type parameters may be stored in each `PathSegment`.
2709     Path(QPath<'hir>),
2710     /// An opaque type definition itself. This is only used for `impl Trait`.
2711     ///
2712     /// The generic argument list contains the lifetimes (and in the future
2713     /// possibly parameters) that are actually bound on the `impl Trait`.
2714     ///
2715     /// The last parameter specifies whether this opaque appears in a trait definition.
2716     OpaqueDef(ItemId, &'hir [GenericArg<'hir>], bool),
2717     /// A trait object type `Bound1 + Bound2 + Bound3`
2718     /// where `Bound` is a trait or a lifetime.
2719     TraitObject(&'hir [PolyTraitRef<'hir>], &'hir Lifetime, TraitObjectSyntax),
2720     /// Unused for now.
2721     Typeof(AnonConst),
2722     /// `TyKind::Infer` means the type should be inferred instead of it having been
2723     /// specified. This can appear anywhere in a type.
2724     Infer,
2725     /// Placeholder for a type that has failed to be defined.
2726     Err(rustc_span::ErrorGuaranteed),
2727 }
2728 
2729 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2730 pub enum InlineAsmOperand<'hir> {
2731     In {
2732         reg: InlineAsmRegOrRegClass,
2733         expr: &'hir Expr<'hir>,
2734     },
2735     Out {
2736         reg: InlineAsmRegOrRegClass,
2737         late: bool,
2738         expr: Option<&'hir Expr<'hir>>,
2739     },
2740     InOut {
2741         reg: InlineAsmRegOrRegClass,
2742         late: bool,
2743         expr: &'hir Expr<'hir>,
2744     },
2745     SplitInOut {
2746         reg: InlineAsmRegOrRegClass,
2747         late: bool,
2748         in_expr: &'hir Expr<'hir>,
2749         out_expr: Option<&'hir Expr<'hir>>,
2750     },
2751     Const {
2752         anon_const: AnonConst,
2753     },
2754     SymFn {
2755         anon_const: AnonConst,
2756     },
2757     SymStatic {
2758         path: QPath<'hir>,
2759         def_id: DefId,
2760     },
2761 }
2762 
2763 impl<'hir> InlineAsmOperand<'hir> {
reg(&self) -> Option<InlineAsmRegOrRegClass>2764     pub fn reg(&self) -> Option<InlineAsmRegOrRegClass> {
2765         match *self {
2766             Self::In { reg, .. }
2767             | Self::Out { reg, .. }
2768             | Self::InOut { reg, .. }
2769             | Self::SplitInOut { reg, .. } => Some(reg),
2770             Self::Const { .. } | Self::SymFn { .. } | Self::SymStatic { .. } => None,
2771         }
2772     }
2773 
is_clobber(&self) -> bool2774     pub fn is_clobber(&self) -> bool {
2775         matches!(
2776             self,
2777             InlineAsmOperand::Out { reg: InlineAsmRegOrRegClass::Reg(_), late: _, expr: None }
2778         )
2779     }
2780 }
2781 
2782 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2783 pub struct InlineAsm<'hir> {
2784     pub template: &'hir [InlineAsmTemplatePiece],
2785     pub template_strs: &'hir [(Symbol, Option<Symbol>, Span)],
2786     pub operands: &'hir [(InlineAsmOperand<'hir>, Span)],
2787     pub options: InlineAsmOptions,
2788     pub line_spans: &'hir [Span],
2789 }
2790 
2791 /// Represents a parameter in a function header.
2792 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2793 pub struct Param<'hir> {
2794     pub hir_id: HirId,
2795     pub pat: &'hir Pat<'hir>,
2796     pub ty_span: Span,
2797     pub span: Span,
2798 }
2799 
2800 /// Represents the header (not the body) of a function declaration.
2801 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2802 pub struct FnDecl<'hir> {
2803     /// The types of the function's parameters.
2804     ///
2805     /// Additional argument data is stored in the function's [body](Body::params).
2806     pub inputs: &'hir [Ty<'hir>],
2807     pub output: FnRetTy<'hir>,
2808     pub c_variadic: bool,
2809     /// Does the function have an implicit self?
2810     pub implicit_self: ImplicitSelfKind,
2811     /// Is lifetime elision allowed.
2812     pub lifetime_elision_allowed: bool,
2813 }
2814 
2815 /// Represents what type of implicit self a function has, if any.
2816 #[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)]
2817 pub enum ImplicitSelfKind {
2818     /// Represents a `fn x(self);`.
2819     Imm,
2820     /// Represents a `fn x(mut self);`.
2821     Mut,
2822     /// Represents a `fn x(&self);`.
2823     ImmRef,
2824     /// Represents a `fn x(&mut self);`.
2825     MutRef,
2826     /// Represents when a function does not have a self argument or
2827     /// when a function has a `self: X` argument.
2828     None,
2829 }
2830 
2831 impl ImplicitSelfKind {
2832     /// Does this represent an implicit self?
has_implicit_self(&self) -> bool2833     pub fn has_implicit_self(&self) -> bool {
2834         !matches!(*self, ImplicitSelfKind::None)
2835     }
2836 }
2837 
2838 #[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug)]
2839 #[derive(HashStable_Generic)]
2840 pub enum IsAsync {
2841     Async,
2842     NotAsync,
2843 }
2844 
2845 impl IsAsync {
is_async(self) -> bool2846     pub fn is_async(self) -> bool {
2847         self == IsAsync::Async
2848     }
2849 }
2850 
2851 #[derive(Copy, Clone, PartialEq, Eq, Debug, Encodable, Decodable, HashStable_Generic)]
2852 pub enum Defaultness {
2853     Default { has_value: bool },
2854     Final,
2855 }
2856 
2857 impl Defaultness {
has_value(&self) -> bool2858     pub fn has_value(&self) -> bool {
2859         match *self {
2860             Defaultness::Default { has_value } => has_value,
2861             Defaultness::Final => true,
2862         }
2863     }
2864 
is_final(&self) -> bool2865     pub fn is_final(&self) -> bool {
2866         *self == Defaultness::Final
2867     }
2868 
is_default(&self) -> bool2869     pub fn is_default(&self) -> bool {
2870         matches!(*self, Defaultness::Default { .. })
2871     }
2872 }
2873 
2874 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2875 pub enum FnRetTy<'hir> {
2876     /// Return type is not specified.
2877     ///
2878     /// Functions default to `()` and
2879     /// closures default to inference. Span points to where return
2880     /// type would be inserted.
2881     DefaultReturn(Span),
2882     /// Everything else.
2883     Return(&'hir Ty<'hir>),
2884 }
2885 
2886 impl FnRetTy<'_> {
2887     #[inline]
span(&self) -> Span2888     pub fn span(&self) -> Span {
2889         match *self {
2890             Self::DefaultReturn(span) => span,
2891             Self::Return(ref ty) => ty.span,
2892         }
2893     }
2894 }
2895 
2896 /// Represents `for<...>` binder before a closure
2897 #[derive(Copy, Clone, Debug, HashStable_Generic)]
2898 pub enum ClosureBinder {
2899     /// Binder is not specified.
2900     Default,
2901     /// Binder is specified.
2902     ///
2903     /// Span points to the whole `for<...>`.
2904     For { span: Span },
2905 }
2906 
2907 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2908 pub struct Mod<'hir> {
2909     pub spans: ModSpans,
2910     pub item_ids: &'hir [ItemId],
2911 }
2912 
2913 #[derive(Copy, Clone, Debug, HashStable_Generic)]
2914 pub struct ModSpans {
2915     /// A span from the first token past `{` to the last token until `}`.
2916     /// For `mod foo;`, the inner span ranges from the first token
2917     /// to the last token in the external file.
2918     pub inner_span: Span,
2919     pub inject_use_span: Span,
2920 }
2921 
2922 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2923 pub struct EnumDef<'hir> {
2924     pub variants: &'hir [Variant<'hir>],
2925 }
2926 
2927 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2928 pub struct Variant<'hir> {
2929     /// Name of the variant.
2930     pub ident: Ident,
2931     /// Id of the variant (not the constructor, see `VariantData::ctor_hir_id()`).
2932     pub hir_id: HirId,
2933     pub def_id: LocalDefId,
2934     /// Fields and constructor id of the variant.
2935     pub data: VariantData<'hir>,
2936     /// Explicit discriminant (e.g., `Foo = 1`).
2937     pub disr_expr: Option<AnonConst>,
2938     /// Span
2939     pub span: Span,
2940 }
2941 
2942 #[derive(Copy, Clone, PartialEq, Debug, HashStable_Generic)]
2943 pub enum UseKind {
2944     /// One import, e.g., `use foo::bar` or `use foo::bar as baz`.
2945     /// Also produced for each element of a list `use`, e.g.
2946     /// `use foo::{a, b}` lowers to `use foo::a; use foo::b;`.
2947     Single,
2948 
2949     /// Glob import, e.g., `use foo::*`.
2950     Glob,
2951 
2952     /// Degenerate list import, e.g., `use foo::{a, b}` produces
2953     /// an additional `use foo::{}` for performing checks such as
2954     /// unstable feature gating. May be removed in the future.
2955     ListStem,
2956 }
2957 
2958 /// References to traits in impls.
2959 ///
2960 /// `resolve` maps each `TraitRef`'s `ref_id` to its defining trait; that's all
2961 /// that the `ref_id` is for. Note that `ref_id`'s value is not the `HirId` of the
2962 /// trait being referred to but just a unique `HirId` that serves as a key
2963 /// within the resolution map.
2964 #[derive(Clone, Debug, Copy, HashStable_Generic)]
2965 pub struct TraitRef<'hir> {
2966     pub path: &'hir Path<'hir>,
2967     // Don't hash the `ref_id`. It is tracked via the thing it is used to access.
2968     #[stable_hasher(ignore)]
2969     pub hir_ref_id: HirId,
2970 }
2971 
2972 impl TraitRef<'_> {
2973     /// Gets the `DefId` of the referenced trait. It _must_ actually be a trait or trait alias.
trait_def_id(&self) -> Option<DefId>2974     pub fn trait_def_id(&self) -> Option<DefId> {
2975         match self.path.res {
2976             Res::Def(DefKind::Trait | DefKind::TraitAlias, did) => Some(did),
2977             Res::Err => None,
2978             _ => unreachable!(),
2979         }
2980     }
2981 }
2982 
2983 #[derive(Clone, Debug, Copy, HashStable_Generic)]
2984 pub struct PolyTraitRef<'hir> {
2985     /// The `'a` in `for<'a> Foo<&'a T>`.
2986     pub bound_generic_params: &'hir [GenericParam<'hir>],
2987 
2988     /// The `Foo<&'a T>` in `for<'a> Foo<&'a T>`.
2989     pub trait_ref: TraitRef<'hir>,
2990 
2991     pub span: Span,
2992 }
2993 
2994 #[derive(Debug, Clone, Copy, HashStable_Generic)]
2995 pub struct FieldDef<'hir> {
2996     pub span: Span,
2997     pub vis_span: Span,
2998     pub ident: Ident,
2999     pub hir_id: HirId,
3000     pub def_id: LocalDefId,
3001     pub ty: &'hir Ty<'hir>,
3002 }
3003 
3004 impl FieldDef<'_> {
3005     // Still necessary in couple of places
is_positional(&self) -> bool3006     pub fn is_positional(&self) -> bool {
3007         let first = self.ident.as_str().as_bytes()[0];
3008         (b'0'..=b'9').contains(&first)
3009     }
3010 }
3011 
3012 /// Fields and constructor IDs of enum variants and structs.
3013 #[derive(Debug, Clone, Copy, HashStable_Generic)]
3014 pub enum VariantData<'hir> {
3015     /// A struct variant.
3016     ///
3017     /// E.g., `Bar { .. }` as in `enum Foo { Bar { .. } }`.
3018     Struct(&'hir [FieldDef<'hir>], /* recovered */ bool),
3019     /// A tuple variant.
3020     ///
3021     /// E.g., `Bar(..)` as in `enum Foo { Bar(..) }`.
3022     Tuple(&'hir [FieldDef<'hir>], HirId, LocalDefId),
3023     /// A unit variant.
3024     ///
3025     /// E.g., `Bar = ..` as in `enum Foo { Bar = .. }`.
3026     Unit(HirId, LocalDefId),
3027 }
3028 
3029 impl<'hir> VariantData<'hir> {
3030     /// Return the fields of this variant.
fields(&self) -> &'hir [FieldDef<'hir>]3031     pub fn fields(&self) -> &'hir [FieldDef<'hir>] {
3032         match *self {
3033             VariantData::Struct(ref fields, ..) | VariantData::Tuple(ref fields, ..) => fields,
3034             _ => &[],
3035         }
3036     }
3037 
ctor(&self) -> Option<(CtorKind, HirId, LocalDefId)>3038     pub fn ctor(&self) -> Option<(CtorKind, HirId, LocalDefId)> {
3039         match *self {
3040             VariantData::Tuple(_, hir_id, def_id) => Some((CtorKind::Fn, hir_id, def_id)),
3041             VariantData::Unit(hir_id, def_id) => Some((CtorKind::Const, hir_id, def_id)),
3042             VariantData::Struct(..) => None,
3043         }
3044     }
3045 
3046     #[inline]
ctor_kind(&self) -> Option<CtorKind>3047     pub fn ctor_kind(&self) -> Option<CtorKind> {
3048         self.ctor().map(|(kind, ..)| kind)
3049     }
3050 
3051     /// Return the `HirId` of this variant's constructor, if it has one.
3052     #[inline]
ctor_hir_id(&self) -> Option<HirId>3053     pub fn ctor_hir_id(&self) -> Option<HirId> {
3054         self.ctor().map(|(_, hir_id, _)| hir_id)
3055     }
3056 
3057     /// Return the `LocalDefId` of this variant's constructor, if it has one.
3058     #[inline]
ctor_def_id(&self) -> Option<LocalDefId>3059     pub fn ctor_def_id(&self) -> Option<LocalDefId> {
3060         self.ctor().map(|(.., def_id)| def_id)
3061     }
3062 }
3063 
3064 // The bodies for items are stored "out of line", in a separate
3065 // hashmap in the `Crate`. Here we just record the hir-id of the item
3066 // so it can fetched later.
3067 #[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, Hash, HashStable_Generic)]
3068 pub struct ItemId {
3069     pub owner_id: OwnerId,
3070 }
3071 
3072 impl ItemId {
3073     #[inline]
hir_id(&self) -> HirId3074     pub fn hir_id(&self) -> HirId {
3075         // Items are always HIR owners.
3076         HirId::make_owner(self.owner_id.def_id)
3077     }
3078 }
3079 
3080 /// An item
3081 ///
3082 /// The name might be a dummy name in case of anonymous items
3083 #[derive(Debug, Clone, Copy, HashStable_Generic)]
3084 pub struct Item<'hir> {
3085     pub ident: Ident,
3086     pub owner_id: OwnerId,
3087     pub kind: ItemKind<'hir>,
3088     pub span: Span,
3089     pub vis_span: Span,
3090 }
3091 
3092 impl<'hir> Item<'hir> {
3093     #[inline]
hir_id(&self) -> HirId3094     pub fn hir_id(&self) -> HirId {
3095         // Items are always HIR owners.
3096         HirId::make_owner(self.owner_id.def_id)
3097     }
3098 
item_id(&self) -> ItemId3099     pub fn item_id(&self) -> ItemId {
3100         ItemId { owner_id: self.owner_id }
3101     }
3102 
3103     /// Expect an [`ItemKind::ExternCrate`] or panic.
3104     #[track_caller]
expect_extern_crate(&self) -> Option<Symbol>3105     pub fn expect_extern_crate(&self) -> Option<Symbol> {
3106         let ItemKind::ExternCrate(s) = self.kind else { self.expect_failed("an extern crate") };
3107         s
3108     }
3109 
3110     /// Expect an [`ItemKind::Use`] or panic.
3111     #[track_caller]
expect_use(&self) -> (&'hir UsePath<'hir>, UseKind)3112     pub fn expect_use(&self) -> (&'hir UsePath<'hir>, UseKind) {
3113         let ItemKind::Use(p, uk) = self.kind else { self.expect_failed("a use") };
3114         (p, uk)
3115     }
3116 
3117     /// Expect an [`ItemKind::Static`] or panic.
3118     #[track_caller]
expect_static(&self) -> (&'hir Ty<'hir>, Mutability, BodyId)3119     pub fn expect_static(&self) -> (&'hir Ty<'hir>, Mutability, BodyId) {
3120         let ItemKind::Static(ty, mutbl, body) = self.kind else { self.expect_failed("a static") };
3121         (ty, mutbl, body)
3122     }
3123     /// Expect an [`ItemKind::Const`] or panic.
3124     #[track_caller]
expect_const(&self) -> (&'hir Ty<'hir>, BodyId)3125     pub fn expect_const(&self) -> (&'hir Ty<'hir>, BodyId) {
3126         let ItemKind::Const(ty, body) = self.kind else { self.expect_failed("a constant") };
3127         (ty, body)
3128     }
3129     /// Expect an [`ItemKind::Fn`] or panic.
3130     #[track_caller]
expect_fn(&self) -> (&FnSig<'hir>, &'hir Generics<'hir>, BodyId)3131     pub fn expect_fn(&self) -> (&FnSig<'hir>, &'hir Generics<'hir>, BodyId) {
3132         let ItemKind::Fn(sig, gen, body) = &self.kind else { self.expect_failed("a function") };
3133         (sig, gen, *body)
3134     }
3135 
3136     /// Expect an [`ItemKind::Macro`] or panic.
3137     #[track_caller]
expect_macro(&self) -> (&ast::MacroDef, MacroKind)3138     pub fn expect_macro(&self) -> (&ast::MacroDef, MacroKind) {
3139         let ItemKind::Macro(def, mk) = &self.kind else { self.expect_failed("a macro") };
3140         (def, *mk)
3141     }
3142 
3143     /// Expect an [`ItemKind::Mod`] or panic.
3144     #[track_caller]
expect_mod(&self) -> &'hir Mod<'hir>3145     pub fn expect_mod(&self) -> &'hir Mod<'hir> {
3146         let ItemKind::Mod(m) = self.kind else { self.expect_failed("a module") };
3147         m
3148     }
3149 
3150     /// Expect an [`ItemKind::ForeignMod`] or panic.
3151     #[track_caller]
expect_foreign_mod(&self) -> (Abi, &'hir [ForeignItemRef])3152     pub fn expect_foreign_mod(&self) -> (Abi, &'hir [ForeignItemRef]) {
3153         let ItemKind::ForeignMod { abi, items } = self.kind else { self.expect_failed("a foreign module") };
3154         (abi, items)
3155     }
3156 
3157     /// Expect an [`ItemKind::GlobalAsm`] or panic.
3158     #[track_caller]
expect_global_asm(&self) -> &'hir InlineAsm<'hir>3159     pub fn expect_global_asm(&self) -> &'hir InlineAsm<'hir> {
3160         let ItemKind::GlobalAsm(asm) = self.kind else { self.expect_failed("a global asm") };
3161         asm
3162     }
3163 
3164     /// Expect an [`ItemKind::TyAlias`] or panic.
3165     #[track_caller]
expect_ty_alias(&self) -> (&'hir Ty<'hir>, &'hir Generics<'hir>)3166     pub fn expect_ty_alias(&self) -> (&'hir Ty<'hir>, &'hir Generics<'hir>) {
3167         let ItemKind::TyAlias(ty, gen) = self.kind else { self.expect_failed("a type alias") };
3168         (ty, gen)
3169     }
3170 
3171     /// Expect an [`ItemKind::OpaqueTy`] or panic.
3172     #[track_caller]
expect_opaque_ty(&self) -> &OpaqueTy<'hir>3173     pub fn expect_opaque_ty(&self) -> &OpaqueTy<'hir> {
3174         let ItemKind::OpaqueTy(ty) = &self.kind else { self.expect_failed("an opaque type") };
3175         ty
3176     }
3177 
3178     /// Expect an [`ItemKind::Enum`] or panic.
3179     #[track_caller]
expect_enum(&self) -> (&EnumDef<'hir>, &'hir Generics<'hir>)3180     pub fn expect_enum(&self) -> (&EnumDef<'hir>, &'hir Generics<'hir>) {
3181         let ItemKind::Enum(def, gen) = &self.kind else { self.expect_failed("an enum") };
3182         (def, gen)
3183     }
3184 
3185     /// Expect an [`ItemKind::Struct`] or panic.
3186     #[track_caller]
expect_struct(&self) -> (&VariantData<'hir>, &'hir Generics<'hir>)3187     pub fn expect_struct(&self) -> (&VariantData<'hir>, &'hir Generics<'hir>) {
3188         let ItemKind::Struct(data, gen) = &self.kind else { self.expect_failed("a struct") };
3189         (data, gen)
3190     }
3191 
3192     /// Expect an [`ItemKind::Union`] or panic.
3193     #[track_caller]
expect_union(&self) -> (&VariantData<'hir>, &'hir Generics<'hir>)3194     pub fn expect_union(&self) -> (&VariantData<'hir>, &'hir Generics<'hir>) {
3195         let ItemKind::Union(data, gen) = &self.kind else { self.expect_failed("a union") };
3196         (data, gen)
3197     }
3198 
3199     /// Expect an [`ItemKind::Trait`] or panic.
3200     #[track_caller]
expect_trait( self, ) -> (IsAuto, Unsafety, &'hir Generics<'hir>, GenericBounds<'hir>, &'hir [TraitItemRef])3201     pub fn expect_trait(
3202         self,
3203     ) -> (IsAuto, Unsafety, &'hir Generics<'hir>, GenericBounds<'hir>, &'hir [TraitItemRef]) {
3204         let ItemKind::Trait(is_auto, unsafety, gen, bounds, items) = self.kind else { self.expect_failed("a trait") };
3205         (is_auto, unsafety, gen, bounds, items)
3206     }
3207 
3208     /// Expect an [`ItemKind::TraitAlias`] or panic.
3209     #[track_caller]
expect_trait_alias(&self) -> (&'hir Generics<'hir>, GenericBounds<'hir>)3210     pub fn expect_trait_alias(&self) -> (&'hir Generics<'hir>, GenericBounds<'hir>) {
3211         let ItemKind::TraitAlias(gen, bounds) = self.kind else { self.expect_failed("a trait alias") };
3212         (gen, bounds)
3213     }
3214 
3215     /// Expect an [`ItemKind::Impl`] or panic.
3216     #[track_caller]
expect_impl(&self) -> &'hir Impl<'hir>3217     pub fn expect_impl(&self) -> &'hir Impl<'hir> {
3218         let ItemKind::Impl(imp) = self.kind else { self.expect_failed("an impl") };
3219         imp
3220     }
3221 
3222     #[track_caller]
expect_failed(&self, expected: &'static str) -> !3223     fn expect_failed(&self, expected: &'static str) -> ! {
3224         panic!("expected {expected} item, found {self:?}")
3225     }
3226 }
3227 
3228 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
3229 #[derive(Encodable, Decodable, HashStable_Generic)]
3230 pub enum Unsafety {
3231     Unsafe,
3232     Normal,
3233 }
3234 
3235 impl Unsafety {
prefix_str(&self) -> &'static str3236     pub fn prefix_str(&self) -> &'static str {
3237         match self {
3238             Self::Unsafe => "unsafe ",
3239             Self::Normal => "",
3240         }
3241     }
3242 }
3243 
3244 impl fmt::Display for Unsafety {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result3245     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3246         f.write_str(match *self {
3247             Self::Unsafe => "unsafe",
3248             Self::Normal => "normal",
3249         })
3250     }
3251 }
3252 
3253 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
3254 #[derive(Encodable, Decodable, HashStable_Generic)]
3255 pub enum Constness {
3256     Const,
3257     NotConst,
3258 }
3259 
3260 impl fmt::Display for Constness {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result3261     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3262         f.write_str(match *self {
3263             Self::Const => "const",
3264             Self::NotConst => "non-const",
3265         })
3266     }
3267 }
3268 
3269 #[derive(Copy, Clone, Debug, HashStable_Generic)]
3270 pub struct FnHeader {
3271     pub unsafety: Unsafety,
3272     pub constness: Constness,
3273     pub asyncness: IsAsync,
3274     pub abi: Abi,
3275 }
3276 
3277 impl FnHeader {
is_async(&self) -> bool3278     pub fn is_async(&self) -> bool {
3279         matches!(&self.asyncness, IsAsync::Async)
3280     }
3281 
is_const(&self) -> bool3282     pub fn is_const(&self) -> bool {
3283         matches!(&self.constness, Constness::Const)
3284     }
3285 
is_unsafe(&self) -> bool3286     pub fn is_unsafe(&self) -> bool {
3287         matches!(&self.unsafety, Unsafety::Unsafe)
3288     }
3289 }
3290 
3291 #[derive(Debug, Clone, Copy, HashStable_Generic)]
3292 pub enum ItemKind<'hir> {
3293     /// An `extern crate` item, with optional *original* crate name if the crate was renamed.
3294     ///
3295     /// E.g., `extern crate foo` or `extern crate foo_bar as foo`.
3296     ExternCrate(Option<Symbol>),
3297 
3298     /// `use foo::bar::*;` or `use foo::bar::baz as quux;`
3299     ///
3300     /// or just
3301     ///
3302     /// `use foo::bar::baz;` (with `as baz` implicitly on the right).
3303     Use(&'hir UsePath<'hir>, UseKind),
3304 
3305     /// A `static` item.
3306     Static(&'hir Ty<'hir>, Mutability, BodyId),
3307     /// A `const` item.
3308     Const(&'hir Ty<'hir>, BodyId),
3309     /// A function declaration.
3310     Fn(FnSig<'hir>, &'hir Generics<'hir>, BodyId),
3311     /// A MBE macro definition (`macro_rules!` or `macro`).
3312     Macro(&'hir ast::MacroDef, MacroKind),
3313     /// A module.
3314     Mod(&'hir Mod<'hir>),
3315     /// An external module, e.g. `extern { .. }`.
3316     ForeignMod { abi: Abi, items: &'hir [ForeignItemRef] },
3317     /// Module-level inline assembly (from `global_asm!`).
3318     GlobalAsm(&'hir InlineAsm<'hir>),
3319     /// A type alias, e.g., `type Foo = Bar<u8>`.
3320     TyAlias(&'hir Ty<'hir>, &'hir Generics<'hir>),
3321     /// An opaque `impl Trait` type alias, e.g., `type Foo = impl Bar;`.
3322     OpaqueTy(&'hir OpaqueTy<'hir>),
3323     /// An enum definition, e.g., `enum Foo<A, B> {C<A>, D<B>}`.
3324     Enum(EnumDef<'hir>, &'hir Generics<'hir>),
3325     /// A struct definition, e.g., `struct Foo<A> {x: A}`.
3326     Struct(VariantData<'hir>, &'hir Generics<'hir>),
3327     /// A union definition, e.g., `union Foo<A, B> {x: A, y: B}`.
3328     Union(VariantData<'hir>, &'hir Generics<'hir>),
3329     /// A trait definition.
3330     Trait(IsAuto, Unsafety, &'hir Generics<'hir>, GenericBounds<'hir>, &'hir [TraitItemRef]),
3331     /// A trait alias.
3332     TraitAlias(&'hir Generics<'hir>, GenericBounds<'hir>),
3333 
3334     /// An implementation, e.g., `impl<A> Trait for Foo { .. }`.
3335     Impl(&'hir Impl<'hir>),
3336 }
3337 
3338 #[derive(Debug, Clone, Copy, HashStable_Generic)]
3339 pub struct Impl<'hir> {
3340     pub unsafety: Unsafety,
3341     pub polarity: ImplPolarity,
3342     pub defaultness: Defaultness,
3343     // We do not put a `Span` in `Defaultness` because it breaks foreign crate metadata
3344     // decoding as `Span`s cannot be decoded when a `Session` is not available.
3345     pub defaultness_span: Option<Span>,
3346     pub constness: Constness,
3347     pub generics: &'hir Generics<'hir>,
3348 
3349     /// The trait being implemented, if any.
3350     pub of_trait: Option<TraitRef<'hir>>,
3351 
3352     pub self_ty: &'hir Ty<'hir>,
3353     pub items: &'hir [ImplItemRef],
3354 }
3355 
3356 impl ItemKind<'_> {
generics(&self) -> Option<&Generics<'_>>3357     pub fn generics(&self) -> Option<&Generics<'_>> {
3358         Some(match *self {
3359             ItemKind::Fn(_, ref generics, _)
3360             | ItemKind::TyAlias(_, ref generics)
3361             | ItemKind::OpaqueTy(OpaqueTy { ref generics, .. })
3362             | ItemKind::Enum(_, ref generics)
3363             | ItemKind::Struct(_, ref generics)
3364             | ItemKind::Union(_, ref generics)
3365             | ItemKind::Trait(_, _, ref generics, _, _)
3366             | ItemKind::TraitAlias(ref generics, _)
3367             | ItemKind::Impl(Impl { ref generics, .. }) => generics,
3368             _ => return None,
3369         })
3370     }
3371 
descr(&self) -> &'static str3372     pub fn descr(&self) -> &'static str {
3373         match self {
3374             ItemKind::ExternCrate(..) => "extern crate",
3375             ItemKind::Use(..) => "`use` import",
3376             ItemKind::Static(..) => "static item",
3377             ItemKind::Const(..) => "constant item",
3378             ItemKind::Fn(..) => "function",
3379             ItemKind::Macro(..) => "macro",
3380             ItemKind::Mod(..) => "module",
3381             ItemKind::ForeignMod { .. } => "extern block",
3382             ItemKind::GlobalAsm(..) => "global asm item",
3383             ItemKind::TyAlias(..) => "type alias",
3384             ItemKind::OpaqueTy(..) => "opaque type",
3385             ItemKind::Enum(..) => "enum",
3386             ItemKind::Struct(..) => "struct",
3387             ItemKind::Union(..) => "union",
3388             ItemKind::Trait(..) => "trait",
3389             ItemKind::TraitAlias(..) => "trait alias",
3390             ItemKind::Impl(..) => "implementation",
3391         }
3392     }
3393 }
3394 
3395 /// A reference from an trait to one of its associated items. This
3396 /// contains the item's id, naturally, but also the item's name and
3397 /// some other high-level details (like whether it is an associated
3398 /// type or method, and whether it is public). This allows other
3399 /// passes to find the impl they want without loading the ID (which
3400 /// means fewer edges in the incremental compilation graph).
3401 #[derive(Debug, Clone, Copy, HashStable_Generic)]
3402 pub struct TraitItemRef {
3403     pub id: TraitItemId,
3404     pub ident: Ident,
3405     pub kind: AssocItemKind,
3406     pub span: Span,
3407 }
3408 
3409 /// A reference from an impl to one of its associated items. This
3410 /// contains the item's ID, naturally, but also the item's name and
3411 /// some other high-level details (like whether it is an associated
3412 /// type or method, and whether it is public). This allows other
3413 /// passes to find the impl they want without loading the ID (which
3414 /// means fewer edges in the incremental compilation graph).
3415 #[derive(Debug, Clone, Copy, HashStable_Generic)]
3416 pub struct ImplItemRef {
3417     pub id: ImplItemId,
3418     pub ident: Ident,
3419     pub kind: AssocItemKind,
3420     pub span: Span,
3421     /// When we are in a trait impl, link to the trait-item's id.
3422     pub trait_item_def_id: Option<DefId>,
3423 }
3424 
3425 #[derive(Copy, Clone, PartialEq, Debug, HashStable_Generic)]
3426 pub enum AssocItemKind {
3427     Const,
3428     Fn { has_self: bool },
3429     Type,
3430 }
3431 
3432 // The bodies for items are stored "out of line", in a separate
3433 // hashmap in the `Crate`. Here we just record the hir-id of the item
3434 // so it can fetched later.
3435 #[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)]
3436 pub struct ForeignItemId {
3437     pub owner_id: OwnerId,
3438 }
3439 
3440 impl ForeignItemId {
3441     #[inline]
hir_id(&self) -> HirId3442     pub fn hir_id(&self) -> HirId {
3443         // Items are always HIR owners.
3444         HirId::make_owner(self.owner_id.def_id)
3445     }
3446 }
3447 
3448 /// A reference from a foreign block to one of its items. This
3449 /// contains the item's ID, naturally, but also the item's name and
3450 /// some other high-level details (like whether it is an associated
3451 /// type or method, and whether it is public). This allows other
3452 /// passes to find the impl they want without loading the ID (which
3453 /// means fewer edges in the incremental compilation graph).
3454 #[derive(Debug, Clone, Copy, HashStable_Generic)]
3455 pub struct ForeignItemRef {
3456     pub id: ForeignItemId,
3457     pub ident: Ident,
3458     pub span: Span,
3459 }
3460 
3461 #[derive(Debug, Clone, Copy, HashStable_Generic)]
3462 pub struct ForeignItem<'hir> {
3463     pub ident: Ident,
3464     pub kind: ForeignItemKind<'hir>,
3465     pub owner_id: OwnerId,
3466     pub span: Span,
3467     pub vis_span: Span,
3468 }
3469 
3470 impl ForeignItem<'_> {
3471     #[inline]
hir_id(&self) -> HirId3472     pub fn hir_id(&self) -> HirId {
3473         // Items are always HIR owners.
3474         HirId::make_owner(self.owner_id.def_id)
3475     }
3476 
foreign_item_id(&self) -> ForeignItemId3477     pub fn foreign_item_id(&self) -> ForeignItemId {
3478         ForeignItemId { owner_id: self.owner_id }
3479     }
3480 }
3481 
3482 /// An item within an `extern` block.
3483 #[derive(Debug, Clone, Copy, HashStable_Generic)]
3484 pub enum ForeignItemKind<'hir> {
3485     /// A foreign function.
3486     Fn(&'hir FnDecl<'hir>, &'hir [Ident], &'hir Generics<'hir>),
3487     /// A foreign static item (`static ext: u8`).
3488     Static(&'hir Ty<'hir>, Mutability),
3489     /// A foreign type.
3490     Type,
3491 }
3492 
3493 /// A variable captured by a closure.
3494 #[derive(Debug, Copy, Clone, HashStable_Generic)]
3495 pub struct Upvar {
3496     /// First span where it is accessed (there can be multiple).
3497     pub span: Span,
3498 }
3499 
3500 // The TraitCandidate's import_ids is empty if the trait is defined in the same module, and
3501 // has length > 0 if the trait is found through an chain of imports, starting with the
3502 // import/use statement in the scope where the trait is used.
3503 #[derive(Debug, Clone, HashStable_Generic)]
3504 pub struct TraitCandidate {
3505     pub def_id: DefId,
3506     pub import_ids: SmallVec<[LocalDefId; 1]>,
3507 }
3508 
3509 #[derive(Copy, Clone, Debug, HashStable_Generic)]
3510 pub enum OwnerNode<'hir> {
3511     Item(&'hir Item<'hir>),
3512     ForeignItem(&'hir ForeignItem<'hir>),
3513     TraitItem(&'hir TraitItem<'hir>),
3514     ImplItem(&'hir ImplItem<'hir>),
3515     Crate(&'hir Mod<'hir>),
3516 }
3517 
3518 impl<'hir> OwnerNode<'hir> {
ident(&self) -> Option<Ident>3519     pub fn ident(&self) -> Option<Ident> {
3520         match self {
3521             OwnerNode::Item(Item { ident, .. })
3522             | OwnerNode::ForeignItem(ForeignItem { ident, .. })
3523             | OwnerNode::ImplItem(ImplItem { ident, .. })
3524             | OwnerNode::TraitItem(TraitItem { ident, .. }) => Some(*ident),
3525             OwnerNode::Crate(..) => None,
3526         }
3527     }
3528 
span(&self) -> Span3529     pub fn span(&self) -> Span {
3530         match self {
3531             OwnerNode::Item(Item { span, .. })
3532             | OwnerNode::ForeignItem(ForeignItem { span, .. })
3533             | OwnerNode::ImplItem(ImplItem { span, .. })
3534             | OwnerNode::TraitItem(TraitItem { span, .. }) => *span,
3535             OwnerNode::Crate(Mod { spans: ModSpans { inner_span, .. }, .. }) => *inner_span,
3536         }
3537     }
3538 
fn_decl(self) -> Option<&'hir FnDecl<'hir>>3539     pub fn fn_decl(self) -> Option<&'hir FnDecl<'hir>> {
3540         match self {
3541             OwnerNode::TraitItem(TraitItem { kind: TraitItemKind::Fn(fn_sig, _), .. })
3542             | OwnerNode::ImplItem(ImplItem { kind: ImplItemKind::Fn(fn_sig, _), .. })
3543             | OwnerNode::Item(Item { kind: ItemKind::Fn(fn_sig, _, _), .. }) => Some(fn_sig.decl),
3544             OwnerNode::ForeignItem(ForeignItem {
3545                 kind: ForeignItemKind::Fn(fn_decl, _, _),
3546                 ..
3547             }) => Some(fn_decl),
3548             _ => None,
3549         }
3550     }
3551 
body_id(&self) -> Option<BodyId>3552     pub fn body_id(&self) -> Option<BodyId> {
3553         match self {
3554             OwnerNode::Item(Item {
3555                 kind:
3556                     ItemKind::Static(_, _, body) | ItemKind::Const(_, body) | ItemKind::Fn(_, _, body),
3557                 ..
3558             })
3559             | OwnerNode::TraitItem(TraitItem {
3560                 kind:
3561                     TraitItemKind::Fn(_, TraitFn::Provided(body)) | TraitItemKind::Const(_, Some(body)),
3562                 ..
3563             })
3564             | OwnerNode::ImplItem(ImplItem {
3565                 kind: ImplItemKind::Fn(_, body) | ImplItemKind::Const(_, body),
3566                 ..
3567             }) => Some(*body),
3568             _ => None,
3569         }
3570     }
3571 
generics(self) -> Option<&'hir Generics<'hir>>3572     pub fn generics(self) -> Option<&'hir Generics<'hir>> {
3573         Node::generics(self.into())
3574     }
3575 
def_id(self) -> OwnerId3576     pub fn def_id(self) -> OwnerId {
3577         match self {
3578             OwnerNode::Item(Item { owner_id, .. })
3579             | OwnerNode::TraitItem(TraitItem { owner_id, .. })
3580             | OwnerNode::ImplItem(ImplItem { owner_id, .. })
3581             | OwnerNode::ForeignItem(ForeignItem { owner_id, .. }) => *owner_id,
3582             OwnerNode::Crate(..) => crate::CRATE_HIR_ID.owner,
3583         }
3584     }
3585 
expect_item(self) -> &'hir Item<'hir>3586     pub fn expect_item(self) -> &'hir Item<'hir> {
3587         match self {
3588             OwnerNode::Item(n) => n,
3589             _ => panic!(),
3590         }
3591     }
3592 
expect_foreign_item(self) -> &'hir ForeignItem<'hir>3593     pub fn expect_foreign_item(self) -> &'hir ForeignItem<'hir> {
3594         match self {
3595             OwnerNode::ForeignItem(n) => n,
3596             _ => panic!(),
3597         }
3598     }
3599 
expect_impl_item(self) -> &'hir ImplItem<'hir>3600     pub fn expect_impl_item(self) -> &'hir ImplItem<'hir> {
3601         match self {
3602             OwnerNode::ImplItem(n) => n,
3603             _ => panic!(),
3604         }
3605     }
3606 
expect_trait_item(self) -> &'hir TraitItem<'hir>3607     pub fn expect_trait_item(self) -> &'hir TraitItem<'hir> {
3608         match self {
3609             OwnerNode::TraitItem(n) => n,
3610             _ => panic!(),
3611         }
3612     }
3613 }
3614 
3615 impl<'hir> Into<OwnerNode<'hir>> for &'hir Item<'hir> {
into(self) -> OwnerNode<'hir>3616     fn into(self) -> OwnerNode<'hir> {
3617         OwnerNode::Item(self)
3618     }
3619 }
3620 
3621 impl<'hir> Into<OwnerNode<'hir>> for &'hir ForeignItem<'hir> {
into(self) -> OwnerNode<'hir>3622     fn into(self) -> OwnerNode<'hir> {
3623         OwnerNode::ForeignItem(self)
3624     }
3625 }
3626 
3627 impl<'hir> Into<OwnerNode<'hir>> for &'hir ImplItem<'hir> {
into(self) -> OwnerNode<'hir>3628     fn into(self) -> OwnerNode<'hir> {
3629         OwnerNode::ImplItem(self)
3630     }
3631 }
3632 
3633 impl<'hir> Into<OwnerNode<'hir>> for &'hir TraitItem<'hir> {
into(self) -> OwnerNode<'hir>3634     fn into(self) -> OwnerNode<'hir> {
3635         OwnerNode::TraitItem(self)
3636     }
3637 }
3638 
3639 impl<'hir> Into<Node<'hir>> for OwnerNode<'hir> {
into(self) -> Node<'hir>3640     fn into(self) -> Node<'hir> {
3641         match self {
3642             OwnerNode::Item(n) => Node::Item(n),
3643             OwnerNode::ForeignItem(n) => Node::ForeignItem(n),
3644             OwnerNode::ImplItem(n) => Node::ImplItem(n),
3645             OwnerNode::TraitItem(n) => Node::TraitItem(n),
3646             OwnerNode::Crate(n) => Node::Crate(n),
3647         }
3648     }
3649 }
3650 
3651 #[derive(Copy, Clone, Debug, HashStable_Generic)]
3652 pub enum Node<'hir> {
3653     Param(&'hir Param<'hir>),
3654     Item(&'hir Item<'hir>),
3655     ForeignItem(&'hir ForeignItem<'hir>),
3656     TraitItem(&'hir TraitItem<'hir>),
3657     ImplItem(&'hir ImplItem<'hir>),
3658     Variant(&'hir Variant<'hir>),
3659     Field(&'hir FieldDef<'hir>),
3660     AnonConst(&'hir AnonConst),
3661     ConstBlock(&'hir ConstBlock),
3662     Expr(&'hir Expr<'hir>),
3663     ExprField(&'hir ExprField<'hir>),
3664     Stmt(&'hir Stmt<'hir>),
3665     PathSegment(&'hir PathSegment<'hir>),
3666     Ty(&'hir Ty<'hir>),
3667     TypeBinding(&'hir TypeBinding<'hir>),
3668     TraitRef(&'hir TraitRef<'hir>),
3669     Pat(&'hir Pat<'hir>),
3670     PatField(&'hir PatField<'hir>),
3671     Arm(&'hir Arm<'hir>),
3672     Block(&'hir Block<'hir>),
3673     Local(&'hir Local<'hir>),
3674 
3675     /// `Ctor` refers to the constructor of an enum variant or struct. Only tuple or unit variants
3676     /// with synthesized constructors.
3677     Ctor(&'hir VariantData<'hir>),
3678 
3679     Lifetime(&'hir Lifetime),
3680     GenericParam(&'hir GenericParam<'hir>),
3681 
3682     Crate(&'hir Mod<'hir>),
3683 
3684     Infer(&'hir InferArg),
3685 }
3686 
3687 impl<'hir> Node<'hir> {
3688     /// Get the identifier of this `Node`, if applicable.
3689     ///
3690     /// # Edge cases
3691     ///
3692     /// Calling `.ident()` on a [`Node::Ctor`] will return `None`
3693     /// because `Ctor`s do not have identifiers themselves.
3694     /// Instead, call `.ident()` on the parent struct/variant, like so:
3695     ///
3696     /// ```ignore (illustrative)
3697     /// ctor
3698     ///     .ctor_hir_id()
3699     ///     .and_then(|ctor_id| tcx.hir().find_parent(ctor_id))
3700     ///     .and_then(|parent| parent.ident())
3701     /// ```
ident(&self) -> Option<Ident>3702     pub fn ident(&self) -> Option<Ident> {
3703         match self {
3704             Node::TraitItem(TraitItem { ident, .. })
3705             | Node::ImplItem(ImplItem { ident, .. })
3706             | Node::ForeignItem(ForeignItem { ident, .. })
3707             | Node::Field(FieldDef { ident, .. })
3708             | Node::Variant(Variant { ident, .. })
3709             | Node::Item(Item { ident, .. })
3710             | Node::PathSegment(PathSegment { ident, .. }) => Some(*ident),
3711             Node::Lifetime(lt) => Some(lt.ident),
3712             Node::GenericParam(p) => Some(p.name.ident()),
3713             Node::TypeBinding(b) => Some(b.ident),
3714             Node::Param(..)
3715             | Node::AnonConst(..)
3716             | Node::ConstBlock(..)
3717             | Node::Expr(..)
3718             | Node::Stmt(..)
3719             | Node::Block(..)
3720             | Node::Ctor(..)
3721             | Node::Pat(..)
3722             | Node::PatField(..)
3723             | Node::ExprField(..)
3724             | Node::Arm(..)
3725             | Node::Local(..)
3726             | Node::Crate(..)
3727             | Node::Ty(..)
3728             | Node::TraitRef(..)
3729             | Node::Infer(..) => None,
3730         }
3731     }
3732 
fn_decl(self) -> Option<&'hir FnDecl<'hir>>3733     pub fn fn_decl(self) -> Option<&'hir FnDecl<'hir>> {
3734         match self {
3735             Node::TraitItem(TraitItem { kind: TraitItemKind::Fn(fn_sig, _), .. })
3736             | Node::ImplItem(ImplItem { kind: ImplItemKind::Fn(fn_sig, _), .. })
3737             | Node::Item(Item { kind: ItemKind::Fn(fn_sig, _, _), .. }) => Some(fn_sig.decl),
3738             Node::Expr(Expr { kind: ExprKind::Closure(Closure { fn_decl, .. }), .. })
3739             | Node::ForeignItem(ForeignItem { kind: ForeignItemKind::Fn(fn_decl, _, _), .. }) => {
3740                 Some(fn_decl)
3741             }
3742             _ => None,
3743         }
3744     }
3745 
fn_sig(self) -> Option<&'hir FnSig<'hir>>3746     pub fn fn_sig(self) -> Option<&'hir FnSig<'hir>> {
3747         match self {
3748             Node::TraitItem(TraitItem { kind: TraitItemKind::Fn(fn_sig, _), .. })
3749             | Node::ImplItem(ImplItem { kind: ImplItemKind::Fn(fn_sig, _), .. })
3750             | Node::Item(Item { kind: ItemKind::Fn(fn_sig, _, _), .. }) => Some(fn_sig),
3751             _ => None,
3752         }
3753     }
3754 
3755     /// Get the type for constants, assoc types, type aliases and statics.
ty(self) -> Option<&'hir Ty<'hir>>3756     pub fn ty(self) -> Option<&'hir Ty<'hir>> {
3757         match self {
3758             Node::Item(it) => match it.kind {
3759                 ItemKind::TyAlias(ty, _) | ItemKind::Static(ty, _, _) | ItemKind::Const(ty, _) => {
3760                     Some(ty)
3761                 }
3762                 _ => None,
3763             },
3764             Node::TraitItem(it) => match it.kind {
3765                 TraitItemKind::Const(ty, _) => Some(ty),
3766                 TraitItemKind::Type(_, ty) => ty,
3767                 _ => None,
3768             },
3769             Node::ImplItem(it) => match it.kind {
3770                 ImplItemKind::Const(ty, _) => Some(ty),
3771                 ImplItemKind::Type(ty) => Some(ty),
3772                 _ => None,
3773             },
3774             _ => None,
3775         }
3776     }
3777 
alias_ty(self) -> Option<&'hir Ty<'hir>>3778     pub fn alias_ty(self) -> Option<&'hir Ty<'hir>> {
3779         match self {
3780             Node::Item(Item { kind: ItemKind::TyAlias(ty, ..), .. }) => Some(ty),
3781             _ => None,
3782         }
3783     }
3784 
body_id(&self) -> Option<BodyId>3785     pub fn body_id(&self) -> Option<BodyId> {
3786         match self {
3787             Node::Item(Item {
3788                 kind:
3789                     ItemKind::Static(_, _, body) | ItemKind::Const(_, body) | ItemKind::Fn(_, _, body),
3790                 ..
3791             })
3792             | Node::TraitItem(TraitItem {
3793                 kind:
3794                     TraitItemKind::Fn(_, TraitFn::Provided(body)) | TraitItemKind::Const(_, Some(body)),
3795                 ..
3796             })
3797             | Node::ImplItem(ImplItem {
3798                 kind: ImplItemKind::Fn(_, body) | ImplItemKind::Const(_, body),
3799                 ..
3800             })
3801             | Node::Expr(Expr {
3802                 kind:
3803                     ExprKind::ConstBlock(ConstBlock { body, .. })
3804                     | ExprKind::Closure(Closure { body, .. })
3805                     | ExprKind::Repeat(_, ArrayLen::Body(AnonConst { body, .. })),
3806                 ..
3807             }) => Some(*body),
3808             _ => None,
3809         }
3810     }
3811 
generics(self) -> Option<&'hir Generics<'hir>>3812     pub fn generics(self) -> Option<&'hir Generics<'hir>> {
3813         match self {
3814             Node::ForeignItem(ForeignItem {
3815                 kind: ForeignItemKind::Fn(_, _, generics), ..
3816             })
3817             | Node::TraitItem(TraitItem { generics, .. })
3818             | Node::ImplItem(ImplItem { generics, .. }) => Some(generics),
3819             Node::Item(item) => item.kind.generics(),
3820             _ => None,
3821         }
3822     }
3823 
as_owner(self) -> Option<OwnerNode<'hir>>3824     pub fn as_owner(self) -> Option<OwnerNode<'hir>> {
3825         match self {
3826             Node::Item(i) => Some(OwnerNode::Item(i)),
3827             Node::ForeignItem(i) => Some(OwnerNode::ForeignItem(i)),
3828             Node::TraitItem(i) => Some(OwnerNode::TraitItem(i)),
3829             Node::ImplItem(i) => Some(OwnerNode::ImplItem(i)),
3830             Node::Crate(i) => Some(OwnerNode::Crate(i)),
3831             _ => None,
3832         }
3833     }
3834 
fn_kind(self) -> Option<FnKind<'hir>>3835     pub fn fn_kind(self) -> Option<FnKind<'hir>> {
3836         match self {
3837             Node::Item(i) => match i.kind {
3838                 ItemKind::Fn(ref sig, ref generics, _) => {
3839                     Some(FnKind::ItemFn(i.ident, generics, sig.header))
3840                 }
3841                 _ => None,
3842             },
3843             Node::TraitItem(ti) => match ti.kind {
3844                 TraitItemKind::Fn(ref sig, TraitFn::Provided(_)) => {
3845                     Some(FnKind::Method(ti.ident, sig))
3846                 }
3847                 _ => None,
3848             },
3849             Node::ImplItem(ii) => match ii.kind {
3850                 ImplItemKind::Fn(ref sig, _) => Some(FnKind::Method(ii.ident, sig)),
3851                 _ => None,
3852             },
3853             Node::Expr(e) => match e.kind {
3854                 ExprKind::Closure { .. } => Some(FnKind::Closure),
3855                 _ => None,
3856             },
3857             _ => None,
3858         }
3859     }
3860 
3861     /// Get the fields for the tuple-constructor,
3862     /// if this node is a tuple constructor, otherwise None
tuple_fields(&self) -> Option<&'hir [FieldDef<'hir>]>3863     pub fn tuple_fields(&self) -> Option<&'hir [FieldDef<'hir>]> {
3864         if let Node::Ctor(&VariantData::Tuple(fields, _, _)) = self { Some(fields) } else { None }
3865     }
3866 
3867     /// Expect a [`Node::Param`] or panic.
3868     #[track_caller]
expect_param(self) -> &'hir Param<'hir>3869     pub fn expect_param(self) -> &'hir Param<'hir> {
3870         let Node::Param(this) = self else { self.expect_failed("a parameter") };
3871         this
3872     }
3873 
3874     /// Expect a [`Node::Item`] or panic.
3875     #[track_caller]
expect_item(self) -> &'hir Item<'hir>3876     pub fn expect_item(self) -> &'hir Item<'hir> {
3877         let Node::Item(this) = self else { self.expect_failed("a item") };
3878         this
3879     }
3880 
3881     /// Expect a [`Node::ForeignItem`] or panic.
3882     #[track_caller]
expect_foreign_item(self) -> &'hir ForeignItem<'hir>3883     pub fn expect_foreign_item(self) -> &'hir ForeignItem<'hir> {
3884         let Node::ForeignItem(this) = self else { self.expect_failed("a foreign item") };
3885         this
3886     }
3887 
3888     /// Expect a [`Node::TraitItem`] or panic.
3889     #[track_caller]
expect_trait_item(self) -> &'hir TraitItem<'hir>3890     pub fn expect_trait_item(self) -> &'hir TraitItem<'hir> {
3891         let Node::TraitItem(this) = self else { self.expect_failed("a trait item") };
3892         this
3893     }
3894 
3895     /// Expect a [`Node::ImplItem`] or panic.
3896     #[track_caller]
expect_impl_item(self) -> &'hir ImplItem<'hir>3897     pub fn expect_impl_item(self) -> &'hir ImplItem<'hir> {
3898         let Node::ImplItem(this) = self else { self.expect_failed("an implementation item") };
3899         this
3900     }
3901 
3902     /// Expect a [`Node::Variant`] or panic.
3903     #[track_caller]
expect_variant(self) -> &'hir Variant<'hir>3904     pub fn expect_variant(self) -> &'hir Variant<'hir> {
3905         let Node::Variant(this) = self else { self.expect_failed("a variant") };
3906         this
3907     }
3908 
3909     /// Expect a [`Node::Field`] or panic.
3910     #[track_caller]
expect_field(self) -> &'hir FieldDef<'hir>3911     pub fn expect_field(self) -> &'hir FieldDef<'hir> {
3912         let Node::Field(this) = self else { self.expect_failed("a field definition") };
3913         this
3914     }
3915 
3916     /// Expect a [`Node::AnonConst`] or panic.
3917     #[track_caller]
expect_anon_const(self) -> &'hir AnonConst3918     pub fn expect_anon_const(self) -> &'hir AnonConst {
3919         let Node::AnonConst(this) = self else { self.expect_failed("an anonymous constant") };
3920         this
3921     }
3922 
3923     /// Expect a [`Node::ConstBlock`] or panic.
3924     #[track_caller]
expect_inline_const(self) -> &'hir ConstBlock3925     pub fn expect_inline_const(self) -> &'hir ConstBlock {
3926         let Node::ConstBlock(this) = self else { self.expect_failed("an inline constant") };
3927         this
3928     }
3929 
3930     /// Expect a [`Node::Expr`] or panic.
3931     #[track_caller]
expect_expr(self) -> &'hir Expr<'hir>3932     pub fn expect_expr(self) -> &'hir Expr<'hir> {
3933         let Node::Expr(this) = self else { self.expect_failed("an expression") };
3934         this
3935     }
3936     /// Expect a [`Node::ExprField`] or panic.
3937     #[track_caller]
expect_expr_field(self) -> &'hir ExprField<'hir>3938     pub fn expect_expr_field(self) -> &'hir ExprField<'hir> {
3939         let Node::ExprField(this) = self else { self.expect_failed("an expression field") };
3940         this
3941     }
3942 
3943     /// Expect a [`Node::Stmt`] or panic.
3944     #[track_caller]
expect_stmt(self) -> &'hir Stmt<'hir>3945     pub fn expect_stmt(self) -> &'hir Stmt<'hir> {
3946         let Node::Stmt(this) = self else { self.expect_failed("a statement") };
3947         this
3948     }
3949 
3950     /// Expect a [`Node::PathSegment`] or panic.
3951     #[track_caller]
expect_path_segment(self) -> &'hir PathSegment<'hir>3952     pub fn expect_path_segment(self) -> &'hir PathSegment<'hir> {
3953         let Node::PathSegment(this) = self else { self.expect_failed("a path segment") };
3954         this
3955     }
3956 
3957     /// Expect a [`Node::Ty`] or panic.
3958     #[track_caller]
expect_ty(self) -> &'hir Ty<'hir>3959     pub fn expect_ty(self) -> &'hir Ty<'hir> {
3960         let Node::Ty(this) = self else { self.expect_failed("a type") };
3961         this
3962     }
3963 
3964     /// Expect a [`Node::TypeBinding`] or panic.
3965     #[track_caller]
expect_type_binding(self) -> &'hir TypeBinding<'hir>3966     pub fn expect_type_binding(self) -> &'hir TypeBinding<'hir> {
3967         let Node::TypeBinding(this) = self else { self.expect_failed("a type binding") };
3968         this
3969     }
3970 
3971     /// Expect a [`Node::TraitRef`] or panic.
3972     #[track_caller]
expect_trait_ref(self) -> &'hir TraitRef<'hir>3973     pub fn expect_trait_ref(self) -> &'hir TraitRef<'hir> {
3974         let Node::TraitRef(this) = self else { self.expect_failed("a trait reference") };
3975         this
3976     }
3977 
3978     /// Expect a [`Node::Pat`] or panic.
3979     #[track_caller]
expect_pat(self) -> &'hir Pat<'hir>3980     pub fn expect_pat(self) -> &'hir Pat<'hir> {
3981         let Node::Pat(this) = self else { self.expect_failed("a pattern") };
3982         this
3983     }
3984 
3985     /// Expect a [`Node::PatField`] or panic.
3986     #[track_caller]
expect_pat_field(self) -> &'hir PatField<'hir>3987     pub fn expect_pat_field(self) -> &'hir PatField<'hir> {
3988         let Node::PatField(this) = self else { self.expect_failed("a pattern field") };
3989         this
3990     }
3991 
3992     /// Expect a [`Node::Arm`] or panic.
3993     #[track_caller]
expect_arm(self) -> &'hir Arm<'hir>3994     pub fn expect_arm(self) -> &'hir Arm<'hir> {
3995         let Node::Arm(this) = self else { self.expect_failed("an arm") };
3996         this
3997     }
3998 
3999     /// Expect a [`Node::Block`] or panic.
4000     #[track_caller]
expect_block(self) -> &'hir Block<'hir>4001     pub fn expect_block(self) -> &'hir Block<'hir> {
4002         let Node::Block(this) = self else { self.expect_failed("a block") };
4003         this
4004     }
4005 
4006     /// Expect a [`Node::Local`] or panic.
4007     #[track_caller]
expect_local(self) -> &'hir Local<'hir>4008     pub fn expect_local(self) -> &'hir Local<'hir> {
4009         let Node::Local(this) = self else { self.expect_failed("a local") };
4010         this
4011     }
4012 
4013     /// Expect a [`Node::Ctor`] or panic.
4014     #[track_caller]
expect_ctor(self) -> &'hir VariantData<'hir>4015     pub fn expect_ctor(self) -> &'hir VariantData<'hir> {
4016         let Node::Ctor(this) = self else { self.expect_failed("a constructor") };
4017         this
4018     }
4019 
4020     /// Expect a [`Node::Lifetime`] or panic.
4021     #[track_caller]
expect_lifetime(self) -> &'hir Lifetime4022     pub fn expect_lifetime(self) -> &'hir Lifetime {
4023         let Node::Lifetime(this) = self else { self.expect_failed("a lifetime") };
4024         this
4025     }
4026 
4027     /// Expect a [`Node::GenericParam`] or panic.
4028     #[track_caller]
expect_generic_param(self) -> &'hir GenericParam<'hir>4029     pub fn expect_generic_param(self) -> &'hir GenericParam<'hir> {
4030         let Node::GenericParam(this) = self else { self.expect_failed("a generic parameter") };
4031         this
4032     }
4033 
4034     /// Expect a [`Node::Crate`] or panic.
4035     #[track_caller]
expect_crate(self) -> &'hir Mod<'hir>4036     pub fn expect_crate(self) -> &'hir Mod<'hir> {
4037         let Node::Crate(this) = self else { self.expect_failed("a crate") };
4038         this
4039     }
4040 
4041     /// Expect a [`Node::Infer`] or panic.
4042     #[track_caller]
expect_infer(self) -> &'hir InferArg4043     pub fn expect_infer(self) -> &'hir InferArg {
4044         let Node::Infer(this) = self else { self.expect_failed("an infer") };
4045         this
4046     }
4047 
4048     #[track_caller]
expect_failed(&self, expected: &'static str) -> !4049     fn expect_failed(&self, expected: &'static str) -> ! {
4050         panic!("expected {expected} node, found {self:?}")
4051     }
4052 }
4053 
4054 // Some nodes are used a lot. Make sure they don't unintentionally get bigger.
4055 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
4056 mod size_asserts {
4057     use super::*;
4058     // tidy-alphabetical-start
4059     static_assert_size!(Block<'_>, 48);
4060     static_assert_size!(Body<'_>, 32);
4061     static_assert_size!(Expr<'_>, 64);
4062     static_assert_size!(ExprKind<'_>, 48);
4063     static_assert_size!(FnDecl<'_>, 40);
4064     static_assert_size!(ForeignItem<'_>, 72);
4065     static_assert_size!(ForeignItemKind<'_>, 40);
4066     static_assert_size!(GenericArg<'_>, 32);
4067     static_assert_size!(GenericBound<'_>, 48);
4068     static_assert_size!(Generics<'_>, 56);
4069     static_assert_size!(Impl<'_>, 80);
4070     static_assert_size!(ImplItem<'_>, 80);
4071     static_assert_size!(ImplItemKind<'_>, 32);
4072     static_assert_size!(Item<'_>, 80);
4073     static_assert_size!(ItemKind<'_>, 48);
4074     static_assert_size!(Local<'_>, 64);
4075     static_assert_size!(Param<'_>, 32);
4076     static_assert_size!(Pat<'_>, 72);
4077     static_assert_size!(Path<'_>, 40);
4078     static_assert_size!(PathSegment<'_>, 48);
4079     static_assert_size!(PatKind<'_>, 48);
4080     static_assert_size!(QPath<'_>, 24);
4081     static_assert_size!(Res, 12);
4082     static_assert_size!(Stmt<'_>, 32);
4083     static_assert_size!(StmtKind<'_>, 16);
4084     static_assert_size!(TraitItem<'_>, 80);
4085     static_assert_size!(TraitItemKind<'_>, 40);
4086     static_assert_size!(Ty<'_>, 48);
4087     static_assert_size!(TyKind<'_>, 32);
4088     // tidy-alphabetical-end
4089 }
4090 
debug_fn(f: impl Fn(&mut fmt::Formatter<'_>) -> fmt::Result) -> impl fmt::Debug4091 fn debug_fn(f: impl Fn(&mut fmt::Formatter<'_>) -> fmt::Result) -> impl fmt::Debug {
4092     struct DebugFn<F>(F);
4093     impl<F: Fn(&mut fmt::Formatter<'_>) -> fmt::Result> fmt::Debug for DebugFn<F> {
4094         fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
4095             (self.0)(fmt)
4096         }
4097     }
4098     DebugFn(f)
4099 }
4100