1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18
19 #include <linux/cpuset.h>
20 #include "walt.h"
21
22 /*
23 * Default limits for DL period; on the top end we guard against small util
24 * tasks still getting ridiculously long effective runtimes, on the bottom end we
25 * guard against timer DoS.
26 */
27 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
28 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
29 #ifdef CONFIG_SYSCTL
30 static struct ctl_table sched_dl_sysctls[] = {
31 {
32 .procname = "sched_deadline_period_max_us",
33 .data = &sysctl_sched_dl_period_max,
34 .maxlen = sizeof(unsigned int),
35 .mode = 0644,
36 .proc_handler = proc_douintvec_minmax,
37 .extra1 = (void *)&sysctl_sched_dl_period_min,
38 },
39 {
40 .procname = "sched_deadline_period_min_us",
41 .data = &sysctl_sched_dl_period_min,
42 .maxlen = sizeof(unsigned int),
43 .mode = 0644,
44 .proc_handler = proc_douintvec_minmax,
45 .extra2 = (void *)&sysctl_sched_dl_period_max,
46 },
47 {}
48 };
49
sched_dl_sysctl_init(void)50 static int __init sched_dl_sysctl_init(void)
51 {
52 register_sysctl_init("kernel", sched_dl_sysctls);
53 return 0;
54 }
55 late_initcall(sched_dl_sysctl_init);
56 #endif
57
dl_task_of(struct sched_dl_entity * dl_se)58 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
59 {
60 return container_of(dl_se, struct task_struct, dl);
61 }
62
rq_of_dl_rq(struct dl_rq * dl_rq)63 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
64 {
65 return container_of(dl_rq, struct rq, dl);
66 }
67
dl_rq_of_se(struct sched_dl_entity * dl_se)68 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
69 {
70 struct task_struct *p = dl_task_of(dl_se);
71 struct rq *rq = task_rq(p);
72
73 return &rq->dl;
74 }
75
on_dl_rq(struct sched_dl_entity * dl_se)76 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
77 {
78 return !RB_EMPTY_NODE(&dl_se->rb_node);
79 }
80
81 #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)82 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
83 {
84 return dl_se->pi_se;
85 }
86
is_dl_boosted(struct sched_dl_entity * dl_se)87 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
88 {
89 return pi_of(dl_se) != dl_se;
90 }
91 #else
pi_of(struct sched_dl_entity * dl_se)92 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
93 {
94 return dl_se;
95 }
96
is_dl_boosted(struct sched_dl_entity * dl_se)97 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
98 {
99 return false;
100 }
101 #endif
102
103 #ifdef CONFIG_SMP
dl_bw_of(int i)104 static inline struct dl_bw *dl_bw_of(int i)
105 {
106 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
107 "sched RCU must be held");
108 return &cpu_rq(i)->rd->dl_bw;
109 }
110
dl_bw_cpus(int i)111 static inline int dl_bw_cpus(int i)
112 {
113 struct root_domain *rd = cpu_rq(i)->rd;
114 int cpus;
115
116 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
117 "sched RCU must be held");
118
119 if (cpumask_subset(rd->span, cpu_active_mask))
120 return cpumask_weight(rd->span);
121
122 cpus = 0;
123
124 for_each_cpu_and(i, rd->span, cpu_active_mask)
125 cpus++;
126
127 return cpus;
128 }
129
__dl_bw_capacity(const struct cpumask * mask)130 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
131 {
132 unsigned long cap = 0;
133 int i;
134
135 for_each_cpu_and(i, mask, cpu_active_mask)
136 cap += capacity_orig_of(i);
137
138 return cap;
139 }
140
141 /*
142 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
143 * of the CPU the task is running on rather rd's \Sum CPU capacity.
144 */
dl_bw_capacity(int i)145 static inline unsigned long dl_bw_capacity(int i)
146 {
147 if (!sched_asym_cpucap_active() &&
148 capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
149 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
150 } else {
151 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
152 "sched RCU must be held");
153
154 return __dl_bw_capacity(cpu_rq(i)->rd->span);
155 }
156 }
157
dl_bw_visited(int cpu,u64 gen)158 static inline bool dl_bw_visited(int cpu, u64 gen)
159 {
160 struct root_domain *rd = cpu_rq(cpu)->rd;
161
162 if (rd->visit_gen == gen)
163 return true;
164
165 rd->visit_gen = gen;
166 return false;
167 }
168
169 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)170 void __dl_update(struct dl_bw *dl_b, s64 bw)
171 {
172 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
173 int i;
174
175 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
176 "sched RCU must be held");
177 for_each_cpu_and(i, rd->span, cpu_active_mask) {
178 struct rq *rq = cpu_rq(i);
179
180 rq->dl.extra_bw += bw;
181 }
182 }
183 #else
dl_bw_of(int i)184 static inline struct dl_bw *dl_bw_of(int i)
185 {
186 return &cpu_rq(i)->dl.dl_bw;
187 }
188
dl_bw_cpus(int i)189 static inline int dl_bw_cpus(int i)
190 {
191 return 1;
192 }
193
dl_bw_capacity(int i)194 static inline unsigned long dl_bw_capacity(int i)
195 {
196 return SCHED_CAPACITY_SCALE;
197 }
198
dl_bw_visited(int cpu,u64 gen)199 static inline bool dl_bw_visited(int cpu, u64 gen)
200 {
201 return false;
202 }
203
204 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)205 void __dl_update(struct dl_bw *dl_b, s64 bw)
206 {
207 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
208
209 dl->extra_bw += bw;
210 }
211 #endif
212
213 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)214 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
215 {
216 dl_b->total_bw -= tsk_bw;
217 __dl_update(dl_b, (s32)tsk_bw / cpus);
218 }
219
220 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)221 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
222 {
223 dl_b->total_bw += tsk_bw;
224 __dl_update(dl_b, -((s32)tsk_bw / cpus));
225 }
226
227 static inline bool
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)228 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
229 {
230 return dl_b->bw != -1 &&
231 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
232 }
233
234 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)235 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
236 {
237 u64 old = dl_rq->running_bw;
238
239 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
240 dl_rq->running_bw += dl_bw;
241 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
242 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
243 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
244 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
245 }
246
247 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)248 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
249 {
250 u64 old = dl_rq->running_bw;
251
252 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
253 dl_rq->running_bw -= dl_bw;
254 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
255 if (dl_rq->running_bw > old)
256 dl_rq->running_bw = 0;
257 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
258 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
259 }
260
261 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)262 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
263 {
264 u64 old = dl_rq->this_bw;
265
266 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
267 dl_rq->this_bw += dl_bw;
268 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
269 }
270
271 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)272 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
273 {
274 u64 old = dl_rq->this_bw;
275
276 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
277 dl_rq->this_bw -= dl_bw;
278 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
279 if (dl_rq->this_bw > old)
280 dl_rq->this_bw = 0;
281 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
282 }
283
284 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)285 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
286 {
287 if (!dl_entity_is_special(dl_se))
288 __add_rq_bw(dl_se->dl_bw, dl_rq);
289 }
290
291 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)292 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
293 {
294 if (!dl_entity_is_special(dl_se))
295 __sub_rq_bw(dl_se->dl_bw, dl_rq);
296 }
297
298 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)299 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
300 {
301 if (!dl_entity_is_special(dl_se))
302 __add_running_bw(dl_se->dl_bw, dl_rq);
303 }
304
305 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)306 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
307 {
308 if (!dl_entity_is_special(dl_se))
309 __sub_running_bw(dl_se->dl_bw, dl_rq);
310 }
311
dl_change_utilization(struct task_struct * p,u64 new_bw)312 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
313 {
314 struct rq *rq;
315
316 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
317
318 if (task_on_rq_queued(p))
319 return;
320
321 rq = task_rq(p);
322 if (p->dl.dl_non_contending) {
323 sub_running_bw(&p->dl, &rq->dl);
324 p->dl.dl_non_contending = 0;
325 /*
326 * If the timer handler is currently running and the
327 * timer cannot be canceled, inactive_task_timer()
328 * will see that dl_not_contending is not set, and
329 * will not touch the rq's active utilization,
330 * so we are still safe.
331 */
332 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
333 put_task_struct(p);
334 }
335 __sub_rq_bw(p->dl.dl_bw, &rq->dl);
336 __add_rq_bw(new_bw, &rq->dl);
337 }
338
339 static void __dl_clear_params(struct sched_dl_entity *dl_se);
340
341 /*
342 * The utilization of a task cannot be immediately removed from
343 * the rq active utilization (running_bw) when the task blocks.
344 * Instead, we have to wait for the so called "0-lag time".
345 *
346 * If a task blocks before the "0-lag time", a timer (the inactive
347 * timer) is armed, and running_bw is decreased when the timer
348 * fires.
349 *
350 * If the task wakes up again before the inactive timer fires,
351 * the timer is canceled, whereas if the task wakes up after the
352 * inactive timer fired (and running_bw has been decreased) the
353 * task's utilization has to be added to running_bw again.
354 * A flag in the deadline scheduling entity (dl_non_contending)
355 * is used to avoid race conditions between the inactive timer handler
356 * and task wakeups.
357 *
358 * The following diagram shows how running_bw is updated. A task is
359 * "ACTIVE" when its utilization contributes to running_bw; an
360 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
361 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
362 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
363 * time already passed, which does not contribute to running_bw anymore.
364 * +------------------+
365 * wakeup | ACTIVE |
366 * +------------------>+ contending |
367 * | add_running_bw | |
368 * | +----+------+------+
369 * | | ^
370 * | dequeue | |
371 * +--------+-------+ | |
372 * | | t >= 0-lag | | wakeup
373 * | INACTIVE |<---------------+ |
374 * | | sub_running_bw | |
375 * +--------+-------+ | |
376 * ^ | |
377 * | t < 0-lag | |
378 * | | |
379 * | V |
380 * | +----+------+------+
381 * | sub_running_bw | ACTIVE |
382 * +-------------------+ |
383 * inactive timer | non contending |
384 * fired +------------------+
385 *
386 * The task_non_contending() function is invoked when a task
387 * blocks, and checks if the 0-lag time already passed or
388 * not (in the first case, it directly updates running_bw;
389 * in the second case, it arms the inactive timer).
390 *
391 * The task_contending() function is invoked when a task wakes
392 * up, and checks if the task is still in the "ACTIVE non contending"
393 * state or not (in the second case, it updates running_bw).
394 */
task_non_contending(struct sched_dl_entity * dl_se)395 static void task_non_contending(struct sched_dl_entity *dl_se)
396 {
397 struct hrtimer *timer = &dl_se->inactive_timer;
398 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
399 struct rq *rq = rq_of_dl_rq(dl_rq);
400 struct task_struct *p = dl_task_of(dl_se);
401 s64 zerolag_time;
402
403 /*
404 * If this is a non-deadline task that has been boosted,
405 * do nothing
406 */
407 if (dl_se->dl_runtime == 0)
408 return;
409
410 if (dl_entity_is_special(dl_se))
411 return;
412
413 WARN_ON(dl_se->dl_non_contending);
414
415 zerolag_time = dl_se->deadline -
416 div64_long((dl_se->runtime * dl_se->dl_period),
417 dl_se->dl_runtime);
418
419 /*
420 * Using relative times instead of the absolute "0-lag time"
421 * allows to simplify the code
422 */
423 zerolag_time -= rq_clock(rq);
424
425 /*
426 * If the "0-lag time" already passed, decrease the active
427 * utilization now, instead of starting a timer
428 */
429 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
430 if (dl_task(p))
431 sub_running_bw(dl_se, dl_rq);
432
433 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
434 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
435
436 if (READ_ONCE(p->__state) == TASK_DEAD)
437 sub_rq_bw(dl_se, &rq->dl);
438 raw_spin_lock(&dl_b->lock);
439 __dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
440 raw_spin_unlock(&dl_b->lock);
441 __dl_clear_params(dl_se);
442 }
443
444 return;
445 }
446
447 dl_se->dl_non_contending = 1;
448 get_task_struct(p);
449 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
450 }
451
task_contending(struct sched_dl_entity * dl_se,int flags)452 static void task_contending(struct sched_dl_entity *dl_se, int flags)
453 {
454 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
455
456 /*
457 * If this is a non-deadline task that has been boosted,
458 * do nothing
459 */
460 if (dl_se->dl_runtime == 0)
461 return;
462
463 if (flags & ENQUEUE_MIGRATED)
464 add_rq_bw(dl_se, dl_rq);
465
466 if (dl_se->dl_non_contending) {
467 dl_se->dl_non_contending = 0;
468 /*
469 * If the timer handler is currently running and the
470 * timer cannot be canceled, inactive_task_timer()
471 * will see that dl_not_contending is not set, and
472 * will not touch the rq's active utilization,
473 * so we are still safe.
474 */
475 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
476 put_task_struct(dl_task_of(dl_se));
477 } else {
478 /*
479 * Since "dl_non_contending" is not set, the
480 * task's utilization has already been removed from
481 * active utilization (either when the task blocked,
482 * when the "inactive timer" fired).
483 * So, add it back.
484 */
485 add_running_bw(dl_se, dl_rq);
486 }
487 }
488
is_leftmost(struct task_struct * p,struct dl_rq * dl_rq)489 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
490 {
491 struct sched_dl_entity *dl_se = &p->dl;
492
493 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
494 }
495
496 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
497
init_dl_bw(struct dl_bw * dl_b)498 void init_dl_bw(struct dl_bw *dl_b)
499 {
500 raw_spin_lock_init(&dl_b->lock);
501 if (global_rt_runtime() == RUNTIME_INF)
502 dl_b->bw = -1;
503 else
504 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
505 dl_b->total_bw = 0;
506 }
507
init_dl_rq(struct dl_rq * dl_rq)508 void init_dl_rq(struct dl_rq *dl_rq)
509 {
510 dl_rq->root = RB_ROOT_CACHED;
511
512 #ifdef CONFIG_SMP
513 /* zero means no -deadline tasks */
514 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
515
516 dl_rq->dl_nr_migratory = 0;
517 dl_rq->overloaded = 0;
518 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
519 #else
520 init_dl_bw(&dl_rq->dl_bw);
521 #endif
522
523 dl_rq->running_bw = 0;
524 dl_rq->this_bw = 0;
525 init_dl_rq_bw_ratio(dl_rq);
526 }
527
528 #ifdef CONFIG_SMP
529
dl_overloaded(struct rq * rq)530 static inline int dl_overloaded(struct rq *rq)
531 {
532 return atomic_read(&rq->rd->dlo_count);
533 }
534
dl_set_overload(struct rq * rq)535 static inline void dl_set_overload(struct rq *rq)
536 {
537 if (!rq->online)
538 return;
539
540 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
541 /*
542 * Must be visible before the overload count is
543 * set (as in sched_rt.c).
544 *
545 * Matched by the barrier in pull_dl_task().
546 */
547 smp_wmb();
548 atomic_inc(&rq->rd->dlo_count);
549 }
550
dl_clear_overload(struct rq * rq)551 static inline void dl_clear_overload(struct rq *rq)
552 {
553 if (!rq->online)
554 return;
555
556 atomic_dec(&rq->rd->dlo_count);
557 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
558 }
559
update_dl_migration(struct dl_rq * dl_rq)560 static void update_dl_migration(struct dl_rq *dl_rq)
561 {
562 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
563 if (!dl_rq->overloaded) {
564 dl_set_overload(rq_of_dl_rq(dl_rq));
565 dl_rq->overloaded = 1;
566 }
567 } else if (dl_rq->overloaded) {
568 dl_clear_overload(rq_of_dl_rq(dl_rq));
569 dl_rq->overloaded = 0;
570 }
571 }
572
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)573 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
574 {
575 struct task_struct *p = dl_task_of(dl_se);
576
577 if (p->nr_cpus_allowed > 1)
578 dl_rq->dl_nr_migratory++;
579
580 update_dl_migration(dl_rq);
581 }
582
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)583 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
584 {
585 struct task_struct *p = dl_task_of(dl_se);
586
587 if (p->nr_cpus_allowed > 1)
588 dl_rq->dl_nr_migratory--;
589
590 update_dl_migration(dl_rq);
591 }
592
593 #define __node_2_pdl(node) \
594 rb_entry((node), struct task_struct, pushable_dl_tasks)
595
__pushable_less(struct rb_node * a,const struct rb_node * b)596 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
597 {
598 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
599 }
600
601 /*
602 * The list of pushable -deadline task is not a plist, like in
603 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
604 */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)605 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
606 {
607 struct rb_node *leftmost;
608
609 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
610
611 leftmost = rb_add_cached(&p->pushable_dl_tasks,
612 &rq->dl.pushable_dl_tasks_root,
613 __pushable_less);
614 if (leftmost)
615 rq->dl.earliest_dl.next = p->dl.deadline;
616 }
617
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)618 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
619 {
620 struct dl_rq *dl_rq = &rq->dl;
621 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
622 struct rb_node *leftmost;
623
624 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
625 return;
626
627 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
628 if (leftmost)
629 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
630
631 RB_CLEAR_NODE(&p->pushable_dl_tasks);
632 }
633
has_pushable_dl_tasks(struct rq * rq)634 static inline int has_pushable_dl_tasks(struct rq *rq)
635 {
636 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
637 }
638
639 static int push_dl_task(struct rq *rq);
640
need_pull_dl_task(struct rq * rq,struct task_struct * prev)641 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
642 {
643 return rq->online && dl_task(prev);
644 }
645
646 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
647 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
648
649 static void push_dl_tasks(struct rq *);
650 static void pull_dl_task(struct rq *);
651
deadline_queue_push_tasks(struct rq * rq)652 static inline void deadline_queue_push_tasks(struct rq *rq)
653 {
654 if (!has_pushable_dl_tasks(rq))
655 return;
656
657 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
658 }
659
deadline_queue_pull_task(struct rq * rq)660 static inline void deadline_queue_pull_task(struct rq *rq)
661 {
662 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
663 }
664
665 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
666
dl_task_offline_migration(struct rq * rq,struct task_struct * p)667 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
668 {
669 struct rq *later_rq = NULL;
670 struct dl_bw *dl_b;
671
672 later_rq = find_lock_later_rq(p, rq);
673 if (!later_rq) {
674 int cpu;
675
676 /*
677 * If we cannot preempt any rq, fall back to pick any
678 * online CPU:
679 */
680 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
681 if (cpu >= nr_cpu_ids) {
682 /*
683 * Failed to find any suitable CPU.
684 * The task will never come back!
685 */
686 WARN_ON_ONCE(dl_bandwidth_enabled());
687
688 /*
689 * If admission control is disabled we
690 * try a little harder to let the task
691 * run.
692 */
693 cpu = cpumask_any(cpu_active_mask);
694 }
695 later_rq = cpu_rq(cpu);
696 double_lock_balance(rq, later_rq);
697 }
698
699 if (p->dl.dl_non_contending || p->dl.dl_throttled) {
700 /*
701 * Inactive timer is armed (or callback is running, but
702 * waiting for us to release rq locks). In any case, when it
703 * will fire (or continue), it will see running_bw of this
704 * task migrated to later_rq (and correctly handle it).
705 */
706 sub_running_bw(&p->dl, &rq->dl);
707 sub_rq_bw(&p->dl, &rq->dl);
708
709 add_rq_bw(&p->dl, &later_rq->dl);
710 add_running_bw(&p->dl, &later_rq->dl);
711 } else {
712 sub_rq_bw(&p->dl, &rq->dl);
713 add_rq_bw(&p->dl, &later_rq->dl);
714 }
715
716 /*
717 * And we finally need to fixup root_domain(s) bandwidth accounting,
718 * since p is still hanging out in the old (now moved to default) root
719 * domain.
720 */
721 dl_b = &rq->rd->dl_bw;
722 raw_spin_lock(&dl_b->lock);
723 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
724 raw_spin_unlock(&dl_b->lock);
725
726 dl_b = &later_rq->rd->dl_bw;
727 raw_spin_lock(&dl_b->lock);
728 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
729 raw_spin_unlock(&dl_b->lock);
730
731 set_task_cpu(p, later_rq->cpu);
732 double_unlock_balance(later_rq, rq);
733
734 return later_rq;
735 }
736
737 #else
738
739 static inline
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)740 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
741 {
742 }
743
744 static inline
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)745 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
746 {
747 }
748
749 static inline
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)750 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
751 {
752 }
753
754 static inline
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)755 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
756 {
757 }
758
deadline_queue_push_tasks(struct rq * rq)759 static inline void deadline_queue_push_tasks(struct rq *rq)
760 {
761 }
762
deadline_queue_pull_task(struct rq * rq)763 static inline void deadline_queue_pull_task(struct rq *rq)
764 {
765 }
766 #endif /* CONFIG_SMP */
767
768 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
769 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
770 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
771
replenish_dl_new_period(struct sched_dl_entity * dl_se,struct rq * rq)772 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
773 struct rq *rq)
774 {
775 /* for non-boosted task, pi_of(dl_se) == dl_se */
776 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
777 dl_se->runtime = pi_of(dl_se)->dl_runtime;
778 }
779
780 /*
781 * We are being explicitly informed that a new instance is starting,
782 * and this means that:
783 * - the absolute deadline of the entity has to be placed at
784 * current time + relative deadline;
785 * - the runtime of the entity has to be set to the maximum value.
786 *
787 * The capability of specifying such event is useful whenever a -deadline
788 * entity wants to (try to!) synchronize its behaviour with the scheduler's
789 * one, and to (try to!) reconcile itself with its own scheduling
790 * parameters.
791 */
setup_new_dl_entity(struct sched_dl_entity * dl_se)792 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
793 {
794 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
795 struct rq *rq = rq_of_dl_rq(dl_rq);
796
797 WARN_ON(is_dl_boosted(dl_se));
798 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
799
800 /*
801 * We are racing with the deadline timer. So, do nothing because
802 * the deadline timer handler will take care of properly recharging
803 * the runtime and postponing the deadline
804 */
805 if (dl_se->dl_throttled)
806 return;
807
808 /*
809 * We use the regular wall clock time to set deadlines in the
810 * future; in fact, we must consider execution overheads (time
811 * spent on hardirq context, etc.).
812 */
813 replenish_dl_new_period(dl_se, rq);
814 }
815
816 /*
817 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
818 * possibility of a entity lasting more than what it declared, and thus
819 * exhausting its runtime.
820 *
821 * Here we are interested in making runtime overrun possible, but we do
822 * not want a entity which is misbehaving to affect the scheduling of all
823 * other entities.
824 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
825 * is used, in order to confine each entity within its own bandwidth.
826 *
827 * This function deals exactly with that, and ensures that when the runtime
828 * of a entity is replenished, its deadline is also postponed. That ensures
829 * the overrunning entity can't interfere with other entity in the system and
830 * can't make them miss their deadlines. Reasons why this kind of overruns
831 * could happen are, typically, a entity voluntarily trying to overcome its
832 * runtime, or it just underestimated it during sched_setattr().
833 */
replenish_dl_entity(struct sched_dl_entity * dl_se)834 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
835 {
836 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
837 struct rq *rq = rq_of_dl_rq(dl_rq);
838
839 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
840
841 /*
842 * This could be the case for a !-dl task that is boosted.
843 * Just go with full inherited parameters.
844 */
845 if (dl_se->dl_deadline == 0)
846 replenish_dl_new_period(dl_se, rq);
847
848 if (dl_se->dl_yielded && dl_se->runtime > 0)
849 dl_se->runtime = 0;
850
851 /*
852 * We keep moving the deadline away until we get some
853 * available runtime for the entity. This ensures correct
854 * handling of situations where the runtime overrun is
855 * arbitrary large.
856 */
857 while (dl_se->runtime <= 0) {
858 dl_se->deadline += pi_of(dl_se)->dl_period;
859 dl_se->runtime += pi_of(dl_se)->dl_runtime;
860 }
861
862 /*
863 * At this point, the deadline really should be "in
864 * the future" with respect to rq->clock. If it's
865 * not, we are, for some reason, lagging too much!
866 * Anyway, after having warn userspace abut that,
867 * we still try to keep the things running by
868 * resetting the deadline and the budget of the
869 * entity.
870 */
871 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
872 printk_deferred_once("sched: DL replenish lagged too much\n");
873 replenish_dl_new_period(dl_se, rq);
874 }
875
876 if (dl_se->dl_yielded)
877 dl_se->dl_yielded = 0;
878 if (dl_se->dl_throttled)
879 dl_se->dl_throttled = 0;
880 }
881
882 /*
883 * Here we check if --at time t-- an entity (which is probably being
884 * [re]activated or, in general, enqueued) can use its remaining runtime
885 * and its current deadline _without_ exceeding the bandwidth it is
886 * assigned (function returns true if it can't). We are in fact applying
887 * one of the CBS rules: when a task wakes up, if the residual runtime
888 * over residual deadline fits within the allocated bandwidth, then we
889 * can keep the current (absolute) deadline and residual budget without
890 * disrupting the schedulability of the system. Otherwise, we should
891 * refill the runtime and set the deadline a period in the future,
892 * because keeping the current (absolute) deadline of the task would
893 * result in breaking guarantees promised to other tasks (refer to
894 * Documentation/scheduler/sched-deadline.rst for more information).
895 *
896 * This function returns true if:
897 *
898 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
899 *
900 * IOW we can't recycle current parameters.
901 *
902 * Notice that the bandwidth check is done against the deadline. For
903 * task with deadline equal to period this is the same of using
904 * dl_period instead of dl_deadline in the equation above.
905 */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)906 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
907 {
908 u64 left, right;
909
910 /*
911 * left and right are the two sides of the equation above,
912 * after a bit of shuffling to use multiplications instead
913 * of divisions.
914 *
915 * Note that none of the time values involved in the two
916 * multiplications are absolute: dl_deadline and dl_runtime
917 * are the relative deadline and the maximum runtime of each
918 * instance, runtime is the runtime left for the last instance
919 * and (deadline - t), since t is rq->clock, is the time left
920 * to the (absolute) deadline. Even if overflowing the u64 type
921 * is very unlikely to occur in both cases, here we scale down
922 * as we want to avoid that risk at all. Scaling down by 10
923 * means that we reduce granularity to 1us. We are fine with it,
924 * since this is only a true/false check and, anyway, thinking
925 * of anything below microseconds resolution is actually fiction
926 * (but still we want to give the user that illusion >;).
927 */
928 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
929 right = ((dl_se->deadline - t) >> DL_SCALE) *
930 (pi_of(dl_se)->dl_runtime >> DL_SCALE);
931
932 return dl_time_before(right, left);
933 }
934
935 /*
936 * Revised wakeup rule [1]: For self-suspending tasks, rather then
937 * re-initializing task's runtime and deadline, the revised wakeup
938 * rule adjusts the task's runtime to avoid the task to overrun its
939 * density.
940 *
941 * Reasoning: a task may overrun the density if:
942 * runtime / (deadline - t) > dl_runtime / dl_deadline
943 *
944 * Therefore, runtime can be adjusted to:
945 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
946 *
947 * In such way that runtime will be equal to the maximum density
948 * the task can use without breaking any rule.
949 *
950 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
951 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
952 */
953 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)954 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
955 {
956 u64 laxity = dl_se->deadline - rq_clock(rq);
957
958 /*
959 * If the task has deadline < period, and the deadline is in the past,
960 * it should already be throttled before this check.
961 *
962 * See update_dl_entity() comments for further details.
963 */
964 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
965
966 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
967 }
968
969 /*
970 * Regarding the deadline, a task with implicit deadline has a relative
971 * deadline == relative period. A task with constrained deadline has a
972 * relative deadline <= relative period.
973 *
974 * We support constrained deadline tasks. However, there are some restrictions
975 * applied only for tasks which do not have an implicit deadline. See
976 * update_dl_entity() to know more about such restrictions.
977 *
978 * The dl_is_implicit() returns true if the task has an implicit deadline.
979 */
dl_is_implicit(struct sched_dl_entity * dl_se)980 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
981 {
982 return dl_se->dl_deadline == dl_se->dl_period;
983 }
984
985 /*
986 * When a deadline entity is placed in the runqueue, its runtime and deadline
987 * might need to be updated. This is done by a CBS wake up rule. There are two
988 * different rules: 1) the original CBS; and 2) the Revisited CBS.
989 *
990 * When the task is starting a new period, the Original CBS is used. In this
991 * case, the runtime is replenished and a new absolute deadline is set.
992 *
993 * When a task is queued before the begin of the next period, using the
994 * remaining runtime and deadline could make the entity to overflow, see
995 * dl_entity_overflow() to find more about runtime overflow. When such case
996 * is detected, the runtime and deadline need to be updated.
997 *
998 * If the task has an implicit deadline, i.e., deadline == period, the Original
999 * CBS is applied. the runtime is replenished and a new absolute deadline is
1000 * set, as in the previous cases.
1001 *
1002 * However, the Original CBS does not work properly for tasks with
1003 * deadline < period, which are said to have a constrained deadline. By
1004 * applying the Original CBS, a constrained deadline task would be able to run
1005 * runtime/deadline in a period. With deadline < period, the task would
1006 * overrun the runtime/period allowed bandwidth, breaking the admission test.
1007 *
1008 * In order to prevent this misbehave, the Revisited CBS is used for
1009 * constrained deadline tasks when a runtime overflow is detected. In the
1010 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1011 * the remaining runtime of the task is reduced to avoid runtime overflow.
1012 * Please refer to the comments update_dl_revised_wakeup() function to find
1013 * more about the Revised CBS rule.
1014 */
update_dl_entity(struct sched_dl_entity * dl_se)1015 static void update_dl_entity(struct sched_dl_entity *dl_se)
1016 {
1017 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1018 struct rq *rq = rq_of_dl_rq(dl_rq);
1019
1020 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1021 dl_entity_overflow(dl_se, rq_clock(rq))) {
1022
1023 if (unlikely(!dl_is_implicit(dl_se) &&
1024 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1025 !is_dl_boosted(dl_se))) {
1026 update_dl_revised_wakeup(dl_se, rq);
1027 return;
1028 }
1029
1030 replenish_dl_new_period(dl_se, rq);
1031 }
1032 }
1033
dl_next_period(struct sched_dl_entity * dl_se)1034 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1035 {
1036 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1037 }
1038
1039 /*
1040 * If the entity depleted all its runtime, and if we want it to sleep
1041 * while waiting for some new execution time to become available, we
1042 * set the bandwidth replenishment timer to the replenishment instant
1043 * and try to activate it.
1044 *
1045 * Notice that it is important for the caller to know if the timer
1046 * actually started or not (i.e., the replenishment instant is in
1047 * the future or in the past).
1048 */
start_dl_timer(struct task_struct * p)1049 static int start_dl_timer(struct task_struct *p)
1050 {
1051 struct sched_dl_entity *dl_se = &p->dl;
1052 struct hrtimer *timer = &dl_se->dl_timer;
1053 struct rq *rq = task_rq(p);
1054 ktime_t now, act;
1055 s64 delta;
1056
1057 lockdep_assert_rq_held(rq);
1058
1059 /*
1060 * We want the timer to fire at the deadline, but considering
1061 * that it is actually coming from rq->clock and not from
1062 * hrtimer's time base reading.
1063 */
1064 act = ns_to_ktime(dl_next_period(dl_se));
1065 now = hrtimer_cb_get_time(timer);
1066 delta = ktime_to_ns(now) - rq_clock(rq);
1067 act = ktime_add_ns(act, delta);
1068
1069 /*
1070 * If the expiry time already passed, e.g., because the value
1071 * chosen as the deadline is too small, don't even try to
1072 * start the timer in the past!
1073 */
1074 if (ktime_us_delta(act, now) < 0)
1075 return 0;
1076
1077 /*
1078 * !enqueued will guarantee another callback; even if one is already in
1079 * progress. This ensures a balanced {get,put}_task_struct().
1080 *
1081 * The race against __run_timer() clearing the enqueued state is
1082 * harmless because we're holding task_rq()->lock, therefore the timer
1083 * expiring after we've done the check will wait on its task_rq_lock()
1084 * and observe our state.
1085 */
1086 if (!hrtimer_is_queued(timer)) {
1087 get_task_struct(p);
1088 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1089 }
1090
1091 return 1;
1092 }
1093
1094 /*
1095 * This is the bandwidth enforcement timer callback. If here, we know
1096 * a task is not on its dl_rq, since the fact that the timer was running
1097 * means the task is throttled and needs a runtime replenishment.
1098 *
1099 * However, what we actually do depends on the fact the task is active,
1100 * (it is on its rq) or has been removed from there by a call to
1101 * dequeue_task_dl(). In the former case we must issue the runtime
1102 * replenishment and add the task back to the dl_rq; in the latter, we just
1103 * do nothing but clearing dl_throttled, so that runtime and deadline
1104 * updating (and the queueing back to dl_rq) will be done by the
1105 * next call to enqueue_task_dl().
1106 */
dl_task_timer(struct hrtimer * timer)1107 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1108 {
1109 struct sched_dl_entity *dl_se = container_of(timer,
1110 struct sched_dl_entity,
1111 dl_timer);
1112 struct task_struct *p = dl_task_of(dl_se);
1113 struct rq_flags rf;
1114 struct rq *rq;
1115
1116 rq = task_rq_lock(p, &rf);
1117
1118 /*
1119 * The task might have changed its scheduling policy to something
1120 * different than SCHED_DEADLINE (through switched_from_dl()).
1121 */
1122 if (!dl_task(p))
1123 goto unlock;
1124
1125 /*
1126 * The task might have been boosted by someone else and might be in the
1127 * boosting/deboosting path, its not throttled.
1128 */
1129 if (is_dl_boosted(dl_se))
1130 goto unlock;
1131
1132 /*
1133 * Spurious timer due to start_dl_timer() race; or we already received
1134 * a replenishment from rt_mutex_setprio().
1135 */
1136 if (!dl_se->dl_throttled)
1137 goto unlock;
1138
1139 sched_clock_tick();
1140 update_rq_clock(rq);
1141
1142 /*
1143 * If the throttle happened during sched-out; like:
1144 *
1145 * schedule()
1146 * deactivate_task()
1147 * dequeue_task_dl()
1148 * update_curr_dl()
1149 * start_dl_timer()
1150 * __dequeue_task_dl()
1151 * prev->on_rq = 0;
1152 *
1153 * We can be both throttled and !queued. Replenish the counter
1154 * but do not enqueue -- wait for our wakeup to do that.
1155 */
1156 if (!task_on_rq_queued(p)) {
1157 replenish_dl_entity(dl_se);
1158 goto unlock;
1159 }
1160
1161 #ifdef CONFIG_SMP
1162 if (unlikely(!rq->online)) {
1163 /*
1164 * If the runqueue is no longer available, migrate the
1165 * task elsewhere. This necessarily changes rq.
1166 */
1167 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1168 rq = dl_task_offline_migration(rq, p);
1169 rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1170 update_rq_clock(rq);
1171
1172 /*
1173 * Now that the task has been migrated to the new RQ and we
1174 * have that locked, proceed as normal and enqueue the task
1175 * there.
1176 */
1177 }
1178 #endif
1179
1180 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1181 if (dl_task(rq->curr))
1182 wakeup_preempt_dl(rq, p, 0);
1183 else
1184 resched_curr(rq);
1185
1186 #ifdef CONFIG_SMP
1187 /*
1188 * Queueing this task back might have overloaded rq, check if we need
1189 * to kick someone away.
1190 */
1191 if (has_pushable_dl_tasks(rq)) {
1192 /*
1193 * Nothing relies on rq->lock after this, so its safe to drop
1194 * rq->lock.
1195 */
1196 rq_unpin_lock(rq, &rf);
1197 push_dl_task(rq);
1198 rq_repin_lock(rq, &rf);
1199 }
1200 #endif
1201
1202 unlock:
1203 task_rq_unlock(rq, p, &rf);
1204
1205 /*
1206 * This can free the task_struct, including this hrtimer, do not touch
1207 * anything related to that after this.
1208 */
1209 put_task_struct(p);
1210
1211 return HRTIMER_NORESTART;
1212 }
1213
init_dl_task_timer(struct sched_dl_entity * dl_se)1214 static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1215 {
1216 struct hrtimer *timer = &dl_se->dl_timer;
1217
1218 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1219 timer->function = dl_task_timer;
1220 }
1221
1222 /*
1223 * During the activation, CBS checks if it can reuse the current task's
1224 * runtime and period. If the deadline of the task is in the past, CBS
1225 * cannot use the runtime, and so it replenishes the task. This rule
1226 * works fine for implicit deadline tasks (deadline == period), and the
1227 * CBS was designed for implicit deadline tasks. However, a task with
1228 * constrained deadline (deadline < period) might be awakened after the
1229 * deadline, but before the next period. In this case, replenishing the
1230 * task would allow it to run for runtime / deadline. As in this case
1231 * deadline < period, CBS enables a task to run for more than the
1232 * runtime / period. In a very loaded system, this can cause a domino
1233 * effect, making other tasks miss their deadlines.
1234 *
1235 * To avoid this problem, in the activation of a constrained deadline
1236 * task after the deadline but before the next period, throttle the
1237 * task and set the replenishing timer to the begin of the next period,
1238 * unless it is boosted.
1239 */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1240 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1241 {
1242 struct task_struct *p = dl_task_of(dl_se);
1243 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1244
1245 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1246 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1247 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1248 return;
1249 dl_se->dl_throttled = 1;
1250 if (dl_se->runtime > 0)
1251 dl_se->runtime = 0;
1252 }
1253 }
1254
1255 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1256 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1257 {
1258 return (dl_se->runtime <= 0);
1259 }
1260
1261 /*
1262 * This function implements the GRUB accounting rule. According to the
1263 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1264 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1265 * where u is the utilization of the task, Umax is the maximum reclaimable
1266 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1267 * as the difference between the "total runqueue utilization" and the
1268 * "runqueue active utilization", and Uextra is the (per runqueue) extra
1269 * reclaimable utilization.
1270 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1271 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1272 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1273 * is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1274 * Since delta is a 64 bit variable, to have an overflow its value should be
1275 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1276 * not an issue here.
1277 */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1278 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1279 {
1280 u64 u_act;
1281 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1282
1283 /*
1284 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1285 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1286 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1287 * negative leading to wrong results.
1288 */
1289 if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1290 u_act = dl_se->dl_bw;
1291 else
1292 u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1293
1294 u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1295 return (delta * u_act) >> BW_SHIFT;
1296 }
1297
1298 /*
1299 * Update the current task's runtime statistics (provided it is still
1300 * a -deadline task and has not been removed from the dl_rq).
1301 */
update_curr_dl(struct rq * rq)1302 static void update_curr_dl(struct rq *rq)
1303 {
1304 struct task_struct *curr = rq->curr;
1305 struct sched_dl_entity *dl_se = &curr->dl;
1306 s64 delta_exec, scaled_delta_exec;
1307 int cpu = cpu_of(rq);
1308
1309 if (!dl_task(curr) || !on_dl_rq(dl_se))
1310 return;
1311
1312 /*
1313 * Consumed budget is computed considering the time as
1314 * observed by schedulable tasks (excluding time spent
1315 * in hardirq context, etc.). Deadlines are instead
1316 * computed using hard walltime. This seems to be the more
1317 * natural solution, but the full ramifications of this
1318 * approach need further study.
1319 */
1320 delta_exec = update_curr_common(rq);
1321 if (unlikely(delta_exec <= 0)) {
1322 if (unlikely(dl_se->dl_yielded))
1323 goto throttle;
1324 return;
1325 }
1326
1327 if (dl_entity_is_special(dl_se))
1328 return;
1329
1330 /*
1331 * For tasks that participate in GRUB, we implement GRUB-PA: the
1332 * spare reclaimed bandwidth is used to clock down frequency.
1333 *
1334 * For the others, we still need to scale reservation parameters
1335 * according to current frequency and CPU maximum capacity.
1336 */
1337 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1338 scaled_delta_exec = grub_reclaim(delta_exec,
1339 rq,
1340 &curr->dl);
1341 } else {
1342 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1343 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1344
1345 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1346 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1347 }
1348
1349 dl_se->runtime -= scaled_delta_exec;
1350
1351 throttle:
1352 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1353 dl_se->dl_throttled = 1;
1354
1355 /* If requested, inform the user about runtime overruns. */
1356 if (dl_runtime_exceeded(dl_se) &&
1357 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1358 dl_se->dl_overrun = 1;
1359
1360 __dequeue_task_dl(rq, curr, 0);
1361 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1362 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1363
1364 if (!is_leftmost(curr, &rq->dl))
1365 resched_curr(rq);
1366 }
1367
1368 /*
1369 * Because -- for now -- we share the rt bandwidth, we need to
1370 * account our runtime there too, otherwise actual rt tasks
1371 * would be able to exceed the shared quota.
1372 *
1373 * Account to the root rt group for now.
1374 *
1375 * The solution we're working towards is having the RT groups scheduled
1376 * using deadline servers -- however there's a few nasties to figure
1377 * out before that can happen.
1378 */
1379 if (rt_bandwidth_enabled()) {
1380 struct rt_rq *rt_rq = &rq->rt;
1381
1382 raw_spin_lock(&rt_rq->rt_runtime_lock);
1383 /*
1384 * We'll let actual RT tasks worry about the overflow here, we
1385 * have our own CBS to keep us inline; only account when RT
1386 * bandwidth is relevant.
1387 */
1388 if (sched_rt_bandwidth_account(rt_rq))
1389 rt_rq->rt_time += delta_exec;
1390 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1391 }
1392 }
1393
inactive_task_timer(struct hrtimer * timer)1394 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1395 {
1396 struct sched_dl_entity *dl_se = container_of(timer,
1397 struct sched_dl_entity,
1398 inactive_timer);
1399 struct task_struct *p = dl_task_of(dl_se);
1400 struct rq_flags rf;
1401 struct rq *rq;
1402
1403 rq = task_rq_lock(p, &rf);
1404
1405 sched_clock_tick();
1406 update_rq_clock(rq);
1407
1408 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1409 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1410
1411 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1412 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1413 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1414 dl_se->dl_non_contending = 0;
1415 }
1416
1417 raw_spin_lock(&dl_b->lock);
1418 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1419 raw_spin_unlock(&dl_b->lock);
1420 __dl_clear_params(dl_se);
1421
1422 goto unlock;
1423 }
1424 if (dl_se->dl_non_contending == 0)
1425 goto unlock;
1426
1427 sub_running_bw(dl_se, &rq->dl);
1428 dl_se->dl_non_contending = 0;
1429 unlock:
1430 task_rq_unlock(rq, p, &rf);
1431 put_task_struct(p);
1432
1433 return HRTIMER_NORESTART;
1434 }
1435
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1436 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1437 {
1438 struct hrtimer *timer = &dl_se->inactive_timer;
1439
1440 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1441 timer->function = inactive_task_timer;
1442 }
1443
1444 #define __node_2_dle(node) \
1445 rb_entry((node), struct sched_dl_entity, rb_node)
1446
1447 #ifdef CONFIG_SMP
1448
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1449 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1450 {
1451 struct rq *rq = rq_of_dl_rq(dl_rq);
1452
1453 if (dl_rq->earliest_dl.curr == 0 ||
1454 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1455 if (dl_rq->earliest_dl.curr == 0)
1456 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1457 dl_rq->earliest_dl.curr = deadline;
1458 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1459 }
1460 }
1461
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1462 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1463 {
1464 struct rq *rq = rq_of_dl_rq(dl_rq);
1465
1466 /*
1467 * Since we may have removed our earliest (and/or next earliest)
1468 * task we must recompute them.
1469 */
1470 if (!dl_rq->dl_nr_running) {
1471 dl_rq->earliest_dl.curr = 0;
1472 dl_rq->earliest_dl.next = 0;
1473 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1474 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1475 } else {
1476 struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1477 struct sched_dl_entity *entry = __node_2_dle(leftmost);
1478
1479 dl_rq->earliest_dl.curr = entry->deadline;
1480 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1481 }
1482 }
1483
1484 #else
1485
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1486 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1487 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1488
1489 #endif /* CONFIG_SMP */
1490
1491 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1492 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1493 {
1494 int prio = dl_task_of(dl_se)->prio;
1495 u64 deadline = dl_se->deadline;
1496
1497 WARN_ON(!dl_prio(prio));
1498 dl_rq->dl_nr_running++;
1499 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1500 walt_inc_cumulative_runnable_avg(rq_of_dl_rq(dl_rq), dl_task_of(dl_se));
1501
1502 inc_dl_deadline(dl_rq, deadline);
1503 inc_dl_migration(dl_se, dl_rq);
1504 }
1505
1506 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1507 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1508 {
1509 int prio = dl_task_of(dl_se)->prio;
1510
1511 WARN_ON(!dl_prio(prio));
1512 WARN_ON(!dl_rq->dl_nr_running);
1513 dl_rq->dl_nr_running--;
1514 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1515 walt_dec_cumulative_runnable_avg(rq_of_dl_rq(dl_rq), dl_task_of(dl_se));
1516
1517 dec_dl_deadline(dl_rq, dl_se->deadline);
1518 dec_dl_migration(dl_se, dl_rq);
1519 }
1520
__dl_less(struct rb_node * a,const struct rb_node * b)1521 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1522 {
1523 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1524 }
1525
1526 static inline struct sched_statistics *
__schedstats_from_dl_se(struct sched_dl_entity * dl_se)1527 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1528 {
1529 return &dl_task_of(dl_se)->stats;
1530 }
1531
1532 static inline void
update_stats_wait_start_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1533 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1534 {
1535 struct sched_statistics *stats;
1536
1537 if (!schedstat_enabled())
1538 return;
1539
1540 stats = __schedstats_from_dl_se(dl_se);
1541 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1542 }
1543
1544 static inline void
update_stats_wait_end_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1545 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1546 {
1547 struct sched_statistics *stats;
1548
1549 if (!schedstat_enabled())
1550 return;
1551
1552 stats = __schedstats_from_dl_se(dl_se);
1553 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1554 }
1555
1556 static inline void
update_stats_enqueue_sleeper_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1557 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1558 {
1559 struct sched_statistics *stats;
1560
1561 if (!schedstat_enabled())
1562 return;
1563
1564 stats = __schedstats_from_dl_se(dl_se);
1565 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1566 }
1567
1568 static inline void
update_stats_enqueue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1569 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1570 int flags)
1571 {
1572 if (!schedstat_enabled())
1573 return;
1574
1575 if (flags & ENQUEUE_WAKEUP)
1576 update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1577 }
1578
1579 static inline void
update_stats_dequeue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1580 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1581 int flags)
1582 {
1583 struct task_struct *p = dl_task_of(dl_se);
1584
1585 if (!schedstat_enabled())
1586 return;
1587
1588 if ((flags & DEQUEUE_SLEEP)) {
1589 unsigned int state;
1590
1591 state = READ_ONCE(p->__state);
1592 if (state & TASK_INTERRUPTIBLE)
1593 __schedstat_set(p->stats.sleep_start,
1594 rq_clock(rq_of_dl_rq(dl_rq)));
1595
1596 if (state & TASK_UNINTERRUPTIBLE)
1597 __schedstat_set(p->stats.block_start,
1598 rq_clock(rq_of_dl_rq(dl_rq)));
1599 }
1600 }
1601
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1602 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1603 {
1604 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1605
1606 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1607
1608 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1609
1610 inc_dl_tasks(dl_se, dl_rq);
1611 }
1612
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1613 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1614 {
1615 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1616
1617 if (RB_EMPTY_NODE(&dl_se->rb_node))
1618 return;
1619
1620 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1621
1622 RB_CLEAR_NODE(&dl_se->rb_node);
1623
1624 dec_dl_tasks(dl_se, dl_rq);
1625 }
1626
1627 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)1628 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1629 {
1630 WARN_ON_ONCE(on_dl_rq(dl_se));
1631
1632 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1633
1634 /*
1635 * Check if a constrained deadline task was activated
1636 * after the deadline but before the next period.
1637 * If that is the case, the task will be throttled and
1638 * the replenishment timer will be set to the next period.
1639 */
1640 if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
1641 dl_check_constrained_dl(dl_se);
1642
1643 if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
1644 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1645
1646 add_rq_bw(dl_se, dl_rq);
1647 add_running_bw(dl_se, dl_rq);
1648 }
1649
1650 /*
1651 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1652 * its budget it needs a replenishment and, since it now is on
1653 * its rq, the bandwidth timer callback (which clearly has not
1654 * run yet) will take care of this.
1655 * However, the active utilization does not depend on the fact
1656 * that the task is on the runqueue or not (but depends on the
1657 * task's state - in GRUB parlance, "inactive" vs "active contending").
1658 * In other words, even if a task is throttled its utilization must
1659 * be counted in the active utilization; hence, we need to call
1660 * add_running_bw().
1661 */
1662 if (dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1663 if (flags & ENQUEUE_WAKEUP)
1664 task_contending(dl_se, flags);
1665
1666 return;
1667 }
1668
1669 /*
1670 * If this is a wakeup or a new instance, the scheduling
1671 * parameters of the task might need updating. Otherwise,
1672 * we want a replenishment of its runtime.
1673 */
1674 if (flags & ENQUEUE_WAKEUP) {
1675 task_contending(dl_se, flags);
1676 update_dl_entity(dl_se);
1677 } else if (flags & ENQUEUE_REPLENISH) {
1678 replenish_dl_entity(dl_se);
1679 } else if ((flags & ENQUEUE_RESTORE) &&
1680 !is_dl_boosted(dl_se) &&
1681 dl_time_before(dl_se->deadline,
1682 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1683 setup_new_dl_entity(dl_se);
1684 }
1685
1686 __enqueue_dl_entity(dl_se);
1687 }
1688
dequeue_dl_entity(struct sched_dl_entity * dl_se,int flags)1689 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1690 {
1691 __dequeue_dl_entity(dl_se);
1692
1693 if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
1694 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1695
1696 sub_running_bw(dl_se, dl_rq);
1697 sub_rq_bw(dl_se, dl_rq);
1698 }
1699
1700 /*
1701 * This check allows to start the inactive timer (or to immediately
1702 * decrease the active utilization, if needed) in two cases:
1703 * when the task blocks and when it is terminating
1704 * (p->state == TASK_DEAD). We can handle the two cases in the same
1705 * way, because from GRUB's point of view the same thing is happening
1706 * (the task moves from "active contending" to "active non contending"
1707 * or "inactive")
1708 */
1709 if (flags & DEQUEUE_SLEEP)
1710 task_non_contending(dl_se);
1711 }
1712
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)1713 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1714 {
1715 if (is_dl_boosted(&p->dl)) {
1716 /*
1717 * Because of delays in the detection of the overrun of a
1718 * thread's runtime, it might be the case that a thread
1719 * goes to sleep in a rt mutex with negative runtime. As
1720 * a consequence, the thread will be throttled.
1721 *
1722 * While waiting for the mutex, this thread can also be
1723 * boosted via PI, resulting in a thread that is throttled
1724 * and boosted at the same time.
1725 *
1726 * In this case, the boost overrides the throttle.
1727 */
1728 if (p->dl.dl_throttled) {
1729 /*
1730 * The replenish timer needs to be canceled. No
1731 * problem if it fires concurrently: boosted threads
1732 * are ignored in dl_task_timer().
1733 */
1734 hrtimer_try_to_cancel(&p->dl.dl_timer);
1735 p->dl.dl_throttled = 0;
1736 }
1737 } else if (!dl_prio(p->normal_prio)) {
1738 /*
1739 * Special case in which we have a !SCHED_DEADLINE task that is going
1740 * to be deboosted, but exceeds its runtime while doing so. No point in
1741 * replenishing it, as it's going to return back to its original
1742 * scheduling class after this. If it has been throttled, we need to
1743 * clear the flag, otherwise the task may wake up as throttled after
1744 * being boosted again with no means to replenish the runtime and clear
1745 * the throttle.
1746 */
1747 p->dl.dl_throttled = 0;
1748 if (!(flags & ENQUEUE_REPLENISH))
1749 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
1750 task_pid_nr(p));
1751
1752 return;
1753 }
1754
1755 check_schedstat_required();
1756 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
1757
1758 if (p->on_rq == TASK_ON_RQ_MIGRATING)
1759 flags |= ENQUEUE_MIGRATING;
1760
1761 enqueue_dl_entity(&p->dl, flags);
1762
1763 if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
1764 enqueue_pushable_dl_task(rq, p);
1765 }
1766
__dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1767 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1768 {
1769 update_stats_dequeue_dl(&rq->dl, &p->dl, flags);
1770 dequeue_dl_entity(&p->dl, flags);
1771
1772 if (!p->dl.dl_throttled)
1773 dequeue_pushable_dl_task(rq, p);
1774 }
1775
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1776 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1777 {
1778 update_curr_dl(rq);
1779
1780 if (p->on_rq == TASK_ON_RQ_MIGRATING)
1781 flags |= DEQUEUE_MIGRATING;
1782
1783 __dequeue_task_dl(rq, p, flags);
1784 }
1785
1786 /*
1787 * Yield task semantic for -deadline tasks is:
1788 *
1789 * get off from the CPU until our next instance, with
1790 * a new runtime. This is of little use now, since we
1791 * don't have a bandwidth reclaiming mechanism. Anyway,
1792 * bandwidth reclaiming is planned for the future, and
1793 * yield_task_dl will indicate that some spare budget
1794 * is available for other task instances to use it.
1795 */
yield_task_dl(struct rq * rq)1796 static void yield_task_dl(struct rq *rq)
1797 {
1798 /*
1799 * We make the task go to sleep until its current deadline by
1800 * forcing its runtime to zero. This way, update_curr_dl() stops
1801 * it and the bandwidth timer will wake it up and will give it
1802 * new scheduling parameters (thanks to dl_yielded=1).
1803 */
1804 rq->curr->dl.dl_yielded = 1;
1805
1806 update_rq_clock(rq);
1807 update_curr_dl(rq);
1808 /*
1809 * Tell update_rq_clock() that we've just updated,
1810 * so we don't do microscopic update in schedule()
1811 * and double the fastpath cost.
1812 */
1813 rq_clock_skip_update(rq);
1814 }
1815
1816 #ifdef CONFIG_SMP
1817
dl_task_is_earliest_deadline(struct task_struct * p,struct rq * rq)1818 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
1819 struct rq *rq)
1820 {
1821 return (!rq->dl.dl_nr_running ||
1822 dl_time_before(p->dl.deadline,
1823 rq->dl.earliest_dl.curr));
1824 }
1825
1826 static int find_later_rq(struct task_struct *task);
1827
1828 static int
select_task_rq_dl(struct task_struct * p,int cpu,int flags)1829 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1830 {
1831 struct task_struct *curr;
1832 bool select_rq;
1833 struct rq *rq;
1834
1835 if (!(flags & WF_TTWU))
1836 goto out;
1837
1838 rq = cpu_rq(cpu);
1839
1840 rcu_read_lock();
1841 curr = READ_ONCE(rq->curr); /* unlocked access */
1842
1843 /*
1844 * If we are dealing with a -deadline task, we must
1845 * decide where to wake it up.
1846 * If it has a later deadline and the current task
1847 * on this rq can't move (provided the waking task
1848 * can!) we prefer to send it somewhere else. On the
1849 * other hand, if it has a shorter deadline, we
1850 * try to make it stay here, it might be important.
1851 */
1852 select_rq = unlikely(dl_task(curr)) &&
1853 (curr->nr_cpus_allowed < 2 ||
1854 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1855 p->nr_cpus_allowed > 1;
1856
1857 /*
1858 * Take the capacity of the CPU into account to
1859 * ensure it fits the requirement of the task.
1860 */
1861 if (sched_asym_cpucap_active())
1862 select_rq |= !dl_task_fits_capacity(p, cpu);
1863
1864 if (select_rq) {
1865 int target = find_later_rq(p);
1866
1867 if (target != -1 &&
1868 dl_task_is_earliest_deadline(p, cpu_rq(target)))
1869 cpu = target;
1870 }
1871 rcu_read_unlock();
1872
1873 out:
1874 return cpu;
1875 }
1876
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)1877 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1878 {
1879 struct rq_flags rf;
1880 struct rq *rq;
1881
1882 if (READ_ONCE(p->__state) != TASK_WAKING)
1883 return;
1884
1885 rq = task_rq(p);
1886 /*
1887 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1888 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1889 * rq->lock is not... So, lock it
1890 */
1891 rq_lock(rq, &rf);
1892 if (p->dl.dl_non_contending) {
1893 update_rq_clock(rq);
1894 sub_running_bw(&p->dl, &rq->dl);
1895 p->dl.dl_non_contending = 0;
1896 /*
1897 * If the timer handler is currently running and the
1898 * timer cannot be canceled, inactive_task_timer()
1899 * will see that dl_not_contending is not set, and
1900 * will not touch the rq's active utilization,
1901 * so we are still safe.
1902 */
1903 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1904 put_task_struct(p);
1905 }
1906 sub_rq_bw(&p->dl, &rq->dl);
1907 rq_unlock(rq, &rf);
1908 }
1909
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)1910 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1911 {
1912 /*
1913 * Current can't be migrated, useless to reschedule,
1914 * let's hope p can move out.
1915 */
1916 if (rq->curr->nr_cpus_allowed == 1 ||
1917 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1918 return;
1919
1920 /*
1921 * p is migratable, so let's not schedule it and
1922 * see if it is pushed or pulled somewhere else.
1923 */
1924 if (p->nr_cpus_allowed != 1 &&
1925 cpudl_find(&rq->rd->cpudl, p, NULL))
1926 return;
1927
1928 resched_curr(rq);
1929 }
1930
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1931 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1932 {
1933 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1934 /*
1935 * This is OK, because current is on_cpu, which avoids it being
1936 * picked for load-balance and preemption/IRQs are still
1937 * disabled avoiding further scheduler activity on it and we've
1938 * not yet started the picking loop.
1939 */
1940 rq_unpin_lock(rq, rf);
1941 pull_dl_task(rq);
1942 rq_repin_lock(rq, rf);
1943 }
1944
1945 return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1946 }
1947 #endif /* CONFIG_SMP */
1948
1949 /*
1950 * Only called when both the current and waking task are -deadline
1951 * tasks.
1952 */
wakeup_preempt_dl(struct rq * rq,struct task_struct * p,int flags)1953 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
1954 int flags)
1955 {
1956 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1957 resched_curr(rq);
1958 return;
1959 }
1960
1961 #ifdef CONFIG_SMP
1962 /*
1963 * In the unlikely case current and p have the same deadline
1964 * let us try to decide what's the best thing to do...
1965 */
1966 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1967 !test_tsk_need_resched(rq->curr))
1968 check_preempt_equal_dl(rq, p);
1969 #endif /* CONFIG_SMP */
1970 }
1971
1972 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct task_struct * p)1973 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1974 {
1975 hrtick_start(rq, p->dl.runtime);
1976 }
1977 #else /* !CONFIG_SCHED_HRTICK */
start_hrtick_dl(struct rq * rq,struct task_struct * p)1978 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1979 {
1980 }
1981 #endif
1982
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)1983 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1984 {
1985 struct sched_dl_entity *dl_se = &p->dl;
1986 struct dl_rq *dl_rq = &rq->dl;
1987
1988 p->se.exec_start = rq_clock_task(rq);
1989 if (on_dl_rq(&p->dl))
1990 update_stats_wait_end_dl(dl_rq, dl_se);
1991
1992 /* You can't push away the running task */
1993 dequeue_pushable_dl_task(rq, p);
1994
1995 if (!first)
1996 return;
1997
1998 if (hrtick_enabled_dl(rq))
1999 start_hrtick_dl(rq, p);
2000
2001 if (rq->curr->sched_class != &dl_sched_class)
2002 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2003
2004 deadline_queue_push_tasks(rq);
2005 }
2006
pick_next_dl_entity(struct dl_rq * dl_rq)2007 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2008 {
2009 struct rb_node *left = rb_first_cached(&dl_rq->root);
2010
2011 if (!left)
2012 return NULL;
2013
2014 return __node_2_dle(left);
2015 }
2016
pick_task_dl(struct rq * rq)2017 static struct task_struct *pick_task_dl(struct rq *rq)
2018 {
2019 struct sched_dl_entity *dl_se;
2020 struct dl_rq *dl_rq = &rq->dl;
2021 struct task_struct *p;
2022
2023 if (!sched_dl_runnable(rq))
2024 return NULL;
2025
2026 dl_se = pick_next_dl_entity(dl_rq);
2027 WARN_ON_ONCE(!dl_se);
2028 p = dl_task_of(dl_se);
2029
2030 return p;
2031 }
2032
pick_next_task_dl(struct rq * rq)2033 static struct task_struct *pick_next_task_dl(struct rq *rq)
2034 {
2035 struct task_struct *p;
2036
2037 p = pick_task_dl(rq);
2038 if (p)
2039 set_next_task_dl(rq, p, true);
2040
2041 return p;
2042 }
2043
put_prev_task_dl(struct rq * rq,struct task_struct * p)2044 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
2045 {
2046 struct sched_dl_entity *dl_se = &p->dl;
2047 struct dl_rq *dl_rq = &rq->dl;
2048
2049 if (on_dl_rq(&p->dl))
2050 update_stats_wait_start_dl(dl_rq, dl_se);
2051
2052 update_curr_dl(rq);
2053
2054 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2055 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2056 enqueue_pushable_dl_task(rq, p);
2057 }
2058
2059 /*
2060 * scheduler tick hitting a task of our scheduling class.
2061 *
2062 * NOTE: This function can be called remotely by the tick offload that
2063 * goes along full dynticks. Therefore no local assumption can be made
2064 * and everything must be accessed through the @rq and @curr passed in
2065 * parameters.
2066 */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)2067 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2068 {
2069 update_curr_dl(rq);
2070
2071 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2072 /*
2073 * Even when we have runtime, update_curr_dl() might have resulted in us
2074 * not being the leftmost task anymore. In that case NEED_RESCHED will
2075 * be set and schedule() will start a new hrtick for the next task.
2076 */
2077 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2078 is_leftmost(p, &rq->dl))
2079 start_hrtick_dl(rq, p);
2080 }
2081
task_fork_dl(struct task_struct * p)2082 static void task_fork_dl(struct task_struct *p)
2083 {
2084 /*
2085 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2086 * sched_fork()
2087 */
2088 }
2089
2090 #ifdef CONFIG_SMP
2091
2092 /* Only try algorithms three times */
2093 #define DL_MAX_TRIES 3
2094
pick_dl_task(struct rq * rq,struct task_struct * p,int cpu)2095 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2096 {
2097 if (!task_on_cpu(rq, p) &&
2098 cpumask_test_cpu(cpu, &p->cpus_mask))
2099 return 1;
2100 return 0;
2101 }
2102
2103 /*
2104 * Return the earliest pushable rq's task, which is suitable to be executed
2105 * on the CPU, NULL otherwise:
2106 */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)2107 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2108 {
2109 struct task_struct *p = NULL;
2110 struct rb_node *next_node;
2111
2112 if (!has_pushable_dl_tasks(rq))
2113 return NULL;
2114
2115 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2116
2117 next_node:
2118 if (next_node) {
2119 p = __node_2_pdl(next_node);
2120
2121 if (pick_dl_task(rq, p, cpu))
2122 return p;
2123
2124 next_node = rb_next(next_node);
2125 goto next_node;
2126 }
2127
2128 return NULL;
2129 }
2130
2131 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2132
find_later_rq(struct task_struct * task)2133 static int find_later_rq(struct task_struct *task)
2134 {
2135 struct sched_domain *sd;
2136 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2137 int this_cpu = smp_processor_id();
2138 int cpu = task_cpu(task);
2139
2140 /* Make sure the mask is initialized first */
2141 if (unlikely(!later_mask))
2142 return -1;
2143
2144 if (task->nr_cpus_allowed == 1)
2145 return -1;
2146
2147 /*
2148 * We have to consider system topology and task affinity
2149 * first, then we can look for a suitable CPU.
2150 */
2151 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2152 return -1;
2153
2154 /*
2155 * If we are here, some targets have been found, including
2156 * the most suitable which is, among the runqueues where the
2157 * current tasks have later deadlines than the task's one, the
2158 * rq with the latest possible one.
2159 *
2160 * Now we check how well this matches with task's
2161 * affinity and system topology.
2162 *
2163 * The last CPU where the task run is our first
2164 * guess, since it is most likely cache-hot there.
2165 */
2166 if (cpumask_test_cpu(cpu, later_mask))
2167 return cpu;
2168 /*
2169 * Check if this_cpu is to be skipped (i.e., it is
2170 * not in the mask) or not.
2171 */
2172 if (!cpumask_test_cpu(this_cpu, later_mask))
2173 this_cpu = -1;
2174
2175 rcu_read_lock();
2176 for_each_domain(cpu, sd) {
2177 if (sd->flags & SD_WAKE_AFFINE) {
2178 int best_cpu;
2179
2180 /*
2181 * If possible, preempting this_cpu is
2182 * cheaper than migrating.
2183 */
2184 if (this_cpu != -1 &&
2185 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2186 rcu_read_unlock();
2187 return this_cpu;
2188 }
2189
2190 best_cpu = cpumask_any_and_distribute(later_mask,
2191 sched_domain_span(sd));
2192 /*
2193 * Last chance: if a CPU being in both later_mask
2194 * and current sd span is valid, that becomes our
2195 * choice. Of course, the latest possible CPU is
2196 * already under consideration through later_mask.
2197 */
2198 if (best_cpu < nr_cpu_ids) {
2199 rcu_read_unlock();
2200 return best_cpu;
2201 }
2202 }
2203 }
2204 rcu_read_unlock();
2205
2206 /*
2207 * At this point, all our guesses failed, we just return
2208 * 'something', and let the caller sort the things out.
2209 */
2210 if (this_cpu != -1)
2211 return this_cpu;
2212
2213 cpu = cpumask_any_distribute(later_mask);
2214 if (cpu < nr_cpu_ids)
2215 return cpu;
2216
2217 return -1;
2218 }
2219
2220 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2221 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2222 {
2223 struct rq *later_rq = NULL;
2224 int tries;
2225 int cpu;
2226
2227 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2228 cpu = find_later_rq(task);
2229
2230 if ((cpu == -1) || (cpu == rq->cpu))
2231 break;
2232
2233 later_rq = cpu_rq(cpu);
2234
2235 if (!dl_task_is_earliest_deadline(task, later_rq)) {
2236 /*
2237 * Target rq has tasks of equal or earlier deadline,
2238 * retrying does not release any lock and is unlikely
2239 * to yield a different result.
2240 */
2241 later_rq = NULL;
2242 break;
2243 }
2244
2245 /* Retry if something changed. */
2246 if (double_lock_balance(rq, later_rq)) {
2247 if (unlikely(task_rq(task) != rq ||
2248 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2249 task_on_cpu(rq, task) ||
2250 !dl_task(task) ||
2251 is_migration_disabled(task) ||
2252 !task_on_rq_queued(task))) {
2253 double_unlock_balance(rq, later_rq);
2254 later_rq = NULL;
2255 break;
2256 }
2257 }
2258
2259 /*
2260 * If the rq we found has no -deadline task, or
2261 * its earliest one has a later deadline than our
2262 * task, the rq is a good one.
2263 */
2264 if (dl_task_is_earliest_deadline(task, later_rq))
2265 break;
2266
2267 /* Otherwise we try again. */
2268 double_unlock_balance(rq, later_rq);
2269 later_rq = NULL;
2270 }
2271
2272 return later_rq;
2273 }
2274
pick_next_pushable_dl_task(struct rq * rq)2275 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2276 {
2277 struct task_struct *p;
2278
2279 if (!has_pushable_dl_tasks(rq))
2280 return NULL;
2281
2282 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2283
2284 WARN_ON_ONCE(rq->cpu != task_cpu(p));
2285 WARN_ON_ONCE(task_current(rq, p));
2286 WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2287
2288 WARN_ON_ONCE(!task_on_rq_queued(p));
2289 WARN_ON_ONCE(!dl_task(p));
2290
2291 return p;
2292 }
2293
2294 /*
2295 * See if the non running -deadline tasks on this rq
2296 * can be sent to some other CPU where they can preempt
2297 * and start executing.
2298 */
push_dl_task(struct rq * rq)2299 static int push_dl_task(struct rq *rq)
2300 {
2301 struct task_struct *next_task;
2302 struct rq *later_rq;
2303 int ret = 0;
2304
2305 if (!rq->dl.overloaded)
2306 return 0;
2307
2308 next_task = pick_next_pushable_dl_task(rq);
2309 if (!next_task)
2310 return 0;
2311
2312 retry:
2313 /*
2314 * If next_task preempts rq->curr, and rq->curr
2315 * can move away, it makes sense to just reschedule
2316 * without going further in pushing next_task.
2317 */
2318 if (dl_task(rq->curr) &&
2319 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2320 rq->curr->nr_cpus_allowed > 1) {
2321 resched_curr(rq);
2322 return 0;
2323 }
2324
2325 if (is_migration_disabled(next_task))
2326 return 0;
2327
2328 if (WARN_ON(next_task == rq->curr))
2329 return 0;
2330
2331 /* We might release rq lock */
2332 get_task_struct(next_task);
2333
2334 /* Will lock the rq it'll find */
2335 later_rq = find_lock_later_rq(next_task, rq);
2336 if (!later_rq) {
2337 struct task_struct *task;
2338
2339 /*
2340 * We must check all this again, since
2341 * find_lock_later_rq releases rq->lock and it is
2342 * then possible that next_task has migrated.
2343 */
2344 task = pick_next_pushable_dl_task(rq);
2345 if (task == next_task) {
2346 /*
2347 * The task is still there. We don't try
2348 * again, some other CPU will pull it when ready.
2349 */
2350 goto out;
2351 }
2352
2353 if (!task)
2354 /* No more tasks */
2355 goto out;
2356
2357 put_task_struct(next_task);
2358 next_task = task;
2359 goto retry;
2360 }
2361
2362 deactivate_task(rq, next_task, 0);
2363 set_task_cpu(next_task, later_rq->cpu);
2364 activate_task(later_rq, next_task, 0);
2365 ret = 1;
2366
2367 resched_curr(later_rq);
2368
2369 double_unlock_balance(rq, later_rq);
2370
2371 out:
2372 put_task_struct(next_task);
2373
2374 return ret;
2375 }
2376
push_dl_tasks(struct rq * rq)2377 static void push_dl_tasks(struct rq *rq)
2378 {
2379 /* push_dl_task() will return true if it moved a -deadline task */
2380 while (push_dl_task(rq))
2381 ;
2382 }
2383
pull_dl_task(struct rq * this_rq)2384 static void pull_dl_task(struct rq *this_rq)
2385 {
2386 int this_cpu = this_rq->cpu, cpu;
2387 struct task_struct *p, *push_task;
2388 bool resched = false;
2389 struct rq *src_rq;
2390 u64 dmin = LONG_MAX;
2391
2392 if (likely(!dl_overloaded(this_rq)))
2393 return;
2394
2395 /*
2396 * Match the barrier from dl_set_overloaded; this guarantees that if we
2397 * see overloaded we must also see the dlo_mask bit.
2398 */
2399 smp_rmb();
2400
2401 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2402 if (this_cpu == cpu)
2403 continue;
2404
2405 src_rq = cpu_rq(cpu);
2406
2407 /*
2408 * It looks racy, abd it is! However, as in sched_rt.c,
2409 * we are fine with this.
2410 */
2411 if (this_rq->dl.dl_nr_running &&
2412 dl_time_before(this_rq->dl.earliest_dl.curr,
2413 src_rq->dl.earliest_dl.next))
2414 continue;
2415
2416 /* Might drop this_rq->lock */
2417 push_task = NULL;
2418 double_lock_balance(this_rq, src_rq);
2419
2420 /*
2421 * If there are no more pullable tasks on the
2422 * rq, we're done with it.
2423 */
2424 if (src_rq->dl.dl_nr_running <= 1)
2425 goto skip;
2426
2427 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2428
2429 /*
2430 * We found a task to be pulled if:
2431 * - it preempts our current (if there's one),
2432 * - it will preempt the last one we pulled (if any).
2433 */
2434 if (p && dl_time_before(p->dl.deadline, dmin) &&
2435 dl_task_is_earliest_deadline(p, this_rq)) {
2436 WARN_ON(p == src_rq->curr);
2437 WARN_ON(!task_on_rq_queued(p));
2438
2439 /*
2440 * Then we pull iff p has actually an earlier
2441 * deadline than the current task of its runqueue.
2442 */
2443 if (dl_time_before(p->dl.deadline,
2444 src_rq->curr->dl.deadline))
2445 goto skip;
2446
2447 if (is_migration_disabled(p)) {
2448 push_task = get_push_task(src_rq);
2449 } else {
2450 deactivate_task(src_rq, p, 0);
2451 set_task_cpu(p, this_cpu);
2452 activate_task(this_rq, p, 0);
2453 dmin = p->dl.deadline;
2454 resched = true;
2455 }
2456
2457 /* Is there any other task even earlier? */
2458 }
2459 skip:
2460 double_unlock_balance(this_rq, src_rq);
2461
2462 if (push_task) {
2463 preempt_disable();
2464 raw_spin_rq_unlock(this_rq);
2465 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2466 push_task, &src_rq->push_work);
2467 preempt_enable();
2468 raw_spin_rq_lock(this_rq);
2469 }
2470 }
2471
2472 if (resched)
2473 resched_curr(this_rq);
2474 }
2475
2476 /*
2477 * Since the task is not running and a reschedule is not going to happen
2478 * anytime soon on its runqueue, we try pushing it away now.
2479 */
task_woken_dl(struct rq * rq,struct task_struct * p)2480 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2481 {
2482 if (!task_on_cpu(rq, p) &&
2483 !test_tsk_need_resched(rq->curr) &&
2484 p->nr_cpus_allowed > 1 &&
2485 dl_task(rq->curr) &&
2486 (rq->curr->nr_cpus_allowed < 2 ||
2487 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2488 push_dl_tasks(rq);
2489 }
2490 }
2491
set_cpus_allowed_dl(struct task_struct * p,struct affinity_context * ctx)2492 static void set_cpus_allowed_dl(struct task_struct *p,
2493 struct affinity_context *ctx)
2494 {
2495 struct root_domain *src_rd;
2496 struct rq *rq;
2497
2498 WARN_ON_ONCE(!dl_task(p));
2499
2500 rq = task_rq(p);
2501 src_rd = rq->rd;
2502 /*
2503 * Migrating a SCHED_DEADLINE task between exclusive
2504 * cpusets (different root_domains) entails a bandwidth
2505 * update. We already made space for us in the destination
2506 * domain (see cpuset_can_attach()).
2507 */
2508 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2509 struct dl_bw *src_dl_b;
2510
2511 src_dl_b = dl_bw_of(cpu_of(rq));
2512 /*
2513 * We now free resources of the root_domain we are migrating
2514 * off. In the worst case, sched_setattr() may temporary fail
2515 * until we complete the update.
2516 */
2517 raw_spin_lock(&src_dl_b->lock);
2518 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2519 raw_spin_unlock(&src_dl_b->lock);
2520 }
2521
2522 set_cpus_allowed_common(p, ctx);
2523 }
2524
2525 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2526 static void rq_online_dl(struct rq *rq)
2527 {
2528 if (rq->dl.overloaded)
2529 dl_set_overload(rq);
2530
2531 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2532 if (rq->dl.dl_nr_running > 0)
2533 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2534 }
2535
2536 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2537 static void rq_offline_dl(struct rq *rq)
2538 {
2539 if (rq->dl.overloaded)
2540 dl_clear_overload(rq);
2541
2542 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2543 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2544 }
2545
init_sched_dl_class(void)2546 void __init init_sched_dl_class(void)
2547 {
2548 unsigned int i;
2549
2550 for_each_possible_cpu(i)
2551 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2552 GFP_KERNEL, cpu_to_node(i));
2553 }
2554
dl_add_task_root_domain(struct task_struct * p)2555 void dl_add_task_root_domain(struct task_struct *p)
2556 {
2557 struct rq_flags rf;
2558 struct rq *rq;
2559 struct dl_bw *dl_b;
2560
2561 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2562 if (!dl_task(p)) {
2563 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2564 return;
2565 }
2566
2567 rq = __task_rq_lock(p, &rf);
2568
2569 dl_b = &rq->rd->dl_bw;
2570 raw_spin_lock(&dl_b->lock);
2571
2572 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2573
2574 raw_spin_unlock(&dl_b->lock);
2575
2576 task_rq_unlock(rq, p, &rf);
2577 }
2578
dl_clear_root_domain(struct root_domain * rd)2579 void dl_clear_root_domain(struct root_domain *rd)
2580 {
2581 unsigned long flags;
2582
2583 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2584 rd->dl_bw.total_bw = 0;
2585 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2586 }
2587
2588 #endif /* CONFIG_SMP */
2589
switched_from_dl(struct rq * rq,struct task_struct * p)2590 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2591 {
2592 /*
2593 * task_non_contending() can start the "inactive timer" (if the 0-lag
2594 * time is in the future). If the task switches back to dl before
2595 * the "inactive timer" fires, it can continue to consume its current
2596 * runtime using its current deadline. If it stays outside of
2597 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2598 * will reset the task parameters.
2599 */
2600 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2601 task_non_contending(&p->dl);
2602
2603 /*
2604 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2605 * keep track of that on its cpuset (for correct bandwidth tracking).
2606 */
2607 dec_dl_tasks_cs(p);
2608
2609 if (!task_on_rq_queued(p)) {
2610 /*
2611 * Inactive timer is armed. However, p is leaving DEADLINE and
2612 * might migrate away from this rq while continuing to run on
2613 * some other class. We need to remove its contribution from
2614 * this rq running_bw now, or sub_rq_bw (below) will complain.
2615 */
2616 if (p->dl.dl_non_contending)
2617 sub_running_bw(&p->dl, &rq->dl);
2618 sub_rq_bw(&p->dl, &rq->dl);
2619 }
2620
2621 /*
2622 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2623 * at the 0-lag time, because the task could have been migrated
2624 * while SCHED_OTHER in the meanwhile.
2625 */
2626 if (p->dl.dl_non_contending)
2627 p->dl.dl_non_contending = 0;
2628
2629 /*
2630 * Since this might be the only -deadline task on the rq,
2631 * this is the right place to try to pull some other one
2632 * from an overloaded CPU, if any.
2633 */
2634 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2635 return;
2636
2637 deadline_queue_pull_task(rq);
2638 }
2639
2640 /*
2641 * When switching to -deadline, we may overload the rq, then
2642 * we try to push someone off, if possible.
2643 */
switched_to_dl(struct rq * rq,struct task_struct * p)2644 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2645 {
2646 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2647 put_task_struct(p);
2648
2649 /*
2650 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
2651 * track of that on its cpuset (for correct bandwidth tracking).
2652 */
2653 inc_dl_tasks_cs(p);
2654
2655 /* If p is not queued we will update its parameters at next wakeup. */
2656 if (!task_on_rq_queued(p)) {
2657 add_rq_bw(&p->dl, &rq->dl);
2658
2659 return;
2660 }
2661
2662 if (rq->curr != p) {
2663 #ifdef CONFIG_SMP
2664 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2665 deadline_queue_push_tasks(rq);
2666 #endif
2667 if (dl_task(rq->curr))
2668 wakeup_preempt_dl(rq, p, 0);
2669 else
2670 resched_curr(rq);
2671 } else {
2672 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2673 }
2674 }
2675
2676 /*
2677 * If the scheduling parameters of a -deadline task changed,
2678 * a push or pull operation might be needed.
2679 */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)2680 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2681 int oldprio)
2682 {
2683 if (!task_on_rq_queued(p))
2684 return;
2685
2686 #ifdef CONFIG_SMP
2687 /*
2688 * This might be too much, but unfortunately
2689 * we don't have the old deadline value, and
2690 * we can't argue if the task is increasing
2691 * or lowering its prio, so...
2692 */
2693 if (!rq->dl.overloaded)
2694 deadline_queue_pull_task(rq);
2695
2696 if (task_current(rq, p)) {
2697 /*
2698 * If we now have a earlier deadline task than p,
2699 * then reschedule, provided p is still on this
2700 * runqueue.
2701 */
2702 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2703 resched_curr(rq);
2704 } else {
2705 /*
2706 * Current may not be deadline in case p was throttled but we
2707 * have just replenished it (e.g. rt_mutex_setprio()).
2708 *
2709 * Otherwise, if p was given an earlier deadline, reschedule.
2710 */
2711 if (!dl_task(rq->curr) ||
2712 dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
2713 resched_curr(rq);
2714 }
2715 #else
2716 /*
2717 * We don't know if p has a earlier or later deadline, so let's blindly
2718 * set a (maybe not needed) rescheduling point.
2719 */
2720 resched_curr(rq);
2721 #endif
2722 }
2723
2724 #ifdef CONFIG_SCHED_CORE
task_is_throttled_dl(struct task_struct * p,int cpu)2725 static int task_is_throttled_dl(struct task_struct *p, int cpu)
2726 {
2727 return p->dl.dl_throttled;
2728 }
2729 #endif
2730
2731 DEFINE_SCHED_CLASS(dl) = {
2732
2733 .enqueue_task = enqueue_task_dl,
2734 .dequeue_task = dequeue_task_dl,
2735 .yield_task = yield_task_dl,
2736
2737 .wakeup_preempt = wakeup_preempt_dl,
2738
2739 .pick_next_task = pick_next_task_dl,
2740 .put_prev_task = put_prev_task_dl,
2741 .set_next_task = set_next_task_dl,
2742
2743 #ifdef CONFIG_SMP
2744 .balance = balance_dl,
2745 .pick_task = pick_task_dl,
2746 .select_task_rq = select_task_rq_dl,
2747 .migrate_task_rq = migrate_task_rq_dl,
2748 .set_cpus_allowed = set_cpus_allowed_dl,
2749 .rq_online = rq_online_dl,
2750 .rq_offline = rq_offline_dl,
2751 .task_woken = task_woken_dl,
2752 .find_lock_rq = find_lock_later_rq,
2753 #endif
2754
2755 .task_tick = task_tick_dl,
2756 .task_fork = task_fork_dl,
2757
2758 .prio_changed = prio_changed_dl,
2759 .switched_from = switched_from_dl,
2760 .switched_to = switched_to_dl,
2761
2762 .update_curr = update_curr_dl,
2763 #ifdef CONFIG_SCHED_CORE
2764 .task_is_throttled = task_is_throttled_dl,
2765 #endif
2766 #ifdef CONFIG_SCHED_WALT
2767 .fixup_walt_sched_stats = fixup_walt_sched_stats_common,
2768 #endif
2769 };
2770
2771 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2772 static u64 dl_generation;
2773
sched_dl_global_validate(void)2774 int sched_dl_global_validate(void)
2775 {
2776 u64 runtime = global_rt_runtime();
2777 u64 period = global_rt_period();
2778 u64 new_bw = to_ratio(period, runtime);
2779 u64 gen = ++dl_generation;
2780 struct dl_bw *dl_b;
2781 int cpu, cpus, ret = 0;
2782 unsigned long flags;
2783
2784 /*
2785 * Here we want to check the bandwidth not being set to some
2786 * value smaller than the currently allocated bandwidth in
2787 * any of the root_domains.
2788 */
2789 for_each_online_cpu(cpu) {
2790 rcu_read_lock_sched();
2791
2792 if (dl_bw_visited(cpu, gen))
2793 goto next;
2794
2795 dl_b = dl_bw_of(cpu);
2796 cpus = dl_bw_cpus(cpu);
2797
2798 raw_spin_lock_irqsave(&dl_b->lock, flags);
2799 if (new_bw * cpus < dl_b->total_bw)
2800 ret = -EBUSY;
2801 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2802
2803 next:
2804 rcu_read_unlock_sched();
2805
2806 if (ret)
2807 break;
2808 }
2809
2810 return ret;
2811 }
2812
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)2813 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2814 {
2815 if (global_rt_runtime() == RUNTIME_INF) {
2816 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2817 dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
2818 } else {
2819 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2820 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2821 dl_rq->max_bw = dl_rq->extra_bw =
2822 to_ratio(global_rt_period(), global_rt_runtime());
2823 }
2824 }
2825
sched_dl_do_global(void)2826 void sched_dl_do_global(void)
2827 {
2828 u64 new_bw = -1;
2829 u64 gen = ++dl_generation;
2830 struct dl_bw *dl_b;
2831 int cpu;
2832 unsigned long flags;
2833
2834 if (global_rt_runtime() != RUNTIME_INF)
2835 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2836
2837 for_each_possible_cpu(cpu) {
2838 rcu_read_lock_sched();
2839
2840 if (dl_bw_visited(cpu, gen)) {
2841 rcu_read_unlock_sched();
2842 continue;
2843 }
2844
2845 dl_b = dl_bw_of(cpu);
2846
2847 raw_spin_lock_irqsave(&dl_b->lock, flags);
2848 dl_b->bw = new_bw;
2849 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2850
2851 rcu_read_unlock_sched();
2852 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2853 }
2854 }
2855
2856 /*
2857 * We must be sure that accepting a new task (or allowing changing the
2858 * parameters of an existing one) is consistent with the bandwidth
2859 * constraints. If yes, this function also accordingly updates the currently
2860 * allocated bandwidth to reflect the new situation.
2861 *
2862 * This function is called while holding p's rq->lock.
2863 */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)2864 int sched_dl_overflow(struct task_struct *p, int policy,
2865 const struct sched_attr *attr)
2866 {
2867 u64 period = attr->sched_period ?: attr->sched_deadline;
2868 u64 runtime = attr->sched_runtime;
2869 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2870 int cpus, err = -1, cpu = task_cpu(p);
2871 struct dl_bw *dl_b = dl_bw_of(cpu);
2872 unsigned long cap;
2873
2874 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2875 return 0;
2876
2877 /* !deadline task may carry old deadline bandwidth */
2878 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2879 return 0;
2880
2881 /*
2882 * Either if a task, enters, leave, or stays -deadline but changes
2883 * its parameters, we may need to update accordingly the total
2884 * allocated bandwidth of the container.
2885 */
2886 raw_spin_lock(&dl_b->lock);
2887 cpus = dl_bw_cpus(cpu);
2888 cap = dl_bw_capacity(cpu);
2889
2890 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2891 !__dl_overflow(dl_b, cap, 0, new_bw)) {
2892 if (hrtimer_active(&p->dl.inactive_timer))
2893 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2894 __dl_add(dl_b, new_bw, cpus);
2895 err = 0;
2896 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2897 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2898 /*
2899 * XXX this is slightly incorrect: when the task
2900 * utilization decreases, we should delay the total
2901 * utilization change until the task's 0-lag point.
2902 * But this would require to set the task's "inactive
2903 * timer" when the task is not inactive.
2904 */
2905 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2906 __dl_add(dl_b, new_bw, cpus);
2907 dl_change_utilization(p, new_bw);
2908 err = 0;
2909 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2910 /*
2911 * Do not decrease the total deadline utilization here,
2912 * switched_from_dl() will take care to do it at the correct
2913 * (0-lag) time.
2914 */
2915 err = 0;
2916 }
2917 raw_spin_unlock(&dl_b->lock);
2918
2919 return err;
2920 }
2921
2922 /*
2923 * This function initializes the sched_dl_entity of a newly becoming
2924 * SCHED_DEADLINE task.
2925 *
2926 * Only the static values are considered here, the actual runtime and the
2927 * absolute deadline will be properly calculated when the task is enqueued
2928 * for the first time with its new policy.
2929 */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)2930 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2931 {
2932 struct sched_dl_entity *dl_se = &p->dl;
2933
2934 dl_se->dl_runtime = attr->sched_runtime;
2935 dl_se->dl_deadline = attr->sched_deadline;
2936 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2937 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
2938 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2939 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2940 }
2941
__getparam_dl(struct task_struct * p,struct sched_attr * attr)2942 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2943 {
2944 struct sched_dl_entity *dl_se = &p->dl;
2945
2946 attr->sched_priority = p->rt_priority;
2947 attr->sched_runtime = dl_se->dl_runtime;
2948 attr->sched_deadline = dl_se->dl_deadline;
2949 attr->sched_period = dl_se->dl_period;
2950 attr->sched_flags &= ~SCHED_DL_FLAGS;
2951 attr->sched_flags |= dl_se->flags;
2952 }
2953
2954 /*
2955 * This function validates the new parameters of a -deadline task.
2956 * We ask for the deadline not being zero, and greater or equal
2957 * than the runtime, as well as the period of being zero or
2958 * greater than deadline. Furthermore, we have to be sure that
2959 * user parameters are above the internal resolution of 1us (we
2960 * check sched_runtime only since it is always the smaller one) and
2961 * below 2^63 ns (we have to check both sched_deadline and
2962 * sched_period, as the latter can be zero).
2963 */
__checkparam_dl(const struct sched_attr * attr)2964 bool __checkparam_dl(const struct sched_attr *attr)
2965 {
2966 u64 period, max, min;
2967
2968 /* special dl tasks don't actually use any parameter */
2969 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2970 return true;
2971
2972 /* deadline != 0 */
2973 if (attr->sched_deadline == 0)
2974 return false;
2975
2976 /*
2977 * Since we truncate DL_SCALE bits, make sure we're at least
2978 * that big.
2979 */
2980 if (attr->sched_runtime < (1ULL << DL_SCALE))
2981 return false;
2982
2983 /*
2984 * Since we use the MSB for wrap-around and sign issues, make
2985 * sure it's not set (mind that period can be equal to zero).
2986 */
2987 if (attr->sched_deadline & (1ULL << 63) ||
2988 attr->sched_period & (1ULL << 63))
2989 return false;
2990
2991 period = attr->sched_period;
2992 if (!period)
2993 period = attr->sched_deadline;
2994
2995 /* runtime <= deadline <= period (if period != 0) */
2996 if (period < attr->sched_deadline ||
2997 attr->sched_deadline < attr->sched_runtime)
2998 return false;
2999
3000 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3001 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3002
3003 if (period < min || period > max)
3004 return false;
3005
3006 return true;
3007 }
3008
3009 /*
3010 * This function clears the sched_dl_entity static params.
3011 */
__dl_clear_params(struct sched_dl_entity * dl_se)3012 static void __dl_clear_params(struct sched_dl_entity *dl_se)
3013 {
3014 dl_se->dl_runtime = 0;
3015 dl_se->dl_deadline = 0;
3016 dl_se->dl_period = 0;
3017 dl_se->flags = 0;
3018 dl_se->dl_bw = 0;
3019 dl_se->dl_density = 0;
3020
3021 dl_se->dl_throttled = 0;
3022 dl_se->dl_yielded = 0;
3023 dl_se->dl_non_contending = 0;
3024 dl_se->dl_overrun = 0;
3025
3026 #ifdef CONFIG_RT_MUTEXES
3027 dl_se->pi_se = dl_se;
3028 #endif
3029 }
3030
init_dl_entity(struct sched_dl_entity * dl_se)3031 void init_dl_entity(struct sched_dl_entity *dl_se)
3032 {
3033 RB_CLEAR_NODE(&dl_se->rb_node);
3034 init_dl_task_timer(dl_se);
3035 init_dl_inactive_task_timer(dl_se);
3036 __dl_clear_params(dl_se);
3037 }
3038
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)3039 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3040 {
3041 struct sched_dl_entity *dl_se = &p->dl;
3042
3043 if (dl_se->dl_runtime != attr->sched_runtime ||
3044 dl_se->dl_deadline != attr->sched_deadline ||
3045 dl_se->dl_period != attr->sched_period ||
3046 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3047 return true;
3048
3049 return false;
3050 }
3051
3052 #ifdef CONFIG_SMP
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)3053 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3054 const struct cpumask *trial)
3055 {
3056 unsigned long flags, cap;
3057 struct dl_bw *cur_dl_b;
3058 int ret = 1;
3059
3060 rcu_read_lock_sched();
3061 cur_dl_b = dl_bw_of(cpumask_any(cur));
3062 cap = __dl_bw_capacity(trial);
3063 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3064 if (__dl_overflow(cur_dl_b, cap, 0, 0))
3065 ret = 0;
3066 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3067 rcu_read_unlock_sched();
3068
3069 return ret;
3070 }
3071
3072 enum dl_bw_request {
3073 dl_bw_req_check_overflow = 0,
3074 dl_bw_req_alloc,
3075 dl_bw_req_free
3076 };
3077
dl_bw_manage(enum dl_bw_request req,int cpu,u64 dl_bw)3078 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3079 {
3080 unsigned long flags;
3081 struct dl_bw *dl_b;
3082 bool overflow = 0;
3083
3084 rcu_read_lock_sched();
3085 dl_b = dl_bw_of(cpu);
3086 raw_spin_lock_irqsave(&dl_b->lock, flags);
3087
3088 if (req == dl_bw_req_free) {
3089 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3090 } else {
3091 unsigned long cap = dl_bw_capacity(cpu);
3092
3093 overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3094
3095 if (req == dl_bw_req_alloc && !overflow) {
3096 /*
3097 * We reserve space in the destination
3098 * root_domain, as we can't fail after this point.
3099 * We will free resources in the source root_domain
3100 * later on (see set_cpus_allowed_dl()).
3101 */
3102 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3103 }
3104 }
3105
3106 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3107 rcu_read_unlock_sched();
3108
3109 return overflow ? -EBUSY : 0;
3110 }
3111
dl_bw_check_overflow(int cpu)3112 int dl_bw_check_overflow(int cpu)
3113 {
3114 return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
3115 }
3116
dl_bw_alloc(int cpu,u64 dl_bw)3117 int dl_bw_alloc(int cpu, u64 dl_bw)
3118 {
3119 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3120 }
3121
dl_bw_free(int cpu,u64 dl_bw)3122 void dl_bw_free(int cpu, u64 dl_bw)
3123 {
3124 dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3125 }
3126 #endif
3127
3128 #ifdef CONFIG_SCHED_DEBUG
print_dl_stats(struct seq_file * m,int cpu)3129 void print_dl_stats(struct seq_file *m, int cpu)
3130 {
3131 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3132 }
3133 #endif /* CONFIG_SCHED_DEBUG */
3134