• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! The `Box<T>` type for heap allocation.
2 //!
3 //! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
4 //! heap allocation in Rust. Boxes provide ownership for this allocation, and
5 //! drop their contents when they go out of scope. Boxes also ensure that they
6 //! never allocate more than `isize::MAX` bytes.
7 //!
8 //! # Examples
9 //!
10 //! Move a value from the stack to the heap by creating a [`Box`]:
11 //!
12 //! ```
13 //! let val: u8 = 5;
14 //! let boxed: Box<u8> = Box::new(val);
15 //! ```
16 //!
17 //! Move a value from a [`Box`] back to the stack by [dereferencing]:
18 //!
19 //! ```
20 //! let boxed: Box<u8> = Box::new(5);
21 //! let val: u8 = *boxed;
22 //! ```
23 //!
24 //! Creating a recursive data structure:
25 //!
26 //! ```
27 //! #[derive(Debug)]
28 //! enum List<T> {
29 //!     Cons(T, Box<List<T>>),
30 //!     Nil,
31 //! }
32 //!
33 //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
34 //! println!("{list:?}");
35 //! ```
36 //!
37 //! This will print `Cons(1, Cons(2, Nil))`.
38 //!
39 //! Recursive structures must be boxed, because if the definition of `Cons`
40 //! looked like this:
41 //!
42 //! ```compile_fail,E0072
43 //! # enum List<T> {
44 //! Cons(T, List<T>),
45 //! # }
46 //! ```
47 //!
48 //! It wouldn't work. This is because the size of a `List` depends on how many
49 //! elements are in the list, and so we don't know how much memory to allocate
50 //! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how
51 //! big `Cons` needs to be.
52 //!
53 //! # Memory layout
54 //!
55 //! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for
56 //! its allocation. It is valid to convert both ways between a [`Box`] and a
57 //! raw pointer allocated with the [`Global`] allocator, given that the
58 //! [`Layout`] used with the allocator is correct for the type. More precisely,
59 //! a `value: *mut T` that has been allocated with the [`Global`] allocator
60 //! with `Layout::for_value(&*value)` may be converted into a box using
61 //! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
62 //! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the
63 //! [`Global`] allocator with [`Layout::for_value(&*value)`].
64 //!
65 //! For zero-sized values, the `Box` pointer still has to be [valid] for reads
66 //! and writes and sufficiently aligned. In particular, casting any aligned
67 //! non-zero integer literal to a raw pointer produces a valid pointer, but a
68 //! pointer pointing into previously allocated memory that since got freed is
69 //! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot
70 //! be used is to use [`ptr::NonNull::dangling`].
71 //!
72 //! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented
73 //! as a single pointer and is also ABI-compatible with C pointers
74 //! (i.e. the C type `T*`). This means that if you have extern "C"
75 //! Rust functions that will be called from C, you can define those
76 //! Rust functions using `Box<T>` types, and use `T*` as corresponding
77 //! type on the C side. As an example, consider this C header which
78 //! declares functions that create and destroy some kind of `Foo`
79 //! value:
80 //!
81 //! ```c
82 //! /* C header */
83 //!
84 //! /* Returns ownership to the caller */
85 //! struct Foo* foo_new(void);
86 //!
87 //! /* Takes ownership from the caller; no-op when invoked with null */
88 //! void foo_delete(struct Foo*);
89 //! ```
90 //!
91 //! These two functions might be implemented in Rust as follows. Here, the
92 //! `struct Foo*` type from C is translated to `Box<Foo>`, which captures
93 //! the ownership constraints. Note also that the nullable argument to
94 //! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>`
95 //! cannot be null.
96 //!
97 //! ```
98 //! #[repr(C)]
99 //! pub struct Foo;
100 //!
101 //! #[no_mangle]
102 //! pub extern "C" fn foo_new() -> Box<Foo> {
103 //!     Box::new(Foo)
104 //! }
105 //!
106 //! #[no_mangle]
107 //! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
108 //! ```
109 //!
110 //! Even though `Box<T>` has the same representation and C ABI as a C pointer,
111 //! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
112 //! and expect things to work. `Box<T>` values will always be fully aligned,
113 //! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
114 //! free the value with the global allocator. In general, the best practice
115 //! is to only use `Box<T>` for pointers that originated from the global
116 //! allocator.
117 //!
118 //! **Important.** At least at present, you should avoid using
119 //! `Box<T>` types for functions that are defined in C but invoked
120 //! from Rust. In those cases, you should directly mirror the C types
121 //! as closely as possible. Using types like `Box<T>` where the C
122 //! definition is just using `T*` can lead to undefined behavior, as
123 //! described in [rust-lang/unsafe-code-guidelines#198][ucg#198].
124 //!
125 //! # Considerations for unsafe code
126 //!
127 //! **Warning: This section is not normative and is subject to change, possibly
128 //! being relaxed in the future! It is a simplified summary of the rules
129 //! currently implemented in the compiler.**
130 //!
131 //! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>`
132 //! asserts uniqueness over its content. Using raw pointers derived from a box
133 //! after that box has been mutated through, moved or borrowed as `&mut T`
134 //! is not allowed. For more guidance on working with box from unsafe code, see
135 //! [rust-lang/unsafe-code-guidelines#326][ucg#326].
136 //!
137 //!
138 //! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
139 //! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326
140 //! [dereferencing]: core::ops::Deref
141 //! [`Box::<T>::from_raw(value)`]: Box::from_raw
142 //! [`Global`]: crate::alloc::Global
143 //! [`Layout`]: crate::alloc::Layout
144 //! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value
145 //! [valid]: ptr#safety
146 
147 #![stable(feature = "rust1", since = "1.0.0")]
148 
149 use core::any::Any;
150 use core::async_iter::AsyncIterator;
151 use core::borrow;
152 use core::cmp::Ordering;
153 use core::error::Error;
154 use core::fmt;
155 use core::future::Future;
156 use core::hash::{Hash, Hasher};
157 use core::iter::FusedIterator;
158 use core::marker::Tuple;
159 use core::marker::Unsize;
160 use core::mem;
161 use core::ops::{
162     CoerceUnsized, Deref, DerefMut, DispatchFromDyn, Generator, GeneratorState, Receiver,
163 };
164 use core::pin::Pin;
165 use core::ptr::{self, Unique};
166 use core::task::{Context, Poll};
167 
168 #[cfg(not(no_global_oom_handling))]
169 use crate::alloc::{handle_alloc_error, WriteCloneIntoRaw};
170 use crate::alloc::{AllocError, Allocator, Global, Layout};
171 #[cfg(not(no_global_oom_handling))]
172 use crate::borrow::Cow;
173 use crate::raw_vec::RawVec;
174 #[cfg(not(no_global_oom_handling))]
175 use crate::str::from_boxed_utf8_unchecked;
176 #[cfg(not(no_global_oom_handling))]
177 use crate::string::String;
178 #[cfg(not(no_global_oom_handling))]
179 use crate::vec::Vec;
180 
181 #[unstable(feature = "thin_box", issue = "92791")]
182 pub use thin::ThinBox;
183 
184 mod thin;
185 
186 /// A pointer type that uniquely owns a heap allocation of type `T`.
187 ///
188 /// See the [module-level documentation](../../std/boxed/index.html) for more.
189 #[lang = "owned_box"]
190 #[fundamental]
191 #[stable(feature = "rust1", since = "1.0.0")]
192 // The declaration of the `Box` struct must be kept in sync with the
193 // `alloc::alloc::box_free` function or ICEs will happen. See the comment
194 // on `box_free` for more details.
195 pub struct Box<
196     T: ?Sized,
197     #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
198 >(Unique<T>, A);
199 
200 impl<T> Box<T> {
201     /// Allocates memory on the heap and then places `x` into it.
202     ///
203     /// This doesn't actually allocate if `T` is zero-sized.
204     ///
205     /// # Examples
206     ///
207     /// ```
208     /// let five = Box::new(5);
209     /// ```
210     #[cfg(all(not(no_global_oom_handling)))]
211     #[inline(always)]
212     #[stable(feature = "rust1", since = "1.0.0")]
213     #[must_use]
214     #[rustc_diagnostic_item = "box_new"]
new(x: T) -> Self215     pub fn new(x: T) -> Self {
216         #[rustc_box]
217         Box::new(x)
218     }
219 
220     /// Constructs a new box with uninitialized contents.
221     ///
222     /// # Examples
223     ///
224     /// ```
225     /// #![feature(new_uninit)]
226     ///
227     /// let mut five = Box::<u32>::new_uninit();
228     ///
229     /// let five = unsafe {
230     ///     // Deferred initialization:
231     ///     five.as_mut_ptr().write(5);
232     ///
233     ///     five.assume_init()
234     /// };
235     ///
236     /// assert_eq!(*five, 5)
237     /// ```
238     #[cfg(not(no_global_oom_handling))]
239     #[unstable(feature = "new_uninit", issue = "63291")]
240     #[must_use]
241     #[inline]
new_uninit() -> Box<mem::MaybeUninit<T>>242     pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
243         Self::new_uninit_in(Global)
244     }
245 
246     /// Constructs a new `Box` with uninitialized contents, with the memory
247     /// being filled with `0` bytes.
248     ///
249     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
250     /// of this method.
251     ///
252     /// # Examples
253     ///
254     /// ```
255     /// #![feature(new_uninit)]
256     ///
257     /// let zero = Box::<u32>::new_zeroed();
258     /// let zero = unsafe { zero.assume_init() };
259     ///
260     /// assert_eq!(*zero, 0)
261     /// ```
262     ///
263     /// [zeroed]: mem::MaybeUninit::zeroed
264     #[cfg(not(no_global_oom_handling))]
265     #[inline]
266     #[unstable(feature = "new_uninit", issue = "63291")]
267     #[must_use]
new_zeroed() -> Box<mem::MaybeUninit<T>>268     pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> {
269         Self::new_zeroed_in(Global)
270     }
271 
272     /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
273     /// `x` will be pinned in memory and unable to be moved.
274     ///
275     /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)`
276     /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using
277     /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to
278     /// construct a (pinned) `Box` in a different way than with [`Box::new`].
279     #[cfg(not(no_global_oom_handling))]
280     #[stable(feature = "pin", since = "1.33.0")]
281     #[must_use]
282     #[inline(always)]
pin(x: T) -> Pin<Box<T>>283     pub fn pin(x: T) -> Pin<Box<T>> {
284         Box::new(x).into()
285     }
286 
287     /// Allocates memory on the heap then places `x` into it,
288     /// returning an error if the allocation fails
289     ///
290     /// This doesn't actually allocate if `T` is zero-sized.
291     ///
292     /// # Examples
293     ///
294     /// ```
295     /// #![feature(allocator_api)]
296     ///
297     /// let five = Box::try_new(5)?;
298     /// # Ok::<(), std::alloc::AllocError>(())
299     /// ```
300     #[unstable(feature = "allocator_api", issue = "32838")]
301     #[inline]
try_new(x: T) -> Result<Self, AllocError>302     pub fn try_new(x: T) -> Result<Self, AllocError> {
303         Self::try_new_in(x, Global)
304     }
305 
306     /// Constructs a new box with uninitialized contents on the heap,
307     /// returning an error if the allocation fails
308     ///
309     /// # Examples
310     ///
311     /// ```
312     /// #![feature(allocator_api, new_uninit)]
313     ///
314     /// let mut five = Box::<u32>::try_new_uninit()?;
315     ///
316     /// let five = unsafe {
317     ///     // Deferred initialization:
318     ///     five.as_mut_ptr().write(5);
319     ///
320     ///     five.assume_init()
321     /// };
322     ///
323     /// assert_eq!(*five, 5);
324     /// # Ok::<(), std::alloc::AllocError>(())
325     /// ```
326     #[unstable(feature = "allocator_api", issue = "32838")]
327     // #[unstable(feature = "new_uninit", issue = "63291")]
328     #[inline]
try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError>329     pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
330         Box::try_new_uninit_in(Global)
331     }
332 
333     /// Constructs a new `Box` with uninitialized contents, with the memory
334     /// being filled with `0` bytes on the heap
335     ///
336     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
337     /// of this method.
338     ///
339     /// # Examples
340     ///
341     /// ```
342     /// #![feature(allocator_api, new_uninit)]
343     ///
344     /// let zero = Box::<u32>::try_new_zeroed()?;
345     /// let zero = unsafe { zero.assume_init() };
346     ///
347     /// assert_eq!(*zero, 0);
348     /// # Ok::<(), std::alloc::AllocError>(())
349     /// ```
350     ///
351     /// [zeroed]: mem::MaybeUninit::zeroed
352     #[unstable(feature = "allocator_api", issue = "32838")]
353     // #[unstable(feature = "new_uninit", issue = "63291")]
354     #[inline]
try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError>355     pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
356         Box::try_new_zeroed_in(Global)
357     }
358 }
359 
360 impl<T, A: Allocator> Box<T, A> {
361     /// Allocates memory in the given allocator then places `x` into it.
362     ///
363     /// This doesn't actually allocate if `T` is zero-sized.
364     ///
365     /// # Examples
366     ///
367     /// ```
368     /// #![feature(allocator_api)]
369     ///
370     /// use std::alloc::System;
371     ///
372     /// let five = Box::new_in(5, System);
373     /// ```
374     #[cfg(not(no_global_oom_handling))]
375     #[unstable(feature = "allocator_api", issue = "32838")]
376     #[must_use]
377     #[inline]
new_in(x: T, alloc: A) -> Self where A: Allocator,378     pub fn new_in(x: T, alloc: A) -> Self
379     where
380         A: Allocator,
381     {
382         let mut boxed = Self::new_uninit_in(alloc);
383         unsafe {
384             boxed.as_mut_ptr().write(x);
385             boxed.assume_init()
386         }
387     }
388 
389     /// Allocates memory in the given allocator then places `x` into it,
390     /// returning an error if the allocation fails
391     ///
392     /// This doesn't actually allocate if `T` is zero-sized.
393     ///
394     /// # Examples
395     ///
396     /// ```
397     /// #![feature(allocator_api)]
398     ///
399     /// use std::alloc::System;
400     ///
401     /// let five = Box::try_new_in(5, System)?;
402     /// # Ok::<(), std::alloc::AllocError>(())
403     /// ```
404     #[unstable(feature = "allocator_api", issue = "32838")]
405     #[inline]
try_new_in(x: T, alloc: A) -> Result<Self, AllocError> where A: Allocator,406     pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError>
407     where
408         A: Allocator,
409     {
410         let mut boxed = Self::try_new_uninit_in(alloc)?;
411         unsafe {
412             boxed.as_mut_ptr().write(x);
413             Ok(boxed.assume_init())
414         }
415     }
416 
417     /// Constructs a new box with uninitialized contents in the provided allocator.
418     ///
419     /// # Examples
420     ///
421     /// ```
422     /// #![feature(allocator_api, new_uninit)]
423     ///
424     /// use std::alloc::System;
425     ///
426     /// let mut five = Box::<u32, _>::new_uninit_in(System);
427     ///
428     /// let five = unsafe {
429     ///     // Deferred initialization:
430     ///     five.as_mut_ptr().write(5);
431     ///
432     ///     five.assume_init()
433     /// };
434     ///
435     /// assert_eq!(*five, 5)
436     /// ```
437     #[unstable(feature = "allocator_api", issue = "32838")]
438     #[cfg(not(no_global_oom_handling))]
439     #[must_use]
440     // #[unstable(feature = "new_uninit", issue = "63291")]
new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> where A: Allocator,441     pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
442     where
443         A: Allocator,
444     {
445         let layout = Layout::new::<mem::MaybeUninit<T>>();
446         // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
447         // That would make code size bigger.
448         match Box::try_new_uninit_in(alloc) {
449             Ok(m) => m,
450             Err(_) => handle_alloc_error(layout),
451         }
452     }
453 
454     /// Constructs a new box with uninitialized contents in the provided allocator,
455     /// returning an error if the allocation fails
456     ///
457     /// # Examples
458     ///
459     /// ```
460     /// #![feature(allocator_api, new_uninit)]
461     ///
462     /// use std::alloc::System;
463     ///
464     /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
465     ///
466     /// let five = unsafe {
467     ///     // Deferred initialization:
468     ///     five.as_mut_ptr().write(5);
469     ///
470     ///     five.assume_init()
471     /// };
472     ///
473     /// assert_eq!(*five, 5);
474     /// # Ok::<(), std::alloc::AllocError>(())
475     /// ```
476     #[unstable(feature = "allocator_api", issue = "32838")]
477     // #[unstable(feature = "new_uninit", issue = "63291")]
try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> where A: Allocator,478     pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
479     where
480         A: Allocator,
481     {
482         let layout = Layout::new::<mem::MaybeUninit<T>>();
483         let ptr = alloc.allocate(layout)?.cast();
484         unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
485     }
486 
487     /// Constructs a new `Box` with uninitialized contents, with the memory
488     /// being filled with `0` bytes in the provided allocator.
489     ///
490     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
491     /// of this method.
492     ///
493     /// # Examples
494     ///
495     /// ```
496     /// #![feature(allocator_api, new_uninit)]
497     ///
498     /// use std::alloc::System;
499     ///
500     /// let zero = Box::<u32, _>::new_zeroed_in(System);
501     /// let zero = unsafe { zero.assume_init() };
502     ///
503     /// assert_eq!(*zero, 0)
504     /// ```
505     ///
506     /// [zeroed]: mem::MaybeUninit::zeroed
507     #[unstable(feature = "allocator_api", issue = "32838")]
508     #[cfg(not(no_global_oom_handling))]
509     // #[unstable(feature = "new_uninit", issue = "63291")]
510     #[must_use]
new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> where A: Allocator,511     pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
512     where
513         A: Allocator,
514     {
515         let layout = Layout::new::<mem::MaybeUninit<T>>();
516         // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
517         // That would make code size bigger.
518         match Box::try_new_zeroed_in(alloc) {
519             Ok(m) => m,
520             Err(_) => handle_alloc_error(layout),
521         }
522     }
523 
524     /// Constructs a new `Box` with uninitialized contents, with the memory
525     /// being filled with `0` bytes in the provided allocator,
526     /// returning an error if the allocation fails,
527     ///
528     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
529     /// of this method.
530     ///
531     /// # Examples
532     ///
533     /// ```
534     /// #![feature(allocator_api, new_uninit)]
535     ///
536     /// use std::alloc::System;
537     ///
538     /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
539     /// let zero = unsafe { zero.assume_init() };
540     ///
541     /// assert_eq!(*zero, 0);
542     /// # Ok::<(), std::alloc::AllocError>(())
543     /// ```
544     ///
545     /// [zeroed]: mem::MaybeUninit::zeroed
546     #[unstable(feature = "allocator_api", issue = "32838")]
547     // #[unstable(feature = "new_uninit", issue = "63291")]
try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> where A: Allocator,548     pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
549     where
550         A: Allocator,
551     {
552         let layout = Layout::new::<mem::MaybeUninit<T>>();
553         let ptr = alloc.allocate_zeroed(layout)?.cast();
554         unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
555     }
556 
557     /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
558     /// `x` will be pinned in memory and unable to be moved.
559     ///
560     /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)`
561     /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using
562     /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to
563     /// construct a (pinned) `Box` in a different way than with [`Box::new_in`].
564     #[cfg(not(no_global_oom_handling))]
565     #[unstable(feature = "allocator_api", issue = "32838")]
566     #[must_use]
567     #[inline(always)]
pin_in(x: T, alloc: A) -> Pin<Self> where A: 'static + Allocator,568     pub fn pin_in(x: T, alloc: A) -> Pin<Self>
569     where
570         A: 'static + Allocator,
571     {
572         Self::into_pin(Self::new_in(x, alloc))
573     }
574 
575     /// Converts a `Box<T>` into a `Box<[T]>`
576     ///
577     /// This conversion does not allocate on the heap and happens in place.
578     #[unstable(feature = "box_into_boxed_slice", issue = "71582")]
into_boxed_slice(boxed: Self) -> Box<[T], A>579     pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> {
580         let (raw, alloc) = Box::into_raw_with_allocator(boxed);
581         unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) }
582     }
583 
584     /// Consumes the `Box`, returning the wrapped value.
585     ///
586     /// # Examples
587     ///
588     /// ```
589     /// #![feature(box_into_inner)]
590     ///
591     /// let c = Box::new(5);
592     ///
593     /// assert_eq!(Box::into_inner(c), 5);
594     /// ```
595     #[unstable(feature = "box_into_inner", issue = "80437")]
596     #[inline]
into_inner(boxed: Self) -> T597     pub fn into_inner(boxed: Self) -> T {
598         *boxed
599     }
600 }
601 
602 impl<T> Box<[T]> {
603     /// Constructs a new boxed slice with uninitialized contents.
604     ///
605     /// # Examples
606     ///
607     /// ```
608     /// #![feature(new_uninit)]
609     ///
610     /// let mut values = Box::<[u32]>::new_uninit_slice(3);
611     ///
612     /// let values = unsafe {
613     ///     // Deferred initialization:
614     ///     values[0].as_mut_ptr().write(1);
615     ///     values[1].as_mut_ptr().write(2);
616     ///     values[2].as_mut_ptr().write(3);
617     ///
618     ///     values.assume_init()
619     /// };
620     ///
621     /// assert_eq!(*values, [1, 2, 3])
622     /// ```
623     #[cfg(not(no_global_oom_handling))]
624     #[unstable(feature = "new_uninit", issue = "63291")]
625     #[must_use]
new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]>626     pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
627         unsafe { RawVec::with_capacity(len).into_box(len) }
628     }
629 
630     /// Constructs a new boxed slice with uninitialized contents, with the memory
631     /// being filled with `0` bytes.
632     ///
633     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
634     /// of this method.
635     ///
636     /// # Examples
637     ///
638     /// ```
639     /// #![feature(new_uninit)]
640     ///
641     /// let values = Box::<[u32]>::new_zeroed_slice(3);
642     /// let values = unsafe { values.assume_init() };
643     ///
644     /// assert_eq!(*values, [0, 0, 0])
645     /// ```
646     ///
647     /// [zeroed]: mem::MaybeUninit::zeroed
648     #[cfg(not(no_global_oom_handling))]
649     #[unstable(feature = "new_uninit", issue = "63291")]
650     #[must_use]
new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]>651     pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
652         unsafe { RawVec::with_capacity_zeroed(len).into_box(len) }
653     }
654 
655     /// Constructs a new boxed slice with uninitialized contents. Returns an error if
656     /// the allocation fails
657     ///
658     /// # Examples
659     ///
660     /// ```
661     /// #![feature(allocator_api, new_uninit)]
662     ///
663     /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
664     /// let values = unsafe {
665     ///     // Deferred initialization:
666     ///     values[0].as_mut_ptr().write(1);
667     ///     values[1].as_mut_ptr().write(2);
668     ///     values[2].as_mut_ptr().write(3);
669     ///     values.assume_init()
670     /// };
671     ///
672     /// assert_eq!(*values, [1, 2, 3]);
673     /// # Ok::<(), std::alloc::AllocError>(())
674     /// ```
675     #[unstable(feature = "allocator_api", issue = "32838")]
676     #[inline]
try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError>677     pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
678         unsafe {
679             let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
680                 Ok(l) => l,
681                 Err(_) => return Err(AllocError),
682             };
683             let ptr = Global.allocate(layout)?;
684             Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len))
685         }
686     }
687 
688     /// Constructs a new boxed slice with uninitialized contents, with the memory
689     /// being filled with `0` bytes. Returns an error if the allocation fails
690     ///
691     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
692     /// of this method.
693     ///
694     /// # Examples
695     ///
696     /// ```
697     /// #![feature(allocator_api, new_uninit)]
698     ///
699     /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
700     /// let values = unsafe { values.assume_init() };
701     ///
702     /// assert_eq!(*values, [0, 0, 0]);
703     /// # Ok::<(), std::alloc::AllocError>(())
704     /// ```
705     ///
706     /// [zeroed]: mem::MaybeUninit::zeroed
707     #[unstable(feature = "allocator_api", issue = "32838")]
708     #[inline]
try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError>709     pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
710         unsafe {
711             let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
712                 Ok(l) => l,
713                 Err(_) => return Err(AllocError),
714             };
715             let ptr = Global.allocate_zeroed(layout)?;
716             Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len))
717         }
718     }
719 }
720 
721 impl<T, A: Allocator> Box<[T], A> {
722     /// Constructs a new boxed slice with uninitialized contents in the provided allocator.
723     ///
724     /// # Examples
725     ///
726     /// ```
727     /// #![feature(allocator_api, new_uninit)]
728     ///
729     /// use std::alloc::System;
730     ///
731     /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
732     ///
733     /// let values = unsafe {
734     ///     // Deferred initialization:
735     ///     values[0].as_mut_ptr().write(1);
736     ///     values[1].as_mut_ptr().write(2);
737     ///     values[2].as_mut_ptr().write(3);
738     ///
739     ///     values.assume_init()
740     /// };
741     ///
742     /// assert_eq!(*values, [1, 2, 3])
743     /// ```
744     #[cfg(not(no_global_oom_handling))]
745     #[unstable(feature = "allocator_api", issue = "32838")]
746     // #[unstable(feature = "new_uninit", issue = "63291")]
747     #[must_use]
new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A>748     pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
749         unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) }
750     }
751 
752     /// Constructs a new boxed slice with uninitialized contents in the provided allocator,
753     /// with the memory being filled with `0` bytes.
754     ///
755     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
756     /// of this method.
757     ///
758     /// # Examples
759     ///
760     /// ```
761     /// #![feature(allocator_api, new_uninit)]
762     ///
763     /// use std::alloc::System;
764     ///
765     /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
766     /// let values = unsafe { values.assume_init() };
767     ///
768     /// assert_eq!(*values, [0, 0, 0])
769     /// ```
770     ///
771     /// [zeroed]: mem::MaybeUninit::zeroed
772     #[cfg(not(no_global_oom_handling))]
773     #[unstable(feature = "allocator_api", issue = "32838")]
774     // #[unstable(feature = "new_uninit", issue = "63291")]
775     #[must_use]
new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A>776     pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
777         unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) }
778     }
779 }
780 
781 impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> {
782     /// Converts to `Box<T, A>`.
783     ///
784     /// # Safety
785     ///
786     /// As with [`MaybeUninit::assume_init`],
787     /// it is up to the caller to guarantee that the value
788     /// really is in an initialized state.
789     /// Calling this when the content is not yet fully initialized
790     /// causes immediate undefined behavior.
791     ///
792     /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
793     ///
794     /// # Examples
795     ///
796     /// ```
797     /// #![feature(new_uninit)]
798     ///
799     /// let mut five = Box::<u32>::new_uninit();
800     ///
801     /// let five: Box<u32> = unsafe {
802     ///     // Deferred initialization:
803     ///     five.as_mut_ptr().write(5);
804     ///
805     ///     five.assume_init()
806     /// };
807     ///
808     /// assert_eq!(*five, 5)
809     /// ```
810     #[unstable(feature = "new_uninit", issue = "63291")]
811     #[inline]
assume_init(self) -> Box<T, A>812     pub unsafe fn assume_init(self) -> Box<T, A> {
813         let (raw, alloc) = Box::into_raw_with_allocator(self);
814         unsafe { Box::from_raw_in(raw as *mut T, alloc) }
815     }
816 
817     /// Writes the value and converts to `Box<T, A>`.
818     ///
819     /// This method converts the box similarly to [`Box::assume_init`] but
820     /// writes `value` into it before conversion thus guaranteeing safety.
821     /// In some scenarios use of this method may improve performance because
822     /// the compiler may be able to optimize copying from stack.
823     ///
824     /// # Examples
825     ///
826     /// ```
827     /// #![feature(new_uninit)]
828     ///
829     /// let big_box = Box::<[usize; 1024]>::new_uninit();
830     ///
831     /// let mut array = [0; 1024];
832     /// for (i, place) in array.iter_mut().enumerate() {
833     ///     *place = i;
834     /// }
835     ///
836     /// // The optimizer may be able to elide this copy, so previous code writes
837     /// // to heap directly.
838     /// let big_box = Box::write(big_box, array);
839     ///
840     /// for (i, x) in big_box.iter().enumerate() {
841     ///     assert_eq!(*x, i);
842     /// }
843     /// ```
844     #[unstable(feature = "new_uninit", issue = "63291")]
845     #[inline]
write(mut boxed: Self, value: T) -> Box<T, A>846     pub fn write(mut boxed: Self, value: T) -> Box<T, A> {
847         unsafe {
848             (*boxed).write(value);
849             boxed.assume_init()
850         }
851     }
852 }
853 
854 impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> {
855     /// Converts to `Box<[T], A>`.
856     ///
857     /// # Safety
858     ///
859     /// As with [`MaybeUninit::assume_init`],
860     /// it is up to the caller to guarantee that the values
861     /// really are in an initialized state.
862     /// Calling this when the content is not yet fully initialized
863     /// causes immediate undefined behavior.
864     ///
865     /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
866     ///
867     /// # Examples
868     ///
869     /// ```
870     /// #![feature(new_uninit)]
871     ///
872     /// let mut values = Box::<[u32]>::new_uninit_slice(3);
873     ///
874     /// let values = unsafe {
875     ///     // Deferred initialization:
876     ///     values[0].as_mut_ptr().write(1);
877     ///     values[1].as_mut_ptr().write(2);
878     ///     values[2].as_mut_ptr().write(3);
879     ///
880     ///     values.assume_init()
881     /// };
882     ///
883     /// assert_eq!(*values, [1, 2, 3])
884     /// ```
885     #[unstable(feature = "new_uninit", issue = "63291")]
886     #[inline]
assume_init(self) -> Box<[T], A>887     pub unsafe fn assume_init(self) -> Box<[T], A> {
888         let (raw, alloc) = Box::into_raw_with_allocator(self);
889         unsafe { Box::from_raw_in(raw as *mut [T], alloc) }
890     }
891 }
892 
893 impl<T: ?Sized> Box<T> {
894     /// Constructs a box from a raw pointer.
895     ///
896     /// After calling this function, the raw pointer is owned by the
897     /// resulting `Box`. Specifically, the `Box` destructor will call
898     /// the destructor of `T` and free the allocated memory. For this
899     /// to be safe, the memory must have been allocated in accordance
900     /// with the [memory layout] used by `Box` .
901     ///
902     /// # Safety
903     ///
904     /// This function is unsafe because improper use may lead to
905     /// memory problems. For example, a double-free may occur if the
906     /// function is called twice on the same raw pointer.
907     ///
908     /// The safety conditions are described in the [memory layout] section.
909     ///
910     /// # Examples
911     ///
912     /// Recreate a `Box` which was previously converted to a raw pointer
913     /// using [`Box::into_raw`]:
914     /// ```
915     /// let x = Box::new(5);
916     /// let ptr = Box::into_raw(x);
917     /// let x = unsafe { Box::from_raw(ptr) };
918     /// ```
919     /// Manually create a `Box` from scratch by using the global allocator:
920     /// ```
921     /// use std::alloc::{alloc, Layout};
922     ///
923     /// unsafe {
924     ///     let ptr = alloc(Layout::new::<i32>()) as *mut i32;
925     ///     // In general .write is required to avoid attempting to destruct
926     ///     // the (uninitialized) previous contents of `ptr`, though for this
927     ///     // simple example `*ptr = 5` would have worked as well.
928     ///     ptr.write(5);
929     ///     let x = Box::from_raw(ptr);
930     /// }
931     /// ```
932     ///
933     /// [memory layout]: self#memory-layout
934     /// [`Layout`]: crate::Layout
935     #[stable(feature = "box_raw", since = "1.4.0")]
936     #[inline]
937     #[must_use = "call `drop(Box::from_raw(ptr))` if you intend to drop the `Box`"]
from_raw(raw: *mut T) -> Self938     pub unsafe fn from_raw(raw: *mut T) -> Self {
939         unsafe { Self::from_raw_in(raw, Global) }
940     }
941 }
942 
943 impl<T: ?Sized, A: Allocator> Box<T, A> {
944     /// Constructs a box from a raw pointer in the given allocator.
945     ///
946     /// After calling this function, the raw pointer is owned by the
947     /// resulting `Box`. Specifically, the `Box` destructor will call
948     /// the destructor of `T` and free the allocated memory. For this
949     /// to be safe, the memory must have been allocated in accordance
950     /// with the [memory layout] used by `Box` .
951     ///
952     /// # Safety
953     ///
954     /// This function is unsafe because improper use may lead to
955     /// memory problems. For example, a double-free may occur if the
956     /// function is called twice on the same raw pointer.
957     ///
958     ///
959     /// # Examples
960     ///
961     /// Recreate a `Box` which was previously converted to a raw pointer
962     /// using [`Box::into_raw_with_allocator`]:
963     /// ```
964     /// #![feature(allocator_api)]
965     ///
966     /// use std::alloc::System;
967     ///
968     /// let x = Box::new_in(5, System);
969     /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
970     /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
971     /// ```
972     /// Manually create a `Box` from scratch by using the system allocator:
973     /// ```
974     /// #![feature(allocator_api, slice_ptr_get)]
975     ///
976     /// use std::alloc::{Allocator, Layout, System};
977     ///
978     /// unsafe {
979     ///     let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32;
980     ///     // In general .write is required to avoid attempting to destruct
981     ///     // the (uninitialized) previous contents of `ptr`, though for this
982     ///     // simple example `*ptr = 5` would have worked as well.
983     ///     ptr.write(5);
984     ///     let x = Box::from_raw_in(ptr, System);
985     /// }
986     /// # Ok::<(), std::alloc::AllocError>(())
987     /// ```
988     ///
989     /// [memory layout]: self#memory-layout
990     /// [`Layout`]: crate::Layout
991     #[unstable(feature = "allocator_api", issue = "32838")]
992     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
993     #[inline]
from_raw_in(raw: *mut T, alloc: A) -> Self994     pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
995         Box(unsafe { Unique::new_unchecked(raw) }, alloc)
996     }
997 
998     /// Consumes the `Box`, returning a wrapped raw pointer.
999     ///
1000     /// The pointer will be properly aligned and non-null.
1001     ///
1002     /// After calling this function, the caller is responsible for the
1003     /// memory previously managed by the `Box`. In particular, the
1004     /// caller should properly destroy `T` and release the memory, taking
1005     /// into account the [memory layout] used by `Box`. The easiest way to
1006     /// do this is to convert the raw pointer back into a `Box` with the
1007     /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
1008     /// the cleanup.
1009     ///
1010     /// Note: this is an associated function, which means that you have
1011     /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
1012     /// is so that there is no conflict with a method on the inner type.
1013     ///
1014     /// # Examples
1015     /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
1016     /// for automatic cleanup:
1017     /// ```
1018     /// let x = Box::new(String::from("Hello"));
1019     /// let ptr = Box::into_raw(x);
1020     /// let x = unsafe { Box::from_raw(ptr) };
1021     /// ```
1022     /// Manual cleanup by explicitly running the destructor and deallocating
1023     /// the memory:
1024     /// ```
1025     /// use std::alloc::{dealloc, Layout};
1026     /// use std::ptr;
1027     ///
1028     /// let x = Box::new(String::from("Hello"));
1029     /// let p = Box::into_raw(x);
1030     /// unsafe {
1031     ///     ptr::drop_in_place(p);
1032     ///     dealloc(p as *mut u8, Layout::new::<String>());
1033     /// }
1034     /// ```
1035     ///
1036     /// [memory layout]: self#memory-layout
1037     #[stable(feature = "box_raw", since = "1.4.0")]
1038     #[inline]
into_raw(b: Self) -> *mut T1039     pub fn into_raw(b: Self) -> *mut T {
1040         Self::into_raw_with_allocator(b).0
1041     }
1042 
1043     /// Consumes the `Box`, returning a wrapped raw pointer and the allocator.
1044     ///
1045     /// The pointer will be properly aligned and non-null.
1046     ///
1047     /// After calling this function, the caller is responsible for the
1048     /// memory previously managed by the `Box`. In particular, the
1049     /// caller should properly destroy `T` and release the memory, taking
1050     /// into account the [memory layout] used by `Box`. The easiest way to
1051     /// do this is to convert the raw pointer back into a `Box` with the
1052     /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform
1053     /// the cleanup.
1054     ///
1055     /// Note: this is an associated function, which means that you have
1056     /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This
1057     /// is so that there is no conflict with a method on the inner type.
1058     ///
1059     /// # Examples
1060     /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`]
1061     /// for automatic cleanup:
1062     /// ```
1063     /// #![feature(allocator_api)]
1064     ///
1065     /// use std::alloc::System;
1066     ///
1067     /// let x = Box::new_in(String::from("Hello"), System);
1068     /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1069     /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
1070     /// ```
1071     /// Manual cleanup by explicitly running the destructor and deallocating
1072     /// the memory:
1073     /// ```
1074     /// #![feature(allocator_api)]
1075     ///
1076     /// use std::alloc::{Allocator, Layout, System};
1077     /// use std::ptr::{self, NonNull};
1078     ///
1079     /// let x = Box::new_in(String::from("Hello"), System);
1080     /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1081     /// unsafe {
1082     ///     ptr::drop_in_place(ptr);
1083     ///     let non_null = NonNull::new_unchecked(ptr);
1084     ///     alloc.deallocate(non_null.cast(), Layout::new::<String>());
1085     /// }
1086     /// ```
1087     ///
1088     /// [memory layout]: self#memory-layout
1089     #[unstable(feature = "allocator_api", issue = "32838")]
1090     #[inline]
into_raw_with_allocator(b: Self) -> (*mut T, A)1091     pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) {
1092         let (leaked, alloc) = Box::into_unique(b);
1093         (leaked.as_ptr(), alloc)
1094     }
1095 
1096     #[unstable(
1097         feature = "ptr_internals",
1098         issue = "none",
1099         reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead"
1100     )]
1101     #[inline]
1102     #[doc(hidden)]
into_unique(b: Self) -> (Unique<T>, A)1103     pub fn into_unique(b: Self) -> (Unique<T>, A) {
1104         // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a
1105         // raw pointer for the type system. Turning it directly into a raw pointer would not be
1106         // recognized as "releasing" the unique pointer to permit aliased raw accesses,
1107         // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer
1108         // behaves correctly.
1109         let alloc = unsafe { ptr::read(&b.1) };
1110         (Unique::from(Box::leak(b)), alloc)
1111     }
1112 
1113     /// Returns a reference to the underlying allocator.
1114     ///
1115     /// Note: this is an associated function, which means that you have
1116     /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This
1117     /// is so that there is no conflict with a method on the inner type.
1118     #[unstable(feature = "allocator_api", issue = "32838")]
1119     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
1120     #[inline]
allocator(b: &Self) -> &A1121     pub const fn allocator(b: &Self) -> &A {
1122         &b.1
1123     }
1124 
1125     /// Consumes and leaks the `Box`, returning a mutable reference,
1126     /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
1127     /// `'a`. If the type has only static references, or none at all, then this
1128     /// may be chosen to be `'static`.
1129     ///
1130     /// This function is mainly useful for data that lives for the remainder of
1131     /// the program's life. Dropping the returned reference will cause a memory
1132     /// leak. If this is not acceptable, the reference should first be wrapped
1133     /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
1134     /// then be dropped which will properly destroy `T` and release the
1135     /// allocated memory.
1136     ///
1137     /// Note: this is an associated function, which means that you have
1138     /// to call it as `Box::leak(b)` instead of `b.leak()`. This
1139     /// is so that there is no conflict with a method on the inner type.
1140     ///
1141     /// # Examples
1142     ///
1143     /// Simple usage:
1144     ///
1145     /// ```
1146     /// let x = Box::new(41);
1147     /// let static_ref: &'static mut usize = Box::leak(x);
1148     /// *static_ref += 1;
1149     /// assert_eq!(*static_ref, 42);
1150     /// ```
1151     ///
1152     /// Unsized data:
1153     ///
1154     /// ```
1155     /// let x = vec![1, 2, 3].into_boxed_slice();
1156     /// let static_ref = Box::leak(x);
1157     /// static_ref[0] = 4;
1158     /// assert_eq!(*static_ref, [4, 2, 3]);
1159     /// ```
1160     #[stable(feature = "box_leak", since = "1.26.0")]
1161     #[inline]
leak<'a>(b: Self) -> &'a mut T where A: 'a,1162     pub fn leak<'a>(b: Self) -> &'a mut T
1163     where
1164         A: 'a,
1165     {
1166         unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() }
1167     }
1168 
1169     /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
1170     /// `*boxed` will be pinned in memory and unable to be moved.
1171     ///
1172     /// This conversion does not allocate on the heap and happens in place.
1173     ///
1174     /// This is also available via [`From`].
1175     ///
1176     /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code>
1177     /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
1178     /// This `into_pin` method is useful if you already have a `Box<T>`, or you are
1179     /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
1180     ///
1181     /// # Notes
1182     ///
1183     /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`,
1184     /// as it'll introduce an ambiguity when calling `Pin::from`.
1185     /// A demonstration of such a poor impl is shown below.
1186     ///
1187     /// ```compile_fail
1188     /// # use std::pin::Pin;
1189     /// struct Foo; // A type defined in this crate.
1190     /// impl From<Box<()>> for Pin<Foo> {
1191     ///     fn from(_: Box<()>) -> Pin<Foo> {
1192     ///         Pin::new(Foo)
1193     ///     }
1194     /// }
1195     ///
1196     /// let foo = Box::new(());
1197     /// let bar = Pin::from(foo);
1198     /// ```
1199     #[stable(feature = "box_into_pin", since = "1.63.0")]
1200     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
into_pin(boxed: Self) -> Pin<Self> where A: 'static,1201     pub const fn into_pin(boxed: Self) -> Pin<Self>
1202     where
1203         A: 'static,
1204     {
1205         // It's not possible to move or replace the insides of a `Pin<Box<T>>`
1206         // when `T: !Unpin`, so it's safe to pin it directly without any
1207         // additional requirements.
1208         unsafe { Pin::new_unchecked(boxed) }
1209     }
1210 }
1211 
1212 #[stable(feature = "rust1", since = "1.0.0")]
1213 unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Box<T, A> {
1214     #[inline]
drop(&mut self)1215     fn drop(&mut self) {
1216         // the T in the Box is dropped by the compiler before the destructor is run
1217 
1218         let ptr = self.0;
1219 
1220         unsafe {
1221             let layout = Layout::for_value_raw(ptr.as_ptr());
1222             self.1.deallocate(From::from(ptr.cast()), layout)
1223         }
1224     }
1225 }
1226 
1227 #[cfg(not(no_global_oom_handling))]
1228 #[stable(feature = "rust1", since = "1.0.0")]
1229 impl<T: Default> Default for Box<T> {
1230     /// Creates a `Box<T>`, with the `Default` value for T.
1231     #[inline]
default() -> Self1232     fn default() -> Self {
1233         Box::new(T::default())
1234     }
1235 }
1236 
1237 #[cfg(not(no_global_oom_handling))]
1238 #[stable(feature = "rust1", since = "1.0.0")]
1239 impl<T> Default for Box<[T]> {
1240     #[inline]
default() -> Self1241     fn default() -> Self {
1242         let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling();
1243         Box(ptr, Global)
1244     }
1245 }
1246 
1247 #[cfg(not(no_global_oom_handling))]
1248 #[stable(feature = "default_box_extra", since = "1.17.0")]
1249 impl Default for Box<str> {
1250     #[inline]
default() -> Self1251     fn default() -> Self {
1252         // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`.
1253         let ptr: Unique<str> = unsafe {
1254             let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling();
1255             Unique::new_unchecked(bytes.as_ptr() as *mut str)
1256         };
1257         Box(ptr, Global)
1258     }
1259 }
1260 
1261 #[cfg(not(no_global_oom_handling))]
1262 #[stable(feature = "rust1", since = "1.0.0")]
1263 impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> {
1264     /// Returns a new box with a `clone()` of this box's contents.
1265     ///
1266     /// # Examples
1267     ///
1268     /// ```
1269     /// let x = Box::new(5);
1270     /// let y = x.clone();
1271     ///
1272     /// // The value is the same
1273     /// assert_eq!(x, y);
1274     ///
1275     /// // But they are unique objects
1276     /// assert_ne!(&*x as *const i32, &*y as *const i32);
1277     /// ```
1278     #[inline]
clone(&self) -> Self1279     fn clone(&self) -> Self {
1280         // Pre-allocate memory to allow writing the cloned value directly.
1281         let mut boxed = Self::new_uninit_in(self.1.clone());
1282         unsafe {
1283             (**self).write_clone_into_raw(boxed.as_mut_ptr());
1284             boxed.assume_init()
1285         }
1286     }
1287 
1288     /// Copies `source`'s contents into `self` without creating a new allocation.
1289     ///
1290     /// # Examples
1291     ///
1292     /// ```
1293     /// let x = Box::new(5);
1294     /// let mut y = Box::new(10);
1295     /// let yp: *const i32 = &*y;
1296     ///
1297     /// y.clone_from(&x);
1298     ///
1299     /// // The value is the same
1300     /// assert_eq!(x, y);
1301     ///
1302     /// // And no allocation occurred
1303     /// assert_eq!(yp, &*y);
1304     /// ```
1305     #[inline]
clone_from(&mut self, source: &Self)1306     fn clone_from(&mut self, source: &Self) {
1307         (**self).clone_from(&(**source));
1308     }
1309 }
1310 
1311 #[cfg(not(no_global_oom_handling))]
1312 #[stable(feature = "box_slice_clone", since = "1.3.0")]
1313 impl Clone for Box<str> {
clone(&self) -> Self1314     fn clone(&self) -> Self {
1315         // this makes a copy of the data
1316         let buf: Box<[u8]> = self.as_bytes().into();
1317         unsafe { from_boxed_utf8_unchecked(buf) }
1318     }
1319 }
1320 
1321 #[stable(feature = "rust1", since = "1.0.0")]
1322 impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> {
1323     #[inline]
eq(&self, other: &Self) -> bool1324     fn eq(&self, other: &Self) -> bool {
1325         PartialEq::eq(&**self, &**other)
1326     }
1327     #[inline]
ne(&self, other: &Self) -> bool1328     fn ne(&self, other: &Self) -> bool {
1329         PartialEq::ne(&**self, &**other)
1330     }
1331 }
1332 #[stable(feature = "rust1", since = "1.0.0")]
1333 impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> {
1334     #[inline]
partial_cmp(&self, other: &Self) -> Option<Ordering>1335     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1336         PartialOrd::partial_cmp(&**self, &**other)
1337     }
1338     #[inline]
lt(&self, other: &Self) -> bool1339     fn lt(&self, other: &Self) -> bool {
1340         PartialOrd::lt(&**self, &**other)
1341     }
1342     #[inline]
le(&self, other: &Self) -> bool1343     fn le(&self, other: &Self) -> bool {
1344         PartialOrd::le(&**self, &**other)
1345     }
1346     #[inline]
ge(&self, other: &Self) -> bool1347     fn ge(&self, other: &Self) -> bool {
1348         PartialOrd::ge(&**self, &**other)
1349     }
1350     #[inline]
gt(&self, other: &Self) -> bool1351     fn gt(&self, other: &Self) -> bool {
1352         PartialOrd::gt(&**self, &**other)
1353     }
1354 }
1355 #[stable(feature = "rust1", since = "1.0.0")]
1356 impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> {
1357     #[inline]
cmp(&self, other: &Self) -> Ordering1358     fn cmp(&self, other: &Self) -> Ordering {
1359         Ord::cmp(&**self, &**other)
1360     }
1361 }
1362 #[stable(feature = "rust1", since = "1.0.0")]
1363 impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {}
1364 
1365 #[stable(feature = "rust1", since = "1.0.0")]
1366 impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> {
hash<H: Hasher>(&self, state: &mut H)1367     fn hash<H: Hasher>(&self, state: &mut H) {
1368         (**self).hash(state);
1369     }
1370 }
1371 
1372 #[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
1373 impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> {
finish(&self) -> u641374     fn finish(&self) -> u64 {
1375         (**self).finish()
1376     }
write(&mut self, bytes: &[u8])1377     fn write(&mut self, bytes: &[u8]) {
1378         (**self).write(bytes)
1379     }
write_u8(&mut self, i: u8)1380     fn write_u8(&mut self, i: u8) {
1381         (**self).write_u8(i)
1382     }
write_u16(&mut self, i: u16)1383     fn write_u16(&mut self, i: u16) {
1384         (**self).write_u16(i)
1385     }
write_u32(&mut self, i: u32)1386     fn write_u32(&mut self, i: u32) {
1387         (**self).write_u32(i)
1388     }
write_u64(&mut self, i: u64)1389     fn write_u64(&mut self, i: u64) {
1390         (**self).write_u64(i)
1391     }
write_u128(&mut self, i: u128)1392     fn write_u128(&mut self, i: u128) {
1393         (**self).write_u128(i)
1394     }
write_usize(&mut self, i: usize)1395     fn write_usize(&mut self, i: usize) {
1396         (**self).write_usize(i)
1397     }
write_i8(&mut self, i: i8)1398     fn write_i8(&mut self, i: i8) {
1399         (**self).write_i8(i)
1400     }
write_i16(&mut self, i: i16)1401     fn write_i16(&mut self, i: i16) {
1402         (**self).write_i16(i)
1403     }
write_i32(&mut self, i: i32)1404     fn write_i32(&mut self, i: i32) {
1405         (**self).write_i32(i)
1406     }
write_i64(&mut self, i: i64)1407     fn write_i64(&mut self, i: i64) {
1408         (**self).write_i64(i)
1409     }
write_i128(&mut self, i: i128)1410     fn write_i128(&mut self, i: i128) {
1411         (**self).write_i128(i)
1412     }
write_isize(&mut self, i: isize)1413     fn write_isize(&mut self, i: isize) {
1414         (**self).write_isize(i)
1415     }
write_length_prefix(&mut self, len: usize)1416     fn write_length_prefix(&mut self, len: usize) {
1417         (**self).write_length_prefix(len)
1418     }
write_str(&mut self, s: &str)1419     fn write_str(&mut self, s: &str) {
1420         (**self).write_str(s)
1421     }
1422 }
1423 
1424 #[cfg(not(no_global_oom_handling))]
1425 #[stable(feature = "from_for_ptrs", since = "1.6.0")]
1426 impl<T> From<T> for Box<T> {
1427     /// Converts a `T` into a `Box<T>`
1428     ///
1429     /// The conversion allocates on the heap and moves `t`
1430     /// from the stack into it.
1431     ///
1432     /// # Examples
1433     ///
1434     /// ```rust
1435     /// let x = 5;
1436     /// let boxed = Box::new(5);
1437     ///
1438     /// assert_eq!(Box::from(x), boxed);
1439     /// ```
from(t: T) -> Self1440     fn from(t: T) -> Self {
1441         Box::new(t)
1442     }
1443 }
1444 
1445 #[stable(feature = "pin", since = "1.33.0")]
1446 impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Pin<Box<T, A>>
1447 where
1448     A: 'static,
1449 {
1450     /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
1451     /// `*boxed` will be pinned in memory and unable to be moved.
1452     ///
1453     /// This conversion does not allocate on the heap and happens in place.
1454     ///
1455     /// This is also available via [`Box::into_pin`].
1456     ///
1457     /// Constructing and pinning a `Box` with <code><Pin<Box\<T>>>::from([Box::new]\(x))</code>
1458     /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
1459     /// This `From` implementation is useful if you already have a `Box<T>`, or you are
1460     /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
from(boxed: Box<T, A>) -> Self1461     fn from(boxed: Box<T, A>) -> Self {
1462         Box::into_pin(boxed)
1463     }
1464 }
1465 
1466 /// Specialization trait used for `From<&[T]>`.
1467 #[cfg(not(no_global_oom_handling))]
1468 trait BoxFromSlice<T> {
from_slice(slice: &[T]) -> Self1469     fn from_slice(slice: &[T]) -> Self;
1470 }
1471 
1472 #[cfg(not(no_global_oom_handling))]
1473 impl<T: Clone> BoxFromSlice<T> for Box<[T]> {
1474     #[inline]
from_slice(slice: &[T]) -> Self1475     default fn from_slice(slice: &[T]) -> Self {
1476         slice.to_vec().into_boxed_slice()
1477     }
1478 }
1479 
1480 #[cfg(not(no_global_oom_handling))]
1481 impl<T: Copy> BoxFromSlice<T> for Box<[T]> {
1482     #[inline]
from_slice(slice: &[T]) -> Self1483     fn from_slice(slice: &[T]) -> Self {
1484         let len = slice.len();
1485         let buf = RawVec::with_capacity(len);
1486         unsafe {
1487             ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len);
1488             buf.into_box(slice.len()).assume_init()
1489         }
1490     }
1491 }
1492 
1493 #[cfg(not(no_global_oom_handling))]
1494 #[stable(feature = "box_from_slice", since = "1.17.0")]
1495 impl<T: Clone> From<&[T]> for Box<[T]> {
1496     /// Converts a `&[T]` into a `Box<[T]>`
1497     ///
1498     /// This conversion allocates on the heap
1499     /// and performs a copy of `slice` and its contents.
1500     ///
1501     /// # Examples
1502     /// ```rust
1503     /// // create a &[u8] which will be used to create a Box<[u8]>
1504     /// let slice: &[u8] = &[104, 101, 108, 108, 111];
1505     /// let boxed_slice: Box<[u8]> = Box::from(slice);
1506     ///
1507     /// println!("{boxed_slice:?}");
1508     /// ```
1509     #[inline]
from(slice: &[T]) -> Box<[T]>1510     fn from(slice: &[T]) -> Box<[T]> {
1511         <Self as BoxFromSlice<T>>::from_slice(slice)
1512     }
1513 }
1514 
1515 #[cfg(not(no_global_oom_handling))]
1516 #[stable(feature = "box_from_cow", since = "1.45.0")]
1517 impl<T: Clone> From<Cow<'_, [T]>> for Box<[T]> {
1518     /// Converts a `Cow<'_, [T]>` into a `Box<[T]>`
1519     ///
1520     /// When `cow` is the `Cow::Borrowed` variant, this
1521     /// conversion allocates on the heap and copies the
1522     /// underlying slice. Otherwise, it will try to reuse the owned
1523     /// `Vec`'s allocation.
1524     #[inline]
from(cow: Cow<'_, [T]>) -> Box<[T]>1525     fn from(cow: Cow<'_, [T]>) -> Box<[T]> {
1526         match cow {
1527             Cow::Borrowed(slice) => Box::from(slice),
1528             Cow::Owned(slice) => Box::from(slice),
1529         }
1530     }
1531 }
1532 
1533 #[cfg(not(no_global_oom_handling))]
1534 #[stable(feature = "box_from_slice", since = "1.17.0")]
1535 impl From<&str> for Box<str> {
1536     /// Converts a `&str` into a `Box<str>`
1537     ///
1538     /// This conversion allocates on the heap
1539     /// and performs a copy of `s`.
1540     ///
1541     /// # Examples
1542     ///
1543     /// ```rust
1544     /// let boxed: Box<str> = Box::from("hello");
1545     /// println!("{boxed}");
1546     /// ```
1547     #[inline]
from(s: &str) -> Box<str>1548     fn from(s: &str) -> Box<str> {
1549         unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) }
1550     }
1551 }
1552 
1553 #[cfg(not(no_global_oom_handling))]
1554 #[stable(feature = "box_from_cow", since = "1.45.0")]
1555 impl From<Cow<'_, str>> for Box<str> {
1556     /// Converts a `Cow<'_, str>` into a `Box<str>`
1557     ///
1558     /// When `cow` is the `Cow::Borrowed` variant, this
1559     /// conversion allocates on the heap and copies the
1560     /// underlying `str`. Otherwise, it will try to reuse the owned
1561     /// `String`'s allocation.
1562     ///
1563     /// # Examples
1564     ///
1565     /// ```rust
1566     /// use std::borrow::Cow;
1567     ///
1568     /// let unboxed = Cow::Borrowed("hello");
1569     /// let boxed: Box<str> = Box::from(unboxed);
1570     /// println!("{boxed}");
1571     /// ```
1572     ///
1573     /// ```rust
1574     /// # use std::borrow::Cow;
1575     /// let unboxed = Cow::Owned("hello".to_string());
1576     /// let boxed: Box<str> = Box::from(unboxed);
1577     /// println!("{boxed}");
1578     /// ```
1579     #[inline]
from(cow: Cow<'_, str>) -> Box<str>1580     fn from(cow: Cow<'_, str>) -> Box<str> {
1581         match cow {
1582             Cow::Borrowed(s) => Box::from(s),
1583             Cow::Owned(s) => Box::from(s),
1584         }
1585     }
1586 }
1587 
1588 #[stable(feature = "boxed_str_conv", since = "1.19.0")]
1589 impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> {
1590     /// Converts a `Box<str>` into a `Box<[u8]>`
1591     ///
1592     /// This conversion does not allocate on the heap and happens in place.
1593     ///
1594     /// # Examples
1595     /// ```rust
1596     /// // create a Box<str> which will be used to create a Box<[u8]>
1597     /// let boxed: Box<str> = Box::from("hello");
1598     /// let boxed_str: Box<[u8]> = Box::from(boxed);
1599     ///
1600     /// // create a &[u8] which will be used to create a Box<[u8]>
1601     /// let slice: &[u8] = &[104, 101, 108, 108, 111];
1602     /// let boxed_slice = Box::from(slice);
1603     ///
1604     /// assert_eq!(boxed_slice, boxed_str);
1605     /// ```
1606     #[inline]
from(s: Box<str, A>) -> Self1607     fn from(s: Box<str, A>) -> Self {
1608         let (raw, alloc) = Box::into_raw_with_allocator(s);
1609         unsafe { Box::from_raw_in(raw as *mut [u8], alloc) }
1610     }
1611 }
1612 
1613 #[cfg(not(no_global_oom_handling))]
1614 #[stable(feature = "box_from_array", since = "1.45.0")]
1615 impl<T, const N: usize> From<[T; N]> for Box<[T]> {
1616     /// Converts a `[T; N]` into a `Box<[T]>`
1617     ///
1618     /// This conversion moves the array to newly heap-allocated memory.
1619     ///
1620     /// # Examples
1621     ///
1622     /// ```rust
1623     /// let boxed: Box<[u8]> = Box::from([4, 2]);
1624     /// println!("{boxed:?}");
1625     /// ```
from(array: [T; N]) -> Box<[T]>1626     fn from(array: [T; N]) -> Box<[T]> {
1627         Box::new(array)
1628     }
1629 }
1630 
1631 /// Casts a boxed slice to a boxed array.
1632 ///
1633 /// # Safety
1634 ///
1635 /// `boxed_slice.len()` must be exactly `N`.
boxed_slice_as_array_unchecked<T, A: Allocator, const N: usize>( boxed_slice: Box<[T], A>, ) -> Box<[T; N], A>1636 unsafe fn boxed_slice_as_array_unchecked<T, A: Allocator, const N: usize>(
1637     boxed_slice: Box<[T], A>,
1638 ) -> Box<[T; N], A> {
1639     debug_assert_eq!(boxed_slice.len(), N);
1640 
1641     let (ptr, alloc) = Box::into_raw_with_allocator(boxed_slice);
1642     // SAFETY: Pointer and allocator came from an existing box,
1643     // and our safety condition requires that the length is exactly `N`
1644     unsafe { Box::from_raw_in(ptr as *mut [T; N], alloc) }
1645 }
1646 
1647 #[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
1648 impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]> {
1649     type Error = Box<[T]>;
1650 
1651     /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`.
1652     ///
1653     /// The conversion occurs in-place and does not require a
1654     /// new memory allocation.
1655     ///
1656     /// # Errors
1657     ///
1658     /// Returns the old `Box<[T]>` in the `Err` variant if
1659     /// `boxed_slice.len()` does not equal `N`.
try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error>1660     fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> {
1661         if boxed_slice.len() == N {
1662             Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) })
1663         } else {
1664             Err(boxed_slice)
1665         }
1666     }
1667 }
1668 
1669 #[cfg(not(no_global_oom_handling))]
1670 #[stable(feature = "boxed_array_try_from_vec", since = "1.66.0")]
1671 impl<T, const N: usize> TryFrom<Vec<T>> for Box<[T; N]> {
1672     type Error = Vec<T>;
1673 
1674     /// Attempts to convert a `Vec<T>` into a `Box<[T; N]>`.
1675     ///
1676     /// Like [`Vec::into_boxed_slice`], this is in-place if `vec.capacity() == N`,
1677     /// but will require a reallocation otherwise.
1678     ///
1679     /// # Errors
1680     ///
1681     /// Returns the original `Vec<T>` in the `Err` variant if
1682     /// `boxed_slice.len()` does not equal `N`.
1683     ///
1684     /// # Examples
1685     ///
1686     /// This can be used with [`vec!`] to create an array on the heap:
1687     ///
1688     /// ```
1689     /// let state: Box<[f32; 100]> = vec![1.0; 100].try_into().unwrap();
1690     /// assert_eq!(state.len(), 100);
1691     /// ```
try_from(vec: Vec<T>) -> Result<Self, Self::Error>1692     fn try_from(vec: Vec<T>) -> Result<Self, Self::Error> {
1693         if vec.len() == N {
1694             let boxed_slice = vec.into_boxed_slice();
1695             Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) })
1696         } else {
1697             Err(vec)
1698         }
1699     }
1700 }
1701 
1702 impl<A: Allocator> Box<dyn Any, A> {
1703     /// Attempt to downcast the box to a concrete type.
1704     ///
1705     /// # Examples
1706     ///
1707     /// ```
1708     /// use std::any::Any;
1709     ///
1710     /// fn print_if_string(value: Box<dyn Any>) {
1711     ///     if let Ok(string) = value.downcast::<String>() {
1712     ///         println!("String ({}): {}", string.len(), string);
1713     ///     }
1714     /// }
1715     ///
1716     /// let my_string = "Hello World".to_string();
1717     /// print_if_string(Box::new(my_string));
1718     /// print_if_string(Box::new(0i8));
1719     /// ```
1720     #[inline]
1721     #[stable(feature = "rust1", since = "1.0.0")]
downcast<T: Any>(self) -> Result<Box<T, A>, Self>1722     pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1723         if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
1724     }
1725 
1726     /// Downcasts the box to a concrete type.
1727     ///
1728     /// For a safe alternative see [`downcast`].
1729     ///
1730     /// # Examples
1731     ///
1732     /// ```
1733     /// #![feature(downcast_unchecked)]
1734     ///
1735     /// use std::any::Any;
1736     ///
1737     /// let x: Box<dyn Any> = Box::new(1_usize);
1738     ///
1739     /// unsafe {
1740     ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1741     /// }
1742     /// ```
1743     ///
1744     /// # Safety
1745     ///
1746     /// The contained value must be of type `T`. Calling this method
1747     /// with the incorrect type is *undefined behavior*.
1748     ///
1749     /// [`downcast`]: Self::downcast
1750     #[inline]
1751     #[unstable(feature = "downcast_unchecked", issue = "90850")]
downcast_unchecked<T: Any>(self) -> Box<T, A>1752     pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1753         debug_assert!(self.is::<T>());
1754         unsafe {
1755             let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self);
1756             Box::from_raw_in(raw as *mut T, alloc)
1757         }
1758     }
1759 }
1760 
1761 impl<A: Allocator> Box<dyn Any + Send, A> {
1762     /// Attempt to downcast the box to a concrete type.
1763     ///
1764     /// # Examples
1765     ///
1766     /// ```
1767     /// use std::any::Any;
1768     ///
1769     /// fn print_if_string(value: Box<dyn Any + Send>) {
1770     ///     if let Ok(string) = value.downcast::<String>() {
1771     ///         println!("String ({}): {}", string.len(), string);
1772     ///     }
1773     /// }
1774     ///
1775     /// let my_string = "Hello World".to_string();
1776     /// print_if_string(Box::new(my_string));
1777     /// print_if_string(Box::new(0i8));
1778     /// ```
1779     #[inline]
1780     #[stable(feature = "rust1", since = "1.0.0")]
downcast<T: Any>(self) -> Result<Box<T, A>, Self>1781     pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1782         if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
1783     }
1784 
1785     /// Downcasts the box to a concrete type.
1786     ///
1787     /// For a safe alternative see [`downcast`].
1788     ///
1789     /// # Examples
1790     ///
1791     /// ```
1792     /// #![feature(downcast_unchecked)]
1793     ///
1794     /// use std::any::Any;
1795     ///
1796     /// let x: Box<dyn Any + Send> = Box::new(1_usize);
1797     ///
1798     /// unsafe {
1799     ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1800     /// }
1801     /// ```
1802     ///
1803     /// # Safety
1804     ///
1805     /// The contained value must be of type `T`. Calling this method
1806     /// with the incorrect type is *undefined behavior*.
1807     ///
1808     /// [`downcast`]: Self::downcast
1809     #[inline]
1810     #[unstable(feature = "downcast_unchecked", issue = "90850")]
downcast_unchecked<T: Any>(self) -> Box<T, A>1811     pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1812         debug_assert!(self.is::<T>());
1813         unsafe {
1814             let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self);
1815             Box::from_raw_in(raw as *mut T, alloc)
1816         }
1817     }
1818 }
1819 
1820 impl<A: Allocator> Box<dyn Any + Send + Sync, A> {
1821     /// Attempt to downcast the box to a concrete type.
1822     ///
1823     /// # Examples
1824     ///
1825     /// ```
1826     /// use std::any::Any;
1827     ///
1828     /// fn print_if_string(value: Box<dyn Any + Send + Sync>) {
1829     ///     if let Ok(string) = value.downcast::<String>() {
1830     ///         println!("String ({}): {}", string.len(), string);
1831     ///     }
1832     /// }
1833     ///
1834     /// let my_string = "Hello World".to_string();
1835     /// print_if_string(Box::new(my_string));
1836     /// print_if_string(Box::new(0i8));
1837     /// ```
1838     #[inline]
1839     #[stable(feature = "box_send_sync_any_downcast", since = "1.51.0")]
downcast<T: Any>(self) -> Result<Box<T, A>, Self>1840     pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1841         if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
1842     }
1843 
1844     /// Downcasts the box to a concrete type.
1845     ///
1846     /// For a safe alternative see [`downcast`].
1847     ///
1848     /// # Examples
1849     ///
1850     /// ```
1851     /// #![feature(downcast_unchecked)]
1852     ///
1853     /// use std::any::Any;
1854     ///
1855     /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize);
1856     ///
1857     /// unsafe {
1858     ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1859     /// }
1860     /// ```
1861     ///
1862     /// # Safety
1863     ///
1864     /// The contained value must be of type `T`. Calling this method
1865     /// with the incorrect type is *undefined behavior*.
1866     ///
1867     /// [`downcast`]: Self::downcast
1868     #[inline]
1869     #[unstable(feature = "downcast_unchecked", issue = "90850")]
downcast_unchecked<T: Any>(self) -> Box<T, A>1870     pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1871         debug_assert!(self.is::<T>());
1872         unsafe {
1873             let (raw, alloc): (*mut (dyn Any + Send + Sync), _) =
1874                 Box::into_raw_with_allocator(self);
1875             Box::from_raw_in(raw as *mut T, alloc)
1876         }
1877     }
1878 }
1879 
1880 #[stable(feature = "rust1", since = "1.0.0")]
1881 impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1882     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1883         fmt::Display::fmt(&**self, f)
1884     }
1885 }
1886 
1887 #[stable(feature = "rust1", since = "1.0.0")]
1888 impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1889     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1890         fmt::Debug::fmt(&**self, f)
1891     }
1892 }
1893 
1894 #[stable(feature = "rust1", since = "1.0.0")]
1895 impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1896     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1897         // It's not possible to extract the inner Uniq directly from the Box,
1898         // instead we cast it to a *const which aliases the Unique
1899         let ptr: *const T = &**self;
1900         fmt::Pointer::fmt(&ptr, f)
1901     }
1902 }
1903 
1904 #[stable(feature = "rust1", since = "1.0.0")]
1905 impl<T: ?Sized, A: Allocator> Deref for Box<T, A> {
1906     type Target = T;
1907 
deref(&self) -> &T1908     fn deref(&self) -> &T {
1909         &**self
1910     }
1911 }
1912 
1913 #[stable(feature = "rust1", since = "1.0.0")]
1914 impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> {
deref_mut(&mut self) -> &mut T1915     fn deref_mut(&mut self) -> &mut T {
1916         &mut **self
1917     }
1918 }
1919 
1920 #[unstable(feature = "receiver_trait", issue = "none")]
1921 impl<T: ?Sized, A: Allocator> Receiver for Box<T, A> {}
1922 
1923 #[stable(feature = "rust1", since = "1.0.0")]
1924 impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> {
1925     type Item = I::Item;
next(&mut self) -> Option<I::Item>1926     fn next(&mut self) -> Option<I::Item> {
1927         (**self).next()
1928     }
size_hint(&self) -> (usize, Option<usize>)1929     fn size_hint(&self) -> (usize, Option<usize>) {
1930         (**self).size_hint()
1931     }
nth(&mut self, n: usize) -> Option<I::Item>1932     fn nth(&mut self, n: usize) -> Option<I::Item> {
1933         (**self).nth(n)
1934     }
last(self) -> Option<I::Item>1935     fn last(self) -> Option<I::Item> {
1936         BoxIter::last(self)
1937     }
1938 }
1939 
1940 trait BoxIter {
1941     type Item;
last(self) -> Option<Self::Item>1942     fn last(self) -> Option<Self::Item>;
1943 }
1944 
1945 impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> {
1946     type Item = I::Item;
last(self) -> Option<I::Item>1947     default fn last(self) -> Option<I::Item> {
1948         #[inline]
1949         fn some<T>(_: Option<T>, x: T) -> Option<T> {
1950             Some(x)
1951         }
1952 
1953         self.fold(None, some)
1954     }
1955 }
1956 
1957 /// Specialization for sized `I`s that uses `I`s implementation of `last()`
1958 /// instead of the default.
1959 #[stable(feature = "rust1", since = "1.0.0")]
1960 impl<I: Iterator, A: Allocator> BoxIter for Box<I, A> {
last(self) -> Option<I::Item>1961     fn last(self) -> Option<I::Item> {
1962         (*self).last()
1963     }
1964 }
1965 
1966 #[stable(feature = "rust1", since = "1.0.0")]
1967 impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> {
next_back(&mut self) -> Option<I::Item>1968     fn next_back(&mut self) -> Option<I::Item> {
1969         (**self).next_back()
1970     }
nth_back(&mut self, n: usize) -> Option<I::Item>1971     fn nth_back(&mut self, n: usize) -> Option<I::Item> {
1972         (**self).nth_back(n)
1973     }
1974 }
1975 #[stable(feature = "rust1", since = "1.0.0")]
1976 impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> {
len(&self) -> usize1977     fn len(&self) -> usize {
1978         (**self).len()
1979     }
is_empty(&self) -> bool1980     fn is_empty(&self) -> bool {
1981         (**self).is_empty()
1982     }
1983 }
1984 
1985 #[stable(feature = "fused", since = "1.26.0")]
1986 impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {}
1987 
1988 #[stable(feature = "boxed_closure_impls", since = "1.35.0")]
1989 impl<Args: Tuple, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> {
1990     type Output = <F as FnOnce<Args>>::Output;
1991 
call_once(self, args: Args) -> Self::Output1992     extern "rust-call" fn call_once(self, args: Args) -> Self::Output {
1993         <F as FnOnce<Args>>::call_once(*self, args)
1994     }
1995 }
1996 
1997 #[stable(feature = "boxed_closure_impls", since = "1.35.0")]
1998 impl<Args: Tuple, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> {
call_mut(&mut self, args: Args) -> Self::Output1999     extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output {
2000         <F as FnMut<Args>>::call_mut(self, args)
2001     }
2002 }
2003 
2004 #[stable(feature = "boxed_closure_impls", since = "1.35.0")]
2005 impl<Args: Tuple, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> {
call(&self, args: Args) -> Self::Output2006     extern "rust-call" fn call(&self, args: Args) -> Self::Output {
2007         <F as Fn<Args>>::call(self, args)
2008     }
2009 }
2010 
2011 #[unstable(feature = "coerce_unsized", issue = "18598")]
2012 impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {}
2013 
2014 #[unstable(feature = "dispatch_from_dyn", issue = "none")]
2015 impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {}
2016 
2017 #[cfg(not(no_global_oom_handling))]
2018 #[stable(feature = "boxed_slice_from_iter", since = "1.32.0")]
2019 impl<I> FromIterator<I> for Box<[I]> {
from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self2020     fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self {
2021         iter.into_iter().collect::<Vec<_>>().into_boxed_slice()
2022     }
2023 }
2024 
2025 #[cfg(not(no_global_oom_handling))]
2026 #[stable(feature = "box_slice_clone", since = "1.3.0")]
2027 impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> {
clone(&self) -> Self2028     fn clone(&self) -> Self {
2029         let alloc = Box::allocator(self).clone();
2030         self.to_vec_in(alloc).into_boxed_slice()
2031     }
2032 
clone_from(&mut self, other: &Self)2033     fn clone_from(&mut self, other: &Self) {
2034         if self.len() == other.len() {
2035             self.clone_from_slice(&other);
2036         } else {
2037             *self = other.clone();
2038         }
2039     }
2040 }
2041 
2042 #[stable(feature = "box_borrow", since = "1.1.0")]
2043 impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> {
borrow(&self) -> &T2044     fn borrow(&self) -> &T {
2045         &**self
2046     }
2047 }
2048 
2049 #[stable(feature = "box_borrow", since = "1.1.0")]
2050 impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> {
borrow_mut(&mut self) -> &mut T2051     fn borrow_mut(&mut self) -> &mut T {
2052         &mut **self
2053     }
2054 }
2055 
2056 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
2057 impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> {
as_ref(&self) -> &T2058     fn as_ref(&self) -> &T {
2059         &**self
2060     }
2061 }
2062 
2063 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
2064 impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> {
as_mut(&mut self) -> &mut T2065     fn as_mut(&mut self) -> &mut T {
2066         &mut **self
2067     }
2068 }
2069 
2070 /* Nota bene
2071  *
2072  *  We could have chosen not to add this impl, and instead have written a
2073  *  function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
2074  *  because Box<T> implements Unpin even when T does not, as a result of
2075  *  this impl.
2076  *
2077  *  We chose this API instead of the alternative for a few reasons:
2078  *      - Logically, it is helpful to understand pinning in regard to the
2079  *        memory region being pointed to. For this reason none of the
2080  *        standard library pointer types support projecting through a pin
2081  *        (Box<T> is the only pointer type in std for which this would be
2082  *        safe.)
2083  *      - It is in practice very useful to have Box<T> be unconditionally
2084  *        Unpin because of trait objects, for which the structural auto
2085  *        trait functionality does not apply (e.g., Box<dyn Foo> would
2086  *        otherwise not be Unpin).
2087  *
2088  *  Another type with the same semantics as Box but only a conditional
2089  *  implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
2090  *  could have a method to project a Pin<T> from it.
2091  */
2092 #[stable(feature = "pin", since = "1.33.0")]
2093 impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where A: 'static {}
2094 
2095 #[unstable(feature = "generator_trait", issue = "43122")]
2096 impl<G: ?Sized + Generator<R> + Unpin, R, A: Allocator> Generator<R> for Box<G, A>
2097 where
2098     A: 'static,
2099 {
2100     type Yield = G::Yield;
2101     type Return = G::Return;
2102 
resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return>2103     fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> {
2104         G::resume(Pin::new(&mut *self), arg)
2105     }
2106 }
2107 
2108 #[unstable(feature = "generator_trait", issue = "43122")]
2109 impl<G: ?Sized + Generator<R>, R, A: Allocator> Generator<R> for Pin<Box<G, A>>
2110 where
2111     A: 'static,
2112 {
2113     type Yield = G::Yield;
2114     type Return = G::Return;
2115 
resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return>2116     fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> {
2117         G::resume((*self).as_mut(), arg)
2118     }
2119 }
2120 
2121 #[stable(feature = "futures_api", since = "1.36.0")]
2122 impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A>
2123 where
2124     A: 'static,
2125 {
2126     type Output = F::Output;
2127 
poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output>2128     fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
2129         F::poll(Pin::new(&mut *self), cx)
2130     }
2131 }
2132 
2133 #[unstable(feature = "async_iterator", issue = "79024")]
2134 impl<S: ?Sized + AsyncIterator + Unpin> AsyncIterator for Box<S> {
2135     type Item = S::Item;
2136 
poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>>2137     fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
2138         Pin::new(&mut **self).poll_next(cx)
2139     }
2140 
size_hint(&self) -> (usize, Option<usize>)2141     fn size_hint(&self) -> (usize, Option<usize>) {
2142         (**self).size_hint()
2143     }
2144 }
2145 
2146 impl dyn Error {
2147     #[inline]
2148     #[stable(feature = "error_downcast", since = "1.3.0")]
2149     #[rustc_allow_incoherent_impl]
2150     /// Attempts to downcast the box to a concrete type.
downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error>>2151     pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error>> {
2152         if self.is::<T>() {
2153             unsafe {
2154                 let raw: *mut dyn Error = Box::into_raw(self);
2155                 Ok(Box::from_raw(raw as *mut T))
2156             }
2157         } else {
2158             Err(self)
2159         }
2160     }
2161 }
2162 
2163 impl dyn Error + Send {
2164     #[inline]
2165     #[stable(feature = "error_downcast", since = "1.3.0")]
2166     #[rustc_allow_incoherent_impl]
2167     /// Attempts to downcast the box to a concrete type.
downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error + Send>>2168     pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error + Send>> {
2169         let err: Box<dyn Error> = self;
2170         <dyn Error>::downcast(err).map_err(|s| unsafe {
2171             // Reapply the `Send` marker.
2172             mem::transmute::<Box<dyn Error>, Box<dyn Error + Send>>(s)
2173         })
2174     }
2175 }
2176 
2177 impl dyn Error + Send + Sync {
2178     #[inline]
2179     #[stable(feature = "error_downcast", since = "1.3.0")]
2180     #[rustc_allow_incoherent_impl]
2181     /// Attempts to downcast the box to a concrete type.
downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<Self>>2182     pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<Self>> {
2183         let err: Box<dyn Error> = self;
2184         <dyn Error>::downcast(err).map_err(|s| unsafe {
2185             // Reapply the `Send + Sync` marker.
2186             mem::transmute::<Box<dyn Error>, Box<dyn Error + Send + Sync>>(s)
2187         })
2188     }
2189 }
2190 
2191 #[cfg(not(no_global_oom_handling))]
2192 #[stable(feature = "rust1", since = "1.0.0")]
2193 impl<'a, E: Error + 'a> From<E> for Box<dyn Error + 'a> {
2194     /// Converts a type of [`Error`] into a box of dyn [`Error`].
2195     ///
2196     /// # Examples
2197     ///
2198     /// ```
2199     /// use std::error::Error;
2200     /// use std::fmt;
2201     /// use std::mem;
2202     ///
2203     /// #[derive(Debug)]
2204     /// struct AnError;
2205     ///
2206     /// impl fmt::Display for AnError {
2207     ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2208     ///         write!(f, "An error")
2209     ///     }
2210     /// }
2211     ///
2212     /// impl Error for AnError {}
2213     ///
2214     /// let an_error = AnError;
2215     /// assert!(0 == mem::size_of_val(&an_error));
2216     /// let a_boxed_error = Box::<dyn Error>::from(an_error);
2217     /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
2218     /// ```
from(err: E) -> Box<dyn Error + 'a>2219     fn from(err: E) -> Box<dyn Error + 'a> {
2220         Box::new(err)
2221     }
2222 }
2223 
2224 #[cfg(not(no_global_oom_handling))]
2225 #[stable(feature = "rust1", since = "1.0.0")]
2226 impl<'a, E: Error + Send + Sync + 'a> From<E> for Box<dyn Error + Send + Sync + 'a> {
2227     /// Converts a type of [`Error`] + [`Send`] + [`Sync`] into a box of
2228     /// dyn [`Error`] + [`Send`] + [`Sync`].
2229     ///
2230     /// # Examples
2231     ///
2232     /// ```
2233     /// use std::error::Error;
2234     /// use std::fmt;
2235     /// use std::mem;
2236     ///
2237     /// #[derive(Debug)]
2238     /// struct AnError;
2239     ///
2240     /// impl fmt::Display for AnError {
2241     ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2242     ///         write!(f, "An error")
2243     ///     }
2244     /// }
2245     ///
2246     /// impl Error for AnError {}
2247     ///
2248     /// unsafe impl Send for AnError {}
2249     ///
2250     /// unsafe impl Sync for AnError {}
2251     ///
2252     /// let an_error = AnError;
2253     /// assert!(0 == mem::size_of_val(&an_error));
2254     /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error);
2255     /// assert!(
2256     ///     mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2257     /// ```
from(err: E) -> Box<dyn Error + Send + Sync + 'a>2258     fn from(err: E) -> Box<dyn Error + Send + Sync + 'a> {
2259         Box::new(err)
2260     }
2261 }
2262 
2263 #[cfg(not(no_global_oom_handling))]
2264 #[stable(feature = "rust1", since = "1.0.0")]
2265 impl From<String> for Box<dyn Error + Send + Sync> {
2266     /// Converts a [`String`] into a box of dyn [`Error`] + [`Send`] + [`Sync`].
2267     ///
2268     /// # Examples
2269     ///
2270     /// ```
2271     /// use std::error::Error;
2272     /// use std::mem;
2273     ///
2274     /// let a_string_error = "a string error".to_string();
2275     /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_string_error);
2276     /// assert!(
2277     ///     mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2278     /// ```
2279     #[inline]
from(err: String) -> Box<dyn Error + Send + Sync>2280     fn from(err: String) -> Box<dyn Error + Send + Sync> {
2281         struct StringError(String);
2282 
2283         impl Error for StringError {
2284             #[allow(deprecated)]
2285             fn description(&self) -> &str {
2286                 &self.0
2287             }
2288         }
2289 
2290         impl fmt::Display for StringError {
2291             fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2292                 fmt::Display::fmt(&self.0, f)
2293             }
2294         }
2295 
2296         // Purposefully skip printing "StringError(..)"
2297         impl fmt::Debug for StringError {
2298             fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2299                 fmt::Debug::fmt(&self.0, f)
2300             }
2301         }
2302 
2303         Box::new(StringError(err))
2304     }
2305 }
2306 
2307 #[cfg(not(no_global_oom_handling))]
2308 #[stable(feature = "string_box_error", since = "1.6.0")]
2309 impl From<String> for Box<dyn Error> {
2310     /// Converts a [`String`] into a box of dyn [`Error`].
2311     ///
2312     /// # Examples
2313     ///
2314     /// ```
2315     /// use std::error::Error;
2316     /// use std::mem;
2317     ///
2318     /// let a_string_error = "a string error".to_string();
2319     /// let a_boxed_error = Box::<dyn Error>::from(a_string_error);
2320     /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
2321     /// ```
from(str_err: String) -> Box<dyn Error>2322     fn from(str_err: String) -> Box<dyn Error> {
2323         let err1: Box<dyn Error + Send + Sync> = From::from(str_err);
2324         let err2: Box<dyn Error> = err1;
2325         err2
2326     }
2327 }
2328 
2329 #[cfg(not(no_global_oom_handling))]
2330 #[stable(feature = "rust1", since = "1.0.0")]
2331 impl<'a> From<&str> for Box<dyn Error + Send + Sync + 'a> {
2332     /// Converts a [`str`] into a box of dyn [`Error`] + [`Send`] + [`Sync`].
2333     ///
2334     /// [`str`]: prim@str
2335     ///
2336     /// # Examples
2337     ///
2338     /// ```
2339     /// use std::error::Error;
2340     /// use std::mem;
2341     ///
2342     /// let a_str_error = "a str error";
2343     /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_str_error);
2344     /// assert!(
2345     ///     mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2346     /// ```
2347     #[inline]
from(err: &str) -> Box<dyn Error + Send + Sync + 'a>2348     fn from(err: &str) -> Box<dyn Error + Send + Sync + 'a> {
2349         From::from(String::from(err))
2350     }
2351 }
2352 
2353 #[cfg(not(no_global_oom_handling))]
2354 #[stable(feature = "string_box_error", since = "1.6.0")]
2355 impl From<&str> for Box<dyn Error> {
2356     /// Converts a [`str`] into a box of dyn [`Error`].
2357     ///
2358     /// [`str`]: prim@str
2359     ///
2360     /// # Examples
2361     ///
2362     /// ```
2363     /// use std::error::Error;
2364     /// use std::mem;
2365     ///
2366     /// let a_str_error = "a str error";
2367     /// let a_boxed_error = Box::<dyn Error>::from(a_str_error);
2368     /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
2369     /// ```
from(err: &str) -> Box<dyn Error>2370     fn from(err: &str) -> Box<dyn Error> {
2371         From::from(String::from(err))
2372     }
2373 }
2374 
2375 #[cfg(not(no_global_oom_handling))]
2376 #[stable(feature = "cow_box_error", since = "1.22.0")]
2377 impl<'a, 'b> From<Cow<'b, str>> for Box<dyn Error + Send + Sync + 'a> {
2378     /// Converts a [`Cow`] into a box of dyn [`Error`] + [`Send`] + [`Sync`].
2379     ///
2380     /// # Examples
2381     ///
2382     /// ```
2383     /// use std::error::Error;
2384     /// use std::mem;
2385     /// use std::borrow::Cow;
2386     ///
2387     /// let a_cow_str_error = Cow::from("a str error");
2388     /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_cow_str_error);
2389     /// assert!(
2390     ///     mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2391     /// ```
from(err: Cow<'b, str>) -> Box<dyn Error + Send + Sync + 'a>2392     fn from(err: Cow<'b, str>) -> Box<dyn Error + Send + Sync + 'a> {
2393         From::from(String::from(err))
2394     }
2395 }
2396 
2397 #[cfg(not(no_global_oom_handling))]
2398 #[stable(feature = "cow_box_error", since = "1.22.0")]
2399 impl<'a> From<Cow<'a, str>> for Box<dyn Error> {
2400     /// Converts a [`Cow`] into a box of dyn [`Error`].
2401     ///
2402     /// # Examples
2403     ///
2404     /// ```
2405     /// use std::error::Error;
2406     /// use std::mem;
2407     /// use std::borrow::Cow;
2408     ///
2409     /// let a_cow_str_error = Cow::from("a str error");
2410     /// let a_boxed_error = Box::<dyn Error>::from(a_cow_str_error);
2411     /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
2412     /// ```
from(err: Cow<'a, str>) -> Box<dyn Error>2413     fn from(err: Cow<'a, str>) -> Box<dyn Error> {
2414         From::from(String::from(err))
2415     }
2416 }
2417 
2418 #[stable(feature = "box_error", since = "1.8.0")]
2419 impl<T: core::error::Error> core::error::Error for Box<T> {
2420     #[allow(deprecated, deprecated_in_future)]
description(&self) -> &str2421     fn description(&self) -> &str {
2422         core::error::Error::description(&**self)
2423     }
2424 
2425     #[allow(deprecated)]
cause(&self) -> Option<&dyn core::error::Error>2426     fn cause(&self) -> Option<&dyn core::error::Error> {
2427         core::error::Error::cause(&**self)
2428     }
2429 
source(&self) -> Option<&(dyn core::error::Error + 'static)>2430     fn source(&self) -> Option<&(dyn core::error::Error + 'static)> {
2431         core::error::Error::source(&**self)
2432     }
2433 }
2434