1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25
26 #include "disasm.h"
27
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 [_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38
39 /* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
51 * analysis is limited to 64k insn, which may be hit even if total number of
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
79 * Most of the time the registers have SCALAR_VALUE type, which
80 * means the register has some value, but it's not a valid pointer.
81 * (like pointer plus pointer becomes SCALAR_VALUE type)
82 *
83 * When verifier sees load or store instructions the type of base register
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
162 */
163
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
170 struct bpf_verifier_state st;
171 int insn_idx;
172 int prev_insn_idx;
173 struct bpf_verifier_stack_elem *next;
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
176 };
177
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
179 #define BPF_COMPLEXITY_LIMIT_STATES 64
180
181 #define BPF_MAP_KEY_POISON (1ULL << 63)
182 #define BPF_MAP_KEY_SEEN (1ULL << 62)
183
184 #define BPF_MAP_PTR_UNPRIV 1UL
185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,const struct bpf_map * map,bool unpriv)199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201 {
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230
231 struct bpf_call_arg_meta {
232 struct bpf_map *map_ptr;
233 bool raw_mode;
234 bool pkt_access;
235 int regno;
236 int access_size;
237 int mem_size;
238 u64 msize_max_value;
239 int ref_obj_id;
240 int func_id;
241 u32 btf_id;
242 u32 ret_btf_id;
243 };
244
245 struct btf *btf_vmlinux;
246
247 static DEFINE_MUTEX(bpf_verifier_lock);
248
249 static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env * env,u32 insn_off)250 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
251 {
252 const struct bpf_line_info *linfo;
253 const struct bpf_prog *prog;
254 u32 i, nr_linfo;
255
256 prog = env->prog;
257 nr_linfo = prog->aux->nr_linfo;
258
259 if (!nr_linfo || insn_off >= prog->len)
260 return NULL;
261
262 linfo = prog->aux->linfo;
263 for (i = 1; i < nr_linfo; i++)
264 if (insn_off < linfo[i].insn_off)
265 break;
266
267 return &linfo[i - 1];
268 }
269
bpf_verifier_vlog(struct bpf_verifier_log * log,const char * fmt,va_list args)270 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
271 va_list args)
272 {
273 unsigned int n;
274
275 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
276
277 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
278 "verifier log line truncated - local buffer too short\n");
279
280 n = min(log->len_total - log->len_used - 1, n);
281 log->kbuf[n] = '\0';
282
283 if (log->level == BPF_LOG_KERNEL) {
284 pr_err("BPF:%s\n", log->kbuf);
285 return;
286 }
287 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
288 log->len_used += n;
289 else
290 log->ubuf = NULL;
291 }
292
bpf_vlog_reset(struct bpf_verifier_log * log,u32 new_pos)293 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
294 {
295 char zero = 0;
296
297 if (!bpf_verifier_log_needed(log))
298 return;
299
300 log->len_used = new_pos;
301 if (put_user(zero, log->ubuf + new_pos))
302 log->ubuf = NULL;
303 }
304
305 /* log_level controls verbosity level of eBPF verifier.
306 * bpf_verifier_log_write() is used to dump the verification trace to the log,
307 * so the user can figure out what's wrong with the program
308 */
bpf_verifier_log_write(struct bpf_verifier_env * env,const char * fmt,...)309 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
310 const char *fmt, ...)
311 {
312 va_list args;
313
314 if (!bpf_verifier_log_needed(&env->log))
315 return;
316
317 va_start(args, fmt);
318 bpf_verifier_vlog(&env->log, fmt, args);
319 va_end(args);
320 }
321 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
322
verbose(void * private_data,const char * fmt,...)323 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
324 {
325 struct bpf_verifier_env *env = private_data;
326 va_list args;
327
328 if (!bpf_verifier_log_needed(&env->log))
329 return;
330
331 va_start(args, fmt);
332 bpf_verifier_vlog(&env->log, fmt, args);
333 va_end(args);
334 }
335
bpf_log(struct bpf_verifier_log * log,const char * fmt,...)336 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
337 const char *fmt, ...)
338 {
339 va_list args;
340
341 if (!bpf_verifier_log_needed(log))
342 return;
343
344 va_start(args, fmt);
345 bpf_verifier_vlog(log, fmt, args);
346 va_end(args);
347 }
348
ltrim(const char * s)349 static const char *ltrim(const char *s)
350 {
351 while (isspace(*s))
352 s++;
353
354 return s;
355 }
356
verbose_linfo(struct bpf_verifier_env * env,u32 insn_off,const char * prefix_fmt,...)357 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
358 u32 insn_off,
359 const char *prefix_fmt, ...)
360 {
361 const struct bpf_line_info *linfo;
362
363 if (!bpf_verifier_log_needed(&env->log))
364 return;
365
366 linfo = find_linfo(env, insn_off);
367 if (!linfo || linfo == env->prev_linfo)
368 return;
369
370 if (prefix_fmt) {
371 va_list args;
372
373 va_start(args, prefix_fmt);
374 bpf_verifier_vlog(&env->log, prefix_fmt, args);
375 va_end(args);
376 }
377
378 verbose(env, "%s\n",
379 ltrim(btf_name_by_offset(env->prog->aux->btf,
380 linfo->line_off)));
381
382 env->prev_linfo = linfo;
383 }
384
type_is_pkt_pointer(enum bpf_reg_type type)385 static bool type_is_pkt_pointer(enum bpf_reg_type type)
386 {
387 return type == PTR_TO_PACKET ||
388 type == PTR_TO_PACKET_META;
389 }
390
type_is_sk_pointer(enum bpf_reg_type type)391 static bool type_is_sk_pointer(enum bpf_reg_type type)
392 {
393 return type == PTR_TO_SOCKET ||
394 type == PTR_TO_SOCK_COMMON ||
395 type == PTR_TO_TCP_SOCK ||
396 type == PTR_TO_XDP_SOCK;
397 }
398
reg_type_not_null(enum bpf_reg_type type)399 static bool reg_type_not_null(enum bpf_reg_type type)
400 {
401 return type == PTR_TO_SOCKET ||
402 type == PTR_TO_TCP_SOCK ||
403 type == PTR_TO_MAP_VALUE ||
404 type == PTR_TO_SOCK_COMMON;
405 }
406
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)407 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
408 {
409 return reg->type == PTR_TO_MAP_VALUE &&
410 map_value_has_spin_lock(reg->map_ptr);
411 }
412
reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)413 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
414 {
415 return base_type(type) == PTR_TO_SOCKET ||
416 base_type(type) == PTR_TO_TCP_SOCK ||
417 base_type(type) == PTR_TO_MEM;
418 }
419
type_is_rdonly_mem(u32 type)420 static bool type_is_rdonly_mem(u32 type)
421 {
422 return type & MEM_RDONLY;
423 }
424
arg_type_may_be_refcounted(enum bpf_arg_type type)425 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
426 {
427 return type == ARG_PTR_TO_SOCK_COMMON;
428 }
429
type_may_be_null(u32 type)430 static bool type_may_be_null(u32 type)
431 {
432 return type & PTR_MAYBE_NULL;
433 }
434
435 /* Determine whether the function releases some resources allocated by another
436 * function call. The first reference type argument will be assumed to be
437 * released by release_reference().
438 */
is_release_function(enum bpf_func_id func_id)439 static bool is_release_function(enum bpf_func_id func_id)
440 {
441 return func_id == BPF_FUNC_sk_release ||
442 func_id == BPF_FUNC_ringbuf_submit ||
443 func_id == BPF_FUNC_ringbuf_discard;
444 }
445
may_be_acquire_function(enum bpf_func_id func_id)446 static bool may_be_acquire_function(enum bpf_func_id func_id)
447 {
448 return func_id == BPF_FUNC_sk_lookup_tcp ||
449 func_id == BPF_FUNC_sk_lookup_udp ||
450 func_id == BPF_FUNC_skc_lookup_tcp ||
451 func_id == BPF_FUNC_map_lookup_elem ||
452 func_id == BPF_FUNC_ringbuf_reserve;
453 }
454
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)455 static bool is_acquire_function(enum bpf_func_id func_id,
456 const struct bpf_map *map)
457 {
458 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
459
460 if (func_id == BPF_FUNC_sk_lookup_tcp ||
461 func_id == BPF_FUNC_sk_lookup_udp ||
462 func_id == BPF_FUNC_skc_lookup_tcp ||
463 func_id == BPF_FUNC_ringbuf_reserve)
464 return true;
465
466 if (func_id == BPF_FUNC_map_lookup_elem &&
467 (map_type == BPF_MAP_TYPE_SOCKMAP ||
468 map_type == BPF_MAP_TYPE_SOCKHASH))
469 return true;
470
471 return false;
472 }
473
is_ptr_cast_function(enum bpf_func_id func_id)474 static bool is_ptr_cast_function(enum bpf_func_id func_id)
475 {
476 return func_id == BPF_FUNC_tcp_sock ||
477 func_id == BPF_FUNC_sk_fullsock ||
478 func_id == BPF_FUNC_skc_to_tcp_sock ||
479 func_id == BPF_FUNC_skc_to_tcp6_sock ||
480 func_id == BPF_FUNC_skc_to_udp6_sock ||
481 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
482 func_id == BPF_FUNC_skc_to_tcp_request_sock;
483 }
484
485 /* string representation of 'enum bpf_reg_type'
486 *
487 * Note that reg_type_str() can not appear more than once in a single verbose()
488 * statement.
489 */
reg_type_str(struct bpf_verifier_env * env,enum bpf_reg_type type)490 static const char *reg_type_str(struct bpf_verifier_env *env,
491 enum bpf_reg_type type)
492 {
493 char postfix[16] = {0}, prefix[16] = {0};
494 static const char * const str[] = {
495 [NOT_INIT] = "?",
496 [SCALAR_VALUE] = "inv",
497 [PTR_TO_CTX] = "ctx",
498 [CONST_PTR_TO_MAP] = "map_ptr",
499 [PTR_TO_MAP_VALUE] = "map_value",
500 [PTR_TO_STACK] = "fp",
501 [PTR_TO_PACKET] = "pkt",
502 [PTR_TO_PACKET_META] = "pkt_meta",
503 [PTR_TO_PACKET_END] = "pkt_end",
504 [PTR_TO_FLOW_KEYS] = "flow_keys",
505 [PTR_TO_SOCKET] = "sock",
506 [PTR_TO_SOCK_COMMON] = "sock_common",
507 [PTR_TO_TCP_SOCK] = "tcp_sock",
508 [PTR_TO_TP_BUFFER] = "tp_buffer",
509 [PTR_TO_XDP_SOCK] = "xdp_sock",
510 [PTR_TO_BTF_ID] = "ptr_",
511 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
512 [PTR_TO_MEM] = "mem",
513 [PTR_TO_BUF] = "buf",
514 };
515
516 if (type & PTR_MAYBE_NULL) {
517 if (base_type(type) == PTR_TO_BTF_ID ||
518 base_type(type) == PTR_TO_PERCPU_BTF_ID)
519 strncpy(postfix, "or_null_", 16);
520 else
521 strncpy(postfix, "_or_null", 16);
522 }
523
524 if (type & MEM_RDONLY)
525 strncpy(prefix, "rdonly_", 16);
526 if (type & MEM_ALLOC)
527 strncpy(prefix, "alloc_", 16);
528
529 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
530 prefix, str[base_type(type)], postfix);
531 return env->type_str_buf;
532 }
533
534 static char slot_type_char[] = {
535 [STACK_INVALID] = '?',
536 [STACK_SPILL] = 'r',
537 [STACK_MISC] = 'm',
538 [STACK_ZERO] = '0',
539 };
540
print_liveness(struct bpf_verifier_env * env,enum bpf_reg_liveness live)541 static void print_liveness(struct bpf_verifier_env *env,
542 enum bpf_reg_liveness live)
543 {
544 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
545 verbose(env, "_");
546 if (live & REG_LIVE_READ)
547 verbose(env, "r");
548 if (live & REG_LIVE_WRITTEN)
549 verbose(env, "w");
550 if (live & REG_LIVE_DONE)
551 verbose(env, "D");
552 }
553
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)554 static struct bpf_func_state *func(struct bpf_verifier_env *env,
555 const struct bpf_reg_state *reg)
556 {
557 struct bpf_verifier_state *cur = env->cur_state;
558
559 return cur->frame[reg->frameno];
560 }
561
kernel_type_name(u32 id)562 const char *kernel_type_name(u32 id)
563 {
564 return btf_name_by_offset(btf_vmlinux,
565 btf_type_by_id(btf_vmlinux, id)->name_off);
566 }
567
568 /* The reg state of a pointer or a bounded scalar was saved when
569 * it was spilled to the stack.
570 */
is_spilled_reg(const struct bpf_stack_state * stack)571 static bool is_spilled_reg(const struct bpf_stack_state *stack)
572 {
573 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
574 }
575
scrub_spilled_slot(u8 * stype)576 static void scrub_spilled_slot(u8 *stype)
577 {
578 if (*stype != STACK_INVALID)
579 *stype = STACK_MISC;
580 }
581
print_verifier_state(struct bpf_verifier_env * env,const struct bpf_func_state * state)582 static void print_verifier_state(struct bpf_verifier_env *env,
583 const struct bpf_func_state *state)
584 {
585 const struct bpf_reg_state *reg;
586 enum bpf_reg_type t;
587 int i;
588
589 if (state->frameno)
590 verbose(env, " frame%d:", state->frameno);
591 for (i = 0; i < MAX_BPF_REG; i++) {
592 reg = &state->regs[i];
593 t = reg->type;
594 if (t == NOT_INIT)
595 continue;
596 verbose(env, " R%d", i);
597 print_liveness(env, reg->live);
598 verbose(env, "=%s", reg_type_str(env, t));
599 if (t == SCALAR_VALUE && reg->precise)
600 verbose(env, "P");
601 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
602 tnum_is_const(reg->var_off)) {
603 /* reg->off should be 0 for SCALAR_VALUE */
604 verbose(env, "%lld", reg->var_off.value + reg->off);
605 } else {
606 if (base_type(t) == PTR_TO_BTF_ID ||
607 base_type(t) == PTR_TO_PERCPU_BTF_ID)
608 verbose(env, "%s", kernel_type_name(reg->btf_id));
609 verbose(env, "(id=%d", reg->id);
610 if (reg_type_may_be_refcounted_or_null(t))
611 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
612 if (t != SCALAR_VALUE)
613 verbose(env, ",off=%d", reg->off);
614 if (type_is_pkt_pointer(t))
615 verbose(env, ",r=%d", reg->range);
616 else if (base_type(t) == CONST_PTR_TO_MAP ||
617 base_type(t) == PTR_TO_MAP_VALUE)
618 verbose(env, ",ks=%d,vs=%d",
619 reg->map_ptr->key_size,
620 reg->map_ptr->value_size);
621 if (tnum_is_const(reg->var_off)) {
622 /* Typically an immediate SCALAR_VALUE, but
623 * could be a pointer whose offset is too big
624 * for reg->off
625 */
626 verbose(env, ",imm=%llx", reg->var_off.value);
627 } else {
628 if (reg->smin_value != reg->umin_value &&
629 reg->smin_value != S64_MIN)
630 verbose(env, ",smin_value=%lld",
631 (long long)reg->smin_value);
632 if (reg->smax_value != reg->umax_value &&
633 reg->smax_value != S64_MAX)
634 verbose(env, ",smax_value=%lld",
635 (long long)reg->smax_value);
636 if (reg->umin_value != 0)
637 verbose(env, ",umin_value=%llu",
638 (unsigned long long)reg->umin_value);
639 if (reg->umax_value != U64_MAX)
640 verbose(env, ",umax_value=%llu",
641 (unsigned long long)reg->umax_value);
642 if (!tnum_is_unknown(reg->var_off)) {
643 char tn_buf[48];
644
645 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
646 verbose(env, ",var_off=%s", tn_buf);
647 }
648 if (reg->s32_min_value != reg->smin_value &&
649 reg->s32_min_value != S32_MIN)
650 verbose(env, ",s32_min_value=%d",
651 (int)(reg->s32_min_value));
652 if (reg->s32_max_value != reg->smax_value &&
653 reg->s32_max_value != S32_MAX)
654 verbose(env, ",s32_max_value=%d",
655 (int)(reg->s32_max_value));
656 if (reg->u32_min_value != reg->umin_value &&
657 reg->u32_min_value != U32_MIN)
658 verbose(env, ",u32_min_value=%d",
659 (int)(reg->u32_min_value));
660 if (reg->u32_max_value != reg->umax_value &&
661 reg->u32_max_value != U32_MAX)
662 verbose(env, ",u32_max_value=%d",
663 (int)(reg->u32_max_value));
664 }
665 verbose(env, ")");
666 }
667 }
668 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
669 char types_buf[BPF_REG_SIZE + 1];
670 bool valid = false;
671 int j;
672
673 for (j = 0; j < BPF_REG_SIZE; j++) {
674 if (state->stack[i].slot_type[j] != STACK_INVALID)
675 valid = true;
676 types_buf[j] = slot_type_char[
677 state->stack[i].slot_type[j]];
678 }
679 types_buf[BPF_REG_SIZE] = 0;
680 if (!valid)
681 continue;
682 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
683 print_liveness(env, state->stack[i].spilled_ptr.live);
684 if (is_spilled_reg(&state->stack[i])) {
685 reg = &state->stack[i].spilled_ptr;
686 t = reg->type;
687 verbose(env, "=%s", reg_type_str(env, t));
688 if (t == SCALAR_VALUE && reg->precise)
689 verbose(env, "P");
690 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
691 verbose(env, "%lld", reg->var_off.value + reg->off);
692 } else {
693 verbose(env, "=%s", types_buf);
694 }
695 }
696 if (state->acquired_refs && state->refs[0].id) {
697 verbose(env, " refs=%d", state->refs[0].id);
698 for (i = 1; i < state->acquired_refs; i++)
699 if (state->refs[i].id)
700 verbose(env, ",%d", state->refs[i].id);
701 }
702 verbose(env, "\n");
703 }
704
705 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
706 static int copy_##NAME##_state(struct bpf_func_state *dst, \
707 const struct bpf_func_state *src) \
708 { \
709 if (!src->FIELD) \
710 return 0; \
711 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
712 /* internal bug, make state invalid to reject the program */ \
713 memset(dst, 0, sizeof(*dst)); \
714 return -EFAULT; \
715 } \
716 memcpy(dst->FIELD, src->FIELD, \
717 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
718 return 0; \
719 }
720 /* copy_reference_state() */
721 COPY_STATE_FN(reference, acquired_refs, refs, 1)
722 /* copy_stack_state() */
COPY_STATE_FN(stack,allocated_stack,stack,BPF_REG_SIZE)723 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
724 #undef COPY_STATE_FN
725
726 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
727 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
728 bool copy_old) \
729 { \
730 u32 old_size = state->COUNT; \
731 struct bpf_##NAME##_state *new_##FIELD; \
732 int slot = size / SIZE; \
733 \
734 if (size <= old_size || !size) { \
735 if (copy_old) \
736 return 0; \
737 state->COUNT = slot * SIZE; \
738 if (!size && old_size) { \
739 kfree(state->FIELD); \
740 state->FIELD = NULL; \
741 } \
742 return 0; \
743 } \
744 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
745 GFP_KERNEL); \
746 if (!new_##FIELD) \
747 return -ENOMEM; \
748 if (copy_old) { \
749 if (state->FIELD) \
750 memcpy(new_##FIELD, state->FIELD, \
751 sizeof(*new_##FIELD) * (old_size / SIZE)); \
752 memset(new_##FIELD + old_size / SIZE, 0, \
753 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
754 } \
755 state->COUNT = slot * SIZE; \
756 kfree(state->FIELD); \
757 state->FIELD = new_##FIELD; \
758 return 0; \
759 }
760 /* realloc_reference_state() */
761 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
762 /* realloc_stack_state() */
763 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
764 #undef REALLOC_STATE_FN
765
766 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
767 * make it consume minimal amount of memory. check_stack_write() access from
768 * the program calls into realloc_func_state() to grow the stack size.
769 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
770 * which realloc_stack_state() copies over. It points to previous
771 * bpf_verifier_state which is never reallocated.
772 */
773 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
774 int refs_size, bool copy_old)
775 {
776 int err = realloc_reference_state(state, refs_size, copy_old);
777 if (err)
778 return err;
779 return realloc_stack_state(state, stack_size, copy_old);
780 }
781
782 /* Acquire a pointer id from the env and update the state->refs to include
783 * this new pointer reference.
784 * On success, returns a valid pointer id to associate with the register
785 * On failure, returns a negative errno.
786 */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)787 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
788 {
789 struct bpf_func_state *state = cur_func(env);
790 int new_ofs = state->acquired_refs;
791 int id, err;
792
793 err = realloc_reference_state(state, state->acquired_refs + 1, true);
794 if (err)
795 return err;
796 id = ++env->id_gen;
797 state->refs[new_ofs].id = id;
798 state->refs[new_ofs].insn_idx = insn_idx;
799
800 return id;
801 }
802
803 /* release function corresponding to acquire_reference_state(). Idempotent. */
release_reference_state(struct bpf_func_state * state,int ptr_id)804 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
805 {
806 int i, last_idx;
807
808 last_idx = state->acquired_refs - 1;
809 for (i = 0; i < state->acquired_refs; i++) {
810 if (state->refs[i].id == ptr_id) {
811 if (last_idx && i != last_idx)
812 memcpy(&state->refs[i], &state->refs[last_idx],
813 sizeof(*state->refs));
814 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
815 state->acquired_refs--;
816 return 0;
817 }
818 }
819 return -EINVAL;
820 }
821
transfer_reference_state(struct bpf_func_state * dst,struct bpf_func_state * src)822 static int transfer_reference_state(struct bpf_func_state *dst,
823 struct bpf_func_state *src)
824 {
825 int err = realloc_reference_state(dst, src->acquired_refs, false);
826 if (err)
827 return err;
828 err = copy_reference_state(dst, src);
829 if (err)
830 return err;
831 return 0;
832 }
833
free_func_state(struct bpf_func_state * state)834 static void free_func_state(struct bpf_func_state *state)
835 {
836 if (!state)
837 return;
838 kfree(state->refs);
839 kfree(state->stack);
840 kfree(state);
841 }
842
clear_jmp_history(struct bpf_verifier_state * state)843 static void clear_jmp_history(struct bpf_verifier_state *state)
844 {
845 kfree(state->jmp_history);
846 state->jmp_history = NULL;
847 state->jmp_history_cnt = 0;
848 }
849
free_verifier_state(struct bpf_verifier_state * state,bool free_self)850 static void free_verifier_state(struct bpf_verifier_state *state,
851 bool free_self)
852 {
853 int i;
854
855 for (i = 0; i <= state->curframe; i++) {
856 free_func_state(state->frame[i]);
857 state->frame[i] = NULL;
858 }
859 clear_jmp_history(state);
860 if (free_self)
861 kfree(state);
862 }
863
864 /* copy verifier state from src to dst growing dst stack space
865 * when necessary to accommodate larger src stack
866 */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)867 static int copy_func_state(struct bpf_func_state *dst,
868 const struct bpf_func_state *src)
869 {
870 int err;
871
872 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
873 false);
874 if (err)
875 return err;
876 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
877 err = copy_reference_state(dst, src);
878 if (err)
879 return err;
880 return copy_stack_state(dst, src);
881 }
882
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)883 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
884 const struct bpf_verifier_state *src)
885 {
886 struct bpf_func_state *dst;
887 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
888 int i, err;
889
890 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
891 kfree(dst_state->jmp_history);
892 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
893 if (!dst_state->jmp_history)
894 return -ENOMEM;
895 }
896 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
897 dst_state->jmp_history_cnt = src->jmp_history_cnt;
898
899 /* if dst has more stack frames then src frame, free them */
900 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
901 free_func_state(dst_state->frame[i]);
902 dst_state->frame[i] = NULL;
903 }
904 dst_state->speculative = src->speculative;
905 dst_state->curframe = src->curframe;
906 dst_state->active_spin_lock = src->active_spin_lock;
907 dst_state->branches = src->branches;
908 dst_state->parent = src->parent;
909 dst_state->first_insn_idx = src->first_insn_idx;
910 dst_state->last_insn_idx = src->last_insn_idx;
911 for (i = 0; i <= src->curframe; i++) {
912 dst = dst_state->frame[i];
913 if (!dst) {
914 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
915 if (!dst)
916 return -ENOMEM;
917 dst_state->frame[i] = dst;
918 }
919 err = copy_func_state(dst, src->frame[i]);
920 if (err)
921 return err;
922 }
923 return 0;
924 }
925
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)926 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
927 {
928 while (st) {
929 u32 br = --st->branches;
930
931 /* WARN_ON(br > 1) technically makes sense here,
932 * but see comment in push_stack(), hence:
933 */
934 WARN_ONCE((int)br < 0,
935 "BUG update_branch_counts:branches_to_explore=%d\n",
936 br);
937 if (br)
938 break;
939 st = st->parent;
940 }
941 }
942
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)943 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
944 int *insn_idx, bool pop_log)
945 {
946 struct bpf_verifier_state *cur = env->cur_state;
947 struct bpf_verifier_stack_elem *elem, *head = env->head;
948 int err;
949
950 if (env->head == NULL)
951 return -ENOENT;
952
953 if (cur) {
954 err = copy_verifier_state(cur, &head->st);
955 if (err)
956 return err;
957 }
958 if (pop_log)
959 bpf_vlog_reset(&env->log, head->log_pos);
960 if (insn_idx)
961 *insn_idx = head->insn_idx;
962 if (prev_insn_idx)
963 *prev_insn_idx = head->prev_insn_idx;
964 elem = head->next;
965 free_verifier_state(&head->st, false);
966 kfree(head);
967 env->head = elem;
968 env->stack_size--;
969 return 0;
970 }
971
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)972 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
973 int insn_idx, int prev_insn_idx,
974 bool speculative)
975 {
976 struct bpf_verifier_state *cur = env->cur_state;
977 struct bpf_verifier_stack_elem *elem;
978 int err;
979
980 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
981 if (!elem)
982 goto err;
983
984 elem->insn_idx = insn_idx;
985 elem->prev_insn_idx = prev_insn_idx;
986 elem->next = env->head;
987 elem->log_pos = env->log.len_used;
988 env->head = elem;
989 env->stack_size++;
990 err = copy_verifier_state(&elem->st, cur);
991 if (err)
992 goto err;
993 elem->st.speculative |= speculative;
994 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
995 verbose(env, "The sequence of %d jumps is too complex.\n",
996 env->stack_size);
997 goto err;
998 }
999 if (elem->st.parent) {
1000 ++elem->st.parent->branches;
1001 /* WARN_ON(branches > 2) technically makes sense here,
1002 * but
1003 * 1. speculative states will bump 'branches' for non-branch
1004 * instructions
1005 * 2. is_state_visited() heuristics may decide not to create
1006 * a new state for a sequence of branches and all such current
1007 * and cloned states will be pointing to a single parent state
1008 * which might have large 'branches' count.
1009 */
1010 }
1011 return &elem->st;
1012 err:
1013 free_verifier_state(env->cur_state, true);
1014 env->cur_state = NULL;
1015 /* pop all elements and return */
1016 while (!pop_stack(env, NULL, NULL, false));
1017 return NULL;
1018 }
1019
1020 #define CALLER_SAVED_REGS 6
1021 static const int caller_saved[CALLER_SAVED_REGS] = {
1022 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1023 };
1024
1025 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1026 struct bpf_reg_state *reg);
1027
1028 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)1029 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1030 {
1031 reg->var_off = tnum_const(imm);
1032 reg->smin_value = (s64)imm;
1033 reg->smax_value = (s64)imm;
1034 reg->umin_value = imm;
1035 reg->umax_value = imm;
1036
1037 reg->s32_min_value = (s32)imm;
1038 reg->s32_max_value = (s32)imm;
1039 reg->u32_min_value = (u32)imm;
1040 reg->u32_max_value = (u32)imm;
1041 }
1042
1043 /* Mark the unknown part of a register (variable offset or scalar value) as
1044 * known to have the value @imm.
1045 */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)1046 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1047 {
1048 /* Clear id, off, and union(map_ptr, range) */
1049 memset(((u8 *)reg) + sizeof(reg->type), 0,
1050 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1051 ___mark_reg_known(reg, imm);
1052 }
1053
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)1054 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1055 {
1056 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1057 reg->s32_min_value = (s32)imm;
1058 reg->s32_max_value = (s32)imm;
1059 reg->u32_min_value = (u32)imm;
1060 reg->u32_max_value = (u32)imm;
1061 }
1062
1063 /* Mark the 'variable offset' part of a register as zero. This should be
1064 * used only on registers holding a pointer type.
1065 */
__mark_reg_known_zero(struct bpf_reg_state * reg)1066 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1067 {
1068 __mark_reg_known(reg, 0);
1069 }
1070
__mark_reg_const_zero(struct bpf_reg_state * reg)1071 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1072 {
1073 __mark_reg_known(reg, 0);
1074 reg->type = SCALAR_VALUE;
1075 }
1076
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1077 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1078 struct bpf_reg_state *regs, u32 regno)
1079 {
1080 if (WARN_ON(regno >= MAX_BPF_REG)) {
1081 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1082 /* Something bad happened, let's kill all regs */
1083 for (regno = 0; regno < MAX_BPF_REG; regno++)
1084 __mark_reg_not_init(env, regs + regno);
1085 return;
1086 }
1087 __mark_reg_known_zero(regs + regno);
1088 }
1089
reg_is_pkt_pointer(const struct bpf_reg_state * reg)1090 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1091 {
1092 return type_is_pkt_pointer(reg->type);
1093 }
1094
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)1095 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1096 {
1097 return reg_is_pkt_pointer(reg) ||
1098 reg->type == PTR_TO_PACKET_END;
1099 }
1100
1101 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)1102 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1103 enum bpf_reg_type which)
1104 {
1105 /* The register can already have a range from prior markings.
1106 * This is fine as long as it hasn't been advanced from its
1107 * origin.
1108 */
1109 return reg->type == which &&
1110 reg->id == 0 &&
1111 reg->off == 0 &&
1112 tnum_equals_const(reg->var_off, 0);
1113 }
1114
1115 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)1116 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1117 {
1118 reg->smin_value = S64_MIN;
1119 reg->smax_value = S64_MAX;
1120 reg->umin_value = 0;
1121 reg->umax_value = U64_MAX;
1122
1123 reg->s32_min_value = S32_MIN;
1124 reg->s32_max_value = S32_MAX;
1125 reg->u32_min_value = 0;
1126 reg->u32_max_value = U32_MAX;
1127 }
1128
__mark_reg64_unbounded(struct bpf_reg_state * reg)1129 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1130 {
1131 reg->smin_value = S64_MIN;
1132 reg->smax_value = S64_MAX;
1133 reg->umin_value = 0;
1134 reg->umax_value = U64_MAX;
1135 }
1136
__mark_reg32_unbounded(struct bpf_reg_state * reg)1137 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1138 {
1139 reg->s32_min_value = S32_MIN;
1140 reg->s32_max_value = S32_MAX;
1141 reg->u32_min_value = 0;
1142 reg->u32_max_value = U32_MAX;
1143 }
1144
__update_reg32_bounds(struct bpf_reg_state * reg)1145 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1146 {
1147 struct tnum var32_off = tnum_subreg(reg->var_off);
1148
1149 /* min signed is max(sign bit) | min(other bits) */
1150 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1151 var32_off.value | (var32_off.mask & S32_MIN));
1152 /* max signed is min(sign bit) | max(other bits) */
1153 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1154 var32_off.value | (var32_off.mask & S32_MAX));
1155 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1156 reg->u32_max_value = min(reg->u32_max_value,
1157 (u32)(var32_off.value | var32_off.mask));
1158 }
1159
__update_reg64_bounds(struct bpf_reg_state * reg)1160 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1161 {
1162 /* min signed is max(sign bit) | min(other bits) */
1163 reg->smin_value = max_t(s64, reg->smin_value,
1164 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1165 /* max signed is min(sign bit) | max(other bits) */
1166 reg->smax_value = min_t(s64, reg->smax_value,
1167 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1168 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1169 reg->umax_value = min(reg->umax_value,
1170 reg->var_off.value | reg->var_off.mask);
1171 }
1172
__update_reg_bounds(struct bpf_reg_state * reg)1173 static void __update_reg_bounds(struct bpf_reg_state *reg)
1174 {
1175 __update_reg32_bounds(reg);
1176 __update_reg64_bounds(reg);
1177 }
1178
1179 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)1180 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1181 {
1182 /* Learn sign from signed bounds.
1183 * If we cannot cross the sign boundary, then signed and unsigned bounds
1184 * are the same, so combine. This works even in the negative case, e.g.
1185 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1186 */
1187 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1188 reg->s32_min_value = reg->u32_min_value =
1189 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1190 reg->s32_max_value = reg->u32_max_value =
1191 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1192 return;
1193 }
1194 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1195 * boundary, so we must be careful.
1196 */
1197 if ((s32)reg->u32_max_value >= 0) {
1198 /* Positive. We can't learn anything from the smin, but smax
1199 * is positive, hence safe.
1200 */
1201 reg->s32_min_value = reg->u32_min_value;
1202 reg->s32_max_value = reg->u32_max_value =
1203 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1204 } else if ((s32)reg->u32_min_value < 0) {
1205 /* Negative. We can't learn anything from the smax, but smin
1206 * is negative, hence safe.
1207 */
1208 reg->s32_min_value = reg->u32_min_value =
1209 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1210 reg->s32_max_value = reg->u32_max_value;
1211 }
1212 }
1213
__reg64_deduce_bounds(struct bpf_reg_state * reg)1214 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1215 {
1216 /* Learn sign from signed bounds.
1217 * If we cannot cross the sign boundary, then signed and unsigned bounds
1218 * are the same, so combine. This works even in the negative case, e.g.
1219 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1220 */
1221 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1222 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1223 reg->umin_value);
1224 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1225 reg->umax_value);
1226 return;
1227 }
1228 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1229 * boundary, so we must be careful.
1230 */
1231 if ((s64)reg->umax_value >= 0) {
1232 /* Positive. We can't learn anything from the smin, but smax
1233 * is positive, hence safe.
1234 */
1235 reg->smin_value = reg->umin_value;
1236 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1237 reg->umax_value);
1238 } else if ((s64)reg->umin_value < 0) {
1239 /* Negative. We can't learn anything from the smax, but smin
1240 * is negative, hence safe.
1241 */
1242 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1243 reg->umin_value);
1244 reg->smax_value = reg->umax_value;
1245 }
1246 }
1247
__reg_deduce_bounds(struct bpf_reg_state * reg)1248 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1249 {
1250 __reg32_deduce_bounds(reg);
1251 __reg64_deduce_bounds(reg);
1252 }
1253
1254 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)1255 static void __reg_bound_offset(struct bpf_reg_state *reg)
1256 {
1257 struct tnum var64_off = tnum_intersect(reg->var_off,
1258 tnum_range(reg->umin_value,
1259 reg->umax_value));
1260 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1261 tnum_range(reg->u32_min_value,
1262 reg->u32_max_value));
1263
1264 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1265 }
1266
reg_bounds_sync(struct bpf_reg_state * reg)1267 static void reg_bounds_sync(struct bpf_reg_state *reg)
1268 {
1269 /* We might have learned new bounds from the var_off. */
1270 __update_reg_bounds(reg);
1271 /* We might have learned something about the sign bit. */
1272 __reg_deduce_bounds(reg);
1273 /* We might have learned some bits from the bounds. */
1274 __reg_bound_offset(reg);
1275 /* Intersecting with the old var_off might have improved our bounds
1276 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1277 * then new var_off is (0; 0x7f...fc) which improves our umax.
1278 */
1279 __update_reg_bounds(reg);
1280 }
1281
__reg32_bound_s64(s32 a)1282 static bool __reg32_bound_s64(s32 a)
1283 {
1284 return a >= 0 && a <= S32_MAX;
1285 }
1286
__reg_assign_32_into_64(struct bpf_reg_state * reg)1287 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1288 {
1289 reg->umin_value = reg->u32_min_value;
1290 reg->umax_value = reg->u32_max_value;
1291
1292 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1293 * be positive otherwise set to worse case bounds and refine later
1294 * from tnum.
1295 */
1296 if (__reg32_bound_s64(reg->s32_min_value) &&
1297 __reg32_bound_s64(reg->s32_max_value)) {
1298 reg->smin_value = reg->s32_min_value;
1299 reg->smax_value = reg->s32_max_value;
1300 } else {
1301 reg->smin_value = 0;
1302 reg->smax_value = U32_MAX;
1303 }
1304 }
1305
__reg_combine_32_into_64(struct bpf_reg_state * reg)1306 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1307 {
1308 /* special case when 64-bit register has upper 32-bit register
1309 * zeroed. Typically happens after zext or <<32, >>32 sequence
1310 * allowing us to use 32-bit bounds directly,
1311 */
1312 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1313 __reg_assign_32_into_64(reg);
1314 } else {
1315 /* Otherwise the best we can do is push lower 32bit known and
1316 * unknown bits into register (var_off set from jmp logic)
1317 * then learn as much as possible from the 64-bit tnum
1318 * known and unknown bits. The previous smin/smax bounds are
1319 * invalid here because of jmp32 compare so mark them unknown
1320 * so they do not impact tnum bounds calculation.
1321 */
1322 __mark_reg64_unbounded(reg);
1323 }
1324 reg_bounds_sync(reg);
1325 }
1326
__reg64_bound_s32(s64 a)1327 static bool __reg64_bound_s32(s64 a)
1328 {
1329 return a >= S32_MIN && a <= S32_MAX;
1330 }
1331
__reg64_bound_u32(u64 a)1332 static bool __reg64_bound_u32(u64 a)
1333 {
1334 return a >= U32_MIN && a <= U32_MAX;
1335 }
1336
__reg_combine_64_into_32(struct bpf_reg_state * reg)1337 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1338 {
1339 __mark_reg32_unbounded(reg);
1340 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1341 reg->s32_min_value = (s32)reg->smin_value;
1342 reg->s32_max_value = (s32)reg->smax_value;
1343 }
1344 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1345 reg->u32_min_value = (u32)reg->umin_value;
1346 reg->u32_max_value = (u32)reg->umax_value;
1347 }
1348 reg_bounds_sync(reg);
1349 }
1350
1351 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1352 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1353 struct bpf_reg_state *reg)
1354 {
1355 /*
1356 * Clear type, id, off, and union(map_ptr, range) and
1357 * padding between 'type' and union
1358 */
1359 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1360 reg->type = SCALAR_VALUE;
1361 reg->var_off = tnum_unknown;
1362 reg->frameno = 0;
1363 reg->precise = !env->bpf_capable;
1364 __mark_reg_unbounded(reg);
1365 }
1366
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1367 static void mark_reg_unknown(struct bpf_verifier_env *env,
1368 struct bpf_reg_state *regs, u32 regno)
1369 {
1370 if (WARN_ON(regno >= MAX_BPF_REG)) {
1371 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1372 /* Something bad happened, let's kill all regs except FP */
1373 for (regno = 0; regno < BPF_REG_FP; regno++)
1374 __mark_reg_not_init(env, regs + regno);
1375 return;
1376 }
1377 __mark_reg_unknown(env, regs + regno);
1378 }
1379
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1380 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1381 struct bpf_reg_state *reg)
1382 {
1383 __mark_reg_unknown(env, reg);
1384 reg->type = NOT_INIT;
1385 }
1386
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1387 static void mark_reg_not_init(struct bpf_verifier_env *env,
1388 struct bpf_reg_state *regs, u32 regno)
1389 {
1390 if (WARN_ON(regno >= MAX_BPF_REG)) {
1391 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1392 /* Something bad happened, let's kill all regs except FP */
1393 for (regno = 0; regno < BPF_REG_FP; regno++)
1394 __mark_reg_not_init(env, regs + regno);
1395 return;
1396 }
1397 __mark_reg_not_init(env, regs + regno);
1398 }
1399
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,u32 btf_id)1400 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1401 struct bpf_reg_state *regs, u32 regno,
1402 enum bpf_reg_type reg_type, u32 btf_id)
1403 {
1404 if (reg_type == SCALAR_VALUE) {
1405 mark_reg_unknown(env, regs, regno);
1406 return;
1407 }
1408 mark_reg_known_zero(env, regs, regno);
1409 regs[regno].type = PTR_TO_BTF_ID;
1410 regs[regno].btf_id = btf_id;
1411 }
1412
1413 #define DEF_NOT_SUBREG (0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)1414 static void init_reg_state(struct bpf_verifier_env *env,
1415 struct bpf_func_state *state)
1416 {
1417 struct bpf_reg_state *regs = state->regs;
1418 int i;
1419
1420 for (i = 0; i < MAX_BPF_REG; i++) {
1421 mark_reg_not_init(env, regs, i);
1422 regs[i].live = REG_LIVE_NONE;
1423 regs[i].parent = NULL;
1424 regs[i].subreg_def = DEF_NOT_SUBREG;
1425 }
1426
1427 /* frame pointer */
1428 regs[BPF_REG_FP].type = PTR_TO_STACK;
1429 mark_reg_known_zero(env, regs, BPF_REG_FP);
1430 regs[BPF_REG_FP].frameno = state->frameno;
1431 }
1432
1433 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)1434 static void init_func_state(struct bpf_verifier_env *env,
1435 struct bpf_func_state *state,
1436 int callsite, int frameno, int subprogno)
1437 {
1438 state->callsite = callsite;
1439 state->frameno = frameno;
1440 state->subprogno = subprogno;
1441 init_reg_state(env, state);
1442 }
1443
1444 enum reg_arg_type {
1445 SRC_OP, /* register is used as source operand */
1446 DST_OP, /* register is used as destination operand */
1447 DST_OP_NO_MARK /* same as above, check only, don't mark */
1448 };
1449
cmp_subprogs(const void * a,const void * b)1450 static int cmp_subprogs(const void *a, const void *b)
1451 {
1452 return ((struct bpf_subprog_info *)a)->start -
1453 ((struct bpf_subprog_info *)b)->start;
1454 }
1455
find_subprog(struct bpf_verifier_env * env,int off)1456 static int find_subprog(struct bpf_verifier_env *env, int off)
1457 {
1458 struct bpf_subprog_info *p;
1459
1460 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1461 sizeof(env->subprog_info[0]), cmp_subprogs);
1462 if (!p)
1463 return -ENOENT;
1464 return p - env->subprog_info;
1465
1466 }
1467
add_subprog(struct bpf_verifier_env * env,int off)1468 static int add_subprog(struct bpf_verifier_env *env, int off)
1469 {
1470 int insn_cnt = env->prog->len;
1471 int ret;
1472
1473 if (off >= insn_cnt || off < 0) {
1474 verbose(env, "call to invalid destination\n");
1475 return -EINVAL;
1476 }
1477 ret = find_subprog(env, off);
1478 if (ret >= 0)
1479 return 0;
1480 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1481 verbose(env, "too many subprograms\n");
1482 return -E2BIG;
1483 }
1484 env->subprog_info[env->subprog_cnt++].start = off;
1485 sort(env->subprog_info, env->subprog_cnt,
1486 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1487 return 0;
1488 }
1489
check_subprogs(struct bpf_verifier_env * env)1490 static int check_subprogs(struct bpf_verifier_env *env)
1491 {
1492 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1493 struct bpf_subprog_info *subprog = env->subprog_info;
1494 struct bpf_insn *insn = env->prog->insnsi;
1495 int insn_cnt = env->prog->len;
1496
1497 /* Add entry function. */
1498 ret = add_subprog(env, 0);
1499 if (ret < 0)
1500 return ret;
1501
1502 /* determine subprog starts. The end is one before the next starts */
1503 for (i = 0; i < insn_cnt; i++) {
1504 if (insn[i].code != (BPF_JMP | BPF_CALL))
1505 continue;
1506 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1507 continue;
1508 if (!env->bpf_capable) {
1509 verbose(env,
1510 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1511 return -EPERM;
1512 }
1513 ret = add_subprog(env, i + insn[i].imm + 1);
1514 if (ret < 0)
1515 return ret;
1516 }
1517
1518 /* Add a fake 'exit' subprog which could simplify subprog iteration
1519 * logic. 'subprog_cnt' should not be increased.
1520 */
1521 subprog[env->subprog_cnt].start = insn_cnt;
1522
1523 if (env->log.level & BPF_LOG_LEVEL2)
1524 for (i = 0; i < env->subprog_cnt; i++)
1525 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1526
1527 /* now check that all jumps are within the same subprog */
1528 subprog_start = subprog[cur_subprog].start;
1529 subprog_end = subprog[cur_subprog + 1].start;
1530 for (i = 0; i < insn_cnt; i++) {
1531 u8 code = insn[i].code;
1532
1533 if (code == (BPF_JMP | BPF_CALL) &&
1534 insn[i].imm == BPF_FUNC_tail_call &&
1535 insn[i].src_reg != BPF_PSEUDO_CALL)
1536 subprog[cur_subprog].has_tail_call = true;
1537 if (BPF_CLASS(code) == BPF_LD &&
1538 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1539 subprog[cur_subprog].has_ld_abs = true;
1540 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1541 goto next;
1542 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1543 goto next;
1544 off = i + insn[i].off + 1;
1545 if (off < subprog_start || off >= subprog_end) {
1546 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1547 return -EINVAL;
1548 }
1549 next:
1550 if (i == subprog_end - 1) {
1551 /* to avoid fall-through from one subprog into another
1552 * the last insn of the subprog should be either exit
1553 * or unconditional jump back
1554 */
1555 if (code != (BPF_JMP | BPF_EXIT) &&
1556 code != (BPF_JMP | BPF_JA)) {
1557 verbose(env, "last insn is not an exit or jmp\n");
1558 return -EINVAL;
1559 }
1560 subprog_start = subprog_end;
1561 cur_subprog++;
1562 if (cur_subprog < env->subprog_cnt)
1563 subprog_end = subprog[cur_subprog + 1].start;
1564 }
1565 }
1566 return 0;
1567 }
1568
1569 /* Parentage chain of this register (or stack slot) should take care of all
1570 * issues like callee-saved registers, stack slot allocation time, etc.
1571 */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)1572 static int mark_reg_read(struct bpf_verifier_env *env,
1573 const struct bpf_reg_state *state,
1574 struct bpf_reg_state *parent, u8 flag)
1575 {
1576 bool writes = parent == state->parent; /* Observe write marks */
1577 int cnt = 0;
1578
1579 while (parent) {
1580 /* if read wasn't screened by an earlier write ... */
1581 if (writes && state->live & REG_LIVE_WRITTEN)
1582 break;
1583 if (parent->live & REG_LIVE_DONE) {
1584 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1585 reg_type_str(env, parent->type),
1586 parent->var_off.value, parent->off);
1587 return -EFAULT;
1588 }
1589 /* The first condition is more likely to be true than the
1590 * second, checked it first.
1591 */
1592 if ((parent->live & REG_LIVE_READ) == flag ||
1593 parent->live & REG_LIVE_READ64)
1594 /* The parentage chain never changes and
1595 * this parent was already marked as LIVE_READ.
1596 * There is no need to keep walking the chain again and
1597 * keep re-marking all parents as LIVE_READ.
1598 * This case happens when the same register is read
1599 * multiple times without writes into it in-between.
1600 * Also, if parent has the stronger REG_LIVE_READ64 set,
1601 * then no need to set the weak REG_LIVE_READ32.
1602 */
1603 break;
1604 /* ... then we depend on parent's value */
1605 parent->live |= flag;
1606 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1607 if (flag == REG_LIVE_READ64)
1608 parent->live &= ~REG_LIVE_READ32;
1609 state = parent;
1610 parent = state->parent;
1611 writes = true;
1612 cnt++;
1613 }
1614
1615 if (env->longest_mark_read_walk < cnt)
1616 env->longest_mark_read_walk = cnt;
1617 return 0;
1618 }
1619
1620 /* This function is supposed to be used by the following 32-bit optimization
1621 * code only. It returns TRUE if the source or destination register operates
1622 * on 64-bit, otherwise return FALSE.
1623 */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)1624 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1625 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1626 {
1627 u8 code, class, op;
1628
1629 code = insn->code;
1630 class = BPF_CLASS(code);
1631 op = BPF_OP(code);
1632 if (class == BPF_JMP) {
1633 /* BPF_EXIT for "main" will reach here. Return TRUE
1634 * conservatively.
1635 */
1636 if (op == BPF_EXIT)
1637 return true;
1638 if (op == BPF_CALL) {
1639 /* BPF to BPF call will reach here because of marking
1640 * caller saved clobber with DST_OP_NO_MARK for which we
1641 * don't care the register def because they are anyway
1642 * marked as NOT_INIT already.
1643 */
1644 if (insn->src_reg == BPF_PSEUDO_CALL)
1645 return false;
1646 /* Helper call will reach here because of arg type
1647 * check, conservatively return TRUE.
1648 */
1649 if (t == SRC_OP)
1650 return true;
1651
1652 return false;
1653 }
1654 }
1655
1656 if (class == BPF_ALU64 || class == BPF_JMP ||
1657 /* BPF_END always use BPF_ALU class. */
1658 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1659 return true;
1660
1661 if (class == BPF_ALU || class == BPF_JMP32)
1662 return false;
1663
1664 if (class == BPF_LDX) {
1665 if (t != SRC_OP)
1666 return BPF_SIZE(code) == BPF_DW;
1667 /* LDX source must be ptr. */
1668 return true;
1669 }
1670
1671 if (class == BPF_STX) {
1672 if (reg->type != SCALAR_VALUE)
1673 return true;
1674 return BPF_SIZE(code) == BPF_DW;
1675 }
1676
1677 if (class == BPF_LD) {
1678 u8 mode = BPF_MODE(code);
1679
1680 /* LD_IMM64 */
1681 if (mode == BPF_IMM)
1682 return true;
1683
1684 /* Both LD_IND and LD_ABS return 32-bit data. */
1685 if (t != SRC_OP)
1686 return false;
1687
1688 /* Implicit ctx ptr. */
1689 if (regno == BPF_REG_6)
1690 return true;
1691
1692 /* Explicit source could be any width. */
1693 return true;
1694 }
1695
1696 if (class == BPF_ST)
1697 /* The only source register for BPF_ST is a ptr. */
1698 return true;
1699
1700 /* Conservatively return true at default. */
1701 return true;
1702 }
1703
1704 /* Return TRUE if INSN doesn't have explicit value define. */
insn_no_def(struct bpf_insn * insn)1705 static bool insn_no_def(struct bpf_insn *insn)
1706 {
1707 u8 class = BPF_CLASS(insn->code);
1708
1709 return (class == BPF_JMP || class == BPF_JMP32 ||
1710 class == BPF_STX || class == BPF_ST);
1711 }
1712
1713 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)1714 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1715 {
1716 if (insn_no_def(insn))
1717 return false;
1718
1719 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1720 }
1721
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1722 static void mark_insn_zext(struct bpf_verifier_env *env,
1723 struct bpf_reg_state *reg)
1724 {
1725 s32 def_idx = reg->subreg_def;
1726
1727 if (def_idx == DEF_NOT_SUBREG)
1728 return;
1729
1730 env->insn_aux_data[def_idx - 1].zext_dst = true;
1731 /* The dst will be zero extended, so won't be sub-register anymore. */
1732 reg->subreg_def = DEF_NOT_SUBREG;
1733 }
1734
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)1735 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1736 enum reg_arg_type t)
1737 {
1738 struct bpf_verifier_state *vstate = env->cur_state;
1739 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1740 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1741 struct bpf_reg_state *reg, *regs = state->regs;
1742 bool rw64;
1743
1744 if (regno >= MAX_BPF_REG) {
1745 verbose(env, "R%d is invalid\n", regno);
1746 return -EINVAL;
1747 }
1748
1749 reg = ®s[regno];
1750 rw64 = is_reg64(env, insn, regno, reg, t);
1751 if (t == SRC_OP) {
1752 /* check whether register used as source operand can be read */
1753 if (reg->type == NOT_INIT) {
1754 verbose(env, "R%d !read_ok\n", regno);
1755 return -EACCES;
1756 }
1757 /* We don't need to worry about FP liveness because it's read-only */
1758 if (regno == BPF_REG_FP)
1759 return 0;
1760
1761 if (rw64)
1762 mark_insn_zext(env, reg);
1763
1764 return mark_reg_read(env, reg, reg->parent,
1765 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1766 } else {
1767 /* check whether register used as dest operand can be written to */
1768 if (regno == BPF_REG_FP) {
1769 verbose(env, "frame pointer is read only\n");
1770 return -EACCES;
1771 }
1772 reg->live |= REG_LIVE_WRITTEN;
1773 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1774 if (t == DST_OP)
1775 mark_reg_unknown(env, regs, regno);
1776 }
1777 return 0;
1778 }
1779
1780 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur)1781 static int push_jmp_history(struct bpf_verifier_env *env,
1782 struct bpf_verifier_state *cur)
1783 {
1784 u32 cnt = cur->jmp_history_cnt;
1785 struct bpf_idx_pair *p;
1786
1787 cnt++;
1788 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1789 if (!p)
1790 return -ENOMEM;
1791 p[cnt - 1].idx = env->insn_idx;
1792 p[cnt - 1].prev_idx = env->prev_insn_idx;
1793 cur->jmp_history = p;
1794 cur->jmp_history_cnt = cnt;
1795 return 0;
1796 }
1797
1798 /* Backtrack one insn at a time. If idx is not at the top of recorded
1799 * history then previous instruction came from straight line execution.
1800 */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)1801 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1802 u32 *history)
1803 {
1804 u32 cnt = *history;
1805
1806 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1807 i = st->jmp_history[cnt - 1].prev_idx;
1808 (*history)--;
1809 } else {
1810 i--;
1811 }
1812 return i;
1813 }
1814
1815 /* For given verifier state backtrack_insn() is called from the last insn to
1816 * the first insn. Its purpose is to compute a bitmask of registers and
1817 * stack slots that needs precision in the parent verifier state.
1818 */
backtrack_insn(struct bpf_verifier_env * env,int idx,u32 * reg_mask,u64 * stack_mask)1819 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1820 u32 *reg_mask, u64 *stack_mask)
1821 {
1822 const struct bpf_insn_cbs cbs = {
1823 .cb_print = verbose,
1824 .private_data = env,
1825 };
1826 struct bpf_insn *insn = env->prog->insnsi + idx;
1827 u8 class = BPF_CLASS(insn->code);
1828 u8 opcode = BPF_OP(insn->code);
1829 u8 mode = BPF_MODE(insn->code);
1830 u32 dreg = 1u << insn->dst_reg;
1831 u32 sreg = 1u << insn->src_reg;
1832 u32 spi;
1833
1834 if (insn->code == 0)
1835 return 0;
1836 if (env->log.level & BPF_LOG_LEVEL) {
1837 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1838 verbose(env, "%d: ", idx);
1839 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1840 }
1841
1842 if (class == BPF_ALU || class == BPF_ALU64) {
1843 if (!(*reg_mask & dreg))
1844 return 0;
1845 if (opcode == BPF_END || opcode == BPF_NEG) {
1846 /* sreg is reserved and unused
1847 * dreg still need precision before this insn
1848 */
1849 return 0;
1850 } else if (opcode == BPF_MOV) {
1851 if (BPF_SRC(insn->code) == BPF_X) {
1852 /* dreg = sreg
1853 * dreg needs precision after this insn
1854 * sreg needs precision before this insn
1855 */
1856 *reg_mask &= ~dreg;
1857 *reg_mask |= sreg;
1858 } else {
1859 /* dreg = K
1860 * dreg needs precision after this insn.
1861 * Corresponding register is already marked
1862 * as precise=true in this verifier state.
1863 * No further markings in parent are necessary
1864 */
1865 *reg_mask &= ~dreg;
1866 }
1867 } else {
1868 if (BPF_SRC(insn->code) == BPF_X) {
1869 /* dreg += sreg
1870 * both dreg and sreg need precision
1871 * before this insn
1872 */
1873 *reg_mask |= sreg;
1874 } /* else dreg += K
1875 * dreg still needs precision before this insn
1876 */
1877 }
1878 } else if (class == BPF_LDX) {
1879 if (!(*reg_mask & dreg))
1880 return 0;
1881 *reg_mask &= ~dreg;
1882
1883 /* scalars can only be spilled into stack w/o losing precision.
1884 * Load from any other memory can be zero extended.
1885 * The desire to keep that precision is already indicated
1886 * by 'precise' mark in corresponding register of this state.
1887 * No further tracking necessary.
1888 */
1889 if (insn->src_reg != BPF_REG_FP)
1890 return 0;
1891
1892 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1893 * that [fp - off] slot contains scalar that needs to be
1894 * tracked with precision
1895 */
1896 spi = (-insn->off - 1) / BPF_REG_SIZE;
1897 if (spi >= 64) {
1898 verbose(env, "BUG spi %d\n", spi);
1899 WARN_ONCE(1, "verifier backtracking bug");
1900 return -EFAULT;
1901 }
1902 *stack_mask |= 1ull << spi;
1903 } else if (class == BPF_STX || class == BPF_ST) {
1904 if (*reg_mask & dreg)
1905 /* stx & st shouldn't be using _scalar_ dst_reg
1906 * to access memory. It means backtracking
1907 * encountered a case of pointer subtraction.
1908 */
1909 return -ENOTSUPP;
1910 /* scalars can only be spilled into stack */
1911 if (insn->dst_reg != BPF_REG_FP)
1912 return 0;
1913 spi = (-insn->off - 1) / BPF_REG_SIZE;
1914 if (spi >= 64) {
1915 verbose(env, "BUG spi %d\n", spi);
1916 WARN_ONCE(1, "verifier backtracking bug");
1917 return -EFAULT;
1918 }
1919 if (!(*stack_mask & (1ull << spi)))
1920 return 0;
1921 *stack_mask &= ~(1ull << spi);
1922 if (class == BPF_STX)
1923 *reg_mask |= sreg;
1924 } else if (class == BPF_JMP || class == BPF_JMP32) {
1925 if (opcode == BPF_CALL) {
1926 if (insn->src_reg == BPF_PSEUDO_CALL)
1927 return -ENOTSUPP;
1928 /* regular helper call sets R0 */
1929 *reg_mask &= ~1;
1930 if (*reg_mask & 0x3f) {
1931 /* if backtracing was looking for registers R1-R5
1932 * they should have been found already.
1933 */
1934 verbose(env, "BUG regs %x\n", *reg_mask);
1935 WARN_ONCE(1, "verifier backtracking bug");
1936 return -EFAULT;
1937 }
1938 } else if (opcode == BPF_EXIT) {
1939 return -ENOTSUPP;
1940 } else if (BPF_SRC(insn->code) == BPF_X) {
1941 if (!(*reg_mask & (dreg | sreg)))
1942 return 0;
1943 /* dreg <cond> sreg
1944 * Both dreg and sreg need precision before
1945 * this insn. If only sreg was marked precise
1946 * before it would be equally necessary to
1947 * propagate it to dreg.
1948 */
1949 *reg_mask |= (sreg | dreg);
1950 /* else dreg <cond> K
1951 * Only dreg still needs precision before
1952 * this insn, so for the K-based conditional
1953 * there is nothing new to be marked.
1954 */
1955 }
1956 } else if (class == BPF_LD) {
1957 if (!(*reg_mask & dreg))
1958 return 0;
1959 *reg_mask &= ~dreg;
1960 /* It's ld_imm64 or ld_abs or ld_ind.
1961 * For ld_imm64 no further tracking of precision
1962 * into parent is necessary
1963 */
1964 if (mode == BPF_IND || mode == BPF_ABS)
1965 /* to be analyzed */
1966 return -ENOTSUPP;
1967 }
1968 return 0;
1969 }
1970
1971 /* the scalar precision tracking algorithm:
1972 * . at the start all registers have precise=false.
1973 * . scalar ranges are tracked as normal through alu and jmp insns.
1974 * . once precise value of the scalar register is used in:
1975 * . ptr + scalar alu
1976 * . if (scalar cond K|scalar)
1977 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1978 * backtrack through the verifier states and mark all registers and
1979 * stack slots with spilled constants that these scalar regisers
1980 * should be precise.
1981 * . during state pruning two registers (or spilled stack slots)
1982 * are equivalent if both are not precise.
1983 *
1984 * Note the verifier cannot simply walk register parentage chain,
1985 * since many different registers and stack slots could have been
1986 * used to compute single precise scalar.
1987 *
1988 * The approach of starting with precise=true for all registers and then
1989 * backtrack to mark a register as not precise when the verifier detects
1990 * that program doesn't care about specific value (e.g., when helper
1991 * takes register as ARG_ANYTHING parameter) is not safe.
1992 *
1993 * It's ok to walk single parentage chain of the verifier states.
1994 * It's possible that this backtracking will go all the way till 1st insn.
1995 * All other branches will be explored for needing precision later.
1996 *
1997 * The backtracking needs to deal with cases like:
1998 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1999 * r9 -= r8
2000 * r5 = r9
2001 * if r5 > 0x79f goto pc+7
2002 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2003 * r5 += 1
2004 * ...
2005 * call bpf_perf_event_output#25
2006 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2007 *
2008 * and this case:
2009 * r6 = 1
2010 * call foo // uses callee's r6 inside to compute r0
2011 * r0 += r6
2012 * if r0 == 0 goto
2013 *
2014 * to track above reg_mask/stack_mask needs to be independent for each frame.
2015 *
2016 * Also if parent's curframe > frame where backtracking started,
2017 * the verifier need to mark registers in both frames, otherwise callees
2018 * may incorrectly prune callers. This is similar to
2019 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2020 *
2021 * For now backtracking falls back into conservative marking.
2022 */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2023 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2024 struct bpf_verifier_state *st)
2025 {
2026 struct bpf_func_state *func;
2027 struct bpf_reg_state *reg;
2028 int i, j;
2029
2030 /* big hammer: mark all scalars precise in this path.
2031 * pop_stack may still get !precise scalars.
2032 * We also skip current state and go straight to first parent state,
2033 * because precision markings in current non-checkpointed state are
2034 * not needed. See why in the comment in __mark_chain_precision below.
2035 */
2036 for (st = st->parent; st; st = st->parent) {
2037 for (i = 0; i <= st->curframe; i++) {
2038 func = st->frame[i];
2039 for (j = 0; j < BPF_REG_FP; j++) {
2040 reg = &func->regs[j];
2041 if (reg->type != SCALAR_VALUE)
2042 continue;
2043 reg->precise = true;
2044 }
2045 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2046 if (!is_spilled_reg(&func->stack[j]))
2047 continue;
2048 reg = &func->stack[j].spilled_ptr;
2049 if (reg->type != SCALAR_VALUE)
2050 continue;
2051 reg->precise = true;
2052 }
2053 }
2054 }
2055 }
2056
mark_all_scalars_imprecise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2057 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2058 {
2059 struct bpf_func_state *func;
2060 struct bpf_reg_state *reg;
2061 int i, j;
2062
2063 for (i = 0; i <= st->curframe; i++) {
2064 func = st->frame[i];
2065 for (j = 0; j < BPF_REG_FP; j++) {
2066 reg = &func->regs[j];
2067 if (reg->type != SCALAR_VALUE)
2068 continue;
2069 reg->precise = false;
2070 }
2071 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2072 if (!is_spilled_reg(&func->stack[j]))
2073 continue;
2074 reg = &func->stack[j].spilled_ptr;
2075 if (reg->type != SCALAR_VALUE)
2076 continue;
2077 reg->precise = false;
2078 }
2079 }
2080 }
2081
2082 /*
2083 * __mark_chain_precision() backtracks BPF program instruction sequence and
2084 * chain of verifier states making sure that register *regno* (if regno >= 0)
2085 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
2086 * SCALARS, as well as any other registers and slots that contribute to
2087 * a tracked state of given registers/stack slots, depending on specific BPF
2088 * assembly instructions (see backtrack_insns() for exact instruction handling
2089 * logic). This backtracking relies on recorded jmp_history and is able to
2090 * traverse entire chain of parent states. This process ends only when all the
2091 * necessary registers/slots and their transitive dependencies are marked as
2092 * precise.
2093 *
2094 * One important and subtle aspect is that precise marks *do not matter* in
2095 * the currently verified state (current state). It is important to understand
2096 * why this is the case.
2097 *
2098 * First, note that current state is the state that is not yet "checkpointed",
2099 * i.e., it is not yet put into env->explored_states, and it has no children
2100 * states as well. It's ephemeral, and can end up either a) being discarded if
2101 * compatible explored state is found at some point or BPF_EXIT instruction is
2102 * reached or b) checkpointed and put into env->explored_states, branching out
2103 * into one or more children states.
2104 *
2105 * In the former case, precise markings in current state are completely
2106 * ignored by state comparison code (see regsafe() for details). Only
2107 * checkpointed ("old") state precise markings are important, and if old
2108 * state's register/slot is precise, regsafe() assumes current state's
2109 * register/slot as precise and checks value ranges exactly and precisely. If
2110 * states turn out to be compatible, current state's necessary precise
2111 * markings and any required parent states' precise markings are enforced
2112 * after the fact with propagate_precision() logic, after the fact. But it's
2113 * important to realize that in this case, even after marking current state
2114 * registers/slots as precise, we immediately discard current state. So what
2115 * actually matters is any of the precise markings propagated into current
2116 * state's parent states, which are always checkpointed (due to b) case above).
2117 * As such, for scenario a) it doesn't matter if current state has precise
2118 * markings set or not.
2119 *
2120 * Now, for the scenario b), checkpointing and forking into child(ren)
2121 * state(s). Note that before current state gets to checkpointing step, any
2122 * processed instruction always assumes precise SCALAR register/slot
2123 * knowledge: if precise value or range is useful to prune jump branch, BPF
2124 * verifier takes this opportunity enthusiastically. Similarly, when
2125 * register's value is used to calculate offset or memory address, exact
2126 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
2127 * what we mentioned above about state comparison ignoring precise markings
2128 * during state comparison, BPF verifier ignores and also assumes precise
2129 * markings *at will* during instruction verification process. But as verifier
2130 * assumes precision, it also propagates any precision dependencies across
2131 * parent states, which are not yet finalized, so can be further restricted
2132 * based on new knowledge gained from restrictions enforced by their children
2133 * states. This is so that once those parent states are finalized, i.e., when
2134 * they have no more active children state, state comparison logic in
2135 * is_state_visited() would enforce strict and precise SCALAR ranges, if
2136 * required for correctness.
2137 *
2138 * To build a bit more intuition, note also that once a state is checkpointed,
2139 * the path we took to get to that state is not important. This is crucial
2140 * property for state pruning. When state is checkpointed and finalized at
2141 * some instruction index, it can be correctly and safely used to "short
2142 * circuit" any *compatible* state that reaches exactly the same instruction
2143 * index. I.e., if we jumped to that instruction from a completely different
2144 * code path than original finalized state was derived from, it doesn't
2145 * matter, current state can be discarded because from that instruction
2146 * forward having a compatible state will ensure we will safely reach the
2147 * exit. States describe preconditions for further exploration, but completely
2148 * forget the history of how we got here.
2149 *
2150 * This also means that even if we needed precise SCALAR range to get to
2151 * finalized state, but from that point forward *that same* SCALAR register is
2152 * never used in a precise context (i.e., it's precise value is not needed for
2153 * correctness), it's correct and safe to mark such register as "imprecise"
2154 * (i.e., precise marking set to false). This is what we rely on when we do
2155 * not set precise marking in current state. If no child state requires
2156 * precision for any given SCALAR register, it's safe to dictate that it can
2157 * be imprecise. If any child state does require this register to be precise,
2158 * we'll mark it precise later retroactively during precise markings
2159 * propagation from child state to parent states.
2160 *
2161 * Skipping precise marking setting in current state is a mild version of
2162 * relying on the above observation. But we can utilize this property even
2163 * more aggressively by proactively forgetting any precise marking in the
2164 * current state (which we inherited from the parent state), right before we
2165 * checkpoint it and branch off into new child state. This is done by
2166 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
2167 * finalized states which help in short circuiting more future states.
2168 */
__mark_chain_precision(struct bpf_verifier_env * env,int frame,int regno,int spi)2169 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
2170 int spi)
2171 {
2172 struct bpf_verifier_state *st = env->cur_state;
2173 int first_idx = st->first_insn_idx;
2174 int last_idx = env->insn_idx;
2175 struct bpf_func_state *func;
2176 struct bpf_reg_state *reg;
2177 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2178 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2179 bool skip_first = true;
2180 bool new_marks = false;
2181 int i, err;
2182
2183 if (!env->bpf_capable)
2184 return 0;
2185
2186 /* Do sanity checks against current state of register and/or stack
2187 * slot, but don't set precise flag in current state, as precision
2188 * tracking in the current state is unnecessary.
2189 */
2190 func = st->frame[frame];
2191 if (regno >= 0) {
2192 reg = &func->regs[regno];
2193 if (reg->type != SCALAR_VALUE) {
2194 WARN_ONCE(1, "backtracing misuse");
2195 return -EFAULT;
2196 }
2197 new_marks = true;
2198 }
2199
2200 while (spi >= 0) {
2201 if (!is_spilled_reg(&func->stack[spi])) {
2202 stack_mask = 0;
2203 break;
2204 }
2205 reg = &func->stack[spi].spilled_ptr;
2206 if (reg->type != SCALAR_VALUE) {
2207 stack_mask = 0;
2208 break;
2209 }
2210 new_marks = true;
2211 break;
2212 }
2213
2214 if (!new_marks)
2215 return 0;
2216 if (!reg_mask && !stack_mask)
2217 return 0;
2218
2219 for (;;) {
2220 DECLARE_BITMAP(mask, 64);
2221 u32 history = st->jmp_history_cnt;
2222
2223 if (env->log.level & BPF_LOG_LEVEL)
2224 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2225
2226 if (last_idx < 0) {
2227 /* we are at the entry into subprog, which
2228 * is expected for global funcs, but only if
2229 * requested precise registers are R1-R5
2230 * (which are global func's input arguments)
2231 */
2232 if (st->curframe == 0 &&
2233 st->frame[0]->subprogno > 0 &&
2234 st->frame[0]->callsite == BPF_MAIN_FUNC &&
2235 stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
2236 bitmap_from_u64(mask, reg_mask);
2237 for_each_set_bit(i, mask, 32) {
2238 reg = &st->frame[0]->regs[i];
2239 if (reg->type != SCALAR_VALUE) {
2240 reg_mask &= ~(1u << i);
2241 continue;
2242 }
2243 reg->precise = true;
2244 }
2245 return 0;
2246 }
2247
2248 verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
2249 st->frame[0]->subprogno, reg_mask, stack_mask);
2250 WARN_ONCE(1, "verifier backtracking bug");
2251 return -EFAULT;
2252 }
2253
2254 for (i = last_idx;;) {
2255 if (skip_first) {
2256 err = 0;
2257 skip_first = false;
2258 } else {
2259 err = backtrack_insn(env, i, ®_mask, &stack_mask);
2260 }
2261 if (err == -ENOTSUPP) {
2262 mark_all_scalars_precise(env, st);
2263 return 0;
2264 } else if (err) {
2265 return err;
2266 }
2267 if (!reg_mask && !stack_mask)
2268 /* Found assignment(s) into tracked register in this state.
2269 * Since this state is already marked, just return.
2270 * Nothing to be tracked further in the parent state.
2271 */
2272 return 0;
2273 if (i == first_idx)
2274 break;
2275 i = get_prev_insn_idx(st, i, &history);
2276 if (i >= env->prog->len) {
2277 /* This can happen if backtracking reached insn 0
2278 * and there are still reg_mask or stack_mask
2279 * to backtrack.
2280 * It means the backtracking missed the spot where
2281 * particular register was initialized with a constant.
2282 */
2283 verbose(env, "BUG backtracking idx %d\n", i);
2284 WARN_ONCE(1, "verifier backtracking bug");
2285 return -EFAULT;
2286 }
2287 }
2288 st = st->parent;
2289 if (!st)
2290 break;
2291
2292 new_marks = false;
2293 func = st->frame[frame];
2294 bitmap_from_u64(mask, reg_mask);
2295 for_each_set_bit(i, mask, 32) {
2296 reg = &func->regs[i];
2297 if (reg->type != SCALAR_VALUE) {
2298 reg_mask &= ~(1u << i);
2299 continue;
2300 }
2301 if (!reg->precise)
2302 new_marks = true;
2303 reg->precise = true;
2304 }
2305
2306 bitmap_from_u64(mask, stack_mask);
2307 for_each_set_bit(i, mask, 64) {
2308 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2309 /* the sequence of instructions:
2310 * 2: (bf) r3 = r10
2311 * 3: (7b) *(u64 *)(r3 -8) = r0
2312 * 4: (79) r4 = *(u64 *)(r10 -8)
2313 * doesn't contain jmps. It's backtracked
2314 * as a single block.
2315 * During backtracking insn 3 is not recognized as
2316 * stack access, so at the end of backtracking
2317 * stack slot fp-8 is still marked in stack_mask.
2318 * However the parent state may not have accessed
2319 * fp-8 and it's "unallocated" stack space.
2320 * In such case fallback to conservative.
2321 */
2322 mark_all_scalars_precise(env, st);
2323 return 0;
2324 }
2325
2326 if (!is_spilled_reg(&func->stack[i])) {
2327 stack_mask &= ~(1ull << i);
2328 continue;
2329 }
2330 reg = &func->stack[i].spilled_ptr;
2331 if (reg->type != SCALAR_VALUE) {
2332 stack_mask &= ~(1ull << i);
2333 continue;
2334 }
2335 if (!reg->precise)
2336 new_marks = true;
2337 reg->precise = true;
2338 }
2339 if (env->log.level & BPF_LOG_LEVEL) {
2340 print_verifier_state(env, func);
2341 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2342 new_marks ? "didn't have" : "already had",
2343 reg_mask, stack_mask);
2344 }
2345
2346 if (!reg_mask && !stack_mask)
2347 break;
2348 if (!new_marks)
2349 break;
2350
2351 last_idx = st->last_insn_idx;
2352 first_idx = st->first_insn_idx;
2353 }
2354 return 0;
2355 }
2356
mark_chain_precision(struct bpf_verifier_env * env,int regno)2357 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2358 {
2359 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
2360 }
2361
mark_chain_precision_frame(struct bpf_verifier_env * env,int frame,int regno)2362 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
2363 {
2364 return __mark_chain_precision(env, frame, regno, -1);
2365 }
2366
mark_chain_precision_stack_frame(struct bpf_verifier_env * env,int frame,int spi)2367 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
2368 {
2369 return __mark_chain_precision(env, frame, -1, spi);
2370 }
2371
is_spillable_regtype(enum bpf_reg_type type)2372 static bool is_spillable_regtype(enum bpf_reg_type type)
2373 {
2374 switch (base_type(type)) {
2375 case PTR_TO_MAP_VALUE:
2376 case PTR_TO_STACK:
2377 case PTR_TO_CTX:
2378 case PTR_TO_PACKET:
2379 case PTR_TO_PACKET_META:
2380 case PTR_TO_PACKET_END:
2381 case PTR_TO_FLOW_KEYS:
2382 case CONST_PTR_TO_MAP:
2383 case PTR_TO_SOCKET:
2384 case PTR_TO_SOCK_COMMON:
2385 case PTR_TO_TCP_SOCK:
2386 case PTR_TO_XDP_SOCK:
2387 case PTR_TO_BTF_ID:
2388 case PTR_TO_BUF:
2389 case PTR_TO_PERCPU_BTF_ID:
2390 case PTR_TO_MEM:
2391 return true;
2392 default:
2393 return false;
2394 }
2395 }
2396
2397 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)2398 static bool register_is_null(struct bpf_reg_state *reg)
2399 {
2400 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2401 }
2402
register_is_const(struct bpf_reg_state * reg)2403 static bool register_is_const(struct bpf_reg_state *reg)
2404 {
2405 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2406 }
2407
__is_scalar_unbounded(struct bpf_reg_state * reg)2408 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2409 {
2410 return tnum_is_unknown(reg->var_off) &&
2411 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2412 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2413 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2414 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2415 }
2416
register_is_bounded(struct bpf_reg_state * reg)2417 static bool register_is_bounded(struct bpf_reg_state *reg)
2418 {
2419 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2420 }
2421
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)2422 static bool __is_pointer_value(bool allow_ptr_leaks,
2423 const struct bpf_reg_state *reg)
2424 {
2425 if (allow_ptr_leaks)
2426 return false;
2427
2428 return reg->type != SCALAR_VALUE;
2429 }
2430
2431 /* Copy src state preserving dst->parent and dst->live fields */
copy_register_state(struct bpf_reg_state * dst,const struct bpf_reg_state * src)2432 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
2433 {
2434 struct bpf_reg_state *parent = dst->parent;
2435 enum bpf_reg_liveness live = dst->live;
2436
2437 *dst = *src;
2438 dst->parent = parent;
2439 dst->live = live;
2440 }
2441
save_register_state(struct bpf_func_state * state,int spi,struct bpf_reg_state * reg,int size)2442 static void save_register_state(struct bpf_func_state *state,
2443 int spi, struct bpf_reg_state *reg,
2444 int size)
2445 {
2446 int i;
2447
2448 copy_register_state(&state->stack[spi].spilled_ptr, reg);
2449 if (size == BPF_REG_SIZE)
2450 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2451
2452 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2453 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
2454
2455 /* size < 8 bytes spill */
2456 for (; i; i--)
2457 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
2458 }
2459
is_bpf_st_mem(struct bpf_insn * insn)2460 static bool is_bpf_st_mem(struct bpf_insn *insn)
2461 {
2462 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
2463 }
2464
2465 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2466 * stack boundary and alignment are checked in check_mem_access()
2467 */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)2468 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2469 /* stack frame we're writing to */
2470 struct bpf_func_state *state,
2471 int off, int size, int value_regno,
2472 int insn_idx)
2473 {
2474 struct bpf_func_state *cur; /* state of the current function */
2475 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2476 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
2477 struct bpf_reg_state *reg = NULL;
2478 u32 dst_reg = insn->dst_reg;
2479
2480 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2481 state->acquired_refs, true);
2482 if (err)
2483 return err;
2484 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2485 * so it's aligned access and [off, off + size) are within stack limits
2486 */
2487 if (!env->allow_ptr_leaks &&
2488 is_spilled_reg(&state->stack[spi]) &&
2489 size != BPF_REG_SIZE) {
2490 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2491 return -EACCES;
2492 }
2493
2494 cur = env->cur_state->frame[env->cur_state->curframe];
2495 if (value_regno >= 0)
2496 reg = &cur->regs[value_regno];
2497 if (!env->bypass_spec_v4) {
2498 bool sanitize = reg && is_spillable_regtype(reg->type);
2499
2500 for (i = 0; i < size; i++) {
2501 u8 type = state->stack[spi].slot_type[i];
2502
2503 if (type != STACK_MISC && type != STACK_ZERO) {
2504 sanitize = true;
2505 break;
2506 }
2507 }
2508
2509 if (sanitize)
2510 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2511 }
2512
2513 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2514 !register_is_null(reg) && env->bpf_capable) {
2515 if (dst_reg != BPF_REG_FP) {
2516 /* The backtracking logic can only recognize explicit
2517 * stack slot address like [fp - 8]. Other spill of
2518 * scalar via different register has to be conervative.
2519 * Backtrack from here and mark all registers as precise
2520 * that contributed into 'reg' being a constant.
2521 */
2522 err = mark_chain_precision(env, value_regno);
2523 if (err)
2524 return err;
2525 }
2526 save_register_state(state, spi, reg, size);
2527 /* Break the relation on a narrowing spill. */
2528 if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
2529 state->stack[spi].spilled_ptr.id = 0;
2530 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
2531 insn->imm != 0 && env->bpf_capable) {
2532 struct bpf_reg_state fake_reg = {};
2533
2534 __mark_reg_known(&fake_reg, insn->imm);
2535 fake_reg.type = SCALAR_VALUE;
2536 save_register_state(state, spi, &fake_reg, size);
2537 } else if (reg && is_spillable_regtype(reg->type)) {
2538 /* register containing pointer is being spilled into stack */
2539 if (size != BPF_REG_SIZE) {
2540 verbose_linfo(env, insn_idx, "; ");
2541 verbose(env, "invalid size of register spill\n");
2542 return -EACCES;
2543 }
2544 if (state != cur && reg->type == PTR_TO_STACK) {
2545 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2546 return -EINVAL;
2547 }
2548 save_register_state(state, spi, reg, size);
2549 } else {
2550 u8 type = STACK_MISC;
2551
2552 /* regular write of data into stack destroys any spilled ptr */
2553 state->stack[spi].spilled_ptr.type = NOT_INIT;
2554 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2555 if (is_spilled_reg(&state->stack[spi]))
2556 for (i = 0; i < BPF_REG_SIZE; i++)
2557 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
2558
2559 /* only mark the slot as written if all 8 bytes were written
2560 * otherwise read propagation may incorrectly stop too soon
2561 * when stack slots are partially written.
2562 * This heuristic means that read propagation will be
2563 * conservative, since it will add reg_live_read marks
2564 * to stack slots all the way to first state when programs
2565 * writes+reads less than 8 bytes
2566 */
2567 if (size == BPF_REG_SIZE)
2568 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2569
2570 /* when we zero initialize stack slots mark them as such */
2571 if ((reg && register_is_null(reg)) ||
2572 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
2573 /* backtracking doesn't work for STACK_ZERO yet. */
2574 err = mark_chain_precision(env, value_regno);
2575 if (err)
2576 return err;
2577 type = STACK_ZERO;
2578 }
2579
2580 /* Mark slots affected by this stack write. */
2581 for (i = 0; i < size; i++)
2582 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2583 type;
2584 }
2585 return 0;
2586 }
2587
2588 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2589 * known to contain a variable offset.
2590 * This function checks whether the write is permitted and conservatively
2591 * tracks the effects of the write, considering that each stack slot in the
2592 * dynamic range is potentially written to.
2593 *
2594 * 'off' includes 'regno->off'.
2595 * 'value_regno' can be -1, meaning that an unknown value is being written to
2596 * the stack.
2597 *
2598 * Spilled pointers in range are not marked as written because we don't know
2599 * what's going to be actually written. This means that read propagation for
2600 * future reads cannot be terminated by this write.
2601 *
2602 * For privileged programs, uninitialized stack slots are considered
2603 * initialized by this write (even though we don't know exactly what offsets
2604 * are going to be written to). The idea is that we don't want the verifier to
2605 * reject future reads that access slots written to through variable offsets.
2606 */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)2607 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2608 /* func where register points to */
2609 struct bpf_func_state *state,
2610 int ptr_regno, int off, int size,
2611 int value_regno, int insn_idx)
2612 {
2613 struct bpf_func_state *cur; /* state of the current function */
2614 int min_off, max_off;
2615 int i, err;
2616 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2617 bool writing_zero = false;
2618 /* set if the fact that we're writing a zero is used to let any
2619 * stack slots remain STACK_ZERO
2620 */
2621 bool zero_used = false;
2622
2623 cur = env->cur_state->frame[env->cur_state->curframe];
2624 ptr_reg = &cur->regs[ptr_regno];
2625 min_off = ptr_reg->smin_value + off;
2626 max_off = ptr_reg->smax_value + off + size;
2627 if (value_regno >= 0)
2628 value_reg = &cur->regs[value_regno];
2629 if (value_reg && register_is_null(value_reg))
2630 writing_zero = true;
2631
2632 err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
2633 state->acquired_refs, true);
2634 if (err)
2635 return err;
2636
2637
2638 /* Variable offset writes destroy any spilled pointers in range. */
2639 for (i = min_off; i < max_off; i++) {
2640 u8 new_type, *stype;
2641 int slot, spi;
2642
2643 slot = -i - 1;
2644 spi = slot / BPF_REG_SIZE;
2645 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2646
2647 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
2648 /* Reject the write if range we may write to has not
2649 * been initialized beforehand. If we didn't reject
2650 * here, the ptr status would be erased below (even
2651 * though not all slots are actually overwritten),
2652 * possibly opening the door to leaks.
2653 *
2654 * We do however catch STACK_INVALID case below, and
2655 * only allow reading possibly uninitialized memory
2656 * later for CAP_PERFMON, as the write may not happen to
2657 * that slot.
2658 */
2659 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2660 insn_idx, i);
2661 return -EINVAL;
2662 }
2663
2664 /* Erase all spilled pointers. */
2665 state->stack[spi].spilled_ptr.type = NOT_INIT;
2666
2667 /* Update the slot type. */
2668 new_type = STACK_MISC;
2669 if (writing_zero && *stype == STACK_ZERO) {
2670 new_type = STACK_ZERO;
2671 zero_used = true;
2672 }
2673 /* If the slot is STACK_INVALID, we check whether it's OK to
2674 * pretend that it will be initialized by this write. The slot
2675 * might not actually be written to, and so if we mark it as
2676 * initialized future reads might leak uninitialized memory.
2677 * For privileged programs, we will accept such reads to slots
2678 * that may or may not be written because, if we're reject
2679 * them, the error would be too confusing.
2680 */
2681 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2682 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2683 insn_idx, i);
2684 return -EINVAL;
2685 }
2686 *stype = new_type;
2687 }
2688 if (zero_used) {
2689 /* backtracking doesn't work for STACK_ZERO yet. */
2690 err = mark_chain_precision(env, value_regno);
2691 if (err)
2692 return err;
2693 }
2694 return 0;
2695 }
2696
2697 /* When register 'dst_regno' is assigned some values from stack[min_off,
2698 * max_off), we set the register's type according to the types of the
2699 * respective stack slots. If all the stack values are known to be zeros, then
2700 * so is the destination reg. Otherwise, the register is considered to be
2701 * SCALAR. This function does not deal with register filling; the caller must
2702 * ensure that all spilled registers in the stack range have been marked as
2703 * read.
2704 */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)2705 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2706 /* func where src register points to */
2707 struct bpf_func_state *ptr_state,
2708 int min_off, int max_off, int dst_regno)
2709 {
2710 struct bpf_verifier_state *vstate = env->cur_state;
2711 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2712 int i, slot, spi;
2713 u8 *stype;
2714 int zeros = 0;
2715
2716 for (i = min_off; i < max_off; i++) {
2717 slot = -i - 1;
2718 spi = slot / BPF_REG_SIZE;
2719 stype = ptr_state->stack[spi].slot_type;
2720 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2721 break;
2722 zeros++;
2723 }
2724 if (zeros == max_off - min_off) {
2725 /* any access_size read into register is zero extended,
2726 * so the whole register == const_zero
2727 */
2728 __mark_reg_const_zero(&state->regs[dst_regno]);
2729 /* backtracking doesn't support STACK_ZERO yet,
2730 * so mark it precise here, so that later
2731 * backtracking can stop here.
2732 * Backtracking may not need this if this register
2733 * doesn't participate in pointer adjustment.
2734 * Forward propagation of precise flag is not
2735 * necessary either. This mark is only to stop
2736 * backtracking. Any register that contributed
2737 * to const 0 was marked precise before spill.
2738 */
2739 state->regs[dst_regno].precise = true;
2740 } else {
2741 /* have read misc data from the stack */
2742 mark_reg_unknown(env, state->regs, dst_regno);
2743 }
2744 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2745 }
2746
2747 /* Read the stack at 'off' and put the results into the register indicated by
2748 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2749 * spilled reg.
2750 *
2751 * 'dst_regno' can be -1, meaning that the read value is not going to a
2752 * register.
2753 *
2754 * The access is assumed to be within the current stack bounds.
2755 */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)2756 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2757 /* func where src register points to */
2758 struct bpf_func_state *reg_state,
2759 int off, int size, int dst_regno)
2760 {
2761 struct bpf_verifier_state *vstate = env->cur_state;
2762 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2763 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2764 struct bpf_reg_state *reg;
2765 u8 *stype, type;
2766
2767 stype = reg_state->stack[spi].slot_type;
2768 reg = ®_state->stack[spi].spilled_ptr;
2769
2770 if (is_spilled_reg(®_state->stack[spi])) {
2771 u8 spill_size = 1;
2772
2773 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
2774 spill_size++;
2775
2776 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
2777 if (reg->type != SCALAR_VALUE) {
2778 verbose_linfo(env, env->insn_idx, "; ");
2779 verbose(env, "invalid size of register fill\n");
2780 return -EACCES;
2781 }
2782
2783 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2784 if (dst_regno < 0)
2785 return 0;
2786
2787 if (!(off % BPF_REG_SIZE) && size == spill_size) {
2788 /* The earlier check_reg_arg() has decided the
2789 * subreg_def for this insn. Save it first.
2790 */
2791 s32 subreg_def = state->regs[dst_regno].subreg_def;
2792
2793 copy_register_state(&state->regs[dst_regno], reg);
2794 state->regs[dst_regno].subreg_def = subreg_def;
2795 } else {
2796 for (i = 0; i < size; i++) {
2797 type = stype[(slot - i) % BPF_REG_SIZE];
2798 if (type == STACK_SPILL)
2799 continue;
2800 if (type == STACK_MISC)
2801 continue;
2802 verbose(env, "invalid read from stack off %d+%d size %d\n",
2803 off, i, size);
2804 return -EACCES;
2805 }
2806 mark_reg_unknown(env, state->regs, dst_regno);
2807 }
2808 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2809 return 0;
2810 }
2811
2812 if (dst_regno >= 0) {
2813 /* restore register state from stack */
2814 copy_register_state(&state->regs[dst_regno], reg);
2815 /* mark reg as written since spilled pointer state likely
2816 * has its liveness marks cleared by is_state_visited()
2817 * which resets stack/reg liveness for state transitions
2818 */
2819 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2820 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2821 /* If dst_regno==-1, the caller is asking us whether
2822 * it is acceptable to use this value as a SCALAR_VALUE
2823 * (e.g. for XADD).
2824 * We must not allow unprivileged callers to do that
2825 * with spilled pointers.
2826 */
2827 verbose(env, "leaking pointer from stack off %d\n",
2828 off);
2829 return -EACCES;
2830 }
2831 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2832 } else {
2833 for (i = 0; i < size; i++) {
2834 type = stype[(slot - i) % BPF_REG_SIZE];
2835 if (type == STACK_MISC)
2836 continue;
2837 if (type == STACK_ZERO)
2838 continue;
2839 verbose(env, "invalid read from stack off %d+%d size %d\n",
2840 off, i, size);
2841 return -EACCES;
2842 }
2843 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2844 if (dst_regno >= 0)
2845 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2846 }
2847 return 0;
2848 }
2849
2850 enum stack_access_src {
2851 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
2852 ACCESS_HELPER = 2, /* the access is performed by a helper */
2853 };
2854
2855 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2856 int regno, int off, int access_size,
2857 bool zero_size_allowed,
2858 enum stack_access_src type,
2859 struct bpf_call_arg_meta *meta);
2860
reg_state(struct bpf_verifier_env * env,int regno)2861 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2862 {
2863 return cur_regs(env) + regno;
2864 }
2865
2866 /* Read the stack at 'ptr_regno + off' and put the result into the register
2867 * 'dst_regno'.
2868 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2869 * but not its variable offset.
2870 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2871 *
2872 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2873 * filling registers (i.e. reads of spilled register cannot be detected when
2874 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2875 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2876 * offset; for a fixed offset check_stack_read_fixed_off should be used
2877 * instead.
2878 */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)2879 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2880 int ptr_regno, int off, int size, int dst_regno)
2881 {
2882 /* The state of the source register. */
2883 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2884 struct bpf_func_state *ptr_state = func(env, reg);
2885 int err;
2886 int min_off, max_off;
2887
2888 /* Note that we pass a NULL meta, so raw access will not be permitted.
2889 */
2890 err = check_stack_range_initialized(env, ptr_regno, off, size,
2891 false, ACCESS_DIRECT, NULL);
2892 if (err)
2893 return err;
2894
2895 min_off = reg->smin_value + off;
2896 max_off = reg->smax_value + off;
2897 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
2898 return 0;
2899 }
2900
2901 /* check_stack_read dispatches to check_stack_read_fixed_off or
2902 * check_stack_read_var_off.
2903 *
2904 * The caller must ensure that the offset falls within the allocated stack
2905 * bounds.
2906 *
2907 * 'dst_regno' is a register which will receive the value from the stack. It
2908 * can be -1, meaning that the read value is not going to a register.
2909 */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)2910 static int check_stack_read(struct bpf_verifier_env *env,
2911 int ptr_regno, int off, int size,
2912 int dst_regno)
2913 {
2914 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2915 struct bpf_func_state *state = func(env, reg);
2916 int err;
2917 /* Some accesses are only permitted with a static offset. */
2918 bool var_off = !tnum_is_const(reg->var_off);
2919
2920 /* The offset is required to be static when reads don't go to a
2921 * register, in order to not leak pointers (see
2922 * check_stack_read_fixed_off).
2923 */
2924 if (dst_regno < 0 && var_off) {
2925 char tn_buf[48];
2926
2927 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2928 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
2929 tn_buf, off, size);
2930 return -EACCES;
2931 }
2932 /* Variable offset is prohibited for unprivileged mode for simplicity
2933 * since it requires corresponding support in Spectre masking for stack
2934 * ALU. See also retrieve_ptr_limit(). The check in
2935 * check_stack_access_for_ptr_arithmetic() called by
2936 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
2937 * with variable offsets, therefore no check is required here. Further,
2938 * just checking it here would be insufficient as speculative stack
2939 * writes could still lead to unsafe speculative behaviour.
2940 */
2941 if (!var_off) {
2942 off += reg->var_off.value;
2943 err = check_stack_read_fixed_off(env, state, off, size,
2944 dst_regno);
2945 } else {
2946 /* Variable offset stack reads need more conservative handling
2947 * than fixed offset ones. Note that dst_regno >= 0 on this
2948 * branch.
2949 */
2950 err = check_stack_read_var_off(env, ptr_regno, off, size,
2951 dst_regno);
2952 }
2953 return err;
2954 }
2955
2956
2957 /* check_stack_write dispatches to check_stack_write_fixed_off or
2958 * check_stack_write_var_off.
2959 *
2960 * 'ptr_regno' is the register used as a pointer into the stack.
2961 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
2962 * 'value_regno' is the register whose value we're writing to the stack. It can
2963 * be -1, meaning that we're not writing from a register.
2964 *
2965 * The caller must ensure that the offset falls within the maximum stack size.
2966 */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)2967 static int check_stack_write(struct bpf_verifier_env *env,
2968 int ptr_regno, int off, int size,
2969 int value_regno, int insn_idx)
2970 {
2971 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2972 struct bpf_func_state *state = func(env, reg);
2973 int err;
2974
2975 if (tnum_is_const(reg->var_off)) {
2976 off += reg->var_off.value;
2977 err = check_stack_write_fixed_off(env, state, off, size,
2978 value_regno, insn_idx);
2979 } else {
2980 /* Variable offset stack reads need more conservative handling
2981 * than fixed offset ones.
2982 */
2983 err = check_stack_write_var_off(env, state,
2984 ptr_regno, off, size,
2985 value_regno, insn_idx);
2986 }
2987 return err;
2988 }
2989
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)2990 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2991 int off, int size, enum bpf_access_type type)
2992 {
2993 struct bpf_reg_state *regs = cur_regs(env);
2994 struct bpf_map *map = regs[regno].map_ptr;
2995 u32 cap = bpf_map_flags_to_cap(map);
2996
2997 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2998 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2999 map->value_size, off, size);
3000 return -EACCES;
3001 }
3002
3003 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3004 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3005 map->value_size, off, size);
3006 return -EACCES;
3007 }
3008
3009 return 0;
3010 }
3011
3012 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)3013 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3014 int off, int size, u32 mem_size,
3015 bool zero_size_allowed)
3016 {
3017 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3018 struct bpf_reg_state *reg;
3019
3020 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3021 return 0;
3022
3023 reg = &cur_regs(env)[regno];
3024 switch (reg->type) {
3025 case PTR_TO_MAP_VALUE:
3026 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3027 mem_size, off, size);
3028 break;
3029 case PTR_TO_PACKET:
3030 case PTR_TO_PACKET_META:
3031 case PTR_TO_PACKET_END:
3032 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3033 off, size, regno, reg->id, off, mem_size);
3034 break;
3035 case PTR_TO_MEM:
3036 default:
3037 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3038 mem_size, off, size);
3039 }
3040
3041 return -EACCES;
3042 }
3043
3044 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)3045 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3046 int off, int size, u32 mem_size,
3047 bool zero_size_allowed)
3048 {
3049 struct bpf_verifier_state *vstate = env->cur_state;
3050 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3051 struct bpf_reg_state *reg = &state->regs[regno];
3052 int err;
3053
3054 /* We may have adjusted the register pointing to memory region, so we
3055 * need to try adding each of min_value and max_value to off
3056 * to make sure our theoretical access will be safe.
3057 */
3058 if (env->log.level & BPF_LOG_LEVEL)
3059 print_verifier_state(env, state);
3060
3061 /* The minimum value is only important with signed
3062 * comparisons where we can't assume the floor of a
3063 * value is 0. If we are using signed variables for our
3064 * index'es we need to make sure that whatever we use
3065 * will have a set floor within our range.
3066 */
3067 if (reg->smin_value < 0 &&
3068 (reg->smin_value == S64_MIN ||
3069 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3070 reg->smin_value + off < 0)) {
3071 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3072 regno);
3073 return -EACCES;
3074 }
3075 err = __check_mem_access(env, regno, reg->smin_value + off, size,
3076 mem_size, zero_size_allowed);
3077 if (err) {
3078 verbose(env, "R%d min value is outside of the allowed memory range\n",
3079 regno);
3080 return err;
3081 }
3082
3083 /* If we haven't set a max value then we need to bail since we can't be
3084 * sure we won't do bad things.
3085 * If reg->umax_value + off could overflow, treat that as unbounded too.
3086 */
3087 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3088 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3089 regno);
3090 return -EACCES;
3091 }
3092 err = __check_mem_access(env, regno, reg->umax_value + off, size,
3093 mem_size, zero_size_allowed);
3094 if (err) {
3095 verbose(env, "R%d max value is outside of the allowed memory range\n",
3096 regno);
3097 return err;
3098 }
3099
3100 return 0;
3101 }
3102
3103 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)3104 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3105 int off, int size, bool zero_size_allowed)
3106 {
3107 struct bpf_verifier_state *vstate = env->cur_state;
3108 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3109 struct bpf_reg_state *reg = &state->regs[regno];
3110 struct bpf_map *map = reg->map_ptr;
3111 int err;
3112
3113 err = check_mem_region_access(env, regno, off, size, map->value_size,
3114 zero_size_allowed);
3115 if (err)
3116 return err;
3117
3118 if (map_value_has_spin_lock(map)) {
3119 u32 lock = map->spin_lock_off;
3120
3121 /* if any part of struct bpf_spin_lock can be touched by
3122 * load/store reject this program.
3123 * To check that [x1, x2) overlaps with [y1, y2)
3124 * it is sufficient to check x1 < y2 && y1 < x2.
3125 */
3126 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3127 lock < reg->umax_value + off + size) {
3128 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3129 return -EACCES;
3130 }
3131 }
3132 return err;
3133 }
3134
3135 #define MAX_PACKET_OFF 0xffff
3136
resolve_prog_type(struct bpf_prog * prog)3137 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3138 {
3139 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3140 }
3141
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)3142 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3143 const struct bpf_call_arg_meta *meta,
3144 enum bpf_access_type t)
3145 {
3146 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3147
3148 switch (prog_type) {
3149 /* Program types only with direct read access go here! */
3150 case BPF_PROG_TYPE_LWT_IN:
3151 case BPF_PROG_TYPE_LWT_OUT:
3152 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3153 case BPF_PROG_TYPE_SK_REUSEPORT:
3154 case BPF_PROG_TYPE_FLOW_DISSECTOR:
3155 case BPF_PROG_TYPE_CGROUP_SKB:
3156 if (t == BPF_WRITE)
3157 return false;
3158 fallthrough;
3159
3160 /* Program types with direct read + write access go here! */
3161 case BPF_PROG_TYPE_SCHED_CLS:
3162 case BPF_PROG_TYPE_SCHED_ACT:
3163 case BPF_PROG_TYPE_XDP:
3164 case BPF_PROG_TYPE_LWT_XMIT:
3165 case BPF_PROG_TYPE_SK_SKB:
3166 case BPF_PROG_TYPE_SK_MSG:
3167 if (meta)
3168 return meta->pkt_access;
3169
3170 env->seen_direct_write = true;
3171 return true;
3172
3173 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3174 if (t == BPF_WRITE)
3175 env->seen_direct_write = true;
3176
3177 return true;
3178
3179 default:
3180 return false;
3181 }
3182 }
3183
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)3184 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3185 int size, bool zero_size_allowed)
3186 {
3187 struct bpf_reg_state *regs = cur_regs(env);
3188 struct bpf_reg_state *reg = ®s[regno];
3189 int err;
3190
3191 /* We may have added a variable offset to the packet pointer; but any
3192 * reg->range we have comes after that. We are only checking the fixed
3193 * offset.
3194 */
3195
3196 /* We don't allow negative numbers, because we aren't tracking enough
3197 * detail to prove they're safe.
3198 */
3199 if (reg->smin_value < 0) {
3200 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3201 regno);
3202 return -EACCES;
3203 }
3204
3205 err = reg->range < 0 ? -EINVAL :
3206 __check_mem_access(env, regno, off, size, reg->range,
3207 zero_size_allowed);
3208 if (err) {
3209 verbose(env, "R%d offset is outside of the packet\n", regno);
3210 return err;
3211 }
3212
3213 /* __check_mem_access has made sure "off + size - 1" is within u16.
3214 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3215 * otherwise find_good_pkt_pointers would have refused to set range info
3216 * that __check_mem_access would have rejected this pkt access.
3217 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3218 */
3219 env->prog->aux->max_pkt_offset =
3220 max_t(u32, env->prog->aux->max_pkt_offset,
3221 off + reg->umax_value + size - 1);
3222
3223 return err;
3224 }
3225
3226 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type,u32 * btf_id)3227 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3228 enum bpf_access_type t, enum bpf_reg_type *reg_type,
3229 u32 *btf_id)
3230 {
3231 struct bpf_insn_access_aux info = {
3232 .reg_type = *reg_type,
3233 .log = &env->log,
3234 };
3235
3236 if (env->ops->is_valid_access &&
3237 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3238 /* A non zero info.ctx_field_size indicates that this field is a
3239 * candidate for later verifier transformation to load the whole
3240 * field and then apply a mask when accessed with a narrower
3241 * access than actual ctx access size. A zero info.ctx_field_size
3242 * will only allow for whole field access and rejects any other
3243 * type of narrower access.
3244 */
3245 *reg_type = info.reg_type;
3246
3247 if (base_type(*reg_type) == PTR_TO_BTF_ID)
3248 *btf_id = info.btf_id;
3249 else
3250 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3251 /* remember the offset of last byte accessed in ctx */
3252 if (env->prog->aux->max_ctx_offset < off + size)
3253 env->prog->aux->max_ctx_offset = off + size;
3254 return 0;
3255 }
3256
3257 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3258 return -EACCES;
3259 }
3260
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)3261 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3262 int size)
3263 {
3264 if (size < 0 || off < 0 ||
3265 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3266 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3267 off, size);
3268 return -EACCES;
3269 }
3270 return 0;
3271 }
3272
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)3273 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3274 u32 regno, int off, int size,
3275 enum bpf_access_type t)
3276 {
3277 struct bpf_reg_state *regs = cur_regs(env);
3278 struct bpf_reg_state *reg = ®s[regno];
3279 struct bpf_insn_access_aux info = {};
3280 bool valid;
3281
3282 if (reg->smin_value < 0) {
3283 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3284 regno);
3285 return -EACCES;
3286 }
3287
3288 switch (reg->type) {
3289 case PTR_TO_SOCK_COMMON:
3290 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3291 break;
3292 case PTR_TO_SOCKET:
3293 valid = bpf_sock_is_valid_access(off, size, t, &info);
3294 break;
3295 case PTR_TO_TCP_SOCK:
3296 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3297 break;
3298 case PTR_TO_XDP_SOCK:
3299 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3300 break;
3301 default:
3302 valid = false;
3303 }
3304
3305
3306 if (valid) {
3307 env->insn_aux_data[insn_idx].ctx_field_size =
3308 info.ctx_field_size;
3309 return 0;
3310 }
3311
3312 verbose(env, "R%d invalid %s access off=%d size=%d\n",
3313 regno, reg_type_str(env, reg->type), off, size);
3314
3315 return -EACCES;
3316 }
3317
is_pointer_value(struct bpf_verifier_env * env,int regno)3318 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3319 {
3320 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3321 }
3322
is_ctx_reg(struct bpf_verifier_env * env,int regno)3323 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3324 {
3325 const struct bpf_reg_state *reg = reg_state(env, regno);
3326
3327 return reg->type == PTR_TO_CTX;
3328 }
3329
is_sk_reg(struct bpf_verifier_env * env,int regno)3330 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3331 {
3332 const struct bpf_reg_state *reg = reg_state(env, regno);
3333
3334 return type_is_sk_pointer(reg->type);
3335 }
3336
is_pkt_reg(struct bpf_verifier_env * env,int regno)3337 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3338 {
3339 const struct bpf_reg_state *reg = reg_state(env, regno);
3340
3341 return type_is_pkt_pointer(reg->type);
3342 }
3343
is_flow_key_reg(struct bpf_verifier_env * env,int regno)3344 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3345 {
3346 const struct bpf_reg_state *reg = reg_state(env, regno);
3347
3348 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3349 return reg->type == PTR_TO_FLOW_KEYS;
3350 }
3351
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)3352 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3353 const struct bpf_reg_state *reg,
3354 int off, int size, bool strict)
3355 {
3356 struct tnum reg_off;
3357 int ip_align;
3358
3359 /* Byte size accesses are always allowed. */
3360 if (!strict || size == 1)
3361 return 0;
3362
3363 /* For platforms that do not have a Kconfig enabling
3364 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3365 * NET_IP_ALIGN is universally set to '2'. And on platforms
3366 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3367 * to this code only in strict mode where we want to emulate
3368 * the NET_IP_ALIGN==2 checking. Therefore use an
3369 * unconditional IP align value of '2'.
3370 */
3371 ip_align = 2;
3372
3373 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3374 if (!tnum_is_aligned(reg_off, size)) {
3375 char tn_buf[48];
3376
3377 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3378 verbose(env,
3379 "misaligned packet access off %d+%s+%d+%d size %d\n",
3380 ip_align, tn_buf, reg->off, off, size);
3381 return -EACCES;
3382 }
3383
3384 return 0;
3385 }
3386
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)3387 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3388 const struct bpf_reg_state *reg,
3389 const char *pointer_desc,
3390 int off, int size, bool strict)
3391 {
3392 struct tnum reg_off;
3393
3394 /* Byte size accesses are always allowed. */
3395 if (!strict || size == 1)
3396 return 0;
3397
3398 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3399 if (!tnum_is_aligned(reg_off, size)) {
3400 char tn_buf[48];
3401
3402 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3403 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3404 pointer_desc, tn_buf, reg->off, off, size);
3405 return -EACCES;
3406 }
3407
3408 return 0;
3409 }
3410
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)3411 static int check_ptr_alignment(struct bpf_verifier_env *env,
3412 const struct bpf_reg_state *reg, int off,
3413 int size, bool strict_alignment_once)
3414 {
3415 bool strict = env->strict_alignment || strict_alignment_once;
3416 const char *pointer_desc = "";
3417
3418 switch (reg->type) {
3419 case PTR_TO_PACKET:
3420 case PTR_TO_PACKET_META:
3421 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3422 * right in front, treat it the very same way.
3423 */
3424 return check_pkt_ptr_alignment(env, reg, off, size, strict);
3425 case PTR_TO_FLOW_KEYS:
3426 pointer_desc = "flow keys ";
3427 break;
3428 case PTR_TO_MAP_VALUE:
3429 pointer_desc = "value ";
3430 break;
3431 case PTR_TO_CTX:
3432 pointer_desc = "context ";
3433 break;
3434 case PTR_TO_STACK:
3435 pointer_desc = "stack ";
3436 /* The stack spill tracking logic in check_stack_write_fixed_off()
3437 * and check_stack_read_fixed_off() relies on stack accesses being
3438 * aligned.
3439 */
3440 strict = true;
3441 break;
3442 case PTR_TO_SOCKET:
3443 pointer_desc = "sock ";
3444 break;
3445 case PTR_TO_SOCK_COMMON:
3446 pointer_desc = "sock_common ";
3447 break;
3448 case PTR_TO_TCP_SOCK:
3449 pointer_desc = "tcp_sock ";
3450 break;
3451 case PTR_TO_XDP_SOCK:
3452 pointer_desc = "xdp_sock ";
3453 break;
3454 default:
3455 break;
3456 }
3457 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3458 strict);
3459 }
3460
update_stack_depth(struct bpf_verifier_env * env,const struct bpf_func_state * func,int off)3461 static int update_stack_depth(struct bpf_verifier_env *env,
3462 const struct bpf_func_state *func,
3463 int off)
3464 {
3465 u16 stack = env->subprog_info[func->subprogno].stack_depth;
3466
3467 if (stack >= -off)
3468 return 0;
3469
3470 /* update known max for given subprogram */
3471 env->subprog_info[func->subprogno].stack_depth = -off;
3472 return 0;
3473 }
3474
3475 /* starting from main bpf function walk all instructions of the function
3476 * and recursively walk all callees that given function can call.
3477 * Ignore jump and exit insns.
3478 * Since recursion is prevented by check_cfg() this algorithm
3479 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3480 */
check_max_stack_depth(struct bpf_verifier_env * env)3481 static int check_max_stack_depth(struct bpf_verifier_env *env)
3482 {
3483 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3484 struct bpf_subprog_info *subprog = env->subprog_info;
3485 struct bpf_insn *insn = env->prog->insnsi;
3486 bool tail_call_reachable = false;
3487 int ret_insn[MAX_CALL_FRAMES];
3488 int ret_prog[MAX_CALL_FRAMES];
3489 int j;
3490
3491 process_func:
3492 /* protect against potential stack overflow that might happen when
3493 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3494 * depth for such case down to 256 so that the worst case scenario
3495 * would result in 8k stack size (32 which is tailcall limit * 256 =
3496 * 8k).
3497 *
3498 * To get the idea what might happen, see an example:
3499 * func1 -> sub rsp, 128
3500 * subfunc1 -> sub rsp, 256
3501 * tailcall1 -> add rsp, 256
3502 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3503 * subfunc2 -> sub rsp, 64
3504 * subfunc22 -> sub rsp, 128
3505 * tailcall2 -> add rsp, 128
3506 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3507 *
3508 * tailcall will unwind the current stack frame but it will not get rid
3509 * of caller's stack as shown on the example above.
3510 */
3511 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3512 verbose(env,
3513 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3514 depth);
3515 return -EACCES;
3516 }
3517 /* round up to 32-bytes, since this is granularity
3518 * of interpreter stack size
3519 */
3520 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3521 if (depth > MAX_BPF_STACK) {
3522 verbose(env, "combined stack size of %d calls is %d. Too large\n",
3523 frame + 1, depth);
3524 return -EACCES;
3525 }
3526 continue_func:
3527 subprog_end = subprog[idx + 1].start;
3528 for (; i < subprog_end; i++) {
3529 if (insn[i].code != (BPF_JMP | BPF_CALL))
3530 continue;
3531 if (insn[i].src_reg != BPF_PSEUDO_CALL)
3532 continue;
3533 /* remember insn and function to return to */
3534 ret_insn[frame] = i + 1;
3535 ret_prog[frame] = idx;
3536
3537 /* find the callee */
3538 i = i + insn[i].imm + 1;
3539 idx = find_subprog(env, i);
3540 if (idx < 0) {
3541 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3542 i);
3543 return -EFAULT;
3544 }
3545
3546 if (subprog[idx].has_tail_call)
3547 tail_call_reachable = true;
3548
3549 frame++;
3550 if (frame >= MAX_CALL_FRAMES) {
3551 verbose(env, "the call stack of %d frames is too deep !\n",
3552 frame);
3553 return -E2BIG;
3554 }
3555 goto process_func;
3556 }
3557 /* if tail call got detected across bpf2bpf calls then mark each of the
3558 * currently present subprog frames as tail call reachable subprogs;
3559 * this info will be utilized by JIT so that we will be preserving the
3560 * tail call counter throughout bpf2bpf calls combined with tailcalls
3561 */
3562 if (tail_call_reachable)
3563 for (j = 0; j < frame; j++)
3564 subprog[ret_prog[j]].tail_call_reachable = true;
3565 if (subprog[0].tail_call_reachable)
3566 env->prog->aux->tail_call_reachable = true;
3567
3568 /* end of for() loop means the last insn of the 'subprog'
3569 * was reached. Doesn't matter whether it was JA or EXIT
3570 */
3571 if (frame == 0)
3572 return 0;
3573 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3574 frame--;
3575 i = ret_insn[frame];
3576 idx = ret_prog[frame];
3577 goto continue_func;
3578 }
3579
3580 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)3581 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3582 const struct bpf_insn *insn, int idx)
3583 {
3584 int start = idx + insn->imm + 1, subprog;
3585
3586 subprog = find_subprog(env, start);
3587 if (subprog < 0) {
3588 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3589 start);
3590 return -EFAULT;
3591 }
3592 return env->subprog_info[subprog].stack_depth;
3593 }
3594 #endif
3595
__check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,bool fixed_off_ok)3596 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3597 const struct bpf_reg_state *reg, int regno,
3598 bool fixed_off_ok)
3599 {
3600 /* Access to this pointer-typed register or passing it to a helper
3601 * is only allowed in its original, unmodified form.
3602 */
3603
3604 if (!fixed_off_ok && reg->off) {
3605 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3606 reg_type_str(env, reg->type), regno, reg->off);
3607 return -EACCES;
3608 }
3609
3610 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3611 char tn_buf[48];
3612
3613 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3614 verbose(env, "variable %s access var_off=%s disallowed\n",
3615 reg_type_str(env, reg->type), tn_buf);
3616 return -EACCES;
3617 }
3618
3619 return 0;
3620 }
3621
check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)3622 int check_ptr_off_reg(struct bpf_verifier_env *env,
3623 const struct bpf_reg_state *reg, int regno)
3624 {
3625 return __check_ptr_off_reg(env, reg, regno, false);
3626 }
3627
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)3628 static int __check_buffer_access(struct bpf_verifier_env *env,
3629 const char *buf_info,
3630 const struct bpf_reg_state *reg,
3631 int regno, int off, int size)
3632 {
3633 if (off < 0) {
3634 verbose(env,
3635 "R%d invalid %s buffer access: off=%d, size=%d\n",
3636 regno, buf_info, off, size);
3637 return -EACCES;
3638 }
3639 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3640 char tn_buf[48];
3641
3642 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3643 verbose(env,
3644 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3645 regno, off, tn_buf);
3646 return -EACCES;
3647 }
3648
3649 return 0;
3650 }
3651
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)3652 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3653 const struct bpf_reg_state *reg,
3654 int regno, int off, int size)
3655 {
3656 int err;
3657
3658 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3659 if (err)
3660 return err;
3661
3662 if (off + size > env->prog->aux->max_tp_access)
3663 env->prog->aux->max_tp_access = off + size;
3664
3665 return 0;
3666 }
3667
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,const char * buf_info,u32 * max_access)3668 static int check_buffer_access(struct bpf_verifier_env *env,
3669 const struct bpf_reg_state *reg,
3670 int regno, int off, int size,
3671 bool zero_size_allowed,
3672 const char *buf_info,
3673 u32 *max_access)
3674 {
3675 int err;
3676
3677 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3678 if (err)
3679 return err;
3680
3681 if (off + size > *max_access)
3682 *max_access = off + size;
3683
3684 return 0;
3685 }
3686
3687 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)3688 static void zext_32_to_64(struct bpf_reg_state *reg)
3689 {
3690 reg->var_off = tnum_subreg(reg->var_off);
3691 __reg_assign_32_into_64(reg);
3692 }
3693
3694 /* truncate register to smaller size (in bytes)
3695 * must be called with size < BPF_REG_SIZE
3696 */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)3697 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3698 {
3699 u64 mask;
3700
3701 /* clear high bits in bit representation */
3702 reg->var_off = tnum_cast(reg->var_off, size);
3703
3704 /* fix arithmetic bounds */
3705 mask = ((u64)1 << (size * 8)) - 1;
3706 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3707 reg->umin_value &= mask;
3708 reg->umax_value &= mask;
3709 } else {
3710 reg->umin_value = 0;
3711 reg->umax_value = mask;
3712 }
3713 reg->smin_value = reg->umin_value;
3714 reg->smax_value = reg->umax_value;
3715
3716 /* If size is smaller than 32bit register the 32bit register
3717 * values are also truncated so we push 64-bit bounds into
3718 * 32-bit bounds. Above were truncated < 32-bits already.
3719 */
3720 if (size >= 4)
3721 return;
3722 __reg_combine_64_into_32(reg);
3723 }
3724
bpf_map_is_rdonly(const struct bpf_map * map)3725 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3726 {
3727 /* A map is considered read-only if the following condition are true:
3728 *
3729 * 1) BPF program side cannot change any of the map content. The
3730 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
3731 * and was set at map creation time.
3732 * 2) The map value(s) have been initialized from user space by a
3733 * loader and then "frozen", such that no new map update/delete
3734 * operations from syscall side are possible for the rest of
3735 * the map's lifetime from that point onwards.
3736 * 3) Any parallel/pending map update/delete operations from syscall
3737 * side have been completed. Only after that point, it's safe to
3738 * assume that map value(s) are immutable.
3739 */
3740 return (map->map_flags & BPF_F_RDONLY_PROG) &&
3741 READ_ONCE(map->frozen) &&
3742 !bpf_map_write_active(map);
3743 }
3744
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val)3745 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3746 {
3747 void *ptr;
3748 u64 addr;
3749 int err;
3750
3751 err = map->ops->map_direct_value_addr(map, &addr, off);
3752 if (err)
3753 return err;
3754 ptr = (void *)(long)addr + off;
3755
3756 switch (size) {
3757 case sizeof(u8):
3758 *val = (u64)*(u8 *)ptr;
3759 break;
3760 case sizeof(u16):
3761 *val = (u64)*(u16 *)ptr;
3762 break;
3763 case sizeof(u32):
3764 *val = (u64)*(u32 *)ptr;
3765 break;
3766 case sizeof(u64):
3767 *val = *(u64 *)ptr;
3768 break;
3769 default:
3770 return -EINVAL;
3771 }
3772 return 0;
3773 }
3774
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)3775 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3776 struct bpf_reg_state *regs,
3777 int regno, int off, int size,
3778 enum bpf_access_type atype,
3779 int value_regno)
3780 {
3781 struct bpf_reg_state *reg = regs + regno;
3782 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3783 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3784 u32 btf_id;
3785 int ret;
3786
3787 if (off < 0) {
3788 verbose(env,
3789 "R%d is ptr_%s invalid negative access: off=%d\n",
3790 regno, tname, off);
3791 return -EACCES;
3792 }
3793 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3794 char tn_buf[48];
3795
3796 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3797 verbose(env,
3798 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3799 regno, tname, off, tn_buf);
3800 return -EACCES;
3801 }
3802
3803 if (env->ops->btf_struct_access) {
3804 ret = env->ops->btf_struct_access(&env->log, t, off, size,
3805 atype, &btf_id);
3806 } else {
3807 if (atype != BPF_READ) {
3808 verbose(env, "only read is supported\n");
3809 return -EACCES;
3810 }
3811
3812 ret = btf_struct_access(&env->log, t, off, size, atype,
3813 &btf_id);
3814 }
3815
3816 if (ret < 0)
3817 return ret;
3818
3819 if (atype == BPF_READ && value_regno >= 0)
3820 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3821
3822 return 0;
3823 }
3824
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)3825 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3826 struct bpf_reg_state *regs,
3827 int regno, int off, int size,
3828 enum bpf_access_type atype,
3829 int value_regno)
3830 {
3831 struct bpf_reg_state *reg = regs + regno;
3832 struct bpf_map *map = reg->map_ptr;
3833 const struct btf_type *t;
3834 const char *tname;
3835 u32 btf_id;
3836 int ret;
3837
3838 if (!btf_vmlinux) {
3839 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3840 return -ENOTSUPP;
3841 }
3842
3843 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3844 verbose(env, "map_ptr access not supported for map type %d\n",
3845 map->map_type);
3846 return -ENOTSUPP;
3847 }
3848
3849 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3850 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3851
3852 if (!env->allow_ptr_to_map_access) {
3853 verbose(env,
3854 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3855 tname);
3856 return -EPERM;
3857 }
3858
3859 if (off < 0) {
3860 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3861 regno, tname, off);
3862 return -EACCES;
3863 }
3864
3865 if (atype != BPF_READ) {
3866 verbose(env, "only read from %s is supported\n", tname);
3867 return -EACCES;
3868 }
3869
3870 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
3871 if (ret < 0)
3872 return ret;
3873
3874 if (value_regno >= 0)
3875 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3876
3877 return 0;
3878 }
3879
3880 /* Check that the stack access at the given offset is within bounds. The
3881 * maximum valid offset is -1.
3882 *
3883 * The minimum valid offset is -MAX_BPF_STACK for writes, and
3884 * -state->allocated_stack for reads.
3885 */
check_stack_slot_within_bounds(s64 off,struct bpf_func_state * state,enum bpf_access_type t)3886 static int check_stack_slot_within_bounds(s64 off,
3887 struct bpf_func_state *state,
3888 enum bpf_access_type t)
3889 {
3890 int min_valid_off;
3891
3892 if (t == BPF_WRITE)
3893 min_valid_off = -MAX_BPF_STACK;
3894 else
3895 min_valid_off = -state->allocated_stack;
3896
3897 if (off < min_valid_off || off > -1)
3898 return -EACCES;
3899 return 0;
3900 }
3901
3902 /* Check that the stack access at 'regno + off' falls within the maximum stack
3903 * bounds.
3904 *
3905 * 'off' includes `regno->offset`, but not its dynamic part (if any).
3906 */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum stack_access_src src,enum bpf_access_type type)3907 static int check_stack_access_within_bounds(
3908 struct bpf_verifier_env *env,
3909 int regno, int off, int access_size,
3910 enum stack_access_src src, enum bpf_access_type type)
3911 {
3912 struct bpf_reg_state *regs = cur_regs(env);
3913 struct bpf_reg_state *reg = regs + regno;
3914 struct bpf_func_state *state = func(env, reg);
3915 s64 min_off, max_off;
3916 int err;
3917 char *err_extra;
3918
3919 if (src == ACCESS_HELPER)
3920 /* We don't know if helpers are reading or writing (or both). */
3921 err_extra = " indirect access to";
3922 else if (type == BPF_READ)
3923 err_extra = " read from";
3924 else
3925 err_extra = " write to";
3926
3927 if (tnum_is_const(reg->var_off)) {
3928 min_off = (s64)reg->var_off.value + off;
3929 max_off = min_off + access_size;
3930 } else {
3931 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3932 reg->smin_value <= -BPF_MAX_VAR_OFF) {
3933 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
3934 err_extra, regno);
3935 return -EACCES;
3936 }
3937 min_off = (s64)reg->smin_value + off;
3938 max_off = (s64)reg->smax_value + off + access_size;
3939 }
3940
3941 err = check_stack_slot_within_bounds(min_off, state, type);
3942 if (!err && max_off > 0)
3943 err = -EINVAL; /* out of stack access into non-negative offsets */
3944 if (!err && access_size < 0)
3945 /* access_size should not be negative (or overflow an int); others checks
3946 * along the way should have prevented such an access.
3947 */
3948 err = -EFAULT; /* invalid negative access size; integer overflow? */
3949
3950 if (err) {
3951 if (tnum_is_const(reg->var_off)) {
3952 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
3953 err_extra, regno, off, access_size);
3954 } else {
3955 char tn_buf[48];
3956
3957 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3958 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
3959 err_extra, regno, tn_buf, access_size);
3960 }
3961 }
3962 return err;
3963 }
3964
3965 /* check whether memory at (regno + off) is accessible for t = (read | write)
3966 * if t==write, value_regno is a register which value is stored into memory
3967 * if t==read, value_regno is a register which will receive the value from memory
3968 * if t==write && value_regno==-1, some unknown value is stored into memory
3969 * if t==read && value_regno==-1, don't care what we read from memory
3970 */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once)3971 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3972 int off, int bpf_size, enum bpf_access_type t,
3973 int value_regno, bool strict_alignment_once)
3974 {
3975 struct bpf_reg_state *regs = cur_regs(env);
3976 struct bpf_reg_state *reg = regs + regno;
3977 struct bpf_func_state *state;
3978 int size, err = 0;
3979
3980 size = bpf_size_to_bytes(bpf_size);
3981 if (size < 0)
3982 return size;
3983
3984 /* alignment checks will add in reg->off themselves */
3985 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3986 if (err)
3987 return err;
3988
3989 /* for access checks, reg->off is just part of off */
3990 off += reg->off;
3991
3992 if (reg->type == PTR_TO_MAP_VALUE) {
3993 if (t == BPF_WRITE && value_regno >= 0 &&
3994 is_pointer_value(env, value_regno)) {
3995 verbose(env, "R%d leaks addr into map\n", value_regno);
3996 return -EACCES;
3997 }
3998 err = check_map_access_type(env, regno, off, size, t);
3999 if (err)
4000 return err;
4001 err = check_map_access(env, regno, off, size, false);
4002 if (!err && t == BPF_READ && value_regno >= 0) {
4003 struct bpf_map *map = reg->map_ptr;
4004
4005 /* if map is read-only, track its contents as scalars */
4006 if (tnum_is_const(reg->var_off) &&
4007 bpf_map_is_rdonly(map) &&
4008 map->ops->map_direct_value_addr) {
4009 int map_off = off + reg->var_off.value;
4010 u64 val = 0;
4011
4012 err = bpf_map_direct_read(map, map_off, size,
4013 &val);
4014 if (err)
4015 return err;
4016
4017 regs[value_regno].type = SCALAR_VALUE;
4018 __mark_reg_known(®s[value_regno], val);
4019 } else {
4020 mark_reg_unknown(env, regs, value_regno);
4021 }
4022 }
4023 } else if (base_type(reg->type) == PTR_TO_MEM) {
4024 bool rdonly_mem = type_is_rdonly_mem(reg->type);
4025
4026 if (type_may_be_null(reg->type)) {
4027 verbose(env, "R%d invalid mem access '%s'\n", regno,
4028 reg_type_str(env, reg->type));
4029 return -EACCES;
4030 }
4031
4032 if (t == BPF_WRITE && rdonly_mem) {
4033 verbose(env, "R%d cannot write into %s\n",
4034 regno, reg_type_str(env, reg->type));
4035 return -EACCES;
4036 }
4037
4038 if (t == BPF_WRITE && value_regno >= 0 &&
4039 is_pointer_value(env, value_regno)) {
4040 verbose(env, "R%d leaks addr into mem\n", value_regno);
4041 return -EACCES;
4042 }
4043
4044 err = check_mem_region_access(env, regno, off, size,
4045 reg->mem_size, false);
4046 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
4047 mark_reg_unknown(env, regs, value_regno);
4048 } else if (reg->type == PTR_TO_CTX) {
4049 enum bpf_reg_type reg_type = SCALAR_VALUE;
4050 u32 btf_id = 0;
4051
4052 if (t == BPF_WRITE && value_regno >= 0 &&
4053 is_pointer_value(env, value_regno)) {
4054 verbose(env, "R%d leaks addr into ctx\n", value_regno);
4055 return -EACCES;
4056 }
4057
4058 err = check_ptr_off_reg(env, reg, regno);
4059 if (err < 0)
4060 return err;
4061
4062 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id);
4063 if (err)
4064 verbose_linfo(env, insn_idx, "; ");
4065 if (!err && t == BPF_READ && value_regno >= 0) {
4066 /* ctx access returns either a scalar, or a
4067 * PTR_TO_PACKET[_META,_END]. In the latter
4068 * case, we know the offset is zero.
4069 */
4070 if (reg_type == SCALAR_VALUE) {
4071 mark_reg_unknown(env, regs, value_regno);
4072 } else {
4073 mark_reg_known_zero(env, regs,
4074 value_regno);
4075 if (type_may_be_null(reg_type))
4076 regs[value_regno].id = ++env->id_gen;
4077 /* A load of ctx field could have different
4078 * actual load size with the one encoded in the
4079 * insn. When the dst is PTR, it is for sure not
4080 * a sub-register.
4081 */
4082 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4083 if (base_type(reg_type) == PTR_TO_BTF_ID)
4084 regs[value_regno].btf_id = btf_id;
4085 }
4086 regs[value_regno].type = reg_type;
4087 }
4088
4089 } else if (reg->type == PTR_TO_STACK) {
4090 /* Basic bounds checks. */
4091 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4092 if (err)
4093 return err;
4094
4095 state = func(env, reg);
4096 err = update_stack_depth(env, state, off);
4097 if (err)
4098 return err;
4099
4100 if (t == BPF_READ)
4101 err = check_stack_read(env, regno, off, size,
4102 value_regno);
4103 else
4104 err = check_stack_write(env, regno, off, size,
4105 value_regno, insn_idx);
4106 } else if (reg_is_pkt_pointer(reg)) {
4107 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4108 verbose(env, "cannot write into packet\n");
4109 return -EACCES;
4110 }
4111 if (t == BPF_WRITE && value_regno >= 0 &&
4112 is_pointer_value(env, value_regno)) {
4113 verbose(env, "R%d leaks addr into packet\n",
4114 value_regno);
4115 return -EACCES;
4116 }
4117 err = check_packet_access(env, regno, off, size, false);
4118 if (!err && t == BPF_READ && value_regno >= 0)
4119 mark_reg_unknown(env, regs, value_regno);
4120 } else if (reg->type == PTR_TO_FLOW_KEYS) {
4121 if (t == BPF_WRITE && value_regno >= 0 &&
4122 is_pointer_value(env, value_regno)) {
4123 verbose(env, "R%d leaks addr into flow keys\n",
4124 value_regno);
4125 return -EACCES;
4126 }
4127
4128 err = check_flow_keys_access(env, off, size);
4129 if (!err && t == BPF_READ && value_regno >= 0)
4130 mark_reg_unknown(env, regs, value_regno);
4131 } else if (type_is_sk_pointer(reg->type)) {
4132 if (t == BPF_WRITE) {
4133 verbose(env, "R%d cannot write into %s\n",
4134 regno, reg_type_str(env, reg->type));
4135 return -EACCES;
4136 }
4137 err = check_sock_access(env, insn_idx, regno, off, size, t);
4138 if (!err && value_regno >= 0)
4139 mark_reg_unknown(env, regs, value_regno);
4140 } else if (reg->type == PTR_TO_TP_BUFFER) {
4141 err = check_tp_buffer_access(env, reg, regno, off, size);
4142 if (!err && t == BPF_READ && value_regno >= 0)
4143 mark_reg_unknown(env, regs, value_regno);
4144 } else if (reg->type == PTR_TO_BTF_ID) {
4145 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4146 value_regno);
4147 } else if (reg->type == CONST_PTR_TO_MAP) {
4148 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4149 value_regno);
4150 } else if (base_type(reg->type) == PTR_TO_BUF) {
4151 bool rdonly_mem = type_is_rdonly_mem(reg->type);
4152 const char *buf_info;
4153 u32 *max_access;
4154
4155 if (rdonly_mem) {
4156 if (t == BPF_WRITE) {
4157 verbose(env, "R%d cannot write into %s\n",
4158 regno, reg_type_str(env, reg->type));
4159 return -EACCES;
4160 }
4161 buf_info = "rdonly";
4162 max_access = &env->prog->aux->max_rdonly_access;
4163 } else {
4164 buf_info = "rdwr";
4165 max_access = &env->prog->aux->max_rdwr_access;
4166 }
4167
4168 err = check_buffer_access(env, reg, regno, off, size, false,
4169 buf_info, max_access);
4170 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
4171 mark_reg_unknown(env, regs, value_regno);
4172 } else {
4173 verbose(env, "R%d invalid mem access '%s'\n", regno,
4174 reg_type_str(env, reg->type));
4175 return -EACCES;
4176 }
4177
4178 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4179 regs[value_regno].type == SCALAR_VALUE) {
4180 /* b/h/w load zero-extends, mark upper bits as known 0 */
4181 coerce_reg_to_size(®s[value_regno], size);
4182 }
4183 return err;
4184 }
4185
check_xadd(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)4186 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4187 {
4188 int err;
4189
4190 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
4191 insn->imm != 0) {
4192 verbose(env, "BPF_XADD uses reserved fields\n");
4193 return -EINVAL;
4194 }
4195
4196 /* check src1 operand */
4197 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4198 if (err)
4199 return err;
4200
4201 /* check src2 operand */
4202 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4203 if (err)
4204 return err;
4205
4206 if (is_pointer_value(env, insn->src_reg)) {
4207 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4208 return -EACCES;
4209 }
4210
4211 if (is_ctx_reg(env, insn->dst_reg) ||
4212 is_pkt_reg(env, insn->dst_reg) ||
4213 is_flow_key_reg(env, insn->dst_reg) ||
4214 is_sk_reg(env, insn->dst_reg)) {
4215 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
4216 insn->dst_reg,
4217 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
4218 return -EACCES;
4219 }
4220
4221 /* check whether atomic_add can read the memory */
4222 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4223 BPF_SIZE(insn->code), BPF_READ, -1, true);
4224 if (err)
4225 return err;
4226
4227 /* check whether atomic_add can write into the same memory */
4228 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4229 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4230 }
4231
4232 /* When register 'regno' is used to read the stack (either directly or through
4233 * a helper function) make sure that it's within stack boundary and, depending
4234 * on the access type, that all elements of the stack are initialized.
4235 *
4236 * 'off' includes 'regno->off', but not its dynamic part (if any).
4237 *
4238 * All registers that have been spilled on the stack in the slots within the
4239 * read offsets are marked as read.
4240 */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum stack_access_src type,struct bpf_call_arg_meta * meta)4241 static int check_stack_range_initialized(
4242 struct bpf_verifier_env *env, int regno, int off,
4243 int access_size, bool zero_size_allowed,
4244 enum stack_access_src type, struct bpf_call_arg_meta *meta)
4245 {
4246 struct bpf_reg_state *reg = reg_state(env, regno);
4247 struct bpf_func_state *state = func(env, reg);
4248 int err, min_off, max_off, i, j, slot, spi;
4249 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4250 enum bpf_access_type bounds_check_type;
4251 /* Some accesses can write anything into the stack, others are
4252 * read-only.
4253 */
4254 bool clobber = false;
4255
4256 if (access_size == 0 && !zero_size_allowed) {
4257 verbose(env, "invalid zero-sized read\n");
4258 return -EACCES;
4259 }
4260
4261 if (type == ACCESS_HELPER) {
4262 /* The bounds checks for writes are more permissive than for
4263 * reads. However, if raw_mode is not set, we'll do extra
4264 * checks below.
4265 */
4266 bounds_check_type = BPF_WRITE;
4267 clobber = true;
4268 } else {
4269 bounds_check_type = BPF_READ;
4270 }
4271 err = check_stack_access_within_bounds(env, regno, off, access_size,
4272 type, bounds_check_type);
4273 if (err)
4274 return err;
4275
4276
4277 if (tnum_is_const(reg->var_off)) {
4278 min_off = max_off = reg->var_off.value + off;
4279 } else {
4280 /* Variable offset is prohibited for unprivileged mode for
4281 * simplicity since it requires corresponding support in
4282 * Spectre masking for stack ALU.
4283 * See also retrieve_ptr_limit().
4284 */
4285 if (!env->bypass_spec_v1) {
4286 char tn_buf[48];
4287
4288 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4289 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4290 regno, err_extra, tn_buf);
4291 return -EACCES;
4292 }
4293 /* Only initialized buffer on stack is allowed to be accessed
4294 * with variable offset. With uninitialized buffer it's hard to
4295 * guarantee that whole memory is marked as initialized on
4296 * helper return since specific bounds are unknown what may
4297 * cause uninitialized stack leaking.
4298 */
4299 if (meta && meta->raw_mode)
4300 meta = NULL;
4301
4302 min_off = reg->smin_value + off;
4303 max_off = reg->smax_value + off;
4304 }
4305
4306 if (meta && meta->raw_mode) {
4307 meta->access_size = access_size;
4308 meta->regno = regno;
4309 return 0;
4310 }
4311
4312 for (i = min_off; i < max_off + access_size; i++) {
4313 u8 *stype;
4314
4315 slot = -i - 1;
4316 spi = slot / BPF_REG_SIZE;
4317 if (state->allocated_stack <= slot)
4318 goto err;
4319 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4320 if (*stype == STACK_MISC)
4321 goto mark;
4322 if (*stype == STACK_ZERO) {
4323 if (clobber) {
4324 /* helper can write anything into the stack */
4325 *stype = STACK_MISC;
4326 }
4327 goto mark;
4328 }
4329
4330 if (is_spilled_reg(&state->stack[spi]) &&
4331 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4332 goto mark;
4333
4334 if (is_spilled_reg(&state->stack[spi]) &&
4335 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4336 env->allow_ptr_leaks)) {
4337 if (clobber) {
4338 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4339 for (j = 0; j < BPF_REG_SIZE; j++)
4340 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
4341 }
4342 goto mark;
4343 }
4344
4345 err:
4346 if (tnum_is_const(reg->var_off)) {
4347 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4348 err_extra, regno, min_off, i - min_off, access_size);
4349 } else {
4350 char tn_buf[48];
4351
4352 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4353 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4354 err_extra, regno, tn_buf, i - min_off, access_size);
4355 }
4356 return -EACCES;
4357 mark:
4358 /* reading any byte out of 8-byte 'spill_slot' will cause
4359 * the whole slot to be marked as 'read'
4360 */
4361 mark_reg_read(env, &state->stack[spi].spilled_ptr,
4362 state->stack[spi].spilled_ptr.parent,
4363 REG_LIVE_READ64);
4364 }
4365 return update_stack_depth(env, state, min_off);
4366 }
4367
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,bool zero_size_allowed,struct bpf_call_arg_meta * meta)4368 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4369 int access_size, bool zero_size_allowed,
4370 struct bpf_call_arg_meta *meta)
4371 {
4372 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4373 const char *buf_info;
4374 u32 *max_access;
4375
4376 switch (base_type(reg->type)) {
4377 case PTR_TO_PACKET:
4378 case PTR_TO_PACKET_META:
4379 return check_packet_access(env, regno, reg->off, access_size,
4380 zero_size_allowed);
4381 case PTR_TO_MAP_VALUE:
4382 if (check_map_access_type(env, regno, reg->off, access_size,
4383 meta && meta->raw_mode ? BPF_WRITE :
4384 BPF_READ))
4385 return -EACCES;
4386 return check_map_access(env, regno, reg->off, access_size,
4387 zero_size_allowed);
4388 case PTR_TO_MEM:
4389 return check_mem_region_access(env, regno, reg->off,
4390 access_size, reg->mem_size,
4391 zero_size_allowed);
4392 case PTR_TO_BUF:
4393 if (type_is_rdonly_mem(reg->type)) {
4394 if (meta && meta->raw_mode)
4395 return -EACCES;
4396
4397 buf_info = "rdonly";
4398 max_access = &env->prog->aux->max_rdonly_access;
4399 } else {
4400 buf_info = "rdwr";
4401 max_access = &env->prog->aux->max_rdwr_access;
4402 }
4403 return check_buffer_access(env, reg, regno, reg->off,
4404 access_size, zero_size_allowed,
4405 buf_info, max_access);
4406 case PTR_TO_STACK:
4407 return check_stack_range_initialized(
4408 env,
4409 regno, reg->off, access_size,
4410 zero_size_allowed, ACCESS_HELPER, meta);
4411 default: /* scalar_value or invalid ptr */
4412 /* Allow zero-byte read from NULL, regardless of pointer type */
4413 if (zero_size_allowed && access_size == 0 &&
4414 register_is_null(reg))
4415 return 0;
4416
4417 verbose(env, "R%d type=%s ", regno,
4418 reg_type_str(env, reg->type));
4419 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
4420 return -EACCES;
4421 }
4422 }
4423
4424 /* Implementation details:
4425 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4426 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4427 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4428 * value_or_null->value transition, since the verifier only cares about
4429 * the range of access to valid map value pointer and doesn't care about actual
4430 * address of the map element.
4431 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4432 * reg->id > 0 after value_or_null->value transition. By doing so
4433 * two bpf_map_lookups will be considered two different pointers that
4434 * point to different bpf_spin_locks.
4435 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4436 * dead-locks.
4437 * Since only one bpf_spin_lock is allowed the checks are simpler than
4438 * reg_is_refcounted() logic. The verifier needs to remember only
4439 * one spin_lock instead of array of acquired_refs.
4440 * cur_state->active_spin_lock remembers which map value element got locked
4441 * and clears it after bpf_spin_unlock.
4442 */
process_spin_lock(struct bpf_verifier_env * env,int regno,bool is_lock)4443 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4444 bool is_lock)
4445 {
4446 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4447 struct bpf_verifier_state *cur = env->cur_state;
4448 bool is_const = tnum_is_const(reg->var_off);
4449 struct bpf_map *map = reg->map_ptr;
4450 u64 val = reg->var_off.value;
4451
4452 if (!is_const) {
4453 verbose(env,
4454 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4455 regno);
4456 return -EINVAL;
4457 }
4458 if (!map->btf) {
4459 verbose(env,
4460 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4461 map->name);
4462 return -EINVAL;
4463 }
4464 if (!map_value_has_spin_lock(map)) {
4465 if (map->spin_lock_off == -E2BIG)
4466 verbose(env,
4467 "map '%s' has more than one 'struct bpf_spin_lock'\n",
4468 map->name);
4469 else if (map->spin_lock_off == -ENOENT)
4470 verbose(env,
4471 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4472 map->name);
4473 else
4474 verbose(env,
4475 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4476 map->name);
4477 return -EINVAL;
4478 }
4479 if (map->spin_lock_off != val + reg->off) {
4480 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4481 val + reg->off);
4482 return -EINVAL;
4483 }
4484 if (is_lock) {
4485 if (cur->active_spin_lock) {
4486 verbose(env,
4487 "Locking two bpf_spin_locks are not allowed\n");
4488 return -EINVAL;
4489 }
4490 cur->active_spin_lock = reg->id;
4491 } else {
4492 if (!cur->active_spin_lock) {
4493 verbose(env, "bpf_spin_unlock without taking a lock\n");
4494 return -EINVAL;
4495 }
4496 if (cur->active_spin_lock != reg->id) {
4497 verbose(env, "bpf_spin_unlock of different lock\n");
4498 return -EINVAL;
4499 }
4500 cur->active_spin_lock = 0;
4501 }
4502 return 0;
4503 }
4504
arg_type_is_mem_ptr(enum bpf_arg_type type)4505 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4506 {
4507 return base_type(type) == ARG_PTR_TO_MEM ||
4508 base_type(type) == ARG_PTR_TO_UNINIT_MEM;
4509 }
4510
arg_type_is_mem_size(enum bpf_arg_type type)4511 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4512 {
4513 return type == ARG_CONST_SIZE ||
4514 type == ARG_CONST_SIZE_OR_ZERO;
4515 }
4516
arg_type_is_alloc_size(enum bpf_arg_type type)4517 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4518 {
4519 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4520 }
4521
arg_type_is_int_ptr(enum bpf_arg_type type)4522 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4523 {
4524 return type == ARG_PTR_TO_INT ||
4525 type == ARG_PTR_TO_LONG;
4526 }
4527
int_ptr_type_to_size(enum bpf_arg_type type)4528 static int int_ptr_type_to_size(enum bpf_arg_type type)
4529 {
4530 if (type == ARG_PTR_TO_INT)
4531 return sizeof(u32);
4532 else if (type == ARG_PTR_TO_LONG)
4533 return sizeof(u64);
4534
4535 return -EINVAL;
4536 }
4537
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)4538 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4539 const struct bpf_call_arg_meta *meta,
4540 enum bpf_arg_type *arg_type)
4541 {
4542 if (!meta->map_ptr) {
4543 /* kernel subsystem misconfigured verifier */
4544 verbose(env, "invalid map_ptr to access map->type\n");
4545 return -EACCES;
4546 }
4547
4548 switch (meta->map_ptr->map_type) {
4549 case BPF_MAP_TYPE_SOCKMAP:
4550 case BPF_MAP_TYPE_SOCKHASH:
4551 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4552 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4553 } else {
4554 verbose(env, "invalid arg_type for sockmap/sockhash\n");
4555 return -EINVAL;
4556 }
4557 break;
4558
4559 default:
4560 break;
4561 }
4562 return 0;
4563 }
4564
4565 struct bpf_reg_types {
4566 const enum bpf_reg_type types[10];
4567 u32 *btf_id;
4568 };
4569
4570 static const struct bpf_reg_types map_key_value_types = {
4571 .types = {
4572 PTR_TO_STACK,
4573 PTR_TO_PACKET,
4574 PTR_TO_PACKET_META,
4575 PTR_TO_MAP_VALUE,
4576 },
4577 };
4578
4579 static const struct bpf_reg_types sock_types = {
4580 .types = {
4581 PTR_TO_SOCK_COMMON,
4582 PTR_TO_SOCKET,
4583 PTR_TO_TCP_SOCK,
4584 PTR_TO_XDP_SOCK,
4585 },
4586 };
4587
4588 #ifdef CONFIG_NET
4589 static const struct bpf_reg_types btf_id_sock_common_types = {
4590 .types = {
4591 PTR_TO_SOCK_COMMON,
4592 PTR_TO_SOCKET,
4593 PTR_TO_TCP_SOCK,
4594 PTR_TO_XDP_SOCK,
4595 PTR_TO_BTF_ID,
4596 },
4597 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4598 };
4599 #endif
4600
4601 static const struct bpf_reg_types mem_types = {
4602 .types = {
4603 PTR_TO_STACK,
4604 PTR_TO_PACKET,
4605 PTR_TO_PACKET_META,
4606 PTR_TO_MAP_VALUE,
4607 PTR_TO_MEM,
4608 PTR_TO_MEM | MEM_ALLOC,
4609 PTR_TO_BUF,
4610 },
4611 };
4612
4613 static const struct bpf_reg_types int_ptr_types = {
4614 .types = {
4615 PTR_TO_STACK,
4616 PTR_TO_PACKET,
4617 PTR_TO_PACKET_META,
4618 PTR_TO_MAP_VALUE,
4619 },
4620 };
4621
4622 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4623 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4624 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4625 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } };
4626 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4627 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4628 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4629 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4630
4631 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4632 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
4633 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
4634 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
4635 [ARG_CONST_SIZE] = &scalar_types,
4636 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
4637 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
4638 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
4639 [ARG_PTR_TO_CTX] = &context_types,
4640 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
4641 #ifdef CONFIG_NET
4642 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
4643 #endif
4644 [ARG_PTR_TO_SOCKET] = &fullsock_types,
4645 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
4646 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
4647 [ARG_PTR_TO_MEM] = &mem_types,
4648 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
4649 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
4650 [ARG_PTR_TO_INT] = &int_ptr_types,
4651 [ARG_PTR_TO_LONG] = &int_ptr_types,
4652 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
4653 };
4654
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id)4655 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4656 enum bpf_arg_type arg_type,
4657 const u32 *arg_btf_id)
4658 {
4659 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4660 enum bpf_reg_type expected, type = reg->type;
4661 const struct bpf_reg_types *compatible;
4662 int i, j;
4663
4664 compatible = compatible_reg_types[base_type(arg_type)];
4665 if (!compatible) {
4666 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4667 return -EFAULT;
4668 }
4669
4670 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
4671 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
4672 *
4673 * Same for MAYBE_NULL:
4674 *
4675 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
4676 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
4677 *
4678 * Therefore we fold these flags depending on the arg_type before comparison.
4679 */
4680 if (arg_type & MEM_RDONLY)
4681 type &= ~MEM_RDONLY;
4682 if (arg_type & PTR_MAYBE_NULL)
4683 type &= ~PTR_MAYBE_NULL;
4684
4685 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4686 expected = compatible->types[i];
4687 if (expected == NOT_INIT)
4688 break;
4689
4690 if (type == expected)
4691 goto found;
4692 }
4693
4694 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
4695 for (j = 0; j + 1 < i; j++)
4696 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
4697 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
4698 return -EACCES;
4699
4700 found:
4701 if (reg->type == PTR_TO_BTF_ID) {
4702 if (!arg_btf_id) {
4703 if (!compatible->btf_id) {
4704 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4705 return -EFAULT;
4706 }
4707 arg_btf_id = compatible->btf_id;
4708 }
4709
4710 if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id,
4711 *arg_btf_id)) {
4712 verbose(env, "R%d is of type %s but %s is expected\n",
4713 regno, kernel_type_name(reg->btf_id),
4714 kernel_type_name(*arg_btf_id));
4715 return -EACCES;
4716 }
4717 }
4718
4719 return 0;
4720 }
4721
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn)4722 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4723 struct bpf_call_arg_meta *meta,
4724 const struct bpf_func_proto *fn)
4725 {
4726 u32 regno = BPF_REG_1 + arg;
4727 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4728 enum bpf_arg_type arg_type = fn->arg_type[arg];
4729 enum bpf_reg_type type = reg->type;
4730 int err = 0;
4731
4732 if (arg_type == ARG_DONTCARE)
4733 return 0;
4734
4735 err = check_reg_arg(env, regno, SRC_OP);
4736 if (err)
4737 return err;
4738
4739 if (arg_type == ARG_ANYTHING) {
4740 if (is_pointer_value(env, regno)) {
4741 verbose(env, "R%d leaks addr into helper function\n",
4742 regno);
4743 return -EACCES;
4744 }
4745 return 0;
4746 }
4747
4748 if (type_is_pkt_pointer(type) &&
4749 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4750 verbose(env, "helper access to the packet is not allowed\n");
4751 return -EACCES;
4752 }
4753
4754 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
4755 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4756 err = resolve_map_arg_type(env, meta, &arg_type);
4757 if (err)
4758 return err;
4759 }
4760
4761 if (register_is_null(reg) && type_may_be_null(arg_type))
4762 /* A NULL register has a SCALAR_VALUE type, so skip
4763 * type checking.
4764 */
4765 goto skip_type_check;
4766
4767 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4768 if (err)
4769 return err;
4770
4771 switch ((u32)type) {
4772 case SCALAR_VALUE:
4773 /* Pointer types where reg offset is explicitly allowed: */
4774 case PTR_TO_PACKET:
4775 case PTR_TO_PACKET_META:
4776 case PTR_TO_MAP_VALUE:
4777 case PTR_TO_MEM:
4778 case PTR_TO_MEM | MEM_RDONLY:
4779 case PTR_TO_MEM | MEM_ALLOC:
4780 case PTR_TO_BUF:
4781 case PTR_TO_BUF | MEM_RDONLY:
4782 case PTR_TO_STACK:
4783 /* Some of the argument types nevertheless require a
4784 * zero register offset.
4785 */
4786 if (arg_type == ARG_PTR_TO_ALLOC_MEM)
4787 goto force_off_check;
4788 break;
4789 /* All the rest must be rejected: */
4790 default:
4791 force_off_check:
4792 err = __check_ptr_off_reg(env, reg, regno,
4793 type == PTR_TO_BTF_ID);
4794 if (err < 0)
4795 return err;
4796 break;
4797 }
4798
4799 skip_type_check:
4800 if (reg->ref_obj_id) {
4801 if (meta->ref_obj_id) {
4802 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4803 regno, reg->ref_obj_id,
4804 meta->ref_obj_id);
4805 return -EFAULT;
4806 }
4807 meta->ref_obj_id = reg->ref_obj_id;
4808 }
4809
4810 if (arg_type == ARG_CONST_MAP_PTR) {
4811 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4812 meta->map_ptr = reg->map_ptr;
4813 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4814 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4815 * check that [key, key + map->key_size) are within
4816 * stack limits and initialized
4817 */
4818 if (!meta->map_ptr) {
4819 /* in function declaration map_ptr must come before
4820 * map_key, so that it's verified and known before
4821 * we have to check map_key here. Otherwise it means
4822 * that kernel subsystem misconfigured verifier
4823 */
4824 verbose(env, "invalid map_ptr to access map->key\n");
4825 return -EACCES;
4826 }
4827 err = check_helper_mem_access(env, regno,
4828 meta->map_ptr->key_size, false,
4829 NULL);
4830 } else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
4831 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4832 if (type_may_be_null(arg_type) && register_is_null(reg))
4833 return 0;
4834
4835 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4836 * check [value, value + map->value_size) validity
4837 */
4838 if (!meta->map_ptr) {
4839 /* kernel subsystem misconfigured verifier */
4840 verbose(env, "invalid map_ptr to access map->value\n");
4841 return -EACCES;
4842 }
4843 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4844 err = check_helper_mem_access(env, regno,
4845 meta->map_ptr->value_size, false,
4846 meta);
4847 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4848 if (!reg->btf_id) {
4849 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4850 return -EACCES;
4851 }
4852 meta->ret_btf_id = reg->btf_id;
4853 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4854 if (meta->func_id == BPF_FUNC_spin_lock) {
4855 if (process_spin_lock(env, regno, true))
4856 return -EACCES;
4857 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4858 if (process_spin_lock(env, regno, false))
4859 return -EACCES;
4860 } else {
4861 verbose(env, "verifier internal error\n");
4862 return -EFAULT;
4863 }
4864 } else if (arg_type_is_mem_ptr(arg_type)) {
4865 /* The access to this pointer is only checked when we hit the
4866 * next is_mem_size argument below.
4867 */
4868 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4869 } else if (arg_type_is_mem_size(arg_type)) {
4870 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4871
4872 /* This is used to refine r0 return value bounds for helpers
4873 * that enforce this value as an upper bound on return values.
4874 * See do_refine_retval_range() for helpers that can refine
4875 * the return value. C type of helper is u32 so we pull register
4876 * bound from umax_value however, if negative verifier errors
4877 * out. Only upper bounds can be learned because retval is an
4878 * int type and negative retvals are allowed.
4879 */
4880 meta->msize_max_value = reg->umax_value;
4881
4882 /* The register is SCALAR_VALUE; the access check
4883 * happens using its boundaries.
4884 */
4885 if (!tnum_is_const(reg->var_off))
4886 /* For unprivileged variable accesses, disable raw
4887 * mode so that the program is required to
4888 * initialize all the memory that the helper could
4889 * just partially fill up.
4890 */
4891 meta = NULL;
4892
4893 if (reg->smin_value < 0) {
4894 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4895 regno);
4896 return -EACCES;
4897 }
4898
4899 if (reg->umin_value == 0) {
4900 err = check_helper_mem_access(env, regno - 1, 0,
4901 zero_size_allowed,
4902 meta);
4903 if (err)
4904 return err;
4905 }
4906
4907 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4908 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4909 regno);
4910 return -EACCES;
4911 }
4912 err = check_helper_mem_access(env, regno - 1,
4913 reg->umax_value,
4914 zero_size_allowed, meta);
4915 if (!err)
4916 err = mark_chain_precision(env, regno);
4917 } else if (arg_type_is_alloc_size(arg_type)) {
4918 if (!tnum_is_const(reg->var_off)) {
4919 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4920 regno);
4921 return -EACCES;
4922 }
4923 meta->mem_size = reg->var_off.value;
4924 err = mark_chain_precision(env, regno);
4925 if (err)
4926 return err;
4927 } else if (arg_type_is_int_ptr(arg_type)) {
4928 int size = int_ptr_type_to_size(arg_type);
4929
4930 err = check_helper_mem_access(env, regno, size, false, meta);
4931 if (err)
4932 return err;
4933 err = check_ptr_alignment(env, reg, 0, size, true);
4934 }
4935
4936 return err;
4937 }
4938
may_update_sockmap(struct bpf_verifier_env * env,int func_id)4939 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4940 {
4941 enum bpf_attach_type eatype = env->prog->expected_attach_type;
4942 enum bpf_prog_type type = resolve_prog_type(env->prog);
4943
4944 if (func_id != BPF_FUNC_map_update_elem)
4945 return false;
4946
4947 /* It's not possible to get access to a locked struct sock in these
4948 * contexts, so updating is safe.
4949 */
4950 switch (type) {
4951 case BPF_PROG_TYPE_TRACING:
4952 if (eatype == BPF_TRACE_ITER)
4953 return true;
4954 break;
4955 case BPF_PROG_TYPE_SOCKET_FILTER:
4956 case BPF_PROG_TYPE_SCHED_CLS:
4957 case BPF_PROG_TYPE_SCHED_ACT:
4958 case BPF_PROG_TYPE_XDP:
4959 case BPF_PROG_TYPE_SK_REUSEPORT:
4960 case BPF_PROG_TYPE_FLOW_DISSECTOR:
4961 case BPF_PROG_TYPE_SK_LOOKUP:
4962 return true;
4963 default:
4964 break;
4965 }
4966
4967 verbose(env, "cannot update sockmap in this context\n");
4968 return false;
4969 }
4970
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)4971 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4972 {
4973 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4974 }
4975
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)4976 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4977 struct bpf_map *map, int func_id)
4978 {
4979 if (!map)
4980 return 0;
4981
4982 /* We need a two way check, first is from map perspective ... */
4983 switch (map->map_type) {
4984 case BPF_MAP_TYPE_PROG_ARRAY:
4985 if (func_id != BPF_FUNC_tail_call)
4986 goto error;
4987 break;
4988 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4989 if (func_id != BPF_FUNC_perf_event_read &&
4990 func_id != BPF_FUNC_perf_event_output &&
4991 func_id != BPF_FUNC_skb_output &&
4992 func_id != BPF_FUNC_perf_event_read_value &&
4993 func_id != BPF_FUNC_xdp_output)
4994 goto error;
4995 break;
4996 case BPF_MAP_TYPE_RINGBUF:
4997 if (func_id != BPF_FUNC_ringbuf_output &&
4998 func_id != BPF_FUNC_ringbuf_reserve &&
4999 func_id != BPF_FUNC_ringbuf_query)
5000 goto error;
5001 break;
5002 case BPF_MAP_TYPE_STACK_TRACE:
5003 if (func_id != BPF_FUNC_get_stackid)
5004 goto error;
5005 break;
5006 case BPF_MAP_TYPE_CGROUP_ARRAY:
5007 if (func_id != BPF_FUNC_skb_under_cgroup &&
5008 func_id != BPF_FUNC_current_task_under_cgroup)
5009 goto error;
5010 break;
5011 case BPF_MAP_TYPE_CGROUP_STORAGE:
5012 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5013 if (func_id != BPF_FUNC_get_local_storage)
5014 goto error;
5015 break;
5016 case BPF_MAP_TYPE_DEVMAP:
5017 case BPF_MAP_TYPE_DEVMAP_HASH:
5018 if (func_id != BPF_FUNC_redirect_map &&
5019 func_id != BPF_FUNC_map_lookup_elem)
5020 goto error;
5021 break;
5022 /* Restrict bpf side of cpumap and xskmap, open when use-cases
5023 * appear.
5024 */
5025 case BPF_MAP_TYPE_CPUMAP:
5026 if (func_id != BPF_FUNC_redirect_map)
5027 goto error;
5028 break;
5029 case BPF_MAP_TYPE_XSKMAP:
5030 if (func_id != BPF_FUNC_redirect_map &&
5031 func_id != BPF_FUNC_map_lookup_elem)
5032 goto error;
5033 break;
5034 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5035 case BPF_MAP_TYPE_HASH_OF_MAPS:
5036 if (func_id != BPF_FUNC_map_lookup_elem)
5037 goto error;
5038 break;
5039 case BPF_MAP_TYPE_SOCKMAP:
5040 if (func_id != BPF_FUNC_sk_redirect_map &&
5041 func_id != BPF_FUNC_sock_map_update &&
5042 func_id != BPF_FUNC_map_delete_elem &&
5043 func_id != BPF_FUNC_msg_redirect_map &&
5044 func_id != BPF_FUNC_sk_select_reuseport &&
5045 func_id != BPF_FUNC_map_lookup_elem &&
5046 !may_update_sockmap(env, func_id))
5047 goto error;
5048 break;
5049 case BPF_MAP_TYPE_SOCKHASH:
5050 if (func_id != BPF_FUNC_sk_redirect_hash &&
5051 func_id != BPF_FUNC_sock_hash_update &&
5052 func_id != BPF_FUNC_map_delete_elem &&
5053 func_id != BPF_FUNC_msg_redirect_hash &&
5054 func_id != BPF_FUNC_sk_select_reuseport &&
5055 func_id != BPF_FUNC_map_lookup_elem &&
5056 !may_update_sockmap(env, func_id))
5057 goto error;
5058 break;
5059 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5060 if (func_id != BPF_FUNC_sk_select_reuseport)
5061 goto error;
5062 break;
5063 case BPF_MAP_TYPE_QUEUE:
5064 case BPF_MAP_TYPE_STACK:
5065 if (func_id != BPF_FUNC_map_peek_elem &&
5066 func_id != BPF_FUNC_map_pop_elem &&
5067 func_id != BPF_FUNC_map_push_elem)
5068 goto error;
5069 break;
5070 case BPF_MAP_TYPE_SK_STORAGE:
5071 if (func_id != BPF_FUNC_sk_storage_get &&
5072 func_id != BPF_FUNC_sk_storage_delete)
5073 goto error;
5074 break;
5075 case BPF_MAP_TYPE_INODE_STORAGE:
5076 if (func_id != BPF_FUNC_inode_storage_get &&
5077 func_id != BPF_FUNC_inode_storage_delete)
5078 goto error;
5079 break;
5080 default:
5081 break;
5082 }
5083
5084 /* ... and second from the function itself. */
5085 switch (func_id) {
5086 case BPF_FUNC_tail_call:
5087 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5088 goto error;
5089 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5090 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5091 return -EINVAL;
5092 }
5093 break;
5094 case BPF_FUNC_perf_event_read:
5095 case BPF_FUNC_perf_event_output:
5096 case BPF_FUNC_perf_event_read_value:
5097 case BPF_FUNC_skb_output:
5098 case BPF_FUNC_xdp_output:
5099 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5100 goto error;
5101 break;
5102 case BPF_FUNC_ringbuf_output:
5103 case BPF_FUNC_ringbuf_reserve:
5104 case BPF_FUNC_ringbuf_query:
5105 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5106 goto error;
5107 break;
5108 case BPF_FUNC_get_stackid:
5109 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5110 goto error;
5111 break;
5112 case BPF_FUNC_current_task_under_cgroup:
5113 case BPF_FUNC_skb_under_cgroup:
5114 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5115 goto error;
5116 break;
5117 case BPF_FUNC_redirect_map:
5118 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5119 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5120 map->map_type != BPF_MAP_TYPE_CPUMAP &&
5121 map->map_type != BPF_MAP_TYPE_XSKMAP)
5122 goto error;
5123 break;
5124 case BPF_FUNC_sk_redirect_map:
5125 case BPF_FUNC_msg_redirect_map:
5126 case BPF_FUNC_sock_map_update:
5127 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5128 goto error;
5129 break;
5130 case BPF_FUNC_sk_redirect_hash:
5131 case BPF_FUNC_msg_redirect_hash:
5132 case BPF_FUNC_sock_hash_update:
5133 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5134 goto error;
5135 break;
5136 case BPF_FUNC_get_local_storage:
5137 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5138 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5139 goto error;
5140 break;
5141 case BPF_FUNC_sk_select_reuseport:
5142 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5143 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5144 map->map_type != BPF_MAP_TYPE_SOCKHASH)
5145 goto error;
5146 break;
5147 case BPF_FUNC_map_peek_elem:
5148 case BPF_FUNC_map_pop_elem:
5149 case BPF_FUNC_map_push_elem:
5150 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5151 map->map_type != BPF_MAP_TYPE_STACK)
5152 goto error;
5153 break;
5154 case BPF_FUNC_sk_storage_get:
5155 case BPF_FUNC_sk_storage_delete:
5156 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5157 goto error;
5158 break;
5159 case BPF_FUNC_inode_storage_get:
5160 case BPF_FUNC_inode_storage_delete:
5161 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5162 goto error;
5163 break;
5164 default:
5165 break;
5166 }
5167
5168 return 0;
5169 error:
5170 verbose(env, "cannot pass map_type %d into func %s#%d\n",
5171 map->map_type, func_id_name(func_id), func_id);
5172 return -EINVAL;
5173 }
5174
check_raw_mode_ok(const struct bpf_func_proto * fn)5175 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5176 {
5177 int count = 0;
5178
5179 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5180 count++;
5181 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5182 count++;
5183 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5184 count++;
5185 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5186 count++;
5187 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5188 count++;
5189
5190 /* We only support one arg being in raw mode at the moment,
5191 * which is sufficient for the helper functions we have
5192 * right now.
5193 */
5194 return count <= 1;
5195 }
5196
check_args_pair_invalid(enum bpf_arg_type arg_curr,enum bpf_arg_type arg_next)5197 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5198 enum bpf_arg_type arg_next)
5199 {
5200 return (arg_type_is_mem_ptr(arg_curr) &&
5201 !arg_type_is_mem_size(arg_next)) ||
5202 (!arg_type_is_mem_ptr(arg_curr) &&
5203 arg_type_is_mem_size(arg_next));
5204 }
5205
check_arg_pair_ok(const struct bpf_func_proto * fn)5206 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5207 {
5208 /* bpf_xxx(..., buf, len) call will access 'len'
5209 * bytes from memory 'buf'. Both arg types need
5210 * to be paired, so make sure there's no buggy
5211 * helper function specification.
5212 */
5213 if (arg_type_is_mem_size(fn->arg1_type) ||
5214 arg_type_is_mem_ptr(fn->arg5_type) ||
5215 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5216 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5217 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5218 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5219 return false;
5220
5221 return true;
5222 }
5223
check_refcount_ok(const struct bpf_func_proto * fn,int func_id)5224 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5225 {
5226 int count = 0;
5227
5228 if (arg_type_may_be_refcounted(fn->arg1_type))
5229 count++;
5230 if (arg_type_may_be_refcounted(fn->arg2_type))
5231 count++;
5232 if (arg_type_may_be_refcounted(fn->arg3_type))
5233 count++;
5234 if (arg_type_may_be_refcounted(fn->arg4_type))
5235 count++;
5236 if (arg_type_may_be_refcounted(fn->arg5_type))
5237 count++;
5238
5239 /* A reference acquiring function cannot acquire
5240 * another refcounted ptr.
5241 */
5242 if (may_be_acquire_function(func_id) && count)
5243 return false;
5244
5245 /* We only support one arg being unreferenced at the moment,
5246 * which is sufficient for the helper functions we have right now.
5247 */
5248 return count <= 1;
5249 }
5250
check_btf_id_ok(const struct bpf_func_proto * fn)5251 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5252 {
5253 int i;
5254
5255 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5256 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5257 return false;
5258
5259 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5260 return false;
5261 }
5262
5263 return true;
5264 }
5265
check_func_proto(const struct bpf_func_proto * fn,int func_id)5266 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5267 {
5268 return check_raw_mode_ok(fn) &&
5269 check_arg_pair_ok(fn) &&
5270 check_btf_id_ok(fn) &&
5271 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5272 }
5273
5274 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5275 * are now invalid, so turn them into unknown SCALAR_VALUE.
5276 */
clear_all_pkt_pointers(struct bpf_verifier_env * env)5277 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5278 {
5279 struct bpf_func_state *state;
5280 struct bpf_reg_state *reg;
5281
5282 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
5283 if (reg_is_pkt_pointer_any(reg))
5284 __mark_reg_unknown(env, reg);
5285 }));
5286 }
5287
5288 enum {
5289 AT_PKT_END = -1,
5290 BEYOND_PKT_END = -2,
5291 };
5292
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)5293 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5294 {
5295 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5296 struct bpf_reg_state *reg = &state->regs[regn];
5297
5298 if (reg->type != PTR_TO_PACKET)
5299 /* PTR_TO_PACKET_META is not supported yet */
5300 return;
5301
5302 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5303 * How far beyond pkt_end it goes is unknown.
5304 * if (!range_open) it's the case of pkt >= pkt_end
5305 * if (range_open) it's the case of pkt > pkt_end
5306 * hence this pointer is at least 1 byte bigger than pkt_end
5307 */
5308 if (range_open)
5309 reg->range = BEYOND_PKT_END;
5310 else
5311 reg->range = AT_PKT_END;
5312 }
5313
5314 /* The pointer with the specified id has released its reference to kernel
5315 * resources. Identify all copies of the same pointer and clear the reference.
5316 */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)5317 static int release_reference(struct bpf_verifier_env *env,
5318 int ref_obj_id)
5319 {
5320 struct bpf_func_state *state;
5321 struct bpf_reg_state *reg;
5322 int err;
5323
5324 err = release_reference_state(cur_func(env), ref_obj_id);
5325 if (err)
5326 return err;
5327
5328 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
5329 if (reg->ref_obj_id == ref_obj_id) {
5330 if (!env->allow_ptr_leaks)
5331 __mark_reg_not_init(env, reg);
5332 else
5333 __mark_reg_unknown(env, reg);
5334 }
5335 }));
5336
5337 return 0;
5338 }
5339
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)5340 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5341 struct bpf_reg_state *regs)
5342 {
5343 int i;
5344
5345 /* after the call registers r0 - r5 were scratched */
5346 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5347 mark_reg_not_init(env, regs, caller_saved[i]);
5348 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5349 }
5350 }
5351
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)5352 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5353 int *insn_idx)
5354 {
5355 struct bpf_verifier_state *state = env->cur_state;
5356 struct bpf_func_info_aux *func_info_aux;
5357 struct bpf_func_state *caller, *callee;
5358 int i, err, subprog, target_insn;
5359 bool is_global = false;
5360
5361 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5362 verbose(env, "the call stack of %d frames is too deep\n",
5363 state->curframe + 2);
5364 return -E2BIG;
5365 }
5366
5367 target_insn = *insn_idx + insn->imm;
5368 subprog = find_subprog(env, target_insn + 1);
5369 if (subprog < 0) {
5370 verbose(env, "verifier bug. No program starts at insn %d\n",
5371 target_insn + 1);
5372 return -EFAULT;
5373 }
5374
5375 caller = state->frame[state->curframe];
5376 if (state->frame[state->curframe + 1]) {
5377 verbose(env, "verifier bug. Frame %d already allocated\n",
5378 state->curframe + 1);
5379 return -EFAULT;
5380 }
5381
5382 func_info_aux = env->prog->aux->func_info_aux;
5383 if (func_info_aux)
5384 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5385 err = btf_check_func_arg_match(env, subprog, caller->regs);
5386 if (err == -EFAULT)
5387 return err;
5388 if (is_global) {
5389 if (err) {
5390 verbose(env, "Caller passes invalid args into func#%d\n",
5391 subprog);
5392 return err;
5393 } else {
5394 if (env->log.level & BPF_LOG_LEVEL)
5395 verbose(env,
5396 "Func#%d is global and valid. Skipping.\n",
5397 subprog);
5398 clear_caller_saved_regs(env, caller->regs);
5399
5400 /* All global functions return a 64-bit SCALAR_VALUE */
5401 mark_reg_unknown(env, caller->regs, BPF_REG_0);
5402 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5403
5404 /* continue with next insn after call */
5405 return 0;
5406 }
5407 }
5408
5409 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5410 if (!callee)
5411 return -ENOMEM;
5412 state->frame[state->curframe + 1] = callee;
5413
5414 /* callee cannot access r0, r6 - r9 for reading and has to write
5415 * into its own stack before reading from it.
5416 * callee can read/write into caller's stack
5417 */
5418 init_func_state(env, callee,
5419 /* remember the callsite, it will be used by bpf_exit */
5420 *insn_idx /* callsite */,
5421 state->curframe + 1 /* frameno within this callchain */,
5422 subprog /* subprog number within this prog */);
5423
5424 /* Transfer references to the callee */
5425 err = transfer_reference_state(callee, caller);
5426 if (err)
5427 goto err_out;
5428
5429 /* copy r1 - r5 args that callee can access. The copy includes parent
5430 * pointers, which connects us up to the liveness chain
5431 */
5432 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5433 callee->regs[i] = caller->regs[i];
5434
5435 clear_caller_saved_regs(env, caller->regs);
5436
5437 /* only increment it after check_reg_arg() finished */
5438 state->curframe++;
5439
5440 /* and go analyze first insn of the callee */
5441 *insn_idx = target_insn;
5442
5443 if (env->log.level & BPF_LOG_LEVEL) {
5444 verbose(env, "caller:\n");
5445 print_verifier_state(env, caller);
5446 verbose(env, "callee:\n");
5447 print_verifier_state(env, callee);
5448 }
5449 return 0;
5450
5451 err_out:
5452 free_func_state(callee);
5453 state->frame[state->curframe + 1] = NULL;
5454 return err;
5455 }
5456
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)5457 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5458 {
5459 struct bpf_verifier_state *state = env->cur_state;
5460 struct bpf_func_state *caller, *callee;
5461 struct bpf_reg_state *r0;
5462 int err;
5463
5464 callee = state->frame[state->curframe];
5465 r0 = &callee->regs[BPF_REG_0];
5466 if (r0->type == PTR_TO_STACK) {
5467 /* technically it's ok to return caller's stack pointer
5468 * (or caller's caller's pointer) back to the caller,
5469 * since these pointers are valid. Only current stack
5470 * pointer will be invalid as soon as function exits,
5471 * but let's be conservative
5472 */
5473 verbose(env, "cannot return stack pointer to the caller\n");
5474 return -EINVAL;
5475 }
5476
5477 caller = state->frame[state->curframe - 1];
5478 /* return to the caller whatever r0 had in the callee */
5479 caller->regs[BPF_REG_0] = *r0;
5480
5481 /* Transfer references to the caller */
5482 err = transfer_reference_state(caller, callee);
5483 if (err)
5484 return err;
5485
5486 *insn_idx = callee->callsite + 1;
5487 if (env->log.level & BPF_LOG_LEVEL) {
5488 verbose(env, "returning from callee:\n");
5489 print_verifier_state(env, callee);
5490 verbose(env, "to caller at %d:\n", *insn_idx);
5491 print_verifier_state(env, caller);
5492 }
5493 /* clear everything in the callee */
5494 free_func_state(callee);
5495 state->frame[state->curframe--] = NULL;
5496 return 0;
5497 }
5498
do_refine_retval_range(struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)5499 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5500 int func_id,
5501 struct bpf_call_arg_meta *meta)
5502 {
5503 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
5504
5505 if (ret_type != RET_INTEGER ||
5506 (func_id != BPF_FUNC_get_stack &&
5507 func_id != BPF_FUNC_probe_read_str &&
5508 func_id != BPF_FUNC_probe_read_kernel_str &&
5509 func_id != BPF_FUNC_probe_read_user_str))
5510 return;
5511
5512 ret_reg->smax_value = meta->msize_max_value;
5513 ret_reg->s32_max_value = meta->msize_max_value;
5514 ret_reg->smin_value = -MAX_ERRNO;
5515 ret_reg->s32_min_value = -MAX_ERRNO;
5516 reg_bounds_sync(ret_reg);
5517 }
5518
5519 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)5520 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5521 int func_id, int insn_idx)
5522 {
5523 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5524 struct bpf_map *map = meta->map_ptr;
5525
5526 if (func_id != BPF_FUNC_tail_call &&
5527 func_id != BPF_FUNC_map_lookup_elem &&
5528 func_id != BPF_FUNC_map_update_elem &&
5529 func_id != BPF_FUNC_map_delete_elem &&
5530 func_id != BPF_FUNC_map_push_elem &&
5531 func_id != BPF_FUNC_map_pop_elem &&
5532 func_id != BPF_FUNC_map_peek_elem)
5533 return 0;
5534
5535 if (map == NULL) {
5536 verbose(env, "kernel subsystem misconfigured verifier\n");
5537 return -EINVAL;
5538 }
5539
5540 /* In case of read-only, some additional restrictions
5541 * need to be applied in order to prevent altering the
5542 * state of the map from program side.
5543 */
5544 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5545 (func_id == BPF_FUNC_map_delete_elem ||
5546 func_id == BPF_FUNC_map_update_elem ||
5547 func_id == BPF_FUNC_map_push_elem ||
5548 func_id == BPF_FUNC_map_pop_elem)) {
5549 verbose(env, "write into map forbidden\n");
5550 return -EACCES;
5551 }
5552
5553 if (!BPF_MAP_PTR(aux->map_ptr_state))
5554 bpf_map_ptr_store(aux, meta->map_ptr,
5555 !meta->map_ptr->bypass_spec_v1);
5556 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5557 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5558 !meta->map_ptr->bypass_spec_v1);
5559 return 0;
5560 }
5561
5562 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)5563 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5564 int func_id, int insn_idx)
5565 {
5566 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5567 struct bpf_reg_state *regs = cur_regs(env), *reg;
5568 struct bpf_map *map = meta->map_ptr;
5569 u64 val, max;
5570 int err;
5571
5572 if (func_id != BPF_FUNC_tail_call)
5573 return 0;
5574 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5575 verbose(env, "kernel subsystem misconfigured verifier\n");
5576 return -EINVAL;
5577 }
5578
5579 reg = ®s[BPF_REG_3];
5580 val = reg->var_off.value;
5581 max = map->max_entries;
5582
5583 if (!(register_is_const(reg) && val < max)) {
5584 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5585 return 0;
5586 }
5587
5588 err = mark_chain_precision(env, BPF_REG_3);
5589 if (err)
5590 return err;
5591 if (bpf_map_key_unseen(aux))
5592 bpf_map_key_store(aux, val);
5593 else if (!bpf_map_key_poisoned(aux) &&
5594 bpf_map_key_immediate(aux) != val)
5595 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5596 return 0;
5597 }
5598
check_reference_leak(struct bpf_verifier_env * env)5599 static int check_reference_leak(struct bpf_verifier_env *env)
5600 {
5601 struct bpf_func_state *state = cur_func(env);
5602 int i;
5603
5604 for (i = 0; i < state->acquired_refs; i++) {
5605 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5606 state->refs[i].id, state->refs[i].insn_idx);
5607 }
5608 return state->acquired_refs ? -EINVAL : 0;
5609 }
5610
check_helper_call(struct bpf_verifier_env * env,int func_id,int insn_idx)5611 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
5612 {
5613 const struct bpf_func_proto *fn = NULL;
5614 enum bpf_return_type ret_type;
5615 enum bpf_type_flag ret_flag;
5616 struct bpf_reg_state *regs;
5617 struct bpf_call_arg_meta meta;
5618 bool changes_data;
5619 int i, err;
5620
5621 /* find function prototype */
5622 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5623 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5624 func_id);
5625 return -EINVAL;
5626 }
5627
5628 if (env->ops->get_func_proto)
5629 fn = env->ops->get_func_proto(func_id, env->prog);
5630 if (!fn) {
5631 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5632 func_id);
5633 return -EINVAL;
5634 }
5635
5636 /* eBPF programs must be GPL compatible to use GPL-ed functions */
5637 if (!env->prog->gpl_compatible && fn->gpl_only) {
5638 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5639 return -EINVAL;
5640 }
5641
5642 if (fn->allowed && !fn->allowed(env->prog)) {
5643 verbose(env, "helper call is not allowed in probe\n");
5644 return -EINVAL;
5645 }
5646
5647 /* With LD_ABS/IND some JITs save/restore skb from r1. */
5648 changes_data = bpf_helper_changes_pkt_data(func_id);
5649 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5650 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5651 func_id_name(func_id), func_id);
5652 return -EINVAL;
5653 }
5654
5655 memset(&meta, 0, sizeof(meta));
5656 meta.pkt_access = fn->pkt_access;
5657
5658 err = check_func_proto(fn, func_id);
5659 if (err) {
5660 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5661 func_id_name(func_id), func_id);
5662 return err;
5663 }
5664
5665 meta.func_id = func_id;
5666 /* check args */
5667 for (i = 0; i < 5; i++) {
5668 err = check_func_arg(env, i, &meta, fn);
5669 if (err)
5670 return err;
5671 }
5672
5673 err = record_func_map(env, &meta, func_id, insn_idx);
5674 if (err)
5675 return err;
5676
5677 err = record_func_key(env, &meta, func_id, insn_idx);
5678 if (err)
5679 return err;
5680
5681 /* Mark slots with STACK_MISC in case of raw mode, stack offset
5682 * is inferred from register state.
5683 */
5684 for (i = 0; i < meta.access_size; i++) {
5685 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5686 BPF_WRITE, -1, false);
5687 if (err)
5688 return err;
5689 }
5690
5691 if (func_id == BPF_FUNC_tail_call) {
5692 err = check_reference_leak(env);
5693 if (err) {
5694 verbose(env, "tail_call would lead to reference leak\n");
5695 return err;
5696 }
5697 } else if (is_release_function(func_id)) {
5698 err = release_reference(env, meta.ref_obj_id);
5699 if (err) {
5700 verbose(env, "func %s#%d reference has not been acquired before\n",
5701 func_id_name(func_id), func_id);
5702 return err;
5703 }
5704 }
5705
5706 regs = cur_regs(env);
5707
5708 /* check that flags argument in get_local_storage(map, flags) is 0,
5709 * this is required because get_local_storage() can't return an error.
5710 */
5711 if (func_id == BPF_FUNC_get_local_storage &&
5712 !register_is_null(®s[BPF_REG_2])) {
5713 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5714 return -EINVAL;
5715 }
5716
5717 /* reset caller saved regs */
5718 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5719 mark_reg_not_init(env, regs, caller_saved[i]);
5720 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5721 }
5722
5723 /* helper call returns 64-bit value. */
5724 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5725
5726 /* update return register (already marked as written above) */
5727 ret_type = fn->ret_type;
5728 ret_flag = type_flag(fn->ret_type);
5729 if (ret_type == RET_INTEGER) {
5730 /* sets type to SCALAR_VALUE */
5731 mark_reg_unknown(env, regs, BPF_REG_0);
5732 } else if (ret_type == RET_VOID) {
5733 regs[BPF_REG_0].type = NOT_INIT;
5734 } else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) {
5735 /* There is no offset yet applied, variable or fixed */
5736 mark_reg_known_zero(env, regs, BPF_REG_0);
5737 /* remember map_ptr, so that check_map_access()
5738 * can check 'value_size' boundary of memory access
5739 * to map element returned from bpf_map_lookup_elem()
5740 */
5741 if (meta.map_ptr == NULL) {
5742 verbose(env,
5743 "kernel subsystem misconfigured verifier\n");
5744 return -EINVAL;
5745 }
5746 regs[BPF_REG_0].map_ptr = meta.map_ptr;
5747 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
5748 if (!type_may_be_null(ret_type) &&
5749 map_value_has_spin_lock(meta.map_ptr)) {
5750 regs[BPF_REG_0].id = ++env->id_gen;
5751 }
5752 } else if (base_type(ret_type) == RET_PTR_TO_SOCKET) {
5753 mark_reg_known_zero(env, regs, BPF_REG_0);
5754 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
5755 } else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) {
5756 mark_reg_known_zero(env, regs, BPF_REG_0);
5757 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
5758 } else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) {
5759 mark_reg_known_zero(env, regs, BPF_REG_0);
5760 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
5761 } else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) {
5762 mark_reg_known_zero(env, regs, BPF_REG_0);
5763 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
5764 regs[BPF_REG_0].mem_size = meta.mem_size;
5765 } else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) {
5766 const struct btf_type *t;
5767
5768 mark_reg_known_zero(env, regs, BPF_REG_0);
5769 t = btf_type_skip_modifiers(btf_vmlinux, meta.ret_btf_id, NULL);
5770 if (!btf_type_is_struct(t)) {
5771 u32 tsize;
5772 const struct btf_type *ret;
5773 const char *tname;
5774
5775 /* resolve the type size of ksym. */
5776 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
5777 if (IS_ERR(ret)) {
5778 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
5779 verbose(env, "unable to resolve the size of type '%s': %ld\n",
5780 tname, PTR_ERR(ret));
5781 return -EINVAL;
5782 }
5783 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
5784 regs[BPF_REG_0].mem_size = tsize;
5785 } else {
5786 /* MEM_RDONLY may be carried from ret_flag, but it
5787 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
5788 * it will confuse the check of PTR_TO_BTF_ID in
5789 * check_mem_access().
5790 */
5791 ret_flag &= ~MEM_RDONLY;
5792
5793 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
5794 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5795 }
5796 } else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) {
5797 int ret_btf_id;
5798
5799 mark_reg_known_zero(env, regs, BPF_REG_0);
5800 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
5801 ret_btf_id = *fn->ret_btf_id;
5802 if (ret_btf_id == 0) {
5803 verbose(env, "invalid return type %u of func %s#%d\n",
5804 base_type(ret_type), func_id_name(func_id),
5805 func_id);
5806 return -EINVAL;
5807 }
5808 regs[BPF_REG_0].btf_id = ret_btf_id;
5809 } else {
5810 verbose(env, "unknown return type %u of func %s#%d\n",
5811 base_type(ret_type), func_id_name(func_id), func_id);
5812 return -EINVAL;
5813 }
5814
5815 if (type_may_be_null(regs[BPF_REG_0].type))
5816 regs[BPF_REG_0].id = ++env->id_gen;
5817
5818 if (is_ptr_cast_function(func_id)) {
5819 /* For release_reference() */
5820 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5821 } else if (is_acquire_function(func_id, meta.map_ptr)) {
5822 int id = acquire_reference_state(env, insn_idx);
5823
5824 if (id < 0)
5825 return id;
5826 /* For mark_ptr_or_null_reg() */
5827 regs[BPF_REG_0].id = id;
5828 /* For release_reference() */
5829 regs[BPF_REG_0].ref_obj_id = id;
5830 }
5831
5832 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5833
5834 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5835 if (err)
5836 return err;
5837
5838 if ((func_id == BPF_FUNC_get_stack ||
5839 func_id == BPF_FUNC_get_task_stack) &&
5840 !env->prog->has_callchain_buf) {
5841 const char *err_str;
5842
5843 #ifdef CONFIG_PERF_EVENTS
5844 err = get_callchain_buffers(sysctl_perf_event_max_stack);
5845 err_str = "cannot get callchain buffer for func %s#%d\n";
5846 #else
5847 err = -ENOTSUPP;
5848 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5849 #endif
5850 if (err) {
5851 verbose(env, err_str, func_id_name(func_id), func_id);
5852 return err;
5853 }
5854
5855 env->prog->has_callchain_buf = true;
5856 }
5857
5858 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5859 env->prog->call_get_stack = true;
5860
5861 if (changes_data)
5862 clear_all_pkt_pointers(env);
5863 return 0;
5864 }
5865
signed_add_overflows(s64 a,s64 b)5866 static bool signed_add_overflows(s64 a, s64 b)
5867 {
5868 /* Do the add in u64, where overflow is well-defined */
5869 s64 res = (s64)((u64)a + (u64)b);
5870
5871 if (b < 0)
5872 return res > a;
5873 return res < a;
5874 }
5875
signed_add32_overflows(s32 a,s32 b)5876 static bool signed_add32_overflows(s32 a, s32 b)
5877 {
5878 /* Do the add in u32, where overflow is well-defined */
5879 s32 res = (s32)((u32)a + (u32)b);
5880
5881 if (b < 0)
5882 return res > a;
5883 return res < a;
5884 }
5885
signed_sub_overflows(s64 a,s64 b)5886 static bool signed_sub_overflows(s64 a, s64 b)
5887 {
5888 /* Do the sub in u64, where overflow is well-defined */
5889 s64 res = (s64)((u64)a - (u64)b);
5890
5891 if (b < 0)
5892 return res < a;
5893 return res > a;
5894 }
5895
signed_sub32_overflows(s32 a,s32 b)5896 static bool signed_sub32_overflows(s32 a, s32 b)
5897 {
5898 /* Do the sub in u32, where overflow is well-defined */
5899 s32 res = (s32)((u32)a - (u32)b);
5900
5901 if (b < 0)
5902 return res < a;
5903 return res > a;
5904 }
5905
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)5906 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5907 const struct bpf_reg_state *reg,
5908 enum bpf_reg_type type)
5909 {
5910 bool known = tnum_is_const(reg->var_off);
5911 s64 val = reg->var_off.value;
5912 s64 smin = reg->smin_value;
5913
5914 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5915 verbose(env, "math between %s pointer and %lld is not allowed\n",
5916 reg_type_str(env, type), val);
5917 return false;
5918 }
5919
5920 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5921 verbose(env, "%s pointer offset %d is not allowed\n",
5922 reg_type_str(env, type), reg->off);
5923 return false;
5924 }
5925
5926 if (smin == S64_MIN) {
5927 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5928 reg_type_str(env, type));
5929 return false;
5930 }
5931
5932 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5933 verbose(env, "value %lld makes %s pointer be out of bounds\n",
5934 smin, reg_type_str(env, type));
5935 return false;
5936 }
5937
5938 return true;
5939 }
5940
cur_aux(struct bpf_verifier_env * env)5941 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5942 {
5943 return &env->insn_aux_data[env->insn_idx];
5944 }
5945
5946 enum {
5947 REASON_BOUNDS = -1,
5948 REASON_TYPE = -2,
5949 REASON_PATHS = -3,
5950 REASON_LIMIT = -4,
5951 REASON_STACK = -5,
5952 };
5953
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)5954 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5955 u32 *alu_limit, bool mask_to_left)
5956 {
5957 u32 max = 0, ptr_limit = 0;
5958
5959 switch (ptr_reg->type) {
5960 case PTR_TO_STACK:
5961 /* Offset 0 is out-of-bounds, but acceptable start for the
5962 * left direction, see BPF_REG_FP. Also, unknown scalar
5963 * offset where we would need to deal with min/max bounds is
5964 * currently prohibited for unprivileged.
5965 */
5966 max = MAX_BPF_STACK + mask_to_left;
5967 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
5968 break;
5969 case PTR_TO_MAP_VALUE:
5970 max = ptr_reg->map_ptr->value_size;
5971 ptr_limit = (mask_to_left ?
5972 ptr_reg->smin_value :
5973 ptr_reg->umax_value) + ptr_reg->off;
5974 break;
5975 default:
5976 return REASON_TYPE;
5977 }
5978
5979 if (ptr_limit >= max)
5980 return REASON_LIMIT;
5981 *alu_limit = ptr_limit;
5982 return 0;
5983 }
5984
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)5985 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5986 const struct bpf_insn *insn)
5987 {
5988 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5989 }
5990
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)5991 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5992 u32 alu_state, u32 alu_limit)
5993 {
5994 /* If we arrived here from different branches with different
5995 * state or limits to sanitize, then this won't work.
5996 */
5997 if (aux->alu_state &&
5998 (aux->alu_state != alu_state ||
5999 aux->alu_limit != alu_limit))
6000 return REASON_PATHS;
6001
6002 /* Corresponding fixup done in fixup_bpf_calls(). */
6003 aux->alu_state = alu_state;
6004 aux->alu_limit = alu_limit;
6005 return 0;
6006 }
6007
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)6008 static int sanitize_val_alu(struct bpf_verifier_env *env,
6009 struct bpf_insn *insn)
6010 {
6011 struct bpf_insn_aux_data *aux = cur_aux(env);
6012
6013 if (can_skip_alu_sanitation(env, insn))
6014 return 0;
6015
6016 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6017 }
6018
sanitize_needed(u8 opcode)6019 static bool sanitize_needed(u8 opcode)
6020 {
6021 return opcode == BPF_ADD || opcode == BPF_SUB;
6022 }
6023
6024 struct bpf_sanitize_info {
6025 struct bpf_insn_aux_data aux;
6026 bool mask_to_left;
6027 };
6028
6029 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)6030 sanitize_speculative_path(struct bpf_verifier_env *env,
6031 const struct bpf_insn *insn,
6032 u32 next_idx, u32 curr_idx)
6033 {
6034 struct bpf_verifier_state *branch;
6035 struct bpf_reg_state *regs;
6036
6037 branch = push_stack(env, next_idx, curr_idx, true);
6038 if (branch && insn) {
6039 regs = branch->frame[branch->curframe]->regs;
6040 if (BPF_SRC(insn->code) == BPF_K) {
6041 mark_reg_unknown(env, regs, insn->dst_reg);
6042 } else if (BPF_SRC(insn->code) == BPF_X) {
6043 mark_reg_unknown(env, regs, insn->dst_reg);
6044 mark_reg_unknown(env, regs, insn->src_reg);
6045 }
6046 }
6047 return branch;
6048 }
6049
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)6050 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6051 struct bpf_insn *insn,
6052 const struct bpf_reg_state *ptr_reg,
6053 const struct bpf_reg_state *off_reg,
6054 struct bpf_reg_state *dst_reg,
6055 struct bpf_sanitize_info *info,
6056 const bool commit_window)
6057 {
6058 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
6059 struct bpf_verifier_state *vstate = env->cur_state;
6060 bool off_is_imm = tnum_is_const(off_reg->var_off);
6061 bool off_is_neg = off_reg->smin_value < 0;
6062 bool ptr_is_dst_reg = ptr_reg == dst_reg;
6063 u8 opcode = BPF_OP(insn->code);
6064 u32 alu_state, alu_limit;
6065 struct bpf_reg_state tmp;
6066 bool ret;
6067 int err;
6068
6069 if (can_skip_alu_sanitation(env, insn))
6070 return 0;
6071
6072 /* We already marked aux for masking from non-speculative
6073 * paths, thus we got here in the first place. We only care
6074 * to explore bad access from here.
6075 */
6076 if (vstate->speculative)
6077 goto do_sim;
6078
6079 if (!commit_window) {
6080 if (!tnum_is_const(off_reg->var_off) &&
6081 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6082 return REASON_BOUNDS;
6083
6084 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
6085 (opcode == BPF_SUB && !off_is_neg);
6086 }
6087
6088 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
6089 if (err < 0)
6090 return err;
6091
6092 if (commit_window) {
6093 /* In commit phase we narrow the masking window based on
6094 * the observed pointer move after the simulated operation.
6095 */
6096 alu_state = info->aux.alu_state;
6097 alu_limit = abs(info->aux.alu_limit - alu_limit);
6098 } else {
6099 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6100 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
6101 alu_state |= ptr_is_dst_reg ?
6102 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6103
6104 /* Limit pruning on unknown scalars to enable deep search for
6105 * potential masking differences from other program paths.
6106 */
6107 if (!off_is_imm)
6108 env->explore_alu_limits = true;
6109 }
6110
6111 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
6112 if (err < 0)
6113 return err;
6114 do_sim:
6115 /* If we're in commit phase, we're done here given we already
6116 * pushed the truncated dst_reg into the speculative verification
6117 * stack.
6118 *
6119 * Also, when register is a known constant, we rewrite register-based
6120 * operation to immediate-based, and thus do not need masking (and as
6121 * a consequence, do not need to simulate the zero-truncation either).
6122 */
6123 if (commit_window || off_is_imm)
6124 return 0;
6125
6126 /* Simulate and find potential out-of-bounds access under
6127 * speculative execution from truncation as a result of
6128 * masking when off was not within expected range. If off
6129 * sits in dst, then we temporarily need to move ptr there
6130 * to simulate dst (== 0) +/-= ptr. Needed, for example,
6131 * for cases where we use K-based arithmetic in one direction
6132 * and truncated reg-based in the other in order to explore
6133 * bad access.
6134 */
6135 if (!ptr_is_dst_reg) {
6136 tmp = *dst_reg;
6137 copy_register_state(dst_reg, ptr_reg);
6138 }
6139 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
6140 env->insn_idx);
6141 if (!ptr_is_dst_reg && ret)
6142 *dst_reg = tmp;
6143 return !ret ? REASON_STACK : 0;
6144 }
6145
sanitize_mark_insn_seen(struct bpf_verifier_env * env)6146 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
6147 {
6148 struct bpf_verifier_state *vstate = env->cur_state;
6149
6150 /* If we simulate paths under speculation, we don't update the
6151 * insn as 'seen' such that when we verify unreachable paths in
6152 * the non-speculative domain, sanitize_dead_code() can still
6153 * rewrite/sanitize them.
6154 */
6155 if (!vstate->speculative)
6156 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
6157 }
6158
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)6159 static int sanitize_err(struct bpf_verifier_env *env,
6160 const struct bpf_insn *insn, int reason,
6161 const struct bpf_reg_state *off_reg,
6162 const struct bpf_reg_state *dst_reg)
6163 {
6164 static const char *err = "pointer arithmetic with it prohibited for !root";
6165 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
6166 u32 dst = insn->dst_reg, src = insn->src_reg;
6167
6168 switch (reason) {
6169 case REASON_BOUNDS:
6170 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
6171 off_reg == dst_reg ? dst : src, err);
6172 break;
6173 case REASON_TYPE:
6174 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
6175 off_reg == dst_reg ? src : dst, err);
6176 break;
6177 case REASON_PATHS:
6178 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
6179 dst, op, err);
6180 break;
6181 case REASON_LIMIT:
6182 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
6183 dst, op, err);
6184 break;
6185 case REASON_STACK:
6186 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
6187 dst, err);
6188 break;
6189 default:
6190 verbose(env, "verifier internal error: unknown reason (%d)\n",
6191 reason);
6192 break;
6193 }
6194
6195 return -EACCES;
6196 }
6197
6198 /* check that stack access falls within stack limits and that 'reg' doesn't
6199 * have a variable offset.
6200 *
6201 * Variable offset is prohibited for unprivileged mode for simplicity since it
6202 * requires corresponding support in Spectre masking for stack ALU. See also
6203 * retrieve_ptr_limit().
6204 *
6205 *
6206 * 'off' includes 'reg->off'.
6207 */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)6208 static int check_stack_access_for_ptr_arithmetic(
6209 struct bpf_verifier_env *env,
6210 int regno,
6211 const struct bpf_reg_state *reg,
6212 int off)
6213 {
6214 if (!tnum_is_const(reg->var_off)) {
6215 char tn_buf[48];
6216
6217 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6218 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6219 regno, tn_buf, off);
6220 return -EACCES;
6221 }
6222
6223 if (off >= 0 || off < -MAX_BPF_STACK) {
6224 verbose(env, "R%d stack pointer arithmetic goes out of range, "
6225 "prohibited for !root; off=%d\n", regno, off);
6226 return -EACCES;
6227 }
6228
6229 return 0;
6230 }
6231
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)6232 static int sanitize_check_bounds(struct bpf_verifier_env *env,
6233 const struct bpf_insn *insn,
6234 const struct bpf_reg_state *dst_reg)
6235 {
6236 u32 dst = insn->dst_reg;
6237
6238 /* For unprivileged we require that resulting offset must be in bounds
6239 * in order to be able to sanitize access later on.
6240 */
6241 if (env->bypass_spec_v1)
6242 return 0;
6243
6244 switch (dst_reg->type) {
6245 case PTR_TO_STACK:
6246 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6247 dst_reg->off + dst_reg->var_off.value))
6248 return -EACCES;
6249 break;
6250 case PTR_TO_MAP_VALUE:
6251 if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6252 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6253 "prohibited for !root\n", dst);
6254 return -EACCES;
6255 }
6256 break;
6257 default:
6258 break;
6259 }
6260
6261 return 0;
6262 }
6263
6264 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6265 * Caller should also handle BPF_MOV case separately.
6266 * If we return -EACCES, caller may want to try again treating pointer as a
6267 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
6268 */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)6269 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6270 struct bpf_insn *insn,
6271 const struct bpf_reg_state *ptr_reg,
6272 const struct bpf_reg_state *off_reg)
6273 {
6274 struct bpf_verifier_state *vstate = env->cur_state;
6275 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6276 struct bpf_reg_state *regs = state->regs, *dst_reg;
6277 bool known = tnum_is_const(off_reg->var_off);
6278 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6279 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6280 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6281 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6282 struct bpf_sanitize_info info = {};
6283 u8 opcode = BPF_OP(insn->code);
6284 u32 dst = insn->dst_reg;
6285 int ret;
6286
6287 dst_reg = ®s[dst];
6288
6289 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6290 smin_val > smax_val || umin_val > umax_val) {
6291 /* Taint dst register if offset had invalid bounds derived from
6292 * e.g. dead branches.
6293 */
6294 __mark_reg_unknown(env, dst_reg);
6295 return 0;
6296 }
6297
6298 if (BPF_CLASS(insn->code) != BPF_ALU64) {
6299 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6300 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6301 __mark_reg_unknown(env, dst_reg);
6302 return 0;
6303 }
6304
6305 verbose(env,
6306 "R%d 32-bit pointer arithmetic prohibited\n",
6307 dst);
6308 return -EACCES;
6309 }
6310
6311 if (ptr_reg->type & PTR_MAYBE_NULL) {
6312 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6313 dst, reg_type_str(env, ptr_reg->type));
6314 return -EACCES;
6315 }
6316
6317 switch (base_type(ptr_reg->type)) {
6318 case PTR_TO_FLOW_KEYS:
6319 if (known)
6320 break;
6321 fallthrough;
6322 case CONST_PTR_TO_MAP:
6323 /* smin_val represents the known value */
6324 if (known && smin_val == 0 && opcode == BPF_ADD)
6325 break;
6326 fallthrough;
6327 case PTR_TO_PACKET_END:
6328 case PTR_TO_SOCKET:
6329 case PTR_TO_SOCK_COMMON:
6330 case PTR_TO_TCP_SOCK:
6331 case PTR_TO_XDP_SOCK:
6332 reject:
6333 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6334 dst, reg_type_str(env, ptr_reg->type));
6335 return -EACCES;
6336 default:
6337 if (type_may_be_null(ptr_reg->type))
6338 goto reject;
6339 break;
6340 }
6341
6342 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6343 * The id may be overwritten later if we create a new variable offset.
6344 */
6345 dst_reg->type = ptr_reg->type;
6346 dst_reg->id = ptr_reg->id;
6347
6348 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6349 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6350 return -EINVAL;
6351
6352 /* pointer types do not carry 32-bit bounds at the moment. */
6353 __mark_reg32_unbounded(dst_reg);
6354
6355 if (sanitize_needed(opcode)) {
6356 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
6357 &info, false);
6358 if (ret < 0)
6359 return sanitize_err(env, insn, ret, off_reg, dst_reg);
6360 }
6361
6362 switch (opcode) {
6363 case BPF_ADD:
6364 /* We can take a fixed offset as long as it doesn't overflow
6365 * the s32 'off' field
6366 */
6367 if (known && (ptr_reg->off + smin_val ==
6368 (s64)(s32)(ptr_reg->off + smin_val))) {
6369 /* pointer += K. Accumulate it into fixed offset */
6370 dst_reg->smin_value = smin_ptr;
6371 dst_reg->smax_value = smax_ptr;
6372 dst_reg->umin_value = umin_ptr;
6373 dst_reg->umax_value = umax_ptr;
6374 dst_reg->var_off = ptr_reg->var_off;
6375 dst_reg->off = ptr_reg->off + smin_val;
6376 dst_reg->raw = ptr_reg->raw;
6377 break;
6378 }
6379 /* A new variable offset is created. Note that off_reg->off
6380 * == 0, since it's a scalar.
6381 * dst_reg gets the pointer type and since some positive
6382 * integer value was added to the pointer, give it a new 'id'
6383 * if it's a PTR_TO_PACKET.
6384 * this creates a new 'base' pointer, off_reg (variable) gets
6385 * added into the variable offset, and we copy the fixed offset
6386 * from ptr_reg.
6387 */
6388 if (signed_add_overflows(smin_ptr, smin_val) ||
6389 signed_add_overflows(smax_ptr, smax_val)) {
6390 dst_reg->smin_value = S64_MIN;
6391 dst_reg->smax_value = S64_MAX;
6392 } else {
6393 dst_reg->smin_value = smin_ptr + smin_val;
6394 dst_reg->smax_value = smax_ptr + smax_val;
6395 }
6396 if (umin_ptr + umin_val < umin_ptr ||
6397 umax_ptr + umax_val < umax_ptr) {
6398 dst_reg->umin_value = 0;
6399 dst_reg->umax_value = U64_MAX;
6400 } else {
6401 dst_reg->umin_value = umin_ptr + umin_val;
6402 dst_reg->umax_value = umax_ptr + umax_val;
6403 }
6404 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6405 dst_reg->off = ptr_reg->off;
6406 dst_reg->raw = ptr_reg->raw;
6407 if (reg_is_pkt_pointer(ptr_reg)) {
6408 dst_reg->id = ++env->id_gen;
6409 /* something was added to pkt_ptr, set range to zero */
6410 dst_reg->raw = 0;
6411 }
6412 break;
6413 case BPF_SUB:
6414 if (dst_reg == off_reg) {
6415 /* scalar -= pointer. Creates an unknown scalar */
6416 verbose(env, "R%d tried to subtract pointer from scalar\n",
6417 dst);
6418 return -EACCES;
6419 }
6420 /* We don't allow subtraction from FP, because (according to
6421 * test_verifier.c test "invalid fp arithmetic", JITs might not
6422 * be able to deal with it.
6423 */
6424 if (ptr_reg->type == PTR_TO_STACK) {
6425 verbose(env, "R%d subtraction from stack pointer prohibited\n",
6426 dst);
6427 return -EACCES;
6428 }
6429 if (known && (ptr_reg->off - smin_val ==
6430 (s64)(s32)(ptr_reg->off - smin_val))) {
6431 /* pointer -= K. Subtract it from fixed offset */
6432 dst_reg->smin_value = smin_ptr;
6433 dst_reg->smax_value = smax_ptr;
6434 dst_reg->umin_value = umin_ptr;
6435 dst_reg->umax_value = umax_ptr;
6436 dst_reg->var_off = ptr_reg->var_off;
6437 dst_reg->id = ptr_reg->id;
6438 dst_reg->off = ptr_reg->off - smin_val;
6439 dst_reg->raw = ptr_reg->raw;
6440 break;
6441 }
6442 /* A new variable offset is created. If the subtrahend is known
6443 * nonnegative, then any reg->range we had before is still good.
6444 */
6445 if (signed_sub_overflows(smin_ptr, smax_val) ||
6446 signed_sub_overflows(smax_ptr, smin_val)) {
6447 /* Overflow possible, we know nothing */
6448 dst_reg->smin_value = S64_MIN;
6449 dst_reg->smax_value = S64_MAX;
6450 } else {
6451 dst_reg->smin_value = smin_ptr - smax_val;
6452 dst_reg->smax_value = smax_ptr - smin_val;
6453 }
6454 if (umin_ptr < umax_val) {
6455 /* Overflow possible, we know nothing */
6456 dst_reg->umin_value = 0;
6457 dst_reg->umax_value = U64_MAX;
6458 } else {
6459 /* Cannot overflow (as long as bounds are consistent) */
6460 dst_reg->umin_value = umin_ptr - umax_val;
6461 dst_reg->umax_value = umax_ptr - umin_val;
6462 }
6463 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6464 dst_reg->off = ptr_reg->off;
6465 dst_reg->raw = ptr_reg->raw;
6466 if (reg_is_pkt_pointer(ptr_reg)) {
6467 dst_reg->id = ++env->id_gen;
6468 /* something was added to pkt_ptr, set range to zero */
6469 if (smin_val < 0)
6470 dst_reg->raw = 0;
6471 }
6472 break;
6473 case BPF_AND:
6474 case BPF_OR:
6475 case BPF_XOR:
6476 /* bitwise ops on pointers are troublesome, prohibit. */
6477 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6478 dst, bpf_alu_string[opcode >> 4]);
6479 return -EACCES;
6480 default:
6481 /* other operators (e.g. MUL,LSH) produce non-pointer results */
6482 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6483 dst, bpf_alu_string[opcode >> 4]);
6484 return -EACCES;
6485 }
6486
6487 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6488 return -EINVAL;
6489 reg_bounds_sync(dst_reg);
6490 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6491 return -EACCES;
6492 if (sanitize_needed(opcode)) {
6493 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
6494 &info, true);
6495 if (ret < 0)
6496 return sanitize_err(env, insn, ret, off_reg, dst_reg);
6497 }
6498
6499 return 0;
6500 }
6501
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6502 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6503 struct bpf_reg_state *src_reg)
6504 {
6505 s32 smin_val = src_reg->s32_min_value;
6506 s32 smax_val = src_reg->s32_max_value;
6507 u32 umin_val = src_reg->u32_min_value;
6508 u32 umax_val = src_reg->u32_max_value;
6509
6510 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6511 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6512 dst_reg->s32_min_value = S32_MIN;
6513 dst_reg->s32_max_value = S32_MAX;
6514 } else {
6515 dst_reg->s32_min_value += smin_val;
6516 dst_reg->s32_max_value += smax_val;
6517 }
6518 if (dst_reg->u32_min_value + umin_val < umin_val ||
6519 dst_reg->u32_max_value + umax_val < umax_val) {
6520 dst_reg->u32_min_value = 0;
6521 dst_reg->u32_max_value = U32_MAX;
6522 } else {
6523 dst_reg->u32_min_value += umin_val;
6524 dst_reg->u32_max_value += umax_val;
6525 }
6526 }
6527
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6528 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6529 struct bpf_reg_state *src_reg)
6530 {
6531 s64 smin_val = src_reg->smin_value;
6532 s64 smax_val = src_reg->smax_value;
6533 u64 umin_val = src_reg->umin_value;
6534 u64 umax_val = src_reg->umax_value;
6535
6536 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6537 signed_add_overflows(dst_reg->smax_value, smax_val)) {
6538 dst_reg->smin_value = S64_MIN;
6539 dst_reg->smax_value = S64_MAX;
6540 } else {
6541 dst_reg->smin_value += smin_val;
6542 dst_reg->smax_value += smax_val;
6543 }
6544 if (dst_reg->umin_value + umin_val < umin_val ||
6545 dst_reg->umax_value + umax_val < umax_val) {
6546 dst_reg->umin_value = 0;
6547 dst_reg->umax_value = U64_MAX;
6548 } else {
6549 dst_reg->umin_value += umin_val;
6550 dst_reg->umax_value += umax_val;
6551 }
6552 }
6553
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6554 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6555 struct bpf_reg_state *src_reg)
6556 {
6557 s32 smin_val = src_reg->s32_min_value;
6558 s32 smax_val = src_reg->s32_max_value;
6559 u32 umin_val = src_reg->u32_min_value;
6560 u32 umax_val = src_reg->u32_max_value;
6561
6562 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6563 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6564 /* Overflow possible, we know nothing */
6565 dst_reg->s32_min_value = S32_MIN;
6566 dst_reg->s32_max_value = S32_MAX;
6567 } else {
6568 dst_reg->s32_min_value -= smax_val;
6569 dst_reg->s32_max_value -= smin_val;
6570 }
6571 if (dst_reg->u32_min_value < umax_val) {
6572 /* Overflow possible, we know nothing */
6573 dst_reg->u32_min_value = 0;
6574 dst_reg->u32_max_value = U32_MAX;
6575 } else {
6576 /* Cannot overflow (as long as bounds are consistent) */
6577 dst_reg->u32_min_value -= umax_val;
6578 dst_reg->u32_max_value -= umin_val;
6579 }
6580 }
6581
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6582 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
6583 struct bpf_reg_state *src_reg)
6584 {
6585 s64 smin_val = src_reg->smin_value;
6586 s64 smax_val = src_reg->smax_value;
6587 u64 umin_val = src_reg->umin_value;
6588 u64 umax_val = src_reg->umax_value;
6589
6590 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
6591 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
6592 /* Overflow possible, we know nothing */
6593 dst_reg->smin_value = S64_MIN;
6594 dst_reg->smax_value = S64_MAX;
6595 } else {
6596 dst_reg->smin_value -= smax_val;
6597 dst_reg->smax_value -= smin_val;
6598 }
6599 if (dst_reg->umin_value < umax_val) {
6600 /* Overflow possible, we know nothing */
6601 dst_reg->umin_value = 0;
6602 dst_reg->umax_value = U64_MAX;
6603 } else {
6604 /* Cannot overflow (as long as bounds are consistent) */
6605 dst_reg->umin_value -= umax_val;
6606 dst_reg->umax_value -= umin_val;
6607 }
6608 }
6609
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6610 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
6611 struct bpf_reg_state *src_reg)
6612 {
6613 s32 smin_val = src_reg->s32_min_value;
6614 u32 umin_val = src_reg->u32_min_value;
6615 u32 umax_val = src_reg->u32_max_value;
6616
6617 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
6618 /* Ain't nobody got time to multiply that sign */
6619 __mark_reg32_unbounded(dst_reg);
6620 return;
6621 }
6622 /* Both values are positive, so we can work with unsigned and
6623 * copy the result to signed (unless it exceeds S32_MAX).
6624 */
6625 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
6626 /* Potential overflow, we know nothing */
6627 __mark_reg32_unbounded(dst_reg);
6628 return;
6629 }
6630 dst_reg->u32_min_value *= umin_val;
6631 dst_reg->u32_max_value *= umax_val;
6632 if (dst_reg->u32_max_value > S32_MAX) {
6633 /* Overflow possible, we know nothing */
6634 dst_reg->s32_min_value = S32_MIN;
6635 dst_reg->s32_max_value = S32_MAX;
6636 } else {
6637 dst_reg->s32_min_value = dst_reg->u32_min_value;
6638 dst_reg->s32_max_value = dst_reg->u32_max_value;
6639 }
6640 }
6641
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6642 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
6643 struct bpf_reg_state *src_reg)
6644 {
6645 s64 smin_val = src_reg->smin_value;
6646 u64 umin_val = src_reg->umin_value;
6647 u64 umax_val = src_reg->umax_value;
6648
6649 if (smin_val < 0 || dst_reg->smin_value < 0) {
6650 /* Ain't nobody got time to multiply that sign */
6651 __mark_reg64_unbounded(dst_reg);
6652 return;
6653 }
6654 /* Both values are positive, so we can work with unsigned and
6655 * copy the result to signed (unless it exceeds S64_MAX).
6656 */
6657 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
6658 /* Potential overflow, we know nothing */
6659 __mark_reg64_unbounded(dst_reg);
6660 return;
6661 }
6662 dst_reg->umin_value *= umin_val;
6663 dst_reg->umax_value *= umax_val;
6664 if (dst_reg->umax_value > S64_MAX) {
6665 /* Overflow possible, we know nothing */
6666 dst_reg->smin_value = S64_MIN;
6667 dst_reg->smax_value = S64_MAX;
6668 } else {
6669 dst_reg->smin_value = dst_reg->umin_value;
6670 dst_reg->smax_value = dst_reg->umax_value;
6671 }
6672 }
6673
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6674 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
6675 struct bpf_reg_state *src_reg)
6676 {
6677 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6678 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6679 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6680 s32 smin_val = src_reg->s32_min_value;
6681 u32 umax_val = src_reg->u32_max_value;
6682
6683 if (src_known && dst_known) {
6684 __mark_reg32_known(dst_reg, var32_off.value);
6685 return;
6686 }
6687
6688 /* We get our minimum from the var_off, since that's inherently
6689 * bitwise. Our maximum is the minimum of the operands' maxima.
6690 */
6691 dst_reg->u32_min_value = var32_off.value;
6692 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
6693 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6694 /* Lose signed bounds when ANDing negative numbers,
6695 * ain't nobody got time for that.
6696 */
6697 dst_reg->s32_min_value = S32_MIN;
6698 dst_reg->s32_max_value = S32_MAX;
6699 } else {
6700 /* ANDing two positives gives a positive, so safe to
6701 * cast result into s64.
6702 */
6703 dst_reg->s32_min_value = dst_reg->u32_min_value;
6704 dst_reg->s32_max_value = dst_reg->u32_max_value;
6705 }
6706 }
6707
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6708 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
6709 struct bpf_reg_state *src_reg)
6710 {
6711 bool src_known = tnum_is_const(src_reg->var_off);
6712 bool dst_known = tnum_is_const(dst_reg->var_off);
6713 s64 smin_val = src_reg->smin_value;
6714 u64 umax_val = src_reg->umax_value;
6715
6716 if (src_known && dst_known) {
6717 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6718 return;
6719 }
6720
6721 /* We get our minimum from the var_off, since that's inherently
6722 * bitwise. Our maximum is the minimum of the operands' maxima.
6723 */
6724 dst_reg->umin_value = dst_reg->var_off.value;
6725 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
6726 if (dst_reg->smin_value < 0 || smin_val < 0) {
6727 /* Lose signed bounds when ANDing negative numbers,
6728 * ain't nobody got time for that.
6729 */
6730 dst_reg->smin_value = S64_MIN;
6731 dst_reg->smax_value = S64_MAX;
6732 } else {
6733 /* ANDing two positives gives a positive, so safe to
6734 * cast result into s64.
6735 */
6736 dst_reg->smin_value = dst_reg->umin_value;
6737 dst_reg->smax_value = dst_reg->umax_value;
6738 }
6739 /* We may learn something more from the var_off */
6740 __update_reg_bounds(dst_reg);
6741 }
6742
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6743 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6744 struct bpf_reg_state *src_reg)
6745 {
6746 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6747 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6748 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6749 s32 smin_val = src_reg->s32_min_value;
6750 u32 umin_val = src_reg->u32_min_value;
6751
6752 if (src_known && dst_known) {
6753 __mark_reg32_known(dst_reg, var32_off.value);
6754 return;
6755 }
6756
6757 /* We get our maximum from the var_off, and our minimum is the
6758 * maximum of the operands' minima
6759 */
6760 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6761 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6762 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6763 /* Lose signed bounds when ORing negative numbers,
6764 * ain't nobody got time for that.
6765 */
6766 dst_reg->s32_min_value = S32_MIN;
6767 dst_reg->s32_max_value = S32_MAX;
6768 } else {
6769 /* ORing two positives gives a positive, so safe to
6770 * cast result into s64.
6771 */
6772 dst_reg->s32_min_value = dst_reg->u32_min_value;
6773 dst_reg->s32_max_value = dst_reg->u32_max_value;
6774 }
6775 }
6776
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6777 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6778 struct bpf_reg_state *src_reg)
6779 {
6780 bool src_known = tnum_is_const(src_reg->var_off);
6781 bool dst_known = tnum_is_const(dst_reg->var_off);
6782 s64 smin_val = src_reg->smin_value;
6783 u64 umin_val = src_reg->umin_value;
6784
6785 if (src_known && dst_known) {
6786 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6787 return;
6788 }
6789
6790 /* We get our maximum from the var_off, and our minimum is the
6791 * maximum of the operands' minima
6792 */
6793 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6794 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6795 if (dst_reg->smin_value < 0 || smin_val < 0) {
6796 /* Lose signed bounds when ORing negative numbers,
6797 * ain't nobody got time for that.
6798 */
6799 dst_reg->smin_value = S64_MIN;
6800 dst_reg->smax_value = S64_MAX;
6801 } else {
6802 /* ORing two positives gives a positive, so safe to
6803 * cast result into s64.
6804 */
6805 dst_reg->smin_value = dst_reg->umin_value;
6806 dst_reg->smax_value = dst_reg->umax_value;
6807 }
6808 /* We may learn something more from the var_off */
6809 __update_reg_bounds(dst_reg);
6810 }
6811
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6812 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6813 struct bpf_reg_state *src_reg)
6814 {
6815 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6816 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6817 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6818 s32 smin_val = src_reg->s32_min_value;
6819
6820 if (src_known && dst_known) {
6821 __mark_reg32_known(dst_reg, var32_off.value);
6822 return;
6823 }
6824
6825 /* We get both minimum and maximum from the var32_off. */
6826 dst_reg->u32_min_value = var32_off.value;
6827 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6828
6829 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6830 /* XORing two positive sign numbers gives a positive,
6831 * so safe to cast u32 result into s32.
6832 */
6833 dst_reg->s32_min_value = dst_reg->u32_min_value;
6834 dst_reg->s32_max_value = dst_reg->u32_max_value;
6835 } else {
6836 dst_reg->s32_min_value = S32_MIN;
6837 dst_reg->s32_max_value = S32_MAX;
6838 }
6839 }
6840
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6841 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6842 struct bpf_reg_state *src_reg)
6843 {
6844 bool src_known = tnum_is_const(src_reg->var_off);
6845 bool dst_known = tnum_is_const(dst_reg->var_off);
6846 s64 smin_val = src_reg->smin_value;
6847
6848 if (src_known && dst_known) {
6849 /* dst_reg->var_off.value has been updated earlier */
6850 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6851 return;
6852 }
6853
6854 /* We get both minimum and maximum from the var_off. */
6855 dst_reg->umin_value = dst_reg->var_off.value;
6856 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6857
6858 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6859 /* XORing two positive sign numbers gives a positive,
6860 * so safe to cast u64 result into s64.
6861 */
6862 dst_reg->smin_value = dst_reg->umin_value;
6863 dst_reg->smax_value = dst_reg->umax_value;
6864 } else {
6865 dst_reg->smin_value = S64_MIN;
6866 dst_reg->smax_value = S64_MAX;
6867 }
6868
6869 __update_reg_bounds(dst_reg);
6870 }
6871
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)6872 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6873 u64 umin_val, u64 umax_val)
6874 {
6875 /* We lose all sign bit information (except what we can pick
6876 * up from var_off)
6877 */
6878 dst_reg->s32_min_value = S32_MIN;
6879 dst_reg->s32_max_value = S32_MAX;
6880 /* If we might shift our top bit out, then we know nothing */
6881 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6882 dst_reg->u32_min_value = 0;
6883 dst_reg->u32_max_value = U32_MAX;
6884 } else {
6885 dst_reg->u32_min_value <<= umin_val;
6886 dst_reg->u32_max_value <<= umax_val;
6887 }
6888 }
6889
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6890 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6891 struct bpf_reg_state *src_reg)
6892 {
6893 u32 umax_val = src_reg->u32_max_value;
6894 u32 umin_val = src_reg->u32_min_value;
6895 /* u32 alu operation will zext upper bits */
6896 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6897
6898 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6899 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6900 /* Not required but being careful mark reg64 bounds as unknown so
6901 * that we are forced to pick them up from tnum and zext later and
6902 * if some path skips this step we are still safe.
6903 */
6904 __mark_reg64_unbounded(dst_reg);
6905 __update_reg32_bounds(dst_reg);
6906 }
6907
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)6908 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6909 u64 umin_val, u64 umax_val)
6910 {
6911 /* Special case <<32 because it is a common compiler pattern to sign
6912 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6913 * positive we know this shift will also be positive so we can track
6914 * bounds correctly. Otherwise we lose all sign bit information except
6915 * what we can pick up from var_off. Perhaps we can generalize this
6916 * later to shifts of any length.
6917 */
6918 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6919 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6920 else
6921 dst_reg->smax_value = S64_MAX;
6922
6923 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6924 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6925 else
6926 dst_reg->smin_value = S64_MIN;
6927
6928 /* If we might shift our top bit out, then we know nothing */
6929 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6930 dst_reg->umin_value = 0;
6931 dst_reg->umax_value = U64_MAX;
6932 } else {
6933 dst_reg->umin_value <<= umin_val;
6934 dst_reg->umax_value <<= umax_val;
6935 }
6936 }
6937
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6938 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6939 struct bpf_reg_state *src_reg)
6940 {
6941 u64 umax_val = src_reg->umax_value;
6942 u64 umin_val = src_reg->umin_value;
6943
6944 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
6945 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6946 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6947
6948 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6949 /* We may learn something more from the var_off */
6950 __update_reg_bounds(dst_reg);
6951 }
6952
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6953 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6954 struct bpf_reg_state *src_reg)
6955 {
6956 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6957 u32 umax_val = src_reg->u32_max_value;
6958 u32 umin_val = src_reg->u32_min_value;
6959
6960 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6961 * be negative, then either:
6962 * 1) src_reg might be zero, so the sign bit of the result is
6963 * unknown, so we lose our signed bounds
6964 * 2) it's known negative, thus the unsigned bounds capture the
6965 * signed bounds
6966 * 3) the signed bounds cross zero, so they tell us nothing
6967 * about the result
6968 * If the value in dst_reg is known nonnegative, then again the
6969 * unsigned bounts capture the signed bounds.
6970 * Thus, in all cases it suffices to blow away our signed bounds
6971 * and rely on inferring new ones from the unsigned bounds and
6972 * var_off of the result.
6973 */
6974 dst_reg->s32_min_value = S32_MIN;
6975 dst_reg->s32_max_value = S32_MAX;
6976
6977 dst_reg->var_off = tnum_rshift(subreg, umin_val);
6978 dst_reg->u32_min_value >>= umax_val;
6979 dst_reg->u32_max_value >>= umin_val;
6980
6981 __mark_reg64_unbounded(dst_reg);
6982 __update_reg32_bounds(dst_reg);
6983 }
6984
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6985 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6986 struct bpf_reg_state *src_reg)
6987 {
6988 u64 umax_val = src_reg->umax_value;
6989 u64 umin_val = src_reg->umin_value;
6990
6991 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6992 * be negative, then either:
6993 * 1) src_reg might be zero, so the sign bit of the result is
6994 * unknown, so we lose our signed bounds
6995 * 2) it's known negative, thus the unsigned bounds capture the
6996 * signed bounds
6997 * 3) the signed bounds cross zero, so they tell us nothing
6998 * about the result
6999 * If the value in dst_reg is known nonnegative, then again the
7000 * unsigned bounts capture the signed bounds.
7001 * Thus, in all cases it suffices to blow away our signed bounds
7002 * and rely on inferring new ones from the unsigned bounds and
7003 * var_off of the result.
7004 */
7005 dst_reg->smin_value = S64_MIN;
7006 dst_reg->smax_value = S64_MAX;
7007 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7008 dst_reg->umin_value >>= umax_val;
7009 dst_reg->umax_value >>= umin_val;
7010
7011 /* Its not easy to operate on alu32 bounds here because it depends
7012 * on bits being shifted in. Take easy way out and mark unbounded
7013 * so we can recalculate later from tnum.
7014 */
7015 __mark_reg32_unbounded(dst_reg);
7016 __update_reg_bounds(dst_reg);
7017 }
7018
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7019 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7020 struct bpf_reg_state *src_reg)
7021 {
7022 u64 umin_val = src_reg->u32_min_value;
7023
7024 /* Upon reaching here, src_known is true and
7025 * umax_val is equal to umin_val.
7026 */
7027 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7028 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
7029
7030 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7031
7032 /* blow away the dst_reg umin_value/umax_value and rely on
7033 * dst_reg var_off to refine the result.
7034 */
7035 dst_reg->u32_min_value = 0;
7036 dst_reg->u32_max_value = U32_MAX;
7037
7038 __mark_reg64_unbounded(dst_reg);
7039 __update_reg32_bounds(dst_reg);
7040 }
7041
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)7042 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7043 struct bpf_reg_state *src_reg)
7044 {
7045 u64 umin_val = src_reg->umin_value;
7046
7047 /* Upon reaching here, src_known is true and umax_val is equal
7048 * to umin_val.
7049 */
7050 dst_reg->smin_value >>= umin_val;
7051 dst_reg->smax_value >>= umin_val;
7052
7053 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
7054
7055 /* blow away the dst_reg umin_value/umax_value and rely on
7056 * dst_reg var_off to refine the result.
7057 */
7058 dst_reg->umin_value = 0;
7059 dst_reg->umax_value = U64_MAX;
7060
7061 /* Its not easy to operate on alu32 bounds here because it depends
7062 * on bits being shifted in from upper 32-bits. Take easy way out
7063 * and mark unbounded so we can recalculate later from tnum.
7064 */
7065 __mark_reg32_unbounded(dst_reg);
7066 __update_reg_bounds(dst_reg);
7067 }
7068
7069 /* WARNING: This function does calculations on 64-bit values, but the actual
7070 * execution may occur on 32-bit values. Therefore, things like bitshifts
7071 * need extra checks in the 32-bit case.
7072 */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)7073 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7074 struct bpf_insn *insn,
7075 struct bpf_reg_state *dst_reg,
7076 struct bpf_reg_state src_reg)
7077 {
7078 struct bpf_reg_state *regs = cur_regs(env);
7079 u8 opcode = BPF_OP(insn->code);
7080 bool src_known;
7081 s64 smin_val, smax_val;
7082 u64 umin_val, umax_val;
7083 s32 s32_min_val, s32_max_val;
7084 u32 u32_min_val, u32_max_val;
7085 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
7086 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
7087 int ret;
7088
7089 smin_val = src_reg.smin_value;
7090 smax_val = src_reg.smax_value;
7091 umin_val = src_reg.umin_value;
7092 umax_val = src_reg.umax_value;
7093
7094 s32_min_val = src_reg.s32_min_value;
7095 s32_max_val = src_reg.s32_max_value;
7096 u32_min_val = src_reg.u32_min_value;
7097 u32_max_val = src_reg.u32_max_value;
7098
7099 if (alu32) {
7100 src_known = tnum_subreg_is_const(src_reg.var_off);
7101 if ((src_known &&
7102 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7103 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7104 /* Taint dst register if offset had invalid bounds
7105 * derived from e.g. dead branches.
7106 */
7107 __mark_reg_unknown(env, dst_reg);
7108 return 0;
7109 }
7110 } else {
7111 src_known = tnum_is_const(src_reg.var_off);
7112 if ((src_known &&
7113 (smin_val != smax_val || umin_val != umax_val)) ||
7114 smin_val > smax_val || umin_val > umax_val) {
7115 /* Taint dst register if offset had invalid bounds
7116 * derived from e.g. dead branches.
7117 */
7118 __mark_reg_unknown(env, dst_reg);
7119 return 0;
7120 }
7121 }
7122
7123 if (!src_known &&
7124 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
7125 __mark_reg_unknown(env, dst_reg);
7126 return 0;
7127 }
7128
7129 if (sanitize_needed(opcode)) {
7130 ret = sanitize_val_alu(env, insn);
7131 if (ret < 0)
7132 return sanitize_err(env, insn, ret, NULL, NULL);
7133 }
7134
7135 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
7136 * There are two classes of instructions: The first class we track both
7137 * alu32 and alu64 sign/unsigned bounds independently this provides the
7138 * greatest amount of precision when alu operations are mixed with jmp32
7139 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7140 * and BPF_OR. This is possible because these ops have fairly easy to
7141 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7142 * See alu32 verifier tests for examples. The second class of
7143 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7144 * with regards to tracking sign/unsigned bounds because the bits may
7145 * cross subreg boundaries in the alu64 case. When this happens we mark
7146 * the reg unbounded in the subreg bound space and use the resulting
7147 * tnum to calculate an approximation of the sign/unsigned bounds.
7148 */
7149 switch (opcode) {
7150 case BPF_ADD:
7151 scalar32_min_max_add(dst_reg, &src_reg);
7152 scalar_min_max_add(dst_reg, &src_reg);
7153 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
7154 break;
7155 case BPF_SUB:
7156 scalar32_min_max_sub(dst_reg, &src_reg);
7157 scalar_min_max_sub(dst_reg, &src_reg);
7158 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
7159 break;
7160 case BPF_MUL:
7161 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7162 scalar32_min_max_mul(dst_reg, &src_reg);
7163 scalar_min_max_mul(dst_reg, &src_reg);
7164 break;
7165 case BPF_AND:
7166 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7167 scalar32_min_max_and(dst_reg, &src_reg);
7168 scalar_min_max_and(dst_reg, &src_reg);
7169 break;
7170 case BPF_OR:
7171 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7172 scalar32_min_max_or(dst_reg, &src_reg);
7173 scalar_min_max_or(dst_reg, &src_reg);
7174 break;
7175 case BPF_XOR:
7176 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7177 scalar32_min_max_xor(dst_reg, &src_reg);
7178 scalar_min_max_xor(dst_reg, &src_reg);
7179 break;
7180 case BPF_LSH:
7181 if (umax_val >= insn_bitness) {
7182 /* Shifts greater than 31 or 63 are undefined.
7183 * This includes shifts by a negative number.
7184 */
7185 mark_reg_unknown(env, regs, insn->dst_reg);
7186 break;
7187 }
7188 if (alu32)
7189 scalar32_min_max_lsh(dst_reg, &src_reg);
7190 else
7191 scalar_min_max_lsh(dst_reg, &src_reg);
7192 break;
7193 case BPF_RSH:
7194 if (umax_val >= insn_bitness) {
7195 /* Shifts greater than 31 or 63 are undefined.
7196 * This includes shifts by a negative number.
7197 */
7198 mark_reg_unknown(env, regs, insn->dst_reg);
7199 break;
7200 }
7201 if (alu32)
7202 scalar32_min_max_rsh(dst_reg, &src_reg);
7203 else
7204 scalar_min_max_rsh(dst_reg, &src_reg);
7205 break;
7206 case BPF_ARSH:
7207 if (umax_val >= insn_bitness) {
7208 /* Shifts greater than 31 or 63 are undefined.
7209 * This includes shifts by a negative number.
7210 */
7211 mark_reg_unknown(env, regs, insn->dst_reg);
7212 break;
7213 }
7214 if (alu32)
7215 scalar32_min_max_arsh(dst_reg, &src_reg);
7216 else
7217 scalar_min_max_arsh(dst_reg, &src_reg);
7218 break;
7219 default:
7220 mark_reg_unknown(env, regs, insn->dst_reg);
7221 break;
7222 }
7223
7224 /* ALU32 ops are zero extended into 64bit register */
7225 if (alu32)
7226 zext_32_to_64(dst_reg);
7227 reg_bounds_sync(dst_reg);
7228 return 0;
7229 }
7230
7231 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7232 * and var_off.
7233 */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)7234 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7235 struct bpf_insn *insn)
7236 {
7237 struct bpf_verifier_state *vstate = env->cur_state;
7238 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7239 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7240 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7241 u8 opcode = BPF_OP(insn->code);
7242 int err;
7243
7244 dst_reg = ®s[insn->dst_reg];
7245 src_reg = NULL;
7246 if (dst_reg->type != SCALAR_VALUE)
7247 ptr_reg = dst_reg;
7248 else
7249 /* Make sure ID is cleared otherwise dst_reg min/max could be
7250 * incorrectly propagated into other registers by find_equal_scalars()
7251 */
7252 dst_reg->id = 0;
7253 if (BPF_SRC(insn->code) == BPF_X) {
7254 src_reg = ®s[insn->src_reg];
7255 if (src_reg->type != SCALAR_VALUE) {
7256 if (dst_reg->type != SCALAR_VALUE) {
7257 /* Combining two pointers by any ALU op yields
7258 * an arbitrary scalar. Disallow all math except
7259 * pointer subtraction
7260 */
7261 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7262 mark_reg_unknown(env, regs, insn->dst_reg);
7263 return 0;
7264 }
7265 verbose(env, "R%d pointer %s pointer prohibited\n",
7266 insn->dst_reg,
7267 bpf_alu_string[opcode >> 4]);
7268 return -EACCES;
7269 } else {
7270 /* scalar += pointer
7271 * This is legal, but we have to reverse our
7272 * src/dest handling in computing the range
7273 */
7274 err = mark_chain_precision(env, insn->dst_reg);
7275 if (err)
7276 return err;
7277 return adjust_ptr_min_max_vals(env, insn,
7278 src_reg, dst_reg);
7279 }
7280 } else if (ptr_reg) {
7281 /* pointer += scalar */
7282 err = mark_chain_precision(env, insn->src_reg);
7283 if (err)
7284 return err;
7285 return adjust_ptr_min_max_vals(env, insn,
7286 dst_reg, src_reg);
7287 } else if (dst_reg->precise) {
7288 /* if dst_reg is precise, src_reg should be precise as well */
7289 err = mark_chain_precision(env, insn->src_reg);
7290 if (err)
7291 return err;
7292 }
7293 } else {
7294 /* Pretend the src is a reg with a known value, since we only
7295 * need to be able to read from this state.
7296 */
7297 off_reg.type = SCALAR_VALUE;
7298 __mark_reg_known(&off_reg, insn->imm);
7299 src_reg = &off_reg;
7300 if (ptr_reg) /* pointer += K */
7301 return adjust_ptr_min_max_vals(env, insn,
7302 ptr_reg, src_reg);
7303 }
7304
7305 /* Got here implies adding two SCALAR_VALUEs */
7306 if (WARN_ON_ONCE(ptr_reg)) {
7307 print_verifier_state(env, state);
7308 verbose(env, "verifier internal error: unexpected ptr_reg\n");
7309 return -EINVAL;
7310 }
7311 if (WARN_ON(!src_reg)) {
7312 print_verifier_state(env, state);
7313 verbose(env, "verifier internal error: no src_reg\n");
7314 return -EINVAL;
7315 }
7316 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7317 }
7318
7319 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)7320 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7321 {
7322 struct bpf_reg_state *regs = cur_regs(env);
7323 u8 opcode = BPF_OP(insn->code);
7324 int err;
7325
7326 if (opcode == BPF_END || opcode == BPF_NEG) {
7327 if (opcode == BPF_NEG) {
7328 if (BPF_SRC(insn->code) != 0 ||
7329 insn->src_reg != BPF_REG_0 ||
7330 insn->off != 0 || insn->imm != 0) {
7331 verbose(env, "BPF_NEG uses reserved fields\n");
7332 return -EINVAL;
7333 }
7334 } else {
7335 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7336 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7337 BPF_CLASS(insn->code) == BPF_ALU64) {
7338 verbose(env, "BPF_END uses reserved fields\n");
7339 return -EINVAL;
7340 }
7341 }
7342
7343 /* check src operand */
7344 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7345 if (err)
7346 return err;
7347
7348 if (is_pointer_value(env, insn->dst_reg)) {
7349 verbose(env, "R%d pointer arithmetic prohibited\n",
7350 insn->dst_reg);
7351 return -EACCES;
7352 }
7353
7354 /* check dest operand */
7355 err = check_reg_arg(env, insn->dst_reg, DST_OP);
7356 if (err)
7357 return err;
7358
7359 } else if (opcode == BPF_MOV) {
7360
7361 if (BPF_SRC(insn->code) == BPF_X) {
7362 if (insn->imm != 0 || insn->off != 0) {
7363 verbose(env, "BPF_MOV uses reserved fields\n");
7364 return -EINVAL;
7365 }
7366
7367 /* check src operand */
7368 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7369 if (err)
7370 return err;
7371 } else {
7372 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7373 verbose(env, "BPF_MOV uses reserved fields\n");
7374 return -EINVAL;
7375 }
7376 }
7377
7378 /* check dest operand, mark as required later */
7379 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7380 if (err)
7381 return err;
7382
7383 if (BPF_SRC(insn->code) == BPF_X) {
7384 struct bpf_reg_state *src_reg = regs + insn->src_reg;
7385 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7386
7387 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7388 /* case: R1 = R2
7389 * copy register state to dest reg
7390 */
7391 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7392 /* Assign src and dst registers the same ID
7393 * that will be used by find_equal_scalars()
7394 * to propagate min/max range.
7395 */
7396 src_reg->id = ++env->id_gen;
7397 copy_register_state(dst_reg, src_reg);
7398 dst_reg->live |= REG_LIVE_WRITTEN;
7399 dst_reg->subreg_def = DEF_NOT_SUBREG;
7400 } else {
7401 /* R1 = (u32) R2 */
7402 if (is_pointer_value(env, insn->src_reg)) {
7403 verbose(env,
7404 "R%d partial copy of pointer\n",
7405 insn->src_reg);
7406 return -EACCES;
7407 } else if (src_reg->type == SCALAR_VALUE) {
7408 copy_register_state(dst_reg, src_reg);
7409 /* Make sure ID is cleared otherwise
7410 * dst_reg min/max could be incorrectly
7411 * propagated into src_reg by find_equal_scalars()
7412 */
7413 dst_reg->id = 0;
7414 dst_reg->live |= REG_LIVE_WRITTEN;
7415 dst_reg->subreg_def = env->insn_idx + 1;
7416 } else {
7417 mark_reg_unknown(env, regs,
7418 insn->dst_reg);
7419 }
7420 zext_32_to_64(dst_reg);
7421 reg_bounds_sync(dst_reg);
7422 }
7423 } else {
7424 /* case: R = imm
7425 * remember the value we stored into this reg
7426 */
7427 /* clear any state __mark_reg_known doesn't set */
7428 mark_reg_unknown(env, regs, insn->dst_reg);
7429 regs[insn->dst_reg].type = SCALAR_VALUE;
7430 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7431 __mark_reg_known(regs + insn->dst_reg,
7432 insn->imm);
7433 } else {
7434 __mark_reg_known(regs + insn->dst_reg,
7435 (u32)insn->imm);
7436 }
7437 }
7438
7439 } else if (opcode > BPF_END) {
7440 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7441 return -EINVAL;
7442
7443 } else { /* all other ALU ops: and, sub, xor, add, ... */
7444
7445 if (BPF_SRC(insn->code) == BPF_X) {
7446 if (insn->imm != 0 || insn->off != 0) {
7447 verbose(env, "BPF_ALU uses reserved fields\n");
7448 return -EINVAL;
7449 }
7450 /* check src1 operand */
7451 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7452 if (err)
7453 return err;
7454 } else {
7455 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7456 verbose(env, "BPF_ALU uses reserved fields\n");
7457 return -EINVAL;
7458 }
7459 }
7460
7461 /* check src2 operand */
7462 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7463 if (err)
7464 return err;
7465
7466 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7467 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7468 verbose(env, "div by zero\n");
7469 return -EINVAL;
7470 }
7471
7472 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7473 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7474 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7475
7476 if (insn->imm < 0 || insn->imm >= size) {
7477 verbose(env, "invalid shift %d\n", insn->imm);
7478 return -EINVAL;
7479 }
7480 }
7481
7482 /* check dest operand */
7483 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7484 if (err)
7485 return err;
7486
7487 return adjust_reg_min_max_vals(env, insn);
7488 }
7489
7490 return 0;
7491 }
7492
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)7493 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7494 struct bpf_reg_state *dst_reg,
7495 enum bpf_reg_type type,
7496 bool range_right_open)
7497 {
7498 struct bpf_func_state *state;
7499 struct bpf_reg_state *reg;
7500 int new_range;
7501
7502 if (dst_reg->off < 0 ||
7503 (dst_reg->off == 0 && range_right_open))
7504 /* This doesn't give us any range */
7505 return;
7506
7507 if (dst_reg->umax_value > MAX_PACKET_OFF ||
7508 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7509 /* Risk of overflow. For instance, ptr + (1<<63) may be less
7510 * than pkt_end, but that's because it's also less than pkt.
7511 */
7512 return;
7513
7514 new_range = dst_reg->off;
7515 if (range_right_open)
7516 new_range++;
7517
7518 /* Examples for register markings:
7519 *
7520 * pkt_data in dst register:
7521 *
7522 * r2 = r3;
7523 * r2 += 8;
7524 * if (r2 > pkt_end) goto <handle exception>
7525 * <access okay>
7526 *
7527 * r2 = r3;
7528 * r2 += 8;
7529 * if (r2 < pkt_end) goto <access okay>
7530 * <handle exception>
7531 *
7532 * Where:
7533 * r2 == dst_reg, pkt_end == src_reg
7534 * r2=pkt(id=n,off=8,r=0)
7535 * r3=pkt(id=n,off=0,r=0)
7536 *
7537 * pkt_data in src register:
7538 *
7539 * r2 = r3;
7540 * r2 += 8;
7541 * if (pkt_end >= r2) goto <access okay>
7542 * <handle exception>
7543 *
7544 * r2 = r3;
7545 * r2 += 8;
7546 * if (pkt_end <= r2) goto <handle exception>
7547 * <access okay>
7548 *
7549 * Where:
7550 * pkt_end == dst_reg, r2 == src_reg
7551 * r2=pkt(id=n,off=8,r=0)
7552 * r3=pkt(id=n,off=0,r=0)
7553 *
7554 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
7555 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
7556 * and [r3, r3 + 8-1) respectively is safe to access depending on
7557 * the check.
7558 */
7559
7560 /* If our ids match, then we must have the same max_value. And we
7561 * don't care about the other reg's fixed offset, since if it's too big
7562 * the range won't allow anything.
7563 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
7564 */
7565 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
7566 if (reg->type == type && reg->id == dst_reg->id)
7567 /* keep the maximum range already checked */
7568 reg->range = max(reg->range, new_range);
7569 }));
7570 }
7571
is_branch32_taken(struct bpf_reg_state * reg,u32 val,u8 opcode)7572 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
7573 {
7574 struct tnum subreg = tnum_subreg(reg->var_off);
7575 s32 sval = (s32)val;
7576
7577 switch (opcode) {
7578 case BPF_JEQ:
7579 if (tnum_is_const(subreg))
7580 return !!tnum_equals_const(subreg, val);
7581 break;
7582 case BPF_JNE:
7583 if (tnum_is_const(subreg))
7584 return !tnum_equals_const(subreg, val);
7585 break;
7586 case BPF_JSET:
7587 if ((~subreg.mask & subreg.value) & val)
7588 return 1;
7589 if (!((subreg.mask | subreg.value) & val))
7590 return 0;
7591 break;
7592 case BPF_JGT:
7593 if (reg->u32_min_value > val)
7594 return 1;
7595 else if (reg->u32_max_value <= val)
7596 return 0;
7597 break;
7598 case BPF_JSGT:
7599 if (reg->s32_min_value > sval)
7600 return 1;
7601 else if (reg->s32_max_value <= sval)
7602 return 0;
7603 break;
7604 case BPF_JLT:
7605 if (reg->u32_max_value < val)
7606 return 1;
7607 else if (reg->u32_min_value >= val)
7608 return 0;
7609 break;
7610 case BPF_JSLT:
7611 if (reg->s32_max_value < sval)
7612 return 1;
7613 else if (reg->s32_min_value >= sval)
7614 return 0;
7615 break;
7616 case BPF_JGE:
7617 if (reg->u32_min_value >= val)
7618 return 1;
7619 else if (reg->u32_max_value < val)
7620 return 0;
7621 break;
7622 case BPF_JSGE:
7623 if (reg->s32_min_value >= sval)
7624 return 1;
7625 else if (reg->s32_max_value < sval)
7626 return 0;
7627 break;
7628 case BPF_JLE:
7629 if (reg->u32_max_value <= val)
7630 return 1;
7631 else if (reg->u32_min_value > val)
7632 return 0;
7633 break;
7634 case BPF_JSLE:
7635 if (reg->s32_max_value <= sval)
7636 return 1;
7637 else if (reg->s32_min_value > sval)
7638 return 0;
7639 break;
7640 }
7641
7642 return -1;
7643 }
7644
7645
is_branch64_taken(struct bpf_reg_state * reg,u64 val,u8 opcode)7646 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
7647 {
7648 s64 sval = (s64)val;
7649
7650 switch (opcode) {
7651 case BPF_JEQ:
7652 if (tnum_is_const(reg->var_off))
7653 return !!tnum_equals_const(reg->var_off, val);
7654 break;
7655 case BPF_JNE:
7656 if (tnum_is_const(reg->var_off))
7657 return !tnum_equals_const(reg->var_off, val);
7658 break;
7659 case BPF_JSET:
7660 if ((~reg->var_off.mask & reg->var_off.value) & val)
7661 return 1;
7662 if (!((reg->var_off.mask | reg->var_off.value) & val))
7663 return 0;
7664 break;
7665 case BPF_JGT:
7666 if (reg->umin_value > val)
7667 return 1;
7668 else if (reg->umax_value <= val)
7669 return 0;
7670 break;
7671 case BPF_JSGT:
7672 if (reg->smin_value > sval)
7673 return 1;
7674 else if (reg->smax_value <= sval)
7675 return 0;
7676 break;
7677 case BPF_JLT:
7678 if (reg->umax_value < val)
7679 return 1;
7680 else if (reg->umin_value >= val)
7681 return 0;
7682 break;
7683 case BPF_JSLT:
7684 if (reg->smax_value < sval)
7685 return 1;
7686 else if (reg->smin_value >= sval)
7687 return 0;
7688 break;
7689 case BPF_JGE:
7690 if (reg->umin_value >= val)
7691 return 1;
7692 else if (reg->umax_value < val)
7693 return 0;
7694 break;
7695 case BPF_JSGE:
7696 if (reg->smin_value >= sval)
7697 return 1;
7698 else if (reg->smax_value < sval)
7699 return 0;
7700 break;
7701 case BPF_JLE:
7702 if (reg->umax_value <= val)
7703 return 1;
7704 else if (reg->umin_value > val)
7705 return 0;
7706 break;
7707 case BPF_JSLE:
7708 if (reg->smax_value <= sval)
7709 return 1;
7710 else if (reg->smin_value > sval)
7711 return 0;
7712 break;
7713 }
7714
7715 return -1;
7716 }
7717
7718 /* compute branch direction of the expression "if (reg opcode val) goto target;"
7719 * and return:
7720 * 1 - branch will be taken and "goto target" will be executed
7721 * 0 - branch will not be taken and fall-through to next insn
7722 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7723 * range [0,10]
7724 */
is_branch_taken(struct bpf_reg_state * reg,u64 val,u8 opcode,bool is_jmp32)7725 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7726 bool is_jmp32)
7727 {
7728 if (__is_pointer_value(false, reg)) {
7729 if (!reg_type_not_null(reg->type))
7730 return -1;
7731
7732 /* If pointer is valid tests against zero will fail so we can
7733 * use this to direct branch taken.
7734 */
7735 if (val != 0)
7736 return -1;
7737
7738 switch (opcode) {
7739 case BPF_JEQ:
7740 return 0;
7741 case BPF_JNE:
7742 return 1;
7743 default:
7744 return -1;
7745 }
7746 }
7747
7748 if (is_jmp32)
7749 return is_branch32_taken(reg, val, opcode);
7750 return is_branch64_taken(reg, val, opcode);
7751 }
7752
flip_opcode(u32 opcode)7753 static int flip_opcode(u32 opcode)
7754 {
7755 /* How can we transform "a <op> b" into "b <op> a"? */
7756 static const u8 opcode_flip[16] = {
7757 /* these stay the same */
7758 [BPF_JEQ >> 4] = BPF_JEQ,
7759 [BPF_JNE >> 4] = BPF_JNE,
7760 [BPF_JSET >> 4] = BPF_JSET,
7761 /* these swap "lesser" and "greater" (L and G in the opcodes) */
7762 [BPF_JGE >> 4] = BPF_JLE,
7763 [BPF_JGT >> 4] = BPF_JLT,
7764 [BPF_JLE >> 4] = BPF_JGE,
7765 [BPF_JLT >> 4] = BPF_JGT,
7766 [BPF_JSGE >> 4] = BPF_JSLE,
7767 [BPF_JSGT >> 4] = BPF_JSLT,
7768 [BPF_JSLE >> 4] = BPF_JSGE,
7769 [BPF_JSLT >> 4] = BPF_JSGT
7770 };
7771 return opcode_flip[opcode >> 4];
7772 }
7773
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)7774 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7775 struct bpf_reg_state *src_reg,
7776 u8 opcode)
7777 {
7778 struct bpf_reg_state *pkt;
7779
7780 if (src_reg->type == PTR_TO_PACKET_END) {
7781 pkt = dst_reg;
7782 } else if (dst_reg->type == PTR_TO_PACKET_END) {
7783 pkt = src_reg;
7784 opcode = flip_opcode(opcode);
7785 } else {
7786 return -1;
7787 }
7788
7789 if (pkt->range >= 0)
7790 return -1;
7791
7792 switch (opcode) {
7793 case BPF_JLE:
7794 /* pkt <= pkt_end */
7795 fallthrough;
7796 case BPF_JGT:
7797 /* pkt > pkt_end */
7798 if (pkt->range == BEYOND_PKT_END)
7799 /* pkt has at last one extra byte beyond pkt_end */
7800 return opcode == BPF_JGT;
7801 break;
7802 case BPF_JLT:
7803 /* pkt < pkt_end */
7804 fallthrough;
7805 case BPF_JGE:
7806 /* pkt >= pkt_end */
7807 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7808 return opcode == BPF_JGE;
7809 break;
7810 }
7811 return -1;
7812 }
7813
7814 /* Adjusts the register min/max values in the case that the dst_reg is the
7815 * variable register that we are working on, and src_reg is a constant or we're
7816 * simply doing a BPF_K check.
7817 * In JEQ/JNE cases we also adjust the var_off values.
7818 */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)7819 static void reg_set_min_max(struct bpf_reg_state *true_reg,
7820 struct bpf_reg_state *false_reg,
7821 u64 val, u32 val32,
7822 u8 opcode, bool is_jmp32)
7823 {
7824 struct tnum false_32off = tnum_subreg(false_reg->var_off);
7825 struct tnum false_64off = false_reg->var_off;
7826 struct tnum true_32off = tnum_subreg(true_reg->var_off);
7827 struct tnum true_64off = true_reg->var_off;
7828 s64 sval = (s64)val;
7829 s32 sval32 = (s32)val32;
7830
7831 /* If the dst_reg is a pointer, we can't learn anything about its
7832 * variable offset from the compare (unless src_reg were a pointer into
7833 * the same object, but we don't bother with that.
7834 * Since false_reg and true_reg have the same type by construction, we
7835 * only need to check one of them for pointerness.
7836 */
7837 if (__is_pointer_value(false, false_reg))
7838 return;
7839
7840 switch (opcode) {
7841 /* JEQ/JNE comparison doesn't change the register equivalence.
7842 *
7843 * r1 = r2;
7844 * if (r1 == 42) goto label;
7845 * ...
7846 * label: // here both r1 and r2 are known to be 42.
7847 *
7848 * Hence when marking register as known preserve it's ID.
7849 */
7850 case BPF_JEQ:
7851 if (is_jmp32) {
7852 __mark_reg32_known(true_reg, val32);
7853 true_32off = tnum_subreg(true_reg->var_off);
7854 } else {
7855 ___mark_reg_known(true_reg, val);
7856 true_64off = true_reg->var_off;
7857 }
7858 break;
7859 case BPF_JNE:
7860 if (is_jmp32) {
7861 __mark_reg32_known(false_reg, val32);
7862 false_32off = tnum_subreg(false_reg->var_off);
7863 } else {
7864 ___mark_reg_known(false_reg, val);
7865 false_64off = false_reg->var_off;
7866 }
7867 break;
7868 case BPF_JSET:
7869 if (is_jmp32) {
7870 false_32off = tnum_and(false_32off, tnum_const(~val32));
7871 if (is_power_of_2(val32))
7872 true_32off = tnum_or(true_32off,
7873 tnum_const(val32));
7874 } else {
7875 false_64off = tnum_and(false_64off, tnum_const(~val));
7876 if (is_power_of_2(val))
7877 true_64off = tnum_or(true_64off,
7878 tnum_const(val));
7879 }
7880 break;
7881 case BPF_JGE:
7882 case BPF_JGT:
7883 {
7884 if (is_jmp32) {
7885 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
7886 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7887
7888 false_reg->u32_max_value = min(false_reg->u32_max_value,
7889 false_umax);
7890 true_reg->u32_min_value = max(true_reg->u32_min_value,
7891 true_umin);
7892 } else {
7893 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
7894 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7895
7896 false_reg->umax_value = min(false_reg->umax_value, false_umax);
7897 true_reg->umin_value = max(true_reg->umin_value, true_umin);
7898 }
7899 break;
7900 }
7901 case BPF_JSGE:
7902 case BPF_JSGT:
7903 {
7904 if (is_jmp32) {
7905 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
7906 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7907
7908 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7909 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7910 } else {
7911 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
7912 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7913
7914 false_reg->smax_value = min(false_reg->smax_value, false_smax);
7915 true_reg->smin_value = max(true_reg->smin_value, true_smin);
7916 }
7917 break;
7918 }
7919 case BPF_JLE:
7920 case BPF_JLT:
7921 {
7922 if (is_jmp32) {
7923 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
7924 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7925
7926 false_reg->u32_min_value = max(false_reg->u32_min_value,
7927 false_umin);
7928 true_reg->u32_max_value = min(true_reg->u32_max_value,
7929 true_umax);
7930 } else {
7931 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
7932 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7933
7934 false_reg->umin_value = max(false_reg->umin_value, false_umin);
7935 true_reg->umax_value = min(true_reg->umax_value, true_umax);
7936 }
7937 break;
7938 }
7939 case BPF_JSLE:
7940 case BPF_JSLT:
7941 {
7942 if (is_jmp32) {
7943 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
7944 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7945
7946 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7947 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7948 } else {
7949 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
7950 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7951
7952 false_reg->smin_value = max(false_reg->smin_value, false_smin);
7953 true_reg->smax_value = min(true_reg->smax_value, true_smax);
7954 }
7955 break;
7956 }
7957 default:
7958 return;
7959 }
7960
7961 if (is_jmp32) {
7962 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7963 tnum_subreg(false_32off));
7964 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7965 tnum_subreg(true_32off));
7966 __reg_combine_32_into_64(false_reg);
7967 __reg_combine_32_into_64(true_reg);
7968 } else {
7969 false_reg->var_off = false_64off;
7970 true_reg->var_off = true_64off;
7971 __reg_combine_64_into_32(false_reg);
7972 __reg_combine_64_into_32(true_reg);
7973 }
7974 }
7975
7976 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7977 * the variable reg.
7978 */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)7979 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7980 struct bpf_reg_state *false_reg,
7981 u64 val, u32 val32,
7982 u8 opcode, bool is_jmp32)
7983 {
7984 opcode = flip_opcode(opcode);
7985 /* This uses zero as "not present in table"; luckily the zero opcode,
7986 * BPF_JA, can't get here.
7987 */
7988 if (opcode)
7989 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7990 }
7991
7992 /* Regs are known to be equal, so intersect their min/max/var_off */
__reg_combine_min_max(struct bpf_reg_state * src_reg,struct bpf_reg_state * dst_reg)7993 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7994 struct bpf_reg_state *dst_reg)
7995 {
7996 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7997 dst_reg->umin_value);
7998 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7999 dst_reg->umax_value);
8000 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8001 dst_reg->smin_value);
8002 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8003 dst_reg->smax_value);
8004 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8005 dst_reg->var_off);
8006 reg_bounds_sync(src_reg);
8007 reg_bounds_sync(dst_reg);
8008 }
8009
reg_combine_min_max(struct bpf_reg_state * true_src,struct bpf_reg_state * true_dst,struct bpf_reg_state * false_src,struct bpf_reg_state * false_dst,u8 opcode)8010 static void reg_combine_min_max(struct bpf_reg_state *true_src,
8011 struct bpf_reg_state *true_dst,
8012 struct bpf_reg_state *false_src,
8013 struct bpf_reg_state *false_dst,
8014 u8 opcode)
8015 {
8016 switch (opcode) {
8017 case BPF_JEQ:
8018 __reg_combine_min_max(true_src, true_dst);
8019 break;
8020 case BPF_JNE:
8021 __reg_combine_min_max(false_src, false_dst);
8022 break;
8023 }
8024 }
8025
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)8026 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8027 struct bpf_reg_state *reg, u32 id,
8028 bool is_null)
8029 {
8030 if (type_may_be_null(reg->type) && reg->id == id &&
8031 !WARN_ON_ONCE(!reg->id)) {
8032 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8033 !tnum_equals_const(reg->var_off, 0) ||
8034 reg->off)) {
8035 /* Old offset (both fixed and variable parts) should
8036 * have been known-zero, because we don't allow pointer
8037 * arithmetic on pointers that might be NULL. If we
8038 * see this happening, don't convert the register.
8039 */
8040 return;
8041 }
8042 if (is_null) {
8043 reg->type = SCALAR_VALUE;
8044 } else if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
8045 const struct bpf_map *map = reg->map_ptr;
8046
8047 if (map->inner_map_meta) {
8048 reg->type = CONST_PTR_TO_MAP;
8049 reg->map_ptr = map->inner_map_meta;
8050 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
8051 reg->type = PTR_TO_XDP_SOCK;
8052 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
8053 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
8054 reg->type = PTR_TO_SOCKET;
8055 } else {
8056 reg->type = PTR_TO_MAP_VALUE;
8057 }
8058 } else {
8059 reg->type &= ~PTR_MAYBE_NULL;
8060 }
8061
8062 if (is_null) {
8063 /* We don't need id and ref_obj_id from this point
8064 * onwards anymore, thus we should better reset it,
8065 * so that state pruning has chances to take effect.
8066 */
8067 reg->id = 0;
8068 reg->ref_obj_id = 0;
8069 } else if (!reg_may_point_to_spin_lock(reg)) {
8070 /* For not-NULL ptr, reg->ref_obj_id will be reset
8071 * in release_reference().
8072 *
8073 * reg->id is still used by spin_lock ptr. Other
8074 * than spin_lock ptr type, reg->id can be reset.
8075 */
8076 reg->id = 0;
8077 }
8078 }
8079 }
8080
8081 /* The logic is similar to find_good_pkt_pointers(), both could eventually
8082 * be folded together at some point.
8083 */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)8084 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8085 bool is_null)
8086 {
8087 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8088 struct bpf_reg_state *regs = state->regs, *reg;
8089 u32 ref_obj_id = regs[regno].ref_obj_id;
8090 u32 id = regs[regno].id;
8091
8092 if (ref_obj_id && ref_obj_id == id && is_null)
8093 /* regs[regno] is in the " == NULL" branch.
8094 * No one could have freed the reference state before
8095 * doing the NULL check.
8096 */
8097 WARN_ON_ONCE(release_reference_state(state, id));
8098
8099 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
8100 mark_ptr_or_null_reg(state, reg, id, is_null);
8101 }));
8102 }
8103
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)8104 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
8105 struct bpf_reg_state *dst_reg,
8106 struct bpf_reg_state *src_reg,
8107 struct bpf_verifier_state *this_branch,
8108 struct bpf_verifier_state *other_branch)
8109 {
8110 if (BPF_SRC(insn->code) != BPF_X)
8111 return false;
8112
8113 /* Pointers are always 64-bit. */
8114 if (BPF_CLASS(insn->code) == BPF_JMP32)
8115 return false;
8116
8117 switch (BPF_OP(insn->code)) {
8118 case BPF_JGT:
8119 if ((dst_reg->type == PTR_TO_PACKET &&
8120 src_reg->type == PTR_TO_PACKET_END) ||
8121 (dst_reg->type == PTR_TO_PACKET_META &&
8122 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8123 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8124 find_good_pkt_pointers(this_branch, dst_reg,
8125 dst_reg->type, false);
8126 mark_pkt_end(other_branch, insn->dst_reg, true);
8127 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8128 src_reg->type == PTR_TO_PACKET) ||
8129 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8130 src_reg->type == PTR_TO_PACKET_META)) {
8131 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
8132 find_good_pkt_pointers(other_branch, src_reg,
8133 src_reg->type, true);
8134 mark_pkt_end(this_branch, insn->src_reg, false);
8135 } else {
8136 return false;
8137 }
8138 break;
8139 case BPF_JLT:
8140 if ((dst_reg->type == PTR_TO_PACKET &&
8141 src_reg->type == PTR_TO_PACKET_END) ||
8142 (dst_reg->type == PTR_TO_PACKET_META &&
8143 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8144 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8145 find_good_pkt_pointers(other_branch, dst_reg,
8146 dst_reg->type, true);
8147 mark_pkt_end(this_branch, insn->dst_reg, false);
8148 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8149 src_reg->type == PTR_TO_PACKET) ||
8150 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8151 src_reg->type == PTR_TO_PACKET_META)) {
8152 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
8153 find_good_pkt_pointers(this_branch, src_reg,
8154 src_reg->type, false);
8155 mark_pkt_end(other_branch, insn->src_reg, true);
8156 } else {
8157 return false;
8158 }
8159 break;
8160 case BPF_JGE:
8161 if ((dst_reg->type == PTR_TO_PACKET &&
8162 src_reg->type == PTR_TO_PACKET_END) ||
8163 (dst_reg->type == PTR_TO_PACKET_META &&
8164 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8165 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8166 find_good_pkt_pointers(this_branch, dst_reg,
8167 dst_reg->type, true);
8168 mark_pkt_end(other_branch, insn->dst_reg, false);
8169 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8170 src_reg->type == PTR_TO_PACKET) ||
8171 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8172 src_reg->type == PTR_TO_PACKET_META)) {
8173 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8174 find_good_pkt_pointers(other_branch, src_reg,
8175 src_reg->type, false);
8176 mark_pkt_end(this_branch, insn->src_reg, true);
8177 } else {
8178 return false;
8179 }
8180 break;
8181 case BPF_JLE:
8182 if ((dst_reg->type == PTR_TO_PACKET &&
8183 src_reg->type == PTR_TO_PACKET_END) ||
8184 (dst_reg->type == PTR_TO_PACKET_META &&
8185 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8186 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8187 find_good_pkt_pointers(other_branch, dst_reg,
8188 dst_reg->type, false);
8189 mark_pkt_end(this_branch, insn->dst_reg, true);
8190 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8191 src_reg->type == PTR_TO_PACKET) ||
8192 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8193 src_reg->type == PTR_TO_PACKET_META)) {
8194 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8195 find_good_pkt_pointers(this_branch, src_reg,
8196 src_reg->type, true);
8197 mark_pkt_end(other_branch, insn->src_reg, false);
8198 } else {
8199 return false;
8200 }
8201 break;
8202 default:
8203 return false;
8204 }
8205
8206 return true;
8207 }
8208
find_equal_scalars(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg)8209 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8210 struct bpf_reg_state *known_reg)
8211 {
8212 struct bpf_func_state *state;
8213 struct bpf_reg_state *reg;
8214
8215 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
8216 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) {
8217 s32 saved_subreg_def = reg->subreg_def;
8218
8219 copy_register_state(reg, known_reg);
8220 reg->subreg_def = saved_subreg_def;
8221 }
8222 }));
8223 }
8224
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)8225 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8226 struct bpf_insn *insn, int *insn_idx)
8227 {
8228 struct bpf_verifier_state *this_branch = env->cur_state;
8229 struct bpf_verifier_state *other_branch;
8230 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8231 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8232 u8 opcode = BPF_OP(insn->code);
8233 bool is_jmp32;
8234 int pred = -1;
8235 int err;
8236
8237 /* Only conditional jumps are expected to reach here. */
8238 if (opcode == BPF_JA || opcode > BPF_JSLE) {
8239 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8240 return -EINVAL;
8241 }
8242
8243 if (BPF_SRC(insn->code) == BPF_X) {
8244 if (insn->imm != 0) {
8245 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8246 return -EINVAL;
8247 }
8248
8249 /* check src1 operand */
8250 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8251 if (err)
8252 return err;
8253
8254 if (is_pointer_value(env, insn->src_reg)) {
8255 verbose(env, "R%d pointer comparison prohibited\n",
8256 insn->src_reg);
8257 return -EACCES;
8258 }
8259 src_reg = ®s[insn->src_reg];
8260 } else {
8261 if (insn->src_reg != BPF_REG_0) {
8262 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8263 return -EINVAL;
8264 }
8265 }
8266
8267 /* check src2 operand */
8268 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8269 if (err)
8270 return err;
8271
8272 dst_reg = ®s[insn->dst_reg];
8273 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8274
8275 if (BPF_SRC(insn->code) == BPF_K) {
8276 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8277 } else if (src_reg->type == SCALAR_VALUE &&
8278 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8279 pred = is_branch_taken(dst_reg,
8280 tnum_subreg(src_reg->var_off).value,
8281 opcode,
8282 is_jmp32);
8283 } else if (src_reg->type == SCALAR_VALUE &&
8284 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8285 pred = is_branch_taken(dst_reg,
8286 src_reg->var_off.value,
8287 opcode,
8288 is_jmp32);
8289 } else if (reg_is_pkt_pointer_any(dst_reg) &&
8290 reg_is_pkt_pointer_any(src_reg) &&
8291 !is_jmp32) {
8292 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8293 }
8294
8295 if (pred >= 0) {
8296 /* If we get here with a dst_reg pointer type it is because
8297 * above is_branch_taken() special cased the 0 comparison.
8298 */
8299 if (!__is_pointer_value(false, dst_reg))
8300 err = mark_chain_precision(env, insn->dst_reg);
8301 if (BPF_SRC(insn->code) == BPF_X && !err &&
8302 !__is_pointer_value(false, src_reg))
8303 err = mark_chain_precision(env, insn->src_reg);
8304 if (err)
8305 return err;
8306 }
8307
8308 if (pred == 1) {
8309 /* Only follow the goto, ignore fall-through. If needed, push
8310 * the fall-through branch for simulation under speculative
8311 * execution.
8312 */
8313 if (!env->bypass_spec_v1 &&
8314 !sanitize_speculative_path(env, insn, *insn_idx + 1,
8315 *insn_idx))
8316 return -EFAULT;
8317 *insn_idx += insn->off;
8318 return 0;
8319 } else if (pred == 0) {
8320 /* Only follow the fall-through branch, since that's where the
8321 * program will go. If needed, push the goto branch for
8322 * simulation under speculative execution.
8323 */
8324 if (!env->bypass_spec_v1 &&
8325 !sanitize_speculative_path(env, insn,
8326 *insn_idx + insn->off + 1,
8327 *insn_idx))
8328 return -EFAULT;
8329 return 0;
8330 }
8331
8332 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8333 false);
8334 if (!other_branch)
8335 return -EFAULT;
8336 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8337
8338 /* detect if we are comparing against a constant value so we can adjust
8339 * our min/max values for our dst register.
8340 * this is only legit if both are scalars (or pointers to the same
8341 * object, I suppose, but we don't support that right now), because
8342 * otherwise the different base pointers mean the offsets aren't
8343 * comparable.
8344 */
8345 if (BPF_SRC(insn->code) == BPF_X) {
8346 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
8347
8348 if (dst_reg->type == SCALAR_VALUE &&
8349 src_reg->type == SCALAR_VALUE) {
8350 if (tnum_is_const(src_reg->var_off) ||
8351 (is_jmp32 &&
8352 tnum_is_const(tnum_subreg(src_reg->var_off))))
8353 reg_set_min_max(&other_branch_regs[insn->dst_reg],
8354 dst_reg,
8355 src_reg->var_off.value,
8356 tnum_subreg(src_reg->var_off).value,
8357 opcode, is_jmp32);
8358 else if (tnum_is_const(dst_reg->var_off) ||
8359 (is_jmp32 &&
8360 tnum_is_const(tnum_subreg(dst_reg->var_off))))
8361 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8362 src_reg,
8363 dst_reg->var_off.value,
8364 tnum_subreg(dst_reg->var_off).value,
8365 opcode, is_jmp32);
8366 else if (!is_jmp32 &&
8367 (opcode == BPF_JEQ || opcode == BPF_JNE))
8368 /* Comparing for equality, we can combine knowledge */
8369 reg_combine_min_max(&other_branch_regs[insn->src_reg],
8370 &other_branch_regs[insn->dst_reg],
8371 src_reg, dst_reg, opcode);
8372 if (src_reg->id &&
8373 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8374 find_equal_scalars(this_branch, src_reg);
8375 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8376 }
8377
8378 }
8379 } else if (dst_reg->type == SCALAR_VALUE) {
8380 reg_set_min_max(&other_branch_regs[insn->dst_reg],
8381 dst_reg, insn->imm, (u32)insn->imm,
8382 opcode, is_jmp32);
8383 }
8384
8385 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8386 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8387 find_equal_scalars(this_branch, dst_reg);
8388 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8389 }
8390
8391 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8392 * NOTE: these optimizations below are related with pointer comparison
8393 * which will never be JMP32.
8394 */
8395 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8396 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8397 type_may_be_null(dst_reg->type)) {
8398 /* Mark all identical registers in each branch as either
8399 * safe or unknown depending R == 0 or R != 0 conditional.
8400 */
8401 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8402 opcode == BPF_JNE);
8403 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8404 opcode == BPF_JEQ);
8405 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
8406 this_branch, other_branch) &&
8407 is_pointer_value(env, insn->dst_reg)) {
8408 verbose(env, "R%d pointer comparison prohibited\n",
8409 insn->dst_reg);
8410 return -EACCES;
8411 }
8412 if (env->log.level & BPF_LOG_LEVEL)
8413 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8414 return 0;
8415 }
8416
8417 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)8418 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8419 {
8420 struct bpf_insn_aux_data *aux = cur_aux(env);
8421 struct bpf_reg_state *regs = cur_regs(env);
8422 struct bpf_reg_state *dst_reg;
8423 struct bpf_map *map;
8424 int err;
8425
8426 if (BPF_SIZE(insn->code) != BPF_DW) {
8427 verbose(env, "invalid BPF_LD_IMM insn\n");
8428 return -EINVAL;
8429 }
8430 if (insn->off != 0) {
8431 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8432 return -EINVAL;
8433 }
8434
8435 err = check_reg_arg(env, insn->dst_reg, DST_OP);
8436 if (err)
8437 return err;
8438
8439 dst_reg = ®s[insn->dst_reg];
8440 if (insn->src_reg == 0) {
8441 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8442
8443 dst_reg->type = SCALAR_VALUE;
8444 __mark_reg_known(®s[insn->dst_reg], imm);
8445 return 0;
8446 }
8447
8448 /* All special src_reg cases are listed below. From this point onwards
8449 * we either succeed and assign a corresponding dst_reg->type after
8450 * zeroing the offset, or fail and reject the program.
8451 */
8452 mark_reg_known_zero(env, regs, insn->dst_reg);
8453
8454 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8455 dst_reg->type = aux->btf_var.reg_type;
8456 switch (base_type(dst_reg->type)) {
8457 case PTR_TO_MEM:
8458 dst_reg->mem_size = aux->btf_var.mem_size;
8459 break;
8460 case PTR_TO_BTF_ID:
8461 case PTR_TO_PERCPU_BTF_ID:
8462 dst_reg->btf_id = aux->btf_var.btf_id;
8463 break;
8464 default:
8465 verbose(env, "bpf verifier is misconfigured\n");
8466 return -EFAULT;
8467 }
8468 return 0;
8469 }
8470
8471 map = env->used_maps[aux->map_index];
8472 dst_reg->map_ptr = map;
8473
8474 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
8475 dst_reg->type = PTR_TO_MAP_VALUE;
8476 dst_reg->off = aux->map_off;
8477 if (map_value_has_spin_lock(map))
8478 dst_reg->id = ++env->id_gen;
8479 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8480 dst_reg->type = CONST_PTR_TO_MAP;
8481 } else {
8482 verbose(env, "bpf verifier is misconfigured\n");
8483 return -EINVAL;
8484 }
8485
8486 return 0;
8487 }
8488
may_access_skb(enum bpf_prog_type type)8489 static bool may_access_skb(enum bpf_prog_type type)
8490 {
8491 switch (type) {
8492 case BPF_PROG_TYPE_SOCKET_FILTER:
8493 case BPF_PROG_TYPE_SCHED_CLS:
8494 case BPF_PROG_TYPE_SCHED_ACT:
8495 return true;
8496 default:
8497 return false;
8498 }
8499 }
8500
8501 /* verify safety of LD_ABS|LD_IND instructions:
8502 * - they can only appear in the programs where ctx == skb
8503 * - since they are wrappers of function calls, they scratch R1-R5 registers,
8504 * preserve R6-R9, and store return value into R0
8505 *
8506 * Implicit input:
8507 * ctx == skb == R6 == CTX
8508 *
8509 * Explicit input:
8510 * SRC == any register
8511 * IMM == 32-bit immediate
8512 *
8513 * Output:
8514 * R0 - 8/16/32-bit skb data converted to cpu endianness
8515 */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)8516 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
8517 {
8518 struct bpf_reg_state *regs = cur_regs(env);
8519 static const int ctx_reg = BPF_REG_6;
8520 u8 mode = BPF_MODE(insn->code);
8521 int i, err;
8522
8523 if (!may_access_skb(resolve_prog_type(env->prog))) {
8524 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
8525 return -EINVAL;
8526 }
8527
8528 if (!env->ops->gen_ld_abs) {
8529 verbose(env, "bpf verifier is misconfigured\n");
8530 return -EINVAL;
8531 }
8532
8533 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
8534 BPF_SIZE(insn->code) == BPF_DW ||
8535 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
8536 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
8537 return -EINVAL;
8538 }
8539
8540 /* check whether implicit source operand (register R6) is readable */
8541 err = check_reg_arg(env, ctx_reg, SRC_OP);
8542 if (err)
8543 return err;
8544
8545 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
8546 * gen_ld_abs() may terminate the program at runtime, leading to
8547 * reference leak.
8548 */
8549 err = check_reference_leak(env);
8550 if (err) {
8551 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
8552 return err;
8553 }
8554
8555 if (env->cur_state->active_spin_lock) {
8556 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
8557 return -EINVAL;
8558 }
8559
8560 if (regs[ctx_reg].type != PTR_TO_CTX) {
8561 verbose(env,
8562 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
8563 return -EINVAL;
8564 }
8565
8566 if (mode == BPF_IND) {
8567 /* check explicit source operand */
8568 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8569 if (err)
8570 return err;
8571 }
8572
8573 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg);
8574 if (err < 0)
8575 return err;
8576
8577 /* reset caller saved regs to unreadable */
8578 for (i = 0; i < CALLER_SAVED_REGS; i++) {
8579 mark_reg_not_init(env, regs, caller_saved[i]);
8580 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8581 }
8582
8583 /* mark destination R0 register as readable, since it contains
8584 * the value fetched from the packet.
8585 * Already marked as written above.
8586 */
8587 mark_reg_unknown(env, regs, BPF_REG_0);
8588 /* ld_abs load up to 32-bit skb data. */
8589 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
8590 return 0;
8591 }
8592
check_return_code(struct bpf_verifier_env * env)8593 static int check_return_code(struct bpf_verifier_env *env)
8594 {
8595 struct tnum enforce_attach_type_range = tnum_unknown;
8596 const struct bpf_prog *prog = env->prog;
8597 struct bpf_reg_state *reg;
8598 struct tnum range = tnum_range(0, 1);
8599 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8600 int err;
8601 const bool is_subprog = env->cur_state->frame[0]->subprogno;
8602
8603 /* LSM and struct_ops func-ptr's return type could be "void" */
8604 if (!is_subprog &&
8605 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
8606 prog_type == BPF_PROG_TYPE_LSM) &&
8607 !prog->aux->attach_func_proto->type)
8608 return 0;
8609
8610 /* eBPF calling convetion is such that R0 is used
8611 * to return the value from eBPF program.
8612 * Make sure that it's readable at this time
8613 * of bpf_exit, which means that program wrote
8614 * something into it earlier
8615 */
8616 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8617 if (err)
8618 return err;
8619
8620 if (is_pointer_value(env, BPF_REG_0)) {
8621 verbose(env, "R0 leaks addr as return value\n");
8622 return -EACCES;
8623 }
8624
8625 reg = cur_regs(env) + BPF_REG_0;
8626 if (is_subprog) {
8627 if (reg->type != SCALAR_VALUE) {
8628 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
8629 reg_type_str(env, reg->type));
8630 return -EINVAL;
8631 }
8632 return 0;
8633 }
8634
8635 switch (prog_type) {
8636 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8637 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
8638 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
8639 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
8640 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
8641 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
8642 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
8643 range = tnum_range(1, 1);
8644 break;
8645 case BPF_PROG_TYPE_CGROUP_SKB:
8646 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
8647 range = tnum_range(0, 3);
8648 enforce_attach_type_range = tnum_range(2, 3);
8649 }
8650 break;
8651 case BPF_PROG_TYPE_CGROUP_SOCK:
8652 case BPF_PROG_TYPE_SOCK_OPS:
8653 case BPF_PROG_TYPE_CGROUP_DEVICE:
8654 case BPF_PROG_TYPE_CGROUP_SYSCTL:
8655 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8656 break;
8657 case BPF_PROG_TYPE_RAW_TRACEPOINT:
8658 if (!env->prog->aux->attach_btf_id)
8659 return 0;
8660 range = tnum_const(0);
8661 break;
8662 case BPF_PROG_TYPE_TRACING:
8663 switch (env->prog->expected_attach_type) {
8664 case BPF_TRACE_FENTRY:
8665 case BPF_TRACE_FEXIT:
8666 range = tnum_const(0);
8667 break;
8668 case BPF_TRACE_RAW_TP:
8669 case BPF_MODIFY_RETURN:
8670 return 0;
8671 case BPF_TRACE_ITER:
8672 break;
8673 default:
8674 return -ENOTSUPP;
8675 }
8676 break;
8677 case BPF_PROG_TYPE_SK_LOOKUP:
8678 range = tnum_range(SK_DROP, SK_PASS);
8679 break;
8680 case BPF_PROG_TYPE_EXT:
8681 /* freplace program can return anything as its return value
8682 * depends on the to-be-replaced kernel func or bpf program.
8683 */
8684 default:
8685 return 0;
8686 }
8687
8688 if (reg->type != SCALAR_VALUE) {
8689 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
8690 reg_type_str(env, reg->type));
8691 return -EINVAL;
8692 }
8693
8694 if (!tnum_in(range, reg->var_off)) {
8695 char tn_buf[48];
8696
8697 verbose(env, "At program exit the register R0 ");
8698 if (!tnum_is_unknown(reg->var_off)) {
8699 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8700 verbose(env, "has value %s", tn_buf);
8701 } else {
8702 verbose(env, "has unknown scalar value");
8703 }
8704 tnum_strn(tn_buf, sizeof(tn_buf), range);
8705 verbose(env, " should have been in %s\n", tn_buf);
8706 return -EINVAL;
8707 }
8708
8709 if (!tnum_is_unknown(enforce_attach_type_range) &&
8710 tnum_in(enforce_attach_type_range, reg->var_off))
8711 env->prog->enforce_expected_attach_type = 1;
8712 return 0;
8713 }
8714
8715 /* non-recursive DFS pseudo code
8716 * 1 procedure DFS-iterative(G,v):
8717 * 2 label v as discovered
8718 * 3 let S be a stack
8719 * 4 S.push(v)
8720 * 5 while S is not empty
8721 * 6 t <- S.pop()
8722 * 7 if t is what we're looking for:
8723 * 8 return t
8724 * 9 for all edges e in G.adjacentEdges(t) do
8725 * 10 if edge e is already labelled
8726 * 11 continue with the next edge
8727 * 12 w <- G.adjacentVertex(t,e)
8728 * 13 if vertex w is not discovered and not explored
8729 * 14 label e as tree-edge
8730 * 15 label w as discovered
8731 * 16 S.push(w)
8732 * 17 continue at 5
8733 * 18 else if vertex w is discovered
8734 * 19 label e as back-edge
8735 * 20 else
8736 * 21 // vertex w is explored
8737 * 22 label e as forward- or cross-edge
8738 * 23 label t as explored
8739 * 24 S.pop()
8740 *
8741 * convention:
8742 * 0x10 - discovered
8743 * 0x11 - discovered and fall-through edge labelled
8744 * 0x12 - discovered and fall-through and branch edges labelled
8745 * 0x20 - explored
8746 */
8747
8748 enum {
8749 DISCOVERED = 0x10,
8750 EXPLORED = 0x20,
8751 FALLTHROUGH = 1,
8752 BRANCH = 2,
8753 };
8754
state_htab_size(struct bpf_verifier_env * env)8755 static u32 state_htab_size(struct bpf_verifier_env *env)
8756 {
8757 return env->prog->len;
8758 }
8759
explored_state(struct bpf_verifier_env * env,int idx)8760 static struct bpf_verifier_state_list **explored_state(
8761 struct bpf_verifier_env *env,
8762 int idx)
8763 {
8764 struct bpf_verifier_state *cur = env->cur_state;
8765 struct bpf_func_state *state = cur->frame[cur->curframe];
8766
8767 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8768 }
8769
init_explored_state(struct bpf_verifier_env * env,int idx)8770 static void init_explored_state(struct bpf_verifier_env *env, int idx)
8771 {
8772 env->insn_aux_data[idx].prune_point = true;
8773 }
8774
8775 /* t, w, e - match pseudo-code above:
8776 * t - index of current instruction
8777 * w - next instruction
8778 * e - edge
8779 */
push_insn(int t,int w,int e,struct bpf_verifier_env * env,bool loop_ok)8780 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8781 bool loop_ok)
8782 {
8783 int *insn_stack = env->cfg.insn_stack;
8784 int *insn_state = env->cfg.insn_state;
8785
8786 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8787 return 0;
8788
8789 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8790 return 0;
8791
8792 if (w < 0 || w >= env->prog->len) {
8793 verbose_linfo(env, t, "%d: ", t);
8794 verbose(env, "jump out of range from insn %d to %d\n", t, w);
8795 return -EINVAL;
8796 }
8797
8798 if (e == BRANCH)
8799 /* mark branch target for state pruning */
8800 init_explored_state(env, w);
8801
8802 if (insn_state[w] == 0) {
8803 /* tree-edge */
8804 insn_state[t] = DISCOVERED | e;
8805 insn_state[w] = DISCOVERED;
8806 if (env->cfg.cur_stack >= env->prog->len)
8807 return -E2BIG;
8808 insn_stack[env->cfg.cur_stack++] = w;
8809 return 1;
8810 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
8811 if (loop_ok && env->bpf_capable)
8812 return 0;
8813 verbose_linfo(env, t, "%d: ", t);
8814 verbose_linfo(env, w, "%d: ", w);
8815 verbose(env, "back-edge from insn %d to %d\n", t, w);
8816 return -EINVAL;
8817 } else if (insn_state[w] == EXPLORED) {
8818 /* forward- or cross-edge */
8819 insn_state[t] = DISCOVERED | e;
8820 } else {
8821 verbose(env, "insn state internal bug\n");
8822 return -EFAULT;
8823 }
8824 return 0;
8825 }
8826
8827 /* non-recursive depth-first-search to detect loops in BPF program
8828 * loop == back-edge in directed graph
8829 */
check_cfg(struct bpf_verifier_env * env)8830 static int check_cfg(struct bpf_verifier_env *env)
8831 {
8832 struct bpf_insn *insns = env->prog->insnsi;
8833 int insn_cnt = env->prog->len;
8834 int *insn_stack, *insn_state;
8835 int ret = 0;
8836 int i, t;
8837
8838 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8839 if (!insn_state)
8840 return -ENOMEM;
8841
8842 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8843 if (!insn_stack) {
8844 kvfree(insn_state);
8845 return -ENOMEM;
8846 }
8847
8848 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8849 insn_stack[0] = 0; /* 0 is the first instruction */
8850 env->cfg.cur_stack = 1;
8851
8852 peek_stack:
8853 if (env->cfg.cur_stack == 0)
8854 goto check_state;
8855 t = insn_stack[env->cfg.cur_stack - 1];
8856
8857 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
8858 BPF_CLASS(insns[t].code) == BPF_JMP32) {
8859 u8 opcode = BPF_OP(insns[t].code);
8860
8861 if (opcode == BPF_EXIT) {
8862 goto mark_explored;
8863 } else if (opcode == BPF_CALL) {
8864 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8865 if (ret == 1)
8866 goto peek_stack;
8867 else if (ret < 0)
8868 goto err_free;
8869 if (t + 1 < insn_cnt)
8870 init_explored_state(env, t + 1);
8871 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8872 init_explored_state(env, t);
8873 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8874 env, false);
8875 if (ret == 1)
8876 goto peek_stack;
8877 else if (ret < 0)
8878 goto err_free;
8879 }
8880 } else if (opcode == BPF_JA) {
8881 if (BPF_SRC(insns[t].code) != BPF_K) {
8882 ret = -EINVAL;
8883 goto err_free;
8884 }
8885 /* unconditional jump with single edge */
8886 ret = push_insn(t, t + insns[t].off + 1,
8887 FALLTHROUGH, env, true);
8888 if (ret == 1)
8889 goto peek_stack;
8890 else if (ret < 0)
8891 goto err_free;
8892 /* unconditional jmp is not a good pruning point,
8893 * but it's marked, since backtracking needs
8894 * to record jmp history in is_state_visited().
8895 */
8896 init_explored_state(env, t + insns[t].off + 1);
8897 /* tell verifier to check for equivalent states
8898 * after every call and jump
8899 */
8900 if (t + 1 < insn_cnt)
8901 init_explored_state(env, t + 1);
8902 } else {
8903 /* conditional jump with two edges */
8904 init_explored_state(env, t);
8905 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8906 if (ret == 1)
8907 goto peek_stack;
8908 else if (ret < 0)
8909 goto err_free;
8910
8911 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8912 if (ret == 1)
8913 goto peek_stack;
8914 else if (ret < 0)
8915 goto err_free;
8916 }
8917 } else {
8918 /* all other non-branch instructions with single
8919 * fall-through edge
8920 */
8921 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8922 if (ret == 1)
8923 goto peek_stack;
8924 else if (ret < 0)
8925 goto err_free;
8926 }
8927
8928 mark_explored:
8929 insn_state[t] = EXPLORED;
8930 if (env->cfg.cur_stack-- <= 0) {
8931 verbose(env, "pop stack internal bug\n");
8932 ret = -EFAULT;
8933 goto err_free;
8934 }
8935 goto peek_stack;
8936
8937 check_state:
8938 for (i = 0; i < insn_cnt; i++) {
8939 if (insn_state[i] != EXPLORED) {
8940 verbose(env, "unreachable insn %d\n", i);
8941 ret = -EINVAL;
8942 goto err_free;
8943 }
8944 }
8945 ret = 0; /* cfg looks good */
8946
8947 err_free:
8948 kvfree(insn_state);
8949 kvfree(insn_stack);
8950 env->cfg.insn_state = env->cfg.insn_stack = NULL;
8951 return ret;
8952 }
8953
check_abnormal_return(struct bpf_verifier_env * env)8954 static int check_abnormal_return(struct bpf_verifier_env *env)
8955 {
8956 int i;
8957
8958 for (i = 1; i < env->subprog_cnt; i++) {
8959 if (env->subprog_info[i].has_ld_abs) {
8960 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8961 return -EINVAL;
8962 }
8963 if (env->subprog_info[i].has_tail_call) {
8964 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8965 return -EINVAL;
8966 }
8967 }
8968 return 0;
8969 }
8970
8971 /* The minimum supported BTF func info size */
8972 #define MIN_BPF_FUNCINFO_SIZE 8
8973 #define MAX_FUNCINFO_REC_SIZE 252
8974
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)8975 static int check_btf_func(struct bpf_verifier_env *env,
8976 const union bpf_attr *attr,
8977 union bpf_attr __user *uattr)
8978 {
8979 const struct btf_type *type, *func_proto, *ret_type;
8980 u32 i, nfuncs, urec_size, min_size;
8981 u32 krec_size = sizeof(struct bpf_func_info);
8982 struct bpf_func_info *krecord;
8983 struct bpf_func_info_aux *info_aux = NULL;
8984 struct bpf_prog *prog;
8985 const struct btf *btf;
8986 void __user *urecord;
8987 u32 prev_offset = 0;
8988 bool scalar_return;
8989 int ret = -ENOMEM;
8990
8991 nfuncs = attr->func_info_cnt;
8992 if (!nfuncs) {
8993 if (check_abnormal_return(env))
8994 return -EINVAL;
8995 return 0;
8996 }
8997
8998 if (nfuncs != env->subprog_cnt) {
8999 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9000 return -EINVAL;
9001 }
9002
9003 urec_size = attr->func_info_rec_size;
9004 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9005 urec_size > MAX_FUNCINFO_REC_SIZE ||
9006 urec_size % sizeof(u32)) {
9007 verbose(env, "invalid func info rec size %u\n", urec_size);
9008 return -EINVAL;
9009 }
9010
9011 prog = env->prog;
9012 btf = prog->aux->btf;
9013
9014 urecord = u64_to_user_ptr(attr->func_info);
9015 min_size = min_t(u32, krec_size, urec_size);
9016
9017 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
9018 if (!krecord)
9019 return -ENOMEM;
9020 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
9021 if (!info_aux)
9022 goto err_free;
9023
9024 for (i = 0; i < nfuncs; i++) {
9025 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
9026 if (ret) {
9027 if (ret == -E2BIG) {
9028 verbose(env, "nonzero tailing record in func info");
9029 /* set the size kernel expects so loader can zero
9030 * out the rest of the record.
9031 */
9032 if (put_user(min_size, &uattr->func_info_rec_size))
9033 ret = -EFAULT;
9034 }
9035 goto err_free;
9036 }
9037
9038 if (copy_from_user(&krecord[i], urecord, min_size)) {
9039 ret = -EFAULT;
9040 goto err_free;
9041 }
9042
9043 /* check insn_off */
9044 ret = -EINVAL;
9045 if (i == 0) {
9046 if (krecord[i].insn_off) {
9047 verbose(env,
9048 "nonzero insn_off %u for the first func info record",
9049 krecord[i].insn_off);
9050 goto err_free;
9051 }
9052 } else if (krecord[i].insn_off <= prev_offset) {
9053 verbose(env,
9054 "same or smaller insn offset (%u) than previous func info record (%u)",
9055 krecord[i].insn_off, prev_offset);
9056 goto err_free;
9057 }
9058
9059 if (env->subprog_info[i].start != krecord[i].insn_off) {
9060 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
9061 goto err_free;
9062 }
9063
9064 /* check type_id */
9065 type = btf_type_by_id(btf, krecord[i].type_id);
9066 if (!type || !btf_type_is_func(type)) {
9067 verbose(env, "invalid type id %d in func info",
9068 krecord[i].type_id);
9069 goto err_free;
9070 }
9071 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
9072
9073 func_proto = btf_type_by_id(btf, type->type);
9074 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
9075 /* btf_func_check() already verified it during BTF load */
9076 goto err_free;
9077 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
9078 scalar_return =
9079 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
9080 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
9081 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
9082 goto err_free;
9083 }
9084 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
9085 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
9086 goto err_free;
9087 }
9088
9089 prev_offset = krecord[i].insn_off;
9090 urecord += urec_size;
9091 }
9092
9093 prog->aux->func_info = krecord;
9094 prog->aux->func_info_cnt = nfuncs;
9095 prog->aux->func_info_aux = info_aux;
9096 return 0;
9097
9098 err_free:
9099 kvfree(krecord);
9100 kfree(info_aux);
9101 return ret;
9102 }
9103
adjust_btf_func(struct bpf_verifier_env * env)9104 static void adjust_btf_func(struct bpf_verifier_env *env)
9105 {
9106 struct bpf_prog_aux *aux = env->prog->aux;
9107 int i;
9108
9109 if (!aux->func_info)
9110 return;
9111
9112 for (i = 0; i < env->subprog_cnt; i++)
9113 aux->func_info[i].insn_off = env->subprog_info[i].start;
9114 }
9115
9116 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
9117 sizeof(((struct bpf_line_info *)(0))->line_col))
9118 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
9119
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)9120 static int check_btf_line(struct bpf_verifier_env *env,
9121 const union bpf_attr *attr,
9122 union bpf_attr __user *uattr)
9123 {
9124 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9125 struct bpf_subprog_info *sub;
9126 struct bpf_line_info *linfo;
9127 struct bpf_prog *prog;
9128 const struct btf *btf;
9129 void __user *ulinfo;
9130 int err;
9131
9132 nr_linfo = attr->line_info_cnt;
9133 if (!nr_linfo)
9134 return 0;
9135 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
9136 return -EINVAL;
9137
9138 rec_size = attr->line_info_rec_size;
9139 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9140 rec_size > MAX_LINEINFO_REC_SIZE ||
9141 rec_size & (sizeof(u32) - 1))
9142 return -EINVAL;
9143
9144 /* Need to zero it in case the userspace may
9145 * pass in a smaller bpf_line_info object.
9146 */
9147 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9148 GFP_KERNEL | __GFP_NOWARN);
9149 if (!linfo)
9150 return -ENOMEM;
9151
9152 prog = env->prog;
9153 btf = prog->aux->btf;
9154
9155 s = 0;
9156 sub = env->subprog_info;
9157 ulinfo = u64_to_user_ptr(attr->line_info);
9158 expected_size = sizeof(struct bpf_line_info);
9159 ncopy = min_t(u32, expected_size, rec_size);
9160 for (i = 0; i < nr_linfo; i++) {
9161 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9162 if (err) {
9163 if (err == -E2BIG) {
9164 verbose(env, "nonzero tailing record in line_info");
9165 if (put_user(expected_size,
9166 &uattr->line_info_rec_size))
9167 err = -EFAULT;
9168 }
9169 goto err_free;
9170 }
9171
9172 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
9173 err = -EFAULT;
9174 goto err_free;
9175 }
9176
9177 /*
9178 * Check insn_off to ensure
9179 * 1) strictly increasing AND
9180 * 2) bounded by prog->len
9181 *
9182 * The linfo[0].insn_off == 0 check logically falls into
9183 * the later "missing bpf_line_info for func..." case
9184 * because the first linfo[0].insn_off must be the
9185 * first sub also and the first sub must have
9186 * subprog_info[0].start == 0.
9187 */
9188 if ((i && linfo[i].insn_off <= prev_offset) ||
9189 linfo[i].insn_off >= prog->len) {
9190 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9191 i, linfo[i].insn_off, prev_offset,
9192 prog->len);
9193 err = -EINVAL;
9194 goto err_free;
9195 }
9196
9197 if (!prog->insnsi[linfo[i].insn_off].code) {
9198 verbose(env,
9199 "Invalid insn code at line_info[%u].insn_off\n",
9200 i);
9201 err = -EINVAL;
9202 goto err_free;
9203 }
9204
9205 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9206 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9207 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9208 err = -EINVAL;
9209 goto err_free;
9210 }
9211
9212 if (s != env->subprog_cnt) {
9213 if (linfo[i].insn_off == sub[s].start) {
9214 sub[s].linfo_idx = i;
9215 s++;
9216 } else if (sub[s].start < linfo[i].insn_off) {
9217 verbose(env, "missing bpf_line_info for func#%u\n", s);
9218 err = -EINVAL;
9219 goto err_free;
9220 }
9221 }
9222
9223 prev_offset = linfo[i].insn_off;
9224 ulinfo += rec_size;
9225 }
9226
9227 if (s != env->subprog_cnt) {
9228 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9229 env->subprog_cnt - s, s);
9230 err = -EINVAL;
9231 goto err_free;
9232 }
9233
9234 prog->aux->linfo = linfo;
9235 prog->aux->nr_linfo = nr_linfo;
9236
9237 return 0;
9238
9239 err_free:
9240 kvfree(linfo);
9241 return err;
9242 }
9243
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)9244 static int check_btf_info(struct bpf_verifier_env *env,
9245 const union bpf_attr *attr,
9246 union bpf_attr __user *uattr)
9247 {
9248 struct btf *btf;
9249 int err;
9250
9251 if (!attr->func_info_cnt && !attr->line_info_cnt) {
9252 if (check_abnormal_return(env))
9253 return -EINVAL;
9254 return 0;
9255 }
9256
9257 btf = btf_get_by_fd(attr->prog_btf_fd);
9258 if (IS_ERR(btf))
9259 return PTR_ERR(btf);
9260 env->prog->aux->btf = btf;
9261
9262 err = check_btf_func(env, attr, uattr);
9263 if (err)
9264 return err;
9265
9266 err = check_btf_line(env, attr, uattr);
9267 if (err)
9268 return err;
9269
9270 return 0;
9271 }
9272
9273 /* check %cur's range satisfies %old's */
range_within(struct bpf_reg_state * old,struct bpf_reg_state * cur)9274 static bool range_within(struct bpf_reg_state *old,
9275 struct bpf_reg_state *cur)
9276 {
9277 return old->umin_value <= cur->umin_value &&
9278 old->umax_value >= cur->umax_value &&
9279 old->smin_value <= cur->smin_value &&
9280 old->smax_value >= cur->smax_value &&
9281 old->u32_min_value <= cur->u32_min_value &&
9282 old->u32_max_value >= cur->u32_max_value &&
9283 old->s32_min_value <= cur->s32_min_value &&
9284 old->s32_max_value >= cur->s32_max_value;
9285 }
9286
9287 /* If in the old state two registers had the same id, then they need to have
9288 * the same id in the new state as well. But that id could be different from
9289 * the old state, so we need to track the mapping from old to new ids.
9290 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9291 * regs with old id 5 must also have new id 9 for the new state to be safe. But
9292 * regs with a different old id could still have new id 9, we don't care about
9293 * that.
9294 * So we look through our idmap to see if this old id has been seen before. If
9295 * so, we require the new id to match; otherwise, we add the id pair to the map.
9296 */
check_ids(u32 old_id,u32 cur_id,struct bpf_id_pair * idmap)9297 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
9298 {
9299 unsigned int i;
9300
9301 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
9302 if (!idmap[i].old) {
9303 /* Reached an empty slot; haven't seen this id before */
9304 idmap[i].old = old_id;
9305 idmap[i].cur = cur_id;
9306 return true;
9307 }
9308 if (idmap[i].old == old_id)
9309 return idmap[i].cur == cur_id;
9310 }
9311 /* We ran out of idmap slots, which should be impossible */
9312 WARN_ON_ONCE(1);
9313 return false;
9314 }
9315
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)9316 static void clean_func_state(struct bpf_verifier_env *env,
9317 struct bpf_func_state *st)
9318 {
9319 enum bpf_reg_liveness live;
9320 int i, j;
9321
9322 for (i = 0; i < BPF_REG_FP; i++) {
9323 live = st->regs[i].live;
9324 /* liveness must not touch this register anymore */
9325 st->regs[i].live |= REG_LIVE_DONE;
9326 if (!(live & REG_LIVE_READ))
9327 /* since the register is unused, clear its state
9328 * to make further comparison simpler
9329 */
9330 __mark_reg_not_init(env, &st->regs[i]);
9331 }
9332
9333 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9334 live = st->stack[i].spilled_ptr.live;
9335 /* liveness must not touch this stack slot anymore */
9336 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9337 if (!(live & REG_LIVE_READ)) {
9338 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9339 for (j = 0; j < BPF_REG_SIZE; j++)
9340 st->stack[i].slot_type[j] = STACK_INVALID;
9341 }
9342 }
9343 }
9344
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)9345 static void clean_verifier_state(struct bpf_verifier_env *env,
9346 struct bpf_verifier_state *st)
9347 {
9348 int i;
9349
9350 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9351 /* all regs in this state in all frames were already marked */
9352 return;
9353
9354 for (i = 0; i <= st->curframe; i++)
9355 clean_func_state(env, st->frame[i]);
9356 }
9357
9358 /* the parentage chains form a tree.
9359 * the verifier states are added to state lists at given insn and
9360 * pushed into state stack for future exploration.
9361 * when the verifier reaches bpf_exit insn some of the verifer states
9362 * stored in the state lists have their final liveness state already,
9363 * but a lot of states will get revised from liveness point of view when
9364 * the verifier explores other branches.
9365 * Example:
9366 * 1: r0 = 1
9367 * 2: if r1 == 100 goto pc+1
9368 * 3: r0 = 2
9369 * 4: exit
9370 * when the verifier reaches exit insn the register r0 in the state list of
9371 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9372 * of insn 2 and goes exploring further. At the insn 4 it will walk the
9373 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9374 *
9375 * Since the verifier pushes the branch states as it sees them while exploring
9376 * the program the condition of walking the branch instruction for the second
9377 * time means that all states below this branch were already explored and
9378 * their final liveness markes are already propagated.
9379 * Hence when the verifier completes the search of state list in is_state_visited()
9380 * we can call this clean_live_states() function to mark all liveness states
9381 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9382 * will not be used.
9383 * This function also clears the registers and stack for states that !READ
9384 * to simplify state merging.
9385 *
9386 * Important note here that walking the same branch instruction in the callee
9387 * doesn't meant that the states are DONE. The verifier has to compare
9388 * the callsites
9389 */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)9390 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9391 struct bpf_verifier_state *cur)
9392 {
9393 struct bpf_verifier_state_list *sl;
9394 int i;
9395
9396 sl = *explored_state(env, insn);
9397 while (sl) {
9398 if (sl->state.branches)
9399 goto next;
9400 if (sl->state.insn_idx != insn ||
9401 sl->state.curframe != cur->curframe)
9402 goto next;
9403 for (i = 0; i <= cur->curframe; i++)
9404 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9405 goto next;
9406 clean_verifier_state(env, &sl->state);
9407 next:
9408 sl = sl->next;
9409 }
9410 }
9411
9412 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_id_pair * idmap)9413 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
9414 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
9415 {
9416 bool equal;
9417
9418 if (!(rold->live & REG_LIVE_READ))
9419 /* explored state didn't use this */
9420 return true;
9421
9422 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9423
9424 if (rold->type == PTR_TO_STACK)
9425 /* two stack pointers are equal only if they're pointing to
9426 * the same stack frame, since fp-8 in foo != fp-8 in bar
9427 */
9428 return equal && rold->frameno == rcur->frameno;
9429
9430 if (equal)
9431 return true;
9432
9433 if (rold->type == NOT_INIT)
9434 /* explored state can't have used this */
9435 return true;
9436 if (rcur->type == NOT_INIT)
9437 return false;
9438 switch (base_type(rold->type)) {
9439 case SCALAR_VALUE:
9440 if (env->explore_alu_limits)
9441 return false;
9442 if (rcur->type == SCALAR_VALUE) {
9443 if (!rold->precise)
9444 return true;
9445 /* new val must satisfy old val knowledge */
9446 return range_within(rold, rcur) &&
9447 tnum_in(rold->var_off, rcur->var_off);
9448 } else {
9449 /* We're trying to use a pointer in place of a scalar.
9450 * Even if the scalar was unbounded, this could lead to
9451 * pointer leaks because scalars are allowed to leak
9452 * while pointers are not. We could make this safe in
9453 * special cases if root is calling us, but it's
9454 * probably not worth the hassle.
9455 */
9456 return false;
9457 }
9458 case PTR_TO_MAP_VALUE:
9459 /* a PTR_TO_MAP_VALUE could be safe to use as a
9460 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9461 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9462 * checked, doing so could have affected others with the same
9463 * id, and we can't check for that because we lost the id when
9464 * we converted to a PTR_TO_MAP_VALUE.
9465 */
9466 if (type_may_be_null(rold->type)) {
9467 if (!type_may_be_null(rcur->type))
9468 return false;
9469 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9470 return false;
9471 /* Check our ids match any regs they're supposed to */
9472 return check_ids(rold->id, rcur->id, idmap);
9473 }
9474
9475 /* If the new min/max/var_off satisfy the old ones and
9476 * everything else matches, we are OK.
9477 * 'id' is not compared, since it's only used for maps with
9478 * bpf_spin_lock inside map element and in such cases if
9479 * the rest of the prog is valid for one map element then
9480 * it's valid for all map elements regardless of the key
9481 * used in bpf_map_lookup()
9482 */
9483 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9484 range_within(rold, rcur) &&
9485 tnum_in(rold->var_off, rcur->var_off);
9486 case PTR_TO_PACKET_META:
9487 case PTR_TO_PACKET:
9488 if (rcur->type != rold->type)
9489 return false;
9490 /* We must have at least as much range as the old ptr
9491 * did, so that any accesses which were safe before are
9492 * still safe. This is true even if old range < old off,
9493 * since someone could have accessed through (ptr - k), or
9494 * even done ptr -= k in a register, to get a safe access.
9495 */
9496 if (rold->range > rcur->range)
9497 return false;
9498 /* If the offsets don't match, we can't trust our alignment;
9499 * nor can we be sure that we won't fall out of range.
9500 */
9501 if (rold->off != rcur->off)
9502 return false;
9503 /* id relations must be preserved */
9504 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
9505 return false;
9506 /* new val must satisfy old val knowledge */
9507 return range_within(rold, rcur) &&
9508 tnum_in(rold->var_off, rcur->var_off);
9509 case PTR_TO_CTX:
9510 case CONST_PTR_TO_MAP:
9511 case PTR_TO_PACKET_END:
9512 case PTR_TO_FLOW_KEYS:
9513 case PTR_TO_SOCKET:
9514 case PTR_TO_SOCK_COMMON:
9515 case PTR_TO_TCP_SOCK:
9516 case PTR_TO_XDP_SOCK:
9517 /* Only valid matches are exact, which memcmp() above
9518 * would have accepted
9519 */
9520 default:
9521 /* Don't know what's going on, just say it's not safe */
9522 return false;
9523 }
9524
9525 /* Shouldn't get here; if we do, say it's not safe */
9526 WARN_ON_ONCE(1);
9527 return false;
9528 }
9529
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_id_pair * idmap)9530 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
9531 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
9532 {
9533 int i, spi;
9534
9535 /* walk slots of the explored stack and ignore any additional
9536 * slots in the current stack, since explored(safe) state
9537 * didn't use them
9538 */
9539 for (i = 0; i < old->allocated_stack; i++) {
9540 spi = i / BPF_REG_SIZE;
9541
9542 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
9543 i += BPF_REG_SIZE - 1;
9544 /* explored state didn't use this */
9545 continue;
9546 }
9547
9548 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
9549 continue;
9550
9551 /* explored stack has more populated slots than current stack
9552 * and these slots were used
9553 */
9554 if (i >= cur->allocated_stack)
9555 return false;
9556
9557 /* if old state was safe with misc data in the stack
9558 * it will be safe with zero-initialized stack.
9559 * The opposite is not true
9560 */
9561 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
9562 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
9563 continue;
9564 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
9565 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
9566 /* Ex: old explored (safe) state has STACK_SPILL in
9567 * this stack slot, but current has STACK_MISC ->
9568 * this verifier states are not equivalent,
9569 * return false to continue verification of this path
9570 */
9571 return false;
9572 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
9573 continue;
9574 if (!is_spilled_reg(&old->stack[spi]))
9575 continue;
9576 if (!regsafe(env, &old->stack[spi].spilled_ptr,
9577 &cur->stack[spi].spilled_ptr, idmap))
9578 /* when explored and current stack slot are both storing
9579 * spilled registers, check that stored pointers types
9580 * are the same as well.
9581 * Ex: explored safe path could have stored
9582 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9583 * but current path has stored:
9584 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9585 * such verifier states are not equivalent.
9586 * return false to continue verification of this path
9587 */
9588 return false;
9589 }
9590 return true;
9591 }
9592
refsafe(struct bpf_func_state * old,struct bpf_func_state * cur)9593 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
9594 {
9595 if (old->acquired_refs != cur->acquired_refs)
9596 return false;
9597 return !memcmp(old->refs, cur->refs,
9598 sizeof(*old->refs) * old->acquired_refs);
9599 }
9600
9601 /* compare two verifier states
9602 *
9603 * all states stored in state_list are known to be valid, since
9604 * verifier reached 'bpf_exit' instruction through them
9605 *
9606 * this function is called when verifier exploring different branches of
9607 * execution popped from the state stack. If it sees an old state that has
9608 * more strict register state and more strict stack state then this execution
9609 * branch doesn't need to be explored further, since verifier already
9610 * concluded that more strict state leads to valid finish.
9611 *
9612 * Therefore two states are equivalent if register state is more conservative
9613 * and explored stack state is more conservative than the current one.
9614 * Example:
9615 * explored current
9616 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
9617 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
9618 *
9619 * In other words if current stack state (one being explored) has more
9620 * valid slots than old one that already passed validation, it means
9621 * the verifier can stop exploring and conclude that current state is valid too
9622 *
9623 * Similarly with registers. If explored state has register type as invalid
9624 * whereas register type in current state is meaningful, it means that
9625 * the current state will reach 'bpf_exit' instruction safely
9626 */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur)9627 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
9628 struct bpf_func_state *cur)
9629 {
9630 int i;
9631
9632 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
9633 for (i = 0; i < MAX_BPF_REG; i++)
9634 if (!regsafe(env, &old->regs[i], &cur->regs[i],
9635 env->idmap_scratch))
9636 return false;
9637
9638 if (!stacksafe(env, old, cur, env->idmap_scratch))
9639 return false;
9640
9641 if (!refsafe(old, cur))
9642 return false;
9643
9644 return true;
9645 }
9646
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)9647 static bool states_equal(struct bpf_verifier_env *env,
9648 struct bpf_verifier_state *old,
9649 struct bpf_verifier_state *cur)
9650 {
9651 int i;
9652
9653 if (old->curframe != cur->curframe)
9654 return false;
9655
9656 /* Verification state from speculative execution simulation
9657 * must never prune a non-speculative execution one.
9658 */
9659 if (old->speculative && !cur->speculative)
9660 return false;
9661
9662 if (old->active_spin_lock != cur->active_spin_lock)
9663 return false;
9664
9665 /* for states to be equal callsites have to be the same
9666 * and all frame states need to be equivalent
9667 */
9668 for (i = 0; i <= old->curframe; i++) {
9669 if (old->frame[i]->callsite != cur->frame[i]->callsite)
9670 return false;
9671 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
9672 return false;
9673 }
9674 return true;
9675 }
9676
9677 /* Return 0 if no propagation happened. Return negative error code if error
9678 * happened. Otherwise, return the propagated bit.
9679 */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)9680 static int propagate_liveness_reg(struct bpf_verifier_env *env,
9681 struct bpf_reg_state *reg,
9682 struct bpf_reg_state *parent_reg)
9683 {
9684 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9685 u8 flag = reg->live & REG_LIVE_READ;
9686 int err;
9687
9688 /* When comes here, read flags of PARENT_REG or REG could be any of
9689 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9690 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9691 */
9692 if (parent_flag == REG_LIVE_READ64 ||
9693 /* Or if there is no read flag from REG. */
9694 !flag ||
9695 /* Or if the read flag from REG is the same as PARENT_REG. */
9696 parent_flag == flag)
9697 return 0;
9698
9699 err = mark_reg_read(env, reg, parent_reg, flag);
9700 if (err)
9701 return err;
9702
9703 return flag;
9704 }
9705
9706 /* A write screens off any subsequent reads; but write marks come from the
9707 * straight-line code between a state and its parent. When we arrive at an
9708 * equivalent state (jump target or such) we didn't arrive by the straight-line
9709 * code, so read marks in the state must propagate to the parent regardless
9710 * of the state's write marks. That's what 'parent == state->parent' comparison
9711 * in mark_reg_read() is for.
9712 */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)9713 static int propagate_liveness(struct bpf_verifier_env *env,
9714 const struct bpf_verifier_state *vstate,
9715 struct bpf_verifier_state *vparent)
9716 {
9717 struct bpf_reg_state *state_reg, *parent_reg;
9718 struct bpf_func_state *state, *parent;
9719 int i, frame, err = 0;
9720
9721 if (vparent->curframe != vstate->curframe) {
9722 WARN(1, "propagate_live: parent frame %d current frame %d\n",
9723 vparent->curframe, vstate->curframe);
9724 return -EFAULT;
9725 }
9726 /* Propagate read liveness of registers... */
9727 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
9728 for (frame = 0; frame <= vstate->curframe; frame++) {
9729 parent = vparent->frame[frame];
9730 state = vstate->frame[frame];
9731 parent_reg = parent->regs;
9732 state_reg = state->regs;
9733 /* We don't need to worry about FP liveness, it's read-only */
9734 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9735 err = propagate_liveness_reg(env, &state_reg[i],
9736 &parent_reg[i]);
9737 if (err < 0)
9738 return err;
9739 if (err == REG_LIVE_READ64)
9740 mark_insn_zext(env, &parent_reg[i]);
9741 }
9742
9743 /* Propagate stack slots. */
9744 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9745 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9746 parent_reg = &parent->stack[i].spilled_ptr;
9747 state_reg = &state->stack[i].spilled_ptr;
9748 err = propagate_liveness_reg(env, state_reg,
9749 parent_reg);
9750 if (err < 0)
9751 return err;
9752 }
9753 }
9754 return 0;
9755 }
9756
9757 /* find precise scalars in the previous equivalent state and
9758 * propagate them into the current state
9759 */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)9760 static int propagate_precision(struct bpf_verifier_env *env,
9761 const struct bpf_verifier_state *old)
9762 {
9763 struct bpf_reg_state *state_reg;
9764 struct bpf_func_state *state;
9765 int i, err = 0, fr;
9766
9767 for (fr = old->curframe; fr >= 0; fr--) {
9768 state = old->frame[fr];
9769 state_reg = state->regs;
9770 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9771 if (state_reg->type != SCALAR_VALUE ||
9772 !state_reg->precise ||
9773 !(state_reg->live & REG_LIVE_READ))
9774 continue;
9775 if (env->log.level & BPF_LOG_LEVEL2)
9776 verbose(env, "frame %d: propagating r%d\n", fr, i);
9777 err = mark_chain_precision_frame(env, fr, i);
9778 if (err < 0)
9779 return err;
9780 }
9781
9782 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9783 if (!is_spilled_reg(&state->stack[i]))
9784 continue;
9785 state_reg = &state->stack[i].spilled_ptr;
9786 if (state_reg->type != SCALAR_VALUE ||
9787 !state_reg->precise ||
9788 !(state_reg->live & REG_LIVE_READ))
9789 continue;
9790 if (env->log.level & BPF_LOG_LEVEL2)
9791 verbose(env, "frame %d: propagating fp%d\n",
9792 fr, (-i - 1) * BPF_REG_SIZE);
9793 err = mark_chain_precision_stack_frame(env, fr, i);
9794 if (err < 0)
9795 return err;
9796 }
9797 }
9798 return 0;
9799 }
9800
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)9801 static bool states_maybe_looping(struct bpf_verifier_state *old,
9802 struct bpf_verifier_state *cur)
9803 {
9804 struct bpf_func_state *fold, *fcur;
9805 int i, fr = cur->curframe;
9806
9807 if (old->curframe != fr)
9808 return false;
9809
9810 fold = old->frame[fr];
9811 fcur = cur->frame[fr];
9812 for (i = 0; i < MAX_BPF_REG; i++)
9813 if (memcmp(&fold->regs[i], &fcur->regs[i],
9814 offsetof(struct bpf_reg_state, parent)))
9815 return false;
9816 return true;
9817 }
9818
9819
is_state_visited(struct bpf_verifier_env * env,int insn_idx)9820 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9821 {
9822 struct bpf_verifier_state_list *new_sl;
9823 struct bpf_verifier_state_list *sl, **pprev;
9824 struct bpf_verifier_state *cur = env->cur_state, *new;
9825 int i, j, err, states_cnt = 0;
9826 bool add_new_state = env->test_state_freq ? true : false;
9827
9828 cur->last_insn_idx = env->prev_insn_idx;
9829 if (!env->insn_aux_data[insn_idx].prune_point)
9830 /* this 'insn_idx' instruction wasn't marked, so we will not
9831 * be doing state search here
9832 */
9833 return 0;
9834
9835 /* bpf progs typically have pruning point every 4 instructions
9836 * http://vger.kernel.org/bpfconf2019.html#session-1
9837 * Do not add new state for future pruning if the verifier hasn't seen
9838 * at least 2 jumps and at least 8 instructions.
9839 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9840 * In tests that amounts to up to 50% reduction into total verifier
9841 * memory consumption and 20% verifier time speedup.
9842 */
9843 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9844 env->insn_processed - env->prev_insn_processed >= 8)
9845 add_new_state = true;
9846
9847 pprev = explored_state(env, insn_idx);
9848 sl = *pprev;
9849
9850 clean_live_states(env, insn_idx, cur);
9851
9852 while (sl) {
9853 states_cnt++;
9854 if (sl->state.insn_idx != insn_idx)
9855 goto next;
9856 if (sl->state.branches) {
9857 if (states_maybe_looping(&sl->state, cur) &&
9858 states_equal(env, &sl->state, cur)) {
9859 verbose_linfo(env, insn_idx, "; ");
9860 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9861 return -EINVAL;
9862 }
9863 /* if the verifier is processing a loop, avoid adding new state
9864 * too often, since different loop iterations have distinct
9865 * states and may not help future pruning.
9866 * This threshold shouldn't be too low to make sure that
9867 * a loop with large bound will be rejected quickly.
9868 * The most abusive loop will be:
9869 * r1 += 1
9870 * if r1 < 1000000 goto pc-2
9871 * 1M insn_procssed limit / 100 == 10k peak states.
9872 * This threshold shouldn't be too high either, since states
9873 * at the end of the loop are likely to be useful in pruning.
9874 */
9875 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9876 env->insn_processed - env->prev_insn_processed < 100)
9877 add_new_state = false;
9878 goto miss;
9879 }
9880 if (states_equal(env, &sl->state, cur)) {
9881 sl->hit_cnt++;
9882 /* reached equivalent register/stack state,
9883 * prune the search.
9884 * Registers read by the continuation are read by us.
9885 * If we have any write marks in env->cur_state, they
9886 * will prevent corresponding reads in the continuation
9887 * from reaching our parent (an explored_state). Our
9888 * own state will get the read marks recorded, but
9889 * they'll be immediately forgotten as we're pruning
9890 * this state and will pop a new one.
9891 */
9892 err = propagate_liveness(env, &sl->state, cur);
9893
9894 /* if previous state reached the exit with precision and
9895 * current state is equivalent to it (except precsion marks)
9896 * the precision needs to be propagated back in
9897 * the current state.
9898 */
9899 err = err ? : push_jmp_history(env, cur);
9900 err = err ? : propagate_precision(env, &sl->state);
9901 if (err)
9902 return err;
9903 return 1;
9904 }
9905 miss:
9906 /* when new state is not going to be added do not increase miss count.
9907 * Otherwise several loop iterations will remove the state
9908 * recorded earlier. The goal of these heuristics is to have
9909 * states from some iterations of the loop (some in the beginning
9910 * and some at the end) to help pruning.
9911 */
9912 if (add_new_state)
9913 sl->miss_cnt++;
9914 /* heuristic to determine whether this state is beneficial
9915 * to keep checking from state equivalence point of view.
9916 * Higher numbers increase max_states_per_insn and verification time,
9917 * but do not meaningfully decrease insn_processed.
9918 */
9919 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9920 /* the state is unlikely to be useful. Remove it to
9921 * speed up verification
9922 */
9923 *pprev = sl->next;
9924 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9925 u32 br = sl->state.branches;
9926
9927 WARN_ONCE(br,
9928 "BUG live_done but branches_to_explore %d\n",
9929 br);
9930 free_verifier_state(&sl->state, false);
9931 kfree(sl);
9932 env->peak_states--;
9933 } else {
9934 /* cannot free this state, since parentage chain may
9935 * walk it later. Add it for free_list instead to
9936 * be freed at the end of verification
9937 */
9938 sl->next = env->free_list;
9939 env->free_list = sl;
9940 }
9941 sl = *pprev;
9942 continue;
9943 }
9944 next:
9945 pprev = &sl->next;
9946 sl = *pprev;
9947 }
9948
9949 if (env->max_states_per_insn < states_cnt)
9950 env->max_states_per_insn = states_cnt;
9951
9952 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9953 return push_jmp_history(env, cur);
9954
9955 if (!add_new_state)
9956 return push_jmp_history(env, cur);
9957
9958 /* There were no equivalent states, remember the current one.
9959 * Technically the current state is not proven to be safe yet,
9960 * but it will either reach outer most bpf_exit (which means it's safe)
9961 * or it will be rejected. When there are no loops the verifier won't be
9962 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9963 * again on the way to bpf_exit.
9964 * When looping the sl->state.branches will be > 0 and this state
9965 * will not be considered for equivalence until branches == 0.
9966 */
9967 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9968 if (!new_sl)
9969 return -ENOMEM;
9970 env->total_states++;
9971 env->peak_states++;
9972 env->prev_jmps_processed = env->jmps_processed;
9973 env->prev_insn_processed = env->insn_processed;
9974
9975 /* forget precise markings we inherited, see __mark_chain_precision */
9976 if (env->bpf_capable)
9977 mark_all_scalars_imprecise(env, cur);
9978
9979 /* add new state to the head of linked list */
9980 new = &new_sl->state;
9981 err = copy_verifier_state(new, cur);
9982 if (err) {
9983 free_verifier_state(new, false);
9984 kfree(new_sl);
9985 return err;
9986 }
9987 new->insn_idx = insn_idx;
9988 WARN_ONCE(new->branches != 1,
9989 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9990
9991 cur->parent = new;
9992 cur->first_insn_idx = insn_idx;
9993 clear_jmp_history(cur);
9994 new_sl->next = *explored_state(env, insn_idx);
9995 *explored_state(env, insn_idx) = new_sl;
9996 /* connect new state to parentage chain. Current frame needs all
9997 * registers connected. Only r6 - r9 of the callers are alive (pushed
9998 * to the stack implicitly by JITs) so in callers' frames connect just
9999 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10000 * the state of the call instruction (with WRITTEN set), and r0 comes
10001 * from callee with its full parentage chain, anyway.
10002 */
10003 /* clear write marks in current state: the writes we did are not writes
10004 * our child did, so they don't screen off its reads from us.
10005 * (There are no read marks in current state, because reads always mark
10006 * their parent and current state never has children yet. Only
10007 * explored_states can get read marks.)
10008 */
10009 for (j = 0; j <= cur->curframe; j++) {
10010 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
10011 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
10012 for (i = 0; i < BPF_REG_FP; i++)
10013 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
10014 }
10015
10016 /* all stack frames are accessible from callee, clear them all */
10017 for (j = 0; j <= cur->curframe; j++) {
10018 struct bpf_func_state *frame = cur->frame[j];
10019 struct bpf_func_state *newframe = new->frame[j];
10020
10021 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
10022 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
10023 frame->stack[i].spilled_ptr.parent =
10024 &newframe->stack[i].spilled_ptr;
10025 }
10026 }
10027 return 0;
10028 }
10029
10030 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)10031 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
10032 {
10033 switch (base_type(type)) {
10034 case PTR_TO_CTX:
10035 case PTR_TO_SOCKET:
10036 case PTR_TO_SOCK_COMMON:
10037 case PTR_TO_TCP_SOCK:
10038 case PTR_TO_XDP_SOCK:
10039 case PTR_TO_BTF_ID:
10040 return false;
10041 default:
10042 return true;
10043 }
10044 }
10045
10046 /* If an instruction was previously used with particular pointer types, then we
10047 * need to be careful to avoid cases such as the below, where it may be ok
10048 * for one branch accessing the pointer, but not ok for the other branch:
10049 *
10050 * R1 = sock_ptr
10051 * goto X;
10052 * ...
10053 * R1 = some_other_valid_ptr;
10054 * goto X;
10055 * ...
10056 * R2 = *(u32 *)(R1 + 0);
10057 */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)10058 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
10059 {
10060 return src != prev && (!reg_type_mismatch_ok(src) ||
10061 !reg_type_mismatch_ok(prev));
10062 }
10063
do_check(struct bpf_verifier_env * env)10064 static int do_check(struct bpf_verifier_env *env)
10065 {
10066 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10067 struct bpf_verifier_state *state = env->cur_state;
10068 struct bpf_insn *insns = env->prog->insnsi;
10069 struct bpf_reg_state *regs;
10070 int insn_cnt = env->prog->len;
10071 bool do_print_state = false;
10072 int prev_insn_idx = -1;
10073
10074 for (;;) {
10075 struct bpf_insn *insn;
10076 u8 class;
10077 int err;
10078
10079 env->prev_insn_idx = prev_insn_idx;
10080 if (env->insn_idx >= insn_cnt) {
10081 verbose(env, "invalid insn idx %d insn_cnt %d\n",
10082 env->insn_idx, insn_cnt);
10083 return -EFAULT;
10084 }
10085
10086 insn = &insns[env->insn_idx];
10087 class = BPF_CLASS(insn->code);
10088
10089 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
10090 verbose(env,
10091 "BPF program is too large. Processed %d insn\n",
10092 env->insn_processed);
10093 return -E2BIG;
10094 }
10095
10096 err = is_state_visited(env, env->insn_idx);
10097 if (err < 0)
10098 return err;
10099 if (err == 1) {
10100 /* found equivalent state, can prune the search */
10101 if (env->log.level & BPF_LOG_LEVEL) {
10102 if (do_print_state)
10103 verbose(env, "\nfrom %d to %d%s: safe\n",
10104 env->prev_insn_idx, env->insn_idx,
10105 env->cur_state->speculative ?
10106 " (speculative execution)" : "");
10107 else
10108 verbose(env, "%d: safe\n", env->insn_idx);
10109 }
10110 goto process_bpf_exit;
10111 }
10112
10113 if (signal_pending(current))
10114 return -EAGAIN;
10115
10116 if (need_resched())
10117 cond_resched();
10118
10119 if (env->log.level & BPF_LOG_LEVEL2 ||
10120 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10121 if (env->log.level & BPF_LOG_LEVEL2)
10122 verbose(env, "%d:", env->insn_idx);
10123 else
10124 verbose(env, "\nfrom %d to %d%s:",
10125 env->prev_insn_idx, env->insn_idx,
10126 env->cur_state->speculative ?
10127 " (speculative execution)" : "");
10128 print_verifier_state(env, state->frame[state->curframe]);
10129 do_print_state = false;
10130 }
10131
10132 if (env->log.level & BPF_LOG_LEVEL) {
10133 const struct bpf_insn_cbs cbs = {
10134 .cb_print = verbose,
10135 .private_data = env,
10136 };
10137
10138 verbose_linfo(env, env->insn_idx, "; ");
10139 verbose(env, "%d: ", env->insn_idx);
10140 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
10141 }
10142
10143 if (bpf_prog_is_dev_bound(env->prog->aux)) {
10144 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10145 env->prev_insn_idx);
10146 if (err)
10147 return err;
10148 }
10149
10150 regs = cur_regs(env);
10151 sanitize_mark_insn_seen(env);
10152 prev_insn_idx = env->insn_idx;
10153
10154 if (class == BPF_ALU || class == BPF_ALU64) {
10155 err = check_alu_op(env, insn);
10156 if (err)
10157 return err;
10158
10159 } else if (class == BPF_LDX) {
10160 enum bpf_reg_type *prev_src_type, src_reg_type;
10161
10162 /* check for reserved fields is already done */
10163
10164 /* check src operand */
10165 err = check_reg_arg(env, insn->src_reg, SRC_OP);
10166 if (err)
10167 return err;
10168
10169 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10170 if (err)
10171 return err;
10172
10173 src_reg_type = regs[insn->src_reg].type;
10174
10175 /* check that memory (src_reg + off) is readable,
10176 * the state of dst_reg will be updated by this func
10177 */
10178 err = check_mem_access(env, env->insn_idx, insn->src_reg,
10179 insn->off, BPF_SIZE(insn->code),
10180 BPF_READ, insn->dst_reg, false);
10181 if (err)
10182 return err;
10183
10184 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10185
10186 if (*prev_src_type == NOT_INIT) {
10187 /* saw a valid insn
10188 * dst_reg = *(u32 *)(src_reg + off)
10189 * save type to validate intersecting paths
10190 */
10191 *prev_src_type = src_reg_type;
10192
10193 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10194 /* ABuser program is trying to use the same insn
10195 * dst_reg = *(u32*) (src_reg + off)
10196 * with different pointer types:
10197 * src_reg == ctx in one branch and
10198 * src_reg == stack|map in some other branch.
10199 * Reject it.
10200 */
10201 verbose(env, "same insn cannot be used with different pointers\n");
10202 return -EINVAL;
10203 }
10204
10205 } else if (class == BPF_STX) {
10206 enum bpf_reg_type *prev_dst_type, dst_reg_type;
10207
10208 if (BPF_MODE(insn->code) == BPF_XADD) {
10209 err = check_xadd(env, env->insn_idx, insn);
10210 if (err)
10211 return err;
10212 env->insn_idx++;
10213 continue;
10214 }
10215
10216 /* check src1 operand */
10217 err = check_reg_arg(env, insn->src_reg, SRC_OP);
10218 if (err)
10219 return err;
10220 /* check src2 operand */
10221 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10222 if (err)
10223 return err;
10224
10225 dst_reg_type = regs[insn->dst_reg].type;
10226
10227 /* check that memory (dst_reg + off) is writeable */
10228 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10229 insn->off, BPF_SIZE(insn->code),
10230 BPF_WRITE, insn->src_reg, false);
10231 if (err)
10232 return err;
10233
10234 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10235
10236 if (*prev_dst_type == NOT_INIT) {
10237 *prev_dst_type = dst_reg_type;
10238 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10239 verbose(env, "same insn cannot be used with different pointers\n");
10240 return -EINVAL;
10241 }
10242
10243 } else if (class == BPF_ST) {
10244 if (BPF_MODE(insn->code) != BPF_MEM ||
10245 insn->src_reg != BPF_REG_0) {
10246 verbose(env, "BPF_ST uses reserved fields\n");
10247 return -EINVAL;
10248 }
10249 /* check src operand */
10250 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10251 if (err)
10252 return err;
10253
10254 if (is_ctx_reg(env, insn->dst_reg)) {
10255 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10256 insn->dst_reg,
10257 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
10258 return -EACCES;
10259 }
10260
10261 /* check that memory (dst_reg + off) is writeable */
10262 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10263 insn->off, BPF_SIZE(insn->code),
10264 BPF_WRITE, -1, false);
10265 if (err)
10266 return err;
10267
10268 } else if (class == BPF_JMP || class == BPF_JMP32) {
10269 u8 opcode = BPF_OP(insn->code);
10270
10271 env->jmps_processed++;
10272 if (opcode == BPF_CALL) {
10273 if (BPF_SRC(insn->code) != BPF_K ||
10274 insn->off != 0 ||
10275 (insn->src_reg != BPF_REG_0 &&
10276 insn->src_reg != BPF_PSEUDO_CALL) ||
10277 insn->dst_reg != BPF_REG_0 ||
10278 class == BPF_JMP32) {
10279 verbose(env, "BPF_CALL uses reserved fields\n");
10280 return -EINVAL;
10281 }
10282
10283 if (env->cur_state->active_spin_lock &&
10284 (insn->src_reg == BPF_PSEUDO_CALL ||
10285 insn->imm != BPF_FUNC_spin_unlock)) {
10286 verbose(env, "function calls are not allowed while holding a lock\n");
10287 return -EINVAL;
10288 }
10289 if (insn->src_reg == BPF_PSEUDO_CALL)
10290 err = check_func_call(env, insn, &env->insn_idx);
10291 else
10292 err = check_helper_call(env, insn->imm, env->insn_idx);
10293 if (err)
10294 return err;
10295
10296 } else if (opcode == BPF_JA) {
10297 if (BPF_SRC(insn->code) != BPF_K ||
10298 insn->imm != 0 ||
10299 insn->src_reg != BPF_REG_0 ||
10300 insn->dst_reg != BPF_REG_0 ||
10301 class == BPF_JMP32) {
10302 verbose(env, "BPF_JA uses reserved fields\n");
10303 return -EINVAL;
10304 }
10305
10306 env->insn_idx += insn->off + 1;
10307 continue;
10308
10309 } else if (opcode == BPF_EXIT) {
10310 if (BPF_SRC(insn->code) != BPF_K ||
10311 insn->imm != 0 ||
10312 insn->src_reg != BPF_REG_0 ||
10313 insn->dst_reg != BPF_REG_0 ||
10314 class == BPF_JMP32) {
10315 verbose(env, "BPF_EXIT uses reserved fields\n");
10316 return -EINVAL;
10317 }
10318
10319 if (env->cur_state->active_spin_lock) {
10320 verbose(env, "bpf_spin_unlock is missing\n");
10321 return -EINVAL;
10322 }
10323
10324 if (state->curframe) {
10325 /* exit from nested function */
10326 err = prepare_func_exit(env, &env->insn_idx);
10327 if (err)
10328 return err;
10329 do_print_state = true;
10330 continue;
10331 }
10332
10333 err = check_reference_leak(env);
10334 if (err)
10335 return err;
10336
10337 err = check_return_code(env);
10338 if (err)
10339 return err;
10340 process_bpf_exit:
10341 update_branch_counts(env, env->cur_state);
10342 err = pop_stack(env, &prev_insn_idx,
10343 &env->insn_idx, pop_log);
10344 if (err < 0) {
10345 if (err != -ENOENT)
10346 return err;
10347 break;
10348 } else {
10349 do_print_state = true;
10350 continue;
10351 }
10352 } else {
10353 err = check_cond_jmp_op(env, insn, &env->insn_idx);
10354 if (err)
10355 return err;
10356 }
10357 } else if (class == BPF_LD) {
10358 u8 mode = BPF_MODE(insn->code);
10359
10360 if (mode == BPF_ABS || mode == BPF_IND) {
10361 err = check_ld_abs(env, insn);
10362 if (err)
10363 return err;
10364
10365 } else if (mode == BPF_IMM) {
10366 err = check_ld_imm(env, insn);
10367 if (err)
10368 return err;
10369
10370 env->insn_idx++;
10371 sanitize_mark_insn_seen(env);
10372 } else {
10373 verbose(env, "invalid BPF_LD mode\n");
10374 return -EINVAL;
10375 }
10376 } else {
10377 verbose(env, "unknown insn class %d\n", class);
10378 return -EINVAL;
10379 }
10380
10381 env->insn_idx++;
10382 }
10383
10384 return 0;
10385 }
10386
10387 /* replace pseudo btf_id with kernel symbol address */
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)10388 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10389 struct bpf_insn *insn,
10390 struct bpf_insn_aux_data *aux)
10391 {
10392 const struct btf_var_secinfo *vsi;
10393 const struct btf_type *datasec;
10394 const struct btf_type *t;
10395 const char *sym_name;
10396 bool percpu = false;
10397 u32 type, id = insn->imm;
10398 s32 datasec_id;
10399 u64 addr;
10400 int i;
10401
10402 if (!btf_vmlinux) {
10403 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10404 return -EINVAL;
10405 }
10406
10407 if (insn[1].imm != 0) {
10408 verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n");
10409 return -EINVAL;
10410 }
10411
10412 t = btf_type_by_id(btf_vmlinux, id);
10413 if (!t) {
10414 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10415 return -ENOENT;
10416 }
10417
10418 if (!btf_type_is_var(t)) {
10419 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n",
10420 id);
10421 return -EINVAL;
10422 }
10423
10424 sym_name = btf_name_by_offset(btf_vmlinux, t->name_off);
10425 addr = kallsyms_lookup_name(sym_name);
10426 if (!addr) {
10427 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10428 sym_name);
10429 return -ENOENT;
10430 }
10431
10432 datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu",
10433 BTF_KIND_DATASEC);
10434 if (datasec_id > 0) {
10435 datasec = btf_type_by_id(btf_vmlinux, datasec_id);
10436 for_each_vsi(i, datasec, vsi) {
10437 if (vsi->type == id) {
10438 percpu = true;
10439 break;
10440 }
10441 }
10442 }
10443
10444 insn[0].imm = (u32)addr;
10445 insn[1].imm = addr >> 32;
10446
10447 type = t->type;
10448 t = btf_type_skip_modifiers(btf_vmlinux, type, NULL);
10449 if (percpu) {
10450 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
10451 aux->btf_var.btf_id = type;
10452 } else if (!btf_type_is_struct(t)) {
10453 const struct btf_type *ret;
10454 const char *tname;
10455 u32 tsize;
10456
10457 /* resolve the type size of ksym. */
10458 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
10459 if (IS_ERR(ret)) {
10460 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
10461 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
10462 tname, PTR_ERR(ret));
10463 return -EINVAL;
10464 }
10465 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
10466 aux->btf_var.mem_size = tsize;
10467 } else {
10468 aux->btf_var.reg_type = PTR_TO_BTF_ID;
10469 aux->btf_var.btf_id = type;
10470 }
10471 return 0;
10472 }
10473
check_map_prealloc(struct bpf_map * map)10474 static int check_map_prealloc(struct bpf_map *map)
10475 {
10476 return (map->map_type != BPF_MAP_TYPE_HASH &&
10477 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10478 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
10479 !(map->map_flags & BPF_F_NO_PREALLOC);
10480 }
10481
is_tracing_prog_type(enum bpf_prog_type type)10482 static bool is_tracing_prog_type(enum bpf_prog_type type)
10483 {
10484 switch (type) {
10485 case BPF_PROG_TYPE_KPROBE:
10486 case BPF_PROG_TYPE_TRACEPOINT:
10487 case BPF_PROG_TYPE_PERF_EVENT:
10488 case BPF_PROG_TYPE_RAW_TRACEPOINT:
10489 return true;
10490 default:
10491 return false;
10492 }
10493 }
10494
is_preallocated_map(struct bpf_map * map)10495 static bool is_preallocated_map(struct bpf_map *map)
10496 {
10497 if (!check_map_prealloc(map))
10498 return false;
10499 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
10500 return false;
10501 return true;
10502 }
10503
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)10504 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
10505 struct bpf_map *map,
10506 struct bpf_prog *prog)
10507
10508 {
10509 enum bpf_prog_type prog_type = resolve_prog_type(prog);
10510 /*
10511 * Validate that trace type programs use preallocated hash maps.
10512 *
10513 * For programs attached to PERF events this is mandatory as the
10514 * perf NMI can hit any arbitrary code sequence.
10515 *
10516 * All other trace types using preallocated hash maps are unsafe as
10517 * well because tracepoint or kprobes can be inside locked regions
10518 * of the memory allocator or at a place where a recursion into the
10519 * memory allocator would see inconsistent state.
10520 *
10521 * On RT enabled kernels run-time allocation of all trace type
10522 * programs is strictly prohibited due to lock type constraints. On
10523 * !RT kernels it is allowed for backwards compatibility reasons for
10524 * now, but warnings are emitted so developers are made aware of
10525 * the unsafety and can fix their programs before this is enforced.
10526 */
10527 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
10528 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
10529 verbose(env, "perf_event programs can only use preallocated hash map\n");
10530 return -EINVAL;
10531 }
10532 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
10533 verbose(env, "trace type programs can only use preallocated hash map\n");
10534 return -EINVAL;
10535 }
10536 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
10537 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
10538 }
10539
10540 if ((is_tracing_prog_type(prog_type) ||
10541 prog_type == BPF_PROG_TYPE_SOCKET_FILTER) &&
10542 map_value_has_spin_lock(map)) {
10543 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
10544 return -EINVAL;
10545 }
10546
10547 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
10548 !bpf_offload_prog_map_match(prog, map)) {
10549 verbose(env, "offload device mismatch between prog and map\n");
10550 return -EINVAL;
10551 }
10552
10553 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
10554 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
10555 return -EINVAL;
10556 }
10557
10558 if (prog->aux->sleepable)
10559 switch (map->map_type) {
10560 case BPF_MAP_TYPE_HASH:
10561 case BPF_MAP_TYPE_LRU_HASH:
10562 case BPF_MAP_TYPE_ARRAY:
10563 if (!is_preallocated_map(map)) {
10564 verbose(env,
10565 "Sleepable programs can only use preallocated hash maps\n");
10566 return -EINVAL;
10567 }
10568 break;
10569 default:
10570 verbose(env,
10571 "Sleepable programs can only use array and hash maps\n");
10572 return -EINVAL;
10573 }
10574
10575 return 0;
10576 }
10577
bpf_map_is_cgroup_storage(struct bpf_map * map)10578 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
10579 {
10580 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
10581 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
10582 }
10583
10584 /* find and rewrite pseudo imm in ld_imm64 instructions:
10585 *
10586 * 1. if it accesses map FD, replace it with actual map pointer.
10587 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
10588 *
10589 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
10590 */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)10591 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
10592 {
10593 struct bpf_insn *insn = env->prog->insnsi;
10594 int insn_cnt = env->prog->len;
10595 int i, j, err;
10596
10597 err = bpf_prog_calc_tag(env->prog);
10598 if (err)
10599 return err;
10600
10601 for (i = 0; i < insn_cnt; i++, insn++) {
10602 if (BPF_CLASS(insn->code) == BPF_LDX &&
10603 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
10604 verbose(env, "BPF_LDX uses reserved fields\n");
10605 return -EINVAL;
10606 }
10607
10608 if (BPF_CLASS(insn->code) == BPF_STX &&
10609 ((BPF_MODE(insn->code) != BPF_MEM &&
10610 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
10611 verbose(env, "BPF_STX uses reserved fields\n");
10612 return -EINVAL;
10613 }
10614
10615 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
10616 struct bpf_insn_aux_data *aux;
10617 struct bpf_map *map;
10618 struct fd f;
10619 u64 addr;
10620
10621 if (i == insn_cnt - 1 || insn[1].code != 0 ||
10622 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
10623 insn[1].off != 0) {
10624 verbose(env, "invalid bpf_ld_imm64 insn\n");
10625 return -EINVAL;
10626 }
10627
10628 if (insn[0].src_reg == 0)
10629 /* valid generic load 64-bit imm */
10630 goto next_insn;
10631
10632 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
10633 aux = &env->insn_aux_data[i];
10634 err = check_pseudo_btf_id(env, insn, aux);
10635 if (err)
10636 return err;
10637 goto next_insn;
10638 }
10639
10640 /* In final convert_pseudo_ld_imm64() step, this is
10641 * converted into regular 64-bit imm load insn.
10642 */
10643 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
10644 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
10645 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
10646 insn[1].imm != 0)) {
10647 verbose(env,
10648 "unrecognized bpf_ld_imm64 insn\n");
10649 return -EINVAL;
10650 }
10651
10652 f = fdget(insn[0].imm);
10653 map = __bpf_map_get(f);
10654 if (IS_ERR(map)) {
10655 verbose(env, "fd %d is not pointing to valid bpf_map\n",
10656 insn[0].imm);
10657 return PTR_ERR(map);
10658 }
10659
10660 err = check_map_prog_compatibility(env, map, env->prog);
10661 if (err) {
10662 fdput(f);
10663 return err;
10664 }
10665
10666 aux = &env->insn_aux_data[i];
10667 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10668 addr = (unsigned long)map;
10669 } else {
10670 u32 off = insn[1].imm;
10671
10672 if (off >= BPF_MAX_VAR_OFF) {
10673 verbose(env, "direct value offset of %u is not allowed\n", off);
10674 fdput(f);
10675 return -EINVAL;
10676 }
10677
10678 if (!map->ops->map_direct_value_addr) {
10679 verbose(env, "no direct value access support for this map type\n");
10680 fdput(f);
10681 return -EINVAL;
10682 }
10683
10684 err = map->ops->map_direct_value_addr(map, &addr, off);
10685 if (err) {
10686 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10687 map->value_size, off);
10688 fdput(f);
10689 return err;
10690 }
10691
10692 aux->map_off = off;
10693 addr += off;
10694 }
10695
10696 insn[0].imm = (u32)addr;
10697 insn[1].imm = addr >> 32;
10698
10699 /* check whether we recorded this map already */
10700 for (j = 0; j < env->used_map_cnt; j++) {
10701 if (env->used_maps[j] == map) {
10702 aux->map_index = j;
10703 fdput(f);
10704 goto next_insn;
10705 }
10706 }
10707
10708 if (env->used_map_cnt >= MAX_USED_MAPS) {
10709 fdput(f);
10710 return -E2BIG;
10711 }
10712
10713 /* hold the map. If the program is rejected by verifier,
10714 * the map will be released by release_maps() or it
10715 * will be used by the valid program until it's unloaded
10716 * and all maps are released in free_used_maps()
10717 */
10718 bpf_map_inc(map);
10719
10720 aux->map_index = env->used_map_cnt;
10721 env->used_maps[env->used_map_cnt++] = map;
10722
10723 if (bpf_map_is_cgroup_storage(map) &&
10724 bpf_cgroup_storage_assign(env->prog->aux, map)) {
10725 verbose(env, "only one cgroup storage of each type is allowed\n");
10726 fdput(f);
10727 return -EBUSY;
10728 }
10729
10730 fdput(f);
10731 next_insn:
10732 insn++;
10733 i++;
10734 continue;
10735 }
10736
10737 /* Basic sanity check before we invest more work here. */
10738 if (!bpf_opcode_in_insntable(insn->code)) {
10739 verbose(env, "unknown opcode %02x\n", insn->code);
10740 return -EINVAL;
10741 }
10742 }
10743
10744 /* now all pseudo BPF_LD_IMM64 instructions load valid
10745 * 'struct bpf_map *' into a register instead of user map_fd.
10746 * These pointers will be used later by verifier to validate map access.
10747 */
10748 return 0;
10749 }
10750
10751 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)10752 static void release_maps(struct bpf_verifier_env *env)
10753 {
10754 __bpf_free_used_maps(env->prog->aux, env->used_maps,
10755 env->used_map_cnt);
10756 }
10757
10758 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)10759 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10760 {
10761 struct bpf_insn *insn = env->prog->insnsi;
10762 int insn_cnt = env->prog->len;
10763 int i;
10764
10765 for (i = 0; i < insn_cnt; i++, insn++)
10766 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
10767 insn->src_reg = 0;
10768 }
10769
10770 /* single env->prog->insni[off] instruction was replaced with the range
10771 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
10772 * [0, off) and [off, end) to new locations, so the patched range stays zero
10773 */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)10774 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
10775 struct bpf_insn_aux_data *new_data,
10776 struct bpf_prog *new_prog, u32 off, u32 cnt)
10777 {
10778 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
10779 struct bpf_insn *insn = new_prog->insnsi;
10780 u32 old_seen = old_data[off].seen;
10781 u32 prog_len;
10782 int i;
10783
10784 /* aux info at OFF always needs adjustment, no matter fast path
10785 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10786 * original insn at old prog.
10787 */
10788 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10789
10790 if (cnt == 1)
10791 return;
10792 prog_len = new_prog->len;
10793
10794 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10795 memcpy(new_data + off + cnt - 1, old_data + off,
10796 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10797 for (i = off; i < off + cnt - 1; i++) {
10798 /* Expand insni[off]'s seen count to the patched range. */
10799 new_data[i].seen = old_seen;
10800 new_data[i].zext_dst = insn_has_def32(env, insn + i);
10801 }
10802 env->insn_aux_data = new_data;
10803 vfree(old_data);
10804 }
10805
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)10806 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10807 {
10808 int i;
10809
10810 if (len == 1)
10811 return;
10812 /* NOTE: fake 'exit' subprog should be updated as well. */
10813 for (i = 0; i <= env->subprog_cnt; i++) {
10814 if (env->subprog_info[i].start <= off)
10815 continue;
10816 env->subprog_info[i].start += len - 1;
10817 }
10818 }
10819
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)10820 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
10821 {
10822 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10823 int i, sz = prog->aux->size_poke_tab;
10824 struct bpf_jit_poke_descriptor *desc;
10825
10826 for (i = 0; i < sz; i++) {
10827 desc = &tab[i];
10828 if (desc->insn_idx <= off)
10829 continue;
10830 desc->insn_idx += len - 1;
10831 }
10832 }
10833
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)10834 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10835 const struct bpf_insn *patch, u32 len)
10836 {
10837 struct bpf_prog *new_prog;
10838 struct bpf_insn_aux_data *new_data = NULL;
10839
10840 if (len > 1) {
10841 new_data = vzalloc(array_size(env->prog->len + len - 1,
10842 sizeof(struct bpf_insn_aux_data)));
10843 if (!new_data)
10844 return NULL;
10845 }
10846
10847 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10848 if (IS_ERR(new_prog)) {
10849 if (PTR_ERR(new_prog) == -ERANGE)
10850 verbose(env,
10851 "insn %d cannot be patched due to 16-bit range\n",
10852 env->insn_aux_data[off].orig_idx);
10853 vfree(new_data);
10854 return NULL;
10855 }
10856 adjust_insn_aux_data(env, new_data, new_prog, off, len);
10857 adjust_subprog_starts(env, off, len);
10858 adjust_poke_descs(new_prog, off, len);
10859 return new_prog;
10860 }
10861
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)10862 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10863 u32 off, u32 cnt)
10864 {
10865 int i, j;
10866
10867 /* find first prog starting at or after off (first to remove) */
10868 for (i = 0; i < env->subprog_cnt; i++)
10869 if (env->subprog_info[i].start >= off)
10870 break;
10871 /* find first prog starting at or after off + cnt (first to stay) */
10872 for (j = i; j < env->subprog_cnt; j++)
10873 if (env->subprog_info[j].start >= off + cnt)
10874 break;
10875 /* if j doesn't start exactly at off + cnt, we are just removing
10876 * the front of previous prog
10877 */
10878 if (env->subprog_info[j].start != off + cnt)
10879 j--;
10880
10881 if (j > i) {
10882 struct bpf_prog_aux *aux = env->prog->aux;
10883 int move;
10884
10885 /* move fake 'exit' subprog as well */
10886 move = env->subprog_cnt + 1 - j;
10887
10888 memmove(env->subprog_info + i,
10889 env->subprog_info + j,
10890 sizeof(*env->subprog_info) * move);
10891 env->subprog_cnt -= j - i;
10892
10893 /* remove func_info */
10894 if (aux->func_info) {
10895 move = aux->func_info_cnt - j;
10896
10897 memmove(aux->func_info + i,
10898 aux->func_info + j,
10899 sizeof(*aux->func_info) * move);
10900 aux->func_info_cnt -= j - i;
10901 /* func_info->insn_off is set after all code rewrites,
10902 * in adjust_btf_func() - no need to adjust
10903 */
10904 }
10905 } else {
10906 /* convert i from "first prog to remove" to "first to adjust" */
10907 if (env->subprog_info[i].start == off)
10908 i++;
10909 }
10910
10911 /* update fake 'exit' subprog as well */
10912 for (; i <= env->subprog_cnt; i++)
10913 env->subprog_info[i].start -= cnt;
10914
10915 return 0;
10916 }
10917
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)10918 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10919 u32 cnt)
10920 {
10921 struct bpf_prog *prog = env->prog;
10922 u32 i, l_off, l_cnt, nr_linfo;
10923 struct bpf_line_info *linfo;
10924
10925 nr_linfo = prog->aux->nr_linfo;
10926 if (!nr_linfo)
10927 return 0;
10928
10929 linfo = prog->aux->linfo;
10930
10931 /* find first line info to remove, count lines to be removed */
10932 for (i = 0; i < nr_linfo; i++)
10933 if (linfo[i].insn_off >= off)
10934 break;
10935
10936 l_off = i;
10937 l_cnt = 0;
10938 for (; i < nr_linfo; i++)
10939 if (linfo[i].insn_off < off + cnt)
10940 l_cnt++;
10941 else
10942 break;
10943
10944 /* First live insn doesn't match first live linfo, it needs to "inherit"
10945 * last removed linfo. prog is already modified, so prog->len == off
10946 * means no live instructions after (tail of the program was removed).
10947 */
10948 if (prog->len != off && l_cnt &&
10949 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10950 l_cnt--;
10951 linfo[--i].insn_off = off + cnt;
10952 }
10953
10954 /* remove the line info which refer to the removed instructions */
10955 if (l_cnt) {
10956 memmove(linfo + l_off, linfo + i,
10957 sizeof(*linfo) * (nr_linfo - i));
10958
10959 prog->aux->nr_linfo -= l_cnt;
10960 nr_linfo = prog->aux->nr_linfo;
10961 }
10962
10963 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
10964 for (i = l_off; i < nr_linfo; i++)
10965 linfo[i].insn_off -= cnt;
10966
10967 /* fix up all subprogs (incl. 'exit') which start >= off */
10968 for (i = 0; i <= env->subprog_cnt; i++)
10969 if (env->subprog_info[i].linfo_idx > l_off) {
10970 /* program may have started in the removed region but
10971 * may not be fully removed
10972 */
10973 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10974 env->subprog_info[i].linfo_idx -= l_cnt;
10975 else
10976 env->subprog_info[i].linfo_idx = l_off;
10977 }
10978
10979 return 0;
10980 }
10981
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)10982 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10983 {
10984 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10985 unsigned int orig_prog_len = env->prog->len;
10986 int err;
10987
10988 if (bpf_prog_is_dev_bound(env->prog->aux))
10989 bpf_prog_offload_remove_insns(env, off, cnt);
10990
10991 err = bpf_remove_insns(env->prog, off, cnt);
10992 if (err)
10993 return err;
10994
10995 err = adjust_subprog_starts_after_remove(env, off, cnt);
10996 if (err)
10997 return err;
10998
10999 err = bpf_adj_linfo_after_remove(env, off, cnt);
11000 if (err)
11001 return err;
11002
11003 memmove(aux_data + off, aux_data + off + cnt,
11004 sizeof(*aux_data) * (orig_prog_len - off - cnt));
11005
11006 return 0;
11007 }
11008
11009 /* The verifier does more data flow analysis than llvm and will not
11010 * explore branches that are dead at run time. Malicious programs can
11011 * have dead code too. Therefore replace all dead at-run-time code
11012 * with 'ja -1'.
11013 *
11014 * Just nops are not optimal, e.g. if they would sit at the end of the
11015 * program and through another bug we would manage to jump there, then
11016 * we'd execute beyond program memory otherwise. Returning exception
11017 * code also wouldn't work since we can have subprogs where the dead
11018 * code could be located.
11019 */
sanitize_dead_code(struct bpf_verifier_env * env)11020 static void sanitize_dead_code(struct bpf_verifier_env *env)
11021 {
11022 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11023 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
11024 struct bpf_insn *insn = env->prog->insnsi;
11025 const int insn_cnt = env->prog->len;
11026 int i;
11027
11028 for (i = 0; i < insn_cnt; i++) {
11029 if (aux_data[i].seen)
11030 continue;
11031 memcpy(insn + i, &trap, sizeof(trap));
11032 aux_data[i].zext_dst = false;
11033 }
11034 }
11035
insn_is_cond_jump(u8 code)11036 static bool insn_is_cond_jump(u8 code)
11037 {
11038 u8 op;
11039
11040 if (BPF_CLASS(code) == BPF_JMP32)
11041 return true;
11042
11043 if (BPF_CLASS(code) != BPF_JMP)
11044 return false;
11045
11046 op = BPF_OP(code);
11047 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
11048 }
11049
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)11050 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
11051 {
11052 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11053 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11054 struct bpf_insn *insn = env->prog->insnsi;
11055 const int insn_cnt = env->prog->len;
11056 int i;
11057
11058 for (i = 0; i < insn_cnt; i++, insn++) {
11059 if (!insn_is_cond_jump(insn->code))
11060 continue;
11061
11062 if (!aux_data[i + 1].seen)
11063 ja.off = insn->off;
11064 else if (!aux_data[i + 1 + insn->off].seen)
11065 ja.off = 0;
11066 else
11067 continue;
11068
11069 if (bpf_prog_is_dev_bound(env->prog->aux))
11070 bpf_prog_offload_replace_insn(env, i, &ja);
11071
11072 memcpy(insn, &ja, sizeof(ja));
11073 }
11074 }
11075
opt_remove_dead_code(struct bpf_verifier_env * env)11076 static int opt_remove_dead_code(struct bpf_verifier_env *env)
11077 {
11078 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11079 int insn_cnt = env->prog->len;
11080 int i, err;
11081
11082 for (i = 0; i < insn_cnt; i++) {
11083 int j;
11084
11085 j = 0;
11086 while (i + j < insn_cnt && !aux_data[i + j].seen)
11087 j++;
11088 if (!j)
11089 continue;
11090
11091 err = verifier_remove_insns(env, i, j);
11092 if (err)
11093 return err;
11094 insn_cnt = env->prog->len;
11095 }
11096
11097 return 0;
11098 }
11099
opt_remove_nops(struct bpf_verifier_env * env)11100 static int opt_remove_nops(struct bpf_verifier_env *env)
11101 {
11102 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11103 struct bpf_insn *insn = env->prog->insnsi;
11104 int insn_cnt = env->prog->len;
11105 int i, err;
11106
11107 for (i = 0; i < insn_cnt; i++) {
11108 if (memcmp(&insn[i], &ja, sizeof(ja)))
11109 continue;
11110
11111 err = verifier_remove_insns(env, i, 1);
11112 if (err)
11113 return err;
11114 insn_cnt--;
11115 i--;
11116 }
11117
11118 return 0;
11119 }
11120
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)11121 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11122 const union bpf_attr *attr)
11123 {
11124 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
11125 struct bpf_insn_aux_data *aux = env->insn_aux_data;
11126 int i, patch_len, delta = 0, len = env->prog->len;
11127 struct bpf_insn *insns = env->prog->insnsi;
11128 struct bpf_prog *new_prog;
11129 bool rnd_hi32;
11130
11131 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
11132 zext_patch[1] = BPF_ZEXT_REG(0);
11133 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11134 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11135 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
11136 for (i = 0; i < len; i++) {
11137 int adj_idx = i + delta;
11138 struct bpf_insn insn;
11139
11140 insn = insns[adj_idx];
11141 if (!aux[adj_idx].zext_dst) {
11142 u8 code, class;
11143 u32 imm_rnd;
11144
11145 if (!rnd_hi32)
11146 continue;
11147
11148 code = insn.code;
11149 class = BPF_CLASS(code);
11150 if (insn_no_def(&insn))
11151 continue;
11152
11153 /* NOTE: arg "reg" (the fourth one) is only used for
11154 * BPF_STX which has been ruled out in above
11155 * check, it is safe to pass NULL here.
11156 */
11157 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
11158 if (class == BPF_LD &&
11159 BPF_MODE(code) == BPF_IMM)
11160 i++;
11161 continue;
11162 }
11163
11164 /* ctx load could be transformed into wider load. */
11165 if (class == BPF_LDX &&
11166 aux[adj_idx].ptr_type == PTR_TO_CTX)
11167 continue;
11168
11169 imm_rnd = get_random_int();
11170 rnd_hi32_patch[0] = insn;
11171 rnd_hi32_patch[1].imm = imm_rnd;
11172 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
11173 patch = rnd_hi32_patch;
11174 patch_len = 4;
11175 goto apply_patch_buffer;
11176 }
11177
11178 if (!bpf_jit_needs_zext())
11179 continue;
11180
11181 zext_patch[0] = insn;
11182 zext_patch[1].dst_reg = insn.dst_reg;
11183 zext_patch[1].src_reg = insn.dst_reg;
11184 patch = zext_patch;
11185 patch_len = 2;
11186 apply_patch_buffer:
11187 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11188 if (!new_prog)
11189 return -ENOMEM;
11190 env->prog = new_prog;
11191 insns = new_prog->insnsi;
11192 aux = env->insn_aux_data;
11193 delta += patch_len - 1;
11194 }
11195
11196 return 0;
11197 }
11198
11199 /* convert load instructions that access fields of a context type into a
11200 * sequence of instructions that access fields of the underlying structure:
11201 * struct __sk_buff -> struct sk_buff
11202 * struct bpf_sock_ops -> struct sock
11203 */
convert_ctx_accesses(struct bpf_verifier_env * env)11204 static int convert_ctx_accesses(struct bpf_verifier_env *env)
11205 {
11206 const struct bpf_verifier_ops *ops = env->ops;
11207 int i, cnt, size, ctx_field_size, delta = 0;
11208 const int insn_cnt = env->prog->len;
11209 struct bpf_insn insn_buf[16], *insn;
11210 u32 target_size, size_default, off;
11211 struct bpf_prog *new_prog;
11212 enum bpf_access_type type;
11213 bool is_narrower_load;
11214
11215 if (ops->gen_prologue || env->seen_direct_write) {
11216 if (!ops->gen_prologue) {
11217 verbose(env, "bpf verifier is misconfigured\n");
11218 return -EINVAL;
11219 }
11220 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11221 env->prog);
11222 if (cnt >= ARRAY_SIZE(insn_buf)) {
11223 verbose(env, "bpf verifier is misconfigured\n");
11224 return -EINVAL;
11225 } else if (cnt) {
11226 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11227 if (!new_prog)
11228 return -ENOMEM;
11229
11230 env->prog = new_prog;
11231 delta += cnt - 1;
11232 }
11233 }
11234
11235 if (bpf_prog_is_dev_bound(env->prog->aux))
11236 return 0;
11237
11238 insn = env->prog->insnsi + delta;
11239
11240 for (i = 0; i < insn_cnt; i++, insn++) {
11241 bpf_convert_ctx_access_t convert_ctx_access;
11242 bool ctx_access;
11243
11244 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11245 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11246 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11247 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
11248 type = BPF_READ;
11249 ctx_access = true;
11250 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11251 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11252 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11253 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
11254 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
11255 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
11256 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
11257 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
11258 type = BPF_WRITE;
11259 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
11260 } else {
11261 continue;
11262 }
11263
11264 if (type == BPF_WRITE &&
11265 env->insn_aux_data[i + delta].sanitize_stack_spill) {
11266 struct bpf_insn patch[] = {
11267 *insn,
11268 BPF_ST_NOSPEC(),
11269 };
11270
11271 cnt = ARRAY_SIZE(patch);
11272 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11273 if (!new_prog)
11274 return -ENOMEM;
11275
11276 delta += cnt - 1;
11277 env->prog = new_prog;
11278 insn = new_prog->insnsi + i + delta;
11279 continue;
11280 }
11281
11282 if (!ctx_access)
11283 continue;
11284
11285 switch (env->insn_aux_data[i + delta].ptr_type) {
11286 case PTR_TO_CTX:
11287 if (!ops->convert_ctx_access)
11288 continue;
11289 convert_ctx_access = ops->convert_ctx_access;
11290 break;
11291 case PTR_TO_SOCKET:
11292 case PTR_TO_SOCK_COMMON:
11293 convert_ctx_access = bpf_sock_convert_ctx_access;
11294 break;
11295 case PTR_TO_TCP_SOCK:
11296 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11297 break;
11298 case PTR_TO_XDP_SOCK:
11299 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11300 break;
11301 case PTR_TO_BTF_ID:
11302 if (type == BPF_READ) {
11303 insn->code = BPF_LDX | BPF_PROBE_MEM |
11304 BPF_SIZE((insn)->code);
11305 env->prog->aux->num_exentries++;
11306 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11307 verbose(env, "Writes through BTF pointers are not allowed\n");
11308 return -EINVAL;
11309 }
11310 continue;
11311 default:
11312 continue;
11313 }
11314
11315 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11316 size = BPF_LDST_BYTES(insn);
11317
11318 /* If the read access is a narrower load of the field,
11319 * convert to a 4/8-byte load, to minimum program type specific
11320 * convert_ctx_access changes. If conversion is successful,
11321 * we will apply proper mask to the result.
11322 */
11323 is_narrower_load = size < ctx_field_size;
11324 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11325 off = insn->off;
11326 if (is_narrower_load) {
11327 u8 size_code;
11328
11329 if (type == BPF_WRITE) {
11330 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11331 return -EINVAL;
11332 }
11333
11334 size_code = BPF_H;
11335 if (ctx_field_size == 4)
11336 size_code = BPF_W;
11337 else if (ctx_field_size == 8)
11338 size_code = BPF_DW;
11339
11340 insn->off = off & ~(size_default - 1);
11341 insn->code = BPF_LDX | BPF_MEM | size_code;
11342 }
11343
11344 target_size = 0;
11345 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11346 &target_size);
11347 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11348 (ctx_field_size && !target_size)) {
11349 verbose(env, "bpf verifier is misconfigured\n");
11350 return -EINVAL;
11351 }
11352
11353 if (is_narrower_load && size < target_size) {
11354 u8 shift = bpf_ctx_narrow_access_offset(
11355 off, size, size_default) * 8;
11356 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
11357 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
11358 return -EINVAL;
11359 }
11360 if (ctx_field_size <= 4) {
11361 if (shift)
11362 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
11363 insn->dst_reg,
11364 shift);
11365 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11366 (1 << size * 8) - 1);
11367 } else {
11368 if (shift)
11369 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
11370 insn->dst_reg,
11371 shift);
11372 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11373 (1ULL << size * 8) - 1);
11374 }
11375 }
11376
11377 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11378 if (!new_prog)
11379 return -ENOMEM;
11380
11381 delta += cnt - 1;
11382
11383 /* keep walking new program and skip insns we just inserted */
11384 env->prog = new_prog;
11385 insn = new_prog->insnsi + i + delta;
11386 }
11387
11388 return 0;
11389 }
11390
jit_subprogs(struct bpf_verifier_env * env)11391 static int jit_subprogs(struct bpf_verifier_env *env)
11392 {
11393 struct bpf_prog *prog = env->prog, **func, *tmp;
11394 int i, j, subprog_start, subprog_end = 0, len, subprog;
11395 struct bpf_map *map_ptr;
11396 struct bpf_insn *insn;
11397 void *old_bpf_func;
11398 int err, num_exentries;
11399
11400 if (env->subprog_cnt <= 1)
11401 return 0;
11402
11403 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11404 if (insn->code != (BPF_JMP | BPF_CALL) ||
11405 insn->src_reg != BPF_PSEUDO_CALL)
11406 continue;
11407 /* Upon error here we cannot fall back to interpreter but
11408 * need a hard reject of the program. Thus -EFAULT is
11409 * propagated in any case.
11410 */
11411 subprog = find_subprog(env, i + insn->imm + 1);
11412 if (subprog < 0) {
11413 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
11414 i + insn->imm + 1);
11415 return -EFAULT;
11416 }
11417 /* temporarily remember subprog id inside insn instead of
11418 * aux_data, since next loop will split up all insns into funcs
11419 */
11420 insn->off = subprog;
11421 /* remember original imm in case JIT fails and fallback
11422 * to interpreter will be needed
11423 */
11424 env->insn_aux_data[i].call_imm = insn->imm;
11425 /* point imm to __bpf_call_base+1 from JITs point of view */
11426 insn->imm = 1;
11427 }
11428
11429 err = bpf_prog_alloc_jited_linfo(prog);
11430 if (err)
11431 goto out_undo_insn;
11432
11433 err = -ENOMEM;
11434 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
11435 if (!func)
11436 goto out_undo_insn;
11437
11438 for (i = 0; i < env->subprog_cnt; i++) {
11439 subprog_start = subprog_end;
11440 subprog_end = env->subprog_info[i + 1].start;
11441
11442 len = subprog_end - subprog_start;
11443 /* BPF_PROG_RUN doesn't call subprogs directly,
11444 * hence main prog stats include the runtime of subprogs.
11445 * subprogs don't have IDs and not reachable via prog_get_next_id
11446 * func[i]->aux->stats will never be accessed and stays NULL
11447 */
11448 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
11449 if (!func[i])
11450 goto out_free;
11451 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
11452 len * sizeof(struct bpf_insn));
11453 func[i]->type = prog->type;
11454 func[i]->len = len;
11455 if (bpf_prog_calc_tag(func[i]))
11456 goto out_free;
11457 func[i]->is_func = 1;
11458 func[i]->aux->func_idx = i;
11459 /* Below members will be freed only at prog->aux */
11460 func[i]->aux->btf = prog->aux->btf;
11461 func[i]->aux->func_info = prog->aux->func_info;
11462 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
11463 func[i]->aux->poke_tab = prog->aux->poke_tab;
11464 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
11465
11466 for (j = 0; j < prog->aux->size_poke_tab; j++) {
11467 struct bpf_jit_poke_descriptor *poke;
11468
11469 poke = &prog->aux->poke_tab[j];
11470 if (poke->insn_idx < subprog_end &&
11471 poke->insn_idx >= subprog_start)
11472 poke->aux = func[i]->aux;
11473 }
11474
11475 func[i]->aux->name[0] = 'F';
11476 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
11477 func[i]->jit_requested = 1;
11478 func[i]->aux->linfo = prog->aux->linfo;
11479 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
11480 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
11481 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
11482 num_exentries = 0;
11483 insn = func[i]->insnsi;
11484 for (j = 0; j < func[i]->len; j++, insn++) {
11485 if (BPF_CLASS(insn->code) == BPF_LDX &&
11486 BPF_MODE(insn->code) == BPF_PROBE_MEM)
11487 num_exentries++;
11488 }
11489 func[i]->aux->num_exentries = num_exentries;
11490 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
11491 func[i] = bpf_int_jit_compile(func[i]);
11492 if (!func[i]->jited) {
11493 err = -ENOTSUPP;
11494 goto out_free;
11495 }
11496 cond_resched();
11497 }
11498
11499 /* at this point all bpf functions were successfully JITed
11500 * now populate all bpf_calls with correct addresses and
11501 * run last pass of JIT
11502 */
11503 for (i = 0; i < env->subprog_cnt; i++) {
11504 insn = func[i]->insnsi;
11505 for (j = 0; j < func[i]->len; j++, insn++) {
11506 if (insn->code != (BPF_JMP | BPF_CALL) ||
11507 insn->src_reg != BPF_PSEUDO_CALL)
11508 continue;
11509 subprog = insn->off;
11510 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
11511 __bpf_call_base;
11512 }
11513
11514 /* we use the aux data to keep a list of the start addresses
11515 * of the JITed images for each function in the program
11516 *
11517 * for some architectures, such as powerpc64, the imm field
11518 * might not be large enough to hold the offset of the start
11519 * address of the callee's JITed image from __bpf_call_base
11520 *
11521 * in such cases, we can lookup the start address of a callee
11522 * by using its subprog id, available from the off field of
11523 * the call instruction, as an index for this list
11524 */
11525 func[i]->aux->func = func;
11526 func[i]->aux->func_cnt = env->subprog_cnt;
11527 }
11528 for (i = 0; i < env->subprog_cnt; i++) {
11529 old_bpf_func = func[i]->bpf_func;
11530 tmp = bpf_int_jit_compile(func[i]);
11531 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
11532 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
11533 err = -ENOTSUPP;
11534 goto out_free;
11535 }
11536 cond_resched();
11537 }
11538
11539 /* finally lock prog and jit images for all functions and
11540 * populate kallsysm
11541 */
11542 for (i = 1; i < env->subprog_cnt; i++) {
11543 err = bpf_prog_lock_ro(func[i]);
11544 if (err)
11545 goto out_free;
11546 }
11547
11548 for (i = 1; i < env->subprog_cnt; i++)
11549 bpf_prog_kallsyms_add(func[i]);
11550
11551 /* Last step: make now unused interpreter insns from main
11552 * prog consistent for later dump requests, so they can
11553 * later look the same as if they were interpreted only.
11554 */
11555 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11556 if (insn->code != (BPF_JMP | BPF_CALL) ||
11557 insn->src_reg != BPF_PSEUDO_CALL)
11558 continue;
11559 insn->off = env->insn_aux_data[i].call_imm;
11560 subprog = find_subprog(env, i + insn->off + 1);
11561 insn->imm = subprog;
11562 }
11563
11564 prog->jited = 1;
11565 prog->bpf_func = func[0]->bpf_func;
11566 prog->aux->func = func;
11567 prog->aux->func_cnt = env->subprog_cnt;
11568 bpf_prog_free_unused_jited_linfo(prog);
11569 return 0;
11570 out_free:
11571 /* We failed JIT'ing, so at this point we need to unregister poke
11572 * descriptors from subprogs, so that kernel is not attempting to
11573 * patch it anymore as we're freeing the subprog JIT memory.
11574 */
11575 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11576 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11577 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
11578 }
11579 /* At this point we're guaranteed that poke descriptors are not
11580 * live anymore. We can just unlink its descriptor table as it's
11581 * released with the main prog.
11582 */
11583 for (i = 0; i < env->subprog_cnt; i++) {
11584 if (!func[i])
11585 continue;
11586 func[i]->aux->poke_tab = NULL;
11587 bpf_jit_free(func[i]);
11588 }
11589 kfree(func);
11590 out_undo_insn:
11591 /* cleanup main prog to be interpreted */
11592 prog->jit_requested = 0;
11593 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11594 if (insn->code != (BPF_JMP | BPF_CALL) ||
11595 insn->src_reg != BPF_PSEUDO_CALL)
11596 continue;
11597 insn->off = 0;
11598 insn->imm = env->insn_aux_data[i].call_imm;
11599 }
11600 bpf_prog_free_jited_linfo(prog);
11601 return err;
11602 }
11603
fixup_call_args(struct bpf_verifier_env * env)11604 static int fixup_call_args(struct bpf_verifier_env *env)
11605 {
11606 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11607 struct bpf_prog *prog = env->prog;
11608 struct bpf_insn *insn = prog->insnsi;
11609 int i, depth;
11610 #endif
11611 int err = 0;
11612
11613 if (env->prog->jit_requested &&
11614 !bpf_prog_is_dev_bound(env->prog->aux)) {
11615 err = jit_subprogs(env);
11616 if (err == 0)
11617 return 0;
11618 if (err == -EFAULT)
11619 return err;
11620 }
11621 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11622 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
11623 /* When JIT fails the progs with bpf2bpf calls and tail_calls
11624 * have to be rejected, since interpreter doesn't support them yet.
11625 */
11626 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
11627 return -EINVAL;
11628 }
11629 for (i = 0; i < prog->len; i++, insn++) {
11630 if (insn->code != (BPF_JMP | BPF_CALL) ||
11631 insn->src_reg != BPF_PSEUDO_CALL)
11632 continue;
11633 depth = get_callee_stack_depth(env, insn, i);
11634 if (depth < 0)
11635 return depth;
11636 bpf_patch_call_args(insn, depth);
11637 }
11638 err = 0;
11639 #endif
11640 return err;
11641 }
11642
11643 /* fixup insn->imm field of bpf_call instructions
11644 * and inline eligible helpers as explicit sequence of BPF instructions
11645 *
11646 * this function is called after eBPF program passed verification
11647 */
fixup_bpf_calls(struct bpf_verifier_env * env)11648 static int fixup_bpf_calls(struct bpf_verifier_env *env)
11649 {
11650 struct bpf_prog *prog = env->prog;
11651 bool expect_blinding = bpf_jit_blinding_enabled(prog);
11652 struct bpf_insn *insn = prog->insnsi;
11653 const struct bpf_func_proto *fn;
11654 const int insn_cnt = prog->len;
11655 const struct bpf_map_ops *ops;
11656 struct bpf_insn_aux_data *aux;
11657 struct bpf_insn insn_buf[16];
11658 struct bpf_prog *new_prog;
11659 struct bpf_map *map_ptr;
11660 int i, ret, cnt, delta = 0;
11661
11662 for (i = 0; i < insn_cnt; i++, insn++) {
11663 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
11664 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11665 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
11666 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11667 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11668 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
11669 struct bpf_insn *patchlet;
11670 struct bpf_insn chk_and_div[] = {
11671 /* [R,W]x div 0 -> 0 */
11672 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11673 BPF_JNE | BPF_K, insn->src_reg,
11674 0, 2, 0),
11675 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11676 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11677 *insn,
11678 };
11679 struct bpf_insn chk_and_mod[] = {
11680 /* [R,W]x mod 0 -> [R,W]x */
11681 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11682 BPF_JEQ | BPF_K, insn->src_reg,
11683 0, 1 + (is64 ? 0 : 1), 0),
11684 *insn,
11685 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11686 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
11687 };
11688
11689 patchlet = isdiv ? chk_and_div : chk_and_mod;
11690 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
11691 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
11692
11693 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11694 if (!new_prog)
11695 return -ENOMEM;
11696
11697 delta += cnt - 1;
11698 env->prog = prog = new_prog;
11699 insn = new_prog->insnsi + i + delta;
11700 continue;
11701 }
11702
11703 if (BPF_CLASS(insn->code) == BPF_LD &&
11704 (BPF_MODE(insn->code) == BPF_ABS ||
11705 BPF_MODE(insn->code) == BPF_IND)) {
11706 cnt = env->ops->gen_ld_abs(insn, insn_buf);
11707 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11708 verbose(env, "bpf verifier is misconfigured\n");
11709 return -EINVAL;
11710 }
11711
11712 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11713 if (!new_prog)
11714 return -ENOMEM;
11715
11716 delta += cnt - 1;
11717 env->prog = prog = new_prog;
11718 insn = new_prog->insnsi + i + delta;
11719 continue;
11720 }
11721
11722 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11723 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11724 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11725 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11726 struct bpf_insn insn_buf[16];
11727 struct bpf_insn *patch = &insn_buf[0];
11728 bool issrc, isneg, isimm;
11729 u32 off_reg;
11730
11731 aux = &env->insn_aux_data[i + delta];
11732 if (!aux->alu_state ||
11733 aux->alu_state == BPF_ALU_NON_POINTER)
11734 continue;
11735
11736 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11737 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11738 BPF_ALU_SANITIZE_SRC;
11739 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
11740
11741 off_reg = issrc ? insn->src_reg : insn->dst_reg;
11742 if (isimm) {
11743 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
11744 } else {
11745 if (isneg)
11746 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11747 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
11748 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11749 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11750 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11751 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11752 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
11753 }
11754 if (!issrc)
11755 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
11756 insn->src_reg = BPF_REG_AX;
11757 if (isneg)
11758 insn->code = insn->code == code_add ?
11759 code_sub : code_add;
11760 *patch++ = *insn;
11761 if (issrc && isneg && !isimm)
11762 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11763 cnt = patch - insn_buf;
11764
11765 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11766 if (!new_prog)
11767 return -ENOMEM;
11768
11769 delta += cnt - 1;
11770 env->prog = prog = new_prog;
11771 insn = new_prog->insnsi + i + delta;
11772 continue;
11773 }
11774
11775 if (insn->code != (BPF_JMP | BPF_CALL))
11776 continue;
11777 if (insn->src_reg == BPF_PSEUDO_CALL)
11778 continue;
11779
11780 if (insn->imm == BPF_FUNC_get_route_realm)
11781 prog->dst_needed = 1;
11782 if (insn->imm == BPF_FUNC_get_prandom_u32)
11783 bpf_user_rnd_init_once();
11784 if (insn->imm == BPF_FUNC_override_return)
11785 prog->kprobe_override = 1;
11786 if (insn->imm == BPF_FUNC_tail_call) {
11787 /* If we tail call into other programs, we
11788 * cannot make any assumptions since they can
11789 * be replaced dynamically during runtime in
11790 * the program array.
11791 */
11792 prog->cb_access = 1;
11793 if (!allow_tail_call_in_subprogs(env))
11794 prog->aux->stack_depth = MAX_BPF_STACK;
11795 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
11796
11797 /* mark bpf_tail_call as different opcode to avoid
11798 * conditional branch in the interpeter for every normal
11799 * call and to prevent accidental JITing by JIT compiler
11800 * that doesn't support bpf_tail_call yet
11801 */
11802 insn->imm = 0;
11803 insn->code = BPF_JMP | BPF_TAIL_CALL;
11804
11805 aux = &env->insn_aux_data[i + delta];
11806 if (env->bpf_capable && !expect_blinding &&
11807 prog->jit_requested &&
11808 !bpf_map_key_poisoned(aux) &&
11809 !bpf_map_ptr_poisoned(aux) &&
11810 !bpf_map_ptr_unpriv(aux)) {
11811 struct bpf_jit_poke_descriptor desc = {
11812 .reason = BPF_POKE_REASON_TAIL_CALL,
11813 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11814 .tail_call.key = bpf_map_key_immediate(aux),
11815 .insn_idx = i + delta,
11816 };
11817
11818 ret = bpf_jit_add_poke_descriptor(prog, &desc);
11819 if (ret < 0) {
11820 verbose(env, "adding tail call poke descriptor failed\n");
11821 return ret;
11822 }
11823
11824 insn->imm = ret + 1;
11825 continue;
11826 }
11827
11828 if (!bpf_map_ptr_unpriv(aux))
11829 continue;
11830
11831 /* instead of changing every JIT dealing with tail_call
11832 * emit two extra insns:
11833 * if (index >= max_entries) goto out;
11834 * index &= array->index_mask;
11835 * to avoid out-of-bounds cpu speculation
11836 */
11837 if (bpf_map_ptr_poisoned(aux)) {
11838 verbose(env, "tail_call abusing map_ptr\n");
11839 return -EINVAL;
11840 }
11841
11842 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11843 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11844 map_ptr->max_entries, 2);
11845 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11846 container_of(map_ptr,
11847 struct bpf_array,
11848 map)->index_mask);
11849 insn_buf[2] = *insn;
11850 cnt = 3;
11851 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11852 if (!new_prog)
11853 return -ENOMEM;
11854
11855 delta += cnt - 1;
11856 env->prog = prog = new_prog;
11857 insn = new_prog->insnsi + i + delta;
11858 continue;
11859 }
11860
11861 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
11862 * and other inlining handlers are currently limited to 64 bit
11863 * only.
11864 */
11865 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11866 (insn->imm == BPF_FUNC_map_lookup_elem ||
11867 insn->imm == BPF_FUNC_map_update_elem ||
11868 insn->imm == BPF_FUNC_map_delete_elem ||
11869 insn->imm == BPF_FUNC_map_push_elem ||
11870 insn->imm == BPF_FUNC_map_pop_elem ||
11871 insn->imm == BPF_FUNC_map_peek_elem)) {
11872 aux = &env->insn_aux_data[i + delta];
11873 if (bpf_map_ptr_poisoned(aux))
11874 goto patch_call_imm;
11875
11876 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11877 ops = map_ptr->ops;
11878 if (insn->imm == BPF_FUNC_map_lookup_elem &&
11879 ops->map_gen_lookup) {
11880 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
11881 if (cnt == -EOPNOTSUPP)
11882 goto patch_map_ops_generic;
11883 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11884 verbose(env, "bpf verifier is misconfigured\n");
11885 return -EINVAL;
11886 }
11887
11888 new_prog = bpf_patch_insn_data(env, i + delta,
11889 insn_buf, cnt);
11890 if (!new_prog)
11891 return -ENOMEM;
11892
11893 delta += cnt - 1;
11894 env->prog = prog = new_prog;
11895 insn = new_prog->insnsi + i + delta;
11896 continue;
11897 }
11898
11899 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11900 (void *(*)(struct bpf_map *map, void *key))NULL));
11901 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11902 (int (*)(struct bpf_map *map, void *key))NULL));
11903 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11904 (int (*)(struct bpf_map *map, void *key, void *value,
11905 u64 flags))NULL));
11906 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11907 (int (*)(struct bpf_map *map, void *value,
11908 u64 flags))NULL));
11909 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11910 (int (*)(struct bpf_map *map, void *value))NULL));
11911 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11912 (int (*)(struct bpf_map *map, void *value))NULL));
11913 patch_map_ops_generic:
11914 switch (insn->imm) {
11915 case BPF_FUNC_map_lookup_elem:
11916 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11917 __bpf_call_base;
11918 continue;
11919 case BPF_FUNC_map_update_elem:
11920 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11921 __bpf_call_base;
11922 continue;
11923 case BPF_FUNC_map_delete_elem:
11924 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11925 __bpf_call_base;
11926 continue;
11927 case BPF_FUNC_map_push_elem:
11928 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11929 __bpf_call_base;
11930 continue;
11931 case BPF_FUNC_map_pop_elem:
11932 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11933 __bpf_call_base;
11934 continue;
11935 case BPF_FUNC_map_peek_elem:
11936 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11937 __bpf_call_base;
11938 continue;
11939 }
11940
11941 goto patch_call_imm;
11942 }
11943
11944 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11945 insn->imm == BPF_FUNC_jiffies64) {
11946 struct bpf_insn ld_jiffies_addr[2] = {
11947 BPF_LD_IMM64(BPF_REG_0,
11948 (unsigned long)&jiffies),
11949 };
11950
11951 insn_buf[0] = ld_jiffies_addr[0];
11952 insn_buf[1] = ld_jiffies_addr[1];
11953 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11954 BPF_REG_0, 0);
11955 cnt = 3;
11956
11957 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11958 cnt);
11959 if (!new_prog)
11960 return -ENOMEM;
11961
11962 delta += cnt - 1;
11963 env->prog = prog = new_prog;
11964 insn = new_prog->insnsi + i + delta;
11965 continue;
11966 }
11967
11968 patch_call_imm:
11969 fn = env->ops->get_func_proto(insn->imm, env->prog);
11970 /* all functions that have prototype and verifier allowed
11971 * programs to call them, must be real in-kernel functions
11972 */
11973 if (!fn->func) {
11974 verbose(env,
11975 "kernel subsystem misconfigured func %s#%d\n",
11976 func_id_name(insn->imm), insn->imm);
11977 return -EFAULT;
11978 }
11979 insn->imm = fn->func - __bpf_call_base;
11980 }
11981
11982 /* Since poke tab is now finalized, publish aux to tracker. */
11983 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11984 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11985 if (!map_ptr->ops->map_poke_track ||
11986 !map_ptr->ops->map_poke_untrack ||
11987 !map_ptr->ops->map_poke_run) {
11988 verbose(env, "bpf verifier is misconfigured\n");
11989 return -EINVAL;
11990 }
11991
11992 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11993 if (ret < 0) {
11994 verbose(env, "tracking tail call prog failed\n");
11995 return ret;
11996 }
11997 }
11998
11999 return 0;
12000 }
12001
free_states(struct bpf_verifier_env * env)12002 static void free_states(struct bpf_verifier_env *env)
12003 {
12004 struct bpf_verifier_state_list *sl, *sln;
12005 int i;
12006
12007 sl = env->free_list;
12008 while (sl) {
12009 sln = sl->next;
12010 free_verifier_state(&sl->state, false);
12011 kfree(sl);
12012 sl = sln;
12013 }
12014 env->free_list = NULL;
12015
12016 if (!env->explored_states)
12017 return;
12018
12019 for (i = 0; i < state_htab_size(env); i++) {
12020 sl = env->explored_states[i];
12021
12022 while (sl) {
12023 sln = sl->next;
12024 free_verifier_state(&sl->state, false);
12025 kfree(sl);
12026 sl = sln;
12027 }
12028 env->explored_states[i] = NULL;
12029 }
12030 }
12031
do_check_common(struct bpf_verifier_env * env,int subprog)12032 static int do_check_common(struct bpf_verifier_env *env, int subprog)
12033 {
12034 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12035 struct bpf_verifier_state *state;
12036 struct bpf_reg_state *regs;
12037 int ret, i;
12038
12039 env->prev_linfo = NULL;
12040 env->pass_cnt++;
12041
12042 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
12043 if (!state)
12044 return -ENOMEM;
12045 state->curframe = 0;
12046 state->speculative = false;
12047 state->branches = 1;
12048 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12049 if (!state->frame[0]) {
12050 kfree(state);
12051 return -ENOMEM;
12052 }
12053 env->cur_state = state;
12054 init_func_state(env, state->frame[0],
12055 BPF_MAIN_FUNC /* callsite */,
12056 0 /* frameno */,
12057 subprog);
12058
12059 state->first_insn_idx = env->subprog_info[subprog].start;
12060 state->last_insn_idx = -1;
12061
12062 regs = state->frame[state->curframe]->regs;
12063 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
12064 ret = btf_prepare_func_args(env, subprog, regs);
12065 if (ret)
12066 goto out;
12067 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12068 if (regs[i].type == PTR_TO_CTX)
12069 mark_reg_known_zero(env, regs, i);
12070 else if (regs[i].type == SCALAR_VALUE)
12071 mark_reg_unknown(env, regs, i);
12072 }
12073 } else {
12074 /* 1st arg to a function */
12075 regs[BPF_REG_1].type = PTR_TO_CTX;
12076 mark_reg_known_zero(env, regs, BPF_REG_1);
12077 ret = btf_check_func_arg_match(env, subprog, regs);
12078 if (ret == -EFAULT)
12079 /* unlikely verifier bug. abort.
12080 * ret == 0 and ret < 0 are sadly acceptable for
12081 * main() function due to backward compatibility.
12082 * Like socket filter program may be written as:
12083 * int bpf_prog(struct pt_regs *ctx)
12084 * and never dereference that ctx in the program.
12085 * 'struct pt_regs' is a type mismatch for socket
12086 * filter that should be using 'struct __sk_buff'.
12087 */
12088 goto out;
12089 }
12090
12091 ret = do_check(env);
12092 out:
12093 /* check for NULL is necessary, since cur_state can be freed inside
12094 * do_check() under memory pressure.
12095 */
12096 if (env->cur_state) {
12097 free_verifier_state(env->cur_state, true);
12098 env->cur_state = NULL;
12099 }
12100 while (!pop_stack(env, NULL, NULL, false));
12101 if (!ret && pop_log)
12102 bpf_vlog_reset(&env->log, 0);
12103 free_states(env);
12104 return ret;
12105 }
12106
12107 /* Verify all global functions in a BPF program one by one based on their BTF.
12108 * All global functions must pass verification. Otherwise the whole program is rejected.
12109 * Consider:
12110 * int bar(int);
12111 * int foo(int f)
12112 * {
12113 * return bar(f);
12114 * }
12115 * int bar(int b)
12116 * {
12117 * ...
12118 * }
12119 * foo() will be verified first for R1=any_scalar_value. During verification it
12120 * will be assumed that bar() already verified successfully and call to bar()
12121 * from foo() will be checked for type match only. Later bar() will be verified
12122 * independently to check that it's safe for R1=any_scalar_value.
12123 */
do_check_subprogs(struct bpf_verifier_env * env)12124 static int do_check_subprogs(struct bpf_verifier_env *env)
12125 {
12126 struct bpf_prog_aux *aux = env->prog->aux;
12127 int i, ret;
12128
12129 if (!aux->func_info)
12130 return 0;
12131
12132 for (i = 1; i < env->subprog_cnt; i++) {
12133 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12134 continue;
12135 env->insn_idx = env->subprog_info[i].start;
12136 WARN_ON_ONCE(env->insn_idx == 0);
12137 ret = do_check_common(env, i);
12138 if (ret) {
12139 return ret;
12140 } else if (env->log.level & BPF_LOG_LEVEL) {
12141 verbose(env,
12142 "Func#%d is safe for any args that match its prototype\n",
12143 i);
12144 }
12145 }
12146 return 0;
12147 }
12148
do_check_main(struct bpf_verifier_env * env)12149 static int do_check_main(struct bpf_verifier_env *env)
12150 {
12151 int ret;
12152
12153 env->insn_idx = 0;
12154 ret = do_check_common(env, 0);
12155 if (!ret)
12156 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12157 return ret;
12158 }
12159
12160
print_verification_stats(struct bpf_verifier_env * env)12161 static void print_verification_stats(struct bpf_verifier_env *env)
12162 {
12163 int i;
12164
12165 if (env->log.level & BPF_LOG_STATS) {
12166 verbose(env, "verification time %lld usec\n",
12167 div_u64(env->verification_time, 1000));
12168 verbose(env, "stack depth ");
12169 for (i = 0; i < env->subprog_cnt; i++) {
12170 u32 depth = env->subprog_info[i].stack_depth;
12171
12172 verbose(env, "%d", depth);
12173 if (i + 1 < env->subprog_cnt)
12174 verbose(env, "+");
12175 }
12176 verbose(env, "\n");
12177 }
12178 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12179 "total_states %d peak_states %d mark_read %d\n",
12180 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12181 env->max_states_per_insn, env->total_states,
12182 env->peak_states, env->longest_mark_read_walk);
12183 }
12184
check_struct_ops_btf_id(struct bpf_verifier_env * env)12185 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12186 {
12187 const struct btf_type *t, *func_proto;
12188 const struct bpf_struct_ops *st_ops;
12189 const struct btf_member *member;
12190 struct bpf_prog *prog = env->prog;
12191 u32 btf_id, member_idx;
12192 const char *mname;
12193
12194 if (!prog->gpl_compatible) {
12195 verbose(env, "struct ops programs must have a GPL compatible license\n");
12196 return -EINVAL;
12197 }
12198
12199 btf_id = prog->aux->attach_btf_id;
12200 st_ops = bpf_struct_ops_find(btf_id);
12201 if (!st_ops) {
12202 verbose(env, "attach_btf_id %u is not a supported struct\n",
12203 btf_id);
12204 return -ENOTSUPP;
12205 }
12206
12207 t = st_ops->type;
12208 member_idx = prog->expected_attach_type;
12209 if (member_idx >= btf_type_vlen(t)) {
12210 verbose(env, "attach to invalid member idx %u of struct %s\n",
12211 member_idx, st_ops->name);
12212 return -EINVAL;
12213 }
12214
12215 member = &btf_type_member(t)[member_idx];
12216 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12217 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12218 NULL);
12219 if (!func_proto) {
12220 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12221 mname, member_idx, st_ops->name);
12222 return -EINVAL;
12223 }
12224
12225 if (st_ops->check_member) {
12226 int err = st_ops->check_member(t, member);
12227
12228 if (err) {
12229 verbose(env, "attach to unsupported member %s of struct %s\n",
12230 mname, st_ops->name);
12231 return err;
12232 }
12233 }
12234
12235 prog->aux->attach_func_proto = func_proto;
12236 prog->aux->attach_func_name = mname;
12237 env->ops = st_ops->verifier_ops;
12238
12239 return 0;
12240 }
12241 #define SECURITY_PREFIX "security_"
12242
check_attach_modify_return(unsigned long addr,const char * func_name)12243 static int check_attach_modify_return(unsigned long addr, const char *func_name)
12244 {
12245 if (within_error_injection_list(addr) ||
12246 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12247 return 0;
12248
12249 return -EINVAL;
12250 }
12251
12252 /* non exhaustive list of sleepable bpf_lsm_*() functions */
12253 BTF_SET_START(btf_sleepable_lsm_hooks)
12254 #ifdef CONFIG_BPF_LSM
BTF_ID(func,bpf_lsm_bprm_committed_creds)12255 BTF_ID(func, bpf_lsm_bprm_committed_creds)
12256 #else
12257 BTF_ID_UNUSED
12258 #endif
12259 BTF_SET_END(btf_sleepable_lsm_hooks)
12260
12261 static int check_sleepable_lsm_hook(u32 btf_id)
12262 {
12263 return btf_id_set_contains(&btf_sleepable_lsm_hooks, btf_id);
12264 }
12265
12266 /* list of non-sleepable functions that are otherwise on
12267 * ALLOW_ERROR_INJECTION list
12268 */
12269 BTF_SET_START(btf_non_sleepable_error_inject)
12270 /* Three functions below can be called from sleepable and non-sleepable context.
12271 * Assume non-sleepable from bpf safety point of view.
12272 */
BTF_ID(func,__add_to_page_cache_locked)12273 BTF_ID(func, __add_to_page_cache_locked)
12274 BTF_ID(func, should_fail_alloc_page)
12275 BTF_ID(func, should_failslab)
12276 BTF_SET_END(btf_non_sleepable_error_inject)
12277
12278 static int check_non_sleepable_error_inject(u32 btf_id)
12279 {
12280 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12281 }
12282
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)12283 int bpf_check_attach_target(struct bpf_verifier_log *log,
12284 const struct bpf_prog *prog,
12285 const struct bpf_prog *tgt_prog,
12286 u32 btf_id,
12287 struct bpf_attach_target_info *tgt_info)
12288 {
12289 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
12290 const char prefix[] = "btf_trace_";
12291 int ret = 0, subprog = -1, i;
12292 const struct btf_type *t;
12293 bool conservative = true;
12294 const char *tname;
12295 struct btf *btf;
12296 long addr = 0;
12297
12298 if (!btf_id) {
12299 bpf_log(log, "Tracing programs must provide btf_id\n");
12300 return -EINVAL;
12301 }
12302 btf = tgt_prog ? tgt_prog->aux->btf : btf_vmlinux;
12303 if (!btf) {
12304 bpf_log(log,
12305 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
12306 return -EINVAL;
12307 }
12308 t = btf_type_by_id(btf, btf_id);
12309 if (!t) {
12310 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
12311 return -EINVAL;
12312 }
12313 tname = btf_name_by_offset(btf, t->name_off);
12314 if (!tname) {
12315 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
12316 return -EINVAL;
12317 }
12318 if (tgt_prog) {
12319 struct bpf_prog_aux *aux = tgt_prog->aux;
12320
12321 for (i = 0; i < aux->func_info_cnt; i++)
12322 if (aux->func_info[i].type_id == btf_id) {
12323 subprog = i;
12324 break;
12325 }
12326 if (subprog == -1) {
12327 bpf_log(log, "Subprog %s doesn't exist\n", tname);
12328 return -EINVAL;
12329 }
12330 conservative = aux->func_info_aux[subprog].unreliable;
12331 if (prog_extension) {
12332 if (conservative) {
12333 bpf_log(log,
12334 "Cannot replace static functions\n");
12335 return -EINVAL;
12336 }
12337 if (!prog->jit_requested) {
12338 bpf_log(log,
12339 "Extension programs should be JITed\n");
12340 return -EINVAL;
12341 }
12342 }
12343 if (!tgt_prog->jited) {
12344 bpf_log(log, "Can attach to only JITed progs\n");
12345 return -EINVAL;
12346 }
12347 if (tgt_prog->type == prog->type) {
12348 /* Cannot fentry/fexit another fentry/fexit program.
12349 * Cannot attach program extension to another extension.
12350 * It's ok to attach fentry/fexit to extension program.
12351 */
12352 bpf_log(log, "Cannot recursively attach\n");
12353 return -EINVAL;
12354 }
12355 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
12356 prog_extension &&
12357 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
12358 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
12359 /* Program extensions can extend all program types
12360 * except fentry/fexit. The reason is the following.
12361 * The fentry/fexit programs are used for performance
12362 * analysis, stats and can be attached to any program
12363 * type except themselves. When extension program is
12364 * replacing XDP function it is necessary to allow
12365 * performance analysis of all functions. Both original
12366 * XDP program and its program extension. Hence
12367 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
12368 * allowed. If extending of fentry/fexit was allowed it
12369 * would be possible to create long call chain
12370 * fentry->extension->fentry->extension beyond
12371 * reasonable stack size. Hence extending fentry is not
12372 * allowed.
12373 */
12374 bpf_log(log, "Cannot extend fentry/fexit\n");
12375 return -EINVAL;
12376 }
12377 } else {
12378 if (prog_extension) {
12379 bpf_log(log, "Cannot replace kernel functions\n");
12380 return -EINVAL;
12381 }
12382 }
12383
12384 switch (prog->expected_attach_type) {
12385 case BPF_TRACE_RAW_TP:
12386 if (tgt_prog) {
12387 bpf_log(log,
12388 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
12389 return -EINVAL;
12390 }
12391 if (!btf_type_is_typedef(t)) {
12392 bpf_log(log, "attach_btf_id %u is not a typedef\n",
12393 btf_id);
12394 return -EINVAL;
12395 }
12396 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
12397 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
12398 btf_id, tname);
12399 return -EINVAL;
12400 }
12401 tname += sizeof(prefix) - 1;
12402 t = btf_type_by_id(btf, t->type);
12403 if (!btf_type_is_ptr(t))
12404 /* should never happen in valid vmlinux build */
12405 return -EINVAL;
12406 t = btf_type_by_id(btf, t->type);
12407 if (!btf_type_is_func_proto(t))
12408 /* should never happen in valid vmlinux build */
12409 return -EINVAL;
12410
12411 break;
12412 case BPF_TRACE_ITER:
12413 if (!btf_type_is_func(t)) {
12414 bpf_log(log, "attach_btf_id %u is not a function\n",
12415 btf_id);
12416 return -EINVAL;
12417 }
12418 t = btf_type_by_id(btf, t->type);
12419 if (!btf_type_is_func_proto(t))
12420 return -EINVAL;
12421 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12422 if (ret)
12423 return ret;
12424 break;
12425 default:
12426 if (!prog_extension)
12427 return -EINVAL;
12428 fallthrough;
12429 case BPF_MODIFY_RETURN:
12430 case BPF_LSM_MAC:
12431 case BPF_TRACE_FENTRY:
12432 case BPF_TRACE_FEXIT:
12433 if (!btf_type_is_func(t)) {
12434 bpf_log(log, "attach_btf_id %u is not a function\n",
12435 btf_id);
12436 return -EINVAL;
12437 }
12438 if (prog_extension &&
12439 btf_check_type_match(log, prog, btf, t))
12440 return -EINVAL;
12441 t = btf_type_by_id(btf, t->type);
12442 if (!btf_type_is_func_proto(t))
12443 return -EINVAL;
12444
12445 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
12446 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
12447 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
12448 return -EINVAL;
12449
12450 if (tgt_prog && conservative)
12451 t = NULL;
12452
12453 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12454 if (ret < 0)
12455 return ret;
12456
12457 if (tgt_prog) {
12458 if (subprog == 0)
12459 addr = (long) tgt_prog->bpf_func;
12460 else
12461 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
12462 } else {
12463 addr = kallsyms_lookup_name(tname);
12464 if (!addr) {
12465 bpf_log(log,
12466 "The address of function %s cannot be found\n",
12467 tname);
12468 return -ENOENT;
12469 }
12470 }
12471
12472 if (prog->aux->sleepable) {
12473 ret = -EINVAL;
12474 switch (prog->type) {
12475 case BPF_PROG_TYPE_TRACING:
12476 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
12477 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
12478 */
12479 if (!check_non_sleepable_error_inject(btf_id) &&
12480 within_error_injection_list(addr))
12481 ret = 0;
12482 break;
12483 case BPF_PROG_TYPE_LSM:
12484 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
12485 * Only some of them are sleepable.
12486 */
12487 if (check_sleepable_lsm_hook(btf_id))
12488 ret = 0;
12489 break;
12490 default:
12491 break;
12492 }
12493 if (ret) {
12494 bpf_log(log, "%s is not sleepable\n", tname);
12495 return ret;
12496 }
12497 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
12498 if (tgt_prog) {
12499 bpf_log(log, "can't modify return codes of BPF programs\n");
12500 return -EINVAL;
12501 }
12502 ret = check_attach_modify_return(addr, tname);
12503 if (ret) {
12504 bpf_log(log, "%s() is not modifiable\n", tname);
12505 return ret;
12506 }
12507 }
12508
12509 break;
12510 }
12511 tgt_info->tgt_addr = addr;
12512 tgt_info->tgt_name = tname;
12513 tgt_info->tgt_type = t;
12514 return 0;
12515 }
12516
check_attach_btf_id(struct bpf_verifier_env * env)12517 static int check_attach_btf_id(struct bpf_verifier_env *env)
12518 {
12519 struct bpf_prog *prog = env->prog;
12520 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
12521 struct bpf_attach_target_info tgt_info = {};
12522 u32 btf_id = prog->aux->attach_btf_id;
12523 struct bpf_trampoline *tr;
12524 int ret;
12525 u64 key;
12526
12527 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
12528 prog->type != BPF_PROG_TYPE_LSM) {
12529 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
12530 return -EINVAL;
12531 }
12532
12533 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
12534 return check_struct_ops_btf_id(env);
12535
12536 if (prog->type != BPF_PROG_TYPE_TRACING &&
12537 prog->type != BPF_PROG_TYPE_LSM &&
12538 prog->type != BPF_PROG_TYPE_EXT)
12539 return 0;
12540
12541 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
12542 if (ret)
12543 return ret;
12544
12545 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
12546 /* to make freplace equivalent to their targets, they need to
12547 * inherit env->ops and expected_attach_type for the rest of the
12548 * verification
12549 */
12550 env->ops = bpf_verifier_ops[tgt_prog->type];
12551 prog->expected_attach_type = tgt_prog->expected_attach_type;
12552 }
12553
12554 /* store info about the attachment target that will be used later */
12555 prog->aux->attach_func_proto = tgt_info.tgt_type;
12556 prog->aux->attach_func_name = tgt_info.tgt_name;
12557
12558 if (tgt_prog) {
12559 prog->aux->saved_dst_prog_type = tgt_prog->type;
12560 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
12561 }
12562
12563 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
12564 prog->aux->attach_btf_trace = true;
12565 return 0;
12566 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
12567 if (!bpf_iter_prog_supported(prog))
12568 return -EINVAL;
12569 return 0;
12570 }
12571
12572 if (prog->type == BPF_PROG_TYPE_LSM) {
12573 ret = bpf_lsm_verify_prog(&env->log, prog);
12574 if (ret < 0)
12575 return ret;
12576 }
12577
12578 key = bpf_trampoline_compute_key(tgt_prog, btf_id);
12579 tr = bpf_trampoline_get(key, &tgt_info);
12580 if (!tr)
12581 return -ENOMEM;
12582
12583 prog->aux->dst_trampoline = tr;
12584 return 0;
12585 }
12586
bpf_get_btf_vmlinux(void)12587 struct btf *bpf_get_btf_vmlinux(void)
12588 {
12589 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
12590 mutex_lock(&bpf_verifier_lock);
12591 if (!btf_vmlinux)
12592 btf_vmlinux = btf_parse_vmlinux();
12593 mutex_unlock(&bpf_verifier_lock);
12594 }
12595 return btf_vmlinux;
12596 }
12597
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,union bpf_attr __user * uattr)12598 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
12599 union bpf_attr __user *uattr)
12600 {
12601 u64 start_time = ktime_get_ns();
12602 struct bpf_verifier_env *env;
12603 struct bpf_verifier_log *log;
12604 int i, len, ret = -EINVAL;
12605 bool is_priv;
12606
12607 /* no program is valid */
12608 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
12609 return -EINVAL;
12610
12611 /* 'struct bpf_verifier_env' can be global, but since it's not small,
12612 * allocate/free it every time bpf_check() is called
12613 */
12614 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
12615 if (!env)
12616 return -ENOMEM;
12617 log = &env->log;
12618
12619 len = (*prog)->len;
12620 env->insn_aux_data =
12621 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
12622 ret = -ENOMEM;
12623 if (!env->insn_aux_data)
12624 goto err_free_env;
12625 for (i = 0; i < len; i++)
12626 env->insn_aux_data[i].orig_idx = i;
12627 env->prog = *prog;
12628 env->ops = bpf_verifier_ops[env->prog->type];
12629 is_priv = bpf_capable();
12630
12631 bpf_get_btf_vmlinux();
12632
12633 /* grab the mutex to protect few globals used by verifier */
12634 if (!is_priv)
12635 mutex_lock(&bpf_verifier_lock);
12636
12637 if (attr->log_level || attr->log_buf || attr->log_size) {
12638 /* user requested verbose verifier output
12639 * and supplied buffer to store the verification trace
12640 */
12641 log->level = attr->log_level;
12642 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
12643 log->len_total = attr->log_size;
12644
12645 /* log attributes have to be sane */
12646 if (!bpf_verifier_log_attr_valid(log)) {
12647 ret = -EINVAL;
12648 goto err_unlock;
12649 }
12650 }
12651
12652 if (IS_ERR(btf_vmlinux)) {
12653 /* Either gcc or pahole or kernel are broken. */
12654 verbose(env, "in-kernel BTF is malformed\n");
12655 ret = PTR_ERR(btf_vmlinux);
12656 goto skip_full_check;
12657 }
12658
12659 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12660 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12661 env->strict_alignment = true;
12662 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12663 env->strict_alignment = false;
12664
12665 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12666 env->allow_uninit_stack = bpf_allow_uninit_stack();
12667 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12668 env->bypass_spec_v1 = bpf_bypass_spec_v1();
12669 env->bypass_spec_v4 = bpf_bypass_spec_v4();
12670 env->bpf_capable = bpf_capable();
12671
12672 if (is_priv)
12673 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12674
12675 env->explored_states = kvcalloc(state_htab_size(env),
12676 sizeof(struct bpf_verifier_state_list *),
12677 GFP_USER);
12678 ret = -ENOMEM;
12679 if (!env->explored_states)
12680 goto skip_full_check;
12681
12682 ret = check_subprogs(env);
12683 if (ret < 0)
12684 goto skip_full_check;
12685
12686 ret = check_btf_info(env, attr, uattr);
12687 if (ret < 0)
12688 goto skip_full_check;
12689
12690 ret = check_attach_btf_id(env);
12691 if (ret)
12692 goto skip_full_check;
12693
12694 ret = resolve_pseudo_ldimm64(env);
12695 if (ret < 0)
12696 goto skip_full_check;
12697
12698 if (bpf_prog_is_dev_bound(env->prog->aux)) {
12699 ret = bpf_prog_offload_verifier_prep(env->prog);
12700 if (ret)
12701 goto skip_full_check;
12702 }
12703
12704 ret = check_cfg(env);
12705 if (ret < 0)
12706 goto skip_full_check;
12707
12708 ret = do_check_subprogs(env);
12709 ret = ret ?: do_check_main(env);
12710
12711 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12712 ret = bpf_prog_offload_finalize(env);
12713
12714 skip_full_check:
12715 kvfree(env->explored_states);
12716
12717 if (ret == 0)
12718 ret = check_max_stack_depth(env);
12719
12720 /* instruction rewrites happen after this point */
12721 if (is_priv) {
12722 if (ret == 0)
12723 opt_hard_wire_dead_code_branches(env);
12724 if (ret == 0)
12725 ret = opt_remove_dead_code(env);
12726 if (ret == 0)
12727 ret = opt_remove_nops(env);
12728 } else {
12729 if (ret == 0)
12730 sanitize_dead_code(env);
12731 }
12732
12733 if (ret == 0)
12734 /* program is valid, convert *(u32*)(ctx + off) accesses */
12735 ret = convert_ctx_accesses(env);
12736
12737 if (ret == 0)
12738 ret = fixup_bpf_calls(env);
12739
12740 /* do 32-bit optimization after insn patching has done so those patched
12741 * insns could be handled correctly.
12742 */
12743 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12744 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12745 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12746 : false;
12747 }
12748
12749 if (ret == 0)
12750 ret = fixup_call_args(env);
12751
12752 env->verification_time = ktime_get_ns() - start_time;
12753 print_verification_stats(env);
12754
12755 if (log->level && bpf_verifier_log_full(log))
12756 ret = -ENOSPC;
12757 if (log->level && !log->ubuf) {
12758 ret = -EFAULT;
12759 goto err_release_maps;
12760 }
12761
12762 if (ret == 0 && env->used_map_cnt) {
12763 /* if program passed verifier, update used_maps in bpf_prog_info */
12764 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12765 sizeof(env->used_maps[0]),
12766 GFP_KERNEL);
12767
12768 if (!env->prog->aux->used_maps) {
12769 ret = -ENOMEM;
12770 goto err_release_maps;
12771 }
12772
12773 memcpy(env->prog->aux->used_maps, env->used_maps,
12774 sizeof(env->used_maps[0]) * env->used_map_cnt);
12775 env->prog->aux->used_map_cnt = env->used_map_cnt;
12776
12777 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
12778 * bpf_ld_imm64 instructions
12779 */
12780 convert_pseudo_ld_imm64(env);
12781 }
12782
12783 if (ret == 0)
12784 adjust_btf_func(env);
12785
12786 err_release_maps:
12787 if (!env->prog->aux->used_maps)
12788 /* if we didn't copy map pointers into bpf_prog_info, release
12789 * them now. Otherwise free_used_maps() will release them.
12790 */
12791 release_maps(env);
12792
12793 /* extension progs temporarily inherit the attach_type of their targets
12794 for verification purposes, so set it back to zero before returning
12795 */
12796 if (env->prog->type == BPF_PROG_TYPE_EXT)
12797 env->prog->expected_attach_type = 0;
12798
12799 *prog = env->prog;
12800 err_unlock:
12801 if (!is_priv)
12802 mutex_unlock(&bpf_verifier_lock);
12803 vfree(env->insn_aux_data);
12804 err_free_env:
12805 kfree(env);
12806 return ret;
12807 }
12808