• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_GENERAL_BLOCK_PANEL_H
11 #define EIGEN_GENERAL_BLOCK_PANEL_H
12 
13 
14 namespace Eigen {
15 
16 namespace internal {
17 
18 template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs=false, bool _ConjRhs=false>
19 class gebp_traits;
20 
21 
22 /** \internal \returns b if a<=0, and returns a otherwise. */
manage_caching_sizes_helper(std::ptrdiff_t a,std::ptrdiff_t b)23 inline std::ptrdiff_t manage_caching_sizes_helper(std::ptrdiff_t a, std::ptrdiff_t b)
24 {
25   return a<=0 ? b : a;
26 }
27 
28 #if EIGEN_ARCH_i386_OR_x86_64
29 const std::ptrdiff_t defaultL1CacheSize = 32*1024;
30 const std::ptrdiff_t defaultL2CacheSize = 256*1024;
31 const std::ptrdiff_t defaultL3CacheSize = 2*1024*1024;
32 #else
33 const std::ptrdiff_t defaultL1CacheSize = 16*1024;
34 const std::ptrdiff_t defaultL2CacheSize = 512*1024;
35 const std::ptrdiff_t defaultL3CacheSize = 512*1024;
36 #endif
37 
38 /** \internal */
39 struct CacheSizes {
CacheSizesCacheSizes40   CacheSizes(): m_l1(-1),m_l2(-1),m_l3(-1) {
41     int l1CacheSize, l2CacheSize, l3CacheSize;
42     queryCacheSizes(l1CacheSize, l2CacheSize, l3CacheSize);
43     m_l1 = manage_caching_sizes_helper(l1CacheSize, defaultL1CacheSize);
44     m_l2 = manage_caching_sizes_helper(l2CacheSize, defaultL2CacheSize);
45     m_l3 = manage_caching_sizes_helper(l3CacheSize, defaultL3CacheSize);
46   }
47 
48   std::ptrdiff_t m_l1;
49   std::ptrdiff_t m_l2;
50   std::ptrdiff_t m_l3;
51 };
52 
53 
54 /** \internal */
manage_caching_sizes(Action action,std::ptrdiff_t * l1,std::ptrdiff_t * l2,std::ptrdiff_t * l3)55 inline void manage_caching_sizes(Action action, std::ptrdiff_t* l1, std::ptrdiff_t* l2, std::ptrdiff_t* l3)
56 {
57   static CacheSizes m_cacheSizes;
58 
59   if(action==SetAction)
60   {
61     // set the cpu cache size and cache all block sizes from a global cache size in byte
62     eigen_internal_assert(l1!=0 && l2!=0);
63     m_cacheSizes.m_l1 = *l1;
64     m_cacheSizes.m_l2 = *l2;
65     m_cacheSizes.m_l3 = *l3;
66   }
67   else if(action==GetAction)
68   {
69     eigen_internal_assert(l1!=0 && l2!=0);
70     *l1 = m_cacheSizes.m_l1;
71     *l2 = m_cacheSizes.m_l2;
72     *l3 = m_cacheSizes.m_l3;
73   }
74   else
75   {
76     eigen_internal_assert(false);
77   }
78 }
79 
80 /* Helper for computeProductBlockingSizes.
81  *
82  * Given a m x k times k x n matrix product of scalar types \c LhsScalar and \c RhsScalar,
83  * this function computes the blocking size parameters along the respective dimensions
84  * for matrix products and related algorithms. The blocking sizes depends on various
85  * parameters:
86  * - the L1 and L2 cache sizes,
87  * - the register level blocking sizes defined by gebp_traits,
88  * - the number of scalars that fit into a packet (when vectorization is enabled).
89  *
90  * \sa setCpuCacheSizes */
91 
92 template<typename LhsScalar, typename RhsScalar, int KcFactor, typename Index>
93 void evaluateProductBlockingSizesHeuristic(Index& k, Index& m, Index& n, Index num_threads = 1)
94 {
95   typedef gebp_traits<LhsScalar,RhsScalar> Traits;
96 
97   // Explanations:
98   // Let's recall that the product algorithms form mc x kc vertical panels A' on the lhs and
99   // kc x nc blocks B' on the rhs. B' has to fit into L2/L3 cache. Moreover, A' is processed
100   // per mr x kc horizontal small panels where mr is the blocking size along the m dimension
101   // at the register level. This small horizontal panel has to stay within L1 cache.
102   std::ptrdiff_t l1, l2, l3;
103   manage_caching_sizes(GetAction, &l1, &l2, &l3);
104 
105   if (num_threads > 1) {
106     typedef typename Traits::ResScalar ResScalar;
107     enum {
108       kdiv = KcFactor * (Traits::mr * sizeof(LhsScalar) + Traits::nr * sizeof(RhsScalar)),
109       ksub = Traits::mr * Traits::nr * sizeof(ResScalar),
110       kr = 8,
111       mr = Traits::mr,
112       nr = Traits::nr
113     };
114     // Increasing k gives us more time to prefetch the content of the "C"
115     // registers. However once the latency is hidden there is no point in
116     // increasing the value of k, so we'll cap it at 320 (value determined
117     // experimentally).
118     const Index k_cache = (numext::mini<Index>)((l1-ksub)/kdiv, 320);
119     if (k_cache < k) {
120       k = k_cache - (k_cache % kr);
121       eigen_internal_assert(k > 0);
122     }
123 
124     const Index n_cache = (l2-l1) / (nr * sizeof(RhsScalar) * k);
125     const Index n_per_thread = numext::div_ceil(n, num_threads);
126     if (n_cache <= n_per_thread) {
127       // Don't exceed the capacity of the l2 cache.
128       eigen_internal_assert(n_cache >= static_cast<Index>(nr));
129       n = n_cache - (n_cache % nr);
130       eigen_internal_assert(n > 0);
131     } else {
132       n = (numext::mini<Index>)(n, (n_per_thread + nr - 1) - ((n_per_thread + nr - 1) % nr));
133     }
134 
135     if (l3 > l2) {
136       // l3 is shared between all cores, so we'll give each thread its own chunk of l3.
137       const Index m_cache = (l3-l2) / (sizeof(LhsScalar) * k * num_threads);
138       const Index m_per_thread = numext::div_ceil(m, num_threads);
139       if(m_cache < m_per_thread && m_cache >= static_cast<Index>(mr)) {
140         m = m_cache - (m_cache % mr);
141         eigen_internal_assert(m > 0);
142       } else {
143         m = (numext::mini<Index>)(m, (m_per_thread + mr - 1) - ((m_per_thread + mr - 1) % mr));
144       }
145     }
146   }
147   else {
148     // In unit tests we do not want to use extra large matrices,
149     // so we reduce the cache size to check the blocking strategy is not flawed
150 #ifdef EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS
151     l1 = 9*1024;
152     l2 = 32*1024;
153     l3 = 512*1024;
154 #endif
155 
156     // Early return for small problems because the computation below are time consuming for small problems.
157     // Perhaps it would make more sense to consider k*n*m??
158     // Note that for very tiny problem, this function should be bypassed anyway
159     // because we use the coefficient-based implementation for them.
160     if((numext::maxi)(k,(numext::maxi)(m,n))<48)
161       return;
162 
163     typedef typename Traits::ResScalar ResScalar;
164     enum {
165       k_peeling = 8,
166       k_div = KcFactor * (Traits::mr * sizeof(LhsScalar) + Traits::nr * sizeof(RhsScalar)),
167       k_sub = Traits::mr * Traits::nr * sizeof(ResScalar)
168     };
169 
170     // ---- 1st level of blocking on L1, yields kc ----
171 
172     // Blocking on the third dimension (i.e., k) is chosen so that an horizontal panel
173     // of size mr x kc of the lhs plus a vertical panel of kc x nr of the rhs both fits within L1 cache.
174     // We also include a register-level block of the result (mx x nr).
175     // (In an ideal world only the lhs panel would stay in L1)
176     // Moreover, kc has to be a multiple of 8 to be compatible with loop peeling, leading to a maximum blocking size of:
177     const Index max_kc = numext::maxi<Index>(((l1-k_sub)/k_div) & (~(k_peeling-1)),1);
178     const Index old_k = k;
179     if(k>max_kc)
180     {
181       // We are really blocking on the third dimension:
182       // -> reduce blocking size to make sure the last block is as large as possible
183       //    while keeping the same number of sweeps over the result.
184       k = (k%max_kc)==0 ? max_kc
185                         : max_kc - k_peeling * ((max_kc-1-(k%max_kc))/(k_peeling*(k/max_kc+1)));
186 
187       eigen_internal_assert(((old_k/k) == (old_k/max_kc)) && "the number of sweeps has to remain the same");
188     }
189 
190     // ---- 2nd level of blocking on max(L2,L3), yields nc ----
191 
192     // TODO find a reliable way to get the actual amount of cache per core to use for 2nd level blocking, that is:
193     //      actual_l2 = max(l2, l3/nb_core_sharing_l3)
194     // The number below is quite conservative: it is better to underestimate the cache size rather than overestimating it)
195     // For instance, it corresponds to 6MB of L3 shared among 4 cores.
196     #ifdef EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS
197     const Index actual_l2 = l3;
198     #else
199     const Index actual_l2 = 1572864; // == 1.5 MB
200     #endif
201 
202     // Here, nc is chosen such that a block of kc x nc of the rhs fit within half of L2.
203     // The second half is implicitly reserved to access the result and lhs coefficients.
204     // When k<max_kc, then nc can arbitrarily growth. In practice, it seems to be fruitful
205     // to limit this growth: we bound nc to growth by a factor x1.5.
206     // However, if the entire lhs block fit within L1, then we are not going to block on the rows at all,
207     // and it becomes fruitful to keep the packed rhs blocks in L1 if there is enough remaining space.
208     Index max_nc;
209     const Index lhs_bytes = m * k * sizeof(LhsScalar);
210     const Index remaining_l1 = l1- k_sub - lhs_bytes;
211     if(remaining_l1 >= Index(Traits::nr*sizeof(RhsScalar))*k)
212     {
213       // L1 blocking
214       max_nc = remaining_l1 / (k*sizeof(RhsScalar));
215     }
216     else
217     {
218       // L2 blocking
219       max_nc = (3*actual_l2)/(2*2*max_kc*sizeof(RhsScalar));
220     }
221     // WARNING Below, we assume that Traits::nr is a power of two.
222     Index nc = numext::mini<Index>(actual_l2/(2*k*sizeof(RhsScalar)), max_nc) & (~(Traits::nr-1));
223     if(n>nc)
224     {
225       // We are really blocking over the columns:
226       // -> reduce blocking size to make sure the last block is as large as possible
227       //    while keeping the same number of sweeps over the packed lhs.
228       //    Here we allow one more sweep if this gives us a perfect match, thus the commented "-1"
229       n = (n%nc)==0 ? nc
230                     : (nc - Traits::nr * ((nc/*-1*/-(n%nc))/(Traits::nr*(n/nc+1))));
231     }
232     else if(old_k==k)
233     {
234       // So far, no blocking at all, i.e., kc==k, and nc==n.
235       // In this case, let's perform a blocking over the rows such that the packed lhs data is kept in cache L1/L2
236       // TODO: part of this blocking strategy is now implemented within the kernel itself, so the L1-based heuristic here should be obsolete.
237       Index problem_size = k*n*sizeof(LhsScalar);
238       Index actual_lm = actual_l2;
239       Index max_mc = m;
240       if(problem_size<=1024)
241       {
242         // problem is small enough to keep in L1
243         // Let's choose m such that lhs's block fit in 1/3 of L1
244         actual_lm = l1;
245       }
246       else if(l3!=0 && problem_size<=32768)
247       {
248         // we have both L2 and L3, and problem is small enough to be kept in L2
249         // Let's choose m such that lhs's block fit in 1/3 of L2
250         actual_lm = l2;
251         max_mc = (numext::mini<Index>)(576,max_mc);
252       }
253       Index mc = (numext::mini<Index>)(actual_lm/(3*k*sizeof(LhsScalar)), max_mc);
254       if (mc > Traits::mr) mc -= mc % Traits::mr;
255       else if (mc==0) return;
256       m = (m%mc)==0 ? mc
257                     : (mc - Traits::mr * ((mc/*-1*/-(m%mc))/(Traits::mr*(m/mc+1))));
258     }
259   }
260 }
261 
262 template <typename Index>
useSpecificBlockingSizes(Index & k,Index & m,Index & n)263 inline bool useSpecificBlockingSizes(Index& k, Index& m, Index& n)
264 {
265 #ifdef EIGEN_TEST_SPECIFIC_BLOCKING_SIZES
266   if (EIGEN_TEST_SPECIFIC_BLOCKING_SIZES) {
267     k = numext::mini<Index>(k, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_K);
268     m = numext::mini<Index>(m, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_M);
269     n = numext::mini<Index>(n, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_N);
270     return true;
271   }
272 #else
273   EIGEN_UNUSED_VARIABLE(k)
274   EIGEN_UNUSED_VARIABLE(m)
275   EIGEN_UNUSED_VARIABLE(n)
276 #endif
277   return false;
278 }
279 
280 /** \brief Computes the blocking parameters for a m x k times k x n matrix product
281   *
282   * \param[in,out] k Input: the third dimension of the product. Output: the blocking size along the same dimension.
283   * \param[in,out] m Input: the number of rows of the left hand side. Output: the blocking size along the same dimension.
284   * \param[in,out] n Input: the number of columns of the right hand side. Output: the blocking size along the same dimension.
285   *
286   * Given a m x k times k x n matrix product of scalar types \c LhsScalar and \c RhsScalar,
287   * this function computes the blocking size parameters along the respective dimensions
288   * for matrix products and related algorithms.
289   *
290   * The blocking size parameters may be evaluated:
291   *   - either by a heuristic based on cache sizes;
292   *   - or using fixed prescribed values (for testing purposes).
293   *
294   * \sa setCpuCacheSizes */
295 
296 template<typename LhsScalar, typename RhsScalar, int KcFactor, typename Index>
297 void computeProductBlockingSizes(Index& k, Index& m, Index& n, Index num_threads = 1)
298 {
299   if (!useSpecificBlockingSizes(k, m, n)) {
300     evaluateProductBlockingSizesHeuristic<LhsScalar, RhsScalar, KcFactor, Index>(k, m, n, num_threads);
301   }
302 }
303 
304 template<typename LhsScalar, typename RhsScalar, typename Index>
305 inline void computeProductBlockingSizes(Index& k, Index& m, Index& n, Index num_threads = 1)
306 {
307   computeProductBlockingSizes<LhsScalar,RhsScalar,1,Index>(k, m, n, num_threads);
308 }
309 
310 #ifdef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
311   #define CJMADD(CJ,A,B,C,T)  C = CJ.pmadd(A,B,C);
312 #else
313 
314   // FIXME (a bit overkill maybe ?)
315 
316   template<typename CJ, typename A, typename B, typename C, typename T> struct gebp_madd_selector {
rungebp_madd_selector317     EIGEN_ALWAYS_INLINE static void run(const CJ& cj, A& a, B& b, C& c, T& /*t*/)
318     {
319       c = cj.pmadd(a,b,c);
320     }
321   };
322 
323   template<typename CJ, typename T> struct gebp_madd_selector<CJ,T,T,T,T> {
324     EIGEN_ALWAYS_INLINE static void run(const CJ& cj, T& a, T& b, T& c, T& t)
325     {
326       t = b; t = cj.pmul(a,t); c = padd(c,t);
327     }
328   };
329 
330   template<typename CJ, typename A, typename B, typename C, typename T>
331   EIGEN_STRONG_INLINE void gebp_madd(const CJ& cj, A& a, B& b, C& c, T& t)
332   {
333     gebp_madd_selector<CJ,A,B,C,T>::run(cj,a,b,c,t);
334   }
335 
336   #define CJMADD(CJ,A,B,C,T)  gebp_madd(CJ,A,B,C,T);
337 //   #define CJMADD(CJ,A,B,C,T)  T = B; T = CJ.pmul(A,T); C = padd(C,T);
338 #endif
339 
340 /* Vectorization logic
341  *  real*real: unpack rhs to constant packets, ...
342  *
343  *  cd*cd : unpack rhs to (b_r,b_r), (b_i,b_i), mul to get (a_r b_r,a_i b_r) (a_r b_i,a_i b_i),
344  *          storing each res packet into two packets (2x2),
345  *          at the end combine them: swap the second and addsub them
346  *  cf*cf : same but with 2x4 blocks
347  *  cplx*real : unpack rhs to constant packets, ...
348  *  real*cplx : load lhs as (a0,a0,a1,a1), and mul as usual
349  */
350 template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs, bool _ConjRhs>
351 class gebp_traits
352 {
353 public:
354   typedef _LhsScalar LhsScalar;
355   typedef _RhsScalar RhsScalar;
356   typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
357 
358   enum {
359     ConjLhs = _ConjLhs,
360     ConjRhs = _ConjRhs,
361     Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable,
362     LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
363     RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
364     ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
365 
366     NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
367 
368     // register block size along the N direction must be 1 or 4
369     nr = 4,
370 
371     // register block size along the M direction (currently, this one cannot be modified)
372     default_mr = (EIGEN_PLAIN_ENUM_MIN(16,NumberOfRegisters)/2/nr)*LhsPacketSize,
373 #if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD) && !defined(EIGEN_VECTORIZE_ALTIVEC) && !defined(EIGEN_VECTORIZE_VSX)
374     // we assume 16 registers
375     // See bug 992, if the scalar type is not vectorizable but that EIGEN_HAS_SINGLE_INSTRUCTION_MADD is defined,
376     // then using 3*LhsPacketSize triggers non-implemented paths in syrk.
377     mr = Vectorizable ? 3*LhsPacketSize : default_mr,
378 #else
379     mr = default_mr,
380 #endif
381 
382     LhsProgress = LhsPacketSize,
383     RhsProgress = 1
384   };
385 
386   typedef typename packet_traits<LhsScalar>::type  _LhsPacket;
387   typedef typename packet_traits<RhsScalar>::type  _RhsPacket;
388   typedef typename packet_traits<ResScalar>::type  _ResPacket;
389 
390   typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
391   typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
392   typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
393 
394   typedef ResPacket AccPacket;
395 
396   EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
397   {
398     p = pset1<ResPacket>(ResScalar(0));
399   }
400 
401   EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3)
402   {
403     pbroadcast4(b, b0, b1, b2, b3);
404   }
405 
406 //   EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1)
407 //   {
408 //     pbroadcast2(b, b0, b1);
409 //   }
410 
411   template<typename RhsPacketType>
412   EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacketType& dest) const
413   {
414     dest = pset1<RhsPacketType>(*b);
415   }
416 
417   EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const
418   {
419     dest = ploadquad<RhsPacket>(b);
420   }
421 
422   template<typename LhsPacketType>
423   EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacketType& dest) const
424   {
425     dest = pload<LhsPacketType>(a);
426   }
427 
428   template<typename LhsPacketType>
429   EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacketType& dest) const
430   {
431     dest = ploadu<LhsPacketType>(a);
432   }
433 
434   template<typename LhsPacketType, typename RhsPacketType, typename AccPacketType>
435   EIGEN_STRONG_INLINE void madd(const LhsPacketType& a, const RhsPacketType& b, AccPacketType& c, AccPacketType& tmp) const
436   {
437     conj_helper<LhsPacketType,RhsPacketType,ConjLhs,ConjRhs> cj;
438     // It would be a lot cleaner to call pmadd all the time. Unfortunately if we
439     // let gcc allocate the register in which to store the result of the pmul
440     // (in the case where there is no FMA) gcc fails to figure out how to avoid
441     // spilling register.
442 #ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
443     EIGEN_UNUSED_VARIABLE(tmp);
444     c = cj.pmadd(a,b,c);
445 #else
446     tmp = b; tmp = cj.pmul(a,tmp); c = padd(c,tmp);
447 #endif
448   }
449 
450   EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
451   {
452     r = pmadd(c,alpha,r);
453   }
454 
455   template<typename ResPacketHalf>
456   EIGEN_STRONG_INLINE void acc(const ResPacketHalf& c, const ResPacketHalf& alpha, ResPacketHalf& r) const
457   {
458     r = pmadd(c,alpha,r);
459   }
460 
461 };
462 
463 template<typename RealScalar, bool _ConjLhs>
464 class gebp_traits<std::complex<RealScalar>, RealScalar, _ConjLhs, false>
465 {
466 public:
467   typedef std::complex<RealScalar> LhsScalar;
468   typedef RealScalar RhsScalar;
469   typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
470 
471   enum {
472     ConjLhs = _ConjLhs,
473     ConjRhs = false,
474     Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable,
475     LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
476     RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
477     ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
478 
479     NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
480     nr = 4,
481 #if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD) && !defined(EIGEN_VECTORIZE_ALTIVEC) && !defined(EIGEN_VECTORIZE_VSX)
482     // we assume 16 registers
483     mr = 3*LhsPacketSize,
484 #else
485     mr = (EIGEN_PLAIN_ENUM_MIN(16,NumberOfRegisters)/2/nr)*LhsPacketSize,
486 #endif
487 
488     LhsProgress = LhsPacketSize,
489     RhsProgress = 1
490   };
491 
492   typedef typename packet_traits<LhsScalar>::type  _LhsPacket;
493   typedef typename packet_traits<RhsScalar>::type  _RhsPacket;
494   typedef typename packet_traits<ResScalar>::type  _ResPacket;
495 
496   typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
497   typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
498   typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
499 
500   typedef ResPacket AccPacket;
501 
502   EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
503   {
504     p = pset1<ResPacket>(ResScalar(0));
505   }
506 
507   EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
508   {
509     dest = pset1<RhsPacket>(*b);
510   }
511 
512   EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const
513   {
514     dest = pset1<RhsPacket>(*b);
515   }
516 
517   EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
518   {
519     dest = pload<LhsPacket>(a);
520   }
521 
522   EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacket& dest) const
523   {
524     dest = ploadu<LhsPacket>(a);
525   }
526 
527   EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3)
528   {
529     pbroadcast4(b, b0, b1, b2, b3);
530   }
531 
532 //   EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1)
533 //   {
534 //     pbroadcast2(b, b0, b1);
535 //   }
536 
537   EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const
538   {
539     madd_impl(a, b, c, tmp, typename conditional<Vectorizable,true_type,false_type>::type());
540   }
541 
542   EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const
543   {
544 #ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
545     EIGEN_UNUSED_VARIABLE(tmp);
546     c.v = pmadd(a.v,b,c.v);
547 #else
548     tmp = b; tmp = pmul(a.v,tmp); c.v = padd(c.v,tmp);
549 #endif
550   }
551 
552   EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const
553   {
554     c += a * b;
555   }
556 
557   EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
558   {
559     r = cj.pmadd(c,alpha,r);
560   }
561 
562 protected:
563   conj_helper<ResPacket,ResPacket,ConjLhs,false> cj;
564 };
565 
566 template<typename Packet>
567 struct DoublePacket
568 {
569   Packet first;
570   Packet second;
571 };
572 
573 template<typename Packet>
574 DoublePacket<Packet> padd(const DoublePacket<Packet> &a, const DoublePacket<Packet> &b)
575 {
576   DoublePacket<Packet> res;
577   res.first  = padd(a.first, b.first);
578   res.second = padd(a.second,b.second);
579   return res;
580 }
581 
582 template<typename Packet>
583 const DoublePacket<Packet>& predux_downto4(const DoublePacket<Packet> &a)
584 {
585   return a;
586 }
587 
588 template<typename Packet> struct unpacket_traits<DoublePacket<Packet> > { typedef DoublePacket<Packet> half; };
589 // template<typename Packet>
590 // DoublePacket<Packet> pmadd(const DoublePacket<Packet> &a, const DoublePacket<Packet> &b)
591 // {
592 //   DoublePacket<Packet> res;
593 //   res.first  = padd(a.first, b.first);
594 //   res.second = padd(a.second,b.second);
595 //   return res;
596 // }
597 
598 template<typename RealScalar, bool _ConjLhs, bool _ConjRhs>
599 class gebp_traits<std::complex<RealScalar>, std::complex<RealScalar>, _ConjLhs, _ConjRhs >
600 {
601 public:
602   typedef std::complex<RealScalar>  Scalar;
603   typedef std::complex<RealScalar>  LhsScalar;
604   typedef std::complex<RealScalar>  RhsScalar;
605   typedef std::complex<RealScalar>  ResScalar;
606 
607   enum {
608     ConjLhs = _ConjLhs,
609     ConjRhs = _ConjRhs,
610     Vectorizable = packet_traits<RealScalar>::Vectorizable
611                 && packet_traits<Scalar>::Vectorizable,
612     RealPacketSize  = Vectorizable ? packet_traits<RealScalar>::size : 1,
613     ResPacketSize   = Vectorizable ? packet_traits<ResScalar>::size : 1,
614     LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
615     RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
616 
617     // FIXME: should depend on NumberOfRegisters
618     nr = 4,
619     mr = ResPacketSize,
620 
621     LhsProgress = ResPacketSize,
622     RhsProgress = 1
623   };
624 
625   typedef typename packet_traits<RealScalar>::type RealPacket;
626   typedef typename packet_traits<Scalar>::type     ScalarPacket;
627   typedef DoublePacket<RealPacket> DoublePacketType;
628 
629   typedef typename conditional<Vectorizable,RealPacket,  Scalar>::type LhsPacket;
630   typedef typename conditional<Vectorizable,DoublePacketType,Scalar>::type RhsPacket;
631   typedef typename conditional<Vectorizable,ScalarPacket,Scalar>::type ResPacket;
632   typedef typename conditional<Vectorizable,DoublePacketType,Scalar>::type AccPacket;
633 
634   EIGEN_STRONG_INLINE void initAcc(Scalar& p) { p = Scalar(0); }
635 
636   EIGEN_STRONG_INLINE void initAcc(DoublePacketType& p)
637   {
638     p.first   = pset1<RealPacket>(RealScalar(0));
639     p.second  = pset1<RealPacket>(RealScalar(0));
640   }
641 
642   // Scalar path
643   EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, ResPacket& dest) const
644   {
645     dest = pset1<ResPacket>(*b);
646   }
647 
648   // Vectorized path
649   EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, DoublePacketType& dest) const
650   {
651     dest.first  = pset1<RealPacket>(real(*b));
652     dest.second = pset1<RealPacket>(imag(*b));
653   }
654 
655   EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, ResPacket& dest) const
656   {
657     loadRhs(b,dest);
658   }
659   EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, DoublePacketType& dest) const
660   {
661     eigen_internal_assert(unpacket_traits<ScalarPacket>::size<=4);
662     loadRhs(b,dest);
663   }
664 
665   EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3)
666   {
667     // FIXME not sure that's the best way to implement it!
668     loadRhs(b+0, b0);
669     loadRhs(b+1, b1);
670     loadRhs(b+2, b2);
671     loadRhs(b+3, b3);
672   }
673 
674   // Vectorized path
675   EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, DoublePacketType& b0, DoublePacketType& b1)
676   {
677     // FIXME not sure that's the best way to implement it!
678     loadRhs(b+0, b0);
679     loadRhs(b+1, b1);
680   }
681 
682   // Scalar path
683   EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsScalar& b0, RhsScalar& b1)
684   {
685     // FIXME not sure that's the best way to implement it!
686     loadRhs(b+0, b0);
687     loadRhs(b+1, b1);
688   }
689 
690   // nothing special here
691   EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
692   {
693     dest = pload<LhsPacket>((const typename unpacket_traits<LhsPacket>::type*)(a));
694   }
695 
696   EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacket& dest) const
697   {
698     dest = ploadu<LhsPacket>((const typename unpacket_traits<LhsPacket>::type*)(a));
699   }
700 
701   EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, DoublePacketType& c, RhsPacket& /*tmp*/) const
702   {
703     c.first   = padd(pmul(a,b.first), c.first);
704     c.second  = padd(pmul(a,b.second),c.second);
705   }
706 
707   EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, ResPacket& c, RhsPacket& /*tmp*/) const
708   {
709     c = cj.pmadd(a,b,c);
710   }
711 
712   EIGEN_STRONG_INLINE void acc(const Scalar& c, const Scalar& alpha, Scalar& r) const { r += alpha * c; }
713 
714   EIGEN_STRONG_INLINE void acc(const DoublePacketType& c, const ResPacket& alpha, ResPacket& r) const
715   {
716     // assemble c
717     ResPacket tmp;
718     if((!ConjLhs)&&(!ConjRhs))
719     {
720       tmp = pcplxflip(pconj(ResPacket(c.second)));
721       tmp = padd(ResPacket(c.first),tmp);
722     }
723     else if((!ConjLhs)&&(ConjRhs))
724     {
725       tmp = pconj(pcplxflip(ResPacket(c.second)));
726       tmp = padd(ResPacket(c.first),tmp);
727     }
728     else if((ConjLhs)&&(!ConjRhs))
729     {
730       tmp = pcplxflip(ResPacket(c.second));
731       tmp = padd(pconj(ResPacket(c.first)),tmp);
732     }
733     else if((ConjLhs)&&(ConjRhs))
734     {
735       tmp = pcplxflip(ResPacket(c.second));
736       tmp = psub(pconj(ResPacket(c.first)),tmp);
737     }
738 
739     r = pmadd(tmp,alpha,r);
740   }
741 
742 protected:
743   conj_helper<LhsScalar,RhsScalar,ConjLhs,ConjRhs> cj;
744 };
745 
746 template<typename RealScalar, bool _ConjRhs>
747 class gebp_traits<RealScalar, std::complex<RealScalar>, false, _ConjRhs >
748 {
749 public:
750   typedef std::complex<RealScalar>  Scalar;
751   typedef RealScalar  LhsScalar;
752   typedef Scalar      RhsScalar;
753   typedef Scalar      ResScalar;
754 
755   enum {
756     ConjLhs = false,
757     ConjRhs = _ConjRhs,
758     Vectorizable = packet_traits<RealScalar>::Vectorizable
759                 && packet_traits<Scalar>::Vectorizable,
760     LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
761     RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
762     ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
763 
764     NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
765     // FIXME: should depend on NumberOfRegisters
766     nr = 4,
767     mr = (EIGEN_PLAIN_ENUM_MIN(16,NumberOfRegisters)/2/nr)*ResPacketSize,
768 
769     LhsProgress = ResPacketSize,
770     RhsProgress = 1
771   };
772 
773   typedef typename packet_traits<LhsScalar>::type  _LhsPacket;
774   typedef typename packet_traits<RhsScalar>::type  _RhsPacket;
775   typedef typename packet_traits<ResScalar>::type  _ResPacket;
776 
777   typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
778   typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
779   typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
780 
781   typedef ResPacket AccPacket;
782 
783   EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
784   {
785     p = pset1<ResPacket>(ResScalar(0));
786   }
787 
788   EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
789   {
790     dest = pset1<RhsPacket>(*b);
791   }
792 
793   void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3)
794   {
795     pbroadcast4(b, b0, b1, b2, b3);
796   }
797 
798 //   EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1)
799 //   {
800 //     // FIXME not sure that's the best way to implement it!
801 //     b0 = pload1<RhsPacket>(b+0);
802 //     b1 = pload1<RhsPacket>(b+1);
803 //   }
804 
805   EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
806   {
807     dest = ploaddup<LhsPacket>(a);
808   }
809 
810   EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const
811   {
812     eigen_internal_assert(unpacket_traits<RhsPacket>::size<=4);
813     loadRhs(b,dest);
814   }
815 
816   EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacket& dest) const
817   {
818     dest = ploaddup<LhsPacket>(a);
819   }
820 
821   EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const
822   {
823     madd_impl(a, b, c, tmp, typename conditional<Vectorizable,true_type,false_type>::type());
824   }
825 
826   EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const
827   {
828 #ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
829     EIGEN_UNUSED_VARIABLE(tmp);
830     c.v = pmadd(a,b.v,c.v);
831 #else
832     tmp = b; tmp.v = pmul(a,tmp.v); c = padd(c,tmp);
833 #endif
834 
835   }
836 
837   EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const
838   {
839     c += a * b;
840   }
841 
842   EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
843   {
844     r = cj.pmadd(alpha,c,r);
845   }
846 
847 protected:
848   conj_helper<ResPacket,ResPacket,false,ConjRhs> cj;
849 };
850 
851 /* optimized GEneral packed Block * packed Panel product kernel
852  *
853  * Mixing type logic: C += A * B
854  *  |  A  |  B  | comments
855  *  |real |cplx | no vectorization yet, would require to pack A with duplication
856  *  |cplx |real | easy vectorization
857  */
858 template<typename LhsScalar, typename RhsScalar, typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
859 struct gebp_kernel
860 {
861   typedef gebp_traits<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> Traits;
862   typedef typename Traits::ResScalar ResScalar;
863   typedef typename Traits::LhsPacket LhsPacket;
864   typedef typename Traits::RhsPacket RhsPacket;
865   typedef typename Traits::ResPacket ResPacket;
866   typedef typename Traits::AccPacket AccPacket;
867 
868   typedef gebp_traits<RhsScalar,LhsScalar,ConjugateRhs,ConjugateLhs> SwappedTraits;
869   typedef typename SwappedTraits::ResScalar SResScalar;
870   typedef typename SwappedTraits::LhsPacket SLhsPacket;
871   typedef typename SwappedTraits::RhsPacket SRhsPacket;
872   typedef typename SwappedTraits::ResPacket SResPacket;
873   typedef typename SwappedTraits::AccPacket SAccPacket;
874 
875   typedef typename DataMapper::LinearMapper LinearMapper;
876 
877   enum {
878     Vectorizable  = Traits::Vectorizable,
879     LhsProgress   = Traits::LhsProgress,
880     RhsProgress   = Traits::RhsProgress,
881     ResPacketSize = Traits::ResPacketSize
882   };
883 
884   EIGEN_DONT_INLINE
885   void operator()(const DataMapper& res, const LhsScalar* blockA, const RhsScalar* blockB,
886                   Index rows, Index depth, Index cols, ResScalar alpha,
887                   Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0);
888 };
889 
890 template<typename LhsScalar, typename RhsScalar, typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
891 EIGEN_DONT_INLINE
892 void gebp_kernel<LhsScalar,RhsScalar,Index,DataMapper,mr,nr,ConjugateLhs,ConjugateRhs>
893   ::operator()(const DataMapper& res, const LhsScalar* blockA, const RhsScalar* blockB,
894                Index rows, Index depth, Index cols, ResScalar alpha,
895                Index strideA, Index strideB, Index offsetA, Index offsetB)
896   {
897     Traits traits;
898     SwappedTraits straits;
899 
900     if(strideA==-1) strideA = depth;
901     if(strideB==-1) strideB = depth;
902     conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
903     Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0;
904     const Index peeled_mc3 = mr>=3*Traits::LhsProgress ? (rows/(3*LhsProgress))*(3*LhsProgress) : 0;
905     const Index peeled_mc2 = mr>=2*Traits::LhsProgress ? peeled_mc3+((rows-peeled_mc3)/(2*LhsProgress))*(2*LhsProgress) : 0;
906     const Index peeled_mc1 = mr>=1*Traits::LhsProgress ? (rows/(1*LhsProgress))*(1*LhsProgress) : 0;
907     enum { pk = 8 }; // NOTE Such a large peeling factor is important for large matrices (~ +5% when >1000 on Haswell)
908     const Index peeled_kc  = depth & ~(pk-1);
909     const Index prefetch_res_offset = 32/sizeof(ResScalar);
910 //     const Index depth2     = depth & ~1;
911 
912     //---------- Process 3 * LhsProgress rows at once ----------
913     // This corresponds to 3*LhsProgress x nr register blocks.
914     // Usually, make sense only with FMA
915     if(mr>=3*Traits::LhsProgress)
916     {
917       // Here, the general idea is to loop on each largest micro horizontal panel of the lhs (3*Traits::LhsProgress x depth)
918       // and on each largest micro vertical panel of the rhs (depth * nr).
919       // Blocking sizes, i.e., 'depth' has been computed so that the micro horizontal panel of the lhs fit in L1.
920       // However, if depth is too small, we can extend the number of rows of these horizontal panels.
921       // This actual number of rows is computed as follow:
922       const Index l1 = defaultL1CacheSize; // in Bytes, TODO, l1 should be passed to this function.
923       // The max(1, ...) here is needed because we may be using blocking params larger than what our known l1 cache size
924       // suggests we should be using: either because our known l1 cache size is inaccurate (e.g. on Android, we can only guess),
925       // or because we are testing specific blocking sizes.
926       const Index actual_panel_rows = (3*LhsProgress) * std::max<Index>(1,( (l1 - sizeof(ResScalar)*mr*nr - depth*nr*sizeof(RhsScalar)) / (depth * sizeof(LhsScalar) * 3*LhsProgress) ));
927       for(Index i1=0; i1<peeled_mc3; i1+=actual_panel_rows)
928       {
929         const Index actual_panel_end = (std::min)(i1+actual_panel_rows, peeled_mc3);
930         for(Index j2=0; j2<packet_cols4; j2+=nr)
931         {
932           for(Index i=i1; i<actual_panel_end; i+=3*LhsProgress)
933           {
934 
935           // We selected a 3*Traits::LhsProgress x nr micro block of res which is entirely
936           // stored into 3 x nr registers.
937 
938           const LhsScalar* blA = &blockA[i*strideA+offsetA*(3*LhsProgress)];
939           prefetch(&blA[0]);
940 
941           // gets res block as register
942           AccPacket C0, C1, C2,  C3,
943                     C4, C5, C6,  C7,
944                     C8, C9, C10, C11;
945           traits.initAcc(C0);  traits.initAcc(C1);  traits.initAcc(C2);  traits.initAcc(C3);
946           traits.initAcc(C4);  traits.initAcc(C5);  traits.initAcc(C6);  traits.initAcc(C7);
947           traits.initAcc(C8);  traits.initAcc(C9);  traits.initAcc(C10); traits.initAcc(C11);
948 
949           LinearMapper r0 = res.getLinearMapper(i, j2 + 0);
950           LinearMapper r1 = res.getLinearMapper(i, j2 + 1);
951           LinearMapper r2 = res.getLinearMapper(i, j2 + 2);
952           LinearMapper r3 = res.getLinearMapper(i, j2 + 3);
953 
954           r0.prefetch(0);
955           r1.prefetch(0);
956           r2.prefetch(0);
957           r3.prefetch(0);
958 
959           // performs "inner" products
960           const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
961           prefetch(&blB[0]);
962           LhsPacket A0, A1;
963 
964           for(Index k=0; k<peeled_kc; k+=pk)
965           {
966             EIGEN_ASM_COMMENT("begin gebp micro kernel 3pX4");
967             RhsPacket B_0, T0;
968             LhsPacket A2;
969 
970 #define EIGEN_GEBP_ONESTEP(K) \
971             do { \
972               EIGEN_ASM_COMMENT("begin step of gebp micro kernel 3pX4"); \
973               EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
974               internal::prefetch(blA+(3*K+16)*LhsProgress); \
975               if (EIGEN_ARCH_ARM) { internal::prefetch(blB+(4*K+16)*RhsProgress); } /* Bug 953 */ \
976               traits.loadLhs(&blA[(0+3*K)*LhsProgress], A0);  \
977               traits.loadLhs(&blA[(1+3*K)*LhsProgress], A1);  \
978               traits.loadLhs(&blA[(2+3*K)*LhsProgress], A2);  \
979               traits.loadRhs(blB + (0+4*K)*Traits::RhsProgress, B_0); \
980               traits.madd(A0, B_0, C0, T0); \
981               traits.madd(A1, B_0, C4, T0); \
982               traits.madd(A2, B_0, C8, B_0); \
983               traits.loadRhs(blB + (1+4*K)*Traits::RhsProgress, B_0); \
984               traits.madd(A0, B_0, C1, T0); \
985               traits.madd(A1, B_0, C5, T0); \
986               traits.madd(A2, B_0, C9, B_0); \
987               traits.loadRhs(blB + (2+4*K)*Traits::RhsProgress, B_0); \
988               traits.madd(A0, B_0, C2,  T0); \
989               traits.madd(A1, B_0, C6,  T0); \
990               traits.madd(A2, B_0, C10, B_0); \
991               traits.loadRhs(blB + (3+4*K)*Traits::RhsProgress, B_0); \
992               traits.madd(A0, B_0, C3 , T0); \
993               traits.madd(A1, B_0, C7,  T0); \
994               traits.madd(A2, B_0, C11, B_0); \
995               EIGEN_ASM_COMMENT("end step of gebp micro kernel 3pX4"); \
996             } while(false)
997 
998             internal::prefetch(blB);
999             EIGEN_GEBP_ONESTEP(0);
1000             EIGEN_GEBP_ONESTEP(1);
1001             EIGEN_GEBP_ONESTEP(2);
1002             EIGEN_GEBP_ONESTEP(3);
1003             EIGEN_GEBP_ONESTEP(4);
1004             EIGEN_GEBP_ONESTEP(5);
1005             EIGEN_GEBP_ONESTEP(6);
1006             EIGEN_GEBP_ONESTEP(7);
1007 
1008             blB += pk*4*RhsProgress;
1009             blA += pk*3*Traits::LhsProgress;
1010 
1011             EIGEN_ASM_COMMENT("end gebp micro kernel 3pX4");
1012           }
1013           // process remaining peeled loop
1014           for(Index k=peeled_kc; k<depth; k++)
1015           {
1016             RhsPacket B_0, T0;
1017             LhsPacket A2;
1018             EIGEN_GEBP_ONESTEP(0);
1019             blB += 4*RhsProgress;
1020             blA += 3*Traits::LhsProgress;
1021           }
1022 
1023 #undef EIGEN_GEBP_ONESTEP
1024 
1025           ResPacket R0, R1, R2;
1026           ResPacket alphav = pset1<ResPacket>(alpha);
1027 
1028           R0 = r0.loadPacket(0 * Traits::ResPacketSize);
1029           R1 = r0.loadPacket(1 * Traits::ResPacketSize);
1030           R2 = r0.loadPacket(2 * Traits::ResPacketSize);
1031           traits.acc(C0, alphav, R0);
1032           traits.acc(C4, alphav, R1);
1033           traits.acc(C8, alphav, R2);
1034           r0.storePacket(0 * Traits::ResPacketSize, R0);
1035           r0.storePacket(1 * Traits::ResPacketSize, R1);
1036           r0.storePacket(2 * Traits::ResPacketSize, R2);
1037 
1038           R0 = r1.loadPacket(0 * Traits::ResPacketSize);
1039           R1 = r1.loadPacket(1 * Traits::ResPacketSize);
1040           R2 = r1.loadPacket(2 * Traits::ResPacketSize);
1041           traits.acc(C1, alphav, R0);
1042           traits.acc(C5, alphav, R1);
1043           traits.acc(C9, alphav, R2);
1044           r1.storePacket(0 * Traits::ResPacketSize, R0);
1045           r1.storePacket(1 * Traits::ResPacketSize, R1);
1046           r1.storePacket(2 * Traits::ResPacketSize, R2);
1047 
1048           R0 = r2.loadPacket(0 * Traits::ResPacketSize);
1049           R1 = r2.loadPacket(1 * Traits::ResPacketSize);
1050           R2 = r2.loadPacket(2 * Traits::ResPacketSize);
1051           traits.acc(C2, alphav, R0);
1052           traits.acc(C6, alphav, R1);
1053           traits.acc(C10, alphav, R2);
1054           r2.storePacket(0 * Traits::ResPacketSize, R0);
1055           r2.storePacket(1 * Traits::ResPacketSize, R1);
1056           r2.storePacket(2 * Traits::ResPacketSize, R2);
1057 
1058           R0 = r3.loadPacket(0 * Traits::ResPacketSize);
1059           R1 = r3.loadPacket(1 * Traits::ResPacketSize);
1060           R2 = r3.loadPacket(2 * Traits::ResPacketSize);
1061           traits.acc(C3, alphav, R0);
1062           traits.acc(C7, alphav, R1);
1063           traits.acc(C11, alphav, R2);
1064           r3.storePacket(0 * Traits::ResPacketSize, R0);
1065           r3.storePacket(1 * Traits::ResPacketSize, R1);
1066           r3.storePacket(2 * Traits::ResPacketSize, R2);
1067           }
1068         }
1069 
1070         // Deal with remaining columns of the rhs
1071         for(Index j2=packet_cols4; j2<cols; j2++)
1072         {
1073           for(Index i=i1; i<actual_panel_end; i+=3*LhsProgress)
1074           {
1075           // One column at a time
1076           const LhsScalar* blA = &blockA[i*strideA+offsetA*(3*Traits::LhsProgress)];
1077           prefetch(&blA[0]);
1078 
1079           // gets res block as register
1080           AccPacket C0, C4, C8;
1081           traits.initAcc(C0);
1082           traits.initAcc(C4);
1083           traits.initAcc(C8);
1084 
1085           LinearMapper r0 = res.getLinearMapper(i, j2);
1086           r0.prefetch(0);
1087 
1088           // performs "inner" products
1089           const RhsScalar* blB = &blockB[j2*strideB+offsetB];
1090           LhsPacket A0, A1, A2;
1091 
1092           for(Index k=0; k<peeled_kc; k+=pk)
1093           {
1094             EIGEN_ASM_COMMENT("begin gebp micro kernel 3pX1");
1095             RhsPacket B_0;
1096 #define EIGEN_GEBGP_ONESTEP(K) \
1097             do { \
1098               EIGEN_ASM_COMMENT("begin step of gebp micro kernel 3pX1"); \
1099               EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
1100               traits.loadLhs(&blA[(0+3*K)*LhsProgress], A0);  \
1101               traits.loadLhs(&blA[(1+3*K)*LhsProgress], A1);  \
1102               traits.loadLhs(&blA[(2+3*K)*LhsProgress], A2);  \
1103               traits.loadRhs(&blB[(0+K)*RhsProgress], B_0);   \
1104               traits.madd(A0, B_0, C0, B_0); \
1105               traits.madd(A1, B_0, C4, B_0); \
1106               traits.madd(A2, B_0, C8, B_0); \
1107               EIGEN_ASM_COMMENT("end step of gebp micro kernel 3pX1"); \
1108             } while(false)
1109 
1110             EIGEN_GEBGP_ONESTEP(0);
1111             EIGEN_GEBGP_ONESTEP(1);
1112             EIGEN_GEBGP_ONESTEP(2);
1113             EIGEN_GEBGP_ONESTEP(3);
1114             EIGEN_GEBGP_ONESTEP(4);
1115             EIGEN_GEBGP_ONESTEP(5);
1116             EIGEN_GEBGP_ONESTEP(6);
1117             EIGEN_GEBGP_ONESTEP(7);
1118 
1119             blB += pk*RhsProgress;
1120             blA += pk*3*Traits::LhsProgress;
1121 
1122             EIGEN_ASM_COMMENT("end gebp micro kernel 3pX1");
1123           }
1124 
1125           // process remaining peeled loop
1126           for(Index k=peeled_kc; k<depth; k++)
1127           {
1128             RhsPacket B_0;
1129             EIGEN_GEBGP_ONESTEP(0);
1130             blB += RhsProgress;
1131             blA += 3*Traits::LhsProgress;
1132           }
1133 #undef EIGEN_GEBGP_ONESTEP
1134           ResPacket R0, R1, R2;
1135           ResPacket alphav = pset1<ResPacket>(alpha);
1136 
1137           R0 = r0.loadPacket(0 * Traits::ResPacketSize);
1138           R1 = r0.loadPacket(1 * Traits::ResPacketSize);
1139           R2 = r0.loadPacket(2 * Traits::ResPacketSize);
1140           traits.acc(C0, alphav, R0);
1141           traits.acc(C4, alphav, R1);
1142           traits.acc(C8, alphav, R2);
1143           r0.storePacket(0 * Traits::ResPacketSize, R0);
1144           r0.storePacket(1 * Traits::ResPacketSize, R1);
1145           r0.storePacket(2 * Traits::ResPacketSize, R2);
1146           }
1147         }
1148       }
1149     }
1150 
1151     //---------- Process 2 * LhsProgress rows at once ----------
1152     if(mr>=2*Traits::LhsProgress)
1153     {
1154       const Index l1 = defaultL1CacheSize; // in Bytes, TODO, l1 should be passed to this function.
1155       // The max(1, ...) here is needed because we may be using blocking params larger than what our known l1 cache size
1156       // suggests we should be using: either because our known l1 cache size is inaccurate (e.g. on Android, we can only guess),
1157       // or because we are testing specific blocking sizes.
1158       Index actual_panel_rows = (2*LhsProgress) * std::max<Index>(1,( (l1 - sizeof(ResScalar)*mr*nr - depth*nr*sizeof(RhsScalar)) / (depth * sizeof(LhsScalar) * 2*LhsProgress) ));
1159 
1160       for(Index i1=peeled_mc3; i1<peeled_mc2; i1+=actual_panel_rows)
1161       {
1162         Index actual_panel_end = (std::min)(i1+actual_panel_rows, peeled_mc2);
1163         for(Index j2=0; j2<packet_cols4; j2+=nr)
1164         {
1165           for(Index i=i1; i<actual_panel_end; i+=2*LhsProgress)
1166           {
1167 
1168           // We selected a 2*Traits::LhsProgress x nr micro block of res which is entirely
1169           // stored into 2 x nr registers.
1170 
1171           const LhsScalar* blA = &blockA[i*strideA+offsetA*(2*Traits::LhsProgress)];
1172           prefetch(&blA[0]);
1173 
1174           // gets res block as register
1175           AccPacket C0, C1, C2, C3,
1176                     C4, C5, C6, C7;
1177           traits.initAcc(C0); traits.initAcc(C1); traits.initAcc(C2); traits.initAcc(C3);
1178           traits.initAcc(C4); traits.initAcc(C5); traits.initAcc(C6); traits.initAcc(C7);
1179 
1180           LinearMapper r0 = res.getLinearMapper(i, j2 + 0);
1181           LinearMapper r1 = res.getLinearMapper(i, j2 + 1);
1182           LinearMapper r2 = res.getLinearMapper(i, j2 + 2);
1183           LinearMapper r3 = res.getLinearMapper(i, j2 + 3);
1184 
1185           r0.prefetch(prefetch_res_offset);
1186           r1.prefetch(prefetch_res_offset);
1187           r2.prefetch(prefetch_res_offset);
1188           r3.prefetch(prefetch_res_offset);
1189 
1190           // performs "inner" products
1191           const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
1192           prefetch(&blB[0]);
1193           LhsPacket A0, A1;
1194 
1195           for(Index k=0; k<peeled_kc; k+=pk)
1196           {
1197             EIGEN_ASM_COMMENT("begin gebp micro kernel 2pX4");
1198             RhsPacket B_0, B1, B2, B3, T0;
1199 
1200           // NOTE: the begin/end asm comments below work around bug 935!
1201           // but they are not enough for gcc>=6 without FMA (bug 1637)
1202           #if EIGEN_GNUC_AT_LEAST(6,0) && defined(EIGEN_VECTORIZE_SSE)
1203             #define EIGEN_GEBP_2PX4_SPILLING_WORKAROUND __asm__  ("" : [a0] "+x,m" (A0),[a1] "+x,m" (A1));
1204           #else
1205             #define EIGEN_GEBP_2PX4_SPILLING_WORKAROUND
1206           #endif
1207           #define EIGEN_GEBGP_ONESTEP(K) \
1208             do {                                                                \
1209               EIGEN_ASM_COMMENT("begin step of gebp micro kernel 2pX4");        \
1210               traits.loadLhs(&blA[(0+2*K)*LhsProgress], A0);                    \
1211               traits.loadLhs(&blA[(1+2*K)*LhsProgress], A1);                    \
1212               traits.broadcastRhs(&blB[(0+4*K)*RhsProgress], B_0, B1, B2, B3);  \
1213               traits.madd(A0, B_0, C0, T0);                                     \
1214               traits.madd(A1, B_0, C4, B_0);                                    \
1215               traits.madd(A0, B1,  C1, T0);                                     \
1216               traits.madd(A1, B1,  C5, B1);                                     \
1217               traits.madd(A0, B2,  C2, T0);                                     \
1218               traits.madd(A1, B2,  C6, B2);                                     \
1219               traits.madd(A0, B3,  C3, T0);                                     \
1220               traits.madd(A1, B3,  C7, B3);                                     \
1221               EIGEN_GEBP_2PX4_SPILLING_WORKAROUND                               \
1222               EIGEN_ASM_COMMENT("end step of gebp micro kernel 2pX4");          \
1223             } while(false)
1224 
1225             internal::prefetch(blB+(48+0));
1226             EIGEN_GEBGP_ONESTEP(0);
1227             EIGEN_GEBGP_ONESTEP(1);
1228             EIGEN_GEBGP_ONESTEP(2);
1229             EIGEN_GEBGP_ONESTEP(3);
1230             internal::prefetch(blB+(48+16));
1231             EIGEN_GEBGP_ONESTEP(4);
1232             EIGEN_GEBGP_ONESTEP(5);
1233             EIGEN_GEBGP_ONESTEP(6);
1234             EIGEN_GEBGP_ONESTEP(7);
1235 
1236             blB += pk*4*RhsProgress;
1237             blA += pk*(2*Traits::LhsProgress);
1238 
1239             EIGEN_ASM_COMMENT("end gebp micro kernel 2pX4");
1240           }
1241           // process remaining peeled loop
1242           for(Index k=peeled_kc; k<depth; k++)
1243           {
1244             RhsPacket B_0, B1, B2, B3, T0;
1245             EIGEN_GEBGP_ONESTEP(0);
1246             blB += 4*RhsProgress;
1247             blA += 2*Traits::LhsProgress;
1248           }
1249 #undef EIGEN_GEBGP_ONESTEP
1250 
1251           ResPacket R0, R1, R2, R3;
1252           ResPacket alphav = pset1<ResPacket>(alpha);
1253 
1254           R0 = r0.loadPacket(0 * Traits::ResPacketSize);
1255           R1 = r0.loadPacket(1 * Traits::ResPacketSize);
1256           R2 = r1.loadPacket(0 * Traits::ResPacketSize);
1257           R3 = r1.loadPacket(1 * Traits::ResPacketSize);
1258           traits.acc(C0, alphav, R0);
1259           traits.acc(C4, alphav, R1);
1260           traits.acc(C1, alphav, R2);
1261           traits.acc(C5, alphav, R3);
1262           r0.storePacket(0 * Traits::ResPacketSize, R0);
1263           r0.storePacket(1 * Traits::ResPacketSize, R1);
1264           r1.storePacket(0 * Traits::ResPacketSize, R2);
1265           r1.storePacket(1 * Traits::ResPacketSize, R3);
1266 
1267           R0 = r2.loadPacket(0 * Traits::ResPacketSize);
1268           R1 = r2.loadPacket(1 * Traits::ResPacketSize);
1269           R2 = r3.loadPacket(0 * Traits::ResPacketSize);
1270           R3 = r3.loadPacket(1 * Traits::ResPacketSize);
1271           traits.acc(C2,  alphav, R0);
1272           traits.acc(C6,  alphav, R1);
1273           traits.acc(C3,  alphav, R2);
1274           traits.acc(C7,  alphav, R3);
1275           r2.storePacket(0 * Traits::ResPacketSize, R0);
1276           r2.storePacket(1 * Traits::ResPacketSize, R1);
1277           r3.storePacket(0 * Traits::ResPacketSize, R2);
1278           r3.storePacket(1 * Traits::ResPacketSize, R3);
1279           }
1280         }
1281 
1282         // Deal with remaining columns of the rhs
1283         for(Index j2=packet_cols4; j2<cols; j2++)
1284         {
1285           for(Index i=i1; i<actual_panel_end; i+=2*LhsProgress)
1286           {
1287           // One column at a time
1288           const LhsScalar* blA = &blockA[i*strideA+offsetA*(2*Traits::LhsProgress)];
1289           prefetch(&blA[0]);
1290 
1291           // gets res block as register
1292           AccPacket C0, C4;
1293           traits.initAcc(C0);
1294           traits.initAcc(C4);
1295 
1296           LinearMapper r0 = res.getLinearMapper(i, j2);
1297           r0.prefetch(prefetch_res_offset);
1298 
1299           // performs "inner" products
1300           const RhsScalar* blB = &blockB[j2*strideB+offsetB];
1301           LhsPacket A0, A1;
1302 
1303           for(Index k=0; k<peeled_kc; k+=pk)
1304           {
1305             EIGEN_ASM_COMMENT("begin gebp micro kernel 2pX1");
1306             RhsPacket B_0, B1;
1307 
1308 #define EIGEN_GEBGP_ONESTEP(K) \
1309             do {                                                                  \
1310               EIGEN_ASM_COMMENT("begin step of gebp micro kernel 2pX1");          \
1311               EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
1312               traits.loadLhs(&blA[(0+2*K)*LhsProgress], A0);                      \
1313               traits.loadLhs(&blA[(1+2*K)*LhsProgress], A1);                      \
1314               traits.loadRhs(&blB[(0+K)*RhsProgress], B_0);                       \
1315               traits.madd(A0, B_0, C0, B1);                                       \
1316               traits.madd(A1, B_0, C4, B_0);                                      \
1317               EIGEN_ASM_COMMENT("end step of gebp micro kernel 2pX1");            \
1318             } while(false)
1319 
1320             EIGEN_GEBGP_ONESTEP(0);
1321             EIGEN_GEBGP_ONESTEP(1);
1322             EIGEN_GEBGP_ONESTEP(2);
1323             EIGEN_GEBGP_ONESTEP(3);
1324             EIGEN_GEBGP_ONESTEP(4);
1325             EIGEN_GEBGP_ONESTEP(5);
1326             EIGEN_GEBGP_ONESTEP(6);
1327             EIGEN_GEBGP_ONESTEP(7);
1328 
1329             blB += pk*RhsProgress;
1330             blA += pk*2*Traits::LhsProgress;
1331 
1332             EIGEN_ASM_COMMENT("end gebp micro kernel 2pX1");
1333           }
1334 
1335           // process remaining peeled loop
1336           for(Index k=peeled_kc; k<depth; k++)
1337           {
1338             RhsPacket B_0, B1;
1339             EIGEN_GEBGP_ONESTEP(0);
1340             blB += RhsProgress;
1341             blA += 2*Traits::LhsProgress;
1342           }
1343 #undef EIGEN_GEBGP_ONESTEP
1344           ResPacket R0, R1;
1345           ResPacket alphav = pset1<ResPacket>(alpha);
1346 
1347           R0 = r0.loadPacket(0 * Traits::ResPacketSize);
1348           R1 = r0.loadPacket(1 * Traits::ResPacketSize);
1349           traits.acc(C0, alphav, R0);
1350           traits.acc(C4, alphav, R1);
1351           r0.storePacket(0 * Traits::ResPacketSize, R0);
1352           r0.storePacket(1 * Traits::ResPacketSize, R1);
1353           }
1354         }
1355       }
1356     }
1357     //---------- Process 1 * LhsProgress rows at once ----------
1358     if(mr>=1*Traits::LhsProgress)
1359     {
1360       // loops on each largest micro horizontal panel of lhs (1*LhsProgress x depth)
1361       for(Index i=peeled_mc2; i<peeled_mc1; i+=1*LhsProgress)
1362       {
1363         // loops on each largest micro vertical panel of rhs (depth * nr)
1364         for(Index j2=0; j2<packet_cols4; j2+=nr)
1365         {
1366           // We select a 1*Traits::LhsProgress x nr micro block of res which is entirely
1367           // stored into 1 x nr registers.
1368 
1369           const LhsScalar* blA = &blockA[i*strideA+offsetA*(1*Traits::LhsProgress)];
1370           prefetch(&blA[0]);
1371 
1372           // gets res block as register
1373           AccPacket C0, C1, C2, C3;
1374           traits.initAcc(C0);
1375           traits.initAcc(C1);
1376           traits.initAcc(C2);
1377           traits.initAcc(C3);
1378 
1379           LinearMapper r0 = res.getLinearMapper(i, j2 + 0);
1380           LinearMapper r1 = res.getLinearMapper(i, j2 + 1);
1381           LinearMapper r2 = res.getLinearMapper(i, j2 + 2);
1382           LinearMapper r3 = res.getLinearMapper(i, j2 + 3);
1383 
1384           r0.prefetch(prefetch_res_offset);
1385           r1.prefetch(prefetch_res_offset);
1386           r2.prefetch(prefetch_res_offset);
1387           r3.prefetch(prefetch_res_offset);
1388 
1389           // performs "inner" products
1390           const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
1391           prefetch(&blB[0]);
1392           LhsPacket A0;
1393 
1394           for(Index k=0; k<peeled_kc; k+=pk)
1395           {
1396             EIGEN_ASM_COMMENT("begin gebp micro kernel 1pX4");
1397             RhsPacket B_0, B1, B2, B3;
1398 
1399 #define EIGEN_GEBGP_ONESTEP(K) \
1400             do {                                                                \
1401               EIGEN_ASM_COMMENT("begin step of gebp micro kernel 1pX4");        \
1402               EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
1403               traits.loadLhs(&blA[(0+1*K)*LhsProgress], A0);                    \
1404               traits.broadcastRhs(&blB[(0+4*K)*RhsProgress], B_0, B1, B2, B3);  \
1405               traits.madd(A0, B_0, C0, B_0);                                    \
1406               traits.madd(A0, B1,  C1, B1);                                     \
1407               traits.madd(A0, B2,  C2, B2);                                     \
1408               traits.madd(A0, B3,  C3, B3);                                     \
1409               EIGEN_ASM_COMMENT("end step of gebp micro kernel 1pX4");          \
1410             } while(false)
1411 
1412             internal::prefetch(blB+(48+0));
1413             EIGEN_GEBGP_ONESTEP(0);
1414             EIGEN_GEBGP_ONESTEP(1);
1415             EIGEN_GEBGP_ONESTEP(2);
1416             EIGEN_GEBGP_ONESTEP(3);
1417             internal::prefetch(blB+(48+16));
1418             EIGEN_GEBGP_ONESTEP(4);
1419             EIGEN_GEBGP_ONESTEP(5);
1420             EIGEN_GEBGP_ONESTEP(6);
1421             EIGEN_GEBGP_ONESTEP(7);
1422 
1423             blB += pk*4*RhsProgress;
1424             blA += pk*1*LhsProgress;
1425 
1426             EIGEN_ASM_COMMENT("end gebp micro kernel 1pX4");
1427           }
1428           // process remaining peeled loop
1429           for(Index k=peeled_kc; k<depth; k++)
1430           {
1431             RhsPacket B_0, B1, B2, B3;
1432             EIGEN_GEBGP_ONESTEP(0);
1433             blB += 4*RhsProgress;
1434             blA += 1*LhsProgress;
1435           }
1436 #undef EIGEN_GEBGP_ONESTEP
1437 
1438           ResPacket R0, R1;
1439           ResPacket alphav = pset1<ResPacket>(alpha);
1440 
1441           R0 = r0.loadPacket(0 * Traits::ResPacketSize);
1442           R1 = r1.loadPacket(0 * Traits::ResPacketSize);
1443           traits.acc(C0, alphav, R0);
1444           traits.acc(C1,  alphav, R1);
1445           r0.storePacket(0 * Traits::ResPacketSize, R0);
1446           r1.storePacket(0 * Traits::ResPacketSize, R1);
1447 
1448           R0 = r2.loadPacket(0 * Traits::ResPacketSize);
1449           R1 = r3.loadPacket(0 * Traits::ResPacketSize);
1450           traits.acc(C2,  alphav, R0);
1451           traits.acc(C3,  alphav, R1);
1452           r2.storePacket(0 * Traits::ResPacketSize, R0);
1453           r3.storePacket(0 * Traits::ResPacketSize, R1);
1454         }
1455 
1456         // Deal with remaining columns of the rhs
1457         for(Index j2=packet_cols4; j2<cols; j2++)
1458         {
1459           // One column at a time
1460           const LhsScalar* blA = &blockA[i*strideA+offsetA*(1*Traits::LhsProgress)];
1461           prefetch(&blA[0]);
1462 
1463           // gets res block as register
1464           AccPacket C0;
1465           traits.initAcc(C0);
1466 
1467           LinearMapper r0 = res.getLinearMapper(i, j2);
1468 
1469           // performs "inner" products
1470           const RhsScalar* blB = &blockB[j2*strideB+offsetB];
1471           LhsPacket A0;
1472 
1473           for(Index k=0; k<peeled_kc; k+=pk)
1474           {
1475             EIGEN_ASM_COMMENT("begin gebp micro kernel 1pX1");
1476             RhsPacket B_0;
1477 
1478 #define EIGEN_GEBGP_ONESTEP(K) \
1479             do {                                                                \
1480               EIGEN_ASM_COMMENT("begin step of gebp micro kernel 1pX1");        \
1481               EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
1482               traits.loadLhs(&blA[(0+1*K)*LhsProgress], A0);                    \
1483               traits.loadRhs(&blB[(0+K)*RhsProgress], B_0);                     \
1484               traits.madd(A0, B_0, C0, B_0);                                    \
1485               EIGEN_ASM_COMMENT("end step of gebp micro kernel 1pX1");          \
1486             } while(false);
1487 
1488             EIGEN_GEBGP_ONESTEP(0);
1489             EIGEN_GEBGP_ONESTEP(1);
1490             EIGEN_GEBGP_ONESTEP(2);
1491             EIGEN_GEBGP_ONESTEP(3);
1492             EIGEN_GEBGP_ONESTEP(4);
1493             EIGEN_GEBGP_ONESTEP(5);
1494             EIGEN_GEBGP_ONESTEP(6);
1495             EIGEN_GEBGP_ONESTEP(7);
1496 
1497             blB += pk*RhsProgress;
1498             blA += pk*1*Traits::LhsProgress;
1499 
1500             EIGEN_ASM_COMMENT("end gebp micro kernel 1pX1");
1501           }
1502 
1503           // process remaining peeled loop
1504           for(Index k=peeled_kc; k<depth; k++)
1505           {
1506             RhsPacket B_0;
1507             EIGEN_GEBGP_ONESTEP(0);
1508             blB += RhsProgress;
1509             blA += 1*Traits::LhsProgress;
1510           }
1511 #undef EIGEN_GEBGP_ONESTEP
1512           ResPacket R0;
1513           ResPacket alphav = pset1<ResPacket>(alpha);
1514           R0 = r0.loadPacket(0 * Traits::ResPacketSize);
1515           traits.acc(C0, alphav, R0);
1516           r0.storePacket(0 * Traits::ResPacketSize, R0);
1517         }
1518       }
1519     }
1520     //---------- Process remaining rows, 1 at once ----------
1521     if(peeled_mc1<rows)
1522     {
1523       // loop on each panel of the rhs
1524       for(Index j2=0; j2<packet_cols4; j2+=nr)
1525       {
1526         // loop on each row of the lhs (1*LhsProgress x depth)
1527         for(Index i=peeled_mc1; i<rows; i+=1)
1528         {
1529           const LhsScalar* blA = &blockA[i*strideA+offsetA];
1530           prefetch(&blA[0]);
1531           const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
1532 
1533           // The following piece of code wont work for 512 bit registers
1534           // Moreover, if LhsProgress==8 it assumes that there is a half packet of the same size
1535           // as nr (which is currently 4) for the return type.
1536           const int SResPacketHalfSize = unpacket_traits<typename unpacket_traits<SResPacket>::half>::size;
1537           if ((SwappedTraits::LhsProgress % 4) == 0 &&
1538               (SwappedTraits::LhsProgress <= 8) &&
1539               (SwappedTraits::LhsProgress!=8 || SResPacketHalfSize==nr))
1540           {
1541             SAccPacket C0, C1, C2, C3;
1542             straits.initAcc(C0);
1543             straits.initAcc(C1);
1544             straits.initAcc(C2);
1545             straits.initAcc(C3);
1546 
1547             const Index spk   = (std::max)(1,SwappedTraits::LhsProgress/4);
1548             const Index endk  = (depth/spk)*spk;
1549             const Index endk4 = (depth/(spk*4))*(spk*4);
1550 
1551             Index k=0;
1552             for(; k<endk4; k+=4*spk)
1553             {
1554               SLhsPacket A0,A1;
1555               SRhsPacket B_0,B_1;
1556 
1557               straits.loadLhsUnaligned(blB+0*SwappedTraits::LhsProgress, A0);
1558               straits.loadLhsUnaligned(blB+1*SwappedTraits::LhsProgress, A1);
1559 
1560               straits.loadRhsQuad(blA+0*spk, B_0);
1561               straits.loadRhsQuad(blA+1*spk, B_1);
1562               straits.madd(A0,B_0,C0,B_0);
1563               straits.madd(A1,B_1,C1,B_1);
1564 
1565               straits.loadLhsUnaligned(blB+2*SwappedTraits::LhsProgress, A0);
1566               straits.loadLhsUnaligned(blB+3*SwappedTraits::LhsProgress, A1);
1567               straits.loadRhsQuad(blA+2*spk, B_0);
1568               straits.loadRhsQuad(blA+3*spk, B_1);
1569               straits.madd(A0,B_0,C2,B_0);
1570               straits.madd(A1,B_1,C3,B_1);
1571 
1572               blB += 4*SwappedTraits::LhsProgress;
1573               blA += 4*spk;
1574             }
1575             C0 = padd(padd(C0,C1),padd(C2,C3));
1576             for(; k<endk; k+=spk)
1577             {
1578               SLhsPacket A0;
1579               SRhsPacket B_0;
1580 
1581               straits.loadLhsUnaligned(blB, A0);
1582               straits.loadRhsQuad(blA, B_0);
1583               straits.madd(A0,B_0,C0,B_0);
1584 
1585               blB += SwappedTraits::LhsProgress;
1586               blA += spk;
1587             }
1588             if(SwappedTraits::LhsProgress==8)
1589             {
1590               // Special case where we have to first reduce the accumulation register C0
1591               typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SResPacket>::half,SResPacket>::type SResPacketHalf;
1592               typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SLhsPacket>::half,SLhsPacket>::type SLhsPacketHalf;
1593               typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SLhsPacket>::half,SRhsPacket>::type SRhsPacketHalf;
1594               typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SAccPacket>::half,SAccPacket>::type SAccPacketHalf;
1595 
1596               SResPacketHalf R = res.template gatherPacket<SResPacketHalf>(i, j2);
1597               SResPacketHalf alphav = pset1<SResPacketHalf>(alpha);
1598 
1599               if(depth-endk>0)
1600               {
1601                 // We have to handle the last row of the rhs which corresponds to a half-packet
1602                 SLhsPacketHalf a0;
1603                 SRhsPacketHalf b0;
1604                 straits.loadLhsUnaligned(blB, a0);
1605                 straits.loadRhs(blA, b0);
1606                 SAccPacketHalf c0 = predux_downto4(C0);
1607                 straits.madd(a0,b0,c0,b0);
1608                 straits.acc(c0, alphav, R);
1609               }
1610               else
1611               {
1612                 straits.acc(predux_downto4(C0), alphav, R);
1613               }
1614               res.scatterPacket(i, j2, R);
1615             }
1616             else
1617             {
1618               SResPacket R = res.template gatherPacket<SResPacket>(i, j2);
1619               SResPacket alphav = pset1<SResPacket>(alpha);
1620               straits.acc(C0, alphav, R);
1621               res.scatterPacket(i, j2, R);
1622             }
1623           }
1624           else // scalar path
1625           {
1626             // get a 1 x 4 res block as registers
1627             ResScalar C0(0), C1(0), C2(0), C3(0);
1628 
1629             for(Index k=0; k<depth; k++)
1630             {
1631               LhsScalar A0;
1632               RhsScalar B_0, B_1;
1633 
1634               A0 = blA[k];
1635 
1636               B_0 = blB[0];
1637               B_1 = blB[1];
1638               CJMADD(cj,A0,B_0,C0,  B_0);
1639               CJMADD(cj,A0,B_1,C1,  B_1);
1640 
1641               B_0 = blB[2];
1642               B_1 = blB[3];
1643               CJMADD(cj,A0,B_0,C2,  B_0);
1644               CJMADD(cj,A0,B_1,C3,  B_1);
1645 
1646               blB += 4;
1647             }
1648             res(i, j2 + 0) += alpha * C0;
1649             res(i, j2 + 1) += alpha * C1;
1650             res(i, j2 + 2) += alpha * C2;
1651             res(i, j2 + 3) += alpha * C3;
1652           }
1653         }
1654       }
1655       // remaining columns
1656       for(Index j2=packet_cols4; j2<cols; j2++)
1657       {
1658         // loop on each row of the lhs (1*LhsProgress x depth)
1659         for(Index i=peeled_mc1; i<rows; i+=1)
1660         {
1661           const LhsScalar* blA = &blockA[i*strideA+offsetA];
1662           prefetch(&blA[0]);
1663           // gets a 1 x 1 res block as registers
1664           ResScalar C0(0);
1665           const RhsScalar* blB = &blockB[j2*strideB+offsetB];
1666           for(Index k=0; k<depth; k++)
1667           {
1668             LhsScalar A0 = blA[k];
1669             RhsScalar B_0 = blB[k];
1670             CJMADD(cj, A0, B_0, C0, B_0);
1671           }
1672           res(i, j2) += alpha * C0;
1673         }
1674       }
1675     }
1676   }
1677 
1678 
1679 #undef CJMADD
1680 
1681 // pack a block of the lhs
1682 // The traversal is as follow (mr==4):
1683 //   0  4  8 12 ...
1684 //   1  5  9 13 ...
1685 //   2  6 10 14 ...
1686 //   3  7 11 15 ...
1687 //
1688 //  16 20 24 28 ...
1689 //  17 21 25 29 ...
1690 //  18 22 26 30 ...
1691 //  19 23 27 31 ...
1692 //
1693 //  32 33 34 35 ...
1694 //  36 36 38 39 ...
1695 template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode>
1696 struct gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, ColMajor, Conjugate, PanelMode>
1697 {
1698   typedef typename DataMapper::LinearMapper LinearMapper;
1699   EIGEN_DONT_INLINE void operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0);
1700 };
1701 
1702 template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode>
1703 EIGEN_DONT_INLINE void gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, ColMajor, Conjugate, PanelMode>
1704   ::operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
1705 {
1706   typedef typename packet_traits<Scalar>::type Packet;
1707   enum { PacketSize = packet_traits<Scalar>::size };
1708 
1709   EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS");
1710   EIGEN_UNUSED_VARIABLE(stride);
1711   EIGEN_UNUSED_VARIABLE(offset);
1712   eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
1713   eigen_assert( ((Pack1%PacketSize)==0 && Pack1<=4*PacketSize) || (Pack1<=4) );
1714   conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
1715   Index count = 0;
1716 
1717   const Index peeled_mc3 = Pack1>=3*PacketSize ? (rows/(3*PacketSize))*(3*PacketSize) : 0;
1718   const Index peeled_mc2 = Pack1>=2*PacketSize ? peeled_mc3+((rows-peeled_mc3)/(2*PacketSize))*(2*PacketSize) : 0;
1719   const Index peeled_mc1 = Pack1>=1*PacketSize ? (rows/(1*PacketSize))*(1*PacketSize) : 0;
1720   const Index peeled_mc0 = Pack2>=1*PacketSize ? peeled_mc1
1721                          : Pack2>1             ? (rows/Pack2)*Pack2 : 0;
1722 
1723   Index i=0;
1724 
1725   // Pack 3 packets
1726   if(Pack1>=3*PacketSize)
1727   {
1728     for(; i<peeled_mc3; i+=3*PacketSize)
1729     {
1730       if(PanelMode) count += (3*PacketSize) * offset;
1731 
1732       for(Index k=0; k<depth; k++)
1733       {
1734         Packet A, B, C;
1735         A = lhs.loadPacket(i+0*PacketSize, k);
1736         B = lhs.loadPacket(i+1*PacketSize, k);
1737         C = lhs.loadPacket(i+2*PacketSize, k);
1738         pstore(blockA+count, cj.pconj(A)); count+=PacketSize;
1739         pstore(blockA+count, cj.pconj(B)); count+=PacketSize;
1740         pstore(blockA+count, cj.pconj(C)); count+=PacketSize;
1741       }
1742       if(PanelMode) count += (3*PacketSize) * (stride-offset-depth);
1743     }
1744   }
1745   // Pack 2 packets
1746   if(Pack1>=2*PacketSize)
1747   {
1748     for(; i<peeled_mc2; i+=2*PacketSize)
1749     {
1750       if(PanelMode) count += (2*PacketSize) * offset;
1751 
1752       for(Index k=0; k<depth; k++)
1753       {
1754         Packet A, B;
1755         A = lhs.loadPacket(i+0*PacketSize, k);
1756         B = lhs.loadPacket(i+1*PacketSize, k);
1757         pstore(blockA+count, cj.pconj(A)); count+=PacketSize;
1758         pstore(blockA+count, cj.pconj(B)); count+=PacketSize;
1759       }
1760       if(PanelMode) count += (2*PacketSize) * (stride-offset-depth);
1761     }
1762   }
1763   // Pack 1 packets
1764   if(Pack1>=1*PacketSize)
1765   {
1766     for(; i<peeled_mc1; i+=1*PacketSize)
1767     {
1768       if(PanelMode) count += (1*PacketSize) * offset;
1769 
1770       for(Index k=0; k<depth; k++)
1771       {
1772         Packet A;
1773         A = lhs.loadPacket(i+0*PacketSize, k);
1774         pstore(blockA+count, cj.pconj(A));
1775         count+=PacketSize;
1776       }
1777       if(PanelMode) count += (1*PacketSize) * (stride-offset-depth);
1778     }
1779   }
1780   // Pack scalars
1781   if(Pack2<PacketSize && Pack2>1)
1782   {
1783     for(; i<peeled_mc0; i+=Pack2)
1784     {
1785       if(PanelMode) count += Pack2 * offset;
1786 
1787       for(Index k=0; k<depth; k++)
1788         for(Index w=0; w<Pack2; w++)
1789           blockA[count++] = cj(lhs(i+w, k));
1790 
1791       if(PanelMode) count += Pack2 * (stride-offset-depth);
1792     }
1793   }
1794   for(; i<rows; i++)
1795   {
1796     if(PanelMode) count += offset;
1797     for(Index k=0; k<depth; k++)
1798       blockA[count++] = cj(lhs(i, k));
1799     if(PanelMode) count += (stride-offset-depth);
1800   }
1801 }
1802 
1803 template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode>
1804 struct gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, RowMajor, Conjugate, PanelMode>
1805 {
1806   typedef typename DataMapper::LinearMapper LinearMapper;
1807   EIGEN_DONT_INLINE void operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0);
1808 };
1809 
1810 template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode>
1811 EIGEN_DONT_INLINE void gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, RowMajor, Conjugate, PanelMode>
1812   ::operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
1813 {
1814   typedef typename packet_traits<Scalar>::type Packet;
1815   enum { PacketSize = packet_traits<Scalar>::size };
1816 
1817   EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS");
1818   EIGEN_UNUSED_VARIABLE(stride);
1819   EIGEN_UNUSED_VARIABLE(offset);
1820   eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
1821   conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
1822   Index count = 0;
1823 
1824 //   const Index peeled_mc3 = Pack1>=3*PacketSize ? (rows/(3*PacketSize))*(3*PacketSize) : 0;
1825 //   const Index peeled_mc2 = Pack1>=2*PacketSize ? peeled_mc3+((rows-peeled_mc3)/(2*PacketSize))*(2*PacketSize) : 0;
1826 //   const Index peeled_mc1 = Pack1>=1*PacketSize ? (rows/(1*PacketSize))*(1*PacketSize) : 0;
1827 
1828   int pack = Pack1;
1829   Index i = 0;
1830   while(pack>0)
1831   {
1832     Index remaining_rows = rows-i;
1833     Index peeled_mc = i+(remaining_rows/pack)*pack;
1834     for(; i<peeled_mc; i+=pack)
1835     {
1836       if(PanelMode) count += pack * offset;
1837 
1838       const Index peeled_k = (depth/PacketSize)*PacketSize;
1839       Index k=0;
1840       if(pack>=PacketSize)
1841       {
1842         for(; k<peeled_k; k+=PacketSize)
1843         {
1844           for (Index m = 0; m < pack; m += PacketSize)
1845           {
1846             PacketBlock<Packet> kernel;
1847             for (int p = 0; p < PacketSize; ++p) kernel.packet[p] = lhs.loadPacket(i+p+m, k);
1848             ptranspose(kernel);
1849             for (int p = 0; p < PacketSize; ++p) pstore(blockA+count+m+(pack)*p, cj.pconj(kernel.packet[p]));
1850           }
1851           count += PacketSize*pack;
1852         }
1853       }
1854       for(; k<depth; k++)
1855       {
1856         Index w=0;
1857         for(; w<pack-3; w+=4)
1858         {
1859           Scalar a(cj(lhs(i+w+0, k))),
1860                  b(cj(lhs(i+w+1, k))),
1861                  c(cj(lhs(i+w+2, k))),
1862                  d(cj(lhs(i+w+3, k)));
1863           blockA[count++] = a;
1864           blockA[count++] = b;
1865           blockA[count++] = c;
1866           blockA[count++] = d;
1867         }
1868         if(pack%4)
1869           for(;w<pack;++w)
1870             blockA[count++] = cj(lhs(i+w, k));
1871       }
1872 
1873       if(PanelMode) count += pack * (stride-offset-depth);
1874     }
1875 
1876     pack -= PacketSize;
1877     if(pack<Pack2 && (pack+PacketSize)!=Pack2)
1878       pack = Pack2;
1879   }
1880 
1881   for(; i<rows; i++)
1882   {
1883     if(PanelMode) count += offset;
1884     for(Index k=0; k<depth; k++)
1885       blockA[count++] = cj(lhs(i, k));
1886     if(PanelMode) count += (stride-offset-depth);
1887   }
1888 }
1889 
1890 // copy a complete panel of the rhs
1891 // this version is optimized for column major matrices
1892 // The traversal order is as follow: (nr==4):
1893 //  0  1  2  3   12 13 14 15   24 27
1894 //  4  5  6  7   16 17 18 19   25 28
1895 //  8  9 10 11   20 21 22 23   26 29
1896 //  .  .  .  .    .  .  .  .    .  .
1897 template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
1898 struct gemm_pack_rhs<Scalar, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode>
1899 {
1900   typedef typename packet_traits<Scalar>::type Packet;
1901   typedef typename DataMapper::LinearMapper LinearMapper;
1902   enum { PacketSize = packet_traits<Scalar>::size };
1903   EIGEN_DONT_INLINE void operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0);
1904 };
1905 
1906 template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
1907 EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode>
1908   ::operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset)
1909 {
1910   EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS COLMAJOR");
1911   EIGEN_UNUSED_VARIABLE(stride);
1912   EIGEN_UNUSED_VARIABLE(offset);
1913   eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
1914   conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
1915   Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0;
1916   Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0;
1917   Index count = 0;
1918   const Index peeled_k = (depth/PacketSize)*PacketSize;
1919 //   if(nr>=8)
1920 //   {
1921 //     for(Index j2=0; j2<packet_cols8; j2+=8)
1922 //     {
1923 //       // skip what we have before
1924 //       if(PanelMode) count += 8 * offset;
1925 //       const Scalar* b0 = &rhs[(j2+0)*rhsStride];
1926 //       const Scalar* b1 = &rhs[(j2+1)*rhsStride];
1927 //       const Scalar* b2 = &rhs[(j2+2)*rhsStride];
1928 //       const Scalar* b3 = &rhs[(j2+3)*rhsStride];
1929 //       const Scalar* b4 = &rhs[(j2+4)*rhsStride];
1930 //       const Scalar* b5 = &rhs[(j2+5)*rhsStride];
1931 //       const Scalar* b6 = &rhs[(j2+6)*rhsStride];
1932 //       const Scalar* b7 = &rhs[(j2+7)*rhsStride];
1933 //       Index k=0;
1934 //       if(PacketSize==8) // TODO enbale vectorized transposition for PacketSize==4
1935 //       {
1936 //         for(; k<peeled_k; k+=PacketSize) {
1937 //           PacketBlock<Packet> kernel;
1938 //           for (int p = 0; p < PacketSize; ++p) {
1939 //             kernel.packet[p] = ploadu<Packet>(&rhs[(j2+p)*rhsStride+k]);
1940 //           }
1941 //           ptranspose(kernel);
1942 //           for (int p = 0; p < PacketSize; ++p) {
1943 //             pstoreu(blockB+count, cj.pconj(kernel.packet[p]));
1944 //             count+=PacketSize;
1945 //           }
1946 //         }
1947 //       }
1948 //       for(; k<depth; k++)
1949 //       {
1950 //         blockB[count+0] = cj(b0[k]);
1951 //         blockB[count+1] = cj(b1[k]);
1952 //         blockB[count+2] = cj(b2[k]);
1953 //         blockB[count+3] = cj(b3[k]);
1954 //         blockB[count+4] = cj(b4[k]);
1955 //         blockB[count+5] = cj(b5[k]);
1956 //         blockB[count+6] = cj(b6[k]);
1957 //         blockB[count+7] = cj(b7[k]);
1958 //         count += 8;
1959 //       }
1960 //       // skip what we have after
1961 //       if(PanelMode) count += 8 * (stride-offset-depth);
1962 //     }
1963 //   }
1964 
1965   if(nr>=4)
1966   {
1967     for(Index j2=packet_cols8; j2<packet_cols4; j2+=4)
1968     {
1969       // skip what we have before
1970       if(PanelMode) count += 4 * offset;
1971       const LinearMapper dm0 = rhs.getLinearMapper(0, j2 + 0);
1972       const LinearMapper dm1 = rhs.getLinearMapper(0, j2 + 1);
1973       const LinearMapper dm2 = rhs.getLinearMapper(0, j2 + 2);
1974       const LinearMapper dm3 = rhs.getLinearMapper(0, j2 + 3);
1975 
1976       Index k=0;
1977       if((PacketSize%4)==0) // TODO enable vectorized transposition for PacketSize==2 ??
1978       {
1979         for(; k<peeled_k; k+=PacketSize) {
1980           PacketBlock<Packet,(PacketSize%4)==0?4:PacketSize> kernel;
1981           kernel.packet[0] = dm0.loadPacket(k);
1982           kernel.packet[1%PacketSize] = dm1.loadPacket(k);
1983           kernel.packet[2%PacketSize] = dm2.loadPacket(k);
1984           kernel.packet[3%PacketSize] = dm3.loadPacket(k);
1985           ptranspose(kernel);
1986           pstoreu(blockB+count+0*PacketSize, cj.pconj(kernel.packet[0]));
1987           pstoreu(blockB+count+1*PacketSize, cj.pconj(kernel.packet[1%PacketSize]));
1988           pstoreu(blockB+count+2*PacketSize, cj.pconj(kernel.packet[2%PacketSize]));
1989           pstoreu(blockB+count+3*PacketSize, cj.pconj(kernel.packet[3%PacketSize]));
1990           count+=4*PacketSize;
1991         }
1992       }
1993       for(; k<depth; k++)
1994       {
1995         blockB[count+0] = cj(dm0(k));
1996         blockB[count+1] = cj(dm1(k));
1997         blockB[count+2] = cj(dm2(k));
1998         blockB[count+3] = cj(dm3(k));
1999         count += 4;
2000       }
2001       // skip what we have after
2002       if(PanelMode) count += 4 * (stride-offset-depth);
2003     }
2004   }
2005 
2006   // copy the remaining columns one at a time (nr==1)
2007   for(Index j2=packet_cols4; j2<cols; ++j2)
2008   {
2009     if(PanelMode) count += offset;
2010     const LinearMapper dm0 = rhs.getLinearMapper(0, j2);
2011     for(Index k=0; k<depth; k++)
2012     {
2013       blockB[count] = cj(dm0(k));
2014       count += 1;
2015     }
2016     if(PanelMode) count += (stride-offset-depth);
2017   }
2018 }
2019 
2020 // this version is optimized for row major matrices
2021 template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
2022 struct gemm_pack_rhs<Scalar, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode>
2023 {
2024   typedef typename packet_traits<Scalar>::type Packet;
2025   typedef typename DataMapper::LinearMapper LinearMapper;
2026   enum { PacketSize = packet_traits<Scalar>::size };
2027   EIGEN_DONT_INLINE void operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0);
2028 };
2029 
2030 template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
2031 EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode>
2032   ::operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset)
2033 {
2034   EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS ROWMAJOR");
2035   EIGEN_UNUSED_VARIABLE(stride);
2036   EIGEN_UNUSED_VARIABLE(offset);
2037   eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
2038   conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
2039   Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0;
2040   Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0;
2041   Index count = 0;
2042 
2043 //   if(nr>=8)
2044 //   {
2045 //     for(Index j2=0; j2<packet_cols8; j2+=8)
2046 //     {
2047 //       // skip what we have before
2048 //       if(PanelMode) count += 8 * offset;
2049 //       for(Index k=0; k<depth; k++)
2050 //       {
2051 //         if (PacketSize==8) {
2052 //           Packet A = ploadu<Packet>(&rhs[k*rhsStride + j2]);
2053 //           pstoreu(blockB+count, cj.pconj(A));
2054 //         } else if (PacketSize==4) {
2055 //           Packet A = ploadu<Packet>(&rhs[k*rhsStride + j2]);
2056 //           Packet B = ploadu<Packet>(&rhs[k*rhsStride + j2 + PacketSize]);
2057 //           pstoreu(blockB+count, cj.pconj(A));
2058 //           pstoreu(blockB+count+PacketSize, cj.pconj(B));
2059 //         } else {
2060 //           const Scalar* b0 = &rhs[k*rhsStride + j2];
2061 //           blockB[count+0] = cj(b0[0]);
2062 //           blockB[count+1] = cj(b0[1]);
2063 //           blockB[count+2] = cj(b0[2]);
2064 //           blockB[count+3] = cj(b0[3]);
2065 //           blockB[count+4] = cj(b0[4]);
2066 //           blockB[count+5] = cj(b0[5]);
2067 //           blockB[count+6] = cj(b0[6]);
2068 //           blockB[count+7] = cj(b0[7]);
2069 //         }
2070 //         count += 8;
2071 //       }
2072 //       // skip what we have after
2073 //       if(PanelMode) count += 8 * (stride-offset-depth);
2074 //     }
2075 //   }
2076   if(nr>=4)
2077   {
2078     for(Index j2=packet_cols8; j2<packet_cols4; j2+=4)
2079     {
2080       // skip what we have before
2081       if(PanelMode) count += 4 * offset;
2082       for(Index k=0; k<depth; k++)
2083       {
2084         if (PacketSize==4) {
2085           Packet A = rhs.loadPacket(k, j2);
2086           pstoreu(blockB+count, cj.pconj(A));
2087           count += PacketSize;
2088         } else {
2089           const LinearMapper dm0 = rhs.getLinearMapper(k, j2);
2090           blockB[count+0] = cj(dm0(0));
2091           blockB[count+1] = cj(dm0(1));
2092           blockB[count+2] = cj(dm0(2));
2093           blockB[count+3] = cj(dm0(3));
2094           count += 4;
2095         }
2096       }
2097       // skip what we have after
2098       if(PanelMode) count += 4 * (stride-offset-depth);
2099     }
2100   }
2101   // copy the remaining columns one at a time (nr==1)
2102   for(Index j2=packet_cols4; j2<cols; ++j2)
2103   {
2104     if(PanelMode) count += offset;
2105     for(Index k=0; k<depth; k++)
2106     {
2107       blockB[count] = cj(rhs(k, j2));
2108       count += 1;
2109     }
2110     if(PanelMode) count += stride-offset-depth;
2111   }
2112 }
2113 
2114 } // end namespace internal
2115 
2116 /** \returns the currently set level 1 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
2117   * \sa setCpuCacheSize */
2118 inline std::ptrdiff_t l1CacheSize()
2119 {
2120   std::ptrdiff_t l1, l2, l3;
2121   internal::manage_caching_sizes(GetAction, &l1, &l2, &l3);
2122   return l1;
2123 }
2124 
2125 /** \returns the currently set level 2 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
2126   * \sa setCpuCacheSize */
2127 inline std::ptrdiff_t l2CacheSize()
2128 {
2129   std::ptrdiff_t l1, l2, l3;
2130   internal::manage_caching_sizes(GetAction, &l1, &l2, &l3);
2131   return l2;
2132 }
2133 
2134 /** \returns the currently set level 3 cpu cache size (in bytes) used to estimate the ideal blocking size paramete\
2135 rs.
2136 * \sa setCpuCacheSize */
2137 inline std::ptrdiff_t l3CacheSize()
2138 {
2139   std::ptrdiff_t l1, l2, l3;
2140   internal::manage_caching_sizes(GetAction, &l1, &l2, &l3);
2141   return l3;
2142 }
2143 
2144 /** Set the cpu L1 and L2 cache sizes (in bytes).
2145   * These values are use to adjust the size of the blocks
2146   * for the algorithms working per blocks.
2147   *
2148   * \sa computeProductBlockingSizes */
2149 inline void setCpuCacheSizes(std::ptrdiff_t l1, std::ptrdiff_t l2, std::ptrdiff_t l3)
2150 {
2151   internal::manage_caching_sizes(SetAction, &l1, &l2, &l3);
2152 }
2153 
2154 } // end namespace Eigen
2155 
2156 #endif // EIGEN_GENERAL_BLOCK_PANEL_H
2157