• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 				    const struct ethtool_ops *ops);
76 
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
79 #define NET_RX_DROP		1	/* packet dropped */
80 
81 #define MAX_NEST_DEV 8
82 
83 /*
84  * Transmit return codes: transmit return codes originate from three different
85  * namespaces:
86  *
87  * - qdisc return codes
88  * - driver transmit return codes
89  * - errno values
90  *
91  * Drivers are allowed to return any one of those in their hard_start_xmit()
92  * function. Real network devices commonly used with qdiscs should only return
93  * the driver transmit return codes though - when qdiscs are used, the actual
94  * transmission happens asynchronously, so the value is not propagated to
95  * higher layers. Virtual network devices transmit synchronously; in this case
96  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97  * others are propagated to higher layers.
98  */
99 
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS	0x00
102 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
103 #define NET_XMIT_CN		0x02	/* congestion notification	*/
104 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
105 
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107  * indicates that the device will soon be dropping packets, or already drops
108  * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111 
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK		0xf0
114 
115 enum netdev_tx {
116 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
117 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
118 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121 
122 /*
123  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125  */
dev_xmit_complete(int rc)126 static inline bool dev_xmit_complete(int rc)
127 {
128 	/*
129 	 * Positive cases with an skb consumed by a driver:
130 	 * - successful transmission (rc == NETDEV_TX_OK)
131 	 * - error while transmitting (rc < 0)
132 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 	 */
134 	if (likely(rc < NET_XMIT_MASK))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  *	Compute the worst-case header length according to the protocols
142  *	used.
143  */
144 
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156 
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163 
164 /*
165  *	Old network device statistics. Fields are native words
166  *	(unsigned long) so they can be read and written atomically.
167  */
168 
169 #define NET_DEV_STAT(FIELD)			\
170 	union {					\
171 		unsigned long FIELD;		\
172 		atomic_long_t __##FIELD;	\
173 	}
174 
175 struct net_device_stats {
176 	NET_DEV_STAT(rx_packets);
177 	NET_DEV_STAT(tx_packets);
178 	NET_DEV_STAT(rx_bytes);
179 	NET_DEV_STAT(tx_bytes);
180 	NET_DEV_STAT(rx_errors);
181 	NET_DEV_STAT(tx_errors);
182 	NET_DEV_STAT(rx_dropped);
183 	NET_DEV_STAT(tx_dropped);
184 	NET_DEV_STAT(multicast);
185 	NET_DEV_STAT(collisions);
186 	NET_DEV_STAT(rx_length_errors);
187 	NET_DEV_STAT(rx_over_errors);
188 	NET_DEV_STAT(rx_crc_errors);
189 	NET_DEV_STAT(rx_frame_errors);
190 	NET_DEV_STAT(rx_fifo_errors);
191 	NET_DEV_STAT(rx_missed_errors);
192 	NET_DEV_STAT(tx_aborted_errors);
193 	NET_DEV_STAT(tx_carrier_errors);
194 	NET_DEV_STAT(tx_fifo_errors);
195 	NET_DEV_STAT(tx_heartbeat_errors);
196 	NET_DEV_STAT(tx_window_errors);
197 	NET_DEV_STAT(rx_compressed);
198 	NET_DEV_STAT(tx_compressed);
199 };
200 #undef NET_DEV_STAT
201 
202 
203 #include <linux/cache.h>
204 #include <linux/skbuff.h>
205 
206 #ifdef CONFIG_RPS
207 #include <linux/static_key.h>
208 extern struct static_key_false rps_needed;
209 extern struct static_key_false rfs_needed;
210 #endif
211 
212 struct neighbour;
213 struct neigh_parms;
214 struct sk_buff;
215 
216 struct netdev_hw_addr {
217 	struct list_head	list;
218 	unsigned char		addr[MAX_ADDR_LEN];
219 	unsigned char		type;
220 #define NETDEV_HW_ADDR_T_LAN		1
221 #define NETDEV_HW_ADDR_T_SAN		2
222 #define NETDEV_HW_ADDR_T_UNICAST	3
223 #define NETDEV_HW_ADDR_T_MULTICAST	4
224 	bool			global_use;
225 	int			sync_cnt;
226 	int			refcount;
227 	int			synced;
228 	struct rcu_head		rcu_head;
229 };
230 
231 struct netdev_hw_addr_list {
232 	struct list_head	list;
233 	int			count;
234 };
235 
236 #define netdev_hw_addr_list_count(l) ((l)->count)
237 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
238 #define netdev_hw_addr_list_for_each(ha, l) \
239 	list_for_each_entry(ha, &(l)->list, list)
240 
241 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
242 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
243 #define netdev_for_each_uc_addr(ha, dev) \
244 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
245 
246 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
247 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
248 #define netdev_for_each_mc_addr(ha, dev) \
249 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
250 
251 struct hh_cache {
252 	unsigned int	hh_len;
253 	seqlock_t	hh_lock;
254 
255 	/* cached hardware header; allow for machine alignment needs.        */
256 #define HH_DATA_MOD	16
257 #define HH_DATA_OFF(__len) \
258 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
259 #define HH_DATA_ALIGN(__len) \
260 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
261 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
262 };
263 
264 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
265  * Alternative is:
266  *   dev->hard_header_len ? (dev->hard_header_len +
267  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
268  *
269  * We could use other alignment values, but we must maintain the
270  * relationship HH alignment <= LL alignment.
271  */
272 #define LL_RESERVED_SPACE(dev) \
273 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
274 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
275 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
276 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
277 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
278 
279 struct header_ops {
280 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
281 			   unsigned short type, const void *daddr,
282 			   const void *saddr, unsigned int len);
283 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
284 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
285 	void	(*cache_update)(struct hh_cache *hh,
286 				const struct net_device *dev,
287 				const unsigned char *haddr);
288 	bool	(*validate)(const char *ll_header, unsigned int len);
289 	__be16	(*parse_protocol)(const struct sk_buff *skb);
290 };
291 
292 /* These flag bits are private to the generic network queueing
293  * layer; they may not be explicitly referenced by any other
294  * code.
295  */
296 
297 enum netdev_state_t {
298 	__LINK_STATE_START,
299 	__LINK_STATE_PRESENT,
300 	__LINK_STATE_NOCARRIER,
301 	__LINK_STATE_LINKWATCH_PENDING,
302 	__LINK_STATE_DORMANT,
303 	__LINK_STATE_TESTING,
304 };
305 
306 
307 /*
308  * This structure holds boot-time configured netdevice settings. They
309  * are then used in the device probing.
310  */
311 struct netdev_boot_setup {
312 	char name[IFNAMSIZ];
313 	struct ifmap map;
314 };
315 #define NETDEV_BOOT_SETUP_MAX 8
316 
317 int __init netdev_boot_setup(char *str);
318 
319 struct gro_list {
320 	struct list_head	list;
321 	int			count;
322 };
323 
324 /*
325  * size of gro hash buckets, must less than bit number of
326  * napi_struct::gro_bitmask
327  */
328 #define GRO_HASH_BUCKETS	8
329 
330 /*
331  * Structure for NAPI scheduling similar to tasklet but with weighting
332  */
333 struct napi_struct {
334 	/* The poll_list must only be managed by the entity which
335 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
336 	 * whoever atomically sets that bit can add this napi_struct
337 	 * to the per-CPU poll_list, and whoever clears that bit
338 	 * can remove from the list right before clearing the bit.
339 	 */
340 	struct list_head	poll_list;
341 
342 	unsigned long		state;
343 	int			weight;
344 	u32			defer_hard_irqs_count;
345 	unsigned long		gro_bitmask;
346 	int			(*poll)(struct napi_struct *, int);
347 #ifdef CONFIG_NETPOLL
348 	int			poll_owner;
349 #endif
350 	struct net_device	*dev;
351 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
352 	struct sk_buff		*skb;
353 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
354 	int			rx_count; /* length of rx_list */
355 	struct hrtimer		timer;
356 	struct list_head	dev_list;
357 	struct hlist_node	napi_hash_node;
358 	unsigned int		napi_id;
359 };
360 
361 enum {
362 	NAPI_STATE_SCHED,	/* Poll is scheduled */
363 	NAPI_STATE_MISSED,	/* reschedule a napi */
364 	NAPI_STATE_DISABLE,	/* Disable pending */
365 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
366 	NAPI_STATE_LISTED,	/* NAPI added to system lists */
367 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
368 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
369 };
370 
371 enum {
372 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
373 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
374 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
375 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
376 	NAPIF_STATE_LISTED	 = BIT(NAPI_STATE_LISTED),
377 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
378 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
379 };
380 
381 enum gro_result {
382 	GRO_MERGED,
383 	GRO_MERGED_FREE,
384 	GRO_HELD,
385 	GRO_NORMAL,
386 	GRO_DROP,
387 	GRO_CONSUMED,
388 };
389 typedef enum gro_result gro_result_t;
390 
391 /*
392  * enum rx_handler_result - Possible return values for rx_handlers.
393  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
394  * further.
395  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
396  * case skb->dev was changed by rx_handler.
397  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
398  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
399  *
400  * rx_handlers are functions called from inside __netif_receive_skb(), to do
401  * special processing of the skb, prior to delivery to protocol handlers.
402  *
403  * Currently, a net_device can only have a single rx_handler registered. Trying
404  * to register a second rx_handler will return -EBUSY.
405  *
406  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
407  * To unregister a rx_handler on a net_device, use
408  * netdev_rx_handler_unregister().
409  *
410  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
411  * do with the skb.
412  *
413  * If the rx_handler consumed the skb in some way, it should return
414  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
415  * the skb to be delivered in some other way.
416  *
417  * If the rx_handler changed skb->dev, to divert the skb to another
418  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
419  * new device will be called if it exists.
420  *
421  * If the rx_handler decides the skb should be ignored, it should return
422  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
423  * are registered on exact device (ptype->dev == skb->dev).
424  *
425  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
426  * delivered, it should return RX_HANDLER_PASS.
427  *
428  * A device without a registered rx_handler will behave as if rx_handler
429  * returned RX_HANDLER_PASS.
430  */
431 
432 enum rx_handler_result {
433 	RX_HANDLER_CONSUMED,
434 	RX_HANDLER_ANOTHER,
435 	RX_HANDLER_EXACT,
436 	RX_HANDLER_PASS,
437 };
438 typedef enum rx_handler_result rx_handler_result_t;
439 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
440 
441 void __napi_schedule(struct napi_struct *n);
442 void __napi_schedule_irqoff(struct napi_struct *n);
443 
napi_disable_pending(struct napi_struct * n)444 static inline bool napi_disable_pending(struct napi_struct *n)
445 {
446 	return test_bit(NAPI_STATE_DISABLE, &n->state);
447 }
448 
449 bool napi_schedule_prep(struct napi_struct *n);
450 
451 /**
452  *	napi_schedule - schedule NAPI poll
453  *	@n: NAPI context
454  *
455  * Schedule NAPI poll routine to be called if it is not already
456  * running.
457  */
napi_schedule(struct napi_struct * n)458 static inline void napi_schedule(struct napi_struct *n)
459 {
460 	if (napi_schedule_prep(n))
461 		__napi_schedule(n);
462 }
463 
464 /**
465  *	napi_schedule_irqoff - schedule NAPI poll
466  *	@n: NAPI context
467  *
468  * Variant of napi_schedule(), assuming hard irqs are masked.
469  */
napi_schedule_irqoff(struct napi_struct * n)470 static inline void napi_schedule_irqoff(struct napi_struct *n)
471 {
472 	if (napi_schedule_prep(n))
473 		__napi_schedule_irqoff(n);
474 }
475 
476 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)477 static inline bool napi_reschedule(struct napi_struct *napi)
478 {
479 	if (napi_schedule_prep(napi)) {
480 		__napi_schedule(napi);
481 		return true;
482 	}
483 	return false;
484 }
485 
486 bool napi_complete_done(struct napi_struct *n, int work_done);
487 /**
488  *	napi_complete - NAPI processing complete
489  *	@n: NAPI context
490  *
491  * Mark NAPI processing as complete.
492  * Consider using napi_complete_done() instead.
493  * Return false if device should avoid rearming interrupts.
494  */
napi_complete(struct napi_struct * n)495 static inline bool napi_complete(struct napi_struct *n)
496 {
497 	return napi_complete_done(n, 0);
498 }
499 
500 /**
501  *	napi_disable - prevent NAPI from scheduling
502  *	@n: NAPI context
503  *
504  * Stop NAPI from being scheduled on this context.
505  * Waits till any outstanding processing completes.
506  */
507 void napi_disable(struct napi_struct *n);
508 
509 /**
510  *	napi_enable - enable NAPI scheduling
511  *	@n: NAPI context
512  *
513  * Resume NAPI from being scheduled on this context.
514  * Must be paired with napi_disable.
515  */
napi_enable(struct napi_struct * n)516 static inline void napi_enable(struct napi_struct *n)
517 {
518 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
519 	smp_mb__before_atomic();
520 	clear_bit(NAPI_STATE_SCHED, &n->state);
521 	clear_bit(NAPI_STATE_NPSVC, &n->state);
522 }
523 
524 /**
525  *	napi_synchronize - wait until NAPI is not running
526  *	@n: NAPI context
527  *
528  * Wait until NAPI is done being scheduled on this context.
529  * Waits till any outstanding processing completes but
530  * does not disable future activations.
531  */
napi_synchronize(const struct napi_struct * n)532 static inline void napi_synchronize(const struct napi_struct *n)
533 {
534 	if (IS_ENABLED(CONFIG_SMP))
535 		while (test_bit(NAPI_STATE_SCHED, &n->state))
536 			msleep(1);
537 	else
538 		barrier();
539 }
540 
541 /**
542  *	napi_if_scheduled_mark_missed - if napi is running, set the
543  *	NAPIF_STATE_MISSED
544  *	@n: NAPI context
545  *
546  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
547  * NAPI is scheduled.
548  **/
napi_if_scheduled_mark_missed(struct napi_struct * n)549 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
550 {
551 	unsigned long val, new;
552 
553 	do {
554 		val = READ_ONCE(n->state);
555 		if (val & NAPIF_STATE_DISABLE)
556 			return true;
557 
558 		if (!(val & NAPIF_STATE_SCHED))
559 			return false;
560 
561 		new = val | NAPIF_STATE_MISSED;
562 	} while (cmpxchg(&n->state, val, new) != val);
563 
564 	return true;
565 }
566 
567 enum netdev_queue_state_t {
568 	__QUEUE_STATE_DRV_XOFF,
569 	__QUEUE_STATE_STACK_XOFF,
570 	__QUEUE_STATE_FROZEN,
571 };
572 
573 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
574 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
575 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
576 
577 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
578 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
579 					QUEUE_STATE_FROZEN)
580 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
581 					QUEUE_STATE_FROZEN)
582 
583 /*
584  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
585  * netif_tx_* functions below are used to manipulate this flag.  The
586  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
587  * queue independently.  The netif_xmit_*stopped functions below are called
588  * to check if the queue has been stopped by the driver or stack (either
589  * of the XOFF bits are set in the state).  Drivers should not need to call
590  * netif_xmit*stopped functions, they should only be using netif_tx_*.
591  */
592 
593 struct netdev_queue {
594 /*
595  * read-mostly part
596  */
597 	struct net_device	*dev;
598 	struct Qdisc __rcu	*qdisc;
599 	struct Qdisc		*qdisc_sleeping;
600 #ifdef CONFIG_SYSFS
601 	struct kobject		kobj;
602 #endif
603 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
604 	int			numa_node;
605 #endif
606 	unsigned long		tx_maxrate;
607 	/*
608 	 * Number of TX timeouts for this queue
609 	 * (/sys/class/net/DEV/Q/trans_timeout)
610 	 */
611 	unsigned long		trans_timeout;
612 
613 	/* Subordinate device that the queue has been assigned to */
614 	struct net_device	*sb_dev;
615 #ifdef CONFIG_XDP_SOCKETS
616 	struct xsk_buff_pool    *pool;
617 #endif
618 /*
619  * write-mostly part
620  */
621 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
622 	int			xmit_lock_owner;
623 	/*
624 	 * Time (in jiffies) of last Tx
625 	 */
626 	unsigned long		trans_start;
627 
628 	unsigned long		state;
629 
630 #ifdef CONFIG_BQL
631 	struct dql		dql;
632 #endif
633 } ____cacheline_aligned_in_smp;
634 
635 extern int sysctl_fb_tunnels_only_for_init_net;
636 extern int sysctl_devconf_inherit_init_net;
637 
638 /*
639  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
640  *                                     == 1 : For initns only
641  *                                     == 2 : For none.
642  */
net_has_fallback_tunnels(const struct net * net)643 static inline bool net_has_fallback_tunnels(const struct net *net)
644 {
645 #if IS_ENABLED(CONFIG_SYSCTL)
646 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
647 
648 	return !fb_tunnels_only_for_init_net ||
649 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
650 #else
651 	return true;
652 #endif
653 }
654 
net_inherit_devconf(void)655 static inline int net_inherit_devconf(void)
656 {
657 #if IS_ENABLED(CONFIG_SYSCTL)
658 	return READ_ONCE(sysctl_devconf_inherit_init_net);
659 #else
660 	return 0;
661 #endif
662 }
663 
netdev_queue_numa_node_read(const struct netdev_queue * q)664 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
665 {
666 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
667 	return q->numa_node;
668 #else
669 	return NUMA_NO_NODE;
670 #endif
671 }
672 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)673 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
674 {
675 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
676 	q->numa_node = node;
677 #endif
678 }
679 
680 #ifdef CONFIG_RPS
681 /*
682  * This structure holds an RPS map which can be of variable length.  The
683  * map is an array of CPUs.
684  */
685 struct rps_map {
686 	unsigned int len;
687 	struct rcu_head rcu;
688 	u16 cpus[];
689 };
690 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
691 
692 /*
693  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
694  * tail pointer for that CPU's input queue at the time of last enqueue, and
695  * a hardware filter index.
696  */
697 struct rps_dev_flow {
698 	u16 cpu;
699 	u16 filter;
700 	unsigned int last_qtail;
701 };
702 #define RPS_NO_FILTER 0xffff
703 
704 /*
705  * The rps_dev_flow_table structure contains a table of flow mappings.
706  */
707 struct rps_dev_flow_table {
708 	unsigned int mask;
709 	struct rcu_head rcu;
710 	struct rps_dev_flow flows[];
711 };
712 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
713     ((_num) * sizeof(struct rps_dev_flow)))
714 
715 /*
716  * The rps_sock_flow_table contains mappings of flows to the last CPU
717  * on which they were processed by the application (set in recvmsg).
718  * Each entry is a 32bit value. Upper part is the high-order bits
719  * of flow hash, lower part is CPU number.
720  * rps_cpu_mask is used to partition the space, depending on number of
721  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
722  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
723  * meaning we use 32-6=26 bits for the hash.
724  */
725 struct rps_sock_flow_table {
726 	u32	mask;
727 
728 	u32	ents[] ____cacheline_aligned_in_smp;
729 };
730 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
731 
732 #define RPS_NO_CPU 0xffff
733 
734 extern u32 rps_cpu_mask;
735 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
736 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)737 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
738 					u32 hash)
739 {
740 	if (table && hash) {
741 		unsigned int index = hash & table->mask;
742 		u32 val = hash & ~rps_cpu_mask;
743 
744 		/* We only give a hint, preemption can change CPU under us */
745 		val |= raw_smp_processor_id();
746 
747 		/* The following WRITE_ONCE() is paired with the READ_ONCE()
748 		 * here, and another one in get_rps_cpu().
749 		 */
750 		if (READ_ONCE(table->ents[index]) != val)
751 			WRITE_ONCE(table->ents[index], val);
752 	}
753 }
754 
755 #ifdef CONFIG_RFS_ACCEL
756 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
757 			 u16 filter_id);
758 #endif
759 #endif /* CONFIG_RPS */
760 
761 /* This structure contains an instance of an RX queue. */
762 struct netdev_rx_queue {
763 #ifdef CONFIG_RPS
764 	struct rps_map __rcu		*rps_map;
765 	struct rps_dev_flow_table __rcu	*rps_flow_table;
766 #endif
767 	struct kobject			kobj;
768 	struct net_device		*dev;
769 	struct xdp_rxq_info		xdp_rxq;
770 #ifdef CONFIG_XDP_SOCKETS
771 	struct xsk_buff_pool            *pool;
772 #endif
773 } ____cacheline_aligned_in_smp;
774 
775 /*
776  * RX queue sysfs structures and functions.
777  */
778 struct rx_queue_attribute {
779 	struct attribute attr;
780 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
781 	ssize_t (*store)(struct netdev_rx_queue *queue,
782 			 const char *buf, size_t len);
783 };
784 
785 #ifdef CONFIG_XPS
786 /*
787  * This structure holds an XPS map which can be of variable length.  The
788  * map is an array of queues.
789  */
790 struct xps_map {
791 	unsigned int len;
792 	unsigned int alloc_len;
793 	struct rcu_head rcu;
794 	u16 queues[];
795 };
796 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
797 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
798        - sizeof(struct xps_map)) / sizeof(u16))
799 
800 /*
801  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
802  */
803 struct xps_dev_maps {
804 	struct rcu_head rcu;
805 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
806 };
807 
808 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
809 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
810 
811 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
812 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
813 
814 #endif /* CONFIG_XPS */
815 
816 #define TC_MAX_QUEUE	16
817 #define TC_BITMASK	15
818 /* HW offloaded queuing disciplines txq count and offset maps */
819 struct netdev_tc_txq {
820 	u16 count;
821 	u16 offset;
822 };
823 
824 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
825 /*
826  * This structure is to hold information about the device
827  * configured to run FCoE protocol stack.
828  */
829 struct netdev_fcoe_hbainfo {
830 	char	manufacturer[64];
831 	char	serial_number[64];
832 	char	hardware_version[64];
833 	char	driver_version[64];
834 	char	optionrom_version[64];
835 	char	firmware_version[64];
836 	char	model[256];
837 	char	model_description[256];
838 };
839 #endif
840 
841 #define MAX_PHYS_ITEM_ID_LEN 32
842 
843 /* This structure holds a unique identifier to identify some
844  * physical item (port for example) used by a netdevice.
845  */
846 struct netdev_phys_item_id {
847 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
848 	unsigned char id_len;
849 };
850 
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)851 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
852 					    struct netdev_phys_item_id *b)
853 {
854 	return a->id_len == b->id_len &&
855 	       memcmp(a->id, b->id, a->id_len) == 0;
856 }
857 
858 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
859 				       struct sk_buff *skb,
860 				       struct net_device *sb_dev);
861 
862 enum tc_setup_type {
863 	TC_SETUP_QDISC_MQPRIO,
864 	TC_SETUP_CLSU32,
865 	TC_SETUP_CLSFLOWER,
866 	TC_SETUP_CLSMATCHALL,
867 	TC_SETUP_CLSBPF,
868 	TC_SETUP_BLOCK,
869 	TC_SETUP_QDISC_CBS,
870 	TC_SETUP_QDISC_RED,
871 	TC_SETUP_QDISC_PRIO,
872 	TC_SETUP_QDISC_MQ,
873 	TC_SETUP_QDISC_ETF,
874 	TC_SETUP_ROOT_QDISC,
875 	TC_SETUP_QDISC_GRED,
876 	TC_SETUP_QDISC_TAPRIO,
877 	TC_SETUP_FT,
878 	TC_SETUP_QDISC_ETS,
879 	TC_SETUP_QDISC_TBF,
880 	TC_SETUP_QDISC_FIFO,
881 };
882 
883 /* These structures hold the attributes of bpf state that are being passed
884  * to the netdevice through the bpf op.
885  */
886 enum bpf_netdev_command {
887 	/* Set or clear a bpf program used in the earliest stages of packet
888 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
889 	 * is responsible for calling bpf_prog_put on any old progs that are
890 	 * stored. In case of error, the callee need not release the new prog
891 	 * reference, but on success it takes ownership and must bpf_prog_put
892 	 * when it is no longer used.
893 	 */
894 	XDP_SETUP_PROG,
895 	XDP_SETUP_PROG_HW,
896 	/* BPF program for offload callbacks, invoked at program load time. */
897 	BPF_OFFLOAD_MAP_ALLOC,
898 	BPF_OFFLOAD_MAP_FREE,
899 	XDP_SETUP_XSK_POOL,
900 };
901 
902 struct bpf_prog_offload_ops;
903 struct netlink_ext_ack;
904 struct xdp_umem;
905 struct xdp_dev_bulk_queue;
906 struct bpf_xdp_link;
907 
908 enum bpf_xdp_mode {
909 	XDP_MODE_SKB = 0,
910 	XDP_MODE_DRV = 1,
911 	XDP_MODE_HW = 2,
912 	__MAX_XDP_MODE
913 };
914 
915 struct bpf_xdp_entity {
916 	struct bpf_prog *prog;
917 	struct bpf_xdp_link *link;
918 };
919 
920 struct netdev_bpf {
921 	enum bpf_netdev_command command;
922 	union {
923 		/* XDP_SETUP_PROG */
924 		struct {
925 			u32 flags;
926 			struct bpf_prog *prog;
927 			struct netlink_ext_ack *extack;
928 		};
929 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
930 		struct {
931 			struct bpf_offloaded_map *offmap;
932 		};
933 		/* XDP_SETUP_XSK_POOL */
934 		struct {
935 			struct xsk_buff_pool *pool;
936 			u16 queue_id;
937 		} xsk;
938 	};
939 };
940 
941 /* Flags for ndo_xsk_wakeup. */
942 #define XDP_WAKEUP_RX (1 << 0)
943 #define XDP_WAKEUP_TX (1 << 1)
944 
945 #ifdef CONFIG_XFRM_OFFLOAD
946 struct xfrmdev_ops {
947 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
948 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
949 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
950 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
951 				       struct xfrm_state *x);
952 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
953 };
954 #endif
955 
956 struct dev_ifalias {
957 	struct rcu_head rcuhead;
958 	char ifalias[];
959 };
960 
961 struct devlink;
962 struct tlsdev_ops;
963 
964 struct netdev_name_node {
965 	struct hlist_node hlist;
966 	struct list_head list;
967 	struct net_device *dev;
968 	const char *name;
969 };
970 
971 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
972 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
973 
974 struct netdev_net_notifier {
975 	struct list_head list;
976 	struct notifier_block *nb;
977 };
978 
979 /*
980  * This structure defines the management hooks for network devices.
981  * The following hooks can be defined; unless noted otherwise, they are
982  * optional and can be filled with a null pointer.
983  *
984  * int (*ndo_init)(struct net_device *dev);
985  *     This function is called once when a network device is registered.
986  *     The network device can use this for any late stage initialization
987  *     or semantic validation. It can fail with an error code which will
988  *     be propagated back to register_netdev.
989  *
990  * void (*ndo_uninit)(struct net_device *dev);
991  *     This function is called when device is unregistered or when registration
992  *     fails. It is not called if init fails.
993  *
994  * int (*ndo_open)(struct net_device *dev);
995  *     This function is called when a network device transitions to the up
996  *     state.
997  *
998  * int (*ndo_stop)(struct net_device *dev);
999  *     This function is called when a network device transitions to the down
1000  *     state.
1001  *
1002  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1003  *                               struct net_device *dev);
1004  *	Called when a packet needs to be transmitted.
1005  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1006  *	the queue before that can happen; it's for obsolete devices and weird
1007  *	corner cases, but the stack really does a non-trivial amount
1008  *	of useless work if you return NETDEV_TX_BUSY.
1009  *	Required; cannot be NULL.
1010  *
1011  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1012  *					   struct net_device *dev
1013  *					   netdev_features_t features);
1014  *	Called by core transmit path to determine if device is capable of
1015  *	performing offload operations on a given packet. This is to give
1016  *	the device an opportunity to implement any restrictions that cannot
1017  *	be otherwise expressed by feature flags. The check is called with
1018  *	the set of features that the stack has calculated and it returns
1019  *	those the driver believes to be appropriate.
1020  *
1021  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1022  *                         struct net_device *sb_dev);
1023  *	Called to decide which queue to use when device supports multiple
1024  *	transmit queues.
1025  *
1026  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1027  *	This function is called to allow device receiver to make
1028  *	changes to configuration when multicast or promiscuous is enabled.
1029  *
1030  * void (*ndo_set_rx_mode)(struct net_device *dev);
1031  *	This function is called device changes address list filtering.
1032  *	If driver handles unicast address filtering, it should set
1033  *	IFF_UNICAST_FLT in its priv_flags.
1034  *
1035  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1036  *	This function  is called when the Media Access Control address
1037  *	needs to be changed. If this interface is not defined, the
1038  *	MAC address can not be changed.
1039  *
1040  * int (*ndo_validate_addr)(struct net_device *dev);
1041  *	Test if Media Access Control address is valid for the device.
1042  *
1043  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1044  *	Called when a user requests an ioctl which can't be handled by
1045  *	the generic interface code. If not defined ioctls return
1046  *	not supported error code.
1047  *
1048  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1049  *	Used to set network devices bus interface parameters. This interface
1050  *	is retained for legacy reasons; new devices should use the bus
1051  *	interface (PCI) for low level management.
1052  *
1053  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1054  *	Called when a user wants to change the Maximum Transfer Unit
1055  *	of a device.
1056  *
1057  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1058  *	Callback used when the transmitter has not made any progress
1059  *	for dev->watchdog ticks.
1060  *
1061  * void (*ndo_get_stats64)(struct net_device *dev,
1062  *                         struct rtnl_link_stats64 *storage);
1063  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1064  *	Called when a user wants to get the network device usage
1065  *	statistics. Drivers must do one of the following:
1066  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1067  *	   rtnl_link_stats64 structure passed by the caller.
1068  *	2. Define @ndo_get_stats to update a net_device_stats structure
1069  *	   (which should normally be dev->stats) and return a pointer to
1070  *	   it. The structure may be changed asynchronously only if each
1071  *	   field is written atomically.
1072  *	3. Update dev->stats asynchronously and atomically, and define
1073  *	   neither operation.
1074  *
1075  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1076  *	Return true if this device supports offload stats of this attr_id.
1077  *
1078  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1079  *	void *attr_data)
1080  *	Get statistics for offload operations by attr_id. Write it into the
1081  *	attr_data pointer.
1082  *
1083  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1084  *	If device supports VLAN filtering this function is called when a
1085  *	VLAN id is registered.
1086  *
1087  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1088  *	If device supports VLAN filtering this function is called when a
1089  *	VLAN id is unregistered.
1090  *
1091  * void (*ndo_poll_controller)(struct net_device *dev);
1092  *
1093  *	SR-IOV management functions.
1094  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1095  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1096  *			  u8 qos, __be16 proto);
1097  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1098  *			  int max_tx_rate);
1099  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1100  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1101  * int (*ndo_get_vf_config)(struct net_device *dev,
1102  *			    int vf, struct ifla_vf_info *ivf);
1103  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1104  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1105  *			  struct nlattr *port[]);
1106  *
1107  *      Enable or disable the VF ability to query its RSS Redirection Table and
1108  *      Hash Key. This is needed since on some devices VF share this information
1109  *      with PF and querying it may introduce a theoretical security risk.
1110  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1111  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1112  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1113  *		       void *type_data);
1114  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1115  *	This is always called from the stack with the rtnl lock held and netif
1116  *	tx queues stopped. This allows the netdevice to perform queue
1117  *	management safely.
1118  *
1119  *	Fiber Channel over Ethernet (FCoE) offload functions.
1120  * int (*ndo_fcoe_enable)(struct net_device *dev);
1121  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1122  *	so the underlying device can perform whatever needed configuration or
1123  *	initialization to support acceleration of FCoE traffic.
1124  *
1125  * int (*ndo_fcoe_disable)(struct net_device *dev);
1126  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1127  *	so the underlying device can perform whatever needed clean-ups to
1128  *	stop supporting acceleration of FCoE traffic.
1129  *
1130  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1131  *			     struct scatterlist *sgl, unsigned int sgc);
1132  *	Called when the FCoE Initiator wants to initialize an I/O that
1133  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1134  *	perform necessary setup and returns 1 to indicate the device is set up
1135  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1136  *
1137  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1138  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1139  *	indicated by the FC exchange id 'xid', so the underlying device can
1140  *	clean up and reuse resources for later DDP requests.
1141  *
1142  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1143  *			      struct scatterlist *sgl, unsigned int sgc);
1144  *	Called when the FCoE Target wants to initialize an I/O that
1145  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1146  *	perform necessary setup and returns 1 to indicate the device is set up
1147  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1148  *
1149  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1150  *			       struct netdev_fcoe_hbainfo *hbainfo);
1151  *	Called when the FCoE Protocol stack wants information on the underlying
1152  *	device. This information is utilized by the FCoE protocol stack to
1153  *	register attributes with Fiber Channel management service as per the
1154  *	FC-GS Fabric Device Management Information(FDMI) specification.
1155  *
1156  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1157  *	Called when the underlying device wants to override default World Wide
1158  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1159  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1160  *	protocol stack to use.
1161  *
1162  *	RFS acceleration.
1163  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1164  *			    u16 rxq_index, u32 flow_id);
1165  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1166  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1167  *	Return the filter ID on success, or a negative error code.
1168  *
1169  *	Slave management functions (for bridge, bonding, etc).
1170  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1171  *	Called to make another netdev an underling.
1172  *
1173  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1174  *	Called to release previously enslaved netdev.
1175  *
1176  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1177  *					    struct sk_buff *skb,
1178  *					    bool all_slaves);
1179  *	Get the xmit slave of master device. If all_slaves is true, function
1180  *	assume all the slaves can transmit.
1181  *
1182  *      Feature/offload setting functions.
1183  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1184  *		netdev_features_t features);
1185  *	Adjusts the requested feature flags according to device-specific
1186  *	constraints, and returns the resulting flags. Must not modify
1187  *	the device state.
1188  *
1189  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1190  *	Called to update device configuration to new features. Passed
1191  *	feature set might be less than what was returned by ndo_fix_features()).
1192  *	Must return >0 or -errno if it changed dev->features itself.
1193  *
1194  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1195  *		      struct net_device *dev,
1196  *		      const unsigned char *addr, u16 vid, u16 flags,
1197  *		      struct netlink_ext_ack *extack);
1198  *	Adds an FDB entry to dev for addr.
1199  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1200  *		      struct net_device *dev,
1201  *		      const unsigned char *addr, u16 vid)
1202  *	Deletes the FDB entry from dev coresponding to addr.
1203  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1204  *		       struct net_device *dev, struct net_device *filter_dev,
1205  *		       int *idx)
1206  *	Used to add FDB entries to dump requests. Implementers should add
1207  *	entries to skb and update idx with the number of entries.
1208  *
1209  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1210  *			     u16 flags, struct netlink_ext_ack *extack)
1211  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1212  *			     struct net_device *dev, u32 filter_mask,
1213  *			     int nlflags)
1214  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1215  *			     u16 flags);
1216  *
1217  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1218  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1219  *	which do not represent real hardware may define this to allow their
1220  *	userspace components to manage their virtual carrier state. Devices
1221  *	that determine carrier state from physical hardware properties (eg
1222  *	network cables) or protocol-dependent mechanisms (eg
1223  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1224  *
1225  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1226  *			       struct netdev_phys_item_id *ppid);
1227  *	Called to get ID of physical port of this device. If driver does
1228  *	not implement this, it is assumed that the hw is not able to have
1229  *	multiple net devices on single physical port.
1230  *
1231  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1232  *				 struct netdev_phys_item_id *ppid)
1233  *	Called to get the parent ID of the physical port of this device.
1234  *
1235  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1236  *			      struct udp_tunnel_info *ti);
1237  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1238  *	address family that a UDP tunnel is listnening to. It is called only
1239  *	when a new port starts listening. The operation is protected by the
1240  *	RTNL.
1241  *
1242  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1243  *			      struct udp_tunnel_info *ti);
1244  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1245  *	address family that the UDP tunnel is not listening to anymore. The
1246  *	operation is protected by the RTNL.
1247  *
1248  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1249  *				 struct net_device *dev)
1250  *	Called by upper layer devices to accelerate switching or other
1251  *	station functionality into hardware. 'pdev is the lowerdev
1252  *	to use for the offload and 'dev' is the net device that will
1253  *	back the offload. Returns a pointer to the private structure
1254  *	the upper layer will maintain.
1255  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1256  *	Called by upper layer device to delete the station created
1257  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1258  *	the station and priv is the structure returned by the add
1259  *	operation.
1260  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1261  *			     int queue_index, u32 maxrate);
1262  *	Called when a user wants to set a max-rate limitation of specific
1263  *	TX queue.
1264  * int (*ndo_get_iflink)(const struct net_device *dev);
1265  *	Called to get the iflink value of this device.
1266  * void (*ndo_change_proto_down)(struct net_device *dev,
1267  *				 bool proto_down);
1268  *	This function is used to pass protocol port error state information
1269  *	to the switch driver. The switch driver can react to the proto_down
1270  *      by doing a phys down on the associated switch port.
1271  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1272  *	This function is used to get egress tunnel information for given skb.
1273  *	This is useful for retrieving outer tunnel header parameters while
1274  *	sampling packet.
1275  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1276  *	This function is used to specify the headroom that the skb must
1277  *	consider when allocation skb during packet reception. Setting
1278  *	appropriate rx headroom value allows avoiding skb head copy on
1279  *	forward. Setting a negative value resets the rx headroom to the
1280  *	default value.
1281  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1282  *	This function is used to set or query state related to XDP on the
1283  *	netdevice and manage BPF offload. See definition of
1284  *	enum bpf_netdev_command for details.
1285  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1286  *			u32 flags);
1287  *	This function is used to submit @n XDP packets for transmit on a
1288  *	netdevice. Returns number of frames successfully transmitted, frames
1289  *	that got dropped are freed/returned via xdp_return_frame().
1290  *	Returns negative number, means general error invoking ndo, meaning
1291  *	no frames were xmit'ed and core-caller will free all frames.
1292  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1293  *      This function is used to wake up the softirq, ksoftirqd or kthread
1294  *	responsible for sending and/or receiving packets on a specific
1295  *	queue id bound to an AF_XDP socket. The flags field specifies if
1296  *	only RX, only Tx, or both should be woken up using the flags
1297  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1298  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1299  *	Get devlink port instance associated with a given netdev.
1300  *	Called with a reference on the netdevice and devlink locks only,
1301  *	rtnl_lock is not held.
1302  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1303  *			 int cmd);
1304  *	Add, change, delete or get information on an IPv4 tunnel.
1305  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1306  *	If a device is paired with a peer device, return the peer instance.
1307  *	The caller must be under RCU read context.
1308  */
1309 struct net_device_ops {
1310 	int			(*ndo_init)(struct net_device *dev);
1311 	void			(*ndo_uninit)(struct net_device *dev);
1312 	int			(*ndo_open)(struct net_device *dev);
1313 	int			(*ndo_stop)(struct net_device *dev);
1314 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1315 						  struct net_device *dev);
1316 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1317 						      struct net_device *dev,
1318 						      netdev_features_t features);
1319 	u16			(*ndo_select_queue)(struct net_device *dev,
1320 						    struct sk_buff *skb,
1321 						    struct net_device *sb_dev);
1322 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1323 						       int flags);
1324 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1325 	int			(*ndo_set_mac_address)(struct net_device *dev,
1326 						       void *addr);
1327 	int			(*ndo_validate_addr)(struct net_device *dev);
1328 	int			(*ndo_do_ioctl)(struct net_device *dev,
1329 					        struct ifreq *ifr, int cmd);
1330 	int			(*ndo_set_config)(struct net_device *dev,
1331 					          struct ifmap *map);
1332 	int			(*ndo_change_mtu)(struct net_device *dev,
1333 						  int new_mtu);
1334 	int			(*ndo_neigh_setup)(struct net_device *dev,
1335 						   struct neigh_parms *);
1336 	void			(*ndo_tx_timeout) (struct net_device *dev,
1337 						   unsigned int txqueue);
1338 
1339 	void			(*ndo_get_stats64)(struct net_device *dev,
1340 						   struct rtnl_link_stats64 *storage);
1341 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1342 	int			(*ndo_get_offload_stats)(int attr_id,
1343 							 const struct net_device *dev,
1344 							 void *attr_data);
1345 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1346 
1347 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1348 						       __be16 proto, u16 vid);
1349 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1350 						        __be16 proto, u16 vid);
1351 #ifdef CONFIG_NET_POLL_CONTROLLER
1352 	void                    (*ndo_poll_controller)(struct net_device *dev);
1353 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1354 						     struct netpoll_info *info);
1355 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1356 #endif
1357 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1358 						  int queue, u8 *mac);
1359 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1360 						   int queue, u16 vlan,
1361 						   u8 qos, __be16 proto);
1362 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1363 						   int vf, int min_tx_rate,
1364 						   int max_tx_rate);
1365 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1366 						       int vf, bool setting);
1367 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1368 						    int vf, bool setting);
1369 	int			(*ndo_get_vf_config)(struct net_device *dev,
1370 						     int vf,
1371 						     struct ifla_vf_info *ivf);
1372 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1373 							 int vf, int link_state);
1374 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1375 						    int vf,
1376 						    struct ifla_vf_stats
1377 						    *vf_stats);
1378 	int			(*ndo_set_vf_port)(struct net_device *dev,
1379 						   int vf,
1380 						   struct nlattr *port[]);
1381 	int			(*ndo_get_vf_port)(struct net_device *dev,
1382 						   int vf, struct sk_buff *skb);
1383 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1384 						   int vf,
1385 						   struct ifla_vf_guid *node_guid,
1386 						   struct ifla_vf_guid *port_guid);
1387 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1388 						   int vf, u64 guid,
1389 						   int guid_type);
1390 	int			(*ndo_set_vf_rss_query_en)(
1391 						   struct net_device *dev,
1392 						   int vf, bool setting);
1393 	int			(*ndo_setup_tc)(struct net_device *dev,
1394 						enum tc_setup_type type,
1395 						void *type_data);
1396 #if IS_ENABLED(CONFIG_FCOE)
1397 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1398 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1399 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1400 						      u16 xid,
1401 						      struct scatterlist *sgl,
1402 						      unsigned int sgc);
1403 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1404 						     u16 xid);
1405 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1406 						       u16 xid,
1407 						       struct scatterlist *sgl,
1408 						       unsigned int sgc);
1409 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1410 							struct netdev_fcoe_hbainfo *hbainfo);
1411 #endif
1412 
1413 #if IS_ENABLED(CONFIG_LIBFCOE)
1414 #define NETDEV_FCOE_WWNN 0
1415 #define NETDEV_FCOE_WWPN 1
1416 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1417 						    u64 *wwn, int type);
1418 #endif
1419 
1420 #ifdef CONFIG_RFS_ACCEL
1421 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1422 						     const struct sk_buff *skb,
1423 						     u16 rxq_index,
1424 						     u32 flow_id);
1425 #endif
1426 	int			(*ndo_add_slave)(struct net_device *dev,
1427 						 struct net_device *slave_dev,
1428 						 struct netlink_ext_ack *extack);
1429 	int			(*ndo_del_slave)(struct net_device *dev,
1430 						 struct net_device *slave_dev);
1431 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1432 						      struct sk_buff *skb,
1433 						      bool all_slaves);
1434 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1435 						    netdev_features_t features);
1436 	int			(*ndo_set_features)(struct net_device *dev,
1437 						    netdev_features_t features);
1438 	int			(*ndo_neigh_construct)(struct net_device *dev,
1439 						       struct neighbour *n);
1440 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1441 						     struct neighbour *n);
1442 
1443 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1444 					       struct nlattr *tb[],
1445 					       struct net_device *dev,
1446 					       const unsigned char *addr,
1447 					       u16 vid,
1448 					       u16 flags,
1449 					       struct netlink_ext_ack *extack);
1450 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1451 					       struct nlattr *tb[],
1452 					       struct net_device *dev,
1453 					       const unsigned char *addr,
1454 					       u16 vid);
1455 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1456 						struct netlink_callback *cb,
1457 						struct net_device *dev,
1458 						struct net_device *filter_dev,
1459 						int *idx);
1460 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1461 					       struct nlattr *tb[],
1462 					       struct net_device *dev,
1463 					       const unsigned char *addr,
1464 					       u16 vid, u32 portid, u32 seq,
1465 					       struct netlink_ext_ack *extack);
1466 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1467 						      struct nlmsghdr *nlh,
1468 						      u16 flags,
1469 						      struct netlink_ext_ack *extack);
1470 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1471 						      u32 pid, u32 seq,
1472 						      struct net_device *dev,
1473 						      u32 filter_mask,
1474 						      int nlflags);
1475 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1476 						      struct nlmsghdr *nlh,
1477 						      u16 flags);
1478 	int			(*ndo_change_carrier)(struct net_device *dev,
1479 						      bool new_carrier);
1480 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1481 							struct netdev_phys_item_id *ppid);
1482 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1483 							  struct netdev_phys_item_id *ppid);
1484 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1485 							  char *name, size_t len);
1486 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1487 						      struct udp_tunnel_info *ti);
1488 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1489 						      struct udp_tunnel_info *ti);
1490 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1491 							struct net_device *dev);
1492 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1493 							void *priv);
1494 
1495 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1496 						      int queue_index,
1497 						      u32 maxrate);
1498 	int			(*ndo_get_iflink)(const struct net_device *dev);
1499 	int			(*ndo_change_proto_down)(struct net_device *dev,
1500 							 bool proto_down);
1501 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1502 						       struct sk_buff *skb);
1503 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1504 						       int needed_headroom);
1505 	int			(*ndo_bpf)(struct net_device *dev,
1506 					   struct netdev_bpf *bpf);
1507 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1508 						struct xdp_frame **xdp,
1509 						u32 flags);
1510 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1511 						  u32 queue_id, u32 flags);
1512 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1513 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1514 						  struct ip_tunnel_parm *p, int cmd);
1515 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1516 };
1517 
1518 /**
1519  * enum net_device_priv_flags - &struct net_device priv_flags
1520  *
1521  * These are the &struct net_device, they are only set internally
1522  * by drivers and used in the kernel. These flags are invisible to
1523  * userspace; this means that the order of these flags can change
1524  * during any kernel release.
1525  *
1526  * You should have a pretty good reason to be extending these flags.
1527  *
1528  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1529  * @IFF_EBRIDGE: Ethernet bridging device
1530  * @IFF_BONDING: bonding master or slave
1531  * @IFF_ISATAP: ISATAP interface (RFC4214)
1532  * @IFF_WAN_HDLC: WAN HDLC device
1533  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1534  *	release skb->dst
1535  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1536  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1537  * @IFF_MACVLAN_PORT: device used as macvlan port
1538  * @IFF_BRIDGE_PORT: device used as bridge port
1539  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1540  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1541  * @IFF_UNICAST_FLT: Supports unicast filtering
1542  * @IFF_TEAM_PORT: device used as team port
1543  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1544  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1545  *	change when it's running
1546  * @IFF_MACVLAN: Macvlan device
1547  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1548  *	underlying stacked devices
1549  * @IFF_L3MDEV_MASTER: device is an L3 master device
1550  * @IFF_NO_QUEUE: device can run without qdisc attached
1551  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1552  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1553  * @IFF_TEAM: device is a team device
1554  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1555  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1556  *	entity (i.e. the master device for bridged veth)
1557  * @IFF_MACSEC: device is a MACsec device
1558  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1559  * @IFF_FAILOVER: device is a failover master device
1560  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1561  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1562  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1563  */
1564 enum netdev_priv_flags {
1565 	IFF_802_1Q_VLAN			= 1<<0,
1566 	IFF_EBRIDGE			= 1<<1,
1567 	IFF_BONDING			= 1<<2,
1568 	IFF_ISATAP			= 1<<3,
1569 	IFF_WAN_HDLC			= 1<<4,
1570 	IFF_XMIT_DST_RELEASE		= 1<<5,
1571 	IFF_DONT_BRIDGE			= 1<<6,
1572 	IFF_DISABLE_NETPOLL		= 1<<7,
1573 	IFF_MACVLAN_PORT		= 1<<8,
1574 	IFF_BRIDGE_PORT			= 1<<9,
1575 	IFF_OVS_DATAPATH		= 1<<10,
1576 	IFF_TX_SKB_SHARING		= 1<<11,
1577 	IFF_UNICAST_FLT			= 1<<12,
1578 	IFF_TEAM_PORT			= 1<<13,
1579 	IFF_SUPP_NOFCS			= 1<<14,
1580 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1581 	IFF_MACVLAN			= 1<<16,
1582 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1583 	IFF_L3MDEV_MASTER		= 1<<18,
1584 	IFF_NO_QUEUE			= 1<<19,
1585 	IFF_OPENVSWITCH			= 1<<20,
1586 	IFF_L3MDEV_SLAVE		= 1<<21,
1587 	IFF_TEAM			= 1<<22,
1588 	IFF_RXFH_CONFIGURED		= 1<<23,
1589 	IFF_PHONY_HEADROOM		= 1<<24,
1590 	IFF_MACSEC			= 1<<25,
1591 	IFF_NO_RX_HANDLER		= 1<<26,
1592 	IFF_FAILOVER			= 1<<27,
1593 	IFF_FAILOVER_SLAVE		= 1<<28,
1594 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1595 	IFF_LIVE_RENAME_OK		= 1<<30,
1596 };
1597 
1598 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1599 #define IFF_EBRIDGE			IFF_EBRIDGE
1600 #define IFF_BONDING			IFF_BONDING
1601 #define IFF_ISATAP			IFF_ISATAP
1602 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1603 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1604 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1605 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1606 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1607 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1608 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1609 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1610 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1611 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1612 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1613 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1614 #define IFF_MACVLAN			IFF_MACVLAN
1615 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1616 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1617 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1618 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1619 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1620 #define IFF_TEAM			IFF_TEAM
1621 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1622 #define IFF_MACSEC			IFF_MACSEC
1623 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1624 #define IFF_FAILOVER			IFF_FAILOVER
1625 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1626 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1627 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1628 
1629 /* Specifies the type of the struct net_device::ml_priv pointer */
1630 enum netdev_ml_priv_type {
1631 	ML_PRIV_NONE,
1632 	ML_PRIV_CAN,
1633 };
1634 
1635 /**
1636  *	struct net_device - The DEVICE structure.
1637  *
1638  *	Actually, this whole structure is a big mistake.  It mixes I/O
1639  *	data with strictly "high-level" data, and it has to know about
1640  *	almost every data structure used in the INET module.
1641  *
1642  *	@name:	This is the first field of the "visible" part of this structure
1643  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1644  *		of the interface.
1645  *
1646  *	@name_node:	Name hashlist node
1647  *	@ifalias:	SNMP alias
1648  *	@mem_end:	Shared memory end
1649  *	@mem_start:	Shared memory start
1650  *	@base_addr:	Device I/O address
1651  *	@irq:		Device IRQ number
1652  *
1653  *	@state:		Generic network queuing layer state, see netdev_state_t
1654  *	@dev_list:	The global list of network devices
1655  *	@napi_list:	List entry used for polling NAPI devices
1656  *	@unreg_list:	List entry  when we are unregistering the
1657  *			device; see the function unregister_netdev
1658  *	@close_list:	List entry used when we are closing the device
1659  *	@ptype_all:     Device-specific packet handlers for all protocols
1660  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1661  *
1662  *	@adj_list:	Directly linked devices, like slaves for bonding
1663  *	@features:	Currently active device features
1664  *	@hw_features:	User-changeable features
1665  *
1666  *	@wanted_features:	User-requested features
1667  *	@vlan_features:		Mask of features inheritable by VLAN devices
1668  *
1669  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1670  *				This field indicates what encapsulation
1671  *				offloads the hardware is capable of doing,
1672  *				and drivers will need to set them appropriately.
1673  *
1674  *	@mpls_features:	Mask of features inheritable by MPLS
1675  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1676  *
1677  *	@ifindex:	interface index
1678  *	@group:		The group the device belongs to
1679  *
1680  *	@stats:		Statistics struct, which was left as a legacy, use
1681  *			rtnl_link_stats64 instead
1682  *
1683  *	@rx_dropped:	Dropped packets by core network,
1684  *			do not use this in drivers
1685  *	@tx_dropped:	Dropped packets by core network,
1686  *			do not use this in drivers
1687  *	@rx_nohandler:	nohandler dropped packets by core network on
1688  *			inactive devices, do not use this in drivers
1689  *	@carrier_up_count:	Number of times the carrier has been up
1690  *	@carrier_down_count:	Number of times the carrier has been down
1691  *
1692  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1693  *				instead of ioctl,
1694  *				see <net/iw_handler.h> for details.
1695  *	@wireless_data:	Instance data managed by the core of wireless extensions
1696  *
1697  *	@netdev_ops:	Includes several pointers to callbacks,
1698  *			if one wants to override the ndo_*() functions
1699  *	@ethtool_ops:	Management operations
1700  *	@l3mdev_ops:	Layer 3 master device operations
1701  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1702  *			discovery handling. Necessary for e.g. 6LoWPAN.
1703  *	@xfrmdev_ops:	Transformation offload operations
1704  *	@tlsdev_ops:	Transport Layer Security offload operations
1705  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1706  *			of Layer 2 headers.
1707  *
1708  *	@flags:		Interface flags (a la BSD)
1709  *	@priv_flags:	Like 'flags' but invisible to userspace,
1710  *			see if.h for the definitions
1711  *	@gflags:	Global flags ( kept as legacy )
1712  *	@padded:	How much padding added by alloc_netdev()
1713  *	@operstate:	RFC2863 operstate
1714  *	@link_mode:	Mapping policy to operstate
1715  *	@if_port:	Selectable AUI, TP, ...
1716  *	@dma:		DMA channel
1717  *	@mtu:		Interface MTU value
1718  *	@min_mtu:	Interface Minimum MTU value
1719  *	@max_mtu:	Interface Maximum MTU value
1720  *	@type:		Interface hardware type
1721  *	@hard_header_len: Maximum hardware header length.
1722  *	@min_header_len:  Minimum hardware header length
1723  *
1724  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1725  *			  cases can this be guaranteed
1726  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1727  *			  cases can this be guaranteed. Some cases also use
1728  *			  LL_MAX_HEADER instead to allocate the skb
1729  *
1730  *	interface address info:
1731  *
1732  * 	@perm_addr:		Permanent hw address
1733  * 	@addr_assign_type:	Hw address assignment type
1734  * 	@addr_len:		Hardware address length
1735  *	@upper_level:		Maximum depth level of upper devices.
1736  *	@lower_level:		Maximum depth level of lower devices.
1737  *	@neigh_priv_len:	Used in neigh_alloc()
1738  * 	@dev_id:		Used to differentiate devices that share
1739  * 				the same link layer address
1740  * 	@dev_port:		Used to differentiate devices that share
1741  * 				the same function
1742  *	@addr_list_lock:	XXX: need comments on this one
1743  *	@name_assign_type:	network interface name assignment type
1744  *	@uc_promisc:		Counter that indicates promiscuous mode
1745  *				has been enabled due to the need to listen to
1746  *				additional unicast addresses in a device that
1747  *				does not implement ndo_set_rx_mode()
1748  *	@uc:			unicast mac addresses
1749  *	@mc:			multicast mac addresses
1750  *	@dev_addrs:		list of device hw addresses
1751  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1752  *	@promiscuity:		Number of times the NIC is told to work in
1753  *				promiscuous mode; if it becomes 0 the NIC will
1754  *				exit promiscuous mode
1755  *	@allmulti:		Counter, enables or disables allmulticast mode
1756  *
1757  *	@vlan_info:	VLAN info
1758  *	@dsa_ptr:	dsa specific data
1759  *	@tipc_ptr:	TIPC specific data
1760  *	@atalk_ptr:	AppleTalk link
1761  *	@ip_ptr:	IPv4 specific data
1762  *	@ip6_ptr:	IPv6 specific data
1763  *	@ax25_ptr:	AX.25 specific data
1764  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1765  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1766  *			 device struct
1767  *	@mpls_ptr:	mpls_dev struct pointer
1768  *
1769  *	@dev_addr:	Hw address (before bcast,
1770  *			because most packets are unicast)
1771  *
1772  *	@_rx:			Array of RX queues
1773  *	@num_rx_queues:		Number of RX queues
1774  *				allocated at register_netdev() time
1775  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1776  *	@xdp_prog:		XDP sockets filter program pointer
1777  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1778  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1779  *				allow to avoid NIC hard IRQ, on busy queues.
1780  *
1781  *	@rx_handler:		handler for received packets
1782  *	@rx_handler_data: 	XXX: need comments on this one
1783  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1784  *				ingress processing
1785  *	@ingress_queue:		XXX: need comments on this one
1786  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1787  *	@broadcast:		hw bcast address
1788  *
1789  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1790  *			indexed by RX queue number. Assigned by driver.
1791  *			This must only be set if the ndo_rx_flow_steer
1792  *			operation is defined
1793  *	@index_hlist:		Device index hash chain
1794  *
1795  *	@_tx:			Array of TX queues
1796  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1797  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1798  *	@qdisc:			Root qdisc from userspace point of view
1799  *	@tx_queue_len:		Max frames per queue allowed
1800  *	@tx_global_lock: 	XXX: need comments on this one
1801  *	@xdp_bulkq:		XDP device bulk queue
1802  *	@xps_cpus_map:		all CPUs map for XPS device
1803  *	@xps_rxqs_map:		all RXQs map for XPS device
1804  *
1805  *	@xps_maps:	XXX: need comments on this one
1806  *	@miniq_egress:		clsact qdisc specific data for
1807  *				egress processing
1808  *	@qdisc_hash:		qdisc hash table
1809  *	@watchdog_timeo:	Represents the timeout that is used by
1810  *				the watchdog (see dev_watchdog())
1811  *	@watchdog_timer:	List of timers
1812  *
1813  *	@proto_down_reason:	reason a netdev interface is held down
1814  *	@pcpu_refcnt:		Number of references to this device
1815  *	@todo_list:		Delayed register/unregister
1816  *	@link_watch_list:	XXX: need comments on this one
1817  *
1818  *	@reg_state:		Register/unregister state machine
1819  *	@dismantle:		Device is going to be freed
1820  *	@rtnl_link_state:	This enum represents the phases of creating
1821  *				a new link
1822  *
1823  *	@needs_free_netdev:	Should unregister perform free_netdev?
1824  *	@priv_destructor:	Called from unregister
1825  *	@npinfo:		XXX: need comments on this one
1826  * 	@nd_net:		Network namespace this network device is inside
1827  *
1828  * 	@ml_priv:	Mid-layer private
1829  *	@ml_priv_type:  Mid-layer private type
1830  * 	@lstats:	Loopback statistics
1831  * 	@tstats:	Tunnel statistics
1832  * 	@dstats:	Dummy statistics
1833  * 	@vstats:	Virtual ethernet statistics
1834  *
1835  *	@garp_port:	GARP
1836  *	@mrp_port:	MRP
1837  *
1838  *	@dev:		Class/net/name entry
1839  *	@sysfs_groups:	Space for optional device, statistics and wireless
1840  *			sysfs groups
1841  *
1842  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1843  *	@rtnl_link_ops:	Rtnl_link_ops
1844  *
1845  *	@gso_max_size:	Maximum size of generic segmentation offload
1846  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1847  *			NIC for GSO
1848  *
1849  *	@dcbnl_ops:	Data Center Bridging netlink ops
1850  *	@num_tc:	Number of traffic classes in the net device
1851  *	@tc_to_txq:	XXX: need comments on this one
1852  *	@prio_tc_map:	XXX: need comments on this one
1853  *
1854  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1855  *
1856  *	@priomap:	XXX: need comments on this one
1857  *	@phydev:	Physical device may attach itself
1858  *			for hardware timestamping
1859  *	@sfp_bus:	attached &struct sfp_bus structure.
1860  *
1861  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1862  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1863  *
1864  *	@proto_down:	protocol port state information can be sent to the
1865  *			switch driver and used to set the phys state of the
1866  *			switch port.
1867  *
1868  *	@wol_enabled:	Wake-on-LAN is enabled
1869  *
1870  *	@net_notifier_list:	List of per-net netdev notifier block
1871  *				that follow this device when it is moved
1872  *				to another network namespace.
1873  *
1874  *	@macsec_ops:    MACsec offloading ops
1875  *
1876  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1877  *				offload capabilities of the device
1878  *	@udp_tunnel_nic:	UDP tunnel offload state
1879  *	@xdp_state:		stores info on attached XDP BPF programs
1880  *
1881  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1882  *			dev->addr_list_lock.
1883  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1884  *			keep a list of interfaces to be deleted.
1885  *
1886  *	FIXME: cleanup struct net_device such that network protocol info
1887  *	moves out.
1888  */
1889 
1890 struct net_device {
1891 	char			name[IFNAMSIZ];
1892 	struct netdev_name_node	*name_node;
1893 	struct dev_ifalias	__rcu *ifalias;
1894 	/*
1895 	 *	I/O specific fields
1896 	 *	FIXME: Merge these and struct ifmap into one
1897 	 */
1898 	unsigned long		mem_end;
1899 	unsigned long		mem_start;
1900 	unsigned long		base_addr;
1901 	int			irq;
1902 
1903 	/*
1904 	 *	Some hardware also needs these fields (state,dev_list,
1905 	 *	napi_list,unreg_list,close_list) but they are not
1906 	 *	part of the usual set specified in Space.c.
1907 	 */
1908 
1909 	unsigned long		state;
1910 
1911 	struct list_head	dev_list;
1912 	struct list_head	napi_list;
1913 	struct list_head	unreg_list;
1914 	struct list_head	close_list;
1915 	struct list_head	ptype_all;
1916 	struct list_head	ptype_specific;
1917 
1918 	struct {
1919 		struct list_head upper;
1920 		struct list_head lower;
1921 	} adj_list;
1922 
1923 	netdev_features_t	features;
1924 	netdev_features_t	hw_features;
1925 	netdev_features_t	wanted_features;
1926 	netdev_features_t	vlan_features;
1927 	netdev_features_t	hw_enc_features;
1928 	netdev_features_t	mpls_features;
1929 	netdev_features_t	gso_partial_features;
1930 
1931 	int			ifindex;
1932 	int			group;
1933 
1934 	struct net_device_stats	stats;
1935 
1936 	atomic_long_t		rx_dropped;
1937 	atomic_long_t		tx_dropped;
1938 	atomic_long_t		rx_nohandler;
1939 
1940 	/* Stats to monitor link on/off, flapping */
1941 	atomic_t		carrier_up_count;
1942 	atomic_t		carrier_down_count;
1943 
1944 #ifdef CONFIG_WIRELESS_EXT
1945 	const struct iw_handler_def *wireless_handlers;
1946 	struct iw_public_data	*wireless_data;
1947 #endif
1948 	const struct net_device_ops *netdev_ops;
1949 	const struct ethtool_ops *ethtool_ops;
1950 #ifdef CONFIG_NET_L3_MASTER_DEV
1951 	const struct l3mdev_ops	*l3mdev_ops;
1952 #endif
1953 #if IS_ENABLED(CONFIG_IPV6)
1954 	const struct ndisc_ops *ndisc_ops;
1955 #endif
1956 
1957 #ifdef CONFIG_XFRM_OFFLOAD
1958 	const struct xfrmdev_ops *xfrmdev_ops;
1959 #endif
1960 
1961 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1962 	const struct tlsdev_ops *tlsdev_ops;
1963 #endif
1964 
1965 	const struct header_ops *header_ops;
1966 
1967 	unsigned int		flags;
1968 	unsigned int		priv_flags;
1969 
1970 	unsigned short		gflags;
1971 	unsigned short		padded;
1972 
1973 	unsigned char		operstate;
1974 	unsigned char		link_mode;
1975 
1976 	unsigned char		if_port;
1977 	unsigned char		dma;
1978 
1979 	/* Note : dev->mtu is often read without holding a lock.
1980 	 * Writers usually hold RTNL.
1981 	 * It is recommended to use READ_ONCE() to annotate the reads,
1982 	 * and to use WRITE_ONCE() to annotate the writes.
1983 	 */
1984 	unsigned int		mtu;
1985 	unsigned int		min_mtu;
1986 	unsigned int		max_mtu;
1987 	unsigned short		type;
1988 	unsigned short		hard_header_len;
1989 	unsigned char		min_header_len;
1990 	unsigned char		name_assign_type;
1991 
1992 	unsigned short		needed_headroom;
1993 	unsigned short		needed_tailroom;
1994 
1995 	/* Interface address info. */
1996 	unsigned char		perm_addr[MAX_ADDR_LEN];
1997 	unsigned char		addr_assign_type;
1998 	unsigned char		addr_len;
1999 	unsigned char		upper_level;
2000 	unsigned char		lower_level;
2001 
2002 	unsigned short		neigh_priv_len;
2003 	unsigned short          dev_id;
2004 	unsigned short          dev_port;
2005 	spinlock_t		addr_list_lock;
2006 
2007 	struct netdev_hw_addr_list	uc;
2008 	struct netdev_hw_addr_list	mc;
2009 	struct netdev_hw_addr_list	dev_addrs;
2010 
2011 #ifdef CONFIG_SYSFS
2012 	struct kset		*queues_kset;
2013 #endif
2014 #ifdef CONFIG_LOCKDEP
2015 	struct list_head	unlink_list;
2016 #endif
2017 	unsigned int		promiscuity;
2018 	unsigned int		allmulti;
2019 	bool			uc_promisc;
2020 #ifdef CONFIG_LOCKDEP
2021 	unsigned char		nested_level;
2022 #endif
2023 
2024 
2025 	/* Protocol-specific pointers */
2026 
2027 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2028 	struct vlan_info __rcu	*vlan_info;
2029 #endif
2030 #if IS_ENABLED(CONFIG_NET_DSA)
2031 	struct dsa_port		*dsa_ptr;
2032 #endif
2033 #if IS_ENABLED(CONFIG_TIPC)
2034 	struct tipc_bearer __rcu *tipc_ptr;
2035 #endif
2036 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2037 	void 			*atalk_ptr;
2038 #endif
2039 	struct in_device __rcu	*ip_ptr;
2040 	struct inet6_dev __rcu	*ip6_ptr;
2041 #if IS_ENABLED(CONFIG_NEWIP)
2042 	struct ninet_dev __rcu	*nip_ptr; /* NIP */
2043 #endif
2044 #if IS_ENABLED(CONFIG_AX25)
2045 	void			*ax25_ptr;
2046 #endif
2047 	struct wireless_dev	*ieee80211_ptr;
2048 	struct wpan_dev		*ieee802154_ptr;
2049 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2050 	struct mpls_dev __rcu	*mpls_ptr;
2051 #endif
2052 
2053 /*
2054  * Cache lines mostly used on receive path (including eth_type_trans())
2055  */
2056 	/* Interface address info used in eth_type_trans() */
2057 	unsigned char		*dev_addr;
2058 
2059 	struct netdev_rx_queue	*_rx;
2060 	unsigned int		num_rx_queues;
2061 	unsigned int		real_num_rx_queues;
2062 
2063 	struct bpf_prog __rcu	*xdp_prog;
2064 	unsigned long		gro_flush_timeout;
2065 	u32			napi_defer_hard_irqs;
2066 	rx_handler_func_t __rcu	*rx_handler;
2067 	void __rcu		*rx_handler_data;
2068 
2069 #ifdef CONFIG_NET_CLS_ACT
2070 	struct mini_Qdisc __rcu	*miniq_ingress;
2071 #endif
2072 	struct netdev_queue __rcu *ingress_queue;
2073 #ifdef CONFIG_NETFILTER_INGRESS
2074 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2075 #endif
2076 
2077 	unsigned char		broadcast[MAX_ADDR_LEN];
2078 #ifdef CONFIG_RFS_ACCEL
2079 	struct cpu_rmap		*rx_cpu_rmap;
2080 #endif
2081 	struct hlist_node	index_hlist;
2082 
2083 /*
2084  * Cache lines mostly used on transmit path
2085  */
2086 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2087 	unsigned int		num_tx_queues;
2088 	unsigned int		real_num_tx_queues;
2089 	struct Qdisc __rcu	*qdisc;
2090 	unsigned int		tx_queue_len;
2091 	spinlock_t		tx_global_lock;
2092 
2093 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2094 
2095 #ifdef CONFIG_XPS
2096 	struct xps_dev_maps __rcu *xps_cpus_map;
2097 	struct xps_dev_maps __rcu *xps_rxqs_map;
2098 #endif
2099 #ifdef CONFIG_NET_CLS_ACT
2100 	struct mini_Qdisc __rcu	*miniq_egress;
2101 #endif
2102 
2103 #ifdef CONFIG_NET_SCHED
2104 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2105 #endif
2106 	/* These may be needed for future network-power-down code. */
2107 	struct timer_list	watchdog_timer;
2108 	int			watchdog_timeo;
2109 
2110 	u32                     proto_down_reason;
2111 
2112 	struct list_head	todo_list;
2113 	int __percpu		*pcpu_refcnt;
2114 
2115 	struct list_head	link_watch_list;
2116 
2117 	enum { NETREG_UNINITIALIZED=0,
2118 	       NETREG_REGISTERED,	/* completed register_netdevice */
2119 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2120 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2121 	       NETREG_RELEASED,		/* called free_netdev */
2122 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2123 	} reg_state:8;
2124 
2125 	bool dismantle;
2126 
2127 	enum {
2128 		RTNL_LINK_INITIALIZED,
2129 		RTNL_LINK_INITIALIZING,
2130 	} rtnl_link_state:16;
2131 
2132 	bool needs_free_netdev;
2133 	void (*priv_destructor)(struct net_device *dev);
2134 
2135 #ifdef CONFIG_NETPOLL
2136 	struct netpoll_info __rcu	*npinfo;
2137 #endif
2138 
2139 	possible_net_t			nd_net;
2140 
2141 	/* mid-layer private */
2142 	void				*ml_priv;
2143 	enum netdev_ml_priv_type	ml_priv_type;
2144 
2145 	union {
2146 		struct pcpu_lstats __percpu		*lstats;
2147 		struct pcpu_sw_netstats __percpu	*tstats;
2148 		struct pcpu_dstats __percpu		*dstats;
2149 	};
2150 
2151 #if IS_ENABLED(CONFIG_GARP)
2152 	struct garp_port __rcu	*garp_port;
2153 #endif
2154 #if IS_ENABLED(CONFIG_MRP)
2155 	struct mrp_port __rcu	*mrp_port;
2156 #endif
2157 
2158 	struct device		dev;
2159 	const struct attribute_group *sysfs_groups[4];
2160 	const struct attribute_group *sysfs_rx_queue_group;
2161 
2162 	const struct rtnl_link_ops *rtnl_link_ops;
2163 
2164 	/* for setting kernel sock attribute on TCP connection setup */
2165 #define GSO_MAX_SIZE		65536
2166 	unsigned int		gso_max_size;
2167 #define GSO_MAX_SEGS		65535
2168 	u16			gso_max_segs;
2169 
2170 #ifdef CONFIG_DCB
2171 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2172 #endif
2173 	s16			num_tc;
2174 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2175 	u8			prio_tc_map[TC_BITMASK + 1];
2176 
2177 #if IS_ENABLED(CONFIG_FCOE)
2178 	unsigned int		fcoe_ddp_xid;
2179 #endif
2180 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2181 	struct netprio_map __rcu *priomap;
2182 #endif
2183 	struct phy_device	*phydev;
2184 	struct sfp_bus		*sfp_bus;
2185 	struct lock_class_key	*qdisc_tx_busylock;
2186 	struct lock_class_key	*qdisc_running_key;
2187 	bool			proto_down;
2188 	unsigned		wol_enabled:1;
2189 
2190 	struct list_head	net_notifier_list;
2191 
2192 #if IS_ENABLED(CONFIG_MACSEC)
2193 	/* MACsec management functions */
2194 	const struct macsec_ops *macsec_ops;
2195 #endif
2196 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2197 	struct udp_tunnel_nic	*udp_tunnel_nic;
2198 
2199 	/* protected by rtnl_lock */
2200 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2201 };
2202 #define to_net_dev(d) container_of(d, struct net_device, dev)
2203 
netif_elide_gro(const struct net_device * dev)2204 static inline bool netif_elide_gro(const struct net_device *dev)
2205 {
2206 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2207 		return true;
2208 	return false;
2209 }
2210 
2211 #define	NETDEV_ALIGN		32
2212 
2213 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2214 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2215 {
2216 	return dev->prio_tc_map[prio & TC_BITMASK];
2217 }
2218 
2219 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2220 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2221 {
2222 	if (tc >= dev->num_tc)
2223 		return -EINVAL;
2224 
2225 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2226 	return 0;
2227 }
2228 
2229 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2230 void netdev_reset_tc(struct net_device *dev);
2231 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2232 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2233 
2234 static inline
netdev_get_num_tc(struct net_device * dev)2235 int netdev_get_num_tc(struct net_device *dev)
2236 {
2237 	return dev->num_tc;
2238 }
2239 
net_prefetch(void * p)2240 static inline void net_prefetch(void *p)
2241 {
2242 	prefetch(p);
2243 #if L1_CACHE_BYTES < 128
2244 	prefetch((u8 *)p + L1_CACHE_BYTES);
2245 #endif
2246 }
2247 
net_prefetchw(void * p)2248 static inline void net_prefetchw(void *p)
2249 {
2250 	prefetchw(p);
2251 #if L1_CACHE_BYTES < 128
2252 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2253 #endif
2254 }
2255 
2256 void netdev_unbind_sb_channel(struct net_device *dev,
2257 			      struct net_device *sb_dev);
2258 int netdev_bind_sb_channel_queue(struct net_device *dev,
2259 				 struct net_device *sb_dev,
2260 				 u8 tc, u16 count, u16 offset);
2261 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2262 static inline int netdev_get_sb_channel(struct net_device *dev)
2263 {
2264 	return max_t(int, -dev->num_tc, 0);
2265 }
2266 
2267 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2268 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2269 					 unsigned int index)
2270 {
2271 	return &dev->_tx[index];
2272 }
2273 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2274 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2275 						    const struct sk_buff *skb)
2276 {
2277 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2278 }
2279 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2280 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2281 					    void (*f)(struct net_device *,
2282 						      struct netdev_queue *,
2283 						      void *),
2284 					    void *arg)
2285 {
2286 	unsigned int i;
2287 
2288 	for (i = 0; i < dev->num_tx_queues; i++)
2289 		f(dev, &dev->_tx[i], arg);
2290 }
2291 
2292 #define netdev_lockdep_set_classes(dev)				\
2293 {								\
2294 	static struct lock_class_key qdisc_tx_busylock_key;	\
2295 	static struct lock_class_key qdisc_running_key;		\
2296 	static struct lock_class_key qdisc_xmit_lock_key;	\
2297 	static struct lock_class_key dev_addr_list_lock_key;	\
2298 	unsigned int i;						\
2299 								\
2300 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2301 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2302 	lockdep_set_class(&(dev)->addr_list_lock,		\
2303 			  &dev_addr_list_lock_key);		\
2304 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2305 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2306 				  &qdisc_xmit_lock_key);	\
2307 }
2308 
2309 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2310 		     struct net_device *sb_dev);
2311 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2312 					 struct sk_buff *skb,
2313 					 struct net_device *sb_dev);
2314 
2315 /* returns the headroom that the master device needs to take in account
2316  * when forwarding to this dev
2317  */
netdev_get_fwd_headroom(struct net_device * dev)2318 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2319 {
2320 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2321 }
2322 
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2323 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2324 {
2325 	if (dev->netdev_ops->ndo_set_rx_headroom)
2326 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2327 }
2328 
2329 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2330 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2331 {
2332 	netdev_set_rx_headroom(dev, -1);
2333 }
2334 
netdev_get_ml_priv(struct net_device * dev,enum netdev_ml_priv_type type)2335 static inline void *netdev_get_ml_priv(struct net_device *dev,
2336 				       enum netdev_ml_priv_type type)
2337 {
2338 	if (dev->ml_priv_type != type)
2339 		return NULL;
2340 
2341 	return dev->ml_priv;
2342 }
2343 
netdev_set_ml_priv(struct net_device * dev,void * ml_priv,enum netdev_ml_priv_type type)2344 static inline void netdev_set_ml_priv(struct net_device *dev,
2345 				      void *ml_priv,
2346 				      enum netdev_ml_priv_type type)
2347 {
2348 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2349 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2350 	     dev->ml_priv_type, type);
2351 	WARN(!dev->ml_priv_type && dev->ml_priv,
2352 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2353 
2354 	dev->ml_priv = ml_priv;
2355 	dev->ml_priv_type = type;
2356 }
2357 
2358 /*
2359  * Net namespace inlines
2360  */
2361 static inline
dev_net(const struct net_device * dev)2362 struct net *dev_net(const struct net_device *dev)
2363 {
2364 	return read_pnet(&dev->nd_net);
2365 }
2366 
2367 static inline
dev_net_rcu(const struct net_device * dev)2368 struct net *dev_net_rcu(const struct net_device *dev)
2369 {
2370 	return read_pnet_rcu(&dev->nd_net);
2371 }
2372 
2373 static inline
dev_net_set(struct net_device * dev,struct net * net)2374 void dev_net_set(struct net_device *dev, struct net *net)
2375 {
2376 	write_pnet(&dev->nd_net, net);
2377 }
2378 
2379 /**
2380  *	netdev_priv - access network device private data
2381  *	@dev: network device
2382  *
2383  * Get network device private data
2384  */
netdev_priv(const struct net_device * dev)2385 static inline void *netdev_priv(const struct net_device *dev)
2386 {
2387 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2388 }
2389 
2390 /* Set the sysfs physical device reference for the network logical device
2391  * if set prior to registration will cause a symlink during initialization.
2392  */
2393 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2394 
2395 /* Set the sysfs device type for the network logical device to allow
2396  * fine-grained identification of different network device types. For
2397  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2398  */
2399 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2400 
2401 /* Default NAPI poll() weight
2402  * Device drivers are strongly advised to not use bigger value
2403  */
2404 #define NAPI_POLL_WEIGHT 64
2405 
2406 /**
2407  *	netif_napi_add - initialize a NAPI context
2408  *	@dev:  network device
2409  *	@napi: NAPI context
2410  *	@poll: polling function
2411  *	@weight: default weight
2412  *
2413  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2414  * *any* of the other NAPI-related functions.
2415  */
2416 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2417 		    int (*poll)(struct napi_struct *, int), int weight);
2418 
2419 /**
2420  *	netif_tx_napi_add - initialize a NAPI context
2421  *	@dev:  network device
2422  *	@napi: NAPI context
2423  *	@poll: polling function
2424  *	@weight: default weight
2425  *
2426  * This variant of netif_napi_add() should be used from drivers using NAPI
2427  * to exclusively poll a TX queue.
2428  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2429  */
netif_tx_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2430 static inline void netif_tx_napi_add(struct net_device *dev,
2431 				     struct napi_struct *napi,
2432 				     int (*poll)(struct napi_struct *, int),
2433 				     int weight)
2434 {
2435 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2436 	netif_napi_add(dev, napi, poll, weight);
2437 }
2438 
2439 /**
2440  *  __netif_napi_del - remove a NAPI context
2441  *  @napi: NAPI context
2442  *
2443  * Warning: caller must observe RCU grace period before freeing memory
2444  * containing @napi. Drivers might want to call this helper to combine
2445  * all the needed RCU grace periods into a single one.
2446  */
2447 void __netif_napi_del(struct napi_struct *napi);
2448 
2449 /**
2450  *  netif_napi_del - remove a NAPI context
2451  *  @napi: NAPI context
2452  *
2453  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2454  */
netif_napi_del(struct napi_struct * napi)2455 static inline void netif_napi_del(struct napi_struct *napi)
2456 {
2457 	__netif_napi_del(napi);
2458 	synchronize_net();
2459 }
2460 
2461 struct napi_gro_cb {
2462 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2463 	void	*frag0;
2464 
2465 	/* Length of frag0. */
2466 	unsigned int frag0_len;
2467 
2468 	/* This indicates where we are processing relative to skb->data. */
2469 	int	data_offset;
2470 
2471 	/* This is non-zero if the packet cannot be merged with the new skb. */
2472 	u16	flush;
2473 
2474 	/* Save the IP ID here and check when we get to the transport layer */
2475 	u16	flush_id;
2476 
2477 	/* Number of segments aggregated. */
2478 	u16	count;
2479 
2480 	/* Start offset for remote checksum offload */
2481 	u16	gro_remcsum_start;
2482 
2483 	/* jiffies when first packet was created/queued */
2484 	unsigned long age;
2485 
2486 	/* Used in ipv6_gro_receive() and foo-over-udp */
2487 	u16	proto;
2488 
2489 	/* This is non-zero if the packet may be of the same flow. */
2490 	u8	same_flow:1;
2491 
2492 	/* Used in tunnel GRO receive */
2493 	u8	encap_mark:1;
2494 
2495 	/* GRO checksum is valid */
2496 	u8	csum_valid:1;
2497 
2498 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2499 	u8	csum_cnt:3;
2500 
2501 	/* Free the skb? */
2502 	u8	free:2;
2503 #define NAPI_GRO_FREE		  1
2504 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2505 
2506 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2507 	u8	is_ipv6:1;
2508 
2509 	/* Used in GRE, set in fou/gue_gro_receive */
2510 	u8	is_fou:1;
2511 
2512 	/* Used to determine if flush_id can be ignored */
2513 	u8	is_atomic:1;
2514 
2515 	/* Number of gro_receive callbacks this packet already went through */
2516 	u8 recursion_counter:4;
2517 
2518 	/* GRO is done by frag_list pointer chaining. */
2519 	u8	is_flist:1;
2520 
2521 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2522 	__wsum	csum;
2523 
2524 	/* used in skb_gro_receive() slow path */
2525 	struct sk_buff *last;
2526 };
2527 
2528 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2529 
2530 #define GRO_RECURSION_LIMIT 15
gro_recursion_inc_test(struct sk_buff * skb)2531 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2532 {
2533 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2534 }
2535 
2536 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
call_gro_receive(gro_receive_t cb,struct list_head * head,struct sk_buff * skb)2537 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2538 					       struct list_head *head,
2539 					       struct sk_buff *skb)
2540 {
2541 	if (unlikely(gro_recursion_inc_test(skb))) {
2542 		NAPI_GRO_CB(skb)->flush |= 1;
2543 		return NULL;
2544 	}
2545 
2546 	return cb(head, skb);
2547 }
2548 
2549 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2550 					    struct sk_buff *);
call_gro_receive_sk(gro_receive_sk_t cb,struct sock * sk,struct list_head * head,struct sk_buff * skb)2551 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2552 						  struct sock *sk,
2553 						  struct list_head *head,
2554 						  struct sk_buff *skb)
2555 {
2556 	if (unlikely(gro_recursion_inc_test(skb))) {
2557 		NAPI_GRO_CB(skb)->flush |= 1;
2558 		return NULL;
2559 	}
2560 
2561 	return cb(sk, head, skb);
2562 }
2563 
2564 struct packet_type {
2565 	__be16			type;	/* This is really htons(ether_type). */
2566 	bool			ignore_outgoing;
2567 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2568 	int			(*func) (struct sk_buff *,
2569 					 struct net_device *,
2570 					 struct packet_type *,
2571 					 struct net_device *);
2572 	void			(*list_func) (struct list_head *,
2573 					      struct packet_type *,
2574 					      struct net_device *);
2575 	bool			(*id_match)(struct packet_type *ptype,
2576 					    struct sock *sk);
2577 	struct net		*af_packet_net;
2578 	void			*af_packet_priv;
2579 	struct list_head	list;
2580 };
2581 
2582 struct offload_callbacks {
2583 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2584 						netdev_features_t features);
2585 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2586 						struct sk_buff *skb);
2587 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2588 };
2589 
2590 struct packet_offload {
2591 	__be16			 type;	/* This is really htons(ether_type). */
2592 	u16			 priority;
2593 	struct offload_callbacks callbacks;
2594 	struct list_head	 list;
2595 };
2596 
2597 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2598 struct pcpu_sw_netstats {
2599 	u64     rx_packets;
2600 	u64     rx_bytes;
2601 	u64     tx_packets;
2602 	u64     tx_bytes;
2603 	struct u64_stats_sync   syncp;
2604 } __aligned(4 * sizeof(u64));
2605 
2606 struct pcpu_lstats {
2607 	u64_stats_t packets;
2608 	u64_stats_t bytes;
2609 	struct u64_stats_sync syncp;
2610 } __aligned(2 * sizeof(u64));
2611 
2612 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2613 
dev_sw_netstats_rx_add(struct net_device * dev,unsigned int len)2614 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2615 {
2616 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2617 
2618 	u64_stats_update_begin(&tstats->syncp);
2619 	tstats->rx_bytes += len;
2620 	tstats->rx_packets++;
2621 	u64_stats_update_end(&tstats->syncp);
2622 }
2623 
dev_lstats_add(struct net_device * dev,unsigned int len)2624 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2625 {
2626 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2627 
2628 	u64_stats_update_begin(&lstats->syncp);
2629 	u64_stats_add(&lstats->bytes, len);
2630 	u64_stats_inc(&lstats->packets);
2631 	u64_stats_update_end(&lstats->syncp);
2632 }
2633 
2634 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2635 ({									\
2636 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2637 	if (pcpu_stats)	{						\
2638 		int __cpu;						\
2639 		for_each_possible_cpu(__cpu) {				\
2640 			typeof(type) *stat;				\
2641 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2642 			u64_stats_init(&stat->syncp);			\
2643 		}							\
2644 	}								\
2645 	pcpu_stats;							\
2646 })
2647 
2648 #define netdev_alloc_pcpu_stats(type)					\
2649 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2650 
2651 enum netdev_lag_tx_type {
2652 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2653 	NETDEV_LAG_TX_TYPE_RANDOM,
2654 	NETDEV_LAG_TX_TYPE_BROADCAST,
2655 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2656 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2657 	NETDEV_LAG_TX_TYPE_HASH,
2658 };
2659 
2660 enum netdev_lag_hash {
2661 	NETDEV_LAG_HASH_NONE,
2662 	NETDEV_LAG_HASH_L2,
2663 	NETDEV_LAG_HASH_L34,
2664 	NETDEV_LAG_HASH_L23,
2665 	NETDEV_LAG_HASH_E23,
2666 	NETDEV_LAG_HASH_E34,
2667 	NETDEV_LAG_HASH_UNKNOWN,
2668 };
2669 
2670 struct netdev_lag_upper_info {
2671 	enum netdev_lag_tx_type tx_type;
2672 	enum netdev_lag_hash hash_type;
2673 };
2674 
2675 struct netdev_lag_lower_state_info {
2676 	u8 link_up : 1,
2677 	   tx_enabled : 1;
2678 };
2679 
2680 #include <linux/notifier.h>
2681 
2682 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2683  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2684  * adding new types.
2685  */
2686 enum netdev_cmd {
2687 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2688 	NETDEV_DOWN,
2689 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2690 				   detected a hardware crash and restarted
2691 				   - we can use this eg to kick tcp sessions
2692 				   once done */
2693 	NETDEV_CHANGE,		/* Notify device state change */
2694 	NETDEV_REGISTER,
2695 	NETDEV_UNREGISTER,
2696 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2697 	NETDEV_CHANGEADDR,	/* notify after the address change */
2698 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2699 	NETDEV_GOING_DOWN,
2700 	NETDEV_CHANGENAME,
2701 	NETDEV_FEAT_CHANGE,
2702 	NETDEV_BONDING_FAILOVER,
2703 	NETDEV_PRE_UP,
2704 	NETDEV_PRE_TYPE_CHANGE,
2705 	NETDEV_POST_TYPE_CHANGE,
2706 	NETDEV_POST_INIT,
2707 	NETDEV_RELEASE,
2708 	NETDEV_NOTIFY_PEERS,
2709 	NETDEV_JOIN,
2710 	NETDEV_CHANGEUPPER,
2711 	NETDEV_RESEND_IGMP,
2712 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2713 	NETDEV_CHANGEINFODATA,
2714 	NETDEV_BONDING_INFO,
2715 	NETDEV_PRECHANGEUPPER,
2716 	NETDEV_CHANGELOWERSTATE,
2717 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2718 	NETDEV_UDP_TUNNEL_DROP_INFO,
2719 	NETDEV_CHANGE_TX_QUEUE_LEN,
2720 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2721 	NETDEV_CVLAN_FILTER_DROP_INFO,
2722 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2723 	NETDEV_SVLAN_FILTER_DROP_INFO,
2724 };
2725 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2726 
2727 int register_netdevice_notifier(struct notifier_block *nb);
2728 int unregister_netdevice_notifier(struct notifier_block *nb);
2729 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2730 int unregister_netdevice_notifier_net(struct net *net,
2731 				      struct notifier_block *nb);
2732 int register_netdevice_notifier_dev_net(struct net_device *dev,
2733 					struct notifier_block *nb,
2734 					struct netdev_net_notifier *nn);
2735 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2736 					  struct notifier_block *nb,
2737 					  struct netdev_net_notifier *nn);
2738 
2739 struct netdev_notifier_info {
2740 	struct net_device	*dev;
2741 	struct netlink_ext_ack	*extack;
2742 };
2743 
2744 struct netdev_notifier_info_ext {
2745 	struct netdev_notifier_info info; /* must be first */
2746 	union {
2747 		u32 mtu;
2748 	} ext;
2749 };
2750 
2751 struct netdev_notifier_change_info {
2752 	struct netdev_notifier_info info; /* must be first */
2753 	unsigned int flags_changed;
2754 };
2755 
2756 struct netdev_notifier_changeupper_info {
2757 	struct netdev_notifier_info info; /* must be first */
2758 	struct net_device *upper_dev; /* new upper dev */
2759 	bool master; /* is upper dev master */
2760 	bool linking; /* is the notification for link or unlink */
2761 	void *upper_info; /* upper dev info */
2762 };
2763 
2764 struct netdev_notifier_changelowerstate_info {
2765 	struct netdev_notifier_info info; /* must be first */
2766 	void *lower_state_info; /* is lower dev state */
2767 };
2768 
2769 struct netdev_notifier_pre_changeaddr_info {
2770 	struct netdev_notifier_info info; /* must be first */
2771 	const unsigned char *dev_addr;
2772 };
2773 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2774 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2775 					     struct net_device *dev)
2776 {
2777 	info->dev = dev;
2778 	info->extack = NULL;
2779 }
2780 
2781 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2782 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2783 {
2784 	return info->dev;
2785 }
2786 
2787 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)2788 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2789 {
2790 	return info->extack;
2791 }
2792 
2793 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2794 
2795 
2796 extern rwlock_t				dev_base_lock;		/* Device list lock */
2797 
2798 #define for_each_netdev(net, d)		\
2799 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2800 #define for_each_netdev_reverse(net, d)	\
2801 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2802 #define for_each_netdev_rcu(net, d)		\
2803 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2804 #define for_each_netdev_safe(net, d, n)	\
2805 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2806 #define for_each_netdev_continue(net, d)		\
2807 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2808 #define for_each_netdev_continue_reverse(net, d)		\
2809 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2810 						     dev_list)
2811 #define for_each_netdev_continue_rcu(net, d)		\
2812 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2813 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2814 		for_each_netdev_rcu(&init_net, slave)	\
2815 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2816 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2817 
next_net_device(struct net_device * dev)2818 static inline struct net_device *next_net_device(struct net_device *dev)
2819 {
2820 	struct list_head *lh;
2821 	struct net *net;
2822 
2823 	net = dev_net(dev);
2824 	lh = dev->dev_list.next;
2825 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2826 }
2827 
next_net_device_rcu(struct net_device * dev)2828 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2829 {
2830 	struct list_head *lh;
2831 	struct net *net;
2832 
2833 	net = dev_net(dev);
2834 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2835 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2836 }
2837 
first_net_device(struct net * net)2838 static inline struct net_device *first_net_device(struct net *net)
2839 {
2840 	return list_empty(&net->dev_base_head) ? NULL :
2841 		net_device_entry(net->dev_base_head.next);
2842 }
2843 
first_net_device_rcu(struct net * net)2844 static inline struct net_device *first_net_device_rcu(struct net *net)
2845 {
2846 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2847 
2848 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2849 }
2850 
2851 int netdev_boot_setup_check(struct net_device *dev);
2852 unsigned long netdev_boot_base(const char *prefix, int unit);
2853 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2854 				       const char *hwaddr);
2855 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2856 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2857 void dev_add_pack(struct packet_type *pt);
2858 void dev_remove_pack(struct packet_type *pt);
2859 void __dev_remove_pack(struct packet_type *pt);
2860 void dev_add_offload(struct packet_offload *po);
2861 void dev_remove_offload(struct packet_offload *po);
2862 
2863 int dev_get_iflink(const struct net_device *dev);
2864 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2865 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2866 				      unsigned short mask);
2867 struct net_device *dev_get_by_name(struct net *net, const char *name);
2868 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2869 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2870 int dev_alloc_name(struct net_device *dev, const char *name);
2871 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2872 void dev_close(struct net_device *dev);
2873 void dev_close_many(struct list_head *head, bool unlink);
2874 void dev_disable_lro(struct net_device *dev);
2875 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2876 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2877 		     struct net_device *sb_dev);
2878 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2879 		       struct net_device *sb_dev);
2880 
2881 int dev_queue_xmit(struct sk_buff *skb);
2882 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2883 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2884 
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)2885 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2886 {
2887 	int ret;
2888 
2889 	ret = __dev_direct_xmit(skb, queue_id);
2890 	if (!dev_xmit_complete(ret))
2891 		kfree_skb(skb);
2892 	return ret;
2893 }
2894 
2895 int register_netdevice(struct net_device *dev);
2896 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2897 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)2898 static inline void unregister_netdevice(struct net_device *dev)
2899 {
2900 	unregister_netdevice_queue(dev, NULL);
2901 }
2902 
2903 int netdev_refcnt_read(const struct net_device *dev);
2904 void free_netdev(struct net_device *dev);
2905 void netdev_freemem(struct net_device *dev);
2906 int init_dummy_netdev(struct net_device *dev);
2907 
2908 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2909 					 struct sk_buff *skb,
2910 					 bool all_slaves);
2911 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2912 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2913 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2914 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2915 int netdev_get_name(struct net *net, char *name, int ifindex);
2916 int dev_restart(struct net_device *dev);
2917 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2918 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2919 
skb_gro_offset(const struct sk_buff * skb)2920 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2921 {
2922 	return NAPI_GRO_CB(skb)->data_offset;
2923 }
2924 
skb_gro_len(const struct sk_buff * skb)2925 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2926 {
2927 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2928 }
2929 
skb_gro_pull(struct sk_buff * skb,unsigned int len)2930 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2931 {
2932 	NAPI_GRO_CB(skb)->data_offset += len;
2933 }
2934 
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)2935 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2936 					unsigned int offset)
2937 {
2938 	return NAPI_GRO_CB(skb)->frag0 + offset;
2939 }
2940 
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)2941 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2942 {
2943 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2944 }
2945 
skb_gro_frag0_invalidate(struct sk_buff * skb)2946 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2947 {
2948 	NAPI_GRO_CB(skb)->frag0 = NULL;
2949 	NAPI_GRO_CB(skb)->frag0_len = 0;
2950 }
2951 
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)2952 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2953 					unsigned int offset)
2954 {
2955 	if (!pskb_may_pull(skb, hlen))
2956 		return NULL;
2957 
2958 	skb_gro_frag0_invalidate(skb);
2959 	return skb->data + offset;
2960 }
2961 
skb_gro_network_header(struct sk_buff * skb)2962 static inline void *skb_gro_network_header(struct sk_buff *skb)
2963 {
2964 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2965 	       skb_network_offset(skb);
2966 }
2967 
skb_gro_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2968 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2969 					const void *start, unsigned int len)
2970 {
2971 	if (NAPI_GRO_CB(skb)->csum_valid)
2972 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2973 						  csum_partial(start, len, 0));
2974 }
2975 
2976 /* GRO checksum functions. These are logical equivalents of the normal
2977  * checksum functions (in skbuff.h) except that they operate on the GRO
2978  * offsets and fields in sk_buff.
2979  */
2980 
2981 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2982 
skb_at_gro_remcsum_start(struct sk_buff * skb)2983 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2984 {
2985 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2986 }
2987 
__skb_gro_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)2988 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2989 						      bool zero_okay,
2990 						      __sum16 check)
2991 {
2992 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2993 		skb_checksum_start_offset(skb) <
2994 		 skb_gro_offset(skb)) &&
2995 		!skb_at_gro_remcsum_start(skb) &&
2996 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2997 		(!zero_okay || check));
2998 }
2999 
__skb_gro_checksum_validate_complete(struct sk_buff * skb,__wsum psum)3000 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
3001 							   __wsum psum)
3002 {
3003 	if (NAPI_GRO_CB(skb)->csum_valid &&
3004 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
3005 		return 0;
3006 
3007 	NAPI_GRO_CB(skb)->csum = psum;
3008 
3009 	return __skb_gro_checksum_complete(skb);
3010 }
3011 
skb_gro_incr_csum_unnecessary(struct sk_buff * skb)3012 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
3013 {
3014 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
3015 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
3016 		NAPI_GRO_CB(skb)->csum_cnt--;
3017 	} else {
3018 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
3019 		 * verified a new top level checksum or an encapsulated one
3020 		 * during GRO. This saves work if we fallback to normal path.
3021 		 */
3022 		__skb_incr_checksum_unnecessary(skb);
3023 	}
3024 }
3025 
3026 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
3027 				    compute_pseudo)			\
3028 ({									\
3029 	__sum16 __ret = 0;						\
3030 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
3031 		__ret = __skb_gro_checksum_validate_complete(skb,	\
3032 				compute_pseudo(skb, proto));		\
3033 	if (!__ret)							\
3034 		skb_gro_incr_csum_unnecessary(skb);			\
3035 	__ret;								\
3036 })
3037 
3038 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
3039 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
3040 
3041 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
3042 					     compute_pseudo)		\
3043 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3044 
3045 #define skb_gro_checksum_simple_validate(skb)				\
3046 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3047 
__skb_gro_checksum_convert_check(struct sk_buff * skb)3048 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3049 {
3050 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3051 		!NAPI_GRO_CB(skb)->csum_valid);
3052 }
3053 
__skb_gro_checksum_convert(struct sk_buff * skb,__wsum pseudo)3054 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3055 					      __wsum pseudo)
3056 {
3057 	NAPI_GRO_CB(skb)->csum = ~pseudo;
3058 	NAPI_GRO_CB(skb)->csum_valid = 1;
3059 }
3060 
3061 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
3062 do {									\
3063 	if (__skb_gro_checksum_convert_check(skb))			\
3064 		__skb_gro_checksum_convert(skb, 			\
3065 					   compute_pseudo(skb, proto));	\
3066 } while (0)
3067 
3068 struct gro_remcsum {
3069 	int offset;
3070 	__wsum delta;
3071 };
3072 
skb_gro_remcsum_init(struct gro_remcsum * grc)3073 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3074 {
3075 	grc->offset = 0;
3076 	grc->delta = 0;
3077 }
3078 
skb_gro_remcsum_process(struct sk_buff * skb,void * ptr,unsigned int off,size_t hdrlen,int start,int offset,struct gro_remcsum * grc,bool nopartial)3079 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3080 					    unsigned int off, size_t hdrlen,
3081 					    int start, int offset,
3082 					    struct gro_remcsum *grc,
3083 					    bool nopartial)
3084 {
3085 	__wsum delta;
3086 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3087 
3088 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3089 
3090 	if (!nopartial) {
3091 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3092 		return ptr;
3093 	}
3094 
3095 	ptr = skb_gro_header_fast(skb, off);
3096 	if (skb_gro_header_hard(skb, off + plen)) {
3097 		ptr = skb_gro_header_slow(skb, off + plen, off);
3098 		if (!ptr)
3099 			return NULL;
3100 	}
3101 
3102 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3103 			       start, offset);
3104 
3105 	/* Adjust skb->csum since we changed the packet */
3106 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3107 
3108 	grc->offset = off + hdrlen + offset;
3109 	grc->delta = delta;
3110 
3111 	return ptr;
3112 }
3113 
skb_gro_remcsum_cleanup(struct sk_buff * skb,struct gro_remcsum * grc)3114 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3115 					   struct gro_remcsum *grc)
3116 {
3117 	void *ptr;
3118 	size_t plen = grc->offset + sizeof(u16);
3119 
3120 	if (!grc->delta)
3121 		return;
3122 
3123 	ptr = skb_gro_header_fast(skb, grc->offset);
3124 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3125 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3126 		if (!ptr)
3127 			return;
3128 	}
3129 
3130 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3131 }
3132 
3133 #ifdef CONFIG_XFRM_OFFLOAD
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)3134 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3135 {
3136 	if (PTR_ERR(pp) != -EINPROGRESS)
3137 		NAPI_GRO_CB(skb)->flush |= flush;
3138 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)3139 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3140 					       struct sk_buff *pp,
3141 					       int flush,
3142 					       struct gro_remcsum *grc)
3143 {
3144 	if (PTR_ERR(pp) != -EINPROGRESS) {
3145 		NAPI_GRO_CB(skb)->flush |= flush;
3146 		skb_gro_remcsum_cleanup(skb, grc);
3147 		skb->remcsum_offload = 0;
3148 	}
3149 }
3150 #else
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)3151 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3152 {
3153 	NAPI_GRO_CB(skb)->flush |= flush;
3154 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)3155 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3156 					       struct sk_buff *pp,
3157 					       int flush,
3158 					       struct gro_remcsum *grc)
3159 {
3160 	NAPI_GRO_CB(skb)->flush |= flush;
3161 	skb_gro_remcsum_cleanup(skb, grc);
3162 	skb->remcsum_offload = 0;
3163 }
3164 #endif
3165 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)3166 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3167 				  unsigned short type,
3168 				  const void *daddr, const void *saddr,
3169 				  unsigned int len)
3170 {
3171 	if (!dev->header_ops || !dev->header_ops->create)
3172 		return 0;
3173 
3174 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3175 }
3176 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)3177 static inline int dev_parse_header(const struct sk_buff *skb,
3178 				   unsigned char *haddr)
3179 {
3180 	const struct net_device *dev = skb->dev;
3181 
3182 	if (!dev->header_ops || !dev->header_ops->parse)
3183 		return 0;
3184 	return dev->header_ops->parse(skb, haddr);
3185 }
3186 
dev_parse_header_protocol(const struct sk_buff * skb)3187 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3188 {
3189 	const struct net_device *dev = skb->dev;
3190 
3191 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3192 		return 0;
3193 	return dev->header_ops->parse_protocol(skb);
3194 }
3195 
3196 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)3197 static inline bool dev_validate_header(const struct net_device *dev,
3198 				       char *ll_header, int len)
3199 {
3200 	if (likely(len >= dev->hard_header_len))
3201 		return true;
3202 	if (len < dev->min_header_len)
3203 		return false;
3204 
3205 	if (capable(CAP_SYS_RAWIO)) {
3206 		memset(ll_header + len, 0, dev->hard_header_len - len);
3207 		return true;
3208 	}
3209 
3210 	if (dev->header_ops && dev->header_ops->validate)
3211 		return dev->header_ops->validate(ll_header, len);
3212 
3213 	return false;
3214 }
3215 
dev_has_header(const struct net_device * dev)3216 static inline bool dev_has_header(const struct net_device *dev)
3217 {
3218 	return dev->header_ops && dev->header_ops->create;
3219 }
3220 
3221 #ifdef CONFIG_NET_FLOW_LIMIT
3222 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3223 struct sd_flow_limit {
3224 	u64			count;
3225 	unsigned int		num_buckets;
3226 	unsigned int		history_head;
3227 	u16			history[FLOW_LIMIT_HISTORY];
3228 	u8			buckets[];
3229 };
3230 
3231 extern int netdev_flow_limit_table_len;
3232 #endif /* CONFIG_NET_FLOW_LIMIT */
3233 
3234 /*
3235  * Incoming packets are placed on per-CPU queues
3236  */
3237 struct softnet_data {
3238 	struct list_head	poll_list;
3239 	struct sk_buff_head	process_queue;
3240 
3241 	/* stats */
3242 	unsigned int		processed;
3243 	unsigned int		time_squeeze;
3244 	unsigned int		received_rps;
3245 #ifdef CONFIG_RPS
3246 	struct softnet_data	*rps_ipi_list;
3247 #endif
3248 #ifdef CONFIG_NET_FLOW_LIMIT
3249 	struct sd_flow_limit __rcu *flow_limit;
3250 #endif
3251 	struct Qdisc		*output_queue;
3252 	struct Qdisc		**output_queue_tailp;
3253 	struct sk_buff		*completion_queue;
3254 #ifdef CONFIG_XFRM_OFFLOAD
3255 	struct sk_buff_head	xfrm_backlog;
3256 #endif
3257 	/* written and read only by owning cpu: */
3258 	struct {
3259 		u16 recursion;
3260 		u8  more;
3261 	} xmit;
3262 #ifdef CONFIG_RPS
3263 	/* input_queue_head should be written by cpu owning this struct,
3264 	 * and only read by other cpus. Worth using a cache line.
3265 	 */
3266 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3267 
3268 	/* Elements below can be accessed between CPUs for RPS/RFS */
3269 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3270 	struct softnet_data	*rps_ipi_next;
3271 	unsigned int		cpu;
3272 	unsigned int		input_queue_tail;
3273 #endif
3274 	unsigned int		dropped;
3275 	struct sk_buff_head	input_pkt_queue;
3276 	struct napi_struct	backlog;
3277 
3278 };
3279 
input_queue_head_incr(struct softnet_data * sd)3280 static inline void input_queue_head_incr(struct softnet_data *sd)
3281 {
3282 #ifdef CONFIG_RPS
3283 	sd->input_queue_head++;
3284 #endif
3285 }
3286 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)3287 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3288 					      unsigned int *qtail)
3289 {
3290 #ifdef CONFIG_RPS
3291 	*qtail = ++sd->input_queue_tail;
3292 #endif
3293 }
3294 
3295 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3296 
dev_recursion_level(void)3297 static inline int dev_recursion_level(void)
3298 {
3299 	return this_cpu_read(softnet_data.xmit.recursion);
3300 }
3301 
3302 #define XMIT_RECURSION_LIMIT	8
dev_xmit_recursion(void)3303 static inline bool dev_xmit_recursion(void)
3304 {
3305 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3306 			XMIT_RECURSION_LIMIT);
3307 }
3308 
dev_xmit_recursion_inc(void)3309 static inline void dev_xmit_recursion_inc(void)
3310 {
3311 	__this_cpu_inc(softnet_data.xmit.recursion);
3312 }
3313 
dev_xmit_recursion_dec(void)3314 static inline void dev_xmit_recursion_dec(void)
3315 {
3316 	__this_cpu_dec(softnet_data.xmit.recursion);
3317 }
3318 
3319 void __netif_schedule(struct Qdisc *q);
3320 void netif_schedule_queue(struct netdev_queue *txq);
3321 
netif_tx_schedule_all(struct net_device * dev)3322 static inline void netif_tx_schedule_all(struct net_device *dev)
3323 {
3324 	unsigned int i;
3325 
3326 	for (i = 0; i < dev->num_tx_queues; i++)
3327 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3328 }
3329 
netif_tx_start_queue(struct netdev_queue * dev_queue)3330 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3331 {
3332 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3333 }
3334 
3335 /**
3336  *	netif_start_queue - allow transmit
3337  *	@dev: network device
3338  *
3339  *	Allow upper layers to call the device hard_start_xmit routine.
3340  */
netif_start_queue(struct net_device * dev)3341 static inline void netif_start_queue(struct net_device *dev)
3342 {
3343 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3344 }
3345 
netif_tx_start_all_queues(struct net_device * dev)3346 static inline void netif_tx_start_all_queues(struct net_device *dev)
3347 {
3348 	unsigned int i;
3349 
3350 	for (i = 0; i < dev->num_tx_queues; i++) {
3351 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3352 		netif_tx_start_queue(txq);
3353 	}
3354 }
3355 
3356 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3357 
3358 /**
3359  *	netif_wake_queue - restart transmit
3360  *	@dev: network device
3361  *
3362  *	Allow upper layers to call the device hard_start_xmit routine.
3363  *	Used for flow control when transmit resources are available.
3364  */
netif_wake_queue(struct net_device * dev)3365 static inline void netif_wake_queue(struct net_device *dev)
3366 {
3367 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3368 }
3369 
netif_tx_wake_all_queues(struct net_device * dev)3370 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3371 {
3372 	unsigned int i;
3373 
3374 	for (i = 0; i < dev->num_tx_queues; i++) {
3375 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3376 		netif_tx_wake_queue(txq);
3377 	}
3378 }
3379 
netif_tx_stop_queue(struct netdev_queue * dev_queue)3380 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3381 {
3382 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3383 }
3384 
3385 /**
3386  *	netif_stop_queue - stop transmitted packets
3387  *	@dev: network device
3388  *
3389  *	Stop upper layers calling the device hard_start_xmit routine.
3390  *	Used for flow control when transmit resources are unavailable.
3391  */
netif_stop_queue(struct net_device * dev)3392 static inline void netif_stop_queue(struct net_device *dev)
3393 {
3394 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3395 }
3396 
3397 void netif_tx_stop_all_queues(struct net_device *dev);
3398 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3399 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3400 {
3401 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3402 }
3403 
3404 /**
3405  *	netif_queue_stopped - test if transmit queue is flowblocked
3406  *	@dev: network device
3407  *
3408  *	Test if transmit queue on device is currently unable to send.
3409  */
netif_queue_stopped(const struct net_device * dev)3410 static inline bool netif_queue_stopped(const struct net_device *dev)
3411 {
3412 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3413 }
3414 
netif_xmit_stopped(const struct netdev_queue * dev_queue)3415 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3416 {
3417 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3418 }
3419 
3420 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3421 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3422 {
3423 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3424 }
3425 
3426 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3427 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3428 {
3429 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3430 }
3431 
3432 /**
3433  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3434  *	@dev_queue: pointer to transmit queue
3435  *
3436  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3437  * to give appropriate hint to the CPU.
3438  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3439 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3440 {
3441 #ifdef CONFIG_BQL
3442 	prefetchw(&dev_queue->dql.num_queued);
3443 #endif
3444 }
3445 
3446 /**
3447  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3448  *	@dev_queue: pointer to transmit queue
3449  *
3450  * BQL enabled drivers might use this helper in their TX completion path,
3451  * to give appropriate hint to the CPU.
3452  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3453 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3454 {
3455 #ifdef CONFIG_BQL
3456 	prefetchw(&dev_queue->dql.limit);
3457 #endif
3458 }
3459 
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3460 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3461 					unsigned int bytes)
3462 {
3463 #ifdef CONFIG_BQL
3464 	dql_queued(&dev_queue->dql, bytes);
3465 
3466 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3467 		return;
3468 
3469 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3470 
3471 	/*
3472 	 * The XOFF flag must be set before checking the dql_avail below,
3473 	 * because in netdev_tx_completed_queue we update the dql_completed
3474 	 * before checking the XOFF flag.
3475 	 */
3476 	smp_mb();
3477 
3478 	/* check again in case another CPU has just made room avail */
3479 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3480 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3481 #endif
3482 }
3483 
3484 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3485  * that they should not test BQL status themselves.
3486  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3487  * skb of a batch.
3488  * Returns true if the doorbell must be used to kick the NIC.
3489  */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3490 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3491 					  unsigned int bytes,
3492 					  bool xmit_more)
3493 {
3494 	if (xmit_more) {
3495 #ifdef CONFIG_BQL
3496 		dql_queued(&dev_queue->dql, bytes);
3497 #endif
3498 		return netif_tx_queue_stopped(dev_queue);
3499 	}
3500 	netdev_tx_sent_queue(dev_queue, bytes);
3501 	return true;
3502 }
3503 
3504 /**
3505  * 	netdev_sent_queue - report the number of bytes queued to hardware
3506  * 	@dev: network device
3507  * 	@bytes: number of bytes queued to the hardware device queue
3508  *
3509  * 	Report the number of bytes queued for sending/completion to the network
3510  * 	device hardware queue. @bytes should be a good approximation and should
3511  * 	exactly match netdev_completed_queue() @bytes
3512  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3513 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3514 {
3515 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3516 }
3517 
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3518 static inline bool __netdev_sent_queue(struct net_device *dev,
3519 				       unsigned int bytes,
3520 				       bool xmit_more)
3521 {
3522 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3523 				      xmit_more);
3524 }
3525 
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3526 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3527 					     unsigned int pkts, unsigned int bytes)
3528 {
3529 #ifdef CONFIG_BQL
3530 	if (unlikely(!bytes))
3531 		return;
3532 
3533 	dql_completed(&dev_queue->dql, bytes);
3534 
3535 	/*
3536 	 * Without the memory barrier there is a small possiblity that
3537 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3538 	 * be stopped forever
3539 	 */
3540 	smp_mb();
3541 
3542 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3543 		return;
3544 
3545 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3546 		netif_schedule_queue(dev_queue);
3547 #endif
3548 }
3549 
3550 /**
3551  * 	netdev_completed_queue - report bytes and packets completed by device
3552  * 	@dev: network device
3553  * 	@pkts: actual number of packets sent over the medium
3554  * 	@bytes: actual number of bytes sent over the medium
3555  *
3556  * 	Report the number of bytes and packets transmitted by the network device
3557  * 	hardware queue over the physical medium, @bytes must exactly match the
3558  * 	@bytes amount passed to netdev_sent_queue()
3559  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3560 static inline void netdev_completed_queue(struct net_device *dev,
3561 					  unsigned int pkts, unsigned int bytes)
3562 {
3563 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3564 }
3565 
netdev_tx_reset_queue(struct netdev_queue * q)3566 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3567 {
3568 #ifdef CONFIG_BQL
3569 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3570 	dql_reset(&q->dql);
3571 #endif
3572 }
3573 
3574 /**
3575  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3576  * 	@dev_queue: network device
3577  *
3578  * 	Reset the bytes and packet count of a network device and clear the
3579  * 	software flow control OFF bit for this network device
3580  */
netdev_reset_queue(struct net_device * dev_queue)3581 static inline void netdev_reset_queue(struct net_device *dev_queue)
3582 {
3583 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3584 }
3585 
3586 /**
3587  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3588  * 	@dev: network device
3589  * 	@queue_index: given tx queue index
3590  *
3591  * 	Returns 0 if given tx queue index >= number of device tx queues,
3592  * 	otherwise returns the originally passed tx queue index.
3593  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3594 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3595 {
3596 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3597 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3598 				     dev->name, queue_index,
3599 				     dev->real_num_tx_queues);
3600 		return 0;
3601 	}
3602 
3603 	return queue_index;
3604 }
3605 
3606 /**
3607  *	netif_running - test if up
3608  *	@dev: network device
3609  *
3610  *	Test if the device has been brought up.
3611  */
netif_running(const struct net_device * dev)3612 static inline bool netif_running(const struct net_device *dev)
3613 {
3614 	return test_bit(__LINK_STATE_START, &dev->state);
3615 }
3616 
3617 /*
3618  * Routines to manage the subqueues on a device.  We only need start,
3619  * stop, and a check if it's stopped.  All other device management is
3620  * done at the overall netdevice level.
3621  * Also test the device if we're multiqueue.
3622  */
3623 
3624 /**
3625  *	netif_start_subqueue - allow sending packets on subqueue
3626  *	@dev: network device
3627  *	@queue_index: sub queue index
3628  *
3629  * Start individual transmit queue of a device with multiple transmit queues.
3630  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3631 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3632 {
3633 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3634 
3635 	netif_tx_start_queue(txq);
3636 }
3637 
3638 /**
3639  *	netif_stop_subqueue - stop sending packets on subqueue
3640  *	@dev: network device
3641  *	@queue_index: sub queue index
3642  *
3643  * Stop individual transmit queue of a device with multiple transmit queues.
3644  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3645 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3646 {
3647 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3648 	netif_tx_stop_queue(txq);
3649 }
3650 
3651 /**
3652  *	netif_subqueue_stopped - test status of subqueue
3653  *	@dev: network device
3654  *	@queue_index: sub queue index
3655  *
3656  * Check individual transmit queue of a device with multiple transmit queues.
3657  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3658 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3659 					    u16 queue_index)
3660 {
3661 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3662 
3663 	return netif_tx_queue_stopped(txq);
3664 }
3665 
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3666 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3667 					  struct sk_buff *skb)
3668 {
3669 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3670 }
3671 
3672 /**
3673  *	netif_wake_subqueue - allow sending packets on subqueue
3674  *	@dev: network device
3675  *	@queue_index: sub queue index
3676  *
3677  * Resume individual transmit queue of a device with multiple transmit queues.
3678  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3679 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3680 {
3681 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3682 
3683 	netif_tx_wake_queue(txq);
3684 }
3685 
3686 #ifdef CONFIG_XPS
3687 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3688 			u16 index);
3689 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3690 			  u16 index, bool is_rxqs_map);
3691 
3692 /**
3693  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3694  *	@j: CPU/Rx queue index
3695  *	@mask: bitmask of all cpus/rx queues
3696  *	@nr_bits: number of bits in the bitmask
3697  *
3698  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3699  */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3700 static inline bool netif_attr_test_mask(unsigned long j,
3701 					const unsigned long *mask,
3702 					unsigned int nr_bits)
3703 {
3704 	cpu_max_bits_warn(j, nr_bits);
3705 	return test_bit(j, mask);
3706 }
3707 
3708 /**
3709  *	netif_attr_test_online - Test for online CPU/Rx queue
3710  *	@j: CPU/Rx queue index
3711  *	@online_mask: bitmask for CPUs/Rx queues that are online
3712  *	@nr_bits: number of bits in the bitmask
3713  *
3714  * Returns true if a CPU/Rx queue is online.
3715  */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3716 static inline bool netif_attr_test_online(unsigned long j,
3717 					  const unsigned long *online_mask,
3718 					  unsigned int nr_bits)
3719 {
3720 	cpu_max_bits_warn(j, nr_bits);
3721 
3722 	if (online_mask)
3723 		return test_bit(j, online_mask);
3724 
3725 	return (j < nr_bits);
3726 }
3727 
3728 /**
3729  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3730  *	@n: CPU/Rx queue index
3731  *	@srcp: the cpumask/Rx queue mask pointer
3732  *	@nr_bits: number of bits in the bitmask
3733  *
3734  * Returns >= nr_bits if no further CPUs/Rx queues set.
3735  */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3736 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3737 					       unsigned int nr_bits)
3738 {
3739 	/* -1 is a legal arg here. */
3740 	if (n != -1)
3741 		cpu_max_bits_warn(n, nr_bits);
3742 
3743 	if (srcp)
3744 		return find_next_bit(srcp, nr_bits, n + 1);
3745 
3746 	return n + 1;
3747 }
3748 
3749 /**
3750  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3751  *	@n: CPU/Rx queue index
3752  *	@src1p: the first CPUs/Rx queues mask pointer
3753  *	@src2p: the second CPUs/Rx queues mask pointer
3754  *	@nr_bits: number of bits in the bitmask
3755  *
3756  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3757  */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3758 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3759 					  const unsigned long *src2p,
3760 					  unsigned int nr_bits)
3761 {
3762 	/* -1 is a legal arg here. */
3763 	if (n != -1)
3764 		cpu_max_bits_warn(n, nr_bits);
3765 
3766 	if (src1p && src2p)
3767 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3768 	else if (src1p)
3769 		return find_next_bit(src1p, nr_bits, n + 1);
3770 	else if (src2p)
3771 		return find_next_bit(src2p, nr_bits, n + 1);
3772 
3773 	return n + 1;
3774 }
3775 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3776 static inline int netif_set_xps_queue(struct net_device *dev,
3777 				      const struct cpumask *mask,
3778 				      u16 index)
3779 {
3780 	return 0;
3781 }
3782 
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)3783 static inline int __netif_set_xps_queue(struct net_device *dev,
3784 					const unsigned long *mask,
3785 					u16 index, bool is_rxqs_map)
3786 {
3787 	return 0;
3788 }
3789 #endif
3790 
3791 /**
3792  *	netif_is_multiqueue - test if device has multiple transmit queues
3793  *	@dev: network device
3794  *
3795  * Check if device has multiple transmit queues
3796  */
netif_is_multiqueue(const struct net_device * dev)3797 static inline bool netif_is_multiqueue(const struct net_device *dev)
3798 {
3799 	return dev->num_tx_queues > 1;
3800 }
3801 
3802 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3803 
3804 #ifdef CONFIG_SYSFS
3805 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3806 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3807 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3808 						unsigned int rxqs)
3809 {
3810 	dev->real_num_rx_queues = rxqs;
3811 	return 0;
3812 }
3813 #endif
3814 
3815 static inline struct netdev_rx_queue *
__netif_get_rx_queue(struct net_device * dev,unsigned int rxq)3816 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3817 {
3818 	return dev->_rx + rxq;
3819 }
3820 
3821 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3822 static inline unsigned int get_netdev_rx_queue_index(
3823 		struct netdev_rx_queue *queue)
3824 {
3825 	struct net_device *dev = queue->dev;
3826 	int index = queue - dev->_rx;
3827 
3828 	BUG_ON(index >= dev->num_rx_queues);
3829 	return index;
3830 }
3831 #endif
3832 
3833 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3834 int netif_get_num_default_rss_queues(void);
3835 
3836 enum skb_free_reason {
3837 	SKB_REASON_CONSUMED,
3838 	SKB_REASON_DROPPED,
3839 };
3840 
3841 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3842 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3843 
3844 /*
3845  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3846  * interrupt context or with hardware interrupts being disabled.
3847  * (in_irq() || irqs_disabled())
3848  *
3849  * We provide four helpers that can be used in following contexts :
3850  *
3851  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3852  *  replacing kfree_skb(skb)
3853  *
3854  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3855  *  Typically used in place of consume_skb(skb) in TX completion path
3856  *
3857  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3858  *  replacing kfree_skb(skb)
3859  *
3860  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3861  *  and consumed a packet. Used in place of consume_skb(skb)
3862  */
dev_kfree_skb_irq(struct sk_buff * skb)3863 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3864 {
3865 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3866 }
3867 
dev_consume_skb_irq(struct sk_buff * skb)3868 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3869 {
3870 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3871 }
3872 
dev_kfree_skb_any(struct sk_buff * skb)3873 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3874 {
3875 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3876 }
3877 
dev_consume_skb_any(struct sk_buff * skb)3878 static inline void dev_consume_skb_any(struct sk_buff *skb)
3879 {
3880 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3881 }
3882 
3883 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3884 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3885 int netif_rx(struct sk_buff *skb);
3886 int netif_rx_ni(struct sk_buff *skb);
3887 int netif_rx_any_context(struct sk_buff *skb);
3888 int netif_receive_skb(struct sk_buff *skb);
3889 int netif_receive_skb_core(struct sk_buff *skb);
3890 void netif_receive_skb_list(struct list_head *head);
3891 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3892 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3893 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3894 gro_result_t napi_gro_frags(struct napi_struct *napi);
3895 struct packet_offload *gro_find_receive_by_type(__be16 type);
3896 struct packet_offload *gro_find_complete_by_type(__be16 type);
3897 
napi_free_frags(struct napi_struct * napi)3898 static inline void napi_free_frags(struct napi_struct *napi)
3899 {
3900 	kfree_skb(napi->skb);
3901 	napi->skb = NULL;
3902 }
3903 
3904 bool netdev_is_rx_handler_busy(struct net_device *dev);
3905 int netdev_rx_handler_register(struct net_device *dev,
3906 			       rx_handler_func_t *rx_handler,
3907 			       void *rx_handler_data);
3908 void netdev_rx_handler_unregister(struct net_device *dev);
3909 
3910 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)3911 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3912 {
3913 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3914 }
3915 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3916 		bool *need_copyout);
3917 int dev_ifconf(struct net *net, struct ifconf *, int);
3918 int dev_ethtool(struct net *net, struct ifreq *);
3919 unsigned int dev_get_flags(const struct net_device *);
3920 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3921 		       struct netlink_ext_ack *extack);
3922 int dev_change_flags(struct net_device *dev, unsigned int flags,
3923 		     struct netlink_ext_ack *extack);
3924 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3925 			unsigned int gchanges);
3926 int dev_change_name(struct net_device *, const char *);
3927 int dev_set_alias(struct net_device *, const char *, size_t);
3928 int dev_get_alias(const struct net_device *, char *, size_t);
3929 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3930 int __dev_set_mtu(struct net_device *, int);
3931 int dev_validate_mtu(struct net_device *dev, int mtu,
3932 		     struct netlink_ext_ack *extack);
3933 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3934 		    struct netlink_ext_ack *extack);
3935 int dev_set_mtu(struct net_device *, int);
3936 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3937 void dev_set_group(struct net_device *, int);
3938 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3939 			      struct netlink_ext_ack *extack);
3940 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3941 			struct netlink_ext_ack *extack);
3942 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3943 			     struct netlink_ext_ack *extack);
3944 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3945 int dev_change_carrier(struct net_device *, bool new_carrier);
3946 int dev_get_phys_port_id(struct net_device *dev,
3947 			 struct netdev_phys_item_id *ppid);
3948 int dev_get_phys_port_name(struct net_device *dev,
3949 			   char *name, size_t len);
3950 int dev_get_port_parent_id(struct net_device *dev,
3951 			   struct netdev_phys_item_id *ppid, bool recurse);
3952 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3953 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3954 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3955 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3956 				  u32 value);
3957 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3958 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3959 				    struct netdev_queue *txq, int *ret);
3960 
3961 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3962 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3963 		      int fd, int expected_fd, u32 flags);
3964 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3965 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3966 
3967 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3968 
3969 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3970 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3971 bool is_skb_forwardable(const struct net_device *dev,
3972 			const struct sk_buff *skb);
3973 
____dev_forward_skb(struct net_device * dev,struct sk_buff * skb)3974 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3975 					       struct sk_buff *skb)
3976 {
3977 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3978 	    unlikely(!is_skb_forwardable(dev, skb))) {
3979 		atomic_long_inc(&dev->rx_dropped);
3980 		kfree_skb(skb);
3981 		return NET_RX_DROP;
3982 	}
3983 
3984 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3985 	skb->priority = 0;
3986 	return 0;
3987 }
3988 
3989 bool dev_nit_active(struct net_device *dev);
3990 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3991 
3992 extern int		netdev_budget;
3993 extern unsigned int	netdev_budget_usecs;
3994 
3995 /* Called by rtnetlink.c:rtnl_unlock() */
3996 void netdev_run_todo(void);
3997 
3998 /**
3999  *	dev_put - release reference to device
4000  *	@dev: network device
4001  *
4002  * Release reference to device to allow it to be freed.
4003  */
dev_put(struct net_device * dev)4004 static inline void dev_put(struct net_device *dev)
4005 {
4006 	if (dev)
4007 		this_cpu_dec(*dev->pcpu_refcnt);
4008 }
4009 
4010 /**
4011  *	dev_hold - get reference to device
4012  *	@dev: network device
4013  *
4014  * Hold reference to device to keep it from being freed.
4015  */
dev_hold(struct net_device * dev)4016 static inline void dev_hold(struct net_device *dev)
4017 {
4018 	if (dev)
4019 		this_cpu_inc(*dev->pcpu_refcnt);
4020 }
4021 
4022 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4023  * and _off may be called from IRQ context, but it is caller
4024  * who is responsible for serialization of these calls.
4025  *
4026  * The name carrier is inappropriate, these functions should really be
4027  * called netif_lowerlayer_*() because they represent the state of any
4028  * kind of lower layer not just hardware media.
4029  */
4030 
4031 void linkwatch_init_dev(struct net_device *dev);
4032 void linkwatch_fire_event(struct net_device *dev);
4033 void linkwatch_forget_dev(struct net_device *dev);
4034 
4035 /**
4036  *	netif_carrier_ok - test if carrier present
4037  *	@dev: network device
4038  *
4039  * Check if carrier is present on device
4040  */
netif_carrier_ok(const struct net_device * dev)4041 static inline bool netif_carrier_ok(const struct net_device *dev)
4042 {
4043 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4044 }
4045 
4046 unsigned long dev_trans_start(struct net_device *dev);
4047 
4048 void __netdev_watchdog_up(struct net_device *dev);
4049 
4050 void netif_carrier_on(struct net_device *dev);
4051 
4052 void netif_carrier_off(struct net_device *dev);
4053 
4054 /**
4055  *	netif_dormant_on - mark device as dormant.
4056  *	@dev: network device
4057  *
4058  * Mark device as dormant (as per RFC2863).
4059  *
4060  * The dormant state indicates that the relevant interface is not
4061  * actually in a condition to pass packets (i.e., it is not 'up') but is
4062  * in a "pending" state, waiting for some external event.  For "on-
4063  * demand" interfaces, this new state identifies the situation where the
4064  * interface is waiting for events to place it in the up state.
4065  */
netif_dormant_on(struct net_device * dev)4066 static inline void netif_dormant_on(struct net_device *dev)
4067 {
4068 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4069 		linkwatch_fire_event(dev);
4070 }
4071 
4072 /**
4073  *	netif_dormant_off - set device as not dormant.
4074  *	@dev: network device
4075  *
4076  * Device is not in dormant state.
4077  */
netif_dormant_off(struct net_device * dev)4078 static inline void netif_dormant_off(struct net_device *dev)
4079 {
4080 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4081 		linkwatch_fire_event(dev);
4082 }
4083 
4084 /**
4085  *	netif_dormant - test if device is dormant
4086  *	@dev: network device
4087  *
4088  * Check if device is dormant.
4089  */
netif_dormant(const struct net_device * dev)4090 static inline bool netif_dormant(const struct net_device *dev)
4091 {
4092 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4093 }
4094 
4095 
4096 /**
4097  *	netif_testing_on - mark device as under test.
4098  *	@dev: network device
4099  *
4100  * Mark device as under test (as per RFC2863).
4101  *
4102  * The testing state indicates that some test(s) must be performed on
4103  * the interface. After completion, of the test, the interface state
4104  * will change to up, dormant, or down, as appropriate.
4105  */
netif_testing_on(struct net_device * dev)4106 static inline void netif_testing_on(struct net_device *dev)
4107 {
4108 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4109 		linkwatch_fire_event(dev);
4110 }
4111 
4112 /**
4113  *	netif_testing_off - set device as not under test.
4114  *	@dev: network device
4115  *
4116  * Device is not in testing state.
4117  */
netif_testing_off(struct net_device * dev)4118 static inline void netif_testing_off(struct net_device *dev)
4119 {
4120 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4121 		linkwatch_fire_event(dev);
4122 }
4123 
4124 /**
4125  *	netif_testing - test if device is under test
4126  *	@dev: network device
4127  *
4128  * Check if device is under test
4129  */
netif_testing(const struct net_device * dev)4130 static inline bool netif_testing(const struct net_device *dev)
4131 {
4132 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4133 }
4134 
4135 
4136 /**
4137  *	netif_oper_up - test if device is operational
4138  *	@dev: network device
4139  *
4140  * Check if carrier is operational
4141  */
netif_oper_up(const struct net_device * dev)4142 static inline bool netif_oper_up(const struct net_device *dev)
4143 {
4144 	return (dev->operstate == IF_OPER_UP ||
4145 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4146 }
4147 
4148 /**
4149  *	netif_device_present - is device available or removed
4150  *	@dev: network device
4151  *
4152  * Check if device has not been removed from system.
4153  */
netif_device_present(struct net_device * dev)4154 static inline bool netif_device_present(struct net_device *dev)
4155 {
4156 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4157 }
4158 
4159 void netif_device_detach(struct net_device *dev);
4160 
4161 void netif_device_attach(struct net_device *dev);
4162 
4163 /*
4164  * Network interface message level settings
4165  */
4166 
4167 enum {
4168 	NETIF_MSG_DRV_BIT,
4169 	NETIF_MSG_PROBE_BIT,
4170 	NETIF_MSG_LINK_BIT,
4171 	NETIF_MSG_TIMER_BIT,
4172 	NETIF_MSG_IFDOWN_BIT,
4173 	NETIF_MSG_IFUP_BIT,
4174 	NETIF_MSG_RX_ERR_BIT,
4175 	NETIF_MSG_TX_ERR_BIT,
4176 	NETIF_MSG_TX_QUEUED_BIT,
4177 	NETIF_MSG_INTR_BIT,
4178 	NETIF_MSG_TX_DONE_BIT,
4179 	NETIF_MSG_RX_STATUS_BIT,
4180 	NETIF_MSG_PKTDATA_BIT,
4181 	NETIF_MSG_HW_BIT,
4182 	NETIF_MSG_WOL_BIT,
4183 
4184 	/* When you add a new bit above, update netif_msg_class_names array
4185 	 * in net/ethtool/common.c
4186 	 */
4187 	NETIF_MSG_CLASS_COUNT,
4188 };
4189 /* Both ethtool_ops interface and internal driver implementation use u32 */
4190 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4191 
4192 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4193 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4194 
4195 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4196 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4197 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4198 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4199 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4200 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4201 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4202 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4203 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4204 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4205 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4206 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4207 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4208 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4209 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4210 
4211 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4212 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4213 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4214 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4215 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4216 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4217 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4218 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4219 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4220 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4221 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4222 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4223 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4224 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4225 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4226 
netif_msg_init(int debug_value,int default_msg_enable_bits)4227 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4228 {
4229 	/* use default */
4230 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4231 		return default_msg_enable_bits;
4232 	if (debug_value == 0)	/* no output */
4233 		return 0;
4234 	/* set low N bits */
4235 	return (1U << debug_value) - 1;
4236 }
4237 
__netif_tx_lock(struct netdev_queue * txq,int cpu)4238 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4239 {
4240 	spin_lock(&txq->_xmit_lock);
4241 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4242 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4243 }
4244 
__netif_tx_acquire(struct netdev_queue * txq)4245 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4246 {
4247 	__acquire(&txq->_xmit_lock);
4248 	return true;
4249 }
4250 
__netif_tx_release(struct netdev_queue * txq)4251 static inline void __netif_tx_release(struct netdev_queue *txq)
4252 {
4253 	__release(&txq->_xmit_lock);
4254 }
4255 
__netif_tx_lock_bh(struct netdev_queue * txq)4256 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4257 {
4258 	spin_lock_bh(&txq->_xmit_lock);
4259 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4260 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4261 }
4262 
__netif_tx_trylock(struct netdev_queue * txq)4263 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4264 {
4265 	bool ok = spin_trylock(&txq->_xmit_lock);
4266 
4267 	if (likely(ok)) {
4268 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4269 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4270 	}
4271 	return ok;
4272 }
4273 
__netif_tx_unlock(struct netdev_queue * txq)4274 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4275 {
4276 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4277 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4278 	spin_unlock(&txq->_xmit_lock);
4279 }
4280 
__netif_tx_unlock_bh(struct netdev_queue * txq)4281 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4282 {
4283 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4284 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4285 	spin_unlock_bh(&txq->_xmit_lock);
4286 }
4287 
txq_trans_update(struct netdev_queue * txq)4288 static inline void txq_trans_update(struct netdev_queue *txq)
4289 {
4290 	if (txq->xmit_lock_owner != -1)
4291 		txq->trans_start = jiffies;
4292 }
4293 
4294 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)4295 static inline void netif_trans_update(struct net_device *dev)
4296 {
4297 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4298 
4299 	if (txq->trans_start != jiffies)
4300 		txq->trans_start = jiffies;
4301 }
4302 
4303 /**
4304  *	netif_tx_lock - grab network device transmit lock
4305  *	@dev: network device
4306  *
4307  * Get network device transmit lock
4308  */
netif_tx_lock(struct net_device * dev)4309 static inline void netif_tx_lock(struct net_device *dev)
4310 {
4311 	unsigned int i;
4312 	int cpu;
4313 
4314 	spin_lock(&dev->tx_global_lock);
4315 	cpu = smp_processor_id();
4316 	for (i = 0; i < dev->num_tx_queues; i++) {
4317 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4318 
4319 		/* We are the only thread of execution doing a
4320 		 * freeze, but we have to grab the _xmit_lock in
4321 		 * order to synchronize with threads which are in
4322 		 * the ->hard_start_xmit() handler and already
4323 		 * checked the frozen bit.
4324 		 */
4325 		__netif_tx_lock(txq, cpu);
4326 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4327 		__netif_tx_unlock(txq);
4328 	}
4329 }
4330 
netif_tx_lock_bh(struct net_device * dev)4331 static inline void netif_tx_lock_bh(struct net_device *dev)
4332 {
4333 	local_bh_disable();
4334 	netif_tx_lock(dev);
4335 }
4336 
netif_tx_unlock(struct net_device * dev)4337 static inline void netif_tx_unlock(struct net_device *dev)
4338 {
4339 	unsigned int i;
4340 
4341 	for (i = 0; i < dev->num_tx_queues; i++) {
4342 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4343 
4344 		/* No need to grab the _xmit_lock here.  If the
4345 		 * queue is not stopped for another reason, we
4346 		 * force a schedule.
4347 		 */
4348 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4349 		netif_schedule_queue(txq);
4350 	}
4351 	spin_unlock(&dev->tx_global_lock);
4352 }
4353 
netif_tx_unlock_bh(struct net_device * dev)4354 static inline void netif_tx_unlock_bh(struct net_device *dev)
4355 {
4356 	netif_tx_unlock(dev);
4357 	local_bh_enable();
4358 }
4359 
4360 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4361 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4362 		__netif_tx_lock(txq, cpu);		\
4363 	} else {					\
4364 		__netif_tx_acquire(txq);		\
4365 	}						\
4366 }
4367 
4368 #define HARD_TX_TRYLOCK(dev, txq)			\
4369 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4370 		__netif_tx_trylock(txq) :		\
4371 		__netif_tx_acquire(txq))
4372 
4373 #define HARD_TX_UNLOCK(dev, txq) {			\
4374 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4375 		__netif_tx_unlock(txq);			\
4376 	} else {					\
4377 		__netif_tx_release(txq);		\
4378 	}						\
4379 }
4380 
netif_tx_disable(struct net_device * dev)4381 static inline void netif_tx_disable(struct net_device *dev)
4382 {
4383 	unsigned int i;
4384 	int cpu;
4385 
4386 	local_bh_disable();
4387 	cpu = smp_processor_id();
4388 	spin_lock(&dev->tx_global_lock);
4389 	for (i = 0; i < dev->num_tx_queues; i++) {
4390 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4391 
4392 		__netif_tx_lock(txq, cpu);
4393 		netif_tx_stop_queue(txq);
4394 		__netif_tx_unlock(txq);
4395 	}
4396 	spin_unlock(&dev->tx_global_lock);
4397 	local_bh_enable();
4398 }
4399 
netif_addr_lock(struct net_device * dev)4400 static inline void netif_addr_lock(struct net_device *dev)
4401 {
4402 	unsigned char nest_level = 0;
4403 
4404 #ifdef CONFIG_LOCKDEP
4405 	nest_level = dev->nested_level;
4406 #endif
4407 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4408 }
4409 
netif_addr_lock_bh(struct net_device * dev)4410 static inline void netif_addr_lock_bh(struct net_device *dev)
4411 {
4412 	unsigned char nest_level = 0;
4413 
4414 #ifdef CONFIG_LOCKDEP
4415 	nest_level = dev->nested_level;
4416 #endif
4417 	local_bh_disable();
4418 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4419 }
4420 
netif_addr_unlock(struct net_device * dev)4421 static inline void netif_addr_unlock(struct net_device *dev)
4422 {
4423 	spin_unlock(&dev->addr_list_lock);
4424 }
4425 
netif_addr_unlock_bh(struct net_device * dev)4426 static inline void netif_addr_unlock_bh(struct net_device *dev)
4427 {
4428 	spin_unlock_bh(&dev->addr_list_lock);
4429 }
4430 
4431 /*
4432  * dev_addrs walker. Should be used only for read access. Call with
4433  * rcu_read_lock held.
4434  */
4435 #define for_each_dev_addr(dev, ha) \
4436 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4437 
4438 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4439 
4440 void ether_setup(struct net_device *dev);
4441 
4442 /* Support for loadable net-drivers */
4443 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4444 				    unsigned char name_assign_type,
4445 				    void (*setup)(struct net_device *),
4446 				    unsigned int txqs, unsigned int rxqs);
4447 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4448 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4449 
4450 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4451 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4452 			 count)
4453 
4454 int register_netdev(struct net_device *dev);
4455 void unregister_netdev(struct net_device *dev);
4456 
4457 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4458 
4459 /* General hardware address lists handling functions */
4460 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4461 		   struct netdev_hw_addr_list *from_list, int addr_len);
4462 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4463 		      struct netdev_hw_addr_list *from_list, int addr_len);
4464 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4465 		       struct net_device *dev,
4466 		       int (*sync)(struct net_device *, const unsigned char *),
4467 		       int (*unsync)(struct net_device *,
4468 				     const unsigned char *));
4469 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4470 			   struct net_device *dev,
4471 			   int (*sync)(struct net_device *,
4472 				       const unsigned char *, int),
4473 			   int (*unsync)(struct net_device *,
4474 					 const unsigned char *, int));
4475 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4476 			      struct net_device *dev,
4477 			      int (*unsync)(struct net_device *,
4478 					    const unsigned char *, int));
4479 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4480 			  struct net_device *dev,
4481 			  int (*unsync)(struct net_device *,
4482 					const unsigned char *));
4483 void __hw_addr_init(struct netdev_hw_addr_list *list);
4484 
4485 /* Functions used for device addresses handling */
4486 static inline void
__dev_addr_set(struct net_device * dev,const u8 * addr,size_t len)4487 __dev_addr_set(struct net_device *dev, const u8 *addr, size_t len)
4488 {
4489 	memcpy(dev->dev_addr, addr, len);
4490 }
4491 
dev_addr_set(struct net_device * dev,const u8 * addr)4492 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4493 {
4494 	__dev_addr_set(dev, addr, dev->addr_len);
4495 }
4496 
4497 static inline void
dev_addr_mod(struct net_device * dev,unsigned int offset,const u8 * addr,size_t len)4498 dev_addr_mod(struct net_device *dev, unsigned int offset,
4499 	     const u8 *addr, size_t len)
4500 {
4501 	memcpy(&dev->dev_addr[offset], addr, len);
4502 }
4503 
4504 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4505 		 unsigned char addr_type);
4506 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4507 		 unsigned char addr_type);
4508 void dev_addr_flush(struct net_device *dev);
4509 int dev_addr_init(struct net_device *dev);
4510 
4511 /* Functions used for unicast addresses handling */
4512 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4513 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4514 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4515 int dev_uc_sync(struct net_device *to, struct net_device *from);
4516 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4517 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4518 void dev_uc_flush(struct net_device *dev);
4519 void dev_uc_init(struct net_device *dev);
4520 
4521 /**
4522  *  __dev_uc_sync - Synchonize device's unicast list
4523  *  @dev:  device to sync
4524  *  @sync: function to call if address should be added
4525  *  @unsync: function to call if address should be removed
4526  *
4527  *  Add newly added addresses to the interface, and release
4528  *  addresses that have been deleted.
4529  */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4530 static inline int __dev_uc_sync(struct net_device *dev,
4531 				int (*sync)(struct net_device *,
4532 					    const unsigned char *),
4533 				int (*unsync)(struct net_device *,
4534 					      const unsigned char *))
4535 {
4536 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4537 }
4538 
4539 /**
4540  *  __dev_uc_unsync - Remove synchronized addresses from device
4541  *  @dev:  device to sync
4542  *  @unsync: function to call if address should be removed
4543  *
4544  *  Remove all addresses that were added to the device by dev_uc_sync().
4545  */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4546 static inline void __dev_uc_unsync(struct net_device *dev,
4547 				   int (*unsync)(struct net_device *,
4548 						 const unsigned char *))
4549 {
4550 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4551 }
4552 
4553 /* Functions used for multicast addresses handling */
4554 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4555 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4556 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4557 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4558 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4559 int dev_mc_sync(struct net_device *to, struct net_device *from);
4560 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4561 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4562 void dev_mc_flush(struct net_device *dev);
4563 void dev_mc_init(struct net_device *dev);
4564 
4565 /**
4566  *  __dev_mc_sync - Synchonize device's multicast list
4567  *  @dev:  device to sync
4568  *  @sync: function to call if address should be added
4569  *  @unsync: function to call if address should be removed
4570  *
4571  *  Add newly added addresses to the interface, and release
4572  *  addresses that have been deleted.
4573  */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4574 static inline int __dev_mc_sync(struct net_device *dev,
4575 				int (*sync)(struct net_device *,
4576 					    const unsigned char *),
4577 				int (*unsync)(struct net_device *,
4578 					      const unsigned char *))
4579 {
4580 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4581 }
4582 
4583 /**
4584  *  __dev_mc_unsync - Remove synchronized addresses from device
4585  *  @dev:  device to sync
4586  *  @unsync: function to call if address should be removed
4587  *
4588  *  Remove all addresses that were added to the device by dev_mc_sync().
4589  */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4590 static inline void __dev_mc_unsync(struct net_device *dev,
4591 				   int (*unsync)(struct net_device *,
4592 						 const unsigned char *))
4593 {
4594 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4595 }
4596 
4597 /* Functions used for secondary unicast and multicast support */
4598 void dev_set_rx_mode(struct net_device *dev);
4599 void __dev_set_rx_mode(struct net_device *dev);
4600 int dev_set_promiscuity(struct net_device *dev, int inc);
4601 int dev_set_allmulti(struct net_device *dev, int inc);
4602 void netdev_state_change(struct net_device *dev);
4603 void netdev_notify_peers(struct net_device *dev);
4604 void netdev_features_change(struct net_device *dev);
4605 /* Load a device via the kmod */
4606 void dev_load(struct net *net, const char *name);
4607 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4608 					struct rtnl_link_stats64 *storage);
4609 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4610 			     const struct net_device_stats *netdev_stats);
4611 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4612 			   const struct pcpu_sw_netstats __percpu *netstats);
4613 
4614 extern int		netdev_max_backlog;
4615 extern int		netdev_tstamp_prequeue;
4616 extern int		weight_p;
4617 extern int		dev_weight_rx_bias;
4618 extern int		dev_weight_tx_bias;
4619 extern int		dev_rx_weight;
4620 extern int		dev_tx_weight;
4621 extern int		gro_normal_batch;
4622 
4623 enum {
4624 	NESTED_SYNC_IMM_BIT,
4625 	NESTED_SYNC_TODO_BIT,
4626 };
4627 
4628 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4629 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4630 
4631 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4632 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4633 
4634 struct netdev_nested_priv {
4635 	unsigned char flags;
4636 	void *data;
4637 };
4638 
4639 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4640 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4641 						     struct list_head **iter);
4642 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4643 						     struct list_head **iter);
4644 
4645 #ifdef CONFIG_LOCKDEP
4646 static LIST_HEAD(net_unlink_list);
4647 
net_unlink_todo(struct net_device * dev)4648 static inline void net_unlink_todo(struct net_device *dev)
4649 {
4650 	if (list_empty(&dev->unlink_list))
4651 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4652 }
4653 #endif
4654 
4655 /* iterate through upper list, must be called under RCU read lock */
4656 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4657 	for (iter = &(dev)->adj_list.upper, \
4658 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4659 	     updev; \
4660 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4661 
4662 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4663 				  int (*fn)(struct net_device *upper_dev,
4664 					    struct netdev_nested_priv *priv),
4665 				  struct netdev_nested_priv *priv);
4666 
4667 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4668 				  struct net_device *upper_dev);
4669 
4670 bool netdev_has_any_upper_dev(struct net_device *dev);
4671 
4672 void *netdev_lower_get_next_private(struct net_device *dev,
4673 				    struct list_head **iter);
4674 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4675 					struct list_head **iter);
4676 
4677 #define netdev_for_each_lower_private(dev, priv, iter) \
4678 	for (iter = (dev)->adj_list.lower.next, \
4679 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4680 	     priv; \
4681 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4682 
4683 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4684 	for (iter = &(dev)->adj_list.lower, \
4685 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4686 	     priv; \
4687 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4688 
4689 void *netdev_lower_get_next(struct net_device *dev,
4690 				struct list_head **iter);
4691 
4692 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4693 	for (iter = (dev)->adj_list.lower.next, \
4694 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4695 	     ldev; \
4696 	     ldev = netdev_lower_get_next(dev, &(iter)))
4697 
4698 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4699 					     struct list_head **iter);
4700 int netdev_walk_all_lower_dev(struct net_device *dev,
4701 			      int (*fn)(struct net_device *lower_dev,
4702 					struct netdev_nested_priv *priv),
4703 			      struct netdev_nested_priv *priv);
4704 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4705 				  int (*fn)(struct net_device *lower_dev,
4706 					    struct netdev_nested_priv *priv),
4707 				  struct netdev_nested_priv *priv);
4708 
4709 void *netdev_adjacent_get_private(struct list_head *adj_list);
4710 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4711 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4712 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4713 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4714 			  struct netlink_ext_ack *extack);
4715 int netdev_master_upper_dev_link(struct net_device *dev,
4716 				 struct net_device *upper_dev,
4717 				 void *upper_priv, void *upper_info,
4718 				 struct netlink_ext_ack *extack);
4719 void netdev_upper_dev_unlink(struct net_device *dev,
4720 			     struct net_device *upper_dev);
4721 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4722 				   struct net_device *new_dev,
4723 				   struct net_device *dev,
4724 				   struct netlink_ext_ack *extack);
4725 void netdev_adjacent_change_commit(struct net_device *old_dev,
4726 				   struct net_device *new_dev,
4727 				   struct net_device *dev);
4728 void netdev_adjacent_change_abort(struct net_device *old_dev,
4729 				  struct net_device *new_dev,
4730 				  struct net_device *dev);
4731 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4732 void *netdev_lower_dev_get_private(struct net_device *dev,
4733 				   struct net_device *lower_dev);
4734 void netdev_lower_state_changed(struct net_device *lower_dev,
4735 				void *lower_state_info);
4736 
4737 /* RSS keys are 40 or 52 bytes long */
4738 #define NETDEV_RSS_KEY_LEN 52
4739 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4740 void netdev_rss_key_fill(void *buffer, size_t len);
4741 
4742 int skb_checksum_help(struct sk_buff *skb);
4743 int skb_crc32c_csum_help(struct sk_buff *skb);
4744 int skb_csum_hwoffload_help(struct sk_buff *skb,
4745 			    const netdev_features_t features);
4746 
4747 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4748 				  netdev_features_t features, bool tx_path);
4749 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4750 				    netdev_features_t features);
4751 
4752 struct netdev_bonding_info {
4753 	ifslave	slave;
4754 	ifbond	master;
4755 };
4756 
4757 struct netdev_notifier_bonding_info {
4758 	struct netdev_notifier_info info; /* must be first */
4759 	struct netdev_bonding_info  bonding_info;
4760 };
4761 
4762 void netdev_bonding_info_change(struct net_device *dev,
4763 				struct netdev_bonding_info *bonding_info);
4764 
4765 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4766 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4767 #else
ethtool_notify(struct net_device * dev,unsigned int cmd,const void * data)4768 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4769 				  const void *data)
4770 {
4771 }
4772 #endif
4773 
4774 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)4775 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4776 {
4777 	return __skb_gso_segment(skb, features, true);
4778 }
4779 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4780 
can_checksum_protocol(netdev_features_t features,__be16 protocol)4781 static inline bool can_checksum_protocol(netdev_features_t features,
4782 					 __be16 protocol)
4783 {
4784 	if (protocol == htons(ETH_P_FCOE))
4785 		return !!(features & NETIF_F_FCOE_CRC);
4786 
4787 	/* Assume this is an IP checksum (not SCTP CRC) */
4788 
4789 	if (features & NETIF_F_HW_CSUM) {
4790 		/* Can checksum everything */
4791 		return true;
4792 	}
4793 
4794 	switch (protocol) {
4795 	case htons(ETH_P_IP):
4796 		return !!(features & NETIF_F_IP_CSUM);
4797 	case htons(ETH_P_IPV6):
4798 		return !!(features & NETIF_F_IPV6_CSUM);
4799 	default:
4800 		return false;
4801 	}
4802 }
4803 
4804 #ifdef CONFIG_BUG
4805 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4806 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)4807 static inline void netdev_rx_csum_fault(struct net_device *dev,
4808 					struct sk_buff *skb)
4809 {
4810 }
4811 #endif
4812 /* rx skb timestamps */
4813 void net_enable_timestamp(void);
4814 void net_disable_timestamp(void);
4815 
4816 #ifdef CONFIG_PROC_FS
4817 int __init dev_proc_init(void);
4818 #else
4819 #define dev_proc_init() 0
4820 #endif
4821 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4822 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4823 					      struct sk_buff *skb, struct net_device *dev,
4824 					      bool more)
4825 {
4826 	__this_cpu_write(softnet_data.xmit.more, more);
4827 	return ops->ndo_start_xmit(skb, dev);
4828 }
4829 
netdev_xmit_more(void)4830 static inline bool netdev_xmit_more(void)
4831 {
4832 	return __this_cpu_read(softnet_data.xmit.more);
4833 }
4834 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4835 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4836 					    struct netdev_queue *txq, bool more)
4837 {
4838 	const struct net_device_ops *ops = dev->netdev_ops;
4839 	netdev_tx_t rc;
4840 
4841 	rc = __netdev_start_xmit(ops, skb, dev, more);
4842 	if (rc == NETDEV_TX_OK)
4843 		txq_trans_update(txq);
4844 
4845 	return rc;
4846 }
4847 
4848 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4849 				const void *ns);
4850 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4851 				 const void *ns);
4852 
4853 extern const struct kobj_ns_type_operations net_ns_type_operations;
4854 
4855 const char *netdev_drivername(const struct net_device *dev);
4856 
4857 void linkwatch_run_queue(void);
4858 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4859 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4860 							  netdev_features_t f2)
4861 {
4862 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4863 		if (f1 & NETIF_F_HW_CSUM)
4864 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4865 		else
4866 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4867 	}
4868 
4869 	return f1 & f2;
4870 }
4871 
netdev_get_wanted_features(struct net_device * dev)4872 static inline netdev_features_t netdev_get_wanted_features(
4873 	struct net_device *dev)
4874 {
4875 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4876 }
4877 netdev_features_t netdev_increment_features(netdev_features_t all,
4878 	netdev_features_t one, netdev_features_t mask);
4879 
4880 /* Allow TSO being used on stacked device :
4881  * Performing the GSO segmentation before last device
4882  * is a performance improvement.
4883  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4884 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4885 							netdev_features_t mask)
4886 {
4887 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4888 }
4889 
4890 int __netdev_update_features(struct net_device *dev);
4891 void netdev_update_features(struct net_device *dev);
4892 void netdev_change_features(struct net_device *dev);
4893 
4894 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4895 					struct net_device *dev);
4896 
4897 netdev_features_t passthru_features_check(struct sk_buff *skb,
4898 					  struct net_device *dev,
4899 					  netdev_features_t features);
4900 netdev_features_t netif_skb_features(struct sk_buff *skb);
4901 
net_gso_ok(netdev_features_t features,int gso_type)4902 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4903 {
4904 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4905 
4906 	/* check flags correspondence */
4907 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4908 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4909 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4910 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4911 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4912 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4913 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4914 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4915 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4916 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4917 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4918 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4919 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4920 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4921 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4922 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4923 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4924 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4925 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4926 
4927 	return (features & feature) == feature;
4928 }
4929 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)4930 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4931 {
4932 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4933 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4934 }
4935 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)4936 static inline bool netif_needs_gso(struct sk_buff *skb,
4937 				   netdev_features_t features)
4938 {
4939 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4940 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4941 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4942 }
4943 
netif_set_gso_max_size(struct net_device * dev,unsigned int size)4944 static inline void netif_set_gso_max_size(struct net_device *dev,
4945 					  unsigned int size)
4946 {
4947 	dev->gso_max_size = size;
4948 }
4949 
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)4950 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4951 					int pulled_hlen, u16 mac_offset,
4952 					int mac_len)
4953 {
4954 	skb->protocol = protocol;
4955 	skb->encapsulation = 1;
4956 	skb_push(skb, pulled_hlen);
4957 	skb_reset_transport_header(skb);
4958 	skb->mac_header = mac_offset;
4959 	skb->network_header = skb->mac_header + mac_len;
4960 	skb->mac_len = mac_len;
4961 }
4962 
netif_is_macsec(const struct net_device * dev)4963 static inline bool netif_is_macsec(const struct net_device *dev)
4964 {
4965 	return dev->priv_flags & IFF_MACSEC;
4966 }
4967 
netif_is_macvlan(const struct net_device * dev)4968 static inline bool netif_is_macvlan(const struct net_device *dev)
4969 {
4970 	return dev->priv_flags & IFF_MACVLAN;
4971 }
4972 
netif_is_macvlan_port(const struct net_device * dev)4973 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4974 {
4975 	return dev->priv_flags & IFF_MACVLAN_PORT;
4976 }
4977 
netif_is_bond_master(const struct net_device * dev)4978 static inline bool netif_is_bond_master(const struct net_device *dev)
4979 {
4980 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4981 }
4982 
netif_is_bond_slave(const struct net_device * dev)4983 static inline bool netif_is_bond_slave(const struct net_device *dev)
4984 {
4985 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4986 }
4987 
netif_supports_nofcs(struct net_device * dev)4988 static inline bool netif_supports_nofcs(struct net_device *dev)
4989 {
4990 	return dev->priv_flags & IFF_SUPP_NOFCS;
4991 }
4992 
netif_has_l3_rx_handler(const struct net_device * dev)4993 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4994 {
4995 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4996 }
4997 
netif_is_l3_master(const struct net_device * dev)4998 static inline bool netif_is_l3_master(const struct net_device *dev)
4999 {
5000 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5001 }
5002 
netif_is_l3_slave(const struct net_device * dev)5003 static inline bool netif_is_l3_slave(const struct net_device *dev)
5004 {
5005 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5006 }
5007 
netif_is_bridge_master(const struct net_device * dev)5008 static inline bool netif_is_bridge_master(const struct net_device *dev)
5009 {
5010 	return dev->priv_flags & IFF_EBRIDGE;
5011 }
5012 
netif_is_bridge_port(const struct net_device * dev)5013 static inline bool netif_is_bridge_port(const struct net_device *dev)
5014 {
5015 	return dev->priv_flags & IFF_BRIDGE_PORT;
5016 }
5017 
netif_is_ovs_master(const struct net_device * dev)5018 static inline bool netif_is_ovs_master(const struct net_device *dev)
5019 {
5020 	return dev->priv_flags & IFF_OPENVSWITCH;
5021 }
5022 
netif_is_ovs_port(const struct net_device * dev)5023 static inline bool netif_is_ovs_port(const struct net_device *dev)
5024 {
5025 	return dev->priv_flags & IFF_OVS_DATAPATH;
5026 }
5027 
netif_is_any_bridge_port(const struct net_device * dev)5028 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5029 {
5030 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5031 }
5032 
netif_is_team_master(const struct net_device * dev)5033 static inline bool netif_is_team_master(const struct net_device *dev)
5034 {
5035 	return dev->priv_flags & IFF_TEAM;
5036 }
5037 
netif_is_team_port(const struct net_device * dev)5038 static inline bool netif_is_team_port(const struct net_device *dev)
5039 {
5040 	return dev->priv_flags & IFF_TEAM_PORT;
5041 }
5042 
netif_is_lag_master(const struct net_device * dev)5043 static inline bool netif_is_lag_master(const struct net_device *dev)
5044 {
5045 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5046 }
5047 
netif_is_lag_port(const struct net_device * dev)5048 static inline bool netif_is_lag_port(const struct net_device *dev)
5049 {
5050 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5051 }
5052 
netif_is_rxfh_configured(const struct net_device * dev)5053 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5054 {
5055 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5056 }
5057 
netif_is_failover(const struct net_device * dev)5058 static inline bool netif_is_failover(const struct net_device *dev)
5059 {
5060 	return dev->priv_flags & IFF_FAILOVER;
5061 }
5062 
netif_is_failover_slave(const struct net_device * dev)5063 static inline bool netif_is_failover_slave(const struct net_device *dev)
5064 {
5065 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5066 }
5067 
5068 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)5069 static inline void netif_keep_dst(struct net_device *dev)
5070 {
5071 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5072 }
5073 
5074 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)5075 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5076 {
5077 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5078 	return dev->priv_flags & IFF_MACSEC;
5079 }
5080 
5081 extern struct pernet_operations __net_initdata loopback_net_ops;
5082 
5083 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5084 
5085 /* netdev_printk helpers, similar to dev_printk */
5086 
netdev_name(const struct net_device * dev)5087 static inline const char *netdev_name(const struct net_device *dev)
5088 {
5089 	if (!dev->name[0] || strchr(dev->name, '%'))
5090 		return "(unnamed net_device)";
5091 	return dev->name;
5092 }
5093 
netdev_unregistering(const struct net_device * dev)5094 static inline bool netdev_unregistering(const struct net_device *dev)
5095 {
5096 	return dev->reg_state == NETREG_UNREGISTERING;
5097 }
5098 
netdev_reg_state(const struct net_device * dev)5099 static inline const char *netdev_reg_state(const struct net_device *dev)
5100 {
5101 	switch (dev->reg_state) {
5102 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5103 	case NETREG_REGISTERED: return "";
5104 	case NETREG_UNREGISTERING: return " (unregistering)";
5105 	case NETREG_UNREGISTERED: return " (unregistered)";
5106 	case NETREG_RELEASED: return " (released)";
5107 	case NETREG_DUMMY: return " (dummy)";
5108 	}
5109 
5110 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5111 	return " (unknown)";
5112 }
5113 
5114 __printf(3, 4) __cold
5115 void netdev_printk(const char *level, const struct net_device *dev,
5116 		   const char *format, ...);
5117 __printf(2, 3) __cold
5118 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5119 __printf(2, 3) __cold
5120 void netdev_alert(const struct net_device *dev, const char *format, ...);
5121 __printf(2, 3) __cold
5122 void netdev_crit(const struct net_device *dev, const char *format, ...);
5123 __printf(2, 3) __cold
5124 void netdev_err(const struct net_device *dev, const char *format, ...);
5125 __printf(2, 3) __cold
5126 void netdev_warn(const struct net_device *dev, const char *format, ...);
5127 __printf(2, 3) __cold
5128 void netdev_notice(const struct net_device *dev, const char *format, ...);
5129 __printf(2, 3) __cold
5130 void netdev_info(const struct net_device *dev, const char *format, ...);
5131 
5132 #define netdev_level_once(level, dev, fmt, ...)			\
5133 do {								\
5134 	static bool __print_once __read_mostly;			\
5135 								\
5136 	if (!__print_once) {					\
5137 		__print_once = true;				\
5138 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5139 	}							\
5140 } while (0)
5141 
5142 #define netdev_emerg_once(dev, fmt, ...) \
5143 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5144 #define netdev_alert_once(dev, fmt, ...) \
5145 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5146 #define netdev_crit_once(dev, fmt, ...) \
5147 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5148 #define netdev_err_once(dev, fmt, ...) \
5149 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5150 #define netdev_warn_once(dev, fmt, ...) \
5151 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5152 #define netdev_notice_once(dev, fmt, ...) \
5153 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5154 #define netdev_info_once(dev, fmt, ...) \
5155 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5156 
5157 #define MODULE_ALIAS_NETDEV(device) \
5158 	MODULE_ALIAS("netdev-" device)
5159 
5160 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5161 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5162 #define netdev_dbg(__dev, format, args...)			\
5163 do {								\
5164 	dynamic_netdev_dbg(__dev, format, ##args);		\
5165 } while (0)
5166 #elif defined(DEBUG)
5167 #define netdev_dbg(__dev, format, args...)			\
5168 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5169 #else
5170 #define netdev_dbg(__dev, format, args...)			\
5171 ({								\
5172 	if (0)							\
5173 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5174 })
5175 #endif
5176 
5177 #if defined(VERBOSE_DEBUG)
5178 #define netdev_vdbg	netdev_dbg
5179 #else
5180 
5181 #define netdev_vdbg(dev, format, args...)			\
5182 ({								\
5183 	if (0)							\
5184 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5185 	0;							\
5186 })
5187 #endif
5188 
5189 /*
5190  * netdev_WARN() acts like dev_printk(), but with the key difference
5191  * of using a WARN/WARN_ON to get the message out, including the
5192  * file/line information and a backtrace.
5193  */
5194 #define netdev_WARN(dev, format, args...)			\
5195 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5196 	     netdev_reg_state(dev), ##args)
5197 
5198 #define netdev_WARN_ONCE(dev, format, args...)				\
5199 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5200 		  netdev_reg_state(dev), ##args)
5201 
5202 /* netif printk helpers, similar to netdev_printk */
5203 
5204 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5205 do {					  			\
5206 	if (netif_msg_##type(priv))				\
5207 		netdev_printk(level, (dev), fmt, ##args);	\
5208 } while (0)
5209 
5210 #define netif_level(level, priv, type, dev, fmt, args...)	\
5211 do {								\
5212 	if (netif_msg_##type(priv))				\
5213 		netdev_##level(dev, fmt, ##args);		\
5214 } while (0)
5215 
5216 #define netif_emerg(priv, type, dev, fmt, args...)		\
5217 	netif_level(emerg, priv, type, dev, fmt, ##args)
5218 #define netif_alert(priv, type, dev, fmt, args...)		\
5219 	netif_level(alert, priv, type, dev, fmt, ##args)
5220 #define netif_crit(priv, type, dev, fmt, args...)		\
5221 	netif_level(crit, priv, type, dev, fmt, ##args)
5222 #define netif_err(priv, type, dev, fmt, args...)		\
5223 	netif_level(err, priv, type, dev, fmt, ##args)
5224 #define netif_warn(priv, type, dev, fmt, args...)		\
5225 	netif_level(warn, priv, type, dev, fmt, ##args)
5226 #define netif_notice(priv, type, dev, fmt, args...)		\
5227 	netif_level(notice, priv, type, dev, fmt, ##args)
5228 #define netif_info(priv, type, dev, fmt, args...)		\
5229 	netif_level(info, priv, type, dev, fmt, ##args)
5230 
5231 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5232 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5233 #define netif_dbg(priv, type, netdev, format, args...)		\
5234 do {								\
5235 	if (netif_msg_##type(priv))				\
5236 		dynamic_netdev_dbg(netdev, format, ##args);	\
5237 } while (0)
5238 #elif defined(DEBUG)
5239 #define netif_dbg(priv, type, dev, format, args...)		\
5240 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5241 #else
5242 #define netif_dbg(priv, type, dev, format, args...)			\
5243 ({									\
5244 	if (0)								\
5245 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5246 	0;								\
5247 })
5248 #endif
5249 
5250 /* if @cond then downgrade to debug, else print at @level */
5251 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5252 	do {                                                              \
5253 		if (cond)                                                 \
5254 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5255 		else                                                      \
5256 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5257 	} while (0)
5258 
5259 #if defined(VERBOSE_DEBUG)
5260 #define netif_vdbg	netif_dbg
5261 #else
5262 #define netif_vdbg(priv, type, dev, format, args...)		\
5263 ({								\
5264 	if (0)							\
5265 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5266 	0;							\
5267 })
5268 #endif
5269 
5270 /*
5271  *	The list of packet types we will receive (as opposed to discard)
5272  *	and the routines to invoke.
5273  *
5274  *	Why 16. Because with 16 the only overlap we get on a hash of the
5275  *	low nibble of the protocol value is RARP/SNAP/X.25.
5276  *
5277  *		0800	IP
5278  *		0001	802.3
5279  *		0002	AX.25
5280  *		0004	802.2
5281  *		8035	RARP
5282  *		0005	SNAP
5283  *		0805	X.25
5284  *		0806	ARP
5285  *		8137	IPX
5286  *		0009	Localtalk
5287  *		86DD	IPv6
5288  */
5289 #define PTYPE_HASH_SIZE	(16)
5290 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5291 
5292 extern struct net_device *blackhole_netdev;
5293 
5294 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5295 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5296 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5297 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5298 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5299 
5300 #endif	/* _LINUX_NETDEVICE_H */
5301