• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2014 Connor Abbott
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Connor Abbott (cwabbott0@gmail.com)
25  *
26  */
27 
28 #ifndef NIR_H
29 #define NIR_H
30 
31 #include <stdint.h>
32 #include "compiler/glsl_types.h"
33 #include "compiler/glsl/list.h"
34 #include "compiler/shader_enums.h"
35 #include "compiler/shader_info.h"
36 #include "util/bitscan.h"
37 #include "util/bitset.h"
38 #include "util/compiler.h"
39 #include "util/enum_operators.h"
40 #include "util/format/u_format.h"
41 #include "util/hash_table.h"
42 #include "util/list.h"
43 #include "util/log.h"
44 #include "util/macros.h"
45 #include "util/ralloc.h"
46 #include "util/set.h"
47 #include "util/u_math.h"
48 #include "util/u_printf.h"
49 #include "nir_defines.h"
50 #define XXH_INLINE_ALL
51 #include <stdio.h>
52 #include "util/xxhash.h"
53 
54 #ifndef NDEBUG
55 #include "util/u_debug.h"
56 #endif /* NDEBUG */
57 
58 #include "nir_opcodes.h"
59 
60 #ifdef __cplusplus
61 extern "C" {
62 #endif
63 
64 extern uint32_t nir_debug;
65 extern bool nir_debug_print_shader[MESA_SHADER_KERNEL + 1];
66 
67 #ifndef NDEBUG
68 #define NIR_DEBUG(flag) unlikely(nir_debug &(NIR_DEBUG_##flag))
69 #else
70 #define NIR_DEBUG(flag) false
71 #endif
72 
73 #define NIR_DEBUG_CLONE                  (1u << 0)
74 #define NIR_DEBUG_SERIALIZE              (1u << 1)
75 #define NIR_DEBUG_NOVALIDATE             (1u << 2)
76 #define NIR_DEBUG_TGSI                   (1u << 4)
77 #define NIR_DEBUG_PRINT_VS               (1u << 5)
78 #define NIR_DEBUG_PRINT_TCS              (1u << 6)
79 #define NIR_DEBUG_PRINT_TES              (1u << 7)
80 #define NIR_DEBUG_PRINT_GS               (1u << 8)
81 #define NIR_DEBUG_PRINT_FS               (1u << 9)
82 #define NIR_DEBUG_PRINT_CS               (1u << 10)
83 #define NIR_DEBUG_PRINT_TS               (1u << 11)
84 #define NIR_DEBUG_PRINT_MS               (1u << 12)
85 #define NIR_DEBUG_PRINT_RGS              (1u << 13)
86 #define NIR_DEBUG_PRINT_AHS              (1u << 14)
87 #define NIR_DEBUG_PRINT_CHS              (1u << 15)
88 #define NIR_DEBUG_PRINT_MHS              (1u << 16)
89 #define NIR_DEBUG_PRINT_IS               (1u << 17)
90 #define NIR_DEBUG_PRINT_CBS              (1u << 18)
91 #define NIR_DEBUG_PRINT_KS               (1u << 19)
92 #define NIR_DEBUG_PRINT_NO_INLINE_CONSTS (1u << 20)
93 #define NIR_DEBUG_PRINT_INTERNAL         (1u << 21)
94 #define NIR_DEBUG_PRINT_PASS_FLAGS       (1u << 22)
95 
96 #define NIR_DEBUG_PRINT (NIR_DEBUG_PRINT_VS |  \
97                          NIR_DEBUG_PRINT_TCS | \
98                          NIR_DEBUG_PRINT_TES | \
99                          NIR_DEBUG_PRINT_GS |  \
100                          NIR_DEBUG_PRINT_FS |  \
101                          NIR_DEBUG_PRINT_CS |  \
102                          NIR_DEBUG_PRINT_TS |  \
103                          NIR_DEBUG_PRINT_MS |  \
104                          NIR_DEBUG_PRINT_RGS | \
105                          NIR_DEBUG_PRINT_AHS | \
106                          NIR_DEBUG_PRINT_CHS | \
107                          NIR_DEBUG_PRINT_MHS | \
108                          NIR_DEBUG_PRINT_IS |  \
109                          NIR_DEBUG_PRINT_CBS | \
110                          NIR_DEBUG_PRINT_KS)
111 
112 #define NIR_FALSE              0u
113 #define NIR_TRUE               (~0u)
114 #define NIR_MAX_VEC_COMPONENTS 16
115 #define NIR_MAX_MATRIX_COLUMNS 4
116 #define NIR_STREAM_PACKED      (1 << 8)
117 typedef uint16_t nir_component_mask_t;
118 
119 static inline bool
nir_num_components_valid(unsigned num_components)120 nir_num_components_valid(unsigned num_components)
121 {
122    return (num_components >= 1 &&
123            num_components <= 5) ||
124           num_components == 8 ||
125           num_components == 16;
126 }
127 
128 /*
129  * Round up a vector size to a vector size that's valid in NIR. At present, NIR
130  * supports only vec2-5, vec8, and vec16. Attempting to generate other sizes
131  * will fail validation.
132  */
133 static inline unsigned
nir_round_up_components(unsigned n)134 nir_round_up_components(unsigned n)
135 {
136    return (n > 5) ? util_next_power_of_two(n) : n;
137 }
138 
139 static inline nir_component_mask_t
nir_component_mask(unsigned num_components)140 nir_component_mask(unsigned num_components)
141 {
142    assert(nir_num_components_valid(num_components));
143    return (1u << num_components) - 1;
144 }
145 
146 void
147 nir_process_debug_variable(void);
148 
149 bool nir_component_mask_can_reinterpret(nir_component_mask_t mask,
150                                         unsigned old_bit_size,
151                                         unsigned new_bit_size);
152 nir_component_mask_t
153 nir_component_mask_reinterpret(nir_component_mask_t mask,
154                                unsigned old_bit_size,
155                                unsigned new_bit_size);
156 
157 /** Defines a cast function
158  *
159  * This macro defines a cast function from in_type to out_type where
160  * out_type is some structure type that contains a field of type out_type.
161  *
162  * Note that you have to be a bit careful as the generated cast function
163  * destroys constness.
164  */
165 #define NIR_DEFINE_CAST(name, in_type, out_type, field,   \
166                         type_field, type_value)           \
167    static inline out_type *                               \
168    name(const in_type *parent)                            \
169    {                                                      \
170       assert(parent && parent->type_field == type_value); \
171       return exec_node_data(out_type, parent, field);     \
172    }
173 
174 struct nir_function;
175 struct nir_shader;
176 struct nir_instr;
177 struct nir_builder;
178 struct nir_xfb_info;
179 
180 /**
181  * Description of built-in state associated with a uniform
182  *
183  * :c:member:`nir_variable.state_slots`
184  */
185 typedef struct {
186    gl_state_index16 tokens[STATE_LENGTH];
187 } nir_state_slot;
188 
189 /* clang-format off */
190 typedef enum {
191    nir_var_system_value          = (1 << 0),
192    nir_var_uniform               = (1 << 1),
193    nir_var_shader_in             = (1 << 2),
194    nir_var_shader_out            = (1 << 3),
195    nir_var_image                 = (1 << 4),
196    /** Incoming call or ray payload data for ray-tracing shaders */
197    nir_var_shader_call_data      = (1 << 5),
198    /** Ray hit attributes */
199    nir_var_ray_hit_attrib        = (1 << 6),
200 
201    /* Modes named nir_var_mem_* have explicit data layout */
202    nir_var_mem_ubo               = (1 << 7),
203    nir_var_mem_push_const        = (1 << 8),
204    nir_var_mem_ssbo              = (1 << 9),
205    nir_var_mem_constant          = (1 << 10),
206    nir_var_mem_task_payload      = (1 << 11),
207    nir_var_mem_node_payload      = (1 << 12),
208    nir_var_mem_node_payload_in   = (1 << 13),
209 
210    nir_var_function_in           = (1 << 14),
211    nir_var_function_out          = (1 << 15),
212    nir_var_function_inout        = (1 << 16),
213 
214    /* Generic modes intentionally come last. See encode_dref_modes() in
215     * nir_serialize.c for more details.
216     */
217    nir_var_shader_temp           = (1 << 17),
218    nir_var_function_temp         = (1 << 18),
219    nir_var_mem_shared            = (1 << 19),
220    nir_var_mem_global            = (1 << 20),
221 
222    nir_var_mem_generic           = (nir_var_shader_temp |
223                                     nir_var_function_temp |
224                                     nir_var_mem_shared |
225                                     nir_var_mem_global),
226 
227    nir_var_read_only_modes       = nir_var_shader_in | nir_var_uniform |
228                                    nir_var_system_value | nir_var_mem_constant |
229                                    nir_var_mem_ubo,
230    /* Modes where vector derefs can be indexed as arrays. nir_var_shader_out
231     * is only for mesh stages. nir_var_system_value is only for kernel stages.
232     */
233    nir_var_vec_indexable_modes   = nir_var_shader_temp | nir_var_function_temp |
234                                  nir_var_mem_ubo | nir_var_mem_ssbo |
235                                  nir_var_mem_shared | nir_var_mem_global |
236                                  nir_var_mem_push_const | nir_var_mem_task_payload |
237                                  nir_var_shader_out | nir_var_system_value,
238    nir_num_variable_modes        = 21,
239    nir_var_all                   = (1 << nir_num_variable_modes) - 1,
240 } nir_variable_mode;
241 MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_variable_mode)
242 /* clang-format on */
243 
244 /**
245  * Rounding modes.
246  */
247 typedef enum {
248    nir_rounding_mode_undef = 0,
249    nir_rounding_mode_rtne = 1, /* round to nearest even */
250    nir_rounding_mode_ru = 2,   /* round up */
251    nir_rounding_mode_rd = 3,   /* round down */
252    nir_rounding_mode_rtz = 4,  /* round towards zero */
253 } nir_rounding_mode;
254 
255 /**
256  * Ray query values that can read from a RayQueryKHR object.
257  */
258 typedef enum {
259    nir_ray_query_value_intersection_type,
260    nir_ray_query_value_intersection_t,
261    nir_ray_query_value_intersection_instance_custom_index,
262    nir_ray_query_value_intersection_instance_id,
263    nir_ray_query_value_intersection_instance_sbt_index,
264    nir_ray_query_value_intersection_geometry_index,
265    nir_ray_query_value_intersection_primitive_index,
266    nir_ray_query_value_intersection_barycentrics,
267    nir_ray_query_value_intersection_front_face,
268    nir_ray_query_value_intersection_object_ray_direction,
269    nir_ray_query_value_intersection_object_ray_origin,
270    nir_ray_query_value_intersection_object_to_world,
271    nir_ray_query_value_intersection_world_to_object,
272    nir_ray_query_value_intersection_candidate_aabb_opaque,
273    nir_ray_query_value_tmin,
274    nir_ray_query_value_flags,
275    nir_ray_query_value_world_ray_direction,
276    nir_ray_query_value_world_ray_origin,
277    nir_ray_query_value_intersection_triangle_vertex_positions
278 } nir_ray_query_value;
279 
280 /**
281  * Intel resource flags
282  */
283 typedef enum {
284    nir_resource_intel_bindless = 1u << 0,
285    nir_resource_intel_pushable = 1u << 1,
286    nir_resource_intel_sampler = 1u << 2,
287    nir_resource_intel_non_uniform = 1u << 3,
288    nir_resource_intel_sampler_embedded = 1u << 4,
289 } nir_resource_data_intel;
290 
291 /**
292  * Which components to interpret as signed in cmat_muladd.
293  * See 'Cooperative Matrix Operands' in SPV_KHR_cooperative_matrix.
294  */
295 typedef enum {
296    NIR_CMAT_A_SIGNED = 1u << 0,
297    NIR_CMAT_B_SIGNED = 1u << 1,
298    NIR_CMAT_C_SIGNED = 1u << 2,
299    NIR_CMAT_RESULT_SIGNED = 1u << 3,
300 } nir_cmat_signed;
301 
302 typedef union {
303    bool b;
304    float f32;
305    double f64;
306    int8_t i8;
307    uint8_t u8;
308    int16_t i16;
309    uint16_t u16;
310    int32_t i32;
311    uint32_t u32;
312    int64_t i64;
313    uint64_t u64;
314 } nir_const_value;
315 
316 #define nir_const_value_to_array(arr, c, components, m) \
317    do {                                                 \
318       for (unsigned i = 0; i < components; ++i)         \
319          arr[i] = c[i].m;                               \
320    } while (false)
321 
322 static inline nir_const_value
nir_const_value_for_raw_uint(uint64_t x,unsigned bit_size)323 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
324 {
325    nir_const_value v;
326    memset(&v, 0, sizeof(v));
327 
328    /* clang-format off */
329    switch (bit_size) {
330    case 1:  v.b   = x;  break;
331    case 8:  v.u8  = (uint8_t)x;  break;
332    case 16: v.u16 = (uint16_t)x;  break;
333    case 32: v.u32 = (uint32_t)x;  break;
334    case 64: v.u64 = x;  break;
335    default:
336       unreachable("Invalid bit size");
337    }
338    /* clang-format on */
339 
340    return v;
341 }
342 
343 static inline nir_const_value
nir_const_value_for_int(int64_t i,unsigned bit_size)344 nir_const_value_for_int(int64_t i, unsigned bit_size)
345 {
346    assert(bit_size <= 64);
347    if (bit_size < 64) {
348       assert(i >= (-(1ll << (bit_size - 1))));
349       assert(i < (1ll << (bit_size - 1)));
350    }
351 
352    return nir_const_value_for_raw_uint(i, bit_size);
353 }
354 
355 static inline nir_const_value
nir_const_value_for_uint(uint64_t u,unsigned bit_size)356 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
357 {
358    assert(bit_size <= 64);
359    if (bit_size < 64)
360       assert(u < (1ull << bit_size));
361 
362    return nir_const_value_for_raw_uint(u, bit_size);
363 }
364 
365 static inline nir_const_value
nir_const_value_for_bool(bool b,unsigned bit_size)366 nir_const_value_for_bool(bool b, unsigned bit_size)
367 {
368    /* Booleans use a 0/-1 convention */
369    return nir_const_value_for_int(-(int)b, bit_size);
370 }
371 
372 /* This one isn't inline because it requires half-float conversion */
373 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
374 
375 static inline int64_t
nir_const_value_as_int(nir_const_value value,unsigned bit_size)376 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
377 {
378    /* clang-format off */
379    switch (bit_size) {
380    /* int1_t uses 0/-1 convention */
381    case 1:  return -(int)value.b;
382    case 8:  return value.i8;
383    case 16: return value.i16;
384    case 32: return value.i32;
385    case 64: return value.i64;
386    default:
387       unreachable("Invalid bit size");
388    }
389    /* clang-format on */
390 }
391 
392 static inline uint64_t
nir_const_value_as_uint(nir_const_value value,unsigned bit_size)393 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
394 {
395    /* clang-format off */
396    switch (bit_size) {
397    case 1:  return value.b;
398    case 8:  return value.u8;
399    case 16: return value.u16;
400    case 32: return value.u32;
401    case 64: return value.u64;
402    default:
403       unreachable("Invalid bit size");
404    }
405    /* clang-format on */
406 }
407 
408 static inline bool
nir_const_value_as_bool(nir_const_value value,unsigned bit_size)409 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
410 {
411    int64_t i = nir_const_value_as_int(value, bit_size);
412 
413    /* Booleans of any size use 0/-1 convention */
414    assert(i == 0 || i == -1);
415 
416    return i;
417 }
418 
419 /* This one isn't inline because it requires half-float conversion */
420 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
421 
422 typedef struct nir_constant {
423    /**
424     * Value of the constant.
425     *
426     * The field used to back the values supplied by the constant is determined
427     * by the type associated with the ``nir_variable``.  Constants may be
428     * scalars, vectors, or matrices.
429     */
430    nir_const_value values[NIR_MAX_VEC_COMPONENTS];
431 
432    /* Indicates all the values are 0s which can enable some optimizations */
433    bool is_null_constant;
434 
435    /* we could get this from the var->type but makes clone *much* easier to
436     * not have to care about the type.
437     */
438    unsigned num_elements;
439 
440    /* Array elements / Structure Fields */
441    struct nir_constant **elements;
442 } nir_constant;
443 
444 /**
445  * Layout qualifiers for gl_FragDepth.
446  *
447  * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
448  * with a layout qualifier.
449  */
450 typedef enum {
451    /** No depth layout is specified. */
452    nir_depth_layout_none,
453    nir_depth_layout_any,
454    nir_depth_layout_greater,
455    nir_depth_layout_less,
456    nir_depth_layout_unchanged
457 } nir_depth_layout;
458 
459 /**
460  * Enum keeping track of how a variable was declared.
461  */
462 typedef enum {
463    /**
464     * Normal declaration.
465     */
466    nir_var_declared_normally = 0,
467 
468    /**
469     * Variable is an implicitly declared built-in that has not been explicitly
470     * re-declared by the shader.
471     */
472    nir_var_declared_implicitly,
473 
474    /**
475     * Variable is implicitly generated by the compiler and should not be
476     * visible via the API.
477     */
478    nir_var_hidden,
479 } nir_var_declaration_type;
480 
481 /**
482  * Either a uniform, global variable, shader input, or shader output. Based on
483  * ir_variable - it should be easy to translate between the two.
484  */
485 
486 typedef struct nir_variable {
487    struct exec_node node;
488 
489    /**
490     * Declared type of the variable
491     */
492    const struct glsl_type *type;
493 
494    /**
495     * Declared name of the variable
496     */
497    char *name;
498 
499    struct nir_variable_data {
500       /**
501        * Storage class of the variable.
502        *
503        * :c:struct:`nir_variable_mode`
504        */
505       unsigned mode : 21;
506 
507       /**
508        * Is the variable read-only?
509        *
510        * This is set for variables declared as ``const``, shader inputs,
511        * and uniforms.
512        */
513       unsigned read_only : 1;
514       unsigned centroid : 1;
515       unsigned sample : 1;
516       unsigned patch : 1;
517       unsigned invariant : 1;
518 
519       /**
520        * Was an 'invariant' qualifier explicitly set in the shader?
521        *
522        * This is used to cross validate glsl qualifiers.
523        */
524       unsigned explicit_invariant:1;
525 
526       /**
527        * Is the variable a ray query?
528        */
529       unsigned ray_query : 1;
530 
531       /**
532        * Precision qualifier.
533        *
534        * In desktop GLSL we do not care about precision qualifiers at all, in
535        * fact, the spec says that precision qualifiers are ignored.
536        *
537        * To make things easy, we make it so that this field is always
538        * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
539        * have the same precision value and the checks we add in the compiler
540        * for this field will never break a desktop shader compile.
541        */
542       unsigned precision : 2;
543 
544       /**
545        * Has this variable been statically assigned?
546        *
547        * This answers whether the variable was assigned in any path of
548        * the shader during ast_to_hir.  This doesn't answer whether it is
549        * still written after dead code removal, nor is it maintained in
550        * non-ast_to_hir.cpp (GLSL parsing) paths.
551        */
552       unsigned assigned : 1;
553 
554       /**
555        * Can this variable be coalesced with another?
556        *
557        * This is set by nir_lower_io_to_temporaries to say that any
558        * copies involving this variable should stay put. Propagating it can
559        * duplicate the resulting load/store, which is not wanted, and may
560        * result in a load/store of the variable with an indirect offset which
561        * the backend may not be able to handle.
562        */
563       unsigned cannot_coalesce : 1;
564 
565       /**
566        * When separate shader programs are enabled, only input/outputs between
567        * the stages of a multi-stage separate program can be safely removed
568        * from the shader interface. Other input/outputs must remains active.
569        *
570        * This is also used to make sure xfb varyings that are unused by the
571        * fragment shader are not removed.
572        */
573       unsigned always_active_io : 1;
574 
575       /**
576        * Interpolation mode for shader inputs / outputs
577        *
578        * :c:enum:`glsl_interp_mode`
579        */
580       unsigned interpolation : 3;
581 
582       /**
583        * If non-zero, then this variable may be packed along with other variables
584        * into a single varying slot, so this offset should be applied when
585        * accessing components.  For example, an offset of 1 means that the x
586        * component of this variable is actually stored in component y of the
587        * location specified by ``location``.
588        */
589       unsigned location_frac : 2;
590 
591       /**
592        * If true, this variable represents an array of scalars that should
593        * be tightly packed.  In other words, consecutive array elements
594        * should be stored one component apart, rather than one slot apart.
595        */
596       unsigned compact : 1;
597 
598       /**
599        * Whether this is a fragment shader output implicitly initialized with
600        * the previous contents of the specified render target at the
601        * framebuffer location corresponding to this shader invocation.
602        */
603       unsigned fb_fetch_output : 1;
604 
605       /**
606        * Non-zero if this variable is considered bindless as defined by
607        * ARB_bindless_texture.
608        */
609       unsigned bindless : 1;
610 
611       /**
612        * Was an explicit binding set in the shader?
613        */
614       unsigned explicit_binding : 1;
615 
616       /**
617        * Was the location explicitly set in the shader?
618        *
619        * If the location is explicitly set in the shader, it **cannot** be changed
620        * by the linker or by the API (e.g., calls to ``glBindAttribLocation`` have
621        * no effect).
622        */
623       unsigned explicit_location : 1;
624 
625       /* Was the array implicitly sized during linking */
626       unsigned implicit_sized_array : 1;
627 
628       /**
629        * Highest element accessed with a constant array index
630        *
631        * Not used for non-array variables. -1 is never accessed.
632        */
633       int max_array_access;
634 
635       /**
636        * Does this variable have an initializer?
637        *
638        * This is used by the linker to cross-validiate initializers of global
639        * variables.
640        */
641       unsigned has_initializer:1;
642 
643       /**
644        * Is the initializer created by the compiler (glsl_zero_init)
645        */
646       unsigned is_implicit_initializer:1;
647 
648       /**
649        * Is this varying used by transform feedback?
650        *
651        * This is used by the linker to decide if it's safe to pack the varying.
652        */
653       unsigned is_xfb : 1;
654 
655       /**
656        * Is this varying used only by transform feedback?
657        *
658        * This is used by the linker to decide if its safe to pack the varying.
659        */
660       unsigned is_xfb_only : 1;
661 
662       /**
663        * Was a transfer feedback buffer set in the shader?
664        */
665       unsigned explicit_xfb_buffer : 1;
666 
667       /**
668        * Was a transfer feedback stride set in the shader?
669        */
670       unsigned explicit_xfb_stride : 1;
671 
672       /**
673        * Was an explicit offset set in the shader?
674        */
675       unsigned explicit_offset : 1;
676 
677       /**
678        * Layout of the matrix.  Uses glsl_matrix_layout values.
679        */
680       unsigned matrix_layout : 2;
681 
682       /**
683        * Non-zero if this variable was created by lowering a named interface
684        * block.
685        */
686       unsigned from_named_ifc_block : 1;
687 
688       /**
689        * Unsized array buffer variable.
690        */
691       unsigned from_ssbo_unsized_array : 1;
692 
693       /**
694        * Non-zero if the variable must be a shader input. This is useful for
695        * constraints on function parameters.
696        */
697       unsigned must_be_shader_input : 1;
698 
699       /**
700        * Has this variable been used for reading or writing?
701        *
702        * Several GLSL semantic checks require knowledge of whether or not a
703        * variable has been used.  For example, it is an error to redeclare a
704        * variable as invariant after it has been used.
705        */
706       unsigned used:1;
707 
708       /**
709        * How the variable was declared.  See nir_var_declaration_type.
710        *
711        * This is used to detect variables generated by the compiler, so should
712        * not be visible via the API.
713        */
714       unsigned how_declared : 2;
715 
716       /**
717        * Is this variable per-view?  If so, we know it must be an array with
718        * size corresponding to the number of views.
719        */
720       unsigned per_view : 1;
721 
722       /**
723        * Whether the variable is per-primitive.
724        * Can be use by Mesh Shader outputs and corresponding Fragment Shader inputs.
725        */
726       unsigned per_primitive : 1;
727 
728       /**
729        * Whether the variable is declared to indicate that a fragment shader
730        * input will not have interpolated values.
731        */
732       unsigned per_vertex : 1;
733 
734       /**
735        * Layout qualifier for gl_FragDepth. See nir_depth_layout.
736        *
737        * This is not equal to ``ir_depth_layout_none`` if and only if this
738        * variable is ``gl_FragDepth`` and a layout qualifier is specified.
739        */
740       unsigned depth_layout : 3;
741 
742       /**
743        * Vertex stream output identifier.
744        *
745        * For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
746        * indicate the stream of the i-th component.
747        */
748       unsigned stream : 9;
749 
750       /**
751        * See gl_access_qualifier.
752        *
753        * Access flags for memory variables (SSBO/global), image uniforms, and
754        * bindless images in uniforms/inputs/outputs.
755        */
756       unsigned access : 9;
757 
758       /**
759        * Descriptor set binding for sampler or UBO.
760        */
761       unsigned descriptor_set : 5;
762 
763 #define NIR_VARIABLE_NO_INDEX ~0
764 
765       /**
766        * Output index for dual source blending or input attachment index. If
767        * it is not declared it is NIR_VARIABLE_NO_INDEX.
768        */
769       unsigned index;
770 
771       /**
772        * Initial binding point for a sampler or UBO.
773        *
774        * For array types, this represents the binding point for the first element.
775        */
776       unsigned binding;
777 
778       /**
779        * Storage location of the base of this variable
780        *
781        * The precise meaning of this field depends on the nature of the variable.
782        *
783        *   - Vertex shader input: one of the values from ``gl_vert_attrib``.
784        *   - Vertex shader output: one of the values from ``gl_varying_slot``.
785        *   - Geometry shader input: one of the values from ``gl_varying_slot``.
786        *   - Geometry shader output: one of the values from ``gl_varying_slot``.
787        *   - Fragment shader input: one of the values from ``gl_varying_slot``.
788        *   - Fragment shader output: one of the values from ``gl_frag_result``.
789        *   - Task shader output: one of the values from ``gl_varying_slot``.
790        *   - Mesh shader input: one of the values from ``gl_varying_slot``.
791        *   - Mesh shader output: one of the values from ``gl_varying_slot``.
792        *   - Uniforms: Per-stage uniform slot number for default uniform block.
793        *   - Uniforms: Index within the uniform block definition for UBO members.
794        *   - Non-UBO Uniforms: uniform slot number.
795        *   - Other: This field is not currently used.
796        *
797        * If the variable is a uniform, shader input, or shader output, and the
798        * slot has not been assigned, the value will be -1.
799        */
800       int location;
801 
802       /** Required alignment of this variable */
803       unsigned alignment;
804 
805       /**
806        * The actual location of the variable in the IR. Only valid for inputs,
807        * outputs, uniforms (including samplers and images), and for UBO and SSBO
808        * variables in GLSL.
809        */
810       unsigned driver_location;
811 
812       /**
813        * Location an atomic counter or transform feedback is stored at.
814        */
815       unsigned offset;
816 
817       union {
818          struct {
819             /** Image internal format if specified explicitly, otherwise PIPE_FORMAT_NONE. */
820             enum pipe_format format;
821          } image;
822 
823          struct {
824             /**
825              * For OpenCL inline samplers. See cl_sampler_addressing_mode and cl_sampler_filter_mode
826              */
827             unsigned is_inline_sampler : 1;
828             unsigned addressing_mode : 3;
829             unsigned normalized_coordinates : 1;
830             unsigned filter_mode : 1;
831          } sampler;
832 
833          struct {
834             /**
835              * Transform feedback buffer.
836              */
837             uint16_t buffer : 2;
838 
839             /**
840              * Transform feedback stride.
841              */
842             uint16_t stride;
843          } xfb;
844       };
845 
846       /** Name of the node this payload will be enqueued to. */
847       const char *node_name;
848    } data;
849 
850    /**
851     * Identifier for this variable generated by nir_index_vars() that is unique
852     * among other variables in the same exec_list.
853     */
854    unsigned index;
855 
856    /* Number of nir_variable_data members */
857    uint16_t num_members;
858 
859    /**
860     * For variables with non NULL interface_type, this points to an array of
861     * integers such that if the ith member of the interface block is an array,
862     * max_ifc_array_access[i] is the maximum array element of that member that
863     * has been accessed.  If the ith member of the interface block is not an
864     * array, max_ifc_array_access[i] is unused.
865     *
866     * For variables whose type is not an interface block, this pointer is
867     * NULL.
868     */
869    int *max_ifc_array_access;
870 
871    /**
872     * Built-in state that backs this uniform
873     *
874     * Once set at variable creation, ``state_slots`` must remain invariant.
875     * This is because, ideally, this array would be shared by all clones of
876     * this variable in the IR tree.  In other words, we'd really like for it
877     * to be a fly-weight.
878     *
879     * If the variable is not a uniform, ``num_state_slots`` will be zero and
880     * ``state_slots`` will be ``NULL``.
881     *
882     * Number of state slots used.
883     */
884    uint16_t num_state_slots;
885    /** State descriptors. */
886    nir_state_slot *state_slots;
887 
888    /**
889     * Constant expression assigned in the initializer of the variable
890     *
891     * This field should only be used temporarily by creators of NIR shaders
892     * and then nir_lower_variable_initializers can be used to get rid of them.
893     * Most of the rest of NIR ignores this field or asserts that it's NULL.
894     */
895    nir_constant *constant_initializer;
896 
897    /**
898     * Global variable assigned in the initializer of the variable
899     * This field should only be used temporarily by creators of NIR shaders
900     * and then nir_lower_variable_initializers can be used to get rid of them.
901     * Most of the rest of NIR ignores this field or asserts that it's NULL.
902     */
903    struct nir_variable *pointer_initializer;
904 
905    /**
906     * For variables that are in an interface block or are an instance of an
907     * interface block, this is the ``GLSL_TYPE_INTERFACE`` type for that block.
908     *
909     * ``ir_variable.location``
910     */
911    const struct glsl_type *interface_type;
912 
913    /**
914     * Description of per-member data for per-member struct variables
915     *
916     * This is used for variables which are actually an amalgamation of
917     * multiple entities such as a struct of built-in values or a struct of
918     * inputs each with their own layout specifier.  This is only allowed on
919     * variables with a struct or array of array of struct type.
920     */
921    struct nir_variable_data *members;
922 } nir_variable;
923 
924 static inline bool
_nir_shader_variable_has_mode(nir_variable * var,unsigned modes)925 _nir_shader_variable_has_mode(nir_variable *var, unsigned modes)
926 {
927    /* This isn't a shader variable */
928    assert(!(modes & nir_var_function_temp));
929    return var->data.mode & modes;
930 }
931 
932 #define nir_foreach_variable_in_list(var, var_list) \
933    foreach_list_typed(nir_variable, var, node, var_list)
934 
935 #define nir_foreach_variable_in_list_safe(var, var_list) \
936    foreach_list_typed_safe(nir_variable, var, node, var_list)
937 
938 #define nir_foreach_variable_in_shader(var, shader) \
939    nir_foreach_variable_in_list(var, &(shader)->variables)
940 
941 #define nir_foreach_variable_in_shader_safe(var, shader) \
942    nir_foreach_variable_in_list_safe(var, &(shader)->variables)
943 
944 #define nir_foreach_variable_with_modes(var, shader, modes) \
945    nir_foreach_variable_in_shader(var, shader)              \
946       if (_nir_shader_variable_has_mode(var, modes))
947 
948 #define nir_foreach_variable_with_modes_safe(var, shader, modes) \
949    nir_foreach_variable_in_shader_safe(var, shader)              \
950       if (_nir_shader_variable_has_mode(var, modes))
951 
952 #define nir_foreach_shader_in_variable(var, shader) \
953    nir_foreach_variable_with_modes(var, shader, nir_var_shader_in)
954 
955 #define nir_foreach_shader_in_variable_safe(var, shader) \
956    nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_in)
957 
958 #define nir_foreach_shader_out_variable(var, shader) \
959    nir_foreach_variable_with_modes(var, shader, nir_var_shader_out)
960 
961 #define nir_foreach_shader_out_variable_safe(var, shader) \
962    nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_out)
963 
964 #define nir_foreach_uniform_variable(var, shader) \
965    nir_foreach_variable_with_modes(var, shader, nir_var_uniform)
966 
967 #define nir_foreach_uniform_variable_safe(var, shader) \
968    nir_foreach_variable_with_modes_safe(var, shader, nir_var_uniform)
969 
970 #define nir_foreach_image_variable(var, shader) \
971    nir_foreach_variable_with_modes(var, shader, nir_var_image)
972 
973 #define nir_foreach_image_variable_safe(var, shader) \
974    nir_foreach_variable_with_modes_safe(var, shader, nir_var_image)
975 
976 static inline bool
nir_variable_is_global(const nir_variable * var)977 nir_variable_is_global(const nir_variable *var)
978 {
979    return var->data.mode != nir_var_function_temp;
980 }
981 
982 typedef enum ENUM_PACKED {
983    nir_instr_type_alu,
984    nir_instr_type_deref,
985    nir_instr_type_call,
986    nir_instr_type_tex,
987    nir_instr_type_intrinsic,
988    nir_instr_type_load_const,
989    nir_instr_type_jump,
990    nir_instr_type_undef,
991    nir_instr_type_phi,
992    nir_instr_type_parallel_copy,
993    nir_instr_type_debug_info,
994 } nir_instr_type;
995 
996 typedef struct nir_instr {
997    struct exec_node node;
998    struct nir_block *block;
999    nir_instr_type type;
1000 
1001    /* A temporary for optimization and analysis passes to use for storing
1002     * flags.  For instance, DCE uses this to store the "dead/live" info.
1003     */
1004    uint8_t pass_flags;
1005 
1006    /** generic instruction index. */
1007    uint32_t index;
1008 } nir_instr;
1009 
1010 static inline nir_instr *
nir_instr_next(nir_instr * instr)1011 nir_instr_next(nir_instr *instr)
1012 {
1013    struct exec_node *next = exec_node_get_next(&instr->node);
1014    if (exec_node_is_tail_sentinel(next))
1015       return NULL;
1016    else
1017       return exec_node_data(nir_instr, next, node);
1018 }
1019 
1020 static inline nir_instr *
nir_instr_prev(nir_instr * instr)1021 nir_instr_prev(nir_instr *instr)
1022 {
1023    struct exec_node *prev = exec_node_get_prev(&instr->node);
1024    if (exec_node_is_head_sentinel(prev))
1025       return NULL;
1026    else
1027       return exec_node_data(nir_instr, prev, node);
1028 }
1029 
1030 static inline bool
nir_instr_is_first(const nir_instr * instr)1031 nir_instr_is_first(const nir_instr *instr)
1032 {
1033    return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
1034 }
1035 
1036 static inline bool
nir_instr_is_last(const nir_instr * instr)1037 nir_instr_is_last(const nir_instr *instr)
1038 {
1039    return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
1040 }
1041 
1042 typedef struct nir_def {
1043    /** Instruction which produces this SSA value. */
1044    nir_instr *parent_instr;
1045 
1046    /** set of nir_instrs where this register is used (read from) */
1047    struct list_head uses;
1048 
1049    /** generic SSA definition index. */
1050    unsigned index;
1051 
1052    uint8_t num_components;
1053 
1054    /* The bit-size of each channel; must be one of 1, 8, 16, 32, or 64 */
1055    uint8_t bit_size;
1056 
1057    /**
1058     * True if this SSA value may have different values in different SIMD
1059     * invocations of the shader.  This is set by nir_divergence_analysis.
1060     */
1061    bool divergent;
1062 
1063    /**
1064     * True if this SSA value is loop invariant w.r.t. the innermost parent
1065     * loop.  This is set by nir_divergence_analysis and used to determine
1066     * the divergence of a nir_src.
1067     */
1068    bool loop_invariant;
1069 } nir_def;
1070 
1071 struct nir_src;
1072 struct nir_if;
1073 
1074 typedef struct nir_src {
1075    /* Instruction or if-statement that consumes this value as a source. This
1076     * should only be accessed through nir_src_* helpers.
1077     *
1078     * Internally, it is a tagged pointer to a nir_instr or nir_if.
1079     */
1080    uintptr_t _parent;
1081 
1082    struct list_head use_link;
1083    nir_def *ssa;
1084 } nir_src;
1085 
1086 /* Layout of the _parent pointer. Bottom bit is set for nir_if parents (clear
1087  * for nir_instr parents). Remaining bits are the pointer.
1088  */
1089 #define NIR_SRC_PARENT_IS_IF (0x1)
1090 #define NIR_SRC_PARENT_MASK (~((uintptr_t) NIR_SRC_PARENT_IS_IF))
1091 
1092 static inline bool
nir_src_is_if(const nir_src * src)1093 nir_src_is_if(const nir_src *src)
1094 {
1095    return src->_parent & NIR_SRC_PARENT_IS_IF;
1096 }
1097 
1098 static inline nir_instr *
nir_src_parent_instr(const nir_src * src)1099 nir_src_parent_instr(const nir_src *src)
1100 {
1101    assert(!nir_src_is_if(src));
1102 
1103    /* Because it is not an if, the tag is 0, therefore we do not need to mask */
1104    return (nir_instr *)(src->_parent);
1105 }
1106 
1107 static inline struct nir_if *
nir_src_parent_if(const nir_src * src)1108 nir_src_parent_if(const nir_src *src)
1109 {
1110    assert(nir_src_is_if(src));
1111 
1112    /* Because it is an if, the tag is 1, so we need to mask */
1113    return (struct nir_if *)(src->_parent & NIR_SRC_PARENT_MASK);
1114 }
1115 
1116 static inline void
_nir_src_set_parent(nir_src * src,void * parent,bool is_if)1117 _nir_src_set_parent(nir_src *src, void *parent, bool is_if)
1118 {
1119     uintptr_t ptr = (uintptr_t) parent;
1120     assert((ptr & ~NIR_SRC_PARENT_MASK) == 0 && "pointer must be aligned");
1121 
1122     if (is_if)
1123        ptr |= NIR_SRC_PARENT_IS_IF;
1124 
1125     src->_parent = ptr;
1126 }
1127 
1128 static inline void
nir_src_set_parent_instr(nir_src * src,nir_instr * parent_instr)1129 nir_src_set_parent_instr(nir_src *src, nir_instr *parent_instr)
1130 {
1131    _nir_src_set_parent(src, parent_instr, false);
1132 }
1133 
1134 static inline void
nir_src_set_parent_if(nir_src * src,struct nir_if * parent_if)1135 nir_src_set_parent_if(nir_src *src, struct nir_if *parent_if)
1136 {
1137    _nir_src_set_parent(src, parent_if, true);
1138 }
1139 
1140 static inline nir_src
nir_src_init(void)1141 nir_src_init(void)
1142 {
1143    nir_src src = { 0 };
1144    return src;
1145 }
1146 
1147 #define NIR_SRC_INIT nir_src_init()
1148 
1149 #define nir_foreach_use_including_if(src, reg_or_ssa_def) \
1150    list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
1151 
1152 #define nir_foreach_use_including_if_safe(src, reg_or_ssa_def) \
1153    list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
1154 
1155 #define nir_foreach_use(src, reg_or_ssa_def)         \
1156    nir_foreach_use_including_if(src, reg_or_ssa_def) \
1157       if (!nir_src_is_if(src))
1158 
1159 #define nir_foreach_use_safe(src, reg_or_ssa_def)         \
1160    nir_foreach_use_including_if_safe(src, reg_or_ssa_def) \
1161       if (!nir_src_is_if(src))
1162 
1163 #define nir_foreach_if_use(src, reg_or_ssa_def)      \
1164    nir_foreach_use_including_if(src, reg_or_ssa_def) \
1165       if (nir_src_is_if(src))
1166 
1167 #define nir_foreach_if_use_safe(src, reg_or_ssa_def)      \
1168    nir_foreach_use_including_if_safe(src, reg_or_ssa_def) \
1169       if (nir_src_is_if(src))
1170 
1171 static inline bool
nir_def_used_by_if(const nir_def * def)1172 nir_def_used_by_if(const nir_def *def)
1173 {
1174    nir_foreach_if_use(_, def)
1175       return true;
1176 
1177    return false;
1178 }
1179 
1180 static inline bool
nir_def_only_used_by_if(const nir_def * def)1181 nir_def_only_used_by_if(const nir_def *def)
1182 {
1183    nir_foreach_use(_, def)
1184       return false;
1185 
1186    return true;
1187 }
1188 
1189 static inline nir_src
nir_src_for_ssa(nir_def * def)1190 nir_src_for_ssa(nir_def *def)
1191 {
1192    nir_src src = NIR_SRC_INIT;
1193 
1194    src.ssa = def;
1195 
1196    return src;
1197 }
1198 
1199 static inline unsigned
nir_src_bit_size(nir_src src)1200 nir_src_bit_size(nir_src src)
1201 {
1202    return src.ssa->bit_size;
1203 }
1204 
1205 static inline unsigned
nir_src_num_components(nir_src src)1206 nir_src_num_components(nir_src src)
1207 {
1208    return src.ssa->num_components;
1209 }
1210 
1211 static inline bool
nir_src_is_const(nir_src src)1212 nir_src_is_const(nir_src src)
1213 {
1214    return src.ssa->parent_instr->type == nir_instr_type_load_const;
1215 }
1216 
1217 static inline bool
nir_src_is_undef(nir_src src)1218 nir_src_is_undef(nir_src src)
1219 {
1220    return src.ssa->parent_instr->type == nir_instr_type_undef;
1221 }
1222 
1223 bool nir_src_is_divergent(nir_src *src);
1224 
1225 /* Are all components the same, ie. .xxxx */
1226 static inline bool
nir_is_same_comp_swizzle(uint8_t * swiz,unsigned nr_comp)1227 nir_is_same_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
1228 {
1229    for (unsigned i = 1; i < nr_comp; i++)
1230       if (swiz[i] != swiz[0])
1231          return false;
1232    return true;
1233 }
1234 
1235 /* Are all components sequential, ie. .yzw */
1236 static inline bool
nir_is_sequential_comp_swizzle(uint8_t * swiz,unsigned nr_comp)1237 nir_is_sequential_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
1238 {
1239    for (unsigned i = 1; i < nr_comp; i++)
1240       if (swiz[i] != (swiz[0] + i))
1241          return false;
1242    return true;
1243 }
1244 
1245 /***/
1246 typedef struct nir_alu_src {
1247    /** Base source */
1248    nir_src src;
1249 
1250    /**
1251     * For each input component, says which component of the register it is
1252     * chosen from.
1253     *
1254     * Note that which elements of the swizzle are used and which are ignored
1255     * are based on the write mask for most opcodes - for example, a statement
1256     * like "foo.xzw = bar.zyx" would have a writemask of 1101b and a swizzle
1257     * of {2, 1, x, 0} where x means "don't care."
1258     */
1259    uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
1260 } nir_alu_src;
1261 
1262 nir_alu_type
1263 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type);
1264 
1265 static inline nir_alu_type
nir_get_nir_type_for_glsl_type(const struct glsl_type * type)1266 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
1267 {
1268    return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
1269 }
1270 
1271 enum glsl_base_type
1272 nir_get_glsl_base_type_for_nir_type(nir_alu_type base_type);
1273 
1274 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
1275                               nir_rounding_mode rnd);
1276 
1277 /**
1278  * Atomic intrinsics perform different operations depending on the value of
1279  * their atomic_op constant index. nir_atomic_op defines the operations.
1280  */
1281 typedef enum {
1282    nir_atomic_op_iadd,
1283    nir_atomic_op_imin,
1284    nir_atomic_op_umin,
1285    nir_atomic_op_imax,
1286    nir_atomic_op_umax,
1287    nir_atomic_op_iand,
1288    nir_atomic_op_ior,
1289    nir_atomic_op_ixor,
1290    nir_atomic_op_xchg,
1291    nir_atomic_op_fadd,
1292    nir_atomic_op_fmin,
1293    nir_atomic_op_fmax,
1294    nir_atomic_op_cmpxchg,
1295    nir_atomic_op_fcmpxchg,
1296    nir_atomic_op_inc_wrap,
1297    nir_atomic_op_dec_wrap,
1298    nir_atomic_op_ordered_add_gfx12_amd,
1299 } nir_atomic_op;
1300 
1301 static inline nir_alu_type
nir_atomic_op_type(nir_atomic_op op)1302 nir_atomic_op_type(nir_atomic_op op)
1303 {
1304    switch (op) {
1305    case nir_atomic_op_imin:
1306    case nir_atomic_op_imax:
1307       return nir_type_int;
1308 
1309    case nir_atomic_op_fadd:
1310    case nir_atomic_op_fmin:
1311    case nir_atomic_op_fmax:
1312    case nir_atomic_op_fcmpxchg:
1313       return nir_type_float;
1314 
1315    case nir_atomic_op_iadd:
1316    case nir_atomic_op_iand:
1317    case nir_atomic_op_ior:
1318    case nir_atomic_op_ixor:
1319    case nir_atomic_op_xchg:
1320    case nir_atomic_op_cmpxchg:
1321    case nir_atomic_op_umin:
1322    case nir_atomic_op_umax:
1323    case nir_atomic_op_inc_wrap:
1324    case nir_atomic_op_dec_wrap:
1325    case nir_atomic_op_ordered_add_gfx12_amd:
1326       return nir_type_uint;
1327    }
1328 
1329    unreachable("Invalid nir_atomic_op");
1330 }
1331 
1332 nir_op
1333 nir_atomic_op_to_alu(nir_atomic_op op);
1334 
1335 /** Returns nir_op_vec<num_components> or nir_op_mov if num_components == 1
1336  *
1337  * This is subtly different from nir_op_is_vec() which returns false for
1338  * nir_op_mov.  Returning nir_op_mov from nir_op_vec() when num_components == 1
1339  * makes sense under the assumption that the num_components of the resulting
1340  * nir_def will same as what is passed in here because a single-component mov
1341  * is effectively a vec1.  However, if alu->def.num_components > 1, nir_op_mov
1342  * has different semantics from nir_op_vec* so so code which detects "is this
1343  * a vec?" typically needs to handle nir_op_mov separate from nir_op_vecN.
1344  *
1345  * In the unlikely case where you can handle nir_op_vecN and nir_op_mov
1346  * together, use nir_op_is_vec_or_mov().
1347  */
1348 nir_op
1349 nir_op_vec(unsigned num_components);
1350 
1351 /** Returns true if this op is one of nir_op_vec*
1352  *
1353  * Returns false for nir_op_mov.  See nir_op_vec() for more details.
1354  */
1355 bool
1356 nir_op_is_vec(nir_op op);
1357 
1358 static inline bool
nir_op_is_vec_or_mov(nir_op op)1359 nir_op_is_vec_or_mov(nir_op op)
1360 {
1361    return op == nir_op_mov || nir_op_is_vec(op);
1362 }
1363 
1364 static inline bool
nir_is_float_control_signed_zero_preserve(unsigned execution_mode,unsigned bit_size)1365 nir_is_float_control_signed_zero_preserve(unsigned execution_mode, unsigned bit_size)
1366 {
1367    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP16) ||
1368           (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP32) ||
1369           (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP64);
1370 }
1371 
1372 static inline bool
nir_is_float_control_inf_preserve(unsigned execution_mode,unsigned bit_size)1373 nir_is_float_control_inf_preserve(unsigned execution_mode, unsigned bit_size)
1374 {
1375    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_INF_PRESERVE_FP16) ||
1376           (32 == bit_size && execution_mode & FLOAT_CONTROLS_INF_PRESERVE_FP32) ||
1377           (64 == bit_size && execution_mode & FLOAT_CONTROLS_INF_PRESERVE_FP64);
1378 }
1379 
1380 static inline bool
nir_is_float_control_nan_preserve(unsigned execution_mode,unsigned bit_size)1381 nir_is_float_control_nan_preserve(unsigned execution_mode, unsigned bit_size)
1382 {
1383    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_NAN_PRESERVE_FP16) ||
1384           (32 == bit_size && execution_mode & FLOAT_CONTROLS_NAN_PRESERVE_FP32) ||
1385           (64 == bit_size && execution_mode & FLOAT_CONTROLS_NAN_PRESERVE_FP64);
1386 }
1387 
1388 static inline bool
nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode,unsigned bit_size)1389 nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
1390 {
1391    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
1392           (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
1393           (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
1394 }
1395 
1396 static inline bool
nir_is_denorm_flush_to_zero(unsigned execution_mode,unsigned bit_size)1397 nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
1398 {
1399    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
1400           (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
1401           (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
1402 }
1403 
1404 static inline bool
nir_is_denorm_preserve(unsigned execution_mode,unsigned bit_size)1405 nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
1406 {
1407    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
1408           (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
1409           (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
1410 }
1411 
1412 static inline bool
nir_is_rounding_mode_rtne(unsigned execution_mode,unsigned bit_size)1413 nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
1414 {
1415    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1416           (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1417           (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1418 }
1419 
1420 static inline bool
nir_is_rounding_mode_rtz(unsigned execution_mode,unsigned bit_size)1421 nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
1422 {
1423    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1424           (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1425           (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1426 }
1427 
1428 static inline bool
nir_has_any_rounding_mode_rtz(unsigned execution_mode)1429 nir_has_any_rounding_mode_rtz(unsigned execution_mode)
1430 {
1431    return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1432           (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1433           (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1434 }
1435 
1436 static inline bool
nir_has_any_rounding_mode_rtne(unsigned execution_mode)1437 nir_has_any_rounding_mode_rtne(unsigned execution_mode)
1438 {
1439    return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1440           (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1441           (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1442 }
1443 
1444 static inline nir_rounding_mode
nir_get_rounding_mode_from_float_controls(unsigned execution_mode,nir_alu_type type)1445 nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
1446                                           nir_alu_type type)
1447 {
1448    if (nir_alu_type_get_base_type(type) != nir_type_float)
1449       return nir_rounding_mode_undef;
1450 
1451    unsigned bit_size = nir_alu_type_get_type_size(type);
1452 
1453    if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
1454       return nir_rounding_mode_rtz;
1455    if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
1456       return nir_rounding_mode_rtne;
1457    return nir_rounding_mode_undef;
1458 }
1459 
1460 static inline bool
nir_has_any_rounding_mode_enabled(unsigned execution_mode)1461 nir_has_any_rounding_mode_enabled(unsigned execution_mode)
1462 {
1463    bool result =
1464       nir_has_any_rounding_mode_rtne(execution_mode) ||
1465       nir_has_any_rounding_mode_rtz(execution_mode);
1466    return result;
1467 }
1468 
1469 typedef enum {
1470    /**
1471     * Operation where the first two sources are commutative.
1472     *
1473     * For 2-source operations, this just mathematical commutativity.  Some
1474     * 3-source operations, like ffma, are only commutative in the first two
1475     * sources.
1476     */
1477    NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1478 
1479    /**
1480     * Operation is associative
1481     */
1482    NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1483 
1484    /**
1485     * Operation where src[0] is used to select src[1] on true or src[2] false.
1486     * src[0] may be Boolean, or it may be another type used in an implicit
1487     * comparison.
1488     */
1489    NIR_OP_IS_SELECTION = (1 << 2),
1490 } nir_op_algebraic_property;
1491 
1492 /* vec16 is the widest ALU op in NIR, making the max number of input of ALU
1493  * instructions to be the same as NIR_MAX_VEC_COMPONENTS.
1494  */
1495 #define NIR_ALU_MAX_INPUTS NIR_MAX_VEC_COMPONENTS
1496 
1497 /***/
1498 typedef struct nir_op_info {
1499    /** Name of the NIR ALU opcode */
1500    const char *name;
1501 
1502    /** Number of inputs (sources) */
1503    uint8_t num_inputs;
1504 
1505    /**
1506     * The number of components in the output
1507     *
1508     * If non-zero, this is the size of the output and input sizes are
1509     * explicitly given; swizzle and writemask are still in effect, but if
1510     * the output component is masked out, then the input component may
1511     * still be in use.
1512     *
1513     * If zero, the opcode acts in the standard, per-component manner; the
1514     * operation is performed on each component (except the ones that are
1515     * masked out) with the input being taken from the input swizzle for
1516     * that component.
1517     *
1518     * The size of some of the inputs may be given (i.e. non-zero) even
1519     * though output_size is zero; in that case, the inputs with a zero
1520     * size act per-component, while the inputs with non-zero size don't.
1521     */
1522    uint8_t output_size;
1523 
1524    /**
1525     * The type of vector that the instruction outputs.
1526     */
1527    nir_alu_type output_type;
1528 
1529    /**
1530     * The number of components in each input
1531     *
1532     * See nir_op_infos::output_size for more detail about the relationship
1533     * between input and output sizes.
1534     */
1535    uint8_t input_sizes[NIR_ALU_MAX_INPUTS];
1536 
1537    /**
1538     * The type of vector that each input takes.
1539     */
1540    nir_alu_type input_types[NIR_ALU_MAX_INPUTS];
1541 
1542    /** Algebraic properties of this opcode */
1543    nir_op_algebraic_property algebraic_properties;
1544 
1545    /** Whether this represents a numeric conversion opcode */
1546    bool is_conversion;
1547 } nir_op_info;
1548 
1549 /** Metadata for each nir_op, indexed by opcode */
1550 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1551 
1552 static inline bool
nir_op_is_selection(nir_op op)1553 nir_op_is_selection(nir_op op)
1554 {
1555    return (nir_op_infos[op].algebraic_properties & NIR_OP_IS_SELECTION) != 0;
1556 }
1557 
1558 /***/
1559 typedef struct nir_alu_instr {
1560    /** Base instruction */
1561    nir_instr instr;
1562 
1563    /** Opcode */
1564    nir_op op;
1565 
1566    /** Indicates that this ALU instruction generates an exact value
1567     *
1568     * This is kind of a mixture of GLSL "precise" and "invariant" and not
1569     * really equivalent to either.  This indicates that the value generated by
1570     * this operation is high-precision and any code transformations that touch
1571     * it must ensure that the resulting value is bit-for-bit identical to the
1572     * original.
1573     */
1574    bool exact : 1;
1575 
1576    /**
1577     * Indicates that this instruction doese not cause signed integer wrapping
1578     * to occur, in the form of overflow or underflow.
1579     */
1580    bool no_signed_wrap : 1;
1581 
1582    /**
1583     * Indicates that this instruction does not cause unsigned integer wrapping
1584     * to occur, in the form of overflow or underflow.
1585     */
1586    bool no_unsigned_wrap : 1;
1587 
1588    /**
1589     * The float controls bit float_controls2 cares about. That is,
1590     * NAN/INF/SIGNED_ZERO_PRESERVE only. Allow{Contract,Reassoc,Transform} are
1591     * still handled through the exact bit, and the other float controls bits
1592     * (rounding mode and denorm handling) remain in the execution mode only.
1593     */
1594    uint32_t fp_fast_math : 9;
1595 
1596    /** Destination */
1597    nir_def def;
1598 
1599    /** Sources
1600     *
1601     * The size of the array is given by :c:member:`nir_op_info.num_inputs`.
1602     */
1603    nir_alu_src src[];
1604 } nir_alu_instr;
1605 
1606 static inline bool
nir_alu_instr_is_signed_zero_preserve(nir_alu_instr * alu)1607 nir_alu_instr_is_signed_zero_preserve(nir_alu_instr *alu)
1608 {
1609    return nir_is_float_control_signed_zero_preserve(alu->fp_fast_math, alu->def.bit_size);
1610 }
1611 
1612 static inline bool
nir_alu_instr_is_inf_preserve(nir_alu_instr * alu)1613 nir_alu_instr_is_inf_preserve(nir_alu_instr *alu)
1614 {
1615    return nir_is_float_control_inf_preserve(alu->fp_fast_math, alu->def.bit_size);
1616 }
1617 
1618 static inline bool
nir_alu_instr_is_nan_preserve(nir_alu_instr * alu)1619 nir_alu_instr_is_nan_preserve(nir_alu_instr *alu)
1620 {
1621    return nir_is_float_control_nan_preserve(alu->fp_fast_math, alu->def.bit_size);
1622 }
1623 
1624 static inline bool
nir_alu_instr_is_signed_zero_inf_nan_preserve(nir_alu_instr * alu)1625 nir_alu_instr_is_signed_zero_inf_nan_preserve(nir_alu_instr *alu)
1626 {
1627    return nir_is_float_control_signed_zero_inf_nan_preserve(alu->fp_fast_math, alu->def.bit_size);
1628 }
1629 
1630 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src);
1631 
1632 nir_component_mask_t
1633 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src);
1634 /**
1635  * Get the number of channels used for a source
1636  */
1637 unsigned
1638 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src);
1639 
1640 /* is this source channel used? */
1641 static inline bool
nir_alu_instr_channel_used(const nir_alu_instr * instr,unsigned src,unsigned channel)1642 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1643                            unsigned channel)
1644 {
1645    return channel < nir_ssa_alu_instr_src_components(instr, src);
1646 }
1647 
1648 bool
1649 nir_alu_instr_is_comparison(const nir_alu_instr *instr);
1650 
1651 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1652                                     nir_alu_type full_type);
1653 
1654 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1655                         unsigned src1, unsigned src2);
1656 
1657 bool nir_alu_srcs_negative_equal_typed(const nir_alu_instr *alu1,
1658                                        const nir_alu_instr *alu2,
1659                                        unsigned src1, unsigned src2,
1660                                        nir_alu_type base_type);
1661 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1662                                  const nir_alu_instr *alu2,
1663                                  unsigned src1, unsigned src2);
1664 
1665 bool nir_alu_src_is_trivial_ssa(const nir_alu_instr *alu, unsigned srcn);
1666 
1667 typedef enum {
1668    nir_deref_type_var,
1669    nir_deref_type_array,
1670    nir_deref_type_array_wildcard,
1671    nir_deref_type_ptr_as_array,
1672    nir_deref_type_struct,
1673    nir_deref_type_cast,
1674 } nir_deref_type;
1675 
1676 typedef struct {
1677    nir_instr instr;
1678 
1679    /** The type of this deref instruction */
1680    nir_deref_type deref_type;
1681 
1682    /** Bitmask what modes the underlying variable might be
1683     *
1684     * For OpenCL-style generic pointers, we may not know exactly what mode it
1685     * is at any given point in time in the compile process.  This bitfield
1686     * contains the set of modes which it MAY be.
1687     *
1688     * Generally, this field should not be accessed directly.  Use one of the
1689     * nir_deref_mode_ helpers instead.
1690     */
1691    nir_variable_mode modes;
1692 
1693    /** The dereferenced type of the resulting pointer value */
1694    const struct glsl_type *type;
1695 
1696    union {
1697       /** Variable being dereferenced if deref_type is a deref_var */
1698       nir_variable *var;
1699 
1700       /** Parent deref if deref_type is not deref_var */
1701       nir_src parent;
1702    };
1703 
1704    /** Additional deref parameters */
1705    union {
1706       struct {
1707          nir_src index;
1708          bool in_bounds;
1709       } arr;
1710 
1711       struct {
1712          unsigned index;
1713       } strct;
1714 
1715       struct {
1716          unsigned ptr_stride;
1717          unsigned align_mul;
1718          unsigned align_offset;
1719       } cast;
1720    };
1721 
1722    /** Destination to store the resulting "pointer" */
1723    nir_def def;
1724 } nir_deref_instr;
1725 
1726 /**
1727  * Returns true if the cast is trivial, i.e. the source and destination type is
1728  * the same.
1729  */
1730 bool nir_deref_cast_is_trivial(nir_deref_instr *cast);
1731 
1732 /** Returns true if deref might have one of the given modes
1733  *
1734  * For multi-mode derefs, this returns true if any of the possible modes for
1735  * the deref to have any of the specified modes.  This function returning true
1736  * does NOT mean that the deref definitely has one of those modes.  It simply
1737  * means that, with the best information we have at the time, it might.
1738  */
1739 static inline bool
nir_deref_mode_may_be(const nir_deref_instr * deref,nir_variable_mode modes)1740 nir_deref_mode_may_be(const nir_deref_instr *deref, nir_variable_mode modes)
1741 {
1742    assert(!(modes & ~nir_var_all));
1743    assert(deref->modes != 0);
1744    return deref->modes & modes;
1745 }
1746 
1747 /** Returns true if deref must have one of the given modes
1748  *
1749  * For multi-mode derefs, this returns true if NIR can prove that the given
1750  * deref has one of the specified modes.  This function returning false does
1751  * NOT mean that deref doesn't have one of the given mode.  It very well may
1752  * have one of those modes, we just don't have enough information to prove
1753  * that it does for sure.
1754  */
1755 static inline bool
nir_deref_mode_must_be(const nir_deref_instr * deref,nir_variable_mode modes)1756 nir_deref_mode_must_be(const nir_deref_instr *deref, nir_variable_mode modes)
1757 {
1758    assert(!(modes & ~nir_var_all));
1759    assert(deref->modes != 0);
1760    return !(deref->modes & ~modes);
1761 }
1762 
1763 /** Returns true if deref has the given mode
1764  *
1765  * This returns true if the deref has exactly the mode specified.  If the
1766  * deref may have that mode but may also have a different mode (i.e. modes has
1767  * multiple bits set), this will assert-fail.
1768  *
1769  * If you're confused about which nir_deref_mode_ helper to use, use this one
1770  * or nir_deref_mode_is_one_of below.
1771  */
1772 static inline bool
nir_deref_mode_is(const nir_deref_instr * deref,nir_variable_mode mode)1773 nir_deref_mode_is(const nir_deref_instr *deref, nir_variable_mode mode)
1774 {
1775    assert(util_bitcount(mode) == 1 && (mode & nir_var_all));
1776    assert(deref->modes != 0);
1777 
1778    /* This is only for "simple" cases so, if modes might interact with this
1779     * deref then the deref has to have a single mode.
1780     */
1781    if (nir_deref_mode_may_be(deref, mode)) {
1782       assert(util_bitcount(deref->modes) == 1);
1783       assert(deref->modes == mode);
1784    }
1785 
1786    return deref->modes == mode;
1787 }
1788 
1789 /** Returns true if deref has one of the given modes
1790  *
1791  * This returns true if the deref has exactly one possible mode and that mode
1792  * is one of the modes specified.  If the deref may have one of those modes
1793  * but may also have a different mode (i.e. modes has multiple bits set), this
1794  * will assert-fail.
1795  */
1796 static inline bool
nir_deref_mode_is_one_of(const nir_deref_instr * deref,nir_variable_mode modes)1797 nir_deref_mode_is_one_of(const nir_deref_instr *deref, nir_variable_mode modes)
1798 {
1799    /* This is only for "simple" cases so, if modes might interact with this
1800     * deref then the deref has to have a single mode.
1801     */
1802    if (nir_deref_mode_may_be(deref, modes)) {
1803       assert(util_bitcount(deref->modes) == 1);
1804       assert(nir_deref_mode_must_be(deref, modes));
1805    }
1806 
1807    return nir_deref_mode_may_be(deref, modes);
1808 }
1809 
1810 /** Returns true if deref's possible modes lie in the given set of modes
1811  *
1812  * This returns true if the deref's modes lie in the given set of modes.  If
1813  * the deref's modes overlap with the specified modes but aren't entirely
1814  * contained in the specified set of modes, this will assert-fail.  In
1815  * particular, if this is used in a generic pointers scenario, the specified
1816  * modes has to contain all or none of the possible generic pointer modes.
1817  *
1818  * This is intended mostly for mass-lowering of derefs which might have
1819  * generic pointers.
1820  */
1821 static inline bool
nir_deref_mode_is_in_set(const nir_deref_instr * deref,nir_variable_mode modes)1822 nir_deref_mode_is_in_set(const nir_deref_instr *deref, nir_variable_mode modes)
1823 {
1824    if (nir_deref_mode_may_be(deref, modes))
1825       assert(nir_deref_mode_must_be(deref, modes));
1826 
1827    return nir_deref_mode_may_be(deref, modes);
1828 }
1829 
1830 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1831 
1832 static inline nir_deref_instr *
nir_deref_instr_parent(const nir_deref_instr * instr)1833 nir_deref_instr_parent(const nir_deref_instr *instr)
1834 {
1835    if (instr->deref_type == nir_deref_type_var)
1836       return NULL;
1837    else
1838       return nir_src_as_deref(instr->parent);
1839 }
1840 
1841 static inline nir_variable *
nir_deref_instr_get_variable(const nir_deref_instr * instr)1842 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1843 {
1844    while (instr->deref_type != nir_deref_type_var) {
1845       if (instr->deref_type == nir_deref_type_cast)
1846          return NULL;
1847 
1848       instr = nir_deref_instr_parent(instr);
1849    }
1850 
1851    return instr->var;
1852 }
1853 
1854 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1855 bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
1856 
1857 typedef enum {
1858    nir_deref_instr_has_complex_use_allow_memcpy_src = (1 << 0),
1859    nir_deref_instr_has_complex_use_allow_memcpy_dst = (1 << 1),
1860    nir_deref_instr_has_complex_use_allow_atomics = (1 << 2),
1861 } nir_deref_instr_has_complex_use_options;
1862 
1863 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr,
1864                                      nir_deref_instr_has_complex_use_options opts);
1865 
1866 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1867 
1868 unsigned nir_deref_instr_array_stride(nir_deref_instr *instr);
1869 
1870 typedef struct {
1871    nir_instr instr;
1872 
1873    struct nir_function *callee;
1874    /* If this function call is indirect, the function pointer to call.
1875     * Otherwise, null initialized.
1876     */
1877    nir_src indirect_callee;
1878 
1879    unsigned num_params;
1880    nir_src params[];
1881 } nir_call_instr;
1882 
1883 #include "nir_intrinsics.h"
1884 
1885 #define NIR_INTRINSIC_MAX_CONST_INDEX 8
1886 
1887 /** Represents an intrinsic
1888  *
1889  * An intrinsic is an instruction type for handling things that are
1890  * more-or-less regular operations but don't just consume and produce SSA
1891  * values like ALU operations do.  Intrinsics are not for things that have
1892  * special semantic meaning such as phi nodes and parallel copies.
1893  * Examples of intrinsics include variable load/store operations, system
1894  * value loads, and the like.  Even though texturing more-or-less falls
1895  * under this category, texturing is its own instruction type because
1896  * trying to represent texturing with intrinsics would lead to a
1897  * combinatorial explosion of intrinsic opcodes.
1898  *
1899  * By having a single instruction type for handling a lot of different
1900  * cases, optimization passes can look for intrinsics and, for the most
1901  * part, completely ignore them.  Each intrinsic type also has a few
1902  * possible flags that govern whether or not they can be reordered or
1903  * eliminated.  That way passes like dead code elimination can still work
1904  * on intrisics without understanding the meaning of each.
1905  *
1906  * Each intrinsic has some number of constant indices, some number of
1907  * variables, and some number of sources.  What these sources, variables,
1908  * and indices mean depends on the intrinsic and is documented with the
1909  * intrinsic declaration in nir_intrinsics.h.  Intrinsics and texture
1910  * instructions are the only types of instruction that can operate on
1911  * variables.
1912  */
1913 typedef struct {
1914    nir_instr instr;
1915 
1916    nir_intrinsic_op intrinsic;
1917 
1918    nir_def def;
1919 
1920    /** number of components if this is a vectorized intrinsic
1921     *
1922     * Similarly to ALU operations, some intrinsics are vectorized.
1923     * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1924     * For vectorized intrinsics, the num_components field specifies the
1925     * number of destination components and the number of source components
1926     * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1927     */
1928    uint8_t num_components;
1929 
1930    int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1931 
1932    /* a variable name associated with this instr; cannot be modified or freed */
1933    const char *name;
1934 
1935    nir_src src[];
1936 } nir_intrinsic_instr;
1937 
1938 static inline nir_variable *
nir_intrinsic_get_var(const nir_intrinsic_instr * intrin,unsigned i)1939 nir_intrinsic_get_var(const nir_intrinsic_instr *intrin, unsigned i)
1940 {
1941    return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1942 }
1943 
1944 typedef enum {
1945    /* Memory ordering. */
1946    NIR_MEMORY_ACQUIRE = 1 << 0,
1947    NIR_MEMORY_RELEASE = 1 << 1,
1948    NIR_MEMORY_ACQ_REL = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE,
1949 
1950    /* Memory visibility operations. */
1951    NIR_MEMORY_MAKE_AVAILABLE = 1 << 2,
1952    NIR_MEMORY_MAKE_VISIBLE = 1 << 3,
1953 } nir_memory_semantics;
1954 
1955 /**
1956  * NIR intrinsics semantic flags
1957  *
1958  * information about what the compiler can do with the intrinsics.
1959  *
1960  * :c:member:`nir_intrinsic_info.flags`
1961  */
1962 typedef enum {
1963    /**
1964     * whether the intrinsic can be safely eliminated if none of its output
1965     * value is not being used.
1966     */
1967    NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1968 
1969    /**
1970     * Whether the intrinsic can be reordered with respect to any other
1971     * intrinsic, i.e. whether the only reordering dependencies of the
1972     * intrinsic are due to the register reads/writes.
1973     */
1974    NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1975 } nir_intrinsic_semantic_flag;
1976 
1977 /**
1978  * Maximum valid value for a nir align_mul value (in intrinsics or derefs).
1979  *
1980  * Offsets can be signed, so this is the largest power of two in int32_t.
1981  */
1982 #define NIR_ALIGN_MUL_MAX 0x40000000
1983 
1984 typedef struct nir_io_semantics {
1985    unsigned location : 7;  /* gl_vert_attrib, gl_varying_slot, or gl_frag_result */
1986    unsigned num_slots : 6; /* max 32, may be pessimistic with const indexing */
1987    unsigned dual_source_blend_index : 1;
1988    unsigned fb_fetch_output : 1;  /* for GL_KHR_blend_equation_advanced */
1989    unsigned fb_fetch_output_coherent : 1;
1990    unsigned gs_streams : 8;       /* xxyyzzww: 2-bit stream index for each component */
1991    unsigned medium_precision : 1; /* GLSL mediump qualifier */
1992    unsigned per_view : 1;
1993    unsigned high_16bits : 1; /* whether accessing low or high half of the slot */
1994    unsigned invariant : 1;   /* The variable has the invariant flag set */
1995    unsigned high_dvec2 : 1; /* whether accessing the high half of dvec3/dvec4 */
1996    /* CLIP_DISTn, LAYER, VIEWPORT, and TESS_LEVEL_* have up to 3 uses:
1997     * - an output consumed by the next stage
1998     * - a system value output affecting fixed-func hardware, e.g. the clipper
1999     * - a transform feedback output written to memory
2000     * The following fields disable the first two. Transform feedback is disabled
2001     * by transform feedback info.
2002     */
2003    unsigned no_varying : 1;       /* whether this output isn't consumed by the next stage */
2004    unsigned no_sysval_output : 1; /* whether this system value output has no
2005                                      effect due to current pipeline states */
2006    unsigned interp_explicit_strict : 1; /* preserve original vertex order */
2007 } nir_io_semantics;
2008 
2009 /* Transform feedback info for 2 outputs. nir_intrinsic_store_output contains
2010  * this structure twice to support up to 4 outputs. The structure is limited
2011  * to 32 bits because it's stored in nir_intrinsic_instr::const_index[].
2012  */
2013 typedef struct nir_io_xfb {
2014    struct {
2015       /* start_component is equal to the index of out[]; add 2 for io_xfb2 */
2016       /* start_component is not relative to nir_intrinsic_component */
2017       /* get the stream index from nir_io_semantics */
2018       uint8_t num_components : 4; /* max 4; if this is 0, xfb is disabled */
2019       uint8_t buffer : 4;         /* buffer index, max 3 */
2020       uint8_t offset;             /* transform feedback buffer offset in dwords,
2021                                      max (1K - 4) bytes */
2022    } out[2];
2023 } nir_io_xfb;
2024 
2025 unsigned
2026 nir_instr_xfb_write_mask(nir_intrinsic_instr *instr);
2027 
2028 #define NIR_INTRINSIC_MAX_INPUTS 11
2029 
2030 typedef struct {
2031    const char *name;
2032 
2033    /** number of register/SSA inputs */
2034    uint8_t num_srcs;
2035 
2036    /** number of components of each input register
2037     *
2038     * If this value is 0, the number of components is given by the
2039     * num_components field of nir_intrinsic_instr.  If this value is -1, the
2040     * intrinsic consumes however many components are provided and it is not
2041     * validated at all.
2042     */
2043    int8_t src_components[NIR_INTRINSIC_MAX_INPUTS];
2044 
2045    bool has_dest;
2046 
2047    /** number of components of the output register
2048     *
2049     * If this value is 0, the number of components is given by the
2050     * num_components field of nir_intrinsic_instr.
2051     */
2052    uint8_t dest_components;
2053 
2054    /** bitfield of legal bit sizes */
2055    uint8_t dest_bit_sizes;
2056 
2057    /** source which the destination bit size must match
2058     *
2059     * Some intrinsics, such as subgroup intrinsics, are data manipulation
2060     * intrinsics and they have similar bit-size rules to ALU ops. This enables
2061     * validation to validate a bit more and enables auto-generated builder code
2062     * to properly determine destination bit sizes automatically.
2063     */
2064    int8_t bit_size_src;
2065 
2066    /** the number of constant indices used by the intrinsic */
2067    uint8_t num_indices;
2068 
2069    /** list of indices */
2070    uint8_t indices[NIR_INTRINSIC_MAX_CONST_INDEX];
2071 
2072    /** indicates the usage of intr->const_index[n] */
2073    uint8_t index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
2074 
2075    /** semantic flags for calls to this intrinsic */
2076    nir_intrinsic_semantic_flag flags;
2077 } nir_intrinsic_info;
2078 
2079 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
2080 
2081 unsigned
2082 nir_intrinsic_src_components(const nir_intrinsic_instr *intr, unsigned srcn);
2083 
2084 unsigned
2085 nir_intrinsic_dest_components(nir_intrinsic_instr *intr);
2086 
2087 nir_alu_type
2088 nir_intrinsic_instr_src_type(const nir_intrinsic_instr *intrin, unsigned src);
2089 
2090 nir_alu_type
2091 nir_intrinsic_instr_dest_type(const nir_intrinsic_instr *intrin);
2092 
2093 /**
2094  * Helper to copy const_index[] from src to dst, without assuming they
2095  * match in order.
2096  */
2097 void nir_intrinsic_copy_const_indices(nir_intrinsic_instr *dst, nir_intrinsic_instr *src);
2098 
2099 #include "nir_intrinsics_indices.h"
2100 
2101 static inline void
nir_intrinsic_set_align(nir_intrinsic_instr * intrin,unsigned align_mul,unsigned align_offset)2102 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
2103                         unsigned align_mul, unsigned align_offset)
2104 {
2105    assert(util_is_power_of_two_nonzero(align_mul));
2106    assert(align_offset < align_mul);
2107    nir_intrinsic_set_align_mul(intrin, align_mul);
2108    nir_intrinsic_set_align_offset(intrin, align_offset);
2109 }
2110 
2111 /** Returns a simple alignment for an align_mul/offset pair
2112  *
2113  * This helper converts from the full mul+offset alignment scheme used by
2114  * most NIR intrinsics to a simple alignment.  The returned value is the
2115  * largest power of two which divides both align_mul and align_offset.
2116  * For any offset X which satisfies the complex alignment described by
2117  * align_mul/offset, X % align == 0.
2118  */
2119 static inline uint32_t
nir_combined_align(uint32_t align_mul,uint32_t align_offset)2120 nir_combined_align(uint32_t align_mul, uint32_t align_offset)
2121 {
2122    assert(util_is_power_of_two_nonzero(align_mul));
2123    assert(align_offset < align_mul);
2124    return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
2125 }
2126 
2127 /** Returns a simple alignment for a load/store intrinsic offset
2128  *
2129  * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
2130  * and ALIGN_OFFSET parameters, this helper takes both into account and
2131  * provides a single simple alignment parameter.  The offset X is guaranteed
2132  * to satisfy X % align == 0.
2133  */
2134 static inline unsigned
nir_intrinsic_align(const nir_intrinsic_instr * intrin)2135 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
2136 {
2137    return nir_combined_align(nir_intrinsic_align_mul(intrin),
2138                              nir_intrinsic_align_offset(intrin));
2139 }
2140 
2141 static inline bool
nir_intrinsic_has_align(const nir_intrinsic_instr * intrin)2142 nir_intrinsic_has_align(const nir_intrinsic_instr *intrin)
2143 {
2144    return nir_intrinsic_has_align_mul(intrin) &&
2145           nir_intrinsic_has_align_offset(intrin);
2146 }
2147 
2148 unsigned
2149 nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr);
2150 
2151 /* Converts a image_deref_* intrinsic into a image_* one */
2152 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
2153                                  nir_def *handle, bool bindless);
2154 
2155 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
2156 bool nir_intrinsic_can_reorder(nir_intrinsic_instr *instr);
2157 
2158 bool nir_intrinsic_writes_external_memory(const nir_intrinsic_instr *instr);
2159 
2160 static inline bool
nir_intrinsic_is_ray_query(nir_intrinsic_op intrinsic)2161 nir_intrinsic_is_ray_query(nir_intrinsic_op intrinsic)
2162 {
2163    switch (intrinsic) {
2164    case nir_intrinsic_rq_confirm_intersection:
2165    case nir_intrinsic_rq_generate_intersection:
2166    case nir_intrinsic_rq_initialize:
2167    case nir_intrinsic_rq_load:
2168    case nir_intrinsic_rq_proceed:
2169    case nir_intrinsic_rq_terminate:
2170       return true;
2171    default:
2172       return false;
2173    }
2174 }
2175 
2176 /** Texture instruction source type */
2177 typedef enum nir_tex_src_type {
2178    /** Texture coordinate
2179     *
2180     * Must have :c:member:`nir_tex_instr.coord_components` components.
2181     */
2182    nir_tex_src_coord,
2183 
2184    /** Projector
2185     *
2186     * The texture coordinate (except for the array component, if any) is
2187     * divided by this value before LOD computation and sampling.
2188     *
2189     * Must be a float scalar.
2190     */
2191    nir_tex_src_projector,
2192 
2193    /** Shadow comparator
2194     *
2195     * For shadow sampling, the fetched texel values are compared against the
2196     * shadow comparator using the compare op specified by the sampler object
2197     * and converted to 1.0 if the comparison succeeds and 0.0 if it fails.
2198     * Interpolation happens after this conversion so the actual result may be
2199     * anywhere in the range [0.0, 1.0].
2200     *
2201     * Only valid if :c:member:`nir_tex_instr.is_shadow` and must be a float
2202     * scalar.
2203     */
2204    nir_tex_src_comparator,
2205 
2206    /** Coordinate offset
2207     *
2208     * An integer value that is added to the texel address before sampling.
2209     * This is only allowed with operations that take an explicit LOD as it is
2210     * applied in integer texel space after LOD selection and not normalized
2211     * coordinate space.
2212     */
2213    nir_tex_src_offset,
2214 
2215    /** LOD bias
2216     *
2217     * This value is added to the computed LOD before mip-mapping.
2218     */
2219    nir_tex_src_bias,
2220 
2221    /** Explicit LOD */
2222    nir_tex_src_lod,
2223 
2224    /** Min LOD
2225     *
2226     * The computed LOD is clamped to be at least as large as min_lod before
2227     * mip-mapping.
2228     */
2229    nir_tex_src_min_lod,
2230 
2231    /** MSAA sample index */
2232    nir_tex_src_ms_index,
2233 
2234    /** Intel-specific MSAA compression data */
2235    nir_tex_src_ms_mcs_intel,
2236 
2237    /** Explicit horizontal (X-major) coordinate derivative */
2238    nir_tex_src_ddx,
2239 
2240    /** Explicit vertical (Y-major) coordinate derivative */
2241    nir_tex_src_ddy,
2242 
2243    /** Texture variable dereference */
2244    nir_tex_src_texture_deref,
2245 
2246    /** Sampler variable dereference */
2247    nir_tex_src_sampler_deref,
2248 
2249    /** Texture index offset
2250     *
2251     * This is added to :c:member:`nir_tex_instr.texture_index`.  Unless
2252     * :c:member:`nir_tex_instr.texture_non_uniform` is set, this is guaranteed
2253     * to be dynamically uniform.
2254     */
2255    nir_tex_src_texture_offset,
2256 
2257    /** Dynamically uniform sampler index offset
2258     *
2259     * This is added to :c:member:`nir_tex_instr.sampler_index`.  Unless
2260     * :c:member:`nir_tex_instr.sampler_non_uniform` is set, this is guaranteed to be
2261     * dynamically uniform.  This should not be present until GLSL ES 3.20, GLSL
2262     * 4.00, or ARB_gpu_shader5, because in ES 3.10 and GL 3.30 samplers said
2263     * "When aggregated into arrays within a shader, samplers can only be indexed
2264     * with a constant integral expression."
2265     */
2266    nir_tex_src_sampler_offset,
2267 
2268    /** Bindless texture handle
2269     *
2270     * This is, unfortunately, a bit overloaded at the moment.  There are
2271     * generally two types of bindless handles:
2272     *
2273     *  1. For GL_ARB_bindless bindless handles. These are part of the
2274     *     GL/Gallium-level API and are always a 64-bit integer.
2275     *
2276     *  2. HW-specific handles.  GL_ARB_bindless handles may be lowered to
2277     *     these.  Also, these are used by many Vulkan drivers to implement
2278     *     descriptor sets, especially for UPDATE_AFTER_BIND descriptors.
2279     *     The details of hardware handles (bit size, format, etc.) is
2280     *     HW-specific.
2281     *
2282     * Because of this overloading and the resulting ambiguity, we currently
2283     * don't validate anything for these.
2284     */
2285    nir_tex_src_texture_handle,
2286 
2287    /** Bindless sampler handle
2288     *
2289     * See nir_tex_src_texture_handle,
2290     */
2291    nir_tex_src_sampler_handle,
2292 
2293    /** Tex src intrinsic
2294     *
2295     * This is an intrinsic used before function inlining i.e. before we know
2296     * if a bindless value has been given as function param for use as a tex
2297     * src.
2298     */
2299    nir_tex_src_sampler_deref_intrinsic,
2300    nir_tex_src_texture_deref_intrinsic,
2301 
2302    /** Plane index for multi-plane YCbCr textures */
2303    nir_tex_src_plane,
2304 
2305    /**
2306     * Backend-specific vec4 tex src argument.
2307     *
2308     * Can be used to have NIR optimization (copy propagation, lower_vec_to_regs)
2309     * apply to the packing of the tex srcs.  This lowering must only happen
2310     * after nir_lower_tex().
2311     *
2312     * The nir_tex_instr_src_type() of this argument is float, so no lowering
2313     * will happen if nir_lower_int_to_float is used.
2314     */
2315    nir_tex_src_backend1,
2316 
2317    /** Second backend-specific vec4 tex src argument, see nir_tex_src_backend1. */
2318    nir_tex_src_backend2,
2319 
2320    nir_num_tex_src_types
2321 } nir_tex_src_type;
2322 
2323 /** A texture instruction source */
2324 typedef struct nir_tex_src {
2325    /** Base source */
2326    nir_src src;
2327 
2328    /** Type of this source */
2329    nir_tex_src_type src_type;
2330 } nir_tex_src;
2331 
2332 /** Texture instruction opcode */
2333 typedef enum nir_texop {
2334    /** Regular texture look-up */
2335    nir_texop_tex,
2336    /** Texture look-up with LOD bias */
2337    nir_texop_txb,
2338    /** Texture look-up with explicit LOD */
2339    nir_texop_txl,
2340    /** Texture look-up with partial derivatives */
2341    nir_texop_txd,
2342    /** Texel fetch with explicit LOD */
2343    nir_texop_txf,
2344    /** Multisample texture fetch */
2345    nir_texop_txf_ms,
2346    /** Multisample texture fetch from framebuffer */
2347    nir_texop_txf_ms_fb,
2348    /** Multisample compression value fetch */
2349    nir_texop_txf_ms_mcs_intel,
2350    /** Texture size */
2351    nir_texop_txs,
2352    /** Texture lod query */
2353    nir_texop_lod,
2354    /** Texture gather */
2355    nir_texop_tg4,
2356    /** Texture levels query */
2357    nir_texop_query_levels,
2358    /** Texture samples query */
2359    nir_texop_texture_samples,
2360    /** Query whether all samples are definitely identical. */
2361    nir_texop_samples_identical,
2362    /** Regular texture look-up, eligible for pre-dispatch */
2363    nir_texop_tex_prefetch,
2364    /** Multisample fragment color texture fetch */
2365    nir_texop_fragment_fetch_amd,
2366    /** Multisample fragment mask texture fetch */
2367    nir_texop_fragment_mask_fetch_amd,
2368    /** Returns a buffer or image descriptor. */
2369    nir_texop_descriptor_amd,
2370    /** Returns a sampler descriptor. */
2371    nir_texop_sampler_descriptor_amd,
2372    /** Returns the sampler's LOD bias */
2373    nir_texop_lod_bias_agx,
2374    /** Returns a bool indicating that the sampler uses a custom border colour */
2375    nir_texop_has_custom_border_color_agx,
2376    /** Returns the sampler's custom border colour (if has_custom_border_agx) */
2377    nir_texop_custom_border_color_agx,
2378    /** Maps to TXQ.DIMENSION */
2379    nir_texop_hdr_dim_nv,
2380    /** Maps to TXQ.TEXTURE_TYPE */
2381    nir_texop_tex_type_nv,
2382 } nir_texop;
2383 
2384 /** Represents a texture instruction */
2385 typedef struct nir_tex_instr {
2386    /** Base instruction */
2387    nir_instr instr;
2388 
2389    /** Dimensionality of the texture operation
2390     *
2391     * This will typically match the dimensionality of the texture deref type
2392     * if a nir_tex_src_texture_deref is present.  However, it may not if
2393     * texture lowering has occurred.
2394     */
2395    enum glsl_sampler_dim sampler_dim;
2396 
2397    /** ALU type of the destination
2398     *
2399     * This is the canonical sampled type for this texture operation and may
2400     * not exactly match the sampled type of the deref type when a
2401     * nir_tex_src_texture_deref is present.  For OpenCL, the sampled type of
2402     * the texture deref will be GLSL_TYPE_VOID and this is allowed to be
2403     * anything.  With SPIR-V, the signedness of integer types is allowed to
2404     * differ.  For all APIs, the bit size may differ if the driver has done
2405     * any sort of mediump or similar lowering since texture types always have
2406     * 32-bit sampled types.
2407     */
2408    nir_alu_type dest_type;
2409 
2410    /** Texture opcode */
2411    nir_texop op;
2412 
2413    /** Destination */
2414    nir_def def;
2415 
2416    /** Array of sources
2417     *
2418     * This array has :c:member:`nir_tex_instr.num_srcs` elements
2419     */
2420    nir_tex_src *src;
2421 
2422    /** Number of sources */
2423    unsigned num_srcs;
2424 
2425    /** Number of components in the coordinate, if any */
2426    unsigned coord_components;
2427 
2428    /** True if the texture instruction acts on an array texture */
2429    bool is_array;
2430 
2431    /** True if the texture instruction performs a shadow comparison
2432     *
2433     * If this is true, the texture instruction must have a
2434     * nir_tex_src_comparator.
2435     */
2436    bool is_shadow;
2437 
2438    /**
2439     * If is_shadow is true, whether this is the old-style shadow that outputs
2440     * 4 components or the new-style shadow that outputs 1 component.
2441     */
2442    bool is_new_style_shadow;
2443 
2444    /**
2445     * True if this texture instruction should return a sparse residency code.
2446     * The code is in the last component of the result.
2447     */
2448    bool is_sparse;
2449 
2450    /** nir_texop_tg4 component selector
2451     *
2452     * This determines which RGBA component is gathered.
2453     */
2454    unsigned component : 2;
2455 
2456    /** Validation needs to know this for gradient component count */
2457    unsigned array_is_lowered_cube : 1;
2458 
2459    /** True if this tg4 instruction has an implicit LOD or LOD bias, instead of using level 0 */
2460    unsigned is_gather_implicit_lod : 1;
2461 
2462    /** Gather offsets */
2463    int8_t tg4_offsets[4][2];
2464 
2465    /** True if the texture index or handle is not dynamically uniform */
2466    bool texture_non_uniform;
2467 
2468    /** True if the sampler index or handle is not dynamically uniform.
2469     *
2470     * This may be set when VK_EXT_descriptor_indexing is supported and the
2471     * appropriate capability is enabled.
2472     *
2473     * This should always be false in GLSL (GLSL ES 3.20 says "When aggregated
2474     * into arrays within a shader, opaque types can only be indexed with a
2475     * dynamically uniform integral expression", and GLSL 4.60 says "When
2476     * aggregated into arrays within a shader, [texture, sampler, and
2477     * samplerShadow] types can only be indexed with a dynamically uniform
2478     * expression, or texture lookup will result in undefined values.").
2479     */
2480    bool sampler_non_uniform;
2481 
2482    /** The texture index
2483     *
2484     * If this texture instruction has a nir_tex_src_texture_offset source,
2485     * then the texture index is given by texture_index + texture_offset.
2486     */
2487    unsigned texture_index;
2488 
2489    /** The sampler index
2490     *
2491     * The following operations do not require a sampler and, as such, this
2492     * field should be ignored:
2493     *
2494     *    - nir_texop_txf
2495     *    - nir_texop_txf_ms
2496     *    - nir_texop_txs
2497     *    - nir_texop_query_levels
2498     *    - nir_texop_texture_samples
2499     *    - nir_texop_samples_identical
2500     *
2501     * If this texture instruction has a nir_tex_src_sampler_offset source,
2502     * then the sampler index is given by sampler_index + sampler_offset.
2503     */
2504    unsigned sampler_index;
2505 
2506    /* Back-end specific flags, intended to be used in combination with
2507     * nir_tex_src_backend1/2 to provide additional hw-specific information
2508     * to the back-end compiler.
2509     */
2510    uint32_t backend_flags;
2511 } nir_tex_instr;
2512 
2513 /**
2514  * Returns true if the texture operation requires a sampler as a general rule
2515  *
2516  * Note that the specific hw/driver backend could require to a sampler
2517  * object/configuration packet in any case, for some other reason.
2518  *
2519  * See also :c:member:`nir_tex_instr.sampler_index`.
2520  */
2521 bool nir_tex_instr_need_sampler(const nir_tex_instr *instr);
2522 
2523 /** Returns the number of components returned by this nir_tex_instr
2524  *
2525  * Useful for code building texture instructions when you don't want to think
2526  * about how many components a particular texture op returns.  This does not
2527  * include the sparse residency code.
2528  */
2529 unsigned
2530 nir_tex_instr_result_size(const nir_tex_instr *instr);
2531 
2532 /**
2533  * Returns the destination size of this nir_tex_instr including the sparse
2534  * residency code, if any.
2535  */
2536 static inline unsigned
nir_tex_instr_dest_size(const nir_tex_instr * instr)2537 nir_tex_instr_dest_size(const nir_tex_instr *instr)
2538 {
2539    /* One more component is needed for the residency code. */
2540    return nir_tex_instr_result_size(instr) + instr->is_sparse;
2541 }
2542 
2543 /**
2544  * Returns true if this texture operation queries something about the texture
2545  * rather than actually sampling it.
2546  */
2547 bool
2548 nir_tex_instr_is_query(const nir_tex_instr *instr);
2549 
2550 /** Returns true if this texture instruction does implicit derivatives
2551  *
2552  * This is important as there are extra control-flow rules around derivatives
2553  * and texture instructions which perform them implicitly.
2554  */
2555 bool
2556 nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr);
2557 
2558 /** Returns the ALU type of the given texture instruction source */
2559 nir_alu_type
2560 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src);
2561 
2562 /**
2563  * Returns the number of components required by the given texture instruction
2564  * source
2565  */
2566 unsigned
2567 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src);
2568 
2569 /**
2570  * Returns the index of the texture instruction source with the given
2571  * nir_tex_src_type or -1 if no such source exists.
2572  */
2573 static inline int
nir_tex_instr_src_index(const nir_tex_instr * instr,nir_tex_src_type type)2574 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
2575 {
2576    for (unsigned i = 0; i < instr->num_srcs; i++)
2577       if (instr->src[i].src_type == type)
2578          return (int)i;
2579 
2580    return -1;
2581 }
2582 
2583 /** Adds a source to a texture instruction */
2584 void nir_tex_instr_add_src(nir_tex_instr *tex,
2585                            nir_tex_src_type src_type,
2586                            nir_def *src);
2587 
2588 /** Removes a source from a texture instruction */
2589 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
2590 
2591 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
2592 
2593 typedef struct {
2594    nir_instr instr;
2595 
2596    nir_def def;
2597 
2598    nir_const_value value[];
2599 } nir_load_const_instr;
2600 
2601 typedef enum {
2602    /** Return from a function
2603     *
2604     * This instruction is a classic function return.  It jumps to
2605     * nir_function_impl::end_block.  No return value is provided in this
2606     * instruction.  Instead, the function is expected to write any return
2607     * data to a deref passed in from the caller.
2608     */
2609    nir_jump_return,
2610 
2611    /** Immediately exit the current shader
2612     *
2613     * This instruction is roughly the equivalent of C's "exit()" in that it
2614     * immediately terminates the current shader invocation.  From a CFG
2615     * perspective, it looks like a jump to nir_function_impl::end_block but
2616     * it actually jumps to the end block of the shader entrypoint.  A halt
2617     * instruction in the shader entrypoint itself is semantically identical
2618     * to a return.
2619     *
2620     * For shaders with built-in I/O, any outputs written prior to a halt
2621     * instruction remain written and any outputs not written prior to the
2622     * halt have undefined values.  It does NOT cause an implicit discard of
2623     * written results.  If one wants discard results in a fragment shader,
2624     * for instance, a discard or demote intrinsic is required.
2625     */
2626    nir_jump_halt,
2627 
2628    /** Break out of the inner-most loop
2629     *
2630     * This has the same semantics as C's "break" statement.
2631     */
2632    nir_jump_break,
2633 
2634    /** Jump back to the top of the inner-most loop
2635     *
2636     * This has the same semantics as C's "continue" statement assuming that a
2637     * NIR loop is implemented as "while (1) { body }".
2638     */
2639    nir_jump_continue,
2640 
2641    /** Jumps for unstructured CFG.
2642     *
2643     * As within an unstructured CFG we can't rely on block ordering we need to
2644     * place explicit jumps at the end of every block.
2645     */
2646    nir_jump_goto,
2647    nir_jump_goto_if,
2648 } nir_jump_type;
2649 
2650 typedef struct {
2651    nir_instr instr;
2652    nir_jump_type type;
2653    nir_src condition;
2654    struct nir_block *target;
2655    struct nir_block *else_target;
2656 } nir_jump_instr;
2657 
2658 /* creates a new SSA variable in an undefined state */
2659 
2660 typedef struct {
2661    nir_instr instr;
2662    nir_def def;
2663 } nir_undef_instr;
2664 
2665 typedef struct {
2666    struct exec_node node;
2667 
2668    /* The predecessor block corresponding to this source */
2669    struct nir_block *pred;
2670 
2671    nir_src src;
2672 } nir_phi_src;
2673 
2674 #define nir_foreach_phi_src(phi_src, phi) \
2675    foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
2676 #define nir_foreach_phi_src_safe(phi_src, phi) \
2677    foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
2678 
2679 typedef struct {
2680    nir_instr instr;
2681 
2682    /** list of nir_phi_src */
2683    struct exec_list srcs;
2684 
2685    nir_def def;
2686 } nir_phi_instr;
2687 
2688 static inline nir_phi_src *
nir_phi_get_src_from_block(nir_phi_instr * phi,struct nir_block * block)2689 nir_phi_get_src_from_block(nir_phi_instr *phi, struct nir_block *block)
2690 {
2691    nir_foreach_phi_src(src, phi) {
2692       if (src->pred == block)
2693          return src;
2694    }
2695 
2696    assert(!"Block is not a predecessor of phi.");
2697    return NULL;
2698 }
2699 
2700 typedef struct {
2701    struct exec_node node;
2702    bool src_is_reg;
2703    bool dest_is_reg;
2704    nir_src src;
2705    union {
2706       nir_def def;
2707       nir_src reg;
2708    } dest;
2709 } nir_parallel_copy_entry;
2710 
2711 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
2712    foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
2713 
2714 typedef struct {
2715    nir_instr instr;
2716 
2717    /* A list of nir_parallel_copy_entrys.  The sources of all of the
2718     * entries are copied to the corresponding destinations "in parallel".
2719     * In other words, if we have two entries: a -> b and b -> a, the values
2720     * get swapped.
2721     */
2722    struct exec_list entries;
2723 } nir_parallel_copy_instr;
2724 
2725 typedef enum nir_debug_info_type {
2726    nir_debug_info_src_loc,
2727    nir_debug_info_string,
2728 } nir_debug_info_type;
2729 
2730 typedef enum nir_debug_info_source {
2731    nir_debug_info_spirv,
2732    nir_debug_info_nir,
2733 } nir_debug_info_source;
2734 
2735 typedef struct nir_debug_info_instr {
2736    nir_instr instr;
2737 
2738    nir_debug_info_type type;
2739 
2740    union {
2741       struct {
2742          nir_src filename;
2743          /* 0 if only the spirv_offset is available. */
2744          uint32_t line;
2745          uint32_t column;
2746 
2747          uint32_t spirv_offset;
2748 
2749          nir_debug_info_source source;
2750       } src_loc;
2751 
2752       uint16_t string_length;
2753    };
2754 
2755    nir_def def;
2756 
2757    char string[];
2758 } nir_debug_info_instr;
2759 
2760 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
2761                 type, nir_instr_type_alu)
2762 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
2763                 type, nir_instr_type_deref)
2764 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
2765                 type, nir_instr_type_call)
2766 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
2767                 type, nir_instr_type_jump)
2768 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
2769                 type, nir_instr_type_tex)
2770 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
2771                 type, nir_instr_type_intrinsic)
2772 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
2773                 type, nir_instr_type_load_const)
2774 NIR_DEFINE_CAST(nir_instr_as_undef, nir_instr, nir_undef_instr, instr,
2775                 type, nir_instr_type_undef)
2776 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
2777                 type, nir_instr_type_phi)
2778 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
2779                 nir_parallel_copy_instr, instr,
2780                 type, nir_instr_type_parallel_copy)
2781 NIR_DEFINE_CAST(nir_instr_as_debug_info, nir_instr,
2782                 nir_debug_info_instr, instr,
2783                 type, nir_instr_type_debug_info)
2784 
2785 #define NIR_DEFINE_SRC_AS_CONST(type, suffix)                 \
2786    static inline type                                         \
2787       nir_src_comp_as_##suffix(nir_src src, unsigned comp)    \
2788    {                                                          \
2789       assert(nir_src_is_const(src));                          \
2790       nir_load_const_instr *load =                            \
2791          nir_instr_as_load_const(src.ssa->parent_instr);      \
2792       assert(comp < load->def.num_components);                \
2793       return nir_const_value_as_##suffix(load->value[comp],   \
2794                                          load->def.bit_size); \
2795    }                                                          \
2796                                                               \
2797    static inline type                                         \
2798       nir_src_as_##suffix(nir_src src)                        \
2799    {                                                          \
2800       assert(nir_src_num_components(src) == 1);               \
2801       return nir_src_comp_as_##suffix(src, 0);                \
2802    }
2803 
2804 NIR_DEFINE_SRC_AS_CONST(int64_t, int)
2805 NIR_DEFINE_SRC_AS_CONST(uint64_t, uint)
2806 NIR_DEFINE_SRC_AS_CONST(bool, bool)
2807 NIR_DEFINE_SRC_AS_CONST(double, float)
2808 
2809 #undef NIR_DEFINE_SRC_AS_CONST
2810 
2811 typedef struct {
2812    nir_def *def;
2813    unsigned comp;
2814 } nir_scalar;
2815 
2816 static inline bool
nir_scalar_is_const(nir_scalar s)2817 nir_scalar_is_const(nir_scalar s)
2818 {
2819    return s.def->parent_instr->type == nir_instr_type_load_const;
2820 }
2821 
2822 static inline bool
nir_scalar_is_undef(nir_scalar s)2823 nir_scalar_is_undef(nir_scalar s)
2824 {
2825    return s.def->parent_instr->type == nir_instr_type_undef;
2826 }
2827 
2828 static inline nir_const_value
nir_scalar_as_const_value(nir_scalar s)2829 nir_scalar_as_const_value(nir_scalar s)
2830 {
2831    assert(s.comp < s.def->num_components);
2832    nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2833    return load->value[s.comp];
2834 }
2835 
2836 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix)         \
2837    static inline type                                    \
2838       nir_scalar_as_##suffix(nir_scalar s)               \
2839    {                                                     \
2840       return nir_const_value_as_##suffix(                \
2841          nir_scalar_as_const_value(s), s.def->bit_size); \
2842    }
2843 
NIR_DEFINE_SCALAR_AS_CONST(int64_t,int)2844 NIR_DEFINE_SCALAR_AS_CONST(int64_t, int)
2845 NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint)
2846 NIR_DEFINE_SCALAR_AS_CONST(bool, bool)
2847 NIR_DEFINE_SCALAR_AS_CONST(double, float)
2848 
2849 #undef NIR_DEFINE_SCALAR_AS_CONST
2850 
2851 static inline bool
2852 nir_scalar_is_alu(nir_scalar s)
2853 {
2854    return s.def->parent_instr->type == nir_instr_type_alu;
2855 }
2856 
2857 static inline nir_op
nir_scalar_alu_op(nir_scalar s)2858 nir_scalar_alu_op(nir_scalar s)
2859 {
2860    return nir_instr_as_alu(s.def->parent_instr)->op;
2861 }
2862 
2863 static inline bool
nir_scalar_is_intrinsic(nir_scalar s)2864 nir_scalar_is_intrinsic(nir_scalar s)
2865 {
2866    return s.def->parent_instr->type == nir_instr_type_intrinsic;
2867 }
2868 
2869 static inline nir_intrinsic_op
nir_scalar_intrinsic_op(nir_scalar s)2870 nir_scalar_intrinsic_op(nir_scalar s)
2871 {
2872    return nir_instr_as_intrinsic(s.def->parent_instr)->intrinsic;
2873 }
2874 
2875 static inline nir_scalar
nir_scalar_chase_alu_src(nir_scalar s,unsigned alu_src_idx)2876 nir_scalar_chase_alu_src(nir_scalar s, unsigned alu_src_idx)
2877 {
2878    nir_scalar out = { NULL, 0 };
2879 
2880    nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2881    assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2882 
2883    /* Our component must be written */
2884    assert(s.comp < s.def->num_components);
2885 
2886    out.def = alu->src[alu_src_idx].src.ssa;
2887 
2888    if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2889       /* The ALU src is unsized so the source component follows the
2890        * destination component.
2891        */
2892       out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2893    } else {
2894       /* This is a sized source so all source components work together to
2895        * produce all the destination components.  Since we need to return a
2896        * scalar, this only works if the source is a scalar.
2897        */
2898       assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2899       out.comp = alu->src[alu_src_idx].swizzle[0];
2900    }
2901    assert(out.comp < out.def->num_components);
2902 
2903    return out;
2904 }
2905 
2906 nir_scalar nir_scalar_chase_movs(nir_scalar s);
2907 
2908 static inline nir_scalar
nir_get_scalar(nir_def * def,unsigned channel)2909 nir_get_scalar(nir_def *def, unsigned channel)
2910 {
2911    nir_scalar s = { def, channel };
2912    return s;
2913 }
2914 
2915 /** Returns a nir_scalar where we've followed the bit-exact mov/vec use chain to the original definition */
2916 static inline nir_scalar
nir_scalar_resolved(nir_def * def,unsigned channel)2917 nir_scalar_resolved(nir_def *def, unsigned channel)
2918 {
2919    return nir_scalar_chase_movs(nir_get_scalar(def, channel));
2920 }
2921 
2922 static inline bool
nir_scalar_equal(nir_scalar s1,nir_scalar s2)2923 nir_scalar_equal(nir_scalar s1, nir_scalar s2)
2924 {
2925    return s1.def == s2.def && s1.comp == s2.comp;
2926 }
2927 
2928 static inline uint64_t
nir_alu_src_as_uint(nir_alu_src src)2929 nir_alu_src_as_uint(nir_alu_src src)
2930 {
2931    nir_scalar scalar = nir_get_scalar(src.src.ssa, src.swizzle[0]);
2932    return nir_scalar_as_uint(scalar);
2933 }
2934 
2935 typedef struct {
2936    bool success;
2937 
2938    nir_variable *var;
2939    unsigned desc_set;
2940    unsigned binding;
2941    unsigned num_indices;
2942    nir_src indices[4];
2943    bool read_first_invocation;
2944 } nir_binding;
2945 
2946 nir_binding nir_chase_binding(nir_src rsrc);
2947 nir_variable *nir_get_binding_variable(struct nir_shader *shader, nir_binding binding);
2948 
2949 /*
2950  * Control flow
2951  *
2952  * Control flow consists of a tree of control flow nodes, which include
2953  * if-statements and loops. The leaves of the tree are basic blocks, lists of
2954  * instructions that always run start-to-finish. Each basic block also keeps
2955  * track of its successors (blocks which may run immediately after the current
2956  * block) and predecessors (blocks which could have run immediately before the
2957  * current block). Each function also has a start block and an end block which
2958  * all return statements point to (which is always empty). Together, all the
2959  * blocks with their predecessors and successors make up the control flow
2960  * graph (CFG) of the function. There are helpers that modify the tree of
2961  * control flow nodes while modifying the CFG appropriately; these should be
2962  * used instead of modifying the tree directly.
2963  */
2964 
2965 typedef enum {
2966    nir_cf_node_block,
2967    nir_cf_node_if,
2968    nir_cf_node_loop,
2969    nir_cf_node_function
2970 } nir_cf_node_type;
2971 
2972 typedef struct nir_cf_node {
2973    struct exec_node node;
2974    nir_cf_node_type type;
2975    struct nir_cf_node *parent;
2976 } nir_cf_node;
2977 
2978 typedef struct nir_block {
2979    nir_cf_node cf_node;
2980 
2981    /** list of nir_instr */
2982    struct exec_list instr_list;
2983 
2984    /** generic block index; generated by nir_index_blocks */
2985    unsigned index;
2986 
2987    /* This indicates whether the block or any parent block is executed
2988     * conditionally and whether the condition uses a divergent value.
2989     */
2990    bool divergent;
2991 
2992    /*
2993     * Each block can only have up to 2 successors, so we put them in a simple
2994     * array - no need for anything more complicated.
2995     */
2996    struct nir_block *successors[2];
2997 
2998    /* Set of nir_block predecessors in the CFG */
2999    struct set *predecessors;
3000 
3001    /*
3002     * this node's immediate dominator in the dominance tree - set to NULL for
3003     * the start block and any unreachable blocks.
3004     */
3005    struct nir_block *imm_dom;
3006 
3007    /* This node's children in the dominance tree */
3008    unsigned num_dom_children;
3009    struct nir_block **dom_children;
3010 
3011    /* Set of nir_blocks on the dominance frontier of this block */
3012    struct set *dom_frontier;
3013 
3014    /*
3015     * These two indices have the property that dom_{pre,post}_index for each
3016     * child of this block in the dominance tree will always be between
3017     * dom_pre_index and dom_post_index for this block, which makes testing if
3018     * a given block is dominated by another block an O(1) operation.
3019     */
3020    uint32_t dom_pre_index, dom_post_index;
3021 
3022    /**
3023     * Value just before the first nir_instr->index in the block, but after
3024     * end_ip that of any predecessor block.
3025     */
3026    uint32_t start_ip;
3027    /**
3028     * Value just after the last nir_instr->index in the block, but before the
3029     * start_ip of any successor block.
3030     */
3031    uint32_t end_ip;
3032 
3033    /* SSA def live in and out for this block; used for liveness analysis.
3034     * Indexed by ssa_def->index
3035     */
3036    BITSET_WORD *live_in;
3037    BITSET_WORD *live_out;
3038 } nir_block;
3039 
3040 static inline bool
nir_block_is_reachable(nir_block * b)3041 nir_block_is_reachable(nir_block *b)
3042 {
3043    /* See also nir_block_dominates */
3044    return b->dom_post_index != 0;
3045 }
3046 
3047 static inline nir_instr *
nir_block_first_instr(nir_block * block)3048 nir_block_first_instr(nir_block *block)
3049 {
3050    struct exec_node *head = exec_list_get_head(&block->instr_list);
3051    return exec_node_data(nir_instr, head, node);
3052 }
3053 
3054 static inline nir_instr *
nir_block_last_instr(nir_block * block)3055 nir_block_last_instr(nir_block *block)
3056 {
3057    struct exec_node *tail = exec_list_get_tail(&block->instr_list);
3058    return exec_node_data(nir_instr, tail, node);
3059 }
3060 
3061 static inline bool
nir_block_ends_in_jump(nir_block * block)3062 nir_block_ends_in_jump(nir_block *block)
3063 {
3064    return !exec_list_is_empty(&block->instr_list) &&
3065           nir_block_last_instr(block)->type == nir_instr_type_jump;
3066 }
3067 
3068 static inline bool
nir_block_ends_in_return_or_halt(nir_block * block)3069 nir_block_ends_in_return_or_halt(nir_block *block)
3070 {
3071    if (exec_list_is_empty(&block->instr_list))
3072       return false;
3073 
3074    nir_instr *instr = nir_block_last_instr(block);
3075    if (instr->type != nir_instr_type_jump)
3076       return false;
3077 
3078    nir_jump_instr *jump_instr = nir_instr_as_jump(instr);
3079    return jump_instr->type == nir_jump_return ||
3080           jump_instr->type == nir_jump_halt;
3081 }
3082 
3083 static inline bool
nir_block_ends_in_break(nir_block * block)3084 nir_block_ends_in_break(nir_block *block)
3085 {
3086    if (exec_list_is_empty(&block->instr_list))
3087       return false;
3088 
3089    nir_instr *instr = nir_block_last_instr(block);
3090    return instr->type == nir_instr_type_jump &&
3091           nir_instr_as_jump(instr)->type == nir_jump_break;
3092 }
3093 
3094 bool nir_block_contains_work(nir_block *block);
3095 
3096 #define nir_foreach_instr(instr, block) \
3097    foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
3098 #define nir_foreach_instr_reverse(instr, block) \
3099    foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
3100 #define nir_foreach_instr_safe(instr, block) \
3101    foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
3102 #define nir_foreach_instr_reverse_safe(instr, block) \
3103    foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
3104 
3105 /* Phis come first in the block */
3106 static inline nir_phi_instr *
nir_first_phi_in_block(nir_block * block)3107 nir_first_phi_in_block(nir_block *block)
3108 {
3109    nir_foreach_instr(instr, block) {
3110       if (instr->type == nir_instr_type_phi)
3111          return nir_instr_as_phi(instr);
3112       else
3113          return NULL;
3114    }
3115 
3116    return NULL;
3117 }
3118 
3119 static inline nir_phi_instr *
nir_next_phi(nir_phi_instr * phi)3120 nir_next_phi(nir_phi_instr *phi)
3121 {
3122    nir_instr *next = nir_instr_next(&phi->instr);
3123 
3124    if (next && next->type == nir_instr_type_phi)
3125       return nir_instr_as_phi(next);
3126    else
3127       return NULL;
3128 }
3129 
3130 #define nir_foreach_phi(instr, block)                                        \
3131    for (nir_phi_instr *instr = nir_first_phi_in_block(block); instr != NULL; \
3132         instr = nir_next_phi(instr))
3133 
3134 #define nir_foreach_phi_safe(instr, block)                          \
3135    for (nir_phi_instr *instr = nir_first_phi_in_block(block),       \
3136                       *__next = instr ? nir_next_phi(instr) : NULL; \
3137         instr != NULL;                                              \
3138         instr = __next, __next = instr ? nir_next_phi(instr) : NULL)
3139 
3140 static inline nir_phi_instr *
nir_block_last_phi_instr(nir_block * block)3141 nir_block_last_phi_instr(nir_block *block)
3142 {
3143    nir_phi_instr *last_phi = NULL;
3144    nir_foreach_phi(instr, block)
3145       last_phi = instr;
3146 
3147    return last_phi;
3148 }
3149 
3150 typedef enum {
3151    nir_selection_control_none = 0x0,
3152 
3153    /**
3154     * Defined by SPIR-V spec 3.22 "Selection Control".
3155     * The application prefers to remove control flow.
3156     */
3157    nir_selection_control_flatten = 0x1,
3158 
3159    /**
3160     * Defined by SPIR-V spec 3.22 "Selection Control".
3161     * The application prefers to keep control flow.
3162     */
3163    nir_selection_control_dont_flatten = 0x2,
3164 
3165    /**
3166     * May be applied by the compiler stack when it knows
3167     * that a branch is divergent, and:
3168     * - either both the if and else are always taken
3169     * - the if or else is empty and the other is always taken
3170     */
3171    nir_selection_control_divergent_always_taken = 0x3,
3172 } nir_selection_control;
3173 
3174 typedef struct nir_if {
3175    nir_cf_node cf_node;
3176    nir_src condition;
3177    nir_selection_control control;
3178 
3179    /** list of nir_cf_node */
3180    struct exec_list then_list;
3181 
3182    /** list of nir_cf_node */
3183    struct exec_list else_list;
3184 } nir_if;
3185 
3186 typedef struct {
3187    nir_if *nif;
3188 
3189    /** Condition instruction that contains the induction variable */
3190    nir_instr *conditional_instr;
3191 
3192    /** Block within ::nif that has the break instruction. */
3193    nir_block *break_block;
3194 
3195    /** Last block for the then- or else-path that does not contain the break. */
3196    nir_block *continue_from_block;
3197 
3198    /** True when ::break_block is in the else-path of ::nif. */
3199    bool continue_from_then;
3200    bool induction_rhs;
3201 
3202    /* This is true if the terminators exact trip count is unknown. For
3203     * example:
3204     *
3205     *    for (int i = 0; i < imin(x, 4); i++)
3206     *       ...
3207     *
3208     * Here loop analysis would have set a max_trip_count of 4 however we dont
3209     * know for sure that this is the exact trip count.
3210     */
3211    bool exact_trip_count_unknown;
3212 
3213    struct list_head loop_terminator_link;
3214 } nir_loop_terminator;
3215 
3216 typedef struct {
3217    /* SSA def of the phi-node associated with this induction variable. */
3218    nir_def *basis;
3219 
3220    /* SSA def of the increment of the induction variable. */
3221    nir_def *def;
3222 
3223    /* Init statement */
3224    nir_src *init_src;
3225 
3226    /* Update statement */
3227    nir_alu_src *update_src;
3228 } nir_loop_induction_variable;
3229 
3230 typedef struct {
3231    /* Estimated cost (in number of instructions) of the loop */
3232    unsigned instr_cost;
3233 
3234    /* Contains fp64 ops that will be lowered */
3235    bool has_soft_fp64;
3236 
3237    /* Guessed trip count based on array indexing */
3238    unsigned guessed_trip_count;
3239 
3240    /* Maximum number of times the loop is run (if known) */
3241    unsigned max_trip_count;
3242 
3243    /* Do we know the exact number of times the loop will be run */
3244    bool exact_trip_count_known;
3245 
3246    /* Unroll the loop regardless of its size */
3247    bool force_unroll;
3248 
3249    /* Does the loop contain complex loop terminators, continues or other
3250     * complex behaviours? If this is true we can't rely on
3251     * loop_terminator_list to be complete or accurate.
3252     */
3253    bool complex_loop;
3254 
3255    nir_loop_terminator *limiting_terminator;
3256 
3257    /* A list of loop_terminators terminating this loop. */
3258    struct list_head loop_terminator_list;
3259 
3260    /* hash table of induction variables for this loop */
3261    struct hash_table *induction_vars;
3262 } nir_loop_info;
3263 
3264 typedef enum {
3265    nir_loop_control_none = 0x0,
3266    nir_loop_control_unroll = 0x1,
3267    nir_loop_control_dont_unroll = 0x2,
3268 } nir_loop_control;
3269 
3270 typedef struct {
3271    nir_cf_node cf_node;
3272 
3273    /** list of nir_cf_node */
3274    struct exec_list body;
3275 
3276    /** (optional) list of nir_cf_node */
3277    struct exec_list continue_list;
3278 
3279    nir_loop_info *info;
3280    nir_loop_control control;
3281    bool partially_unrolled;
3282 
3283    /**
3284     * Whether some loop-active invocations might take a different control-flow path:
3285     * divergent_continue indicates that a continue statement might be taken by
3286     * only some of the loop-active invocations. A subsequent break is always
3287     * considered divergent.
3288     */
3289    bool divergent_continue;
3290    bool divergent_break;
3291 } nir_loop;
3292 
3293 static inline bool
nir_loop_is_divergent(nir_loop * loop)3294 nir_loop_is_divergent(nir_loop *loop)
3295 {
3296    return loop->divergent_continue || loop->divergent_break;
3297 }
3298 
3299 /**
3300  * Various bits of metadata that can may be created or required by
3301  * optimization and analysis passes
3302  */
3303 typedef enum {
3304    nir_metadata_none = 0x0,
3305 
3306    /** Indicates that nir_block::index values are valid.
3307     *
3308     * The start block has index 0 and they increase through a natural walk of
3309     * the CFG.  nir_function_impl::num_blocks is the number of blocks and
3310     * every block index is in the range [0, nir_function_impl::num_blocks].
3311     *
3312     * A pass can preserve this metadata type if it doesn't touch the CFG.
3313     */
3314    nir_metadata_block_index = 0x1,
3315 
3316    /** Indicates that block dominance information is valid
3317     *
3318     * This includes:
3319     *
3320     *   - nir_block::num_dom_children
3321     *   - nir_block::dom_children
3322     *   - nir_block::dom_frontier
3323     *   - nir_block::dom_pre_index
3324     *   - nir_block::dom_post_index
3325     *
3326     * A pass can preserve this metadata type if it doesn't touch the CFG.
3327     */
3328    nir_metadata_dominance = 0x2,
3329 
3330    /** Indicates that SSA def data-flow liveness information is valid
3331     *
3332     * This includes:
3333     *
3334     *   - nir_block::live_in
3335     *   - nir_block::live_out
3336     *
3337     * A pass can preserve this metadata type if it never adds or removes any
3338     * SSA defs or uses of SSA defs (most passes shouldn't preserve this
3339     * metadata type).
3340     */
3341    nir_metadata_live_defs = 0x4,
3342 
3343    /** A dummy metadata value to track when a pass forgot to call
3344     * nir_metadata_preserve.
3345     *
3346     * A pass should always clear this value even if it doesn't make any
3347     * progress to indicate that it thought about preserving metadata.
3348     */
3349    nir_metadata_not_properly_reset = 0x8,
3350 
3351    /** Indicates that loop analysis information is valid.
3352     *
3353     * This includes everything pointed to by nir_loop::info.
3354     *
3355     * A pass can preserve this metadata type if it is guaranteed to not affect
3356     * any loop metadata.  However, since loop metadata includes things like
3357     * loop counts which depend on arithmetic in the loop, this is very hard to
3358     * determine.  Most passes shouldn't preserve this metadata type.
3359     */
3360    nir_metadata_loop_analysis = 0x10,
3361 
3362    /** Indicates that nir_instr::index values are valid.
3363     *
3364     * The start instruction has index 0 and they increase through a natural
3365     * walk of instructions in blocks in the CFG.  The indices my have holes
3366     * after passes such as DCE.
3367     *
3368     * A pass can preserve this metadata type if it never adds or moves any
3369     * instructions (most passes shouldn't preserve this metadata type), but
3370     * can preserve it if it only removes instructions.
3371     */
3372    nir_metadata_instr_index = 0x20,
3373 
3374    /** All control flow metadata
3375     *
3376     * This includes all metadata preserved by a pass that preserves control flow
3377     * but modifies instructions. For example, a pass using
3378     * nir_shader_instructions_pass will typically preserve this if it does not
3379     * insert control flow.
3380     *
3381     * This is the most common metadata set to preserve, so it has its own alias.
3382     */
3383    nir_metadata_control_flow = nir_metadata_block_index |
3384                                nir_metadata_dominance,
3385 
3386    /** All metadata
3387     *
3388     * This includes all nir_metadata flags except not_properly_reset.  Passes
3389     * which do not change the shader in any way should call
3390     *
3391     *    nir_metadata_preserve(impl, nir_metadata_all);
3392     */
3393    nir_metadata_all = ~nir_metadata_not_properly_reset,
3394 } nir_metadata;
3395 MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_metadata)
3396 
3397 typedef struct {
3398    nir_cf_node cf_node;
3399 
3400    /** pointer to the function of which this is an implementation */
3401    struct nir_function *function;
3402 
3403    /**
3404     * For entrypoints, a pointer to a nir_function_impl which runs before
3405     * it, once per draw or dispatch, communicating via store_preamble and
3406     * load_preamble intrinsics. If NULL then there is no preamble.
3407     */
3408    struct nir_function *preamble;
3409 
3410    /** list of nir_cf_node */
3411    struct exec_list body;
3412 
3413    nir_block *end_block;
3414 
3415    /** list for all local variables in the function */
3416    struct exec_list locals;
3417 
3418    /** next available SSA value index */
3419    unsigned ssa_alloc;
3420 
3421    /* total number of basic blocks, only valid when block_index_dirty = false */
3422    unsigned num_blocks;
3423 
3424    /** True if this nir_function_impl uses structured control-flow
3425     *
3426     * Structured nir_function_impls have different validation rules.
3427     */
3428    bool structured;
3429 
3430    nir_metadata valid_metadata;
3431    nir_variable_mode loop_analysis_indirect_mask;
3432    bool loop_analysis_force_unroll_sampler_indirect;
3433 } nir_function_impl;
3434 
3435 #define nir_foreach_function_temp_variable(var, impl) \
3436    foreach_list_typed(nir_variable, var, node, &(impl)->locals)
3437 
3438 #define nir_foreach_function_temp_variable_safe(var, impl) \
3439    foreach_list_typed_safe(nir_variable, var, node, &(impl)->locals)
3440 
3441 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_start_block(nir_function_impl * impl)3442 nir_start_block(nir_function_impl *impl)
3443 {
3444    return (nir_block *)impl->body.head_sentinel.next;
3445 }
3446 
3447 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_impl_last_block(nir_function_impl * impl)3448 nir_impl_last_block(nir_function_impl *impl)
3449 {
3450    return (nir_block *)impl->body.tail_sentinel.prev;
3451 }
3452 
3453 static inline nir_cf_node *
nir_cf_node_next(nir_cf_node * node)3454 nir_cf_node_next(nir_cf_node *node)
3455 {
3456    struct exec_node *next = exec_node_get_next(&node->node);
3457    if (exec_node_is_tail_sentinel(next))
3458       return NULL;
3459    else
3460       return exec_node_data(nir_cf_node, next, node);
3461 }
3462 
3463 static inline nir_cf_node *
nir_cf_node_prev(nir_cf_node * node)3464 nir_cf_node_prev(nir_cf_node *node)
3465 {
3466    struct exec_node *prev = exec_node_get_prev(&node->node);
3467    if (exec_node_is_head_sentinel(prev))
3468       return NULL;
3469    else
3470       return exec_node_data(nir_cf_node, prev, node);
3471 }
3472 
3473 static inline bool
nir_cf_node_is_first(const nir_cf_node * node)3474 nir_cf_node_is_first(const nir_cf_node *node)
3475 {
3476    return exec_node_is_head_sentinel(node->node.prev);
3477 }
3478 
3479 static inline bool
nir_cf_node_is_last(const nir_cf_node * node)3480 nir_cf_node_is_last(const nir_cf_node *node)
3481 {
3482    return exec_node_is_tail_sentinel(node->node.next);
3483 }
3484 
NIR_DEFINE_CAST(nir_cf_node_as_block,nir_cf_node,nir_block,cf_node,type,nir_cf_node_block)3485 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
3486                 type, nir_cf_node_block)
3487 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
3488                 type, nir_cf_node_if)
3489 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
3490                 type, nir_cf_node_loop)
3491 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
3492                 nir_function_impl, cf_node, type, nir_cf_node_function)
3493 
3494 static inline nir_block *
3495 nir_if_first_then_block(nir_if *if_stmt)
3496 {
3497    struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
3498    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3499 }
3500 
3501 static inline nir_block *
nir_if_last_then_block(nir_if * if_stmt)3502 nir_if_last_then_block(nir_if *if_stmt)
3503 {
3504    struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
3505    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3506 }
3507 
3508 static inline nir_block *
nir_if_first_else_block(nir_if * if_stmt)3509 nir_if_first_else_block(nir_if *if_stmt)
3510 {
3511    struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
3512    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3513 }
3514 
3515 static inline nir_block *
nir_if_last_else_block(nir_if * if_stmt)3516 nir_if_last_else_block(nir_if *if_stmt)
3517 {
3518    struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
3519    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3520 }
3521 
3522 static inline nir_block *
nir_loop_first_block(nir_loop * loop)3523 nir_loop_first_block(nir_loop *loop)
3524 {
3525    struct exec_node *head = exec_list_get_head(&loop->body);
3526    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3527 }
3528 
3529 static inline nir_block *
nir_loop_last_block(nir_loop * loop)3530 nir_loop_last_block(nir_loop *loop)
3531 {
3532    struct exec_node *tail = exec_list_get_tail(&loop->body);
3533    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3534 }
3535 
3536 static inline bool
nir_loop_has_continue_construct(const nir_loop * loop)3537 nir_loop_has_continue_construct(const nir_loop *loop)
3538 {
3539    return !exec_list_is_empty(&loop->continue_list);
3540 }
3541 
3542 static inline nir_block *
nir_loop_first_continue_block(nir_loop * loop)3543 nir_loop_first_continue_block(nir_loop *loop)
3544 {
3545    assert(nir_loop_has_continue_construct(loop));
3546    struct exec_node *head = exec_list_get_head(&loop->continue_list);
3547    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3548 }
3549 
3550 static inline nir_block *
nir_loop_last_continue_block(nir_loop * loop)3551 nir_loop_last_continue_block(nir_loop *loop)
3552 {
3553    assert(nir_loop_has_continue_construct(loop));
3554    struct exec_node *tail = exec_list_get_tail(&loop->continue_list);
3555    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3556 }
3557 
3558 /**
3559  * Return the target block of a nir_jump_continue statement
3560  */
3561 static inline nir_block *
nir_loop_continue_target(nir_loop * loop)3562 nir_loop_continue_target(nir_loop *loop)
3563 {
3564    if (nir_loop_has_continue_construct(loop))
3565       return nir_loop_first_continue_block(loop);
3566    else
3567       return nir_loop_first_block(loop);
3568 }
3569 
3570 /**
3571  * Return true if this list of cf_nodes contains a single empty block.
3572  */
3573 static inline bool
nir_cf_list_is_empty_block(struct exec_list * cf_list)3574 nir_cf_list_is_empty_block(struct exec_list *cf_list)
3575 {
3576    if (exec_list_is_singular(cf_list)) {
3577       struct exec_node *head = exec_list_get_head(cf_list);
3578       nir_block *block =
3579          nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3580       return exec_list_is_empty(&block->instr_list);
3581    }
3582    return false;
3583 }
3584 
3585 typedef struct {
3586    uint8_t num_components;
3587    uint8_t bit_size;
3588 
3589    /* True if this parameter is a deref used for returning values */
3590    bool is_return;
3591 
3592    bool implicit_conversion_prohibited;
3593 
3594    /* True if this parameter is not divergent. This is inverted to make
3595     * parameters divergent by default unless explicitly specified
3596     * otherwise.
3597     */
3598    bool is_uniform;
3599 
3600    nir_variable_mode mode;
3601 
3602    /* Drivers may optionally stash flags here describing the parameter.
3603     * For example, this might encode whether the driver expects the value
3604     * to be uniform or divergent, if the driver handles divergent parameters
3605     * differently from uniform ones.
3606     *
3607     * NIR will preserve this value but does not interpret it in any way.
3608     */
3609    uint32_t driver_attributes;
3610 
3611    /* The type of the function param */
3612    const struct glsl_type *type;
3613 
3614    /* Name if known, null if unknown */
3615    const char *name;
3616 } nir_parameter;
3617 
3618 typedef struct nir_function {
3619    struct exec_node node;
3620 
3621    const char *name;
3622    struct nir_shader *shader;
3623 
3624    unsigned num_params;
3625    nir_parameter *params;
3626 
3627    /** The implementation of this function.
3628     *
3629     * If the function is only declared and not implemented, this is NULL.
3630     *
3631     * Unless setting to NULL or NIR_SERIALIZE_FUNC_HAS_IMPL, set with
3632     * nir_function_set_impl to maintain IR invariants.
3633     */
3634    nir_function_impl *impl;
3635 
3636    /* Drivers may optionally stash flags here describing the function call.
3637     * For example, this might encode the ABI used for the call if a driver
3638     * supports multiple ABIs.
3639     *
3640     * NIR will preserve this value but does not interpret it in any way.
3641     */
3642    uint32_t driver_attributes;
3643 
3644    bool is_entrypoint;
3645    /* from SPIR-V linkage, only for libraries */
3646    bool is_exported;
3647    bool is_preamble;
3648    /* from SPIR-V function control */
3649    bool should_inline;
3650    bool dont_inline; /* from SPIR-V */
3651 
3652    /* Static workgroup size, if this is a kernel function in a library of OpenCL
3653     * kernels. Normally, the size in the shader info is used instead.
3654     */
3655    unsigned workgroup_size[3];
3656 
3657    /**
3658     * Is this function a subroutine type declaration
3659     * e.g. subroutine void type1(float arg1);
3660     */
3661    bool is_subroutine;
3662 
3663    /* Temporary function created to wrap global instructions before they can
3664     * be inlined into the main function.
3665     */
3666    bool is_tmp_globals_wrapper;
3667 
3668    /**
3669     * Is this function associated to a subroutine type
3670     * e.g. subroutine (type1, type2) function_name { function_body };
3671     * would have num_subroutine_types 2,
3672     * and pointers to the type1 and type2 types.
3673     */
3674    int num_subroutine_types;
3675    const struct glsl_type **subroutine_types;
3676 
3677    int subroutine_index;
3678 
3679    /* A temporary for passes to use for storing flags. */
3680    uint32_t pass_flags;
3681 } nir_function;
3682 
3683 typedef enum {
3684    nir_lower_imul64 = (1 << 0),
3685    nir_lower_isign64 = (1 << 1),
3686    /** Lower all int64 modulus and division opcodes */
3687    nir_lower_divmod64 = (1 << 2),
3688    /** Lower all 64-bit umul_high and imul_high opcodes */
3689    nir_lower_imul_high64 = (1 << 3),
3690    nir_lower_bcsel64 = (1 << 4),
3691    nir_lower_icmp64 = (1 << 5),
3692    nir_lower_iadd64 = (1 << 6),
3693    nir_lower_iabs64 = (1 << 7),
3694    nir_lower_ineg64 = (1 << 8),
3695    nir_lower_logic64 = (1 << 9),
3696    nir_lower_minmax64 = (1 << 10),
3697    nir_lower_shift64 = (1 << 11),
3698    nir_lower_imul_2x32_64 = (1 << 12),
3699    nir_lower_extract64 = (1 << 13),
3700    nir_lower_ufind_msb64 = (1 << 14),
3701    nir_lower_bit_count64 = (1 << 15),
3702    nir_lower_subgroup_shuffle64 = (1 << 16),
3703    nir_lower_scan_reduce_bitwise64 = (1 << 17),
3704    nir_lower_scan_reduce_iadd64 = (1 << 18),
3705    nir_lower_vote_ieq64 = (1 << 19),
3706    nir_lower_usub_sat64 = (1 << 20),
3707    nir_lower_iadd_sat64 = (1 << 21),
3708    nir_lower_find_lsb64 = (1 << 22),
3709    nir_lower_conv64 = (1 << 23),
3710    nir_lower_uadd_sat64 = (1 << 24),
3711    nir_lower_iadd3_64 = (1 << 25),
3712 } nir_lower_int64_options;
3713 
3714 typedef enum {
3715    nir_lower_drcp = (1 << 0),
3716    nir_lower_dsqrt = (1 << 1),
3717    nir_lower_drsq = (1 << 2),
3718    nir_lower_dtrunc = (1 << 3),
3719    nir_lower_dfloor = (1 << 4),
3720    nir_lower_dceil = (1 << 5),
3721    nir_lower_dfract = (1 << 6),
3722    nir_lower_dround_even = (1 << 7),
3723    nir_lower_dmod = (1 << 8),
3724    nir_lower_dsub = (1 << 9),
3725    nir_lower_ddiv = (1 << 10),
3726    nir_lower_dsign = (1 << 11),
3727    nir_lower_dminmax = (1 << 12),
3728    nir_lower_dsat = (1 << 13),
3729    nir_lower_fp64_full_software = (1 << 14),
3730 } nir_lower_doubles_options;
3731 
3732 typedef enum {
3733    nir_divergence_single_prim_per_subgroup = (1 << 0),
3734    nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
3735    nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
3736    nir_divergence_view_index_uniform = (1 << 3),
3737    nir_divergence_single_frag_shading_rate_per_subgroup = (1 << 4),
3738    nir_divergence_multiple_workgroup_per_compute_subgroup = (1 << 5),
3739    nir_divergence_shader_record_ptr_uniform = (1 << 6),
3740    nir_divergence_uniform_load_tears = (1 << 7),
3741    /* If used, this allows phis for divergent merges with undef and a uniform source to be considered uniform */
3742    nir_divergence_ignore_undef_if_phi_srcs = (1 << 8),
3743 } nir_divergence_options;
3744 
3745 typedef enum {
3746    /**
3747     * Whether a fragment shader can interpolate the same input multiple times
3748     * with different modes (smooth, noperspective) and locations (pixel,
3749     * centroid, sample, at_offset, at_sample), excluding the flat mode.
3750     *
3751     * This matches AMD GPU flexibility and limitations and is a superset of
3752     * the GL4 requirement that each input can be interpolated at its specified
3753     * location, and then also as centroid, at_offset, and at_sample.
3754     */
3755    nir_io_has_flexible_input_interpolation_except_flat = BITFIELD_BIT(0),
3756 
3757    /**
3758     * nir_opt_varyings compacts (relocates) components of varyings by
3759     * rewriting their locations completely, effectively moving components of
3760     * varyings between slots. This option forces nir_opt_varyings to make
3761     * VARYING_SLOT_POS unused by moving its contents to VARn if the consumer
3762     * is not FS. If this option is not set and POS is unused, it moves
3763     * components of VARn to POS until it's fully used.
3764     */
3765    nir_io_dont_use_pos_for_non_fs_varyings = BITFIELD_BIT(1),
3766 
3767    nir_io_16bit_input_output_support = BITFIELD_BIT(2),
3768 
3769    /**
3770     * Implement mediump inputs and outputs as normal 32-bit IO.
3771     * Causes the mediump flag to be not set for IO semantics, essentially
3772     * destroying any mediump-related IO information in the shader.
3773     */
3774    nir_io_mediump_is_32bit = BITFIELD_BIT(3),
3775 
3776    /**
3777     * Whether nir_opt_vectorize_io should ignore FS inputs.
3778     */
3779    nir_io_prefer_scalar_fs_inputs = BITFIELD_BIT(4),
3780 
3781    /**
3782     * Whether interpolated fragment shader vec4 slots can use load_input for
3783     * a subset of its components to skip interpolation for those components.
3784     * The result of such load_input is a value from a random (not necessarily
3785     * provoking) vertex. If a value from the provoking vertex is required,
3786     * the vec4 slot should have no load_interpolated_input instructions.
3787     *
3788     * This exposes the AMD capability that allows packing flat inputs with
3789     * interpolated inputs in a limited number of cases. Normally, flat
3790     * components must be in a separate vec4 slot to get the value from
3791     * the provoking vertex. If the compiler can prove that all per-vertex
3792     * values are equal (convergent, i.e. the provoking vertex doesn't matter),
3793     * it can put such flat components into any interpolated vec4 slot.
3794     *
3795     * It should also be set if the hw can mix flat and interpolated components
3796     * in the same vec4 slot.
3797     *
3798     * This causes nir_opt_varyings to skip interpolation for all varyings
3799     * that are convergent, and enables better compaction and inter-shader code
3800     * motion for convergent varyings.
3801     */
3802    nir_io_mix_convergent_flat_with_interpolated = BITFIELD_BIT(5),
3803 
3804    /**
3805     * Whether src_type and dest_type of IO intrinsics are irrelevant and
3806     * should be ignored by nir_opt_vectorize_io. All drivers that always treat
3807     * load_input and store_output as untyped and load_interpolated_input as
3808     * float##bit_size should set this.
3809     */
3810    nir_io_vectorizer_ignores_types = BITFIELD_BIT(6),
3811 
3812    /**
3813     * Whether nir_opt_varyings should never promote convergent FS inputs
3814     * to flat.
3815     */
3816    nir_io_always_interpolate_convergent_fs_inputs = BITFIELD_BIT(7),
3817 
3818    /**
3819     * Whether the first assigned color channel component should be equal to
3820     * the first unused VARn component.
3821     *
3822     * For example, if the first unused VARn channel is VAR0.z, color channels
3823     * are assigned in this order:
3824     *       COL0.z, COL0.w, COL0.x, COL0.y, COL1.z, COL1.w, COL1.x, COL1.y
3825     *
3826     * This allows certain drivers to merge outputs if each output sets
3827     * different components, for example 2 outputs writing VAR0.xy and COL0.z
3828     * will only use 1 HW output.
3829     */
3830    nir_io_compaction_rotates_color_channels = BITFIELD_BIT(8),
3831 
3832    /* Options affecting the GLSL compiler or Gallium are below. */
3833 
3834    /**
3835     * Lower load_deref/store_deref to load_input/store_output/etc. intrinsics.
3836     * This is only affects GLSL compilation and Gallium.
3837     */
3838    nir_io_has_intrinsics = BITFIELD_BIT(16),
3839 
3840    /**
3841     * Don't run nir_opt_varyings and nir_opt_vectorize_io.
3842     *
3843     * This option is deprecated and is a hack. DO NOT USE.
3844     * Use MESA_GLSL_DISABLE_IO_OPT=1 instead.
3845     */
3846    nir_io_dont_optimize = BITFIELD_BIT(17),
3847 
3848    /**
3849     * Whether clip and cull distance arrays should be separate. If this is not
3850     * set, cull distances will be moved into VARYING_SLOT_CLIP_DISTn after clip
3851     * distances, and shader_info::clip_distance_array_size will be the index
3852     * of the first cull distance. nir_lower_clip_cull_distance_arrays does
3853     * that.
3854     */
3855    nir_io_separate_clip_cull_distance_arrays = BITFIELD_BIT(18),
3856 } nir_io_options;
3857 
3858 typedef enum {
3859    nir_lower_packing_op_pack_64_2x32,
3860    nir_lower_packing_op_unpack_64_2x32,
3861    nir_lower_packing_op_pack_64_4x16,
3862    nir_lower_packing_op_unpack_64_4x16,
3863    nir_lower_packing_op_pack_32_2x16,
3864    nir_lower_packing_op_unpack_32_2x16,
3865    nir_lower_packing_op_pack_32_4x8,
3866    nir_lower_packing_op_unpack_32_4x8,
3867    nir_lower_packing_num_ops,
3868 } nir_lower_packing_op;
3869 
3870 /** An instruction filtering callback
3871  *
3872  * Returns true if the instruction should be processed and false otherwise.
3873  */
3874 typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
3875 
3876 /* Like nir_instr_filter_cb but specialized to intrinsics */
3877 typedef bool (*nir_intrin_filter_cb)(const nir_intrinsic_instr *, const void *);
3878 
3879 /** A vectorization width callback
3880  *
3881  * Returns the maximum vectorization width per instruction.
3882  * 0, if the instruction must not be modified.
3883  *
3884  * The vectorization width must be a power of 2.
3885  */
3886 typedef uint8_t (*nir_vectorize_cb)(const nir_instr *, const void *);
3887 
3888 typedef struct nir_shader_compiler_options {
3889    bool lower_fdiv;
3890    bool lower_ffma16;
3891    bool lower_ffma32;
3892    bool lower_ffma64;
3893    bool fuse_ffma16;
3894    bool fuse_ffma32;
3895    bool fuse_ffma64;
3896    bool lower_flrp16;
3897    bool lower_flrp32;
3898    /** Lowers flrp when it does not support doubles */
3899    bool lower_flrp64;
3900    bool lower_fpow;
3901    bool lower_fsat;
3902    bool lower_fsqrt;
3903    bool lower_sincos;
3904    bool lower_fmod;
3905    /** Lowers ibitfield_extract/ubitfield_extract. */
3906    bool lower_bitfield_extract;
3907    /** Lowers bitfield_insert. */
3908    bool lower_bitfield_insert;
3909    /** Lowers bitfield_reverse to shifts. */
3910    bool lower_bitfield_reverse;
3911    /** Lowers bit_count to shifts. */
3912    bool lower_bit_count;
3913    /** Lowers ifind_msb. */
3914    bool lower_ifind_msb;
3915    /** Lowers ufind_msb. */
3916    bool lower_ufind_msb;
3917    /** Lowers find_lsb to ufind_msb and logic ops */
3918    bool lower_find_lsb;
3919    bool lower_uadd_carry;
3920    bool lower_usub_borrow;
3921    /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
3922    bool lower_mul_high;
3923    /** lowers fneg to fmul(x, -1.0). Driver must call nir_opt_algebraic_late() */
3924    bool lower_fneg;
3925    /** lowers ineg to isub. Driver must call nir_opt_algebraic_late(). */
3926    bool lower_ineg;
3927    /** lowers fisnormal to alu ops. */
3928    bool lower_fisnormal;
3929 
3930    /* lower {slt,sge,seq,sne} to {flt,fge,feq,fneu} + b2f: */
3931    bool lower_scmp;
3932 
3933    /* lower b/fall_equalN/b/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
3934    bool lower_vector_cmp;
3935 
3936    /** enable rules to avoid bit ops */
3937    bool lower_bitops;
3938 
3939    /** enables rules to lower isign to imin+imax */
3940    bool lower_isign;
3941 
3942    /** enables rules to lower fsign to fsub and flt */
3943    bool lower_fsign;
3944 
3945    /** enables rules to lower iabs to ineg+imax */
3946    bool lower_iabs;
3947 
3948    /** enable rules that avoid generating umax from signed integer ops */
3949    bool lower_umax;
3950 
3951    /** enable rules that avoid generating umin from signed integer ops */
3952    bool lower_umin;
3953 
3954    /* lower fmin/fmax with signed zero preserve to fmin/fmax with
3955     * no_signed_zero, for backends whose fmin/fmax implementations do not
3956     * implement IEEE-754-2019 semantics for signed zero.
3957     */
3958    bool lower_fminmax_signed_zero;
3959 
3960    /* lower fdph to fdot4 */
3961    bool lower_fdph;
3962 
3963    /** lower fdot to fmul and fsum/fadd. */
3964    bool lower_fdot;
3965 
3966    /* Does the native fdot instruction replicate its result for four
3967     * components?  If so, then opt_algebraic_late will turn all fdotN
3968     * instructions into fdotN_replicated instructions.
3969     */
3970    bool fdot_replicates;
3971 
3972    /** lowers ffloor to fsub+ffract: */
3973    bool lower_ffloor;
3974 
3975    /** lowers ffract to fsub+ffloor: */
3976    bool lower_ffract;
3977 
3978    /** lowers fceil to fneg+ffloor+fneg: */
3979    bool lower_fceil;
3980 
3981    bool lower_ftrunc;
3982 
3983    /** Lowers fround_even to ffract+feq+csel.
3984     *
3985     * Not correct in that it doesn't correctly handle the "_even" part of the
3986     * rounding, but good enough for DX9 array indexing handling on DX9-class
3987     * hardware.
3988     */
3989    bool lower_fround_even;
3990 
3991    bool lower_ldexp;
3992 
3993    bool lower_pack_half_2x16;
3994    bool lower_pack_unorm_2x16;
3995    bool lower_pack_snorm_2x16;
3996    bool lower_pack_unorm_4x8;
3997    bool lower_pack_snorm_4x8;
3998    bool lower_pack_64_2x32;
3999    bool lower_pack_64_4x16;
4000    bool lower_pack_32_2x16;
4001    bool lower_pack_64_2x32_split;
4002    bool lower_pack_32_2x16_split;
4003    bool lower_unpack_half_2x16;
4004    bool lower_unpack_unorm_2x16;
4005    bool lower_unpack_snorm_2x16;
4006    bool lower_unpack_unorm_4x8;
4007    bool lower_unpack_snorm_4x8;
4008    bool lower_unpack_64_2x32_split;
4009    bool lower_unpack_32_2x16_split;
4010 
4011    bool lower_pack_split;
4012 
4013    bool lower_extract_byte;
4014    bool lower_extract_word;
4015    bool lower_insert_byte;
4016    bool lower_insert_word;
4017 
4018    /* TODO: this flag is potentially useless, remove? */
4019    bool lower_all_io_to_temps;
4020 
4021    /* Indicates that the driver only has zero-based vertex id */
4022    bool vertex_id_zero_based;
4023 
4024    /**
4025     * If enabled, gl_BaseVertex will be lowered as:
4026     * is_indexed_draw (~0/0) & firstvertex
4027     */
4028    bool lower_base_vertex;
4029 
4030    /**
4031     * If enabled, gl_HelperInvocation will be lowered as:
4032     *
4033     *   !((1 << sample_id) & sample_mask_in))
4034     *
4035     * This depends on some possibly hw implementation details, which may
4036     * not be true for all hw.  In particular that the FS is only executed
4037     * for covered samples or for helper invocations.  So, do not blindly
4038     * enable this option.
4039     *
4040     * Note: See also issue #22 in ARB_shader_image_load_store
4041     */
4042    bool lower_helper_invocation;
4043 
4044    /**
4045     * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
4046     *
4047     *   gl_SampleMaskIn == 0 ---> gl_HelperInvocation
4048     *   gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
4049     */
4050    bool optimize_sample_mask_in;
4051 
4052    /**
4053     * Optimize load_front_face ? a : -a to load_front_face_fsign * a
4054     */
4055    bool optimize_load_front_face_fsign;
4056 
4057    /**
4058     * Optimize boolean reductions of quad broadcasts. This should only be enabled if
4059     * nir_intrinsic_reduce supports INCLUDE_HELPERS.
4060     */
4061    bool optimize_quad_vote_to_reduce;
4062 
4063    bool lower_cs_local_index_to_id;
4064    bool lower_cs_local_id_to_index;
4065 
4066    /* Prevents lowering global_invocation_id to be in terms of workgroup_id */
4067    bool has_cs_global_id;
4068 
4069    bool lower_device_index_to_zero;
4070 
4071    /* Set if nir_lower_pntc_ytransform() should invert gl_PointCoord.
4072     * Either when frame buffer is flipped or GL_POINT_SPRITE_COORD_ORIGIN
4073     * is GL_LOWER_LEFT.
4074     */
4075    bool lower_wpos_pntc;
4076 
4077    /**
4078     * Set if nir_op_[iu]hadd and nir_op_[iu]rhadd instructions should be
4079     * lowered to simple arithmetic.
4080     *
4081     * If this flag is set, the lowering will be applied to all bit-sizes of
4082     * these instructions.
4083     *
4084     * :c:member:`lower_hadd64`
4085     */
4086    bool lower_hadd;
4087 
4088    /**
4089     * Set if only 64-bit nir_op_[iu]hadd and nir_op_[iu]rhadd instructions
4090     * should be lowered to simple arithmetic.
4091     *
4092     * If this flag is set, the lowering will be applied to only 64-bit
4093     * versions of these instructions.
4094     *
4095     * :c:member:`lower_hadd`
4096     */
4097    bool lower_hadd64;
4098 
4099    /**
4100     * Set if nir_op_uadd_sat should be lowered to simple arithmetic.
4101     *
4102     * If this flag is set, the lowering will be applied to all bit-sizes of
4103     * these instructions.
4104     */
4105    bool lower_uadd_sat;
4106 
4107    /**
4108     * Set if nir_op_usub_sat should be lowered to simple arithmetic.
4109     *
4110     * If this flag is set, the lowering will be applied to all bit-sizes of
4111     * these instructions.
4112     */
4113    bool lower_usub_sat;
4114 
4115    /**
4116     * Set if nir_op_iadd_sat and nir_op_isub_sat should be lowered to simple
4117     * arithmetic.
4118     *
4119     * If this flag is set, the lowering will be applied to all bit-sizes of
4120     * these instructions.
4121     */
4122    bool lower_iadd_sat;
4123 
4124    /**
4125     * Set if imul_32x16 and umul_32x16 should be lowered to simple
4126     * arithmetic.
4127     */
4128    bool lower_mul_32x16;
4129 
4130    bool vectorize_tess_levels;
4131    bool lower_to_scalar;
4132    nir_instr_filter_cb lower_to_scalar_filter;
4133 
4134    /**
4135     * Disables potentially harmful algebraic transformations for architectures
4136     * with SIMD-within-a-register semantics.
4137     *
4138     * Note, to actually vectorize 16bit instructions, use nir_opt_vectorize()
4139     * with a suitable callback function.
4140     */
4141    bool vectorize_vec2_16bit;
4142 
4143    /**
4144     * Should the linker unify inputs_read/outputs_written between adjacent
4145     * shader stages which are linked into a single program?
4146     */
4147    bool unify_interfaces;
4148 
4149    /**
4150     * Whether nir_lower_io() will lower interpolateAt functions to
4151     * load_interpolated_input intrinsics.
4152     *
4153     * Unlike nir_lower_io_use_interpolated_input_intrinsics this will only
4154     * lower these functions and leave input load intrinsics untouched.
4155     */
4156    bool lower_interpolate_at;
4157 
4158    /* Lowers when 32x32->64 bit multiplication is not supported */
4159    bool lower_mul_2x32_64;
4160 
4161    /* Indicates that urol and uror are supported */
4162    bool has_rotate8;
4163    bool has_rotate16;
4164    bool has_rotate32;
4165 
4166    /** Backend supports shfr */
4167    bool has_shfr32;
4168 
4169    /** Backend supports ternary addition */
4170    bool has_iadd3;
4171 
4172    /**
4173     * Backend supports amul and would like them generated whenever
4174     * possible. This is stronger than has_imul24 for amul, but does not imply
4175     * support for imul24.
4176     */
4177    bool has_amul;
4178 
4179    /**
4180     * Backend supports imul24, and would like to use it (when possible)
4181     * for address/offset calculation.  If true, driver should call
4182     * nir_lower_amul().  (If not set, amul will automatically be lowered
4183     * to imul.)
4184     */
4185    bool has_imul24;
4186 
4187    /** Backend supports umul24, if not set  umul24 will automatically be lowered
4188     * to imul with masked inputs */
4189    bool has_umul24;
4190 
4191    /** Backend supports 32-bit imad */
4192    bool has_imad32;
4193 
4194    /** Backend supports umad24, if not set  umad24 will automatically be lowered
4195     * to imul with masked inputs and iadd */
4196    bool has_umad24;
4197 
4198    /* Backend supports fused compare against zero and csel */
4199    bool has_fused_comp_and_csel;
4200    /* Backend supports fused int eq/ne against zero and csel. */
4201    bool has_icsel_eqz64;
4202    bool has_icsel_eqz32;
4203    bool has_icsel_eqz16;
4204 
4205    /* Backend supports fneo, fequ, fltu, fgeu. */
4206    bool has_fneo_fcmpu;
4207 
4208    /* Backend supports ford and funord. */
4209    bool has_ford_funord;
4210 
4211    /** Backend supports fsub, if not set fsub will automatically be lowered to
4212     * fadd(x, fneg(y)). If true, driver should call nir_opt_algebraic_late(). */
4213    bool has_fsub;
4214 
4215    /** Backend supports isub, if not set isub will automatically be lowered to
4216     * iadd(x, ineg(y)). If true, driver should call nir_opt_algebraic_late(). */
4217    bool has_isub;
4218 
4219    /** Backend supports pack_32_4x8 or pack_32_4x8_split. */
4220    bool has_pack_32_4x8;
4221 
4222    /** Backend supports nir_load_texture_scale and prefers it over txs for nir
4223     * lowerings. */
4224    bool has_texture_scaling;
4225 
4226    /** Backend supports sdot_4x8_iadd. */
4227    bool has_sdot_4x8;
4228 
4229    /** Backend supports udot_4x8_uadd. */
4230    bool has_udot_4x8;
4231 
4232    /** Backend supports sudot_4x8_iadd. */
4233    bool has_sudot_4x8;
4234 
4235    /** Backend supports sdot_4x8_iadd_sat. */
4236    bool has_sdot_4x8_sat;
4237 
4238    /** Backend supports udot_4x8_uadd_sat. */
4239    bool has_udot_4x8_sat;
4240 
4241    /** Backend supports sudot_4x8_iadd_sat. */
4242    bool has_sudot_4x8_sat;
4243 
4244    /** Backend supports sdot_2x16 and udot_2x16 opcodes. */
4245    bool has_dot_2x16;
4246 
4247    /** Backend supports fmulz (and ffmaz if lower_ffma32=false) */
4248    bool has_fmulz;
4249 
4250    /**
4251     * Backend supports fmulz (and ffmaz if lower_ffma32=false) but only if
4252     * FLOAT_CONTROLS_DENORM_PRESERVE_FP32 is not set
4253     */
4254    bool has_fmulz_no_denorms;
4255 
4256    /** Backend supports 32bit ufind_msb_rev and ifind_msb_rev. */
4257    bool has_find_msb_rev;
4258 
4259    /** Backend supports pack_half_2x16_rtz_split. */
4260    bool has_pack_half_2x16_rtz;
4261 
4262    /** Backend supports bitz/bitnz. */
4263    bool has_bit_test;
4264 
4265    /** Backend supports ubfe/ibfe. */
4266    bool has_bfe;
4267 
4268    /** Backend supports bfm. */
4269    bool has_bfm;
4270 
4271    /** Backend supports bfi. */
4272    bool has_bfi;
4273 
4274    /** Backend supports bitfield_select. */
4275    bool has_bitfield_select;
4276 
4277    /** Backend supports uclz. */
4278    bool has_uclz;
4279 
4280    /** Backend support msad_u4x8. */
4281    bool has_msad;
4282 
4283    /**
4284     * Is this the Intel vec4 backend?
4285     *
4286     * Used to inhibit algebraic optimizations that are known to be harmful on
4287     * the Intel vec4 backend.  This is generally applicable to any
4288     * optimization that might cause more immediate values to be used in
4289     * 3-source (e.g., ffma and flrp) instructions.
4290     */
4291    bool intel_vec4;
4292 
4293    /**
4294     * For most Intel GPUs, all ternary operations such as FMA and BFE cannot
4295     * have immediates, so two to three instructions may eventually be needed.
4296     */
4297    bool avoid_ternary_with_two_constants;
4298 
4299    /** Whether 8-bit ALU is supported. */
4300    bool support_8bit_alu;
4301 
4302    /** Whether 16-bit ALU is supported. */
4303    bool support_16bit_alu;
4304 
4305    unsigned max_unroll_iterations;
4306    unsigned max_unroll_iterations_aggressive;
4307    unsigned max_unroll_iterations_fp64;
4308 
4309    bool lower_uniforms_to_ubo;
4310 
4311    /* Specifies if indirect sampler array access will trigger forced loop
4312     * unrolling.
4313     */
4314    bool force_indirect_unrolling_sampler;
4315 
4316    /* Some older drivers don't support GLSL versions with the concept of flat
4317     * varyings and also don't support integers. This setting helps us avoid
4318     * marking varyings as flat and potentially having them changed to ints via
4319     * varying packing.
4320     */
4321    bool no_integers;
4322 
4323    /**
4324     * Specifies which type of indirectly accessed variables should force
4325     * loop unrolling.
4326     */
4327    nir_variable_mode force_indirect_unrolling;
4328 
4329    bool driver_functions;
4330 
4331    /**
4332     * If true, the driver will call nir_lower_int64 itself and the frontend
4333     * should not do so. This may enable better optimization around address
4334     * modes.
4335     */
4336    bool late_lower_int64;
4337    nir_lower_int64_options lower_int64_options;
4338    nir_lower_doubles_options lower_doubles_options;
4339    nir_divergence_options divergence_analysis_options;
4340 
4341    /**
4342     * The masks of shader stages that support indirect indexing with
4343     * load_input and store_output intrinsics. It's used by
4344     * nir_lower_io_passes.
4345     */
4346    uint8_t support_indirect_inputs;
4347    uint8_t support_indirect_outputs;
4348 
4349    /** store the variable offset into the instrinsic range_base instead
4350     *  of adding it to the image index.
4351     */
4352    bool lower_image_offset_to_range_base;
4353 
4354    /** store the variable offset into the instrinsic range_base instead
4355     *  of adding it to the atomic source
4356     */
4357    bool lower_atomic_offset_to_range_base;
4358 
4359    /** Don't convert medium-precision casts (e.g. f2fmp) into concrete
4360     *  type casts (e.g. f2f16).
4361     */
4362    bool preserve_mediump;
4363 
4364    /** lowers fquantize2f16 to alu ops. */
4365    bool lower_fquantize2f16;
4366 
4367    /** Lower f2f16 to f2f16_rtz when execution mode is not rtne. */
4368    bool force_f2f16_rtz;
4369 
4370    /** Lower VARYING_SLOT_LAYER in FS to SYSTEM_VALUE_LAYER_ID. */
4371    bool lower_layer_fs_input_to_sysval;
4372 
4373    /** clip/cull distance and tess level arrays use compact semantics */
4374    bool compact_arrays;
4375 
4376    /**
4377     * Whether discard gets emitted as nir_intrinsic_demote.
4378     * Otherwise, nir_intrinsic_terminate is being used.
4379     */
4380    bool discard_is_demote;
4381 
4382    /**
4383     * Whether the new-style derivative intrinsics are supported. If false,
4384     * legacy ALU derivative ops will be emitted. This transitional option will
4385     * be removed once all drivers are converted to derivative intrinsics.
4386     */
4387    bool has_ddx_intrinsics;
4388 
4389    /** Whether derivative intrinsics must be scalarized. */
4390    bool scalarize_ddx;
4391 
4392    /**
4393     * Assign a range of driver locations to per-view outputs, with unique
4394     * slots for each view. If unset, per-view outputs will be treated
4395     * similarly to other arrayed IO, and only slots for one view will be
4396     * assigned. Regardless of this setting, per-view outputs are only assigned
4397     * slots for one value in var->data.location.
4398     */
4399    bool per_view_unique_driver_locations;
4400 
4401    /**
4402     * Emit nir_intrinsic_store_per_view_output with compacted view indices
4403     * rather than absolute view indices. When using compacted indices, the Nth
4404     * index refers to the Nth enabled view, not the Nth absolute view. For
4405     * example, with view mask 0b1010, compacted index 0 is absolute index 1,
4406     * and compacted index 1 is absolute index 3. Note that compacted view
4407     * indices do not correspond directly to gl_ViewIndex.
4408     *
4409     * If compact_view_index is unset, per-view indices must be constant before
4410     * nir_lower_io. This can be guaranteed by calling nir_lower_io_temporaries
4411     * first.
4412     */
4413    bool compact_view_index;
4414 
4415    /** Options determining lowering and behavior of inputs and outputs. */
4416    nir_io_options io_options;
4417 
4418    /**
4419     * Bit mask of nir_lower_packing_op to skip lowering some nir ops in
4420     * nir_lower_packing().
4421     */
4422    unsigned skip_lower_packing_ops;
4423 
4424    /** Driver callback where drivers can define how to lower mediump.
4425     *  Used by nir_lower_io_passes.
4426     */
4427    void (*lower_mediump_io)(struct nir_shader *nir);
4428 
4429    /**
4430     * Return the maximum cost of an expression that's written to a shader
4431     * output that can be moved into the next shader to remove that output.
4432     *
4433     * Currently only uniform expressions are moved. A uniform expression is
4434     * any ALU expression sourcing only constants, uniforms, and UBO loads.
4435     *
4436     * Set to NULL or return 0 if you only want to propagate constants from
4437     * outputs to inputs.
4438     *
4439     * Drivers can set the maximum cost based on the types of consecutive
4440     * shaders or shader SHA1s.
4441     *
4442     * Drivers should also set "varying_estimate_instr_cost".
4443     */
4444    unsigned (*varying_expression_max_cost)(struct nir_shader *consumer,
4445                                            struct nir_shader *producer);
4446 
4447    /**
4448     * Return the cost of an instruction that could be moved into the next
4449     * shader. If the cost of all instructions in an expression is <=
4450     * varying_expression_max_cost(), the instruction is moved.
4451     *
4452     * When this callback isn't set, nir_opt_varyings uses its own version.
4453     */
4454    unsigned (*varying_estimate_instr_cost)(struct nir_instr *instr);
4455 
4456    /**
4457     * When the varying_expression_max_cost callback isn't set, this specifies
4458     * the maximum cost of a uniform expression that is allowed to be moved
4459     * from output stores into the next shader stage to eliminate those output
4460     * stores and corresponding inputs.
4461     *
4462     * 0 only allows propagating constants written to output stores to
4463     * the next shader.
4464     *
4465     * At least 2 is required for moving a uniform stored in an output into
4466     * the next shader according to default_varying_estimate_instr_cost.
4467     */
4468    unsigned max_varying_expression_cost;
4469 } nir_shader_compiler_options;
4470 
4471 typedef struct nir_shader {
4472    gc_ctx *gctx;
4473 
4474    /** list of uniforms (nir_variable) */
4475    struct exec_list variables;
4476 
4477    /** Set of driver-specific options for the shader.
4478     *
4479     * The memory for the options is expected to be kept in a single static
4480     * copy by the driver.
4481     */
4482    const struct nir_shader_compiler_options *options;
4483 
4484    /** Various bits of compile-time information about a given shader */
4485    struct shader_info info;
4486 
4487    /** list of nir_function */
4488    struct exec_list functions;
4489 
4490    /**
4491     * The size of the variable space for load_input_*, load_uniform_*, etc.
4492     * intrinsics.  This is in back-end specific units which is likely one of
4493     * bytes, dwords, or vec4s depending on context and back-end.
4494     */
4495    unsigned num_inputs, num_uniforms, num_outputs;
4496 
4497    /** Size in bytes of required implicitly bound global memory */
4498    unsigned global_mem_size;
4499 
4500    /** Size in bytes of required scratch space */
4501    unsigned scratch_size;
4502 
4503    /** Constant data associated with this shader.
4504     *
4505     * Constant data is loaded through load_constant intrinsics (as compared to
4506     * the NIR load_const instructions which have the constant value inlined
4507     * into them).  This is usually generated by nir_opt_large_constants (so
4508     * shaders don't have to load_const into a temporary array when they want
4509     * to indirect on a const array).
4510     */
4511    void *constant_data;
4512    /** Size of the constant data associated with the shader, in bytes */
4513    unsigned constant_data_size;
4514 
4515    struct nir_xfb_info *xfb_info;
4516 
4517    unsigned printf_info_count;
4518    u_printf_info *printf_info;
4519 } nir_shader;
4520 
4521 #define nir_foreach_function(func, shader) \
4522    foreach_list_typed(nir_function, func, node, &(shader)->functions)
4523 
4524 #define nir_foreach_function_safe(func, shader) \
4525    foreach_list_typed_safe(nir_function, func, node, &(shader)->functions)
4526 
4527 #define nir_foreach_entrypoint(func, lib) \
4528    nir_foreach_function(func, lib)        \
4529       if (func->is_entrypoint)
4530 
4531 #define nir_foreach_entrypoint_safe(func, lib) \
4532    nir_foreach_function_safe(func, lib)        \
4533       if (func->is_entrypoint)
4534 
4535 static inline nir_function *
nir_foreach_function_with_impl_first(const nir_shader * shader)4536 nir_foreach_function_with_impl_first(const nir_shader *shader)
4537 {
4538    foreach_list_typed(nir_function, func, node, &shader->functions) {
4539       if (func->impl != NULL)
4540          return func;
4541    }
4542 
4543    return NULL;
4544 }
4545 
4546 static inline nir_function_impl *
nir_foreach_function_with_impl_next(nir_function ** it)4547 nir_foreach_function_with_impl_next(nir_function **it)
4548 {
4549    foreach_list_typed_from(nir_function, func, node, _, (*it)->node.next) {
4550       if (func->impl != NULL) {
4551          *it = func;
4552          return func->impl;
4553       }
4554    }
4555 
4556    return NULL;
4557 }
4558 
4559 #define nir_foreach_function_with_impl(it, impl_it, shader)              \
4560    for (nir_function *it = nir_foreach_function_with_impl_first(shader); \
4561         it != NULL;                                                      \
4562         it = NULL)                                                       \
4563                                                                          \
4564       for (nir_function_impl *impl_it = it->impl;                        \
4565            impl_it != NULL;                                              \
4566            impl_it = nir_foreach_function_with_impl_next(&it))
4567 
4568 /* Equivalent to
4569  *
4570  *    nir_foreach_function(func, shader) {
4571  *       if (func->impl != NULL) {
4572  *             ...
4573  *       }
4574  *    }
4575  *
4576  * Carefully written to ensure break/continue work in the user code.
4577  */
4578 
4579 #define nir_foreach_function_impl(it, shader) \
4580    nir_foreach_function_with_impl(_func_##it, it, shader)
4581 
4582 static inline nir_function_impl *
nir_shader_get_entrypoint(const nir_shader * shader)4583 nir_shader_get_entrypoint(const nir_shader *shader)
4584 {
4585    nir_function *func = NULL;
4586 
4587    nir_foreach_function(function, shader) {
4588       assert(func == NULL);
4589       if (function->is_entrypoint) {
4590          func = function;
4591 #ifndef NDEBUG
4592          break;
4593 #endif
4594       }
4595    }
4596 
4597    if (!func)
4598       return NULL;
4599 
4600    assert(func->num_params == 0);
4601    assert(func->impl);
4602    return func->impl;
4603 }
4604 
4605 static inline nir_function *
nir_shader_get_function_for_name(const nir_shader * shader,const char * name)4606 nir_shader_get_function_for_name(const nir_shader *shader, const char *name)
4607 {
4608    nir_foreach_function(func, shader) {
4609       if (func->name && strcmp(func->name, name) == 0)
4610          return func;
4611    }
4612 
4613    return NULL;
4614 }
4615 
4616 /*
4617  * After all functions are forcibly inlined, these passes remove redundant
4618  * functions from a shader and library respectively.
4619  */
4620 void nir_remove_non_entrypoints(nir_shader *shader);
4621 void nir_remove_non_exported(nir_shader *shader);
4622 void nir_remove_entrypoints(nir_shader *shader);
4623 void nir_fixup_is_exported(nir_shader *shader);
4624 
4625 nir_shader *nir_shader_create(void *mem_ctx,
4626                               gl_shader_stage stage,
4627                               const nir_shader_compiler_options *options,
4628                               shader_info *si);
4629 
4630 /** Adds a variable to the appropriate list in nir_shader */
4631 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
4632 
4633 static inline void
nir_function_impl_add_variable(nir_function_impl * impl,nir_variable * var)4634 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
4635 {
4636    assert(var->data.mode == nir_var_function_temp);
4637    exec_list_push_tail(&impl->locals, &var->node);
4638 }
4639 
4640 /** creates a variable, sets a few defaults, and adds it to the list */
4641 nir_variable *nir_variable_create(nir_shader *shader,
4642                                   nir_variable_mode mode,
4643                                   const struct glsl_type *type,
4644                                   const char *name);
4645 /** creates a local variable and adds it to the list */
4646 nir_variable *nir_local_variable_create(nir_function_impl *impl,
4647                                         const struct glsl_type *type,
4648                                         const char *name);
4649 
4650 /** Creates a uniform builtin state variable. */
4651 nir_variable *
4652 nir_state_variable_create(nir_shader *shader,
4653                           const struct glsl_type *type,
4654                           const char *name,
4655                           const gl_state_index16 tokens[STATE_LENGTH]);
4656 
4657 /* Gets the variable for the given mode and location, creating it (with the given
4658  * type) if necessary.
4659  */
4660 nir_variable *
4661 nir_get_variable_with_location(nir_shader *shader, nir_variable_mode mode, int location,
4662                                const struct glsl_type *type);
4663 
4664 /* Creates a variable for the given mode and location.
4665  */
4666 nir_variable *
4667 nir_create_variable_with_location(nir_shader *shader, nir_variable_mode mode, int location,
4668                                   const struct glsl_type *type);
4669 
4670 nir_variable *nir_find_variable_with_location(nir_shader *shader,
4671                                               nir_variable_mode mode,
4672                                               unsigned location);
4673 
4674 nir_variable *nir_find_variable_with_driver_location(nir_shader *shader,
4675                                                      nir_variable_mode mode,
4676                                                      unsigned location);
4677 
4678 nir_variable *nir_find_state_variable(nir_shader *s,
4679                                       gl_state_index16 tokens[STATE_LENGTH]);
4680 
4681 nir_variable *nir_find_sampler_variable_with_tex_index(nir_shader *shader,
4682                                                        unsigned texture_index);
4683 
4684 void nir_sort_variables_with_modes(nir_shader *shader,
4685                                    int (*compar)(const nir_variable *,
4686                                                  const nir_variable *),
4687                                    nir_variable_mode modes);
4688 
4689 /** creates a function and adds it to the shader's list of functions */
4690 nir_function *nir_function_create(nir_shader *shader, const char *name);
4691 
4692 static inline void
nir_function_set_impl(nir_function * func,nir_function_impl * impl)4693 nir_function_set_impl(nir_function *func, nir_function_impl *impl)
4694 {
4695    func->impl = impl;
4696    impl->function = func;
4697 }
4698 
4699 nir_function_impl *nir_function_impl_create(nir_function *func);
4700 /** creates a function_impl that isn't tied to any particular function */
4701 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
4702 
4703 nir_block *nir_block_create(nir_shader *shader);
4704 nir_if *nir_if_create(nir_shader *shader);
4705 nir_loop *nir_loop_create(nir_shader *shader);
4706 
4707 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
4708 
4709 /** requests that the given pieces of metadata be generated */
4710 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
4711 /** dirties all but the preserved metadata */
4712 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
4713 /** Preserves all metadata for the given shader */
4714 void nir_shader_preserve_all_metadata(nir_shader *shader);
4715 
4716 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
4717 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
4718 
4719 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
4720                                         nir_deref_type deref_type);
4721 
4722 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
4723 
4724 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
4725                                                   unsigned num_components,
4726                                                   unsigned bit_size);
4727 
4728 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
4729                                                 nir_intrinsic_op op);
4730 
4731 nir_call_instr *nir_call_instr_create(nir_shader *shader,
4732                                       nir_function *callee);
4733 
4734 /** Creates a NIR texture instruction */
4735 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
4736 
4737 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
4738 nir_phi_src *nir_phi_instr_add_src(nir_phi_instr *instr,
4739                                    nir_block *pred, nir_def *src);
4740 
4741 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
4742 
4743 nir_debug_info_instr *nir_debug_info_instr_create(nir_shader *shader,
4744                                                   nir_debug_info_type type,
4745                                                   uint32_t string_length);
4746 
4747 nir_undef_instr *nir_undef_instr_create(nir_shader *shader,
4748                                         unsigned num_components,
4749                                         unsigned bit_size);
4750 
4751 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
4752 
4753 /**
4754  * NIR Cursors and Instruction Insertion API
4755  * @{
4756  *
4757  * A tiny struct representing a point to insert/extract instructions or
4758  * control flow nodes.  Helps reduce the combinatorial explosion of possible
4759  * points to insert/extract.
4760  *
4761  * \sa nir_control_flow.h
4762  */
4763 typedef enum {
4764    nir_cursor_before_block,
4765    nir_cursor_after_block,
4766    nir_cursor_before_instr,
4767    nir_cursor_after_instr,
4768 } nir_cursor_option;
4769 
4770 typedef struct {
4771    nir_cursor_option option;
4772    union {
4773       nir_block *block;
4774       nir_instr *instr;
4775    };
4776 } nir_cursor;
4777 
4778 static inline nir_block *
nir_cursor_current_block(nir_cursor cursor)4779 nir_cursor_current_block(nir_cursor cursor)
4780 {
4781    if (cursor.option == nir_cursor_before_instr ||
4782        cursor.option == nir_cursor_after_instr) {
4783       return cursor.instr->block;
4784    } else {
4785       return cursor.block;
4786    }
4787 }
4788 
4789 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
4790 
4791 static inline nir_cursor
nir_before_block(nir_block * block)4792 nir_before_block(nir_block *block)
4793 {
4794    nir_cursor cursor;
4795    cursor.option = nir_cursor_before_block;
4796    cursor.block = block;
4797    return cursor;
4798 }
4799 
4800 static inline nir_cursor
nir_after_block(nir_block * block)4801 nir_after_block(nir_block *block)
4802 {
4803    nir_cursor cursor;
4804    cursor.option = nir_cursor_after_block;
4805    cursor.block = block;
4806    return cursor;
4807 }
4808 
4809 static inline nir_cursor
nir_before_instr(nir_instr * instr)4810 nir_before_instr(nir_instr *instr)
4811 {
4812    nir_cursor cursor;
4813    cursor.option = nir_cursor_before_instr;
4814    cursor.instr = instr;
4815    return cursor;
4816 }
4817 
4818 static inline nir_cursor
nir_after_instr(nir_instr * instr)4819 nir_after_instr(nir_instr *instr)
4820 {
4821    nir_cursor cursor;
4822    cursor.option = nir_cursor_after_instr;
4823    cursor.instr = instr;
4824    return cursor;
4825 }
4826 
4827 static inline nir_cursor
nir_before_block_after_phis(nir_block * block)4828 nir_before_block_after_phis(nir_block *block)
4829 {
4830    nir_phi_instr *last_phi = nir_block_last_phi_instr(block);
4831    if (last_phi)
4832       return nir_after_instr(&last_phi->instr);
4833    else
4834       return nir_before_block(block);
4835 }
4836 
4837 static inline nir_cursor
nir_after_block_before_jump(nir_block * block)4838 nir_after_block_before_jump(nir_block *block)
4839 {
4840    nir_instr *last_instr = nir_block_last_instr(block);
4841    if (last_instr && last_instr->type == nir_instr_type_jump) {
4842       return nir_before_instr(last_instr);
4843    } else {
4844       return nir_after_block(block);
4845    }
4846 }
4847 
4848 static inline nir_cursor
nir_before_src(nir_src * src)4849 nir_before_src(nir_src *src)
4850 {
4851    if (nir_src_is_if(src)) {
4852       nir_block *prev_block =
4853          nir_cf_node_as_block(nir_cf_node_prev(&nir_src_parent_if(src)->cf_node));
4854       return nir_after_block(prev_block);
4855    } else if (nir_src_parent_instr(src)->type == nir_instr_type_phi) {
4856 #ifndef NDEBUG
4857       nir_phi_instr *cond_phi = nir_instr_as_phi(nir_src_parent_instr(src));
4858       bool found = false;
4859       nir_foreach_phi_src(phi_src, cond_phi) {
4860          if (phi_src->src.ssa == src->ssa) {
4861             found = true;
4862             break;
4863          }
4864       }
4865       assert(found);
4866 #endif
4867       /* The list_entry() macro is a generic container-of macro, it just happens
4868        * to have a more specific name.
4869        */
4870       nir_phi_src *phi_src = list_entry(src, nir_phi_src, src);
4871       return nir_after_block_before_jump(phi_src->pred);
4872    } else {
4873       return nir_before_instr(nir_src_parent_instr(src));
4874    }
4875 }
4876 
4877 static inline nir_cursor
nir_before_cf_node(nir_cf_node * node)4878 nir_before_cf_node(nir_cf_node *node)
4879 {
4880    if (node->type == nir_cf_node_block)
4881       return nir_before_block(nir_cf_node_as_block(node));
4882 
4883    return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
4884 }
4885 
4886 static inline nir_cursor
nir_after_cf_node(nir_cf_node * node)4887 nir_after_cf_node(nir_cf_node *node)
4888 {
4889    if (node->type == nir_cf_node_block)
4890       return nir_after_block(nir_cf_node_as_block(node));
4891 
4892    return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
4893 }
4894 
4895 static inline nir_cursor
nir_after_phis(nir_block * block)4896 nir_after_phis(nir_block *block)
4897 {
4898    nir_foreach_instr(instr, block) {
4899       if (instr->type != nir_instr_type_phi)
4900          return nir_before_instr(instr);
4901    }
4902    return nir_after_block(block);
4903 }
4904 
4905 static inline nir_cursor
nir_after_instr_and_phis(nir_instr * instr)4906 nir_after_instr_and_phis(nir_instr *instr)
4907 {
4908    if (instr->type == nir_instr_type_phi)
4909       return nir_after_phis(instr->block);
4910    else
4911       return nir_after_instr(instr);
4912 }
4913 
4914 static inline nir_cursor
nir_after_cf_node_and_phis(nir_cf_node * node)4915 nir_after_cf_node_and_phis(nir_cf_node *node)
4916 {
4917    if (node->type == nir_cf_node_block)
4918       return nir_after_block(nir_cf_node_as_block(node));
4919 
4920    nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
4921 
4922    return nir_after_phis(block);
4923 }
4924 
4925 static inline nir_cursor
nir_before_cf_list(struct exec_list * cf_list)4926 nir_before_cf_list(struct exec_list *cf_list)
4927 {
4928    nir_cf_node *first_node = exec_node_data(nir_cf_node,
4929                                             exec_list_get_head(cf_list), node);
4930    return nir_before_cf_node(first_node);
4931 }
4932 
4933 static inline nir_cursor
nir_after_cf_list(struct exec_list * cf_list)4934 nir_after_cf_list(struct exec_list *cf_list)
4935 {
4936    nir_cf_node *last_node = exec_node_data(nir_cf_node,
4937                                            exec_list_get_tail(cf_list), node);
4938    return nir_after_cf_node(last_node);
4939 }
4940 
4941 static inline nir_cursor
nir_before_impl(nir_function_impl * impl)4942 nir_before_impl(nir_function_impl *impl)
4943 {
4944    return nir_before_cf_list(&impl->body);
4945 }
4946 
4947 static inline nir_cursor
nir_after_impl(nir_function_impl * impl)4948 nir_after_impl(nir_function_impl *impl)
4949 {
4950    return nir_after_cf_list(&impl->body);
4951 }
4952 
4953 /**
4954  * Insert a NIR instruction at the given cursor.
4955  *
4956  * Note: This does not update the cursor.
4957  */
4958 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
4959 
4960 bool nir_instr_move(nir_cursor cursor, nir_instr *instr);
4961 
4962 static inline void
nir_instr_insert_before(nir_instr * instr,nir_instr * before)4963 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
4964 {
4965    nir_instr_insert(nir_before_instr(instr), before);
4966 }
4967 
4968 static inline void
nir_instr_insert_after(nir_instr * instr,nir_instr * after)4969 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
4970 {
4971    nir_instr_insert(nir_after_instr(instr), after);
4972 }
4973 
4974 static inline void
nir_instr_insert_before_block(nir_block * block,nir_instr * before)4975 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
4976 {
4977    nir_instr_insert(nir_before_block(block), before);
4978 }
4979 
4980 static inline void
nir_instr_insert_after_block(nir_block * block,nir_instr * after)4981 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
4982 {
4983    nir_instr_insert(nir_after_block(block), after);
4984 }
4985 
4986 static inline void
nir_instr_insert_before_cf(nir_cf_node * node,nir_instr * before)4987 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
4988 {
4989    nir_instr_insert(nir_before_cf_node(node), before);
4990 }
4991 
4992 static inline void
nir_instr_insert_after_cf(nir_cf_node * node,nir_instr * after)4993 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
4994 {
4995    nir_instr_insert(nir_after_cf_node(node), after);
4996 }
4997 
4998 static inline void
nir_instr_insert_before_cf_list(struct exec_list * list,nir_instr * before)4999 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
5000 {
5001    nir_instr_insert(nir_before_cf_list(list), before);
5002 }
5003 
5004 static inline void
nir_instr_insert_after_cf_list(struct exec_list * list,nir_instr * after)5005 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
5006 {
5007    nir_instr_insert(nir_after_cf_list(list), after);
5008 }
5009 
5010 void nir_instr_remove_v(nir_instr *instr);
5011 void nir_instr_free(nir_instr *instr);
5012 void nir_instr_free_list(struct exec_list *list);
5013 
5014 static inline nir_cursor
nir_instr_remove(nir_instr * instr)5015 nir_instr_remove(nir_instr *instr)
5016 {
5017    nir_cursor cursor;
5018    nir_instr *prev = nir_instr_prev(instr);
5019    if (prev) {
5020       cursor = nir_after_instr(prev);
5021    } else {
5022       cursor = nir_before_block(instr->block);
5023    }
5024    nir_instr_remove_v(instr);
5025    return cursor;
5026 }
5027 
5028 nir_cursor nir_instr_free_and_dce(nir_instr *instr);
5029 
5030 /** @} */
5031 
5032 nir_def *nir_instr_def(nir_instr *instr);
5033 
5034 typedef bool (*nir_foreach_def_cb)(nir_def *def, void *state);
5035 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
5036 static inline bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
5037 bool nir_foreach_phi_src_leaving_block(nir_block *instr,
5038                                        nir_foreach_src_cb cb,
5039                                        void *state);
5040 
5041 nir_const_value *nir_src_as_const_value(nir_src src);
5042 
5043 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
5044    static inline c_type *                                \
5045       nir_src_as_##name(nir_src src)                     \
5046    {                                                     \
5047       return src.ssa->parent_instr->type == type_enum    \
5048                 ? cast_macro(src.ssa->parent_instr)      \
5049                 : NULL;                                  \
5050    }
5051 
5052 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
5053 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
5054             nir_instr_type_intrinsic, nir_instr_as_intrinsic)
5055 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
5056 NIR_SRC_AS_(debug_info, nir_debug_info_instr, nir_instr_type_debug_info, nir_instr_as_debug_info)
5057 
5058 const char *nir_src_as_string(nir_src src);
5059 
5060 bool nir_src_is_always_uniform(nir_src src);
5061 bool nir_srcs_equal(nir_src src1, nir_src src2);
5062 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
5063 nir_block *nir_src_get_block(nir_src *src);
5064 
5065 static inline void
nir_src_rewrite(nir_src * src,nir_def * new_ssa)5066 nir_src_rewrite(nir_src *src, nir_def *new_ssa)
5067 {
5068    assert(src->ssa);
5069    assert(nir_src_is_if(src) ? (nir_src_parent_if(src) != NULL) : (nir_src_parent_instr(src) != NULL));
5070    list_del(&src->use_link);
5071    src->ssa = new_ssa;
5072    list_addtail(&src->use_link, &new_ssa->uses);
5073 }
5074 
5075 /** Initialize a nir_src
5076  *
5077  * This is almost never the helper you want to use.  This helper assumes that
5078  * the source is uninitialized garbage and blasts over it without doing any
5079  * tear-down the existing source, including removing it from uses lists.
5080  * Using this helper on a source that currently exists in any uses list will
5081  * result in linked list corruption.  It also assumes that the instruction is
5082  * currently live in the IR and adds the source to the uses list for the given
5083  * nir_def as part of setup.
5084  *
5085  * This is pretty much only useful for adding sources to extant instructions
5086  * or manipulating parallel copy instructions as part of out-of-SSA.
5087  *
5088  * When in doubt, use nir_src_rewrite() instead.
5089  */
5090 void nir_instr_init_src(nir_instr *instr, nir_src *src, nir_def *def);
5091 
5092 /** Clear a nir_src
5093  *
5094  * This helper clears a nir_src by removing it from any uses lists and
5095  * resetting its contents to NIR_SRC_INIT.  This is typically used as a
5096  * precursor to removing the source from the instruction by adjusting a
5097  * num_srcs parameter somewhere or overwriting it with nir_instr_move_src().
5098  */
5099 void nir_instr_clear_src(nir_instr *instr, nir_src *src);
5100 
5101 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
5102 
5103 /** Returns true if first comes before second in a block. */
5104 bool nir_instr_is_before(nir_instr *first, nir_instr *second);
5105 
5106 void nir_def_init(nir_instr *instr, nir_def *def,
5107                   unsigned num_components, unsigned bit_size);
5108 static inline void
nir_def_init_for_type(nir_instr * instr,nir_def * def,const struct glsl_type * type)5109 nir_def_init_for_type(nir_instr *instr, nir_def *def,
5110                       const struct glsl_type *type)
5111 {
5112    assert(glsl_type_is_vector_or_scalar(type));
5113    nir_def_init(instr, def, glsl_get_components(type),
5114                 glsl_get_bit_size(type));
5115 }
5116 void nir_def_rewrite_uses(nir_def *def, nir_def *new_ssa);
5117 void nir_def_rewrite_uses_src(nir_def *def, nir_src new_src);
5118 void nir_def_rewrite_uses_after(nir_def *def, nir_def *new_ssa,
5119                                 nir_instr *after_me);
5120 
5121 static inline void
nir_def_replace(nir_def * def,nir_def * new_ssa)5122 nir_def_replace(nir_def *def, nir_def *new_ssa)
5123 {
5124    nir_def_rewrite_uses(def, new_ssa);
5125    nir_instr_remove(def->parent_instr);
5126 }
5127 
5128 nir_component_mask_t nir_src_components_read(const nir_src *src);
5129 nir_component_mask_t nir_def_components_read(const nir_def *def);
5130 bool nir_def_all_uses_are_fsat(const nir_def *def);
5131 bool nir_def_all_uses_ignore_sign_bit(const nir_def *def);
5132 
5133 static inline int
nir_def_first_component_read(nir_def * def)5134 nir_def_first_component_read(nir_def *def)
5135 {
5136     return (int)ffs(nir_def_components_read(def)) - 1;
5137 }
5138 
5139 static inline int
nir_def_last_component_read(nir_def * def)5140 nir_def_last_component_read(nir_def *def)
5141 {
5142     return (int)util_last_bit(nir_def_components_read(def)) - 1;
5143 }
5144 
5145 static inline bool
nir_def_is_unused(nir_def * ssa)5146 nir_def_is_unused(nir_def *ssa)
5147 {
5148    return list_is_empty(&ssa->uses);
5149 }
5150 
5151 /** Sorts unstructured blocks
5152  *
5153  * NIR requires that unstructured blocks be sorted in reverse post
5154  * depth-first-search order.  This is the standard ordering used in the
5155  * compiler literature which guarantees dominance.  In particular, reverse
5156  * post-DFS order guarantees that dominators occur in the list before the
5157  * blocks they dominate.
5158  *
5159  * NOTE: This function also implicitly deletes any unreachable blocks.
5160  */
5161 void nir_sort_unstructured_blocks(nir_function_impl *impl);
5162 
5163 /** Returns the next block
5164  *
5165  * For structured control-flow, this follows the same order as
5166  * nir_block_cf_tree_next().  For unstructured control-flow the blocks are in
5167  * reverse post-DFS order.  (See nir_sort_unstructured_blocks() above.)
5168  */
5169 nir_block *nir_block_unstructured_next(nir_block *block);
5170 nir_block *nir_unstructured_start_block(nir_function_impl *impl);
5171 
5172 #define nir_foreach_block_unstructured(block, impl)                           \
5173    for (nir_block *block = nir_unstructured_start_block(impl); block != NULL; \
5174         block = nir_block_unstructured_next(block))
5175 
5176 #define nir_foreach_block_unstructured_safe(block, impl)       \
5177    for (nir_block *block = nir_unstructured_start_block(impl), \
5178                   *next = nir_block_unstructured_next(block);  \
5179         block != NULL;                                         \
5180         block = next, next = nir_block_unstructured_next(block))
5181 
5182 /*
5183  * finds the next basic block in source-code order, returns NULL if there is
5184  * none
5185  */
5186 
5187 nir_block *nir_block_cf_tree_next(nir_block *block);
5188 
5189 /* Performs the opposite of nir_block_cf_tree_next() */
5190 
5191 nir_block *nir_block_cf_tree_prev(nir_block *block);
5192 
5193 /* Gets the first block in a CF node in source-code order */
5194 
5195 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
5196 
5197 /* Gets the last block in a CF node in source-code order */
5198 
5199 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
5200 
5201 /* Gets the next block after a CF node in source-code order */
5202 
5203 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
5204 
5205 /* Gets the block before a CF node in source-code order */
5206 
5207 nir_block *nir_cf_node_cf_tree_prev(nir_cf_node *node);
5208 
5209 /* Macros for loops that visit blocks in source-code order */
5210 
5211 #define nir_foreach_block(block, impl)                           \
5212    for (nir_block *block = nir_start_block(impl); block != NULL; \
5213         block = nir_block_cf_tree_next(block))
5214 
5215 #define nir_foreach_block_safe(block, impl)              \
5216    for (nir_block *block = nir_start_block(impl),        \
5217                   *next = nir_block_cf_tree_next(block); \
5218         block != NULL;                                   \
5219         block = next, next = nir_block_cf_tree_next(block))
5220 
5221 #define nir_foreach_block_reverse(block, impl)                       \
5222    for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
5223         block = nir_block_cf_tree_prev(block))
5224 
5225 #define nir_foreach_block_reverse_safe(block, impl)      \
5226    for (nir_block *block = nir_impl_last_block(impl),    \
5227                   *prev = nir_block_cf_tree_prev(block); \
5228         block != NULL;                                   \
5229         block = prev, prev = nir_block_cf_tree_prev(block))
5230 
5231 #define nir_foreach_block_in_cf_node(block, node)           \
5232    for (nir_block *block = nir_cf_node_cf_tree_first(node); \
5233         block != nir_cf_node_cf_tree_next(node);            \
5234         block = nir_block_cf_tree_next(block))
5235 
5236 #define nir_foreach_block_in_cf_node_safe(block, node)      \
5237    for (nir_block *block = nir_cf_node_cf_tree_first(node), \
5238                   *next = nir_block_cf_tree_next(block);    \
5239         block != nir_cf_node_cf_tree_next(node);            \
5240         block = next, next = nir_block_cf_tree_next(block))
5241 
5242 #define nir_foreach_block_in_cf_node_reverse(block, node)  \
5243    for (nir_block *block = nir_cf_node_cf_tree_last(node); \
5244         block != nir_cf_node_cf_tree_prev(node);           \
5245         block = nir_block_cf_tree_prev(block))
5246 
5247 #define nir_foreach_block_in_cf_node_reverse_safe(block, node) \
5248    for (nir_block *block = nir_cf_node_cf_tree_last(node),     \
5249                   *prev = nir_block_cf_tree_prev(block);       \
5250         block != nir_cf_node_cf_tree_prev(node);               \
5251         block = prev, prev = nir_block_cf_tree_prev(block))
5252 
5253 /* If the following CF node is an if, this function returns that if.
5254  * Otherwise, it returns NULL.
5255  */
5256 nir_if *nir_block_get_following_if(nir_block *block);
5257 
5258 nir_loop *nir_block_get_following_loop(nir_block *block);
5259 
5260 nir_block **nir_block_get_predecessors_sorted(const nir_block *block, void *mem_ctx);
5261 
5262 void nir_index_ssa_defs(nir_function_impl *impl);
5263 unsigned nir_index_instrs(nir_function_impl *impl);
5264 
5265 void nir_index_blocks(nir_function_impl *impl);
5266 
5267 void nir_shader_clear_pass_flags(nir_shader *shader);
5268 
5269 unsigned nir_shader_index_vars(nir_shader *shader, nir_variable_mode modes);
5270 unsigned nir_function_impl_index_vars(nir_function_impl *impl);
5271 
5272 void nir_print_shader(nir_shader *shader, FILE *fp);
5273 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
5274 void nir_print_instr(const nir_instr *instr, FILE *fp);
5275 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
5276 void nir_log_shader_annotated_tagged(enum mesa_log_level level, const char *tag, nir_shader *shader, struct hash_table *annotations);
5277 #define nir_log_shadere(s)                       nir_log_shader_annotated_tagged(MESA_LOG_ERROR, (MESA_LOG_TAG), (s), NULL)
5278 #define nir_log_shaderw(s)                       nir_log_shader_annotated_tagged(MESA_LOG_WARN, (MESA_LOG_TAG), (s), NULL)
5279 #define nir_log_shaderi(s)                       nir_log_shader_annotated_tagged(MESA_LOG_INFO, (MESA_LOG_TAG), (s), NULL)
5280 #define nir_log_shader_annotated(s, annotations) nir_log_shader_annotated_tagged(MESA_LOG_ERROR, (MESA_LOG_TAG), (s), annotations)
5281 
5282 char *nir_shader_as_str(nir_shader *nir, void *mem_ctx);
5283 char *nir_shader_as_str_annotated(nir_shader *nir, struct hash_table *annotations, void *mem_ctx);
5284 char *nir_instr_as_str(const nir_instr *instr, void *mem_ctx);
5285 
5286 /** Adds debug information to the shader. The line numbers point to
5287  * the corresponding lines in the printed NIR, starting first_line;
5288  */
5289 char *nir_shader_gather_debug_info(nir_shader *shader, const char *filename, uint32_t first_line);
5290 
5291 /** Shallow clone of a single instruction. */
5292 nir_instr *nir_instr_clone(nir_shader *s, const nir_instr *orig);
5293 
5294 /** Clone a single instruction, including a remap table to rewrite sources. */
5295 nir_instr *nir_instr_clone_deep(nir_shader *s, const nir_instr *orig,
5296                                 struct hash_table *remap_table);
5297 
5298 /** Shallow clone of a single ALU instruction. */
5299 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
5300 
5301 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
5302 nir_function *nir_function_clone(nir_shader *ns, const nir_function *fxn);
5303 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
5304                                            const nir_function_impl *fi);
5305 nir_function_impl *
5306 nir_function_impl_clone_remap_globals(nir_shader *shader,
5307                                       const nir_function_impl *fi,
5308                                       struct hash_table *remap_table);
5309 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
5310 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
5311 
5312 void nir_shader_replace(nir_shader *dest, nir_shader *src);
5313 
5314 void nir_shader_serialize_deserialize(nir_shader *s);
5315 
5316 #ifndef NDEBUG
5317 void nir_validate_shader(nir_shader *shader, const char *when);
5318 void nir_validate_ssa_dominance(nir_shader *shader, const char *when);
5319 void nir_metadata_set_validation_flag(nir_shader *shader);
5320 void nir_metadata_check_validation_flag(nir_shader *shader);
5321 
5322 static inline bool
should_skip_nir(const char * name)5323 should_skip_nir(const char *name)
5324 {
5325    static const char *list = NULL;
5326    if (!list) {
5327       /* Comma separated list of names to skip. */
5328       list = getenv("NIR_SKIP");
5329       if (!list)
5330          list = "";
5331    }
5332 
5333    if (!list[0])
5334       return false;
5335 
5336    return comma_separated_list_contains(list, name);
5337 }
5338 
5339 static inline bool
should_print_nir(nir_shader * shader)5340 should_print_nir(nir_shader *shader)
5341 {
5342    if ((shader->info.internal && !NIR_DEBUG(PRINT_INTERNAL)) ||
5343        shader->info.stage < 0 ||
5344        shader->info.stage > MESA_SHADER_KERNEL)
5345       return false;
5346 
5347    return unlikely(nir_debug_print_shader[shader->info.stage]);
5348 }
5349 #else
5350 static inline void
nir_validate_shader(nir_shader * shader,const char * when)5351 nir_validate_shader(nir_shader *shader, const char *when)
5352 {
5353    (void)shader;
5354    (void)when;
5355 }
5356 static inline void
nir_validate_ssa_dominance(nir_shader * shader,const char * when)5357 nir_validate_ssa_dominance(nir_shader *shader, const char *when)
5358 {
5359    (void)shader;
5360    (void)when;
5361 }
5362 static inline void
nir_metadata_set_validation_flag(nir_shader * shader)5363 nir_metadata_set_validation_flag(nir_shader *shader)
5364 {
5365    (void)shader;
5366 }
5367 static inline void
nir_metadata_check_validation_flag(nir_shader * shader)5368 nir_metadata_check_validation_flag(nir_shader *shader)
5369 {
5370    (void)shader;
5371 }
5372 static inline bool
should_skip_nir(UNUSED const char * pass_name)5373 should_skip_nir(UNUSED const char *pass_name)
5374 {
5375    return false;
5376 }
5377 static inline bool
should_print_nir(UNUSED nir_shader * shader)5378 should_print_nir(UNUSED nir_shader *shader)
5379 {
5380    return false;
5381 }
5382 #endif /* NDEBUG */
5383 
5384 #define _PASS(pass, nir, do_pass)                                       \
5385    do {                                                                 \
5386       if (should_skip_nir(#pass)) {                                     \
5387          printf("skipping %s\n", #pass);                                \
5388          break;                                                         \
5389       }                                                                 \
5390       do_pass if (NIR_DEBUG(CLONE))                                     \
5391       {                                                                 \
5392          nir_shader *_clone = nir_shader_clone(ralloc_parent(nir), nir);\
5393          nir_shader_replace(nir, _clone);                               \
5394       }                                                                 \
5395       if (NIR_DEBUG(SERIALIZE)) {                                       \
5396          nir_shader_serialize_deserialize(nir);                         \
5397       }                                                                 \
5398    } while (0)
5399 
5400 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, {   \
5401    nir_metadata_set_validation_flag(nir);                       \
5402    if (should_print_nir(nir))                                   \
5403       printf("%s\n", #pass);                                    \
5404    if (pass(nir, ##__VA_ARGS__)) {                              \
5405       nir_validate_shader(nir, "after " #pass " in " __FILE__); \
5406       UNUSED bool _;                                            \
5407       progress = true;                                          \
5408       if (should_print_nir(nir))                                \
5409          nir_print_shader(nir, stdout);                         \
5410       nir_metadata_check_validation_flag(nir);                  \
5411    }                                                            \
5412 })
5413 
5414 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, {        \
5415    if (should_print_nir(nir))                                \
5416       printf("%s\n", #pass);                                 \
5417    pass(nir, ##__VA_ARGS__);                                 \
5418    nir_validate_shader(nir, "after " #pass " in " __FILE__); \
5419    if (should_print_nir(nir))                                \
5420       nir_print_shader(nir, stdout);                         \
5421 })
5422 
5423 #define _NIR_LOOP_PASS(progress, idempotent, skip, nir, pass, ...)   \
5424 do {                                                                 \
5425    bool nir_loop_pass_progress = false;                              \
5426    if (!_mesa_set_search(skip, (void (*)())&pass))                   \
5427       NIR_PASS(nir_loop_pass_progress, nir, pass, ##__VA_ARGS__);    \
5428    if (nir_loop_pass_progress)                                       \
5429       _mesa_set_clear(skip, NULL);                                   \
5430    if (idempotent || !nir_loop_pass_progress)                        \
5431       _mesa_set_add(skip, (void (*)())&pass);                        \
5432    UNUSED bool _ = false;                                            \
5433    progress |= nir_loop_pass_progress;                               \
5434 } while (0)
5435 
5436 /* Helper to skip a pass if no different passes have made progress since it was
5437  * previously run. Note that two passes are considered the same if they have
5438  * the same function pointer, even if they used different options.
5439  *
5440  * The usage of this is mostly identical to NIR_PASS. "skip" is a "struct set *"
5441  * (created by _mesa_pointer_set_create) which the macro uses to keep track of
5442  * already run passes.
5443  *
5444  * Example:
5445  * bool progress = true;
5446  * struct set *skip = _mesa_pointer_set_create(NULL);
5447  * while (progress) {
5448  *    progress = false;
5449  *    NIR_LOOP_PASS(progress, skip, nir, pass1);
5450  *    NIR_LOOP_PASS_NOT_IDEMPOTENT(progress, skip, nir, nir_opt_algebraic);
5451  *    NIR_LOOP_PASS(progress, skip, nir, pass2);
5452  *    ...
5453  * }
5454  * _mesa_set_destroy(skip, NULL);
5455  *
5456  * You shouldn't mix usage of this with the NIR_PASS set of helpers, without
5457  * using a new "skip" in-between.
5458  */
5459 #define NIR_LOOP_PASS(progress, skip, nir, pass, ...) \
5460    _NIR_LOOP_PASS(progress, true, skip, nir, pass, ##__VA_ARGS__)
5461 
5462 /* Like NIR_LOOP_PASS, but use this for passes which may make further progress
5463  * when repeated.
5464  */
5465 #define NIR_LOOP_PASS_NOT_IDEMPOTENT(progress, skip, nir, pass, ...) \
5466    _NIR_LOOP_PASS(progress, false, skip, nir, pass, ##__VA_ARGS__)
5467 
5468 #define NIR_SKIP(name) should_skip_nir(#name)
5469 
5470 /** An instruction filtering callback with writemask
5471  *
5472  * Returns true if the instruction should be processed with the associated
5473  * writemask and false otherwise.
5474  */
5475 typedef bool (*nir_instr_writemask_filter_cb)(const nir_instr *,
5476                                               unsigned writemask, const void *);
5477 
5478 /** A simple instruction lowering callback
5479  *
5480  * Many instruction lowering passes can be written as a simple function which
5481  * takes an instruction as its input and returns a sequence of instructions
5482  * that implement the consumed instruction.  This function type represents
5483  * such a lowering function.  When called, a function with this prototype
5484  * should either return NULL indicating that no lowering needs to be done or
5485  * emit a sequence of instructions using the provided builder (whose cursor
5486  * will already be placed after the instruction to be lowered) and return the
5487  * resulting nir_def.
5488  */
5489 typedef nir_def *(*nir_lower_instr_cb)(struct nir_builder *,
5490                                        nir_instr *, void *);
5491 
5492 /**
5493  * Special return value for nir_lower_instr_cb when some progress occurred
5494  * (like changing an input to the instr) that didn't result in a replacement
5495  * SSA def being generated.
5496  */
5497 #define NIR_LOWER_INSTR_PROGRESS ((nir_def *)(uintptr_t)1)
5498 
5499 /**
5500  * Special return value for nir_lower_instr_cb when some progress occurred
5501  * that should remove the current instruction that doesn't create an output
5502  * (like a store)
5503  */
5504 
5505 #define NIR_LOWER_INSTR_PROGRESS_REPLACE ((nir_def *)(uintptr_t)2)
5506 
5507 /** Iterate over all the instructions in a nir_function_impl and lower them
5508  *  using the provided callbacks
5509  *
5510  * This function implements the guts of a standard lowering pass for you.  It
5511  * iterates over all of the instructions in a nir_function_impl and calls the
5512  * filter callback on each one.  If the filter callback returns true, it then
5513  * calls the lowering call back on the instruction.  (Splitting it this way
5514  * allows us to avoid some save/restore work for instructions we know won't be
5515  * lowered.)  If the instruction is dead after the lowering is complete, it
5516  * will be removed.  If new instructions are added, the lowering callback will
5517  * also be called on them in case multiple lowerings are required.
5518  *
5519  * If the callback indicates that the original instruction is replaced (either
5520  * through a new SSA def or NIR_LOWER_INSTR_PROGRESS_REPLACE), then the
5521  * instruction is removed along with any now-dead SSA defs it used.
5522  *
5523  * The metadata for the nir_function_impl will also be updated.  If any blocks
5524  * are added (they cannot be removed), dominance and block indices will be
5525  * invalidated.
5526  */
5527 bool nir_function_impl_lower_instructions(nir_function_impl *impl,
5528                                           nir_instr_filter_cb filter,
5529                                           nir_lower_instr_cb lower,
5530                                           void *cb_data);
5531 bool nir_shader_lower_instructions(nir_shader *shader,
5532                                    nir_instr_filter_cb filter,
5533                                    nir_lower_instr_cb lower,
5534                                    void *cb_data);
5535 
5536 void nir_calc_dominance_impl(nir_function_impl *impl);
5537 void nir_calc_dominance(nir_shader *shader);
5538 
5539 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
5540 bool nir_block_dominates(nir_block *parent, nir_block *child);
5541 bool nir_block_is_unreachable(nir_block *block);
5542 
5543 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
5544 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
5545 
5546 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
5547 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
5548 
5549 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
5550 void nir_dump_cfg(nir_shader *shader, FILE *fp);
5551 
5552 void nir_gs_count_vertices_and_primitives(const nir_shader *shader,
5553                                           int *out_vtxcnt,
5554                                           int *out_prmcnt,
5555                                           int *out_decomposed_prmcnt,
5556                                           unsigned num_streams);
5557 
5558 typedef enum {
5559    nir_group_all,
5560    nir_group_same_resource_only,
5561 } nir_load_grouping;
5562 
5563 void nir_group_loads(nir_shader *shader, nir_load_grouping grouping,
5564                      unsigned max_distance);
5565 
5566 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
5567 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
5568 bool nir_split_var_copies(nir_shader *shader);
5569 bool nir_split_per_member_structs(nir_shader *shader);
5570 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
5571 
5572 bool nir_lower_returns_impl(nir_function_impl *impl);
5573 bool nir_lower_returns(nir_shader *shader);
5574 
5575 void nir_inline_function_impl(struct nir_builder *b,
5576                               const nir_function_impl *impl,
5577                               nir_def **params,
5578                               struct hash_table *shader_var_remap);
5579 bool nir_inline_functions(nir_shader *shader);
5580 void nir_cleanup_functions(nir_shader *shader);
5581 bool nir_link_shader_functions(nir_shader *shader,
5582                                const nir_shader *link_shader);
5583 bool nir_lower_calls_to_builtins(nir_shader *s);
5584 
5585 void nir_find_inlinable_uniforms(nir_shader *shader);
5586 void nir_inline_uniforms(nir_shader *shader, unsigned num_uniforms,
5587                          const uint32_t *uniform_values,
5588                          const uint16_t *uniform_dw_offsets);
5589 bool nir_collect_src_uniforms(const nir_src *src, int component,
5590                               uint32_t *uni_offsets, uint8_t *num_offsets,
5591                               unsigned max_num_bo, unsigned max_offset);
5592 void nir_add_inlinable_uniforms(const nir_src *cond, nir_loop_info *info,
5593                                 uint32_t *uni_offsets, uint8_t *num_offsets,
5594                                 unsigned max_num_bo, unsigned max_offset);
5595 
5596 bool nir_propagate_invariant(nir_shader *shader, bool invariant_prim);
5597 
5598 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
5599 void nir_lower_deref_copy_instr(struct nir_builder *b,
5600                                 nir_intrinsic_instr *copy);
5601 bool nir_lower_var_copies(nir_shader *shader);
5602 
5603 bool nir_opt_memcpy(nir_shader *shader);
5604 bool nir_lower_memcpy(nir_shader *shader);
5605 
5606 void nir_fixup_deref_modes(nir_shader *shader);
5607 void nir_fixup_deref_types(nir_shader *shader);
5608 
5609 bool nir_lower_global_vars_to_local(nir_shader *shader);
5610 void nir_lower_constant_to_temp(nir_shader *shader);
5611 
5612 typedef enum {
5613    nir_lower_direct_array_deref_of_vec_load = (1 << 0),
5614    nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
5615    nir_lower_direct_array_deref_of_vec_store = (1 << 2),
5616    nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
5617 } nir_lower_array_deref_of_vec_options;
5618 
5619 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
5620                                   bool (*filter)(nir_variable *),
5621                                   nir_lower_array_deref_of_vec_options options);
5622 
5623 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes,
5624                                uint32_t max_lower_array_len);
5625 
5626 bool nir_lower_indirect_var_derefs(nir_shader *shader,
5627                                    const struct set *vars);
5628 
5629 bool nir_lower_locals_to_regs(nir_shader *shader, uint8_t bool_bitsize);
5630 
5631 bool nir_lower_io_to_temporaries(nir_shader *shader,
5632                                  nir_function_impl *entrypoint,
5633                                  bool outputs, bool inputs);
5634 
5635 bool nir_lower_vars_to_scratch(nir_shader *shader,
5636                                nir_variable_mode modes,
5637                                int size_threshold,
5638                                glsl_type_size_align_func variable_size_align,
5639                                glsl_type_size_align_func scratch_layout_size_align);
5640 
5641 bool nir_lower_scratch_to_var(nir_shader *nir);
5642 
5643 void nir_lower_clip_halfz(nir_shader *shader);
5644 
5645 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
5646 
5647 void nir_gather_types(nir_function_impl *impl,
5648                       BITSET_WORD *float_types,
5649                       BITSET_WORD *int_types);
5650 
5651 typedef struct {
5652    /* Whether all invocations write tess level outputs.
5653     *
5654     * This is useful when a pass wants to read tess level values at the end
5655     * of the shader. If this is true, the pass doesn't have to insert a barrier
5656     * and use output loads, it can just use the SSA defs that are being stored
5657     * (or phis thereof) to get the tess level output values.
5658     */
5659    bool all_invocations_define_tess_levels;
5660 
5661    /* Whether any of the outer tess level components is effectively 0, meaning
5662     * that the shader discards the patch. NaNs and negative values are included
5663     * in this. If the patch is discarded, inner tess levels have no effect.
5664     */
5665    bool all_tess_levels_are_effectively_zero;
5666 
5667    /* Whether all tess levels are effectively 1, meaning that the tessellator
5668     * behaves as if they were 1. There is a range of values that lead to that
5669     * behavior depending on the tessellation spacing.
5670     */
5671    bool all_tess_levels_are_effectively_one;
5672 
5673    /* Whether the shader uses a barrier synchronizing TCS output stores.
5674     * For example, passes that write an output at the beginning of the shader
5675     * and load it at the end can use this to determine whether they have to
5676     * insert a barrier or whether the shader already contains a barrier.
5677     */
5678    bool always_executes_barrier;
5679 
5680    /* Whether outer tess levels <= 0 are written anywhere in the shader. */
5681    bool discards_patches;
5682 } nir_tcs_info;
5683 
5684 void
5685 nir_gather_tcs_info(const nir_shader *nir, nir_tcs_info *info,
5686                     enum tess_primitive_mode prim,
5687                     enum gl_tess_spacing spacing);
5688 
5689 void nir_assign_var_locations(nir_shader *shader, nir_variable_mode mode,
5690                               unsigned *size,
5691                               int (*type_size)(const struct glsl_type *, bool));
5692 
5693 /* Some helpers to do very simple linking */
5694 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
5695 bool nir_remove_unused_io_vars(nir_shader *shader, nir_variable_mode mode,
5696                                uint64_t *used_by_other_stage,
5697                                uint64_t *used_by_other_stage_patches);
5698 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
5699                           bool default_to_smooth_interp);
5700 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
5701 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
5702 void nir_link_varying_precision(nir_shader *producer, nir_shader *consumer);
5703 nir_variable *nir_clone_uniform_variable(nir_shader *nir,
5704                                          nir_variable *uniform, bool spirv);
5705 nir_deref_instr *nir_clone_deref_instr(struct nir_builder *b,
5706                                        nir_variable *var,
5707                                        nir_deref_instr *deref);
5708 
5709 
5710 /* Return status from nir_opt_varyings. */
5711 typedef enum {
5712    /* Whether the IR changed such that NIR optimizations should be run, such
5713     * as due to removal of loads and stores. IO semantic changes such as
5714     * compaction don't count as IR changes because they don't affect NIR
5715     * optimizations.
5716     */
5717    nir_progress_producer = BITFIELD_BIT(0),
5718    nir_progress_consumer = BITFIELD_BIT(1),
5719 } nir_opt_varyings_progress;
5720 
5721 nir_opt_varyings_progress
5722 nir_opt_varyings(nir_shader *producer, nir_shader *consumer, bool spirv,
5723                  unsigned max_uniform_components, unsigned max_ubos_per_stage);
5724 
5725 bool nir_slot_is_sysval_output(gl_varying_slot slot,
5726                                gl_shader_stage next_shader);
5727 bool nir_slot_is_varying(gl_varying_slot slot, gl_shader_stage next_shader);
5728 bool nir_slot_is_sysval_output_and_varying(gl_varying_slot slot,
5729                                            gl_shader_stage next_shader);
5730 bool nir_remove_varying(nir_intrinsic_instr *intr, gl_shader_stage next_shader);
5731 bool nir_remove_sysval_output(nir_intrinsic_instr *intr, gl_shader_stage next_shader);
5732 
5733 bool nir_lower_amul(nir_shader *shader,
5734                     int (*type_size)(const struct glsl_type *, bool));
5735 
5736 bool nir_lower_ubo_vec4(nir_shader *shader);
5737 
5738 void nir_sort_variables_by_location(nir_shader *shader, nir_variable_mode mode);
5739 void nir_assign_io_var_locations(nir_shader *shader,
5740                                  nir_variable_mode mode,
5741                                  unsigned *size,
5742                                  gl_shader_stage stage);
5743 
5744 bool nir_opt_clip_cull_const(nir_shader *shader);
5745 
5746 typedef enum {
5747    /* If set, this causes all 64-bit IO operations to be lowered on-the-fly
5748     * to 32-bit operations.  This is only valid for nir_var_shader_in/out
5749     * modes.
5750     *
5751     * Note that this destroys dual-slot information i.e. whether an input
5752     * occupies the low or high half of dvec4. Instead, it adds an offset of 1
5753     * to the load (which is ambiguous) and expects driver locations of inputs
5754     * to be final, which prevents any further optimizations.
5755     *
5756     * TODO: remove this in favor of nir_lower_io_lower_64bit_to_32_new.
5757     */
5758    nir_lower_io_lower_64bit_to_32 = (1 << 0),
5759 
5760    /* If set, this causes the subset of 64-bit IO operations involving floats to be lowered on-the-fly
5761     * to 32-bit operations.  This is only valid for nir_var_shader_in/out
5762     * modes.
5763     */
5764    nir_lower_io_lower_64bit_float_to_32 = (1 << 1),
5765 
5766    /* This causes all 64-bit IO operations to be lowered to 32-bit operations.
5767     * This is only valid for nir_var_shader_in/out modes.
5768     *
5769     * Only VS inputs: Dual slot information is preserved as nir_io_semantics::
5770     * high_dvec2 and gathered into shader_info::dual_slot_inputs, so that
5771     * the shader can be arbitrarily optimized and the low or high half of
5772     * dvec4 can be DCE'd independently without affecting the other half.
5773     */
5774    nir_lower_io_lower_64bit_to_32_new = (1 << 2),
5775 
5776    /**
5777     * Should nir_lower_io() create load_interpolated_input intrinsics?
5778     *
5779     * If not, it generates regular load_input intrinsics and interpolation
5780     * information must be inferred from the list of input nir_variables.
5781     */
5782    nir_lower_io_use_interpolated_input_intrinsics = (1 << 3),
5783 } nir_lower_io_options;
5784 bool nir_lower_io(nir_shader *shader,
5785                   nir_variable_mode modes,
5786                   int (*type_size)(const struct glsl_type *, bool),
5787                   nir_lower_io_options);
5788 
5789 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode modes);
5790 bool nir_lower_color_inputs(nir_shader *nir);
5791 void nir_lower_io_passes(nir_shader *nir, bool renumber_vs_inputs);
5792 bool nir_io_add_intrinsic_xfb_info(nir_shader *nir);
5793 
5794 bool
5795 nir_lower_vars_to_explicit_types(nir_shader *shader,
5796                                  nir_variable_mode modes,
5797                                  glsl_type_size_align_func type_info);
5798 void
5799 nir_gather_explicit_io_initializers(nir_shader *shader,
5800                                     void *dst, size_t dst_size,
5801                                     nir_variable_mode mode);
5802 
5803 bool nir_lower_vec3_to_vec4(nir_shader *shader, nir_variable_mode modes);
5804 
5805 typedef enum {
5806    /**
5807     * An address format which is a simple 32-bit global GPU address.
5808     */
5809    nir_address_format_32bit_global,
5810 
5811    /**
5812     * An address format which is a simple 64-bit global GPU address.
5813     */
5814    nir_address_format_64bit_global,
5815 
5816    /**
5817     * An address format which is a 64-bit global GPU address encoded as a
5818     * 2x32-bit vector.
5819     */
5820    nir_address_format_2x32bit_global,
5821 
5822    /**
5823     * An address format which is a 64-bit global base address and a 32-bit
5824     * offset.
5825     *
5826     * This is identical to 64bit_bounded_global except that bounds checking
5827     * is not applied when lowering to global access.  Even though the size is
5828     * never used for an actual bounds check, it needs to be valid so we can
5829     * lower deref_buffer_array_length properly.
5830     */
5831    nir_address_format_64bit_global_32bit_offset,
5832 
5833    /**
5834     * An address format which is a bounds-checked 64-bit global GPU address.
5835     *
5836     * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
5837     * address stored with the low bits in .x and high bits in .y, .z is a
5838     * size, and .w is an offset.  When the final I/O operation is lowered, .w
5839     * is checked against .z and the operation is predicated on the result.
5840     */
5841    nir_address_format_64bit_bounded_global,
5842 
5843    /**
5844     * An address format which is comprised of a vec2 where the first
5845     * component is a buffer index and the second is an offset.
5846     */
5847    nir_address_format_32bit_index_offset,
5848 
5849    /**
5850     * An address format which is a 64-bit value, where the high 32 bits
5851     * are a buffer index, and the low 32 bits are an offset.
5852     */
5853    nir_address_format_32bit_index_offset_pack64,
5854 
5855    /**
5856     * An address format which is comprised of a vec3 where the first two
5857     * components specify the buffer and the third is an offset.
5858     */
5859    nir_address_format_vec2_index_32bit_offset,
5860 
5861    /**
5862     * An address format which represents generic pointers with a 62-bit
5863     * pointer and a 2-bit enum in the top two bits.  The top two bits have
5864     * the following meanings:
5865     *
5866     *  - 0x0: Global memory
5867     *  - 0x1: Shared memory
5868     *  - 0x2: Scratch memory
5869     *  - 0x3: Global memory
5870     *
5871     * The redundancy between 0x0 and 0x3 is because of Intel sign-extension of
5872     * addresses.  Valid global memory addresses may naturally have either 0 or
5873     * ~0 as their high bits.
5874     *
5875     * Shared and scratch pointers are represented as 32-bit offsets with the
5876     * top 32 bits only being used for the enum.  This allows us to avoid
5877     * 64-bit address calculations in a bunch of cases.
5878     */
5879    nir_address_format_62bit_generic,
5880 
5881    /**
5882     * An address format which is a simple 32-bit offset.
5883     */
5884    nir_address_format_32bit_offset,
5885 
5886    /**
5887     * An address format which is a simple 32-bit offset cast to 64-bit.
5888     */
5889    nir_address_format_32bit_offset_as_64bit,
5890 
5891    /**
5892     * An address format representing a purely logical addressing model.  In
5893     * this model, all deref chains must be complete from the dereference
5894     * operation to the variable.  Cast derefs are not allowed.  These
5895     * addresses will be 32-bit scalars but the format is immaterial because
5896     * you can always chase the chain.
5897     */
5898    nir_address_format_logical,
5899 } nir_address_format;
5900 
5901 unsigned
5902 nir_address_format_bit_size(nir_address_format addr_format);
5903 
5904 unsigned
5905 nir_address_format_num_components(nir_address_format addr_format);
5906 
5907 static inline const struct glsl_type *
nir_address_format_to_glsl_type(nir_address_format addr_format)5908 nir_address_format_to_glsl_type(nir_address_format addr_format)
5909 {
5910    unsigned bit_size = nir_address_format_bit_size(addr_format);
5911    assert(bit_size == 32 || bit_size == 64);
5912    return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
5913                            nir_address_format_num_components(addr_format));
5914 }
5915 
5916 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
5917 
5918 nir_def *nir_build_addr_iadd(struct nir_builder *b, nir_def *addr,
5919                              nir_address_format addr_format,
5920                              nir_variable_mode modes,
5921                              nir_def *offset);
5922 
5923 nir_def *nir_build_addr_iadd_imm(struct nir_builder *b, nir_def *addr,
5924                                  nir_address_format addr_format,
5925                                  nir_variable_mode modes,
5926                                  int64_t offset);
5927 
5928 nir_def *nir_build_addr_ieq(struct nir_builder *b, nir_def *addr0, nir_def *addr1,
5929                             nir_address_format addr_format);
5930 
5931 nir_def *nir_build_addr_isub(struct nir_builder *b, nir_def *addr0, nir_def *addr1,
5932                              nir_address_format addr_format);
5933 
5934 nir_def *nir_explicit_io_address_from_deref(struct nir_builder *b,
5935                                             nir_deref_instr *deref,
5936                                             nir_def *base_addr,
5937                                             nir_address_format addr_format);
5938 
5939 bool nir_get_explicit_deref_align(nir_deref_instr *deref,
5940                                   bool default_to_type_align,
5941                                   uint32_t *align_mul,
5942                                   uint32_t *align_offset);
5943 
5944 void nir_lower_explicit_io_instr(struct nir_builder *b,
5945                                  nir_intrinsic_instr *io_instr,
5946                                  nir_def *addr,
5947                                  nir_address_format addr_format);
5948 
5949 bool nir_lower_explicit_io(nir_shader *shader,
5950                            nir_variable_mode modes,
5951                            nir_address_format);
5952 
5953 typedef enum {
5954    /* Use open-coded funnel shifts for each component. */
5955    nir_mem_access_shift_method_scalar,
5956    /* Prefer to use 64-bit shifts to do the same with less instructions. Useful
5957     * if 64-bit shifts are cheap.
5958     */
5959    nir_mem_access_shift_method_shift64,
5960    /* If nir_op_alignbyte_amd can be used, this is the best option with just a
5961     * single nir_op_alignbyte_amd for each 32-bit components.
5962     */
5963    nir_mem_access_shift_method_bytealign_amd,
5964 } nir_mem_access_shift_method;
5965 
5966 typedef struct {
5967    uint8_t num_components;
5968    uint8_t bit_size;
5969    uint16_t align;
5970    /* If a load's alignment is increased, this specifies how the data should be
5971     * shifted before converting to the original bit size.
5972     */
5973    nir_mem_access_shift_method shift;
5974 } nir_mem_access_size_align;
5975 
5976 /* clang-format off */
5977 typedef nir_mem_access_size_align
5978    (*nir_lower_mem_access_bit_sizes_cb)(nir_intrinsic_op intrin,
5979                                         uint8_t bytes,
5980                                         uint8_t bit_size,
5981                                         uint32_t align_mul,
5982                                         uint32_t align_offset,
5983                                         bool offset_is_const,
5984                                         enum gl_access_qualifier,
5985                                         const void *cb_data);
5986 /* clang-format on */
5987 
5988 typedef struct {
5989    nir_lower_mem_access_bit_sizes_cb callback;
5990    nir_variable_mode modes;
5991    bool may_lower_unaligned_stores_to_atomics;
5992    void *cb_data;
5993 } nir_lower_mem_access_bit_sizes_options;
5994 
5995 bool nir_lower_mem_access_bit_sizes(nir_shader *shader,
5996                                     const nir_lower_mem_access_bit_sizes_options *options);
5997 
5998 bool nir_lower_robust_access(nir_shader *s,
5999                              nir_intrin_filter_cb filter, const void *data);
6000 
6001 /* clang-format off */
6002 typedef bool (*nir_should_vectorize_mem_func)(unsigned align_mul,
6003                                               unsigned align_offset,
6004                                               unsigned bit_size,
6005                                               unsigned num_components,
6006                                               /* The hole between low and
6007                                                * high if they are not adjacent. */
6008                                               int64_t hole_size,
6009                                               nir_intrinsic_instr *low,
6010                                               nir_intrinsic_instr *high,
6011                                               void *data);
6012 /* clang-format on */
6013 
6014 typedef struct {
6015    nir_should_vectorize_mem_func callback;
6016    nir_variable_mode modes;
6017    nir_variable_mode robust_modes;
6018    void *cb_data;
6019    bool has_shared2_amd;
6020 } nir_load_store_vectorize_options;
6021 
6022 bool nir_opt_load_store_vectorize(nir_shader *shader, const nir_load_store_vectorize_options *options);
6023 bool nir_opt_load_store_update_alignments(nir_shader *shader);
6024 
6025 typedef bool (*nir_lower_shader_calls_should_remat_func)(nir_instr *instr, void *data);
6026 
6027 typedef struct nir_lower_shader_calls_options {
6028    /* Address format used for load/store operations on the call stack. */
6029    nir_address_format address_format;
6030 
6031    /* Stack alignment */
6032    unsigned stack_alignment;
6033 
6034    /* Put loads from the stack as close as possible from where they're needed.
6035     * You might want to disable combined_loads for best effects.
6036     */
6037    bool localized_loads;
6038 
6039    /* If this function pointer is not NULL, lower_shader_calls will run
6040     * nir_opt_load_store_vectorize for stack load/store operations. Otherwise
6041     * the optimizaion is not run.
6042     */
6043    nir_should_vectorize_mem_func vectorizer_callback;
6044 
6045    /* Data passed to vectorizer_callback */
6046    void *vectorizer_data;
6047 
6048    /* If this function pointer is not NULL, lower_shader_calls will call this
6049     * function on instructions that require spill/fill/rematerialization of
6050     * their value. If this function returns true, lower_shader_calls will
6051     * ensure that the instruction is rematerialized, adding the sources of the
6052     * instruction to be spilled/filled.
6053     */
6054    nir_lower_shader_calls_should_remat_func should_remat_callback;
6055 
6056    /* Data passed to should_remat_callback */
6057    void *should_remat_data;
6058 } nir_lower_shader_calls_options;
6059 
6060 bool
6061 nir_lower_shader_calls(nir_shader *shader,
6062                        const nir_lower_shader_calls_options *options,
6063                        nir_shader ***resume_shaders_out,
6064                        uint32_t *num_resume_shaders_out,
6065                        void *mem_ctx);
6066 
6067 int nir_get_io_offset_src_number(const nir_intrinsic_instr *instr);
6068 int nir_get_io_arrayed_index_src_number(const nir_intrinsic_instr *instr);
6069 
6070 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
6071 nir_src *nir_get_io_arrayed_index_src(nir_intrinsic_instr *instr);
6072 nir_src *nir_get_shader_call_payload_src(nir_intrinsic_instr *call);
6073 
6074 bool nir_is_arrayed_io(const nir_variable *var, gl_shader_stage stage);
6075 
6076 bool nir_lower_reg_intrinsics_to_ssa_impl(nir_function_impl *impl);
6077 bool nir_lower_reg_intrinsics_to_ssa(nir_shader *shader);
6078 bool nir_lower_vars_to_ssa(nir_shader *shader);
6079 
6080 bool nir_remove_dead_derefs(nir_shader *shader);
6081 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
6082 
6083 typedef struct nir_remove_dead_variables_options {
6084    bool (*can_remove_var)(nir_variable *var, void *data);
6085    void *can_remove_var_data;
6086 } nir_remove_dead_variables_options;
6087 
6088 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes,
6089                                const nir_remove_dead_variables_options *options);
6090 
6091 bool nir_lower_variable_initializers(nir_shader *shader,
6092                                      nir_variable_mode modes);
6093 bool nir_zero_initialize_shared_memory(nir_shader *shader,
6094                                        const unsigned shared_size,
6095                                        const unsigned chunk_size);
6096 bool nir_clear_shared_memory(nir_shader *shader,
6097                              const unsigned shared_size,
6098                              const unsigned chunk_size);
6099 
6100 bool nir_move_vec_src_uses_to_dest(nir_shader *shader, bool skip_const_srcs);
6101 bool nir_move_output_stores_to_end(nir_shader *nir);
6102 bool nir_lower_vec_to_regs(nir_shader *shader, nir_instr_writemask_filter_cb cb,
6103                            const void *_data);
6104 bool nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
6105                           bool alpha_to_one,
6106                           const gl_state_index16 *alpha_ref_state_tokens);
6107 bool nir_lower_alu(nir_shader *shader);
6108 
6109 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
6110                     bool always_precise);
6111 
6112 bool nir_scale_fdiv(nir_shader *shader);
6113 
6114 bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
6115 bool nir_lower_alu_width(nir_shader *shader, nir_vectorize_cb cb, const void *data);
6116 bool nir_lower_alu_vec8_16_srcs(nir_shader *shader);
6117 bool nir_lower_bool_to_bitsize(nir_shader *shader);
6118 bool nir_lower_bool_to_float(nir_shader *shader, bool has_fcsel_ne);
6119 bool nir_lower_bool_to_int32(nir_shader *shader);
6120 bool nir_opt_simplify_convert_alu_types(nir_shader *shader);
6121 bool nir_lower_const_arrays_to_uniforms(nir_shader *shader,
6122                                         unsigned max_uniform_components);
6123 bool nir_lower_convert_alu_types(nir_shader *shader,
6124                                  bool (*should_lower)(nir_intrinsic_instr *));
6125 bool nir_lower_constant_convert_alu_types(nir_shader *shader);
6126 bool nir_lower_alu_conversion_to_intrinsic(nir_shader *shader);
6127 bool nir_lower_int_to_float(nir_shader *shader);
6128 bool nir_lower_load_const_to_scalar(nir_shader *shader);
6129 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
6130 bool nir_lower_phis_to_scalar(nir_shader *shader, bool lower_all);
6131 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
6132 bool nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
6133                                                   bool outputs_only);
6134 bool nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask, nir_instr_filter_cb filter, void *filter_data);
6135 bool nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
6136 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
6137 bool nir_vectorize_tess_levels(nir_shader *shader);
6138 nir_shader *nir_create_passthrough_tcs_impl(const nir_shader_compiler_options *options,
6139                                             unsigned *locations, unsigned num_locations,
6140                                             uint8_t patch_vertices);
6141 nir_shader *nir_create_passthrough_tcs(const nir_shader_compiler_options *options,
6142                                        const nir_shader *vs, uint8_t patch_vertices);
6143 nir_shader *nir_create_passthrough_gs(const nir_shader_compiler_options *options,
6144                                       const nir_shader *prev_stage,
6145                                       enum mesa_prim primitive_type,
6146                                       enum mesa_prim output_primitive_type,
6147                                       bool emulate_edgeflags,
6148                                       bool force_line_strip_out,
6149                                       bool passthrough_prim_id);
6150 
6151 bool nir_lower_fragcolor(nir_shader *shader, unsigned max_cbufs);
6152 bool nir_lower_fragcoord_wtrans(nir_shader *shader);
6153 bool nir_opt_frag_coord_to_pixel_coord(nir_shader *shader);
6154 bool nir_lower_frag_coord_to_pixel_coord(nir_shader *shader);
6155 bool nir_lower_viewport_transform(nir_shader *shader);
6156 bool nir_lower_uniforms_to_ubo(nir_shader *shader, bool dword_packed, bool load_vec4);
6157 
6158 bool nir_lower_is_helper_invocation(nir_shader *shader);
6159 
6160 bool nir_lower_single_sampled(nir_shader *shader);
6161 
6162 bool nir_lower_atomics(nir_shader *shader, nir_instr_filter_cb filter);
6163 
6164 typedef struct nir_lower_subgroups_options {
6165    /* In addition to the boolean lowering options below, this optional callback
6166     * will filter instructions for lowering if non-NULL. The data passed will be
6167     * filter_data.
6168     */
6169    nir_instr_filter_cb filter;
6170 
6171    /* Extra data passed to the filter. */
6172    const void *filter_data;
6173 
6174    /* In case the exact subgroup size is not known, subgroup_size should be
6175     * set to 0. In that case, the maximum subgroup size will be calculated by
6176     * ballot_components * ballot_bit_size.
6177     */
6178    uint8_t subgroup_size;
6179    uint8_t ballot_bit_size;
6180    uint8_t ballot_components;
6181    bool lower_to_scalar : 1;
6182    bool lower_vote_trivial : 1;
6183    bool lower_vote_eq : 1;
6184    bool lower_vote_bool_eq : 1;
6185    bool lower_first_invocation_to_ballot : 1;
6186    bool lower_read_first_invocation : 1;
6187    bool lower_subgroup_masks : 1;
6188    bool lower_relative_shuffle : 1;
6189    bool lower_shuffle_to_32bit : 1;
6190    bool lower_shuffle_to_swizzle_amd : 1;
6191    bool lower_shuffle : 1;
6192    bool lower_quad : 1;
6193    bool lower_quad_broadcast_dynamic : 1;
6194    bool lower_quad_broadcast_dynamic_to_const : 1;
6195    bool lower_quad_vote : 1;
6196    bool lower_elect : 1;
6197    bool lower_read_invocation_to_cond : 1;
6198    bool lower_rotate_to_shuffle : 1;
6199    bool lower_rotate_clustered_to_shuffle : 1;
6200    bool lower_ballot_bit_count_to_mbcnt_amd : 1;
6201    bool lower_inverse_ballot : 1;
6202    bool lower_reduce : 1;
6203    bool lower_boolean_reduce : 1;
6204    bool lower_boolean_shuffle : 1;
6205 } nir_lower_subgroups_options;
6206 
6207 bool nir_lower_subgroups(nir_shader *shader,
6208                          const nir_lower_subgroups_options *options);
6209 
6210 bool nir_lower_system_values(nir_shader *shader);
6211 
6212 nir_def *
6213 nir_build_lowered_load_helper_invocation(struct nir_builder *b);
6214 
6215 typedef struct nir_lower_compute_system_values_options {
6216    bool has_base_global_invocation_id : 1;
6217    bool has_base_workgroup_id : 1;
6218    bool has_global_size : 1;
6219    bool shuffle_local_ids_for_quad_derivatives : 1;
6220    bool lower_local_invocation_index : 1;
6221    bool lower_cs_local_id_to_index : 1;
6222    bool lower_workgroup_id_to_index : 1;
6223    bool global_id_is_32bit : 1;
6224    /* At shader execution time, check if WorkGroupId should be 1D
6225     * and compute it quickly. Fall back to slow computation if not.
6226     */
6227    bool shortcut_1d_workgroup_id : 1;
6228    uint32_t num_workgroups[3]; /* Compile-time-known dispatch sizes, or 0 if unknown. */
6229 } nir_lower_compute_system_values_options;
6230 
6231 bool nir_lower_compute_system_values(nir_shader *shader,
6232                                      const nir_lower_compute_system_values_options *options);
6233 
6234 struct nir_lower_sysvals_to_varyings_options {
6235    bool frag_coord : 1;
6236    bool front_face : 1;
6237    bool point_coord : 1;
6238 };
6239 
6240 bool
6241 nir_lower_sysvals_to_varyings(nir_shader *shader,
6242                               const struct nir_lower_sysvals_to_varyings_options *options);
6243 
6244 /***/
6245 enum ENUM_PACKED nir_lower_tex_packing {
6246    /** No packing */
6247    nir_lower_tex_packing_none = 0,
6248    /**
6249     * The sampler returns up to 2 32-bit words of half floats or 16-bit signed
6250     * or unsigned ints based on the sampler type
6251     */
6252    nir_lower_tex_packing_16,
6253    /** The sampler returns 1 32-bit word of 4x8 unorm */
6254    nir_lower_tex_packing_8,
6255 };
6256 
6257 /***/
6258 typedef struct nir_lower_tex_options {
6259    /**
6260     * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
6261     * sampler types a texture projector is lowered.
6262     */
6263    unsigned lower_txp;
6264 
6265    /**
6266     * If true, lower texture projector for any array sampler dims
6267     */
6268    bool lower_txp_array;
6269 
6270    /**
6271     * If true, lower away nir_tex_src_offset for all texelfetch instructions.
6272     */
6273    bool lower_txf_offset;
6274 
6275    /**
6276     * If true, lower away nir_tex_src_offset for all rect textures.
6277     */
6278    bool lower_rect_offset;
6279 
6280    /**
6281     * If not NULL, this filter will return true for tex instructions that
6282     * should lower away nir_tex_src_offset.
6283     */
6284    nir_instr_filter_cb lower_offset_filter;
6285 
6286    /**
6287     * If true, lower rect textures to 2D, using txs to fetch the
6288     * texture dimensions and dividing the texture coords by the
6289     * texture dims to normalize.
6290     */
6291    bool lower_rect;
6292 
6293    /**
6294     * If true, lower 1D textures to 2D. This requires the GL/VK driver to map 1D
6295     * textures to 2D textures with height=1.
6296     *
6297     * lower_1d_shadow does this lowering for shadow textures only.
6298     */
6299    bool lower_1d;
6300    bool lower_1d_shadow;
6301 
6302    /**
6303     * If true, convert yuv to rgb.
6304     */
6305    unsigned lower_y_uv_external;
6306    unsigned lower_y_vu_external;
6307    unsigned lower_y_u_v_external;
6308    unsigned lower_yx_xuxv_external;
6309    unsigned lower_yx_xvxu_external;
6310    unsigned lower_xy_uxvx_external;
6311    unsigned lower_xy_vxux_external;
6312    unsigned lower_ayuv_external;
6313    unsigned lower_xyuv_external;
6314    unsigned lower_yuv_external;
6315    unsigned lower_yu_yv_external;
6316    unsigned lower_yv_yu_external;
6317    unsigned lower_y41x_external;
6318    unsigned bt709_external;
6319    unsigned bt2020_external;
6320    unsigned yuv_full_range_external;
6321 
6322    /**
6323     * To emulate certain texture wrap modes, this can be used
6324     * to saturate the specified tex coord to [0.0, 1.0].  The
6325     * bits are according to sampler #, ie. if, for example:
6326     *
6327     *   (conf->saturate_s & (1 << n))
6328     *
6329     * is true, then the s coord for sampler n is saturated.
6330     *
6331     * Note that clamping must happen *after* projector lowering
6332     * so any projected texture sample instruction with a clamped
6333     * coordinate gets automatically lowered, regardless of the
6334     * 'lower_txp' setting.
6335     */
6336    unsigned saturate_s;
6337    unsigned saturate_t;
6338    unsigned saturate_r;
6339 
6340    /* Bitmask of textures that need swizzling.
6341     *
6342     * If (swizzle_result & (1 << texture_index)), then the swizzle in
6343     * swizzles[texture_index] is applied to the result of the texturing
6344     * operation.
6345     */
6346    unsigned swizzle_result;
6347 
6348    /* A swizzle for each texture.  Values 0-3 represent x, y, z, or w swizzles
6349     * while 4 and 5 represent 0 and 1 respectively.
6350     *
6351     * Indexed by texture-id.
6352     */
6353    uint8_t swizzles[32][4];
6354 
6355    /* Can be used to scale sampled values in range required by the
6356     * format.
6357     *
6358     * Indexed by texture-id.
6359     */
6360    float scale_factors[32];
6361 
6362    /**
6363     * Bitmap of textures that need srgb to linear conversion.  If
6364     * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
6365     * of the texture are lowered to linear.
6366     */
6367    unsigned lower_srgb;
6368 
6369    /**
6370     * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
6371     */
6372    bool lower_txd_cube_map;
6373 
6374    /**
6375     * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
6376     */
6377    bool lower_txd_3d;
6378 
6379    /**
6380     * If true, lower nir_texop_txd any array surfaces with nir_texop_txl.
6381     */
6382    bool lower_txd_array;
6383 
6384    /**
6385     * If true, lower nir_texop_txd on shadow samplers (except cube maps)
6386     * with nir_texop_txl. Notice that cube map shadow samplers are lowered
6387     * with lower_txd_cube_map.
6388     */
6389    bool lower_txd_shadow;
6390 
6391    /**
6392     * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
6393     * Implies lower_txd_cube_map and lower_txd_shadow.
6394     */
6395    bool lower_txd;
6396 
6397    /**
6398     * If true, lower nir_texop_txd  when it uses min_lod.
6399     */
6400    bool lower_txd_clamp;
6401 
6402    /**
6403     * If true, lower nir_texop_txb that try to use shadow compare and min_lod
6404     * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
6405     */
6406    bool lower_txb_shadow_clamp;
6407 
6408    /**
6409     * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
6410     * with nir_texop_txl.  This includes cube maps.
6411     */
6412    bool lower_txd_shadow_clamp;
6413 
6414    /**
6415     * If true, lower nir_texop_txd on when it uses both offset and min_lod
6416     * with nir_texop_txl.  This includes cube maps.
6417     */
6418    bool lower_txd_offset_clamp;
6419 
6420    /**
6421     * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
6422     * sampler is bindless.
6423     */
6424    bool lower_txd_clamp_bindless_sampler;
6425 
6426    /**
6427     * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
6428     * sampler index is not statically determinable to be less than 16.
6429     */
6430    bool lower_txd_clamp_if_sampler_index_not_lt_16;
6431 
6432    /**
6433     * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
6434     * 0-lod followed by a nir_ishr.
6435     */
6436    bool lower_txs_lod;
6437 
6438    /**
6439     * If true, lower nir_texop_txs for cube arrays to a nir_texop_txs with a
6440     * 2D array type followed by a nir_idiv by 6.
6441     */
6442    bool lower_txs_cube_array;
6443 
6444    /**
6445     * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
6446     * mixed-up tg4 locations.
6447     */
6448    bool lower_tg4_broadcom_swizzle;
6449 
6450    /**
6451     * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
6452     */
6453    bool lower_tg4_offsets;
6454 
6455    /**
6456     * Lower txf_ms to fragment_mask_fetch and fragment_fetch and samples_identical to
6457     * fragment_mask_fetch.
6458     */
6459    bool lower_to_fragment_fetch_amd;
6460 
6461    /**
6462     * To lower packed sampler return formats. This will be called for all
6463     * tex instructions.
6464     */
6465    enum nir_lower_tex_packing (*lower_tex_packing_cb)(const nir_tex_instr *tex, const void *data);
6466    const void *lower_tex_packing_data;
6467 
6468    /**
6469     * If true, lower nir_texop_lod to return -FLT_MAX if the sum of the
6470     * absolute values of derivatives is 0 for all coordinates.
6471     */
6472    bool lower_lod_zero_width;
6473 
6474    /* Turns nir_op_tex and other ops with an implicit derivative, in stages
6475     * without implicit derivatives (like the vertex shader) to have an explicit
6476     * LOD with a value of 0.
6477     */
6478    bool lower_invalid_implicit_lod;
6479 
6480    /* If true, texture_index (sampler_index) will be zero if a texture_offset
6481     * (sampler_offset) source is present. This is convenient for backends that
6482     * support indirect indexing of textures (samplers) but not offsetting it.
6483     */
6484    bool lower_index_to_offset;
6485 
6486    /**
6487     * Payload data to be sent to callback / filter functions.
6488     */
6489    void *callback_data;
6490 } nir_lower_tex_options;
6491 
6492 /** Lowers complex texture instructions to simpler ones */
6493 bool nir_lower_tex(nir_shader *shader,
6494                    const nir_lower_tex_options *options);
6495 
6496 typedef struct nir_lower_tex_shadow_swizzle {
6497    unsigned swizzle_r : 3;
6498    unsigned swizzle_g : 3;
6499    unsigned swizzle_b : 3;
6500    unsigned swizzle_a : 3;
6501 } nir_lower_tex_shadow_swizzle;
6502 
6503 bool
6504 nir_lower_tex_shadow(nir_shader *s,
6505                      unsigned n_states,
6506                      enum compare_func *compare_func,
6507                      nir_lower_tex_shadow_swizzle *tex_swizzles,
6508                      bool is_fixed_point_format);
6509 
6510 typedef struct nir_lower_image_options {
6511    /**
6512     * If true, lower cube size operations.
6513     */
6514    bool lower_cube_size;
6515 
6516    /**
6517     * Lower multi sample image load and samples_identical to use fragment_mask_load.
6518     */
6519    bool lower_to_fragment_mask_load_amd;
6520 
6521    /**
6522     * Lower image_samples to a constant in case the driver doesn't support multisampled
6523     * images.
6524     */
6525    bool lower_image_samples_to_one;
6526 } nir_lower_image_options;
6527 
6528 bool nir_lower_image(nir_shader *nir,
6529                      const nir_lower_image_options *options);
6530 
6531 bool
6532 nir_lower_image_atomics_to_global(nir_shader *s);
6533 
6534 bool nir_lower_readonly_images_to_tex(nir_shader *shader, bool per_variable);
6535 
6536 enum nir_lower_non_uniform_access_type {
6537    nir_lower_non_uniform_ubo_access = (1 << 0),
6538    nir_lower_non_uniform_ssbo_access = (1 << 1),
6539    nir_lower_non_uniform_texture_access = (1 << 2),
6540    nir_lower_non_uniform_image_access = (1 << 3),
6541    nir_lower_non_uniform_get_ssbo_size = (1 << 4),
6542    nir_lower_non_uniform_access_type_count = 5,
6543 };
6544 
6545 /* Given the nir_src used for the resource, return the channels which might be non-uniform. */
6546 typedef nir_component_mask_t (*nir_lower_non_uniform_access_callback)(const nir_src *, void *);
6547 
6548 typedef struct nir_lower_non_uniform_access_options {
6549    enum nir_lower_non_uniform_access_type types;
6550    nir_lower_non_uniform_access_callback callback;
6551    void *callback_data;
6552 } nir_lower_non_uniform_access_options;
6553 
6554 bool nir_has_non_uniform_access(nir_shader *shader, enum nir_lower_non_uniform_access_type types);
6555 bool nir_opt_non_uniform_access(nir_shader *shader);
6556 bool nir_lower_non_uniform_access(nir_shader *shader,
6557                                   const nir_lower_non_uniform_access_options *options);
6558 
6559 typedef struct {
6560    /* Whether 16-bit floating point arithmetic should be allowed in 8-bit
6561     * division lowering
6562     */
6563    bool allow_fp16;
6564 } nir_lower_idiv_options;
6565 
6566 bool nir_lower_idiv(nir_shader *shader, const nir_lower_idiv_options *options);
6567 
6568 typedef struct nir_input_attachment_options {
6569    bool use_fragcoord_sysval;
6570    bool use_layer_id_sysval;
6571    bool use_view_id_for_layer;
6572    bool unscaled_depth_stencil_ir3;
6573    uint32_t unscaled_input_attachment_ir3;
6574 } nir_input_attachment_options;
6575 
6576 bool nir_lower_input_attachments(nir_shader *shader,
6577                                  const nir_input_attachment_options *options);
6578 
6579 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
6580                        bool use_vars,
6581                        bool use_clipdist_array,
6582                        const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
6583 bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
6584                        bool use_clipdist_array,
6585                        const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
6586 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
6587                        bool use_clipdist_array, bool use_load_interp);
6588 
6589 bool nir_lower_clip_cull_distance_to_vec4s(nir_shader *shader);
6590 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
6591 bool nir_lower_clip_disable(nir_shader *shader, unsigned clip_plane_enable);
6592 
6593 bool nir_lower_point_size_mov(nir_shader *shader,
6594                               const gl_state_index16 *pointsize_state_tokens);
6595 
6596 bool nir_lower_frexp(nir_shader *nir);
6597 
6598 bool nir_lower_two_sided_color(nir_shader *shader, bool face_sysval);
6599 
6600 bool nir_lower_clamp_color_outputs(nir_shader *shader);
6601 
6602 bool nir_lower_flatshade(nir_shader *shader);
6603 
6604 bool nir_lower_passthrough_edgeflags(nir_shader *shader);
6605 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
6606                               const gl_state_index16 *uniform_state_tokens);
6607 
6608 typedef struct nir_lower_wpos_ytransform_options {
6609    gl_state_index16 state_tokens[STATE_LENGTH];
6610    bool fs_coord_origin_upper_left : 1;
6611    bool fs_coord_origin_lower_left : 1;
6612    bool fs_coord_pixel_center_integer : 1;
6613    bool fs_coord_pixel_center_half_integer : 1;
6614 } nir_lower_wpos_ytransform_options;
6615 
6616 bool nir_lower_wpos_ytransform(nir_shader *shader,
6617                                const nir_lower_wpos_ytransform_options *options);
6618 bool nir_lower_wpos_center(nir_shader *shader);
6619 
6620 bool nir_lower_pntc_ytransform(nir_shader *shader,
6621                                const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
6622 
6623 bool nir_lower_wrmasks(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
6624 
6625 bool nir_lower_fb_read(nir_shader *shader);
6626 
6627 typedef struct nir_lower_drawpixels_options {
6628    gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
6629    gl_state_index16 scale_state_tokens[STATE_LENGTH];
6630    gl_state_index16 bias_state_tokens[STATE_LENGTH];
6631    unsigned drawpix_sampler;
6632    unsigned pixelmap_sampler;
6633    bool pixel_maps : 1;
6634    bool scale_and_bias : 1;
6635 } nir_lower_drawpixels_options;
6636 
6637 bool nir_lower_drawpixels(nir_shader *shader,
6638                           const nir_lower_drawpixels_options *options);
6639 
6640 typedef struct nir_lower_bitmap_options {
6641    unsigned sampler;
6642    bool swizzle_xxxx;
6643 } nir_lower_bitmap_options;
6644 
6645 bool nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
6646 
6647 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned offset_align_state);
6648 
6649 typedef enum {
6650    nir_lower_gs_intrinsics_per_stream = 1 << 0,
6651    nir_lower_gs_intrinsics_count_primitives = 1 << 1,
6652    nir_lower_gs_intrinsics_count_vertices_per_primitive = 1 << 2,
6653    nir_lower_gs_intrinsics_overwrite_incomplete = 1 << 3,
6654    nir_lower_gs_intrinsics_always_end_primitive = 1 << 4,
6655    nir_lower_gs_intrinsics_count_decomposed_primitives = 1 << 5,
6656 } nir_lower_gs_intrinsics_flags;
6657 
6658 bool nir_lower_gs_intrinsics(nir_shader *shader, nir_lower_gs_intrinsics_flags options);
6659 
6660 bool nir_lower_tess_coord_z(nir_shader *shader, bool triangles);
6661 
6662 typedef struct {
6663    bool payload_to_shared_for_atomics : 1;
6664    bool payload_to_shared_for_small_types : 1;
6665    uint32_t payload_offset_in_bytes;
6666 } nir_lower_task_shader_options;
6667 
6668 bool nir_lower_task_shader(nir_shader *shader, nir_lower_task_shader_options options);
6669 
6670 typedef unsigned (*nir_lower_bit_size_callback)(const nir_instr *, void *);
6671 
6672 bool nir_lower_bit_size(nir_shader *shader,
6673                         nir_lower_bit_size_callback callback,
6674                         void *callback_data);
6675 bool nir_lower_64bit_phis(nir_shader *shader);
6676 
6677 bool nir_split_64bit_vec3_and_vec4(nir_shader *shader);
6678 
6679 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
6680 bool nir_lower_int64(nir_shader *shader);
6681 bool nir_lower_int64_float_conversions(nir_shader *shader);
6682 
6683 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
6684 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
6685                        nir_lower_doubles_options options);
6686 bool nir_lower_pack(nir_shader *shader);
6687 
6688 bool nir_recompute_io_bases(nir_shader *nir, nir_variable_mode modes);
6689 bool nir_lower_mediump_vars(nir_shader *nir, nir_variable_mode modes);
6690 bool nir_lower_mediump_io(nir_shader *nir, nir_variable_mode modes,
6691                           uint64_t varying_mask, bool use_16bit_slots);
6692 bool nir_force_mediump_io(nir_shader *nir, nir_variable_mode modes,
6693                           nir_alu_type types);
6694 bool nir_unpack_16bit_varying_slots(nir_shader *nir, nir_variable_mode modes);
6695 
6696 struct nir_opt_tex_srcs_options {
6697    unsigned sampler_dims;
6698    unsigned src_types;
6699 };
6700 
6701 struct nir_opt_16bit_tex_image_options {
6702    nir_rounding_mode rounding_mode;
6703    nir_alu_type opt_tex_dest_types;
6704    nir_alu_type opt_image_dest_types;
6705    bool integer_dest_saturates;
6706    bool opt_image_store_data;
6707    bool opt_image_srcs;
6708    unsigned opt_srcs_options_count;
6709    struct nir_opt_tex_srcs_options *opt_srcs_options;
6710 };
6711 
6712 bool nir_opt_16bit_tex_image(nir_shader *nir,
6713                              struct nir_opt_16bit_tex_image_options *options);
6714 
6715 typedef struct {
6716    bool legalize_type;         /* whether this src should be legalized */
6717    uint8_t bit_size;           /* bit_size to enforce */
6718    nir_tex_src_type match_src; /* if bit_size is 0, match bit size of this */
6719 } nir_tex_src_type_constraint, nir_tex_src_type_constraints[nir_num_tex_src_types];
6720 
6721 bool nir_legalize_16bit_sampler_srcs(nir_shader *nir,
6722                                      nir_tex_src_type_constraints constraints);
6723 
6724 bool nir_lower_point_size(nir_shader *shader, float min, float max);
6725 
6726 void nir_lower_texcoord_replace(nir_shader *s, unsigned coord_replace,
6727                                 bool point_coord_is_sysval, bool yinvert);
6728 
6729 bool nir_lower_texcoord_replace_late(nir_shader *s, unsigned coord_replace,
6730                                      bool point_coord_is_sysval);
6731 
6732 typedef enum {
6733    nir_lower_interpolation_at_sample = (1 << 1),
6734    nir_lower_interpolation_at_offset = (1 << 2),
6735    nir_lower_interpolation_centroid = (1 << 3),
6736    nir_lower_interpolation_pixel = (1 << 4),
6737    nir_lower_interpolation_sample = (1 << 5),
6738 } nir_lower_interpolation_options;
6739 
6740 bool nir_lower_interpolation(nir_shader *shader,
6741                              nir_lower_interpolation_options options);
6742 
6743 typedef enum {
6744    nir_lower_discard_if_to_cf = (1 << 0),
6745    nir_lower_demote_if_to_cf = (1 << 1),
6746    nir_lower_terminate_if_to_cf = (1 << 2),
6747 } nir_lower_discard_if_options;
6748 
6749 bool nir_lower_discard_if(nir_shader *shader, nir_lower_discard_if_options options);
6750 
6751 bool nir_lower_terminate_to_demote(nir_shader *nir);
6752 
6753 bool nir_lower_memory_model(nir_shader *shader);
6754 
6755 bool nir_lower_goto_ifs(nir_shader *shader);
6756 bool nir_lower_continue_constructs(nir_shader *shader);
6757 
6758 typedef struct nir_lower_multiview_options {
6759    uint32_t view_mask;
6760 
6761    /**
6762     * Bitfield of output locations that may be converted to a per-view array.
6763     *
6764     * If a variable exists in an allowed location, it will be converted to an
6765     * array even if its value does not depend on the view index.
6766     */
6767    uint64_t allowed_per_view_outputs;
6768 } nir_lower_multiview_options;
6769 
6770 bool nir_shader_uses_view_index(nir_shader *shader);
6771 bool nir_can_lower_multiview(nir_shader *shader, nir_lower_multiview_options options);
6772 bool nir_lower_multiview(nir_shader *shader, nir_lower_multiview_options options);
6773 
6774 bool nir_lower_view_index_to_device_index(nir_shader *shader);
6775 
6776 typedef enum {
6777    nir_lower_fp16_rtz = (1 << 0),
6778    nir_lower_fp16_rtne = (1 << 1),
6779    nir_lower_fp16_ru = (1 << 2),
6780    nir_lower_fp16_rd = (1 << 3),
6781    nir_lower_fp16_all = 0xf,
6782    nir_lower_fp16_split_fp64 = (1 << 4),
6783 } nir_lower_fp16_cast_options;
6784 bool nir_lower_fp16_casts(nir_shader *shader, nir_lower_fp16_cast_options options);
6785 bool nir_normalize_cubemap_coords(nir_shader *shader);
6786 
6787 bool nir_shader_supports_implicit_lod(nir_shader *shader);
6788 
6789 void nir_live_defs_impl(nir_function_impl *impl);
6790 
6791 const BITSET_WORD *nir_get_live_defs(nir_cursor cursor, void *mem_ctx);
6792 
6793 void nir_loop_analyze_impl(nir_function_impl *impl,
6794                            nir_variable_mode indirect_mask,
6795                            bool force_unroll_sampler_indirect);
6796 
6797 /* This requires both nir_metadata_live_defs and nir_metadata_instr_index. */
6798 bool nir_defs_interfere(nir_def *a, nir_def *b);
6799 
6800 bool nir_repair_ssa_impl(nir_function_impl *impl);
6801 bool nir_repair_ssa(nir_shader *shader);
6802 
6803 void nir_convert_loop_to_lcssa(nir_loop *loop);
6804 bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
6805 void nir_divergence_analysis_impl(nir_function_impl *impl, nir_divergence_options options);
6806 void nir_divergence_analysis(nir_shader *shader);
6807 void nir_vertex_divergence_analysis(nir_shader *shader);
6808 bool nir_has_divergent_loop(nir_shader *shader);
6809 
6810 void
6811 nir_rewrite_uses_to_load_reg(struct nir_builder *b, nir_def *old,
6812                              nir_def *reg);
6813 
6814 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
6815  * registers.  If false, convert all values (even those not involved in a phi
6816  * node) to registers.
6817  * If consider_divergence is true, this pass will use divergence information
6818  * in order to not coalesce copies from uniform to divergent registers.
6819  */
6820 bool nir_convert_from_ssa(nir_shader *shader,
6821                           bool phi_webs_only, bool consider_divergence);
6822 
6823 bool nir_lower_phis_to_regs_block(nir_block *block);
6824 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
6825 
6826 bool nir_rematerialize_deref_in_use_blocks(nir_deref_instr *instr);
6827 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
6828 
6829 bool nir_lower_samplers(nir_shader *shader);
6830 bool nir_lower_cl_images(nir_shader *shader, bool lower_image_derefs, bool lower_sampler_derefs);
6831 bool nir_dedup_inline_samplers(nir_shader *shader);
6832 
6833 typedef struct nir_lower_ssbo_options {
6834    bool native_loads;
6835    bool native_offset;
6836 } nir_lower_ssbo_options;
6837 
6838 bool nir_lower_ssbo(nir_shader *shader, const nir_lower_ssbo_options *opts);
6839 
6840 bool nir_lower_helper_writes(nir_shader *shader, bool lower_plain_stores);
6841 
6842 typedef struct nir_lower_printf_options {
6843    unsigned max_buffer_size;
6844    unsigned ptr_bit_size;
6845    bool use_printf_base_identifier;
6846    bool hash_format_strings;
6847 } nir_lower_printf_options;
6848 
6849 bool nir_lower_printf(nir_shader *nir, const nir_lower_printf_options *options);
6850 bool nir_lower_printf_buffer(nir_shader *nir, uint64_t address, uint32_t size);
6851 
6852 /* This is here for unit tests. */
6853 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
6854 
6855 bool nir_opt_comparison_pre(nir_shader *shader);
6856 
6857 typedef struct nir_opt_access_options {
6858    bool is_vulkan;
6859 } nir_opt_access_options;
6860 
6861 bool nir_opt_access(nir_shader *shader, const nir_opt_access_options *options);
6862 bool nir_opt_algebraic(nir_shader *shader);
6863 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
6864 bool nir_opt_algebraic_before_lower_int64(nir_shader *shader);
6865 bool nir_opt_algebraic_late(nir_shader *shader);
6866 bool nir_opt_algebraic_distribute_src_mods(nir_shader *shader);
6867 bool nir_opt_constant_folding(nir_shader *shader);
6868 
6869 /* Try to combine a and b into a.  Return true if combination was possible,
6870  * which will result in b being removed by the pass.  Return false if
6871  * combination wasn't possible.
6872  */
6873 typedef bool (*nir_combine_barrier_cb)(
6874    nir_intrinsic_instr *a, nir_intrinsic_instr *b, void *data);
6875 
6876 bool nir_opt_combine_barriers(nir_shader *shader,
6877                               nir_combine_barrier_cb combine_cb,
6878                               void *data);
6879 bool nir_opt_barrier_modes(nir_shader *shader);
6880 
6881 bool nir_minimize_call_live_states(nir_shader *shader);
6882 
6883 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
6884 
6885 bool nir_copy_prop_impl(nir_function_impl *impl);
6886 bool nir_copy_prop(nir_shader *shader);
6887 
6888 bool nir_opt_copy_prop_vars(nir_shader *shader);
6889 
6890 bool nir_opt_cse(nir_shader *shader);
6891 
6892 bool nir_opt_dce(nir_shader *shader);
6893 
6894 bool nir_opt_dead_cf(nir_shader *shader);
6895 
6896 bool nir_opt_dead_write_vars(nir_shader *shader);
6897 
6898 bool nir_opt_deref_impl(nir_function_impl *impl);
6899 bool nir_opt_deref(nir_shader *shader);
6900 
6901 bool nir_opt_find_array_copies(nir_shader *shader);
6902 
6903 bool nir_def_is_frag_coord_z(nir_def *def);
6904 bool nir_opt_fragdepth(nir_shader *shader);
6905 
6906 bool nir_opt_gcm(nir_shader *shader, bool value_number);
6907 
6908 bool nir_opt_generate_bfi(nir_shader *shader);
6909 
6910 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
6911 
6912 bool nir_opt_mqsad(nir_shader *shader);
6913 
6914 typedef enum {
6915    nir_opt_if_optimize_phi_true_false = (1 << 0),
6916    nir_opt_if_avoid_64bit_phis = (1 << 1),
6917 } nir_opt_if_options;
6918 
6919 bool nir_opt_if(nir_shader *shader, nir_opt_if_options options);
6920 
6921 bool nir_opt_intrinsics(nir_shader *shader);
6922 
6923 bool nir_opt_large_constants(nir_shader *shader,
6924                              glsl_type_size_align_func size_align,
6925                              unsigned threshold);
6926 
6927 bool nir_opt_licm(nir_shader *shader);
6928 bool nir_opt_loop(nir_shader *shader);
6929 
6930 bool nir_opt_loop_unroll(nir_shader *shader);
6931 
6932 typedef enum {
6933    nir_move_const_undef = (1 << 0),
6934    nir_move_load_ubo = (1 << 1),
6935    nir_move_load_input = (1 << 2),
6936    nir_move_comparisons = (1 << 3),
6937    nir_move_copies = (1 << 4),
6938    nir_move_load_ssbo = (1 << 5),
6939    nir_move_load_uniform = (1 << 6),
6940    nir_move_alu = (1 << 7),
6941 } nir_move_options;
6942 
6943 bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
6944 
6945 bool nir_opt_sink(nir_shader *shader, nir_move_options options);
6946 
6947 bool nir_opt_move(nir_shader *shader, nir_move_options options);
6948 
6949 typedef struct {
6950    /** nir_load_uniform max base offset */
6951    uint32_t uniform_max;
6952 
6953    /** nir_load_ubo_vec4 max base offset */
6954    uint32_t ubo_vec4_max;
6955 
6956    /** nir_var_mem_shared max base offset */
6957    uint32_t shared_max;
6958 
6959    /** nir_var_mem_shared atomic max base offset */
6960    uint32_t shared_atomic_max;
6961 
6962    /** nir_load/store_buffer_amd max base offset */
6963    uint32_t buffer_max;
6964 
6965    /**
6966     * Callback to get the max base offset for instructions for which the
6967     * corresponding value above is zero.
6968     */
6969    uint32_t (*max_offset_cb)(nir_intrinsic_instr *intr, const void *data);
6970 
6971    /** Data to pass to max_offset_cb. */
6972    const void *max_offset_data;
6973 
6974    /**
6975     * Allow the offset calculation to wrap. If false, constant additions that
6976     * might wrap will not be folded into the offset.
6977     */
6978    bool allow_offset_wrap;
6979 } nir_opt_offsets_options;
6980 
6981 bool nir_opt_offsets(nir_shader *shader, const nir_opt_offsets_options *options);
6982 
6983 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
6984                              bool indirect_load_ok, bool expensive_alu_ok);
6985 
6986 bool nir_opt_reassociate_bfi(nir_shader *shader);
6987 
6988 bool nir_opt_rematerialize_compares(nir_shader *shader);
6989 
6990 bool nir_opt_remove_phis(nir_shader *shader);
6991 bool nir_remove_single_src_phis_block(nir_block *block);
6992 
6993 bool nir_opt_phi_precision(nir_shader *shader);
6994 
6995 bool nir_opt_shrink_stores(nir_shader *shader, bool shrink_image_store);
6996 
6997 bool nir_opt_shrink_vectors(nir_shader *shader, bool shrink_start);
6998 
6999 bool nir_opt_undef(nir_shader *shader);
7000 
7001 bool nir_lower_undef_to_zero(nir_shader *shader);
7002 
7003 bool nir_opt_uniform_atomics(nir_shader *shader, bool fs_atomics_predicated);
7004 
7005 bool nir_opt_uniform_subgroup(nir_shader *shader,
7006                               const nir_lower_subgroups_options *);
7007 
7008 bool nir_opt_vectorize(nir_shader *shader, nir_vectorize_cb filter,
7009                        void *data);
7010 bool nir_opt_vectorize_io(nir_shader *shader, nir_variable_mode modes);
7011 
7012 bool nir_opt_conditional_discard(nir_shader *shader);
7013 bool nir_opt_move_discards_to_top(nir_shader *shader);
7014 
7015 bool nir_opt_ray_queries(nir_shader *shader);
7016 
7017 bool nir_opt_ray_query_ranges(nir_shader *shader);
7018 
7019 void nir_sweep(nir_shader *shader);
7020 
7021 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
7022 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
7023 
7024 static inline bool
nir_variable_is_in_ubo(const nir_variable * var)7025 nir_variable_is_in_ubo(const nir_variable *var)
7026 {
7027    return (var->data.mode == nir_var_mem_ubo &&
7028            var->interface_type != NULL);
7029 }
7030 
7031 static inline bool
nir_variable_is_in_ssbo(const nir_variable * var)7032 nir_variable_is_in_ssbo(const nir_variable *var)
7033 {
7034    return (var->data.mode == nir_var_mem_ssbo &&
7035            var->interface_type != NULL);
7036 }
7037 
7038 static inline bool
nir_variable_is_in_block(const nir_variable * var)7039 nir_variable_is_in_block(const nir_variable *var)
7040 {
7041    return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
7042 }
7043 
7044 static inline unsigned
nir_variable_count_slots(const nir_variable * var,const struct glsl_type * type)7045 nir_variable_count_slots(const nir_variable *var, const struct glsl_type *type)
7046 {
7047    return var->data.compact ? DIV_ROUND_UP(var->data.location_frac + glsl_get_length(type), 4) : glsl_count_attribute_slots(type, false);
7048 }
7049 
7050 static inline unsigned
nir_deref_count_slots(nir_deref_instr * deref,nir_variable * var)7051 nir_deref_count_slots(nir_deref_instr *deref, nir_variable *var)
7052 {
7053    if (var->data.compact) {
7054       switch (deref->deref_type) {
7055       case nir_deref_type_array:
7056          return 1;
7057       case nir_deref_type_var:
7058          return nir_variable_count_slots(var, deref->type);
7059       default:
7060          unreachable("illegal deref type");
7061       }
7062    }
7063    return glsl_count_attribute_slots(deref->type, false);
7064 }
7065 
7066 /* See default_ub_config in nir_range_analysis.c for documentation. */
7067 typedef struct nir_unsigned_upper_bound_config {
7068    unsigned min_subgroup_size;
7069    unsigned max_subgroup_size;
7070    unsigned max_workgroup_invocations;
7071    unsigned max_workgroup_count[3];
7072    unsigned max_workgroup_size[3];
7073 
7074    uint32_t vertex_attrib_max[32];
7075 } nir_unsigned_upper_bound_config;
7076 
7077 uint32_t
7078 nir_unsigned_upper_bound(nir_shader *shader, struct hash_table *range_ht,
7079                          nir_scalar scalar,
7080                          const nir_unsigned_upper_bound_config *config);
7081 
7082 bool
7083 nir_addition_might_overflow(nir_shader *shader, struct hash_table *range_ht,
7084                             nir_scalar ssa, unsigned const_val,
7085                             const nir_unsigned_upper_bound_config *config);
7086 
7087 typedef struct {
7088    /* True if gl_DrawID is considered uniform, i.e. if the preamble is run
7089     * at least once per "internal" draw rather than per user-visible draw.
7090     */
7091    bool drawid_uniform;
7092 
7093    /* True if the subgroup size is uniform. */
7094    bool subgroup_size_uniform;
7095 
7096    /* True if load_workgroup_size is supported in the preamble. */
7097    bool load_workgroup_size_allowed;
7098 
7099    /* size/align for load/store_preamble. */
7100    void (*def_size)(nir_def *def, unsigned *size, unsigned *align);
7101 
7102    /* Total available size for load/store_preamble storage, in units
7103     * determined by def_size.
7104     */
7105    unsigned preamble_storage_size;
7106 
7107    /* Give the cost for an instruction. nir_opt_preamble will prioritize
7108     * instructions with higher costs. Instructions with cost 0 may still be
7109     * lifted, but only when required to lift other instructions with non-0
7110     * cost (e.g. a load_const source of an expression).
7111     */
7112    float (*instr_cost_cb)(nir_instr *instr, const void *data);
7113 
7114    /* Give the cost of rewriting the instruction to use load_preamble. This
7115     * may happen from inserting move instructions, etc. If the benefit doesn't
7116     * exceed the cost here then we won't rewrite it.
7117     */
7118    float (*rewrite_cost_cb)(nir_def *def, const void *data);
7119 
7120    /* Instructions whose definitions should not be rewritten. These could
7121     * still be moved to the preamble, but they shouldn't be the root of a
7122     * replacement expression. Instructions with cost 0 and derefs are
7123     * automatically included by the pass.
7124     */
7125    nir_instr_filter_cb avoid_instr_cb;
7126 
7127    const void *cb_data;
7128 } nir_opt_preamble_options;
7129 
7130 bool
7131 nir_opt_preamble(nir_shader *shader,
7132                  const nir_opt_preamble_options *options,
7133                  unsigned *size);
7134 
7135 nir_function_impl *nir_shader_get_preamble(nir_shader *shader);
7136 
7137 bool nir_lower_point_smooth(nir_shader *shader, bool set_barycentrics);
7138 bool nir_lower_poly_line_smooth(nir_shader *shader, unsigned num_smooth_aa_sample);
7139 
7140 bool nir_mod_analysis(nir_scalar val, nir_alu_type val_type, unsigned div, unsigned *mod);
7141 
7142 bool
7143 nir_remove_tex_shadow(nir_shader *shader, unsigned textures_bitmask);
7144 
7145 void
7146 nir_trivialize_registers(nir_shader *s);
7147 
7148 unsigned
7149 nir_static_workgroup_size(const nir_shader *s);
7150 
7151 static inline nir_intrinsic_instr *
nir_reg_get_decl(nir_def * reg)7152 nir_reg_get_decl(nir_def *reg)
7153 {
7154    assert(reg->parent_instr->type == nir_instr_type_intrinsic);
7155    nir_intrinsic_instr *decl = nir_instr_as_intrinsic(reg->parent_instr);
7156    assert(decl->intrinsic == nir_intrinsic_decl_reg);
7157 
7158    return decl;
7159 }
7160 
7161 static inline nir_intrinsic_instr *
nir_next_decl_reg(nir_intrinsic_instr * prev,nir_function_impl * impl)7162 nir_next_decl_reg(nir_intrinsic_instr *prev, nir_function_impl *impl)
7163 {
7164    nir_instr *start;
7165    if (prev != NULL)
7166       start = nir_instr_next(&prev->instr);
7167    else if (impl != NULL)
7168       start = nir_block_first_instr(nir_start_block(impl));
7169    else
7170       return NULL;
7171 
7172    for (nir_instr *instr = start; instr; instr = nir_instr_next(instr)) {
7173       if (instr->type != nir_instr_type_intrinsic)
7174          continue;
7175 
7176       nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
7177       if (intrin->intrinsic == nir_intrinsic_decl_reg)
7178          return intrin;
7179    }
7180 
7181    return NULL;
7182 }
7183 
7184 #define nir_foreach_reg_decl(reg, impl)                           \
7185    for (nir_intrinsic_instr *reg = nir_next_decl_reg(NULL, impl); \
7186         reg; reg = nir_next_decl_reg(reg, NULL))
7187 
7188 #define nir_foreach_reg_decl_safe(reg, impl)                       \
7189    for (nir_intrinsic_instr *reg = nir_next_decl_reg(NULL, impl),  \
7190                             *next_ = nir_next_decl_reg(reg, NULL); \
7191         reg; reg = next_, next_ = nir_next_decl_reg(next_, NULL))
7192 
7193 static inline nir_cursor
nir_after_reg_decls(nir_function_impl * impl)7194 nir_after_reg_decls(nir_function_impl *impl)
7195 {
7196    nir_intrinsic_instr *last_reg_decl = NULL;
7197    nir_foreach_reg_decl(reg_decl, impl)
7198       last_reg_decl = reg_decl;
7199 
7200    if (last_reg_decl != NULL)
7201       return nir_after_instr(&last_reg_decl->instr);
7202    return nir_before_impl(impl);
7203 }
7204 
7205 static inline bool
nir_is_load_reg(nir_intrinsic_instr * intr)7206 nir_is_load_reg(nir_intrinsic_instr *intr)
7207 {
7208    return intr->intrinsic == nir_intrinsic_load_reg ||
7209           intr->intrinsic == nir_intrinsic_load_reg_indirect;
7210 }
7211 
7212 static inline bool
nir_is_store_reg(nir_intrinsic_instr * intr)7213 nir_is_store_reg(nir_intrinsic_instr *intr)
7214 {
7215    return intr->intrinsic == nir_intrinsic_store_reg ||
7216           intr->intrinsic == nir_intrinsic_store_reg_indirect;
7217 }
7218 
7219 #define nir_foreach_reg_load(load, reg)              \
7220    assert(reg->intrinsic == nir_intrinsic_decl_reg); \
7221                                                      \
7222    nir_foreach_use(load, &reg->def)             \
7223       if (nir_is_load_reg(nir_instr_as_intrinsic(nir_src_parent_instr(load))))
7224 
7225 #define nir_foreach_reg_load_safe(load, reg)         \
7226    assert(reg->intrinsic == nir_intrinsic_decl_reg); \
7227                                                      \
7228    nir_foreach_use_safe(load, &reg->def)             \
7229       if (nir_is_load_reg(nir_instr_as_intrinsic(nir_src_parent_instr(load))))
7230 
7231 #define nir_foreach_reg_store(store, reg)            \
7232    assert(reg->intrinsic == nir_intrinsic_decl_reg); \
7233                                                      \
7234    nir_foreach_use(store, &reg->def)            \
7235       if (nir_is_store_reg(nir_instr_as_intrinsic(nir_src_parent_instr(store))))
7236 
7237 #define nir_foreach_reg_store_safe(store, reg)       \
7238    assert(reg->intrinsic == nir_intrinsic_decl_reg); \
7239                                                      \
7240    nir_foreach_use_safe(store, &reg->def)            \
7241       if (nir_is_store_reg(nir_instr_as_intrinsic(nir_src_parent_instr(store))))
7242 
7243 static inline nir_intrinsic_instr *
nir_load_reg_for_def(const nir_def * def)7244 nir_load_reg_for_def(const nir_def *def)
7245 {
7246    if (def->parent_instr->type != nir_instr_type_intrinsic)
7247       return NULL;
7248 
7249    nir_intrinsic_instr *intr = nir_instr_as_intrinsic(def->parent_instr);
7250    if (!nir_is_load_reg(intr))
7251       return NULL;
7252 
7253    return intr;
7254 }
7255 
7256 static inline nir_intrinsic_instr *
nir_store_reg_for_def(const nir_def * def)7257 nir_store_reg_for_def(const nir_def *def)
7258 {
7259    /* Look for the trivial store: single use of our destination by a
7260     * store_register intrinsic.
7261     */
7262    if (!list_is_singular(&def->uses))
7263       return NULL;
7264 
7265    nir_src *src = list_first_entry(&def->uses, nir_src, use_link);
7266    if (nir_src_is_if(src))
7267       return NULL;
7268 
7269    nir_instr *parent = nir_src_parent_instr(src);
7270    if (parent->type != nir_instr_type_intrinsic)
7271       return NULL;
7272 
7273    nir_intrinsic_instr *intr = nir_instr_as_intrinsic(parent);
7274    if (!nir_is_store_reg(intr))
7275       return NULL;
7276 
7277    /* The first value is data. Third is indirect index, ignore that one. */
7278    if (&intr->src[0] != src)
7279       return NULL;
7280 
7281    return intr;
7282 }
7283 
7284 struct nir_use_dominance_state;
7285 
7286 struct nir_use_dominance_state *
7287 nir_calc_use_dominance_impl(nir_function_impl *impl, bool post_dominance);
7288 
7289 nir_instr *
7290 nir_get_immediate_use_dominator(struct nir_use_dominance_state *state,
7291                                 nir_instr *instr);
7292 nir_instr *nir_use_dominance_lca(struct nir_use_dominance_state *state,
7293                                  nir_instr *i1, nir_instr *i2);
7294 bool nir_instr_dominates_use(struct nir_use_dominance_state *state,
7295                              nir_instr *parent, nir_instr *child);
7296 void nir_print_use_dominators(struct nir_use_dominance_state *state,
7297                               nir_instr **instructions,
7298                               unsigned num_instructions);
7299 
7300 #include "nir_inline_helpers.h"
7301 
7302 #ifdef __cplusplus
7303 } /* extern "C" */
7304 #endif
7305 
7306 #endif /* NIR_H */
7307