• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_QUATERNION_H
12 #define EIGEN_QUATERNION_H
13 namespace Eigen {
14 
15 
16 /***************************************************************************
17 * Definition of QuaternionBase<Derived>
18 * The implementation is at the end of the file
19 ***************************************************************************/
20 
21 namespace internal {
22 template<typename Other,
23          int OtherRows=Other::RowsAtCompileTime,
24          int OtherCols=Other::ColsAtCompileTime>
25 struct quaternionbase_assign_impl;
26 }
27 
28 /** \geometry_module \ingroup Geometry_Module
29   * \class QuaternionBase
30   * \brief Base class for quaternion expressions
31   * \tparam Derived derived type (CRTP)
32   * \sa class Quaternion
33   */
34 template<class Derived>
35 class QuaternionBase : public RotationBase<Derived, 3>
36 {
37  public:
38   typedef RotationBase<Derived, 3> Base;
39 
40   using Base::operator*;
41   using Base::derived;
42 
43   typedef typename internal::traits<Derived>::Scalar Scalar;
44   typedef typename NumTraits<Scalar>::Real RealScalar;
45   typedef typename internal::traits<Derived>::Coefficients Coefficients;
46   typedef typename Coefficients::CoeffReturnType CoeffReturnType;
47   typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit),
48                                         Scalar&, CoeffReturnType>::type NonConstCoeffReturnType;
49 
50 
51   enum {
52     Flags = Eigen::internal::traits<Derived>::Flags
53   };
54 
55  // typedef typename Matrix<Scalar,4,1> Coefficients;
56   /** the type of a 3D vector */
57   typedef Matrix<Scalar,3,1> Vector3;
58   /** the equivalent rotation matrix type */
59   typedef Matrix<Scalar,3,3> Matrix3;
60   /** the equivalent angle-axis type */
61   typedef AngleAxis<Scalar> AngleAxisType;
62 
63 
64 
65   /** \returns the \c x coefficient */
x()66   EIGEN_DEVICE_FUNC inline CoeffReturnType x() const { return this->derived().coeffs().coeff(0); }
67   /** \returns the \c y coefficient */
y()68   EIGEN_DEVICE_FUNC inline CoeffReturnType y() const { return this->derived().coeffs().coeff(1); }
69   /** \returns the \c z coefficient */
z()70   EIGEN_DEVICE_FUNC inline CoeffReturnType z() const { return this->derived().coeffs().coeff(2); }
71   /** \returns the \c w coefficient */
w()72   EIGEN_DEVICE_FUNC inline CoeffReturnType w() const { return this->derived().coeffs().coeff(3); }
73 
74   /** \returns a reference to the \c x coefficient (if Derived is a non-const lvalue) */
x()75   EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType x() { return this->derived().coeffs().x(); }
76   /** \returns a reference to the \c y coefficient (if Derived is a non-const lvalue) */
y()77   EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType y() { return this->derived().coeffs().y(); }
78   /** \returns a reference to the \c z coefficient (if Derived is a non-const lvalue) */
z()79   EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType z() { return this->derived().coeffs().z(); }
80   /** \returns a reference to the \c w coefficient (if Derived is a non-const lvalue) */
w()81   EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType w() { return this->derived().coeffs().w(); }
82 
83   /** \returns a read-only vector expression of the imaginary part (x,y,z) */
vec()84   EIGEN_DEVICE_FUNC inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
85 
86   /** \returns a vector expression of the imaginary part (x,y,z) */
vec()87   EIGEN_DEVICE_FUNC inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
88 
89   /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
coeffs()90   EIGEN_DEVICE_FUNC inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
91 
92   /** \returns a vector expression of the coefficients (x,y,z,w) */
coeffs()93   EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
94 
95   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
96   template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
97 
98 // disabled this copy operator as it is giving very strange compilation errors when compiling
99 // test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
100 // useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
101 // we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
102 //  Derived& operator=(const QuaternionBase& other)
103 //  { return operator=<Derived>(other); }
104 
105   EIGEN_DEVICE_FUNC Derived& operator=(const AngleAxisType& aa);
106   template<class OtherDerived> EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase<OtherDerived>& m);
107 
108   /** \returns a quaternion representing an identity rotation
109     * \sa MatrixBase::Identity()
110     */
Identity()111   EIGEN_DEVICE_FUNC static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); }
112 
113   /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
114     */
setIdentity()115   EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; }
116 
117   /** \returns the squared norm of the quaternion's coefficients
118     * \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
119     */
squaredNorm()120   EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
121 
122   /** \returns the norm of the quaternion's coefficients
123     * \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
124     */
norm()125   EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); }
126 
127   /** Normalizes the quaternion \c *this
128     * \sa normalized(), MatrixBase::normalize() */
normalize()129   EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); }
130   /** \returns a normalized copy of \c *this
131     * \sa normalize(), MatrixBase::normalized() */
normalized()132   EIGEN_DEVICE_FUNC inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
133 
134     /** \returns the dot product of \c *this and \a other
135     * Geometrically speaking, the dot product of two unit quaternions
136     * corresponds to the cosine of half the angle between the two rotations.
137     * \sa angularDistance()
138     */
dot(const QuaternionBase<OtherDerived> & other)139   template<class OtherDerived> EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
140 
141   template<class OtherDerived> EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
142 
143   /** \returns an equivalent 3x3 rotation matrix */
144   EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix() const;
145 
146   /** \returns the quaternion which transform \a a into \a b through a rotation */
147   template<typename Derived1, typename Derived2>
148   EIGEN_DEVICE_FUNC Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
149 
150   template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
151   template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
152 
153   /** \returns the quaternion describing the inverse rotation */
154   EIGEN_DEVICE_FUNC Quaternion<Scalar> inverse() const;
155 
156   /** \returns the conjugated quaternion */
157   EIGEN_DEVICE_FUNC Quaternion<Scalar> conjugate() const;
158 
159   template<class OtherDerived> EIGEN_DEVICE_FUNC Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
160 
161   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
162     * determined by \a prec.
163     *
164     * \sa MatrixBase::isApprox() */
165   template<class OtherDerived>
166   EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
167   { return coeffs().isApprox(other.coeffs(), prec); }
168 
169   /** return the result vector of \a v through the rotation*/
170   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const;
171 
172   /** \returns \c *this with scalar type casted to \a NewScalarType
173     *
174     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
175     * then this function smartly returns a const reference to \c *this.
176     */
177   template<typename NewScalarType>
cast()178   EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
179   {
180     return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived());
181   }
182 
183 #ifdef EIGEN_QUATERNIONBASE_PLUGIN
184 # include EIGEN_QUATERNIONBASE_PLUGIN
185 #endif
186 };
187 
188 /***************************************************************************
189 * Definition/implementation of Quaternion<Scalar>
190 ***************************************************************************/
191 
192 /** \geometry_module \ingroup Geometry_Module
193   *
194   * \class Quaternion
195   *
196   * \brief The quaternion class used to represent 3D orientations and rotations
197   *
198   * \tparam _Scalar the scalar type, i.e., the type of the coefficients
199   * \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign.
200   *
201   * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
202   * orientations and rotations of objects in three dimensions. Compared to other representations
203   * like Euler angles or 3x3 matrices, quaternions offer the following advantages:
204   * \li \b compact storage (4 scalars)
205   * \li \b efficient to compose (28 flops),
206   * \li \b stable spherical interpolation
207   *
208   * The following two typedefs are provided for convenience:
209   * \li \c Quaternionf for \c float
210   * \li \c Quaterniond for \c double
211   *
212   * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized.
213   *
214   * \sa  class AngleAxis, class Transform
215   */
216 
217 namespace internal {
218 template<typename _Scalar,int _Options>
219 struct traits<Quaternion<_Scalar,_Options> >
220 {
221   typedef Quaternion<_Scalar,_Options> PlainObject;
222   typedef _Scalar Scalar;
223   typedef Matrix<_Scalar,4,1,_Options> Coefficients;
224   enum{
225     Alignment = internal::traits<Coefficients>::Alignment,
226     Flags = LvalueBit
227   };
228 };
229 }
230 
231 template<typename _Scalar, int _Options>
232 class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
233 {
234 public:
235   typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
236   enum { NeedsAlignment = internal::traits<Quaternion>::Alignment>0 };
237 
238   typedef _Scalar Scalar;
239 
240   EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion)
241   using Base::operator*=;
242 
243   typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
244   typedef typename Base::AngleAxisType AngleAxisType;
245 
246   /** Default constructor leaving the quaternion uninitialized. */
247   EIGEN_DEVICE_FUNC inline Quaternion() {}
248 
249   /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
250     * its four coefficients \a w, \a x, \a y and \a z.
251     *
252     * \warning Note the order of the arguments: the real \a w coefficient first,
253     * while internally the coefficients are stored in the following order:
254     * [\c x, \c y, \c z, \c w]
255     */
256   EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){}
257 
258   /** Constructs and initialize a quaternion from the array data */
259   EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {}
260 
261   /** Copy constructor */
262   template<class Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
263 
264   /** Constructs and initializes a quaternion from the angle-axis \a aa */
265   EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
266 
267   /** Constructs and initializes a quaternion from either:
268     *  - a rotation matrix expression,
269     *  - a 4D vector expression representing quaternion coefficients.
270     */
271   template<typename Derived>
272   EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
273 
274   /** Explicit copy constructor with scalar conversion */
275   template<typename OtherScalar, int OtherOptions>
276   EIGEN_DEVICE_FUNC explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
277   { m_coeffs = other.coeffs().template cast<Scalar>(); }
278 
279   EIGEN_DEVICE_FUNC static Quaternion UnitRandom();
280 
281   template<typename Derived1, typename Derived2>
282   EIGEN_DEVICE_FUNC static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
283 
284   EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs;}
285   EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
286 
287   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment))
288 
289 #ifdef EIGEN_QUATERNION_PLUGIN
290 # include EIGEN_QUATERNION_PLUGIN
291 #endif
292 
293 protected:
294   Coefficients m_coeffs;
295 
296 #ifndef EIGEN_PARSED_BY_DOXYGEN
297     static EIGEN_STRONG_INLINE void _check_template_params()
298     {
299       EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
300         INVALID_MATRIX_TEMPLATE_PARAMETERS)
301     }
302 #endif
303 };
304 
305 /** \ingroup Geometry_Module
306   * single precision quaternion type */
307 typedef Quaternion<float> Quaternionf;
308 /** \ingroup Geometry_Module
309   * double precision quaternion type */
310 typedef Quaternion<double> Quaterniond;
311 
312 /***************************************************************************
313 * Specialization of Map<Quaternion<Scalar>>
314 ***************************************************************************/
315 
316 namespace internal {
317   template<typename _Scalar, int _Options>
318   struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
319   {
320     typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
321   };
322 }
323 
324 namespace internal {
325   template<typename _Scalar, int _Options>
326   struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
327   {
328     typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
329     typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase;
330     enum {
331       Flags = TraitsBase::Flags & ~LvalueBit
332     };
333   };
334 }
335 
336 /** \ingroup Geometry_Module
337   * \brief Quaternion expression mapping a constant memory buffer
338   *
339   * \tparam _Scalar the type of the Quaternion coefficients
340   * \tparam _Options see class Map
341   *
342   * This is a specialization of class Map for Quaternion. This class allows to view
343   * a 4 scalar memory buffer as an Eigen's Quaternion object.
344   *
345   * \sa class Map, class Quaternion, class QuaternionBase
346   */
347 template<typename _Scalar, int _Options>
348 class Map<const Quaternion<_Scalar>, _Options >
349   : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
350 {
351   public:
352     typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
353 
354     typedef _Scalar Scalar;
355     typedef typename internal::traits<Map>::Coefficients Coefficients;
356     EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
357     using Base::operator*=;
358 
359     /** Constructs a Mapped Quaternion object from the pointer \a coeffs
360       *
361       * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
362       * \code *coeffs == {x, y, z, w} \endcode
363       *
364       * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
365     EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
366 
367     EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
368 
369   protected:
370     const Coefficients m_coeffs;
371 };
372 
373 /** \ingroup Geometry_Module
374   * \brief Expression of a quaternion from a memory buffer
375   *
376   * \tparam _Scalar the type of the Quaternion coefficients
377   * \tparam _Options see class Map
378   *
379   * This is a specialization of class Map for Quaternion. This class allows to view
380   * a 4 scalar memory buffer as an Eigen's  Quaternion object.
381   *
382   * \sa class Map, class Quaternion, class QuaternionBase
383   */
384 template<typename _Scalar, int _Options>
385 class Map<Quaternion<_Scalar>, _Options >
386   : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
387 {
388   public:
389     typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
390 
391     typedef _Scalar Scalar;
392     typedef typename internal::traits<Map>::Coefficients Coefficients;
393     EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
394     using Base::operator*=;
395 
396     /** Constructs a Mapped Quaternion object from the pointer \a coeffs
397       *
398       * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
399       * \code *coeffs == {x, y, z, w} \endcode
400       *
401       * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
402     EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
403 
404     EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; }
405     EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; }
406 
407   protected:
408     Coefficients m_coeffs;
409 };
410 
411 /** \ingroup Geometry_Module
412   * Map an unaligned array of single precision scalars as a quaternion */
413 typedef Map<Quaternion<float>, 0>         QuaternionMapf;
414 /** \ingroup Geometry_Module
415   * Map an unaligned array of double precision scalars as a quaternion */
416 typedef Map<Quaternion<double>, 0>        QuaternionMapd;
417 /** \ingroup Geometry_Module
418   * Map a 16-byte aligned array of single precision scalars as a quaternion */
419 typedef Map<Quaternion<float>, Aligned>   QuaternionMapAlignedf;
420 /** \ingroup Geometry_Module
421   * Map a 16-byte aligned array of double precision scalars as a quaternion */
422 typedef Map<Quaternion<double>, Aligned>  QuaternionMapAlignedd;
423 
424 /***************************************************************************
425 * Implementation of QuaternionBase methods
426 ***************************************************************************/
427 
428 // Generic Quaternion * Quaternion product
429 // This product can be specialized for a given architecture via the Arch template argument.
430 namespace internal {
431 template<int Arch, class Derived1, class Derived2, typename Scalar> struct quat_product
432 {
433   EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
434     return Quaternion<Scalar>
435     (
436       a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
437       a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
438       a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
439       a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
440     );
441   }
442 };
443 }
444 
445 /** \returns the concatenation of two rotations as a quaternion-quaternion product */
446 template <class Derived>
447 template <class OtherDerived>
448 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
449 QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
450 {
451   EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
452    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
453   return internal::quat_product<Architecture::Target, Derived, OtherDerived,
454                          typename internal::traits<Derived>::Scalar>::run(*this, other);
455 }
456 
457 /** \sa operator*(Quaternion) */
458 template <class Derived>
459 template <class OtherDerived>
460 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
461 {
462   derived() = derived() * other.derived();
463   return derived();
464 }
465 
466 /** Rotation of a vector by a quaternion.
467   * \remarks If the quaternion is used to rotate several points (>1)
468   * then it is much more efficient to first convert it to a 3x3 Matrix.
469   * Comparison of the operation cost for n transformations:
470   *   - Quaternion2:    30n
471   *   - Via a Matrix3: 24 + 15n
472   */
473 template <class Derived>
474 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
475 QuaternionBase<Derived>::_transformVector(const Vector3& v) const
476 {
477     // Note that this algorithm comes from the optimization by hand
478     // of the conversion to a Matrix followed by a Matrix/Vector product.
479     // It appears to be much faster than the common algorithm found
480     // in the literature (30 versus 39 flops). It also requires two
481     // Vector3 as temporaries.
482     Vector3 uv = this->vec().cross(v);
483     uv += uv;
484     return v + this->w() * uv + this->vec().cross(uv);
485 }
486 
487 template<class Derived>
488 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
489 {
490   coeffs() = other.coeffs();
491   return derived();
492 }
493 
494 template<class Derived>
495 template<class OtherDerived>
496 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
497 {
498   coeffs() = other.coeffs();
499   return derived();
500 }
501 
502 /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
503   */
504 template<class Derived>
505 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
506 {
507   EIGEN_USING_STD_MATH(cos)
508   EIGEN_USING_STD_MATH(sin)
509   Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
510   this->w() = cos(ha);
511   this->vec() = sin(ha) * aa.axis();
512   return derived();
513 }
514 
515 /** Set \c *this from the expression \a xpr:
516   *   - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
517   *   - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
518   *     and \a xpr is converted to a quaternion
519   */
520 
521 template<class Derived>
522 template<class MatrixDerived>
523 EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
524 {
525   EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
526    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
527   internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
528   return derived();
529 }
530 
531 /** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
532   * be normalized, otherwise the result is undefined.
533   */
534 template<class Derived>
535 EIGEN_DEVICE_FUNC inline typename QuaternionBase<Derived>::Matrix3
536 QuaternionBase<Derived>::toRotationMatrix(void) const
537 {
538   // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
539   // if not inlined then the cost of the return by value is huge ~ +35%,
540   // however, not inlining this function is an order of magnitude slower, so
541   // it has to be inlined, and so the return by value is not an issue
542   Matrix3 res;
543 
544   const Scalar tx  = Scalar(2)*this->x();
545   const Scalar ty  = Scalar(2)*this->y();
546   const Scalar tz  = Scalar(2)*this->z();
547   const Scalar twx = tx*this->w();
548   const Scalar twy = ty*this->w();
549   const Scalar twz = tz*this->w();
550   const Scalar txx = tx*this->x();
551   const Scalar txy = ty*this->x();
552   const Scalar txz = tz*this->x();
553   const Scalar tyy = ty*this->y();
554   const Scalar tyz = tz*this->y();
555   const Scalar tzz = tz*this->z();
556 
557   res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
558   res.coeffRef(0,1) = txy-twz;
559   res.coeffRef(0,2) = txz+twy;
560   res.coeffRef(1,0) = txy+twz;
561   res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
562   res.coeffRef(1,2) = tyz-twx;
563   res.coeffRef(2,0) = txz-twy;
564   res.coeffRef(2,1) = tyz+twx;
565   res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
566 
567   return res;
568 }
569 
570 /** Sets \c *this to be a quaternion representing a rotation between
571   * the two arbitrary vectors \a a and \a b. In other words, the built
572   * rotation represent a rotation sending the line of direction \a a
573   * to the line of direction \a b, both lines passing through the origin.
574   *
575   * \returns a reference to \c *this.
576   *
577   * Note that the two input vectors do \b not have to be normalized, and
578   * do not need to have the same norm.
579   */
580 template<class Derived>
581 template<typename Derived1, typename Derived2>
582 EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
583 {
584   EIGEN_USING_STD_MATH(sqrt)
585   Vector3 v0 = a.normalized();
586   Vector3 v1 = b.normalized();
587   Scalar c = v1.dot(v0);
588 
589   // if dot == -1, vectors are nearly opposites
590   // => accurately compute the rotation axis by computing the
591   //    intersection of the two planes. This is done by solving:
592   //       x^T v0 = 0
593   //       x^T v1 = 0
594   //    under the constraint:
595   //       ||x|| = 1
596   //    which yields a singular value problem
597   if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
598   {
599     c = numext::maxi(c,Scalar(-1));
600     Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
601     JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
602     Vector3 axis = svd.matrixV().col(2);
603 
604     Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
605     this->w() = sqrt(w2);
606     this->vec() = axis * sqrt(Scalar(1) - w2);
607     return derived();
608   }
609   Vector3 axis = v0.cross(v1);
610   Scalar s = sqrt((Scalar(1)+c)*Scalar(2));
611   Scalar invs = Scalar(1)/s;
612   this->vec() = axis * invs;
613   this->w() = s * Scalar(0.5);
614 
615   return derived();
616 }
617 
618 /** \returns a random unit quaternion following a uniform distribution law on SO(3)
619   *
620   * \note The implementation is based on http://planning.cs.uiuc.edu/node198.html
621   */
622 template<typename Scalar, int Options>
623 EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::UnitRandom()
624 {
625   EIGEN_USING_STD_MATH(sqrt)
626   EIGEN_USING_STD_MATH(sin)
627   EIGEN_USING_STD_MATH(cos)
628   const Scalar u1 = internal::random<Scalar>(0, 1),
629                u2 = internal::random<Scalar>(0, 2*EIGEN_PI),
630                u3 = internal::random<Scalar>(0, 2*EIGEN_PI);
631   const Scalar a = sqrt(1 - u1),
632                b = sqrt(u1);
633   return Quaternion (a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3));
634 }
635 
636 
637 /** Returns a quaternion representing a rotation between
638   * the two arbitrary vectors \a a and \a b. In other words, the built
639   * rotation represent a rotation sending the line of direction \a a
640   * to the line of direction \a b, both lines passing through the origin.
641   *
642   * \returns resulting quaternion
643   *
644   * Note that the two input vectors do \b not have to be normalized, and
645   * do not need to have the same norm.
646   */
647 template<typename Scalar, int Options>
648 template<typename Derived1, typename Derived2>
649 EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
650 {
651     Quaternion quat;
652     quat.setFromTwoVectors(a, b);
653     return quat;
654 }
655 
656 
657 /** \returns the multiplicative inverse of \c *this
658   * Note that in most cases, i.e., if you simply want the opposite rotation,
659   * and/or the quaternion is normalized, then it is enough to use the conjugate.
660   *
661   * \sa QuaternionBase::conjugate()
662   */
663 template <class Derived>
664 EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
665 {
666   // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ??
667   Scalar n2 = this->squaredNorm();
668   if (n2 > Scalar(0))
669     return Quaternion<Scalar>(conjugate().coeffs() / n2);
670   else
671   {
672     // return an invalid result to flag the error
673     return Quaternion<Scalar>(Coefficients::Zero());
674   }
675 }
676 
677 // Generic conjugate of a Quaternion
678 namespace internal {
679 template<int Arch, class Derived, typename Scalar> struct quat_conj
680 {
681   EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived>& q){
682     return Quaternion<Scalar>(q.w(),-q.x(),-q.y(),-q.z());
683   }
684 };
685 }
686 
687 /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
688   * if the quaternion is normalized.
689   * The conjugate of a quaternion represents the opposite rotation.
690   *
691   * \sa Quaternion2::inverse()
692   */
693 template <class Derived>
694 EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar>
695 QuaternionBase<Derived>::conjugate() const
696 {
697   return internal::quat_conj<Architecture::Target, Derived,
698                          typename internal::traits<Derived>::Scalar>::run(*this);
699 
700 }
701 
702 /** \returns the angle (in radian) between two rotations
703   * \sa dot()
704   */
705 template <class Derived>
706 template <class OtherDerived>
707 EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Scalar
708 QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
709 {
710   EIGEN_USING_STD_MATH(atan2)
711   Quaternion<Scalar> d = (*this) * other.conjugate();
712   return Scalar(2) * atan2( d.vec().norm(), numext::abs(d.w()) );
713 }
714 
715 
716 
717 /** \returns the spherical linear interpolation between the two quaternions
718   * \c *this and \a other at the parameter \a t in [0;1].
719   *
720   * This represents an interpolation for a constant motion between \c *this and \a other,
721   * see also http://en.wikipedia.org/wiki/Slerp.
722   */
723 template <class Derived>
724 template <class OtherDerived>
725 EIGEN_DEVICE_FUNC Quaternion<typename internal::traits<Derived>::Scalar>
726 QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const
727 {
728   EIGEN_USING_STD_MATH(acos)
729   EIGEN_USING_STD_MATH(sin)
730   const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
731   Scalar d = this->dot(other);
732   Scalar absD = numext::abs(d);
733 
734   Scalar scale0;
735   Scalar scale1;
736 
737   if(absD>=one)
738   {
739     scale0 = Scalar(1) - t;
740     scale1 = t;
741   }
742   else
743   {
744     // theta is the angle between the 2 quaternions
745     Scalar theta = acos(absD);
746     Scalar sinTheta = sin(theta);
747 
748     scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta;
749     scale1 = sin( ( t * theta) ) / sinTheta;
750   }
751   if(d<Scalar(0)) scale1 = -scale1;
752 
753   return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
754 }
755 
756 namespace internal {
757 
758 // set from a rotation matrix
759 template<typename Other>
760 struct quaternionbase_assign_impl<Other,3,3>
761 {
762   typedef typename Other::Scalar Scalar;
763   template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& a_mat)
764   {
765     const typename internal::nested_eval<Other,2>::type mat(a_mat);
766     EIGEN_USING_STD_MATH(sqrt)
767     // This algorithm comes from  "Quaternion Calculus and Fast Animation",
768     // Ken Shoemake, 1987 SIGGRAPH course notes
769     Scalar t = mat.trace();
770     if (t > Scalar(0))
771     {
772       t = sqrt(t + Scalar(1.0));
773       q.w() = Scalar(0.5)*t;
774       t = Scalar(0.5)/t;
775       q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
776       q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
777       q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
778     }
779     else
780     {
781       Index i = 0;
782       if (mat.coeff(1,1) > mat.coeff(0,0))
783         i = 1;
784       if (mat.coeff(2,2) > mat.coeff(i,i))
785         i = 2;
786       Index j = (i+1)%3;
787       Index k = (j+1)%3;
788 
789       t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
790       q.coeffs().coeffRef(i) = Scalar(0.5) * t;
791       t = Scalar(0.5)/t;
792       q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
793       q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
794       q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
795     }
796   }
797 };
798 
799 // set from a vector of coefficients assumed to be a quaternion
800 template<typename Other>
801 struct quaternionbase_assign_impl<Other,4,1>
802 {
803   typedef typename Other::Scalar Scalar;
804   template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& vec)
805   {
806     q.coeffs() = vec;
807   }
808 };
809 
810 } // end namespace internal
811 
812 } // end namespace Eigen
813 
814 #endif // EIGEN_QUATERNION_H
815