1 use rustc_data_structures::fx::FxHashSet;
2 use rustc_middle::ty::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor};
3 use rustc_middle::ty::{self, Ty, TyCtxt};
4 use rustc_span::source_map::Span;
5 use std::ops::ControlFlow;
6
7 #[derive(Clone, PartialEq, Eq, Hash, Debug)]
8 pub struct Parameter(pub u32);
9
10 impl From<ty::ParamTy> for Parameter {
from(param: ty::ParamTy) -> Self11 fn from(param: ty::ParamTy) -> Self {
12 Parameter(param.index)
13 }
14 }
15
16 impl From<ty::EarlyBoundRegion> for Parameter {
from(param: ty::EarlyBoundRegion) -> Self17 fn from(param: ty::EarlyBoundRegion) -> Self {
18 Parameter(param.index)
19 }
20 }
21
22 impl From<ty::ParamConst> for Parameter {
from(param: ty::ParamConst) -> Self23 fn from(param: ty::ParamConst) -> Self {
24 Parameter(param.index)
25 }
26 }
27
28 /// Returns the set of parameters constrained by the impl header.
parameters_for_impl<'tcx>( impl_self_ty: Ty<'tcx>, impl_trait_ref: Option<ty::TraitRef<'tcx>>, ) -> FxHashSet<Parameter>29 pub fn parameters_for_impl<'tcx>(
30 impl_self_ty: Ty<'tcx>,
31 impl_trait_ref: Option<ty::TraitRef<'tcx>>,
32 ) -> FxHashSet<Parameter> {
33 let vec = match impl_trait_ref {
34 Some(tr) => parameters_for(&tr, false),
35 None => parameters_for(&impl_self_ty, false),
36 };
37 vec.into_iter().collect()
38 }
39
40 /// If `include_nonconstraining` is false, returns the list of parameters that are
41 /// constrained by `t` - i.e., the value of each parameter in the list is
42 /// uniquely determined by `t` (see RFC 447). If it is true, return the list
43 /// of parameters whose values are needed in order to constrain `ty` - these
44 /// differ, with the latter being a superset, in the presence of projections.
parameters_for<'tcx>( t: &impl TypeVisitable<TyCtxt<'tcx>>, include_nonconstraining: bool, ) -> Vec<Parameter>45 pub fn parameters_for<'tcx>(
46 t: &impl TypeVisitable<TyCtxt<'tcx>>,
47 include_nonconstraining: bool,
48 ) -> Vec<Parameter> {
49 let mut collector = ParameterCollector { parameters: vec![], include_nonconstraining };
50 t.visit_with(&mut collector);
51 collector.parameters
52 }
53
54 struct ParameterCollector {
55 parameters: Vec<Parameter>,
56 include_nonconstraining: bool,
57 }
58
59 impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ParameterCollector {
visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy>60 fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
61 match *t.kind() {
62 ty::Alias(ty::Projection | ty::Inherent, ..) if !self.include_nonconstraining => {
63 // projections are not injective
64 return ControlFlow::Continue(());
65 }
66 ty::Param(data) => {
67 self.parameters.push(Parameter::from(data));
68 }
69 _ => {}
70 }
71
72 t.super_visit_with(self)
73 }
74
visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy>75 fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
76 if let ty::ReEarlyBound(data) = *r {
77 self.parameters.push(Parameter::from(data));
78 }
79 ControlFlow::Continue(())
80 }
81
visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy>82 fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
83 match c.kind() {
84 ty::ConstKind::Unevaluated(..) if !self.include_nonconstraining => {
85 // Constant expressions are not injective
86 return c.ty().visit_with(self);
87 }
88 ty::ConstKind::Param(data) => {
89 self.parameters.push(Parameter::from(data));
90 }
91 _ => {}
92 }
93
94 c.super_visit_with(self)
95 }
96 }
97
identify_constrained_generic_params<'tcx>( tcx: TyCtxt<'tcx>, predicates: ty::GenericPredicates<'tcx>, impl_trait_ref: Option<ty::TraitRef<'tcx>>, input_parameters: &mut FxHashSet<Parameter>, )98 pub fn identify_constrained_generic_params<'tcx>(
99 tcx: TyCtxt<'tcx>,
100 predicates: ty::GenericPredicates<'tcx>,
101 impl_trait_ref: Option<ty::TraitRef<'tcx>>,
102 input_parameters: &mut FxHashSet<Parameter>,
103 ) {
104 let mut predicates = predicates.predicates.to_vec();
105 setup_constraining_predicates(tcx, &mut predicates, impl_trait_ref, input_parameters);
106 }
107
108 /// Order the predicates in `predicates` such that each parameter is
109 /// constrained before it is used, if that is possible, and add the
110 /// parameters so constrained to `input_parameters`. For example,
111 /// imagine the following impl:
112 /// ```ignore (illustrative)
113 /// impl<T: Debug, U: Iterator<Item = T>> Trait for U
114 /// ```
115 /// The impl's predicates are collected from left to right. Ignoring
116 /// the implicit `Sized` bounds, these are
117 /// * `T: Debug`
118 /// * `U: Iterator`
119 /// * `<U as Iterator>::Item = T` -- a desugared ProjectionPredicate
120 ///
121 /// When we, for example, try to go over the trait-reference
122 /// `IntoIter<u32> as Trait`, we substitute the impl parameters with fresh
123 /// variables and match them with the impl trait-ref, so we know that
124 /// `$U = IntoIter<u32>`.
125 ///
126 /// However, in order to process the `$T: Debug` predicate, we must first
127 /// know the value of `$T` - which is only given by processing the
128 /// projection. As we occasionally want to process predicates in a single
129 /// pass, we want the projection to come first. In fact, as projections
130 /// can (acyclically) depend on one another - see RFC447 for details - we
131 /// need to topologically sort them.
132 ///
133 /// We *do* have to be somewhat careful when projection targets contain
134 /// projections themselves, for example in
135 ///
136 /// ```ignore (illustrative)
137 /// impl<S,U,V,W> Trait for U where
138 /// /* 0 */ S: Iterator<Item = U>,
139 /// /* - */ U: Iterator,
140 /// /* 1 */ <U as Iterator>::Item: ToOwned<Owned=(W,<V as Iterator>::Item)>
141 /// /* 2 */ W: Iterator<Item = V>
142 /// /* 3 */ V: Debug
143 /// ```
144 ///
145 /// we have to evaluate the projections in the order I wrote them:
146 /// `V: Debug` requires `V` to be evaluated. The only projection that
147 /// *determines* `V` is 2 (1 contains it, but *does not determine it*,
148 /// as it is only contained within a projection), but that requires `W`
149 /// which is determined by 1, which requires `U`, that is determined
150 /// by 0. I should probably pick a less tangled example, but I can't
151 /// think of any.
setup_constraining_predicates<'tcx>( tcx: TyCtxt<'tcx>, predicates: &mut [(ty::Clause<'tcx>, Span)], impl_trait_ref: Option<ty::TraitRef<'tcx>>, input_parameters: &mut FxHashSet<Parameter>, )152 pub fn setup_constraining_predicates<'tcx>(
153 tcx: TyCtxt<'tcx>,
154 predicates: &mut [(ty::Clause<'tcx>, Span)],
155 impl_trait_ref: Option<ty::TraitRef<'tcx>>,
156 input_parameters: &mut FxHashSet<Parameter>,
157 ) {
158 // The canonical way of doing the needed topological sort
159 // would be a DFS, but getting the graph and its ownership
160 // right is annoying, so I am using an in-place fixed-point iteration,
161 // which is `O(nt)` where `t` is the depth of type-parameter constraints,
162 // remembering that `t` should be less than 7 in practice.
163 //
164 // Basically, I iterate over all projections and swap every
165 // "ready" projection to the start of the list, such that
166 // all of the projections before `i` are topologically sorted
167 // and constrain all the parameters in `input_parameters`.
168 //
169 // In the example, `input_parameters` starts by containing `U` - which
170 // is constrained by the trait-ref - and so on the first pass we
171 // observe that `<U as Iterator>::Item = T` is a "ready" projection that
172 // constrains `T` and swap it to front. As it is the sole projection,
173 // no more swaps can take place afterwards, with the result being
174 // * <U as Iterator>::Item = T
175 // * T: Debug
176 // * U: Iterator
177 debug!(
178 "setup_constraining_predicates: predicates={:?} \
179 impl_trait_ref={:?} input_parameters={:?}",
180 predicates, impl_trait_ref, input_parameters
181 );
182 let mut i = 0;
183 let mut changed = true;
184 while changed {
185 changed = false;
186
187 for j in i..predicates.len() {
188 // Note that we don't have to care about binders here,
189 // as the impl trait ref never contains any late-bound regions.
190 if let ty::ClauseKind::Projection(projection) = predicates[j].0.kind().skip_binder() {
191 // Special case: watch out for some kind of sneaky attempt
192 // to project out an associated type defined by this very
193 // trait.
194 let unbound_trait_ref = projection.projection_ty.trait_ref(tcx);
195 if Some(unbound_trait_ref) == impl_trait_ref {
196 continue;
197 }
198
199 // A projection depends on its input types and determines its output
200 // type. For example, if we have
201 // `<<T as Bar>::Baz as Iterator>::Output = <U as Iterator>::Output`
202 // Then the projection only applies if `T` is known, but it still
203 // does not determine `U`.
204 let inputs = parameters_for(&projection.projection_ty, true);
205 let relies_only_on_inputs = inputs.iter().all(|p| input_parameters.contains(p));
206 if !relies_only_on_inputs {
207 continue;
208 }
209 input_parameters.extend(parameters_for(&projection.term, false));
210 } else {
211 continue;
212 }
213 // fancy control flow to bypass borrow checker
214 predicates.swap(i, j);
215 i += 1;
216 changed = true;
217 }
218 debug!(
219 "setup_constraining_predicates: predicates={:?} \
220 i={} impl_trait_ref={:?} input_parameters={:?}",
221 predicates, i, impl_trait_ref, input_parameters
222 );
223 }
224 }
225