1 //! This query borrow-checks the MIR to (further) ensure it is not broken.
2
3 #![feature(associated_type_bounds)]
4 #![feature(box_patterns)]
5 #![feature(let_chains)]
6 #![feature(min_specialization)]
7 #![feature(never_type)]
8 #![feature(lazy_cell)]
9 #![feature(rustc_attrs)]
10 #![feature(stmt_expr_attributes)]
11 #![feature(trusted_step)]
12 #![feature(try_blocks)]
13 #![recursion_limit = "256"]
14
15 #[macro_use]
16 extern crate rustc_middle;
17 #[macro_use]
18 extern crate tracing;
19
20 use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
21 use rustc_data_structures::graph::dominators::Dominators;
22 use rustc_errors::{Diagnostic, DiagnosticBuilder, DiagnosticMessage, SubdiagnosticMessage};
23 use rustc_fluent_macro::fluent_messages;
24 use rustc_hir as hir;
25 use rustc_hir::def_id::LocalDefId;
26 use rustc_index::bit_set::ChunkedBitSet;
27 use rustc_index::{IndexSlice, IndexVec};
28 use rustc_infer::infer::{
29 InferCtxt, NllRegionVariableOrigin, RegionVariableOrigin, TyCtxtInferExt,
30 };
31 use rustc_middle::mir::{
32 traversal, Body, ClearCrossCrate, Local, Location, MutBorrowKind, Mutability,
33 NonDivergingIntrinsic, Operand, Place, PlaceElem, PlaceRef, VarDebugInfoContents,
34 };
35 use rustc_middle::mir::{AggregateKind, BasicBlock, BorrowCheckResult, BorrowKind};
36 use rustc_middle::mir::{InlineAsmOperand, Terminator, TerminatorKind};
37 use rustc_middle::mir::{ProjectionElem, Promoted, Rvalue, Statement, StatementKind};
38 use rustc_middle::query::Providers;
39 use rustc_middle::traits::DefiningAnchor;
40 use rustc_middle::ty::{self, CapturedPlace, ParamEnv, RegionVid, TyCtxt};
41 use rustc_session::lint::builtin::UNUSED_MUT;
42 use rustc_span::{Span, Symbol};
43 use rustc_target::abi::FieldIdx;
44
45 use either::Either;
46 use smallvec::SmallVec;
47 use std::cell::RefCell;
48 use std::collections::BTreeMap;
49 use std::ops::Deref;
50 use std::rc::Rc;
51
52 use rustc_mir_dataflow::impls::{
53 EverInitializedPlaces, MaybeInitializedPlaces, MaybeUninitializedPlaces,
54 };
55 use rustc_mir_dataflow::move_paths::{InitIndex, MoveOutIndex, MovePathIndex};
56 use rustc_mir_dataflow::move_paths::{InitLocation, LookupResult, MoveData, MoveError};
57 use rustc_mir_dataflow::Analysis;
58 use rustc_mir_dataflow::MoveDataParamEnv;
59
60 use crate::session_diagnostics::VarNeedNotMut;
61
62 use self::diagnostics::{AccessKind, RegionName};
63 use self::location::LocationTable;
64 use self::prefixes::PrefixSet;
65 use consumers::{BodyWithBorrowckFacts, ConsumerOptions};
66
67 use self::path_utils::*;
68
69 pub mod borrow_set;
70 mod borrowck_errors;
71 mod constraint_generation;
72 mod constraints;
73 mod dataflow;
74 mod def_use;
75 mod diagnostics;
76 mod facts;
77 mod invalidation;
78 mod location;
79 mod member_constraints;
80 mod nll;
81 mod path_utils;
82 mod place_ext;
83 mod places_conflict;
84 mod prefixes;
85 mod region_infer;
86 mod renumber;
87 mod session_diagnostics;
88 mod type_check;
89 mod universal_regions;
90 mod used_muts;
91 mod util;
92
93 /// A public API provided for the Rust compiler consumers.
94 pub mod consumers;
95
96 use borrow_set::{BorrowData, BorrowSet};
97 use dataflow::{BorrowIndex, BorrowckFlowState as Flows, BorrowckResults, Borrows};
98 use nll::PoloniusOutput;
99 use place_ext::PlaceExt;
100 use places_conflict::{places_conflict, PlaceConflictBias};
101 use region_infer::RegionInferenceContext;
102 use renumber::RegionCtxt;
103
104 fluent_messages! { "../messages.ftl" }
105
106 // FIXME(eddyb) perhaps move this somewhere more centrally.
107 #[derive(Debug)]
108 struct Upvar<'tcx> {
109 place: CapturedPlace<'tcx>,
110
111 /// If true, the capture is behind a reference.
112 by_ref: bool,
113 }
114
115 /// Associate some local constants with the `'tcx` lifetime
116 struct TyCtxtConsts<'tcx>(TyCtxt<'tcx>);
117 impl<'tcx> TyCtxtConsts<'tcx> {
118 const DEREF_PROJECTION: &'tcx [PlaceElem<'tcx>; 1] = &[ProjectionElem::Deref];
119 }
120
provide(providers: &mut Providers)121 pub fn provide(providers: &mut Providers) {
122 *providers = Providers { mir_borrowck, ..*providers };
123 }
124
mir_borrowck(tcx: TyCtxt<'_>, def: LocalDefId) -> &BorrowCheckResult<'_>125 fn mir_borrowck(tcx: TyCtxt<'_>, def: LocalDefId) -> &BorrowCheckResult<'_> {
126 let (input_body, promoted) = tcx.mir_promoted(def);
127 debug!("run query mir_borrowck: {}", tcx.def_path_str(def));
128
129 if input_body.borrow().should_skip() {
130 debug!("Skipping borrowck because of injected body");
131 // Let's make up a borrowck result! Fun times!
132 let result = BorrowCheckResult {
133 concrete_opaque_types: FxIndexMap::default(),
134 closure_requirements: None,
135 used_mut_upvars: SmallVec::new(),
136 tainted_by_errors: None,
137 };
138 return tcx.arena.alloc(result);
139 }
140
141 let hir_owner = tcx.hir().local_def_id_to_hir_id(def).owner;
142
143 let infcx =
144 tcx.infer_ctxt().with_opaque_type_inference(DefiningAnchor::Bind(hir_owner.def_id)).build();
145 let input_body: &Body<'_> = &input_body.borrow();
146 let promoted: &IndexSlice<_, _> = &promoted.borrow();
147 let opt_closure_req = do_mir_borrowck(&infcx, input_body, promoted, None).0;
148 debug!("mir_borrowck done");
149
150 tcx.arena.alloc(opt_closure_req)
151 }
152
153 /// Perform the actual borrow checking.
154 ///
155 /// Use `consumer_options: None` for the default behavior of returning
156 /// [`BorrowCheckResult`] only. Otherwise, return [`BodyWithBorrowckFacts`] according
157 /// to the given [`ConsumerOptions`].
158 #[instrument(skip(infcx, input_body, input_promoted), fields(id=?input_body.source.def_id()), level = "debug")]
do_mir_borrowck<'tcx>( infcx: &InferCtxt<'tcx>, input_body: &Body<'tcx>, input_promoted: &IndexSlice<Promoted, Body<'tcx>>, consumer_options: Option<ConsumerOptions>, ) -> (BorrowCheckResult<'tcx>, Option<Box<BodyWithBorrowckFacts<'tcx>>>)159 fn do_mir_borrowck<'tcx>(
160 infcx: &InferCtxt<'tcx>,
161 input_body: &Body<'tcx>,
162 input_promoted: &IndexSlice<Promoted, Body<'tcx>>,
163 consumer_options: Option<ConsumerOptions>,
164 ) -> (BorrowCheckResult<'tcx>, Option<Box<BodyWithBorrowckFacts<'tcx>>>) {
165 let def = input_body.source.def_id().expect_local();
166 debug!(?def);
167
168 let tcx = infcx.tcx;
169 let infcx = BorrowckInferCtxt::new(infcx);
170 let param_env = tcx.param_env(def);
171
172 let mut local_names = IndexVec::from_elem(None, &input_body.local_decls);
173 for var_debug_info in &input_body.var_debug_info {
174 if let VarDebugInfoContents::Place(place) = var_debug_info.value {
175 if let Some(local) = place.as_local() {
176 if let Some(prev_name) = local_names[local] && var_debug_info.name != prev_name {
177 span_bug!(
178 var_debug_info.source_info.span,
179 "local {:?} has many names (`{}` vs `{}`)",
180 local,
181 prev_name,
182 var_debug_info.name
183 );
184 }
185 local_names[local] = Some(var_debug_info.name);
186 }
187 }
188 }
189
190 let mut errors = error::BorrowckErrors::new(infcx.tcx);
191
192 // Gather the upvars of a closure, if any.
193 if let Some(e) = input_body.tainted_by_errors {
194 infcx.set_tainted_by_errors(e);
195 errors.set_tainted_by_errors(e);
196 }
197 let upvars: Vec<_> = tcx
198 .closure_captures(def)
199 .iter()
200 .map(|&captured_place| {
201 let capture = captured_place.info.capture_kind;
202 let by_ref = match capture {
203 ty::UpvarCapture::ByValue => false,
204 ty::UpvarCapture::ByRef(..) => true,
205 };
206 Upvar { place: captured_place.clone(), by_ref }
207 })
208 .collect();
209
210 // Replace all regions with fresh inference variables. This
211 // requires first making our own copy of the MIR. This copy will
212 // be modified (in place) to contain non-lexical lifetimes. It
213 // will have a lifetime tied to the inference context.
214 let mut body_owned = input_body.clone();
215 let mut promoted = input_promoted.to_owned();
216 let free_regions =
217 nll::replace_regions_in_mir(&infcx, param_env, &mut body_owned, &mut promoted);
218 let body = &body_owned; // no further changes
219
220 let location_table_owned = LocationTable::new(body);
221 let location_table = &location_table_owned;
222
223 let (move_data, move_errors): (MoveData<'tcx>, Vec<(Place<'tcx>, MoveError<'tcx>)>) =
224 match MoveData::gather_moves(&body, tcx, param_env) {
225 Ok(move_data) => (move_data, Vec::new()),
226 Err((move_data, move_errors)) => (move_data, move_errors),
227 };
228 let promoted_errors = promoted
229 .iter_enumerated()
230 .map(|(idx, body)| (idx, MoveData::gather_moves(&body, tcx, param_env)));
231
232 let mdpe = MoveDataParamEnv { move_data, param_env };
233
234 let mut flow_inits = MaybeInitializedPlaces::new(tcx, &body, &mdpe)
235 .into_engine(tcx, &body)
236 .pass_name("borrowck")
237 .iterate_to_fixpoint()
238 .into_results_cursor(&body);
239
240 let locals_are_invalidated_at_exit = tcx.hir().body_owner_kind(def).is_fn_or_closure();
241 let borrow_set =
242 Rc::new(BorrowSet::build(tcx, body, locals_are_invalidated_at_exit, &mdpe.move_data));
243
244 // Compute non-lexical lifetimes.
245 let nll::NllOutput {
246 regioncx,
247 opaque_type_values,
248 polonius_input,
249 polonius_output,
250 opt_closure_req,
251 nll_errors,
252 } = nll::compute_regions(
253 &infcx,
254 free_regions,
255 body,
256 &promoted,
257 location_table,
258 param_env,
259 &mut flow_inits,
260 &mdpe.move_data,
261 &borrow_set,
262 &upvars,
263 consumer_options,
264 );
265
266 // Dump MIR results into a file, if that is enabled. This let us
267 // write unit-tests, as well as helping with debugging.
268 nll::dump_mir_results(&infcx, &body, ®ioncx, &opt_closure_req);
269
270 // We also have a `#[rustc_regions]` annotation that causes us to dump
271 // information.
272 nll::dump_annotation(
273 &infcx,
274 &body,
275 ®ioncx,
276 &opt_closure_req,
277 &opaque_type_values,
278 &mut errors,
279 );
280
281 // The various `flow_*` structures can be large. We drop `flow_inits` here
282 // so it doesn't overlap with the others below. This reduces peak memory
283 // usage significantly on some benchmarks.
284 drop(flow_inits);
285
286 let regioncx = Rc::new(regioncx);
287
288 let flow_borrows = Borrows::new(tcx, body, ®ioncx, &borrow_set)
289 .into_engine(tcx, body)
290 .pass_name("borrowck")
291 .iterate_to_fixpoint();
292 let flow_uninits = MaybeUninitializedPlaces::new(tcx, body, &mdpe)
293 .into_engine(tcx, body)
294 .pass_name("borrowck")
295 .iterate_to_fixpoint();
296 let flow_ever_inits = EverInitializedPlaces::new(tcx, body, &mdpe)
297 .into_engine(tcx, body)
298 .pass_name("borrowck")
299 .iterate_to_fixpoint();
300
301 let movable_generator =
302 // The first argument is the generator type passed by value
303 if let Some(local) = body.local_decls.raw.get(1)
304 // Get the interior types and substs which typeck computed
305 && let ty::Generator(_, _, hir::Movability::Static) = local.ty.kind()
306 {
307 false
308 } else {
309 true
310 };
311
312 for (idx, move_data_results) in promoted_errors {
313 let promoted_body = &promoted[idx];
314
315 if let Err((move_data, move_errors)) = move_data_results {
316 let mut promoted_mbcx = MirBorrowckCtxt {
317 infcx: &infcx,
318 param_env,
319 body: promoted_body,
320 move_data: &move_data,
321 location_table, // no need to create a real one for the promoted, it is not used
322 movable_generator,
323 fn_self_span_reported: Default::default(),
324 locals_are_invalidated_at_exit,
325 access_place_error_reported: Default::default(),
326 reservation_error_reported: Default::default(),
327 uninitialized_error_reported: Default::default(),
328 regioncx: regioncx.clone(),
329 used_mut: Default::default(),
330 used_mut_upvars: SmallVec::new(),
331 borrow_set: Rc::clone(&borrow_set),
332 upvars: Vec::new(),
333 local_names: IndexVec::from_elem(None, &promoted_body.local_decls),
334 region_names: RefCell::default(),
335 next_region_name: RefCell::new(1),
336 polonius_output: None,
337 errors,
338 };
339 promoted_mbcx.report_move_errors(move_errors);
340 errors = promoted_mbcx.errors;
341 };
342 }
343
344 let mut mbcx = MirBorrowckCtxt {
345 infcx: &infcx,
346 param_env,
347 body,
348 move_data: &mdpe.move_data,
349 location_table,
350 movable_generator,
351 locals_are_invalidated_at_exit,
352 fn_self_span_reported: Default::default(),
353 access_place_error_reported: Default::default(),
354 reservation_error_reported: Default::default(),
355 uninitialized_error_reported: Default::default(),
356 regioncx: Rc::clone(®ioncx),
357 used_mut: Default::default(),
358 used_mut_upvars: SmallVec::new(),
359 borrow_set: Rc::clone(&borrow_set),
360 upvars,
361 local_names,
362 region_names: RefCell::default(),
363 next_region_name: RefCell::new(1),
364 polonius_output,
365 errors,
366 };
367
368 // Compute and report region errors, if any.
369 mbcx.report_region_errors(nll_errors);
370
371 let mut results = BorrowckResults {
372 ever_inits: flow_ever_inits,
373 uninits: flow_uninits,
374 borrows: flow_borrows,
375 };
376
377 mbcx.report_move_errors(move_errors);
378
379 rustc_mir_dataflow::visit_results(
380 body,
381 traversal::reverse_postorder(body).map(|(bb, _)| bb),
382 &mut results,
383 &mut mbcx,
384 );
385
386 // For each non-user used mutable variable, check if it's been assigned from
387 // a user-declared local. If so, then put that local into the used_mut set.
388 // Note that this set is expected to be small - only upvars from closures
389 // would have a chance of erroneously adding non-user-defined mutable vars
390 // to the set.
391 let temporary_used_locals: FxIndexSet<Local> = mbcx
392 .used_mut
393 .iter()
394 .filter(|&local| !mbcx.body.local_decls[*local].is_user_variable())
395 .cloned()
396 .collect();
397 // For the remaining unused locals that are marked as mutable, we avoid linting any that
398 // were never initialized. These locals may have been removed as unreachable code; or will be
399 // linted as unused variables.
400 let unused_mut_locals =
401 mbcx.body.mut_vars_iter().filter(|local| !mbcx.used_mut.contains(local)).collect();
402 mbcx.gather_used_muts(temporary_used_locals, unused_mut_locals);
403
404 debug!("mbcx.used_mut: {:?}", mbcx.used_mut);
405 let used_mut = std::mem::take(&mut mbcx.used_mut);
406 for local in mbcx.body.mut_vars_and_args_iter().filter(|local| !used_mut.contains(local)) {
407 let local_decl = &mbcx.body.local_decls[local];
408 let lint_root = match &mbcx.body.source_scopes[local_decl.source_info.scope].local_data {
409 ClearCrossCrate::Set(data) => data.lint_root,
410 _ => continue,
411 };
412
413 // Skip over locals that begin with an underscore or have no name
414 match mbcx.local_names[local] {
415 Some(name) => {
416 if name.as_str().starts_with('_') {
417 continue;
418 }
419 }
420 None => continue,
421 }
422
423 let span = local_decl.source_info.span;
424 if span.desugaring_kind().is_some() {
425 // If the `mut` arises as part of a desugaring, we should ignore it.
426 continue;
427 }
428
429 let mut_span = tcx.sess.source_map().span_until_non_whitespace(span);
430
431 tcx.emit_spanned_lint(UNUSED_MUT, lint_root, span, VarNeedNotMut { span: mut_span })
432 }
433
434 let tainted_by_errors = mbcx.emit_errors();
435
436 let result = BorrowCheckResult {
437 concrete_opaque_types: opaque_type_values,
438 closure_requirements: opt_closure_req,
439 used_mut_upvars: mbcx.used_mut_upvars,
440 tainted_by_errors,
441 };
442
443 let body_with_facts = if consumer_options.is_some() {
444 let output_facts = mbcx.polonius_output;
445 Some(Box::new(BodyWithBorrowckFacts {
446 body: body_owned,
447 promoted,
448 borrow_set,
449 region_inference_context: regioncx,
450 location_table: polonius_input.as_ref().map(|_| location_table_owned),
451 input_facts: polonius_input,
452 output_facts,
453 }))
454 } else {
455 None
456 };
457
458 debug!("do_mir_borrowck: result = {:#?}", result);
459
460 (result, body_with_facts)
461 }
462
463 pub struct BorrowckInferCtxt<'cx, 'tcx> {
464 pub(crate) infcx: &'cx InferCtxt<'tcx>,
465 pub(crate) reg_var_to_origin: RefCell<FxIndexMap<ty::RegionVid, RegionCtxt>>,
466 }
467
468 impl<'cx, 'tcx> BorrowckInferCtxt<'cx, 'tcx> {
new(infcx: &'cx InferCtxt<'tcx>) -> Self469 pub(crate) fn new(infcx: &'cx InferCtxt<'tcx>) -> Self {
470 BorrowckInferCtxt { infcx, reg_var_to_origin: RefCell::new(Default::default()) }
471 }
472
next_region_var<F>( &self, origin: RegionVariableOrigin, get_ctxt_fn: F, ) -> ty::Region<'tcx> where F: Fn() -> RegionCtxt,473 pub(crate) fn next_region_var<F>(
474 &self,
475 origin: RegionVariableOrigin,
476 get_ctxt_fn: F,
477 ) -> ty::Region<'tcx>
478 where
479 F: Fn() -> RegionCtxt,
480 {
481 let next_region = self.infcx.next_region_var(origin);
482 let vid = next_region.as_var();
483
484 if cfg!(debug_assertions) {
485 debug!("inserting vid {:?} with origin {:?} into var_to_origin", vid, origin);
486 let ctxt = get_ctxt_fn();
487 let mut var_to_origin = self.reg_var_to_origin.borrow_mut();
488 assert_eq!(var_to_origin.insert(vid, ctxt), None);
489 }
490
491 next_region
492 }
493
494 #[instrument(skip(self, get_ctxt_fn), level = "debug")]
next_nll_region_var<F>( &self, origin: NllRegionVariableOrigin, get_ctxt_fn: F, ) -> ty::Region<'tcx> where F: Fn() -> RegionCtxt,495 pub(crate) fn next_nll_region_var<F>(
496 &self,
497 origin: NllRegionVariableOrigin,
498 get_ctxt_fn: F,
499 ) -> ty::Region<'tcx>
500 where
501 F: Fn() -> RegionCtxt,
502 {
503 let next_region = self.infcx.next_nll_region_var(origin);
504 let vid = next_region.as_var();
505
506 if cfg!(debug_assertions) {
507 debug!("inserting vid {:?} with origin {:?} into var_to_origin", vid, origin);
508 let ctxt = get_ctxt_fn();
509 let mut var_to_origin = self.reg_var_to_origin.borrow_mut();
510 assert_eq!(var_to_origin.insert(vid, ctxt), None);
511 }
512
513 next_region
514 }
515 }
516
517 impl<'cx, 'tcx> Deref for BorrowckInferCtxt<'cx, 'tcx> {
518 type Target = InferCtxt<'tcx>;
519
deref(&self) -> &'cx Self::Target520 fn deref(&self) -> &'cx Self::Target {
521 self.infcx
522 }
523 }
524
525 struct MirBorrowckCtxt<'cx, 'tcx> {
526 infcx: &'cx BorrowckInferCtxt<'cx, 'tcx>,
527 param_env: ParamEnv<'tcx>,
528 body: &'cx Body<'tcx>,
529 move_data: &'cx MoveData<'tcx>,
530
531 /// Map from MIR `Location` to `LocationIndex`; created
532 /// when MIR borrowck begins.
533 location_table: &'cx LocationTable,
534
535 movable_generator: bool,
536 /// This keeps track of whether local variables are free-ed when the function
537 /// exits even without a `StorageDead`, which appears to be the case for
538 /// constants.
539 ///
540 /// I'm not sure this is the right approach - @eddyb could you try and
541 /// figure this out?
542 locals_are_invalidated_at_exit: bool,
543 /// This field keeps track of when borrow errors are reported in the access_place function
544 /// so that there is no duplicate reporting. This field cannot also be used for the conflicting
545 /// borrow errors that is handled by the `reservation_error_reported` field as the inclusion
546 /// of the `Span` type (while required to mute some errors) stops the muting of the reservation
547 /// errors.
548 access_place_error_reported: FxIndexSet<(Place<'tcx>, Span)>,
549 /// This field keeps track of when borrow conflict errors are reported
550 /// for reservations, so that we don't report seemingly duplicate
551 /// errors for corresponding activations.
552 //
553 // FIXME: ideally this would be a set of `BorrowIndex`, not `Place`s,
554 // but it is currently inconvenient to track down the `BorrowIndex`
555 // at the time we detect and report a reservation error.
556 reservation_error_reported: FxIndexSet<Place<'tcx>>,
557 /// This fields keeps track of the `Span`s that we have
558 /// used to report extra information for `FnSelfUse`, to avoid
559 /// unnecessarily verbose errors.
560 fn_self_span_reported: FxIndexSet<Span>,
561 /// This field keeps track of errors reported in the checking of uninitialized variables,
562 /// so that we don't report seemingly duplicate errors.
563 uninitialized_error_reported: FxIndexSet<PlaceRef<'tcx>>,
564 /// This field keeps track of all the local variables that are declared mut and are mutated.
565 /// Used for the warning issued by an unused mutable local variable.
566 used_mut: FxIndexSet<Local>,
567 /// If the function we're checking is a closure, then we'll need to report back the list of
568 /// mutable upvars that have been used. This field keeps track of them.
569 used_mut_upvars: SmallVec<[FieldIdx; 8]>,
570 /// Region inference context. This contains the results from region inference and lets us e.g.
571 /// find out which CFG points are contained in each borrow region.
572 regioncx: Rc<RegionInferenceContext<'tcx>>,
573
574 /// The set of borrows extracted from the MIR
575 borrow_set: Rc<BorrowSet<'tcx>>,
576
577 /// Information about upvars not necessarily preserved in types or MIR
578 upvars: Vec<Upvar<'tcx>>,
579
580 /// Names of local (user) variables (extracted from `var_debug_info`).
581 local_names: IndexVec<Local, Option<Symbol>>,
582
583 /// Record the region names generated for each region in the given
584 /// MIR def so that we can reuse them later in help/error messages.
585 region_names: RefCell<FxIndexMap<RegionVid, RegionName>>,
586
587 /// The counter for generating new region names.
588 next_region_name: RefCell<usize>,
589
590 /// Results of Polonius analysis.
591 polonius_output: Option<Rc<PoloniusOutput>>,
592
593 errors: error::BorrowckErrors<'tcx>,
594 }
595
596 // Check that:
597 // 1. assignments are always made to mutable locations (FIXME: does that still really go here?)
598 // 2. loans made in overlapping scopes do not conflict
599 // 3. assignments do not affect things loaned out as immutable
600 // 4. moves do not affect things loaned out in any way
601 impl<'cx, 'tcx, R> rustc_mir_dataflow::ResultsVisitor<'cx, 'tcx, R> for MirBorrowckCtxt<'cx, 'tcx> {
602 type FlowState = Flows<'cx, 'tcx>;
603
visit_statement_before_primary_effect( &mut self, _results: &R, flow_state: &Flows<'cx, 'tcx>, stmt: &'cx Statement<'tcx>, location: Location, )604 fn visit_statement_before_primary_effect(
605 &mut self,
606 _results: &R,
607 flow_state: &Flows<'cx, 'tcx>,
608 stmt: &'cx Statement<'tcx>,
609 location: Location,
610 ) {
611 debug!("MirBorrowckCtxt::process_statement({:?}, {:?}): {:?}", location, stmt, flow_state);
612 let span = stmt.source_info.span;
613
614 self.check_activations(location, span, flow_state);
615
616 match &stmt.kind {
617 StatementKind::Assign(box (lhs, rhs)) => {
618 self.consume_rvalue(location, (rhs, span), flow_state);
619
620 self.mutate_place(location, (*lhs, span), Shallow(None), flow_state);
621 }
622 StatementKind::FakeRead(box (_, place)) => {
623 // Read for match doesn't access any memory and is used to
624 // assert that a place is safe and live. So we don't have to
625 // do any checks here.
626 //
627 // FIXME: Remove check that the place is initialized. This is
628 // needed for now because matches don't have never patterns yet.
629 // So this is the only place we prevent
630 // let x: !;
631 // match x {};
632 // from compiling.
633 self.check_if_path_or_subpath_is_moved(
634 location,
635 InitializationRequiringAction::Use,
636 (place.as_ref(), span),
637 flow_state,
638 );
639 }
640 StatementKind::Intrinsic(box kind) => match kind {
641 NonDivergingIntrinsic::Assume(op) => self.consume_operand(location, (op, span), flow_state),
642 NonDivergingIntrinsic::CopyNonOverlapping(..) => span_bug!(
643 span,
644 "Unexpected CopyNonOverlapping, should only appear after lower_intrinsics",
645 )
646 }
647 // Only relevant for mir typeck
648 StatementKind::AscribeUserType(..)
649 // Only relevant for liveness and unsafeck
650 | StatementKind::PlaceMention(..)
651 // Doesn't have any language semantics
652 | StatementKind::Coverage(..)
653 // These do not actually affect borrowck
654 | StatementKind::ConstEvalCounter
655 | StatementKind::StorageLive(..) => {}
656 StatementKind::StorageDead(local) => {
657 self.access_place(
658 location,
659 (Place::from(*local), span),
660 (Shallow(None), Write(WriteKind::StorageDeadOrDrop)),
661 LocalMutationIsAllowed::Yes,
662 flow_state,
663 );
664 }
665 StatementKind::Nop
666 | StatementKind::Retag { .. }
667 | StatementKind::Deinit(..)
668 | StatementKind::SetDiscriminant { .. } => {
669 bug!("Statement not allowed in this MIR phase")
670 }
671 }
672 }
673
visit_terminator_before_primary_effect( &mut self, _results: &R, flow_state: &Flows<'cx, 'tcx>, term: &'cx Terminator<'tcx>, loc: Location, )674 fn visit_terminator_before_primary_effect(
675 &mut self,
676 _results: &R,
677 flow_state: &Flows<'cx, 'tcx>,
678 term: &'cx Terminator<'tcx>,
679 loc: Location,
680 ) {
681 debug!("MirBorrowckCtxt::process_terminator({:?}, {:?}): {:?}", loc, term, flow_state);
682 let span = term.source_info.span;
683
684 self.check_activations(loc, span, flow_state);
685
686 match &term.kind {
687 TerminatorKind::SwitchInt { discr, targets: _ } => {
688 self.consume_operand(loc, (discr, span), flow_state);
689 }
690 TerminatorKind::Drop { place, target: _, unwind: _, replace } => {
691 debug!(
692 "visit_terminator_drop \
693 loc: {:?} term: {:?} place: {:?} span: {:?}",
694 loc, term, place, span
695 );
696
697 let write_kind =
698 if *replace { WriteKind::Replace } else { WriteKind::StorageDeadOrDrop };
699 self.access_place(
700 loc,
701 (*place, span),
702 (AccessDepth::Drop, Write(write_kind)),
703 LocalMutationIsAllowed::Yes,
704 flow_state,
705 );
706 }
707 TerminatorKind::Call {
708 func,
709 args,
710 destination,
711 target: _,
712 unwind: _,
713 call_source: _,
714 fn_span: _,
715 } => {
716 self.consume_operand(loc, (func, span), flow_state);
717 for arg in args {
718 self.consume_operand(loc, (arg, span), flow_state);
719 }
720 self.mutate_place(loc, (*destination, span), Deep, flow_state);
721 }
722 TerminatorKind::Assert { cond, expected: _, msg, target: _, unwind: _ } => {
723 self.consume_operand(loc, (cond, span), flow_state);
724 use rustc_middle::mir::AssertKind;
725 if let AssertKind::BoundsCheck { len, index } = &**msg {
726 self.consume_operand(loc, (len, span), flow_state);
727 self.consume_operand(loc, (index, span), flow_state);
728 }
729 }
730
731 TerminatorKind::Yield { value, resume: _, resume_arg, drop: _ } => {
732 self.consume_operand(loc, (value, span), flow_state);
733 self.mutate_place(loc, (*resume_arg, span), Deep, flow_state);
734 }
735
736 TerminatorKind::InlineAsm {
737 template: _,
738 operands,
739 options: _,
740 line_spans: _,
741 destination: _,
742 unwind: _,
743 } => {
744 for op in operands {
745 match op {
746 InlineAsmOperand::In { reg: _, value } => {
747 self.consume_operand(loc, (value, span), flow_state);
748 }
749 InlineAsmOperand::Out { reg: _, late: _, place, .. } => {
750 if let Some(place) = place {
751 self.mutate_place(loc, (*place, span), Shallow(None), flow_state);
752 }
753 }
754 InlineAsmOperand::InOut { reg: _, late: _, in_value, out_place } => {
755 self.consume_operand(loc, (in_value, span), flow_state);
756 if let &Some(out_place) = out_place {
757 self.mutate_place(
758 loc,
759 (out_place, span),
760 Shallow(None),
761 flow_state,
762 );
763 }
764 }
765 InlineAsmOperand::Const { value: _ }
766 | InlineAsmOperand::SymFn { value: _ }
767 | InlineAsmOperand::SymStatic { def_id: _ } => {}
768 }
769 }
770 }
771
772 TerminatorKind::Goto { target: _ }
773 | TerminatorKind::Terminate
774 | TerminatorKind::Unreachable
775 | TerminatorKind::Resume
776 | TerminatorKind::Return
777 | TerminatorKind::GeneratorDrop
778 | TerminatorKind::FalseEdge { real_target: _, imaginary_target: _ }
779 | TerminatorKind::FalseUnwind { real_target: _, unwind: _ } => {
780 // no data used, thus irrelevant to borrowck
781 }
782 }
783 }
784
visit_terminator_after_primary_effect( &mut self, _results: &R, flow_state: &Flows<'cx, 'tcx>, term: &'cx Terminator<'tcx>, loc: Location, )785 fn visit_terminator_after_primary_effect(
786 &mut self,
787 _results: &R,
788 flow_state: &Flows<'cx, 'tcx>,
789 term: &'cx Terminator<'tcx>,
790 loc: Location,
791 ) {
792 let span = term.source_info.span;
793
794 match term.kind {
795 TerminatorKind::Yield { value: _, resume: _, resume_arg: _, drop: _ } => {
796 if self.movable_generator {
797 // Look for any active borrows to locals
798 let borrow_set = self.borrow_set.clone();
799 for i in flow_state.borrows.iter() {
800 let borrow = &borrow_set[i];
801 self.check_for_local_borrow(borrow, span);
802 }
803 }
804 }
805
806 TerminatorKind::Resume | TerminatorKind::Return | TerminatorKind::GeneratorDrop => {
807 // Returning from the function implicitly kills storage for all locals and statics.
808 // Often, the storage will already have been killed by an explicit
809 // StorageDead, but we don't always emit those (notably on unwind paths),
810 // so this "extra check" serves as a kind of backup.
811 let borrow_set = self.borrow_set.clone();
812 for i in flow_state.borrows.iter() {
813 let borrow = &borrow_set[i];
814 self.check_for_invalidation_at_exit(loc, borrow, span);
815 }
816 }
817
818 TerminatorKind::Terminate
819 | TerminatorKind::Assert { .. }
820 | TerminatorKind::Call { .. }
821 | TerminatorKind::Drop { .. }
822 | TerminatorKind::FalseEdge { real_target: _, imaginary_target: _ }
823 | TerminatorKind::FalseUnwind { real_target: _, unwind: _ }
824 | TerminatorKind::Goto { .. }
825 | TerminatorKind::SwitchInt { .. }
826 | TerminatorKind::Unreachable
827 | TerminatorKind::InlineAsm { .. } => {}
828 }
829 }
830 }
831
832 use self::AccessDepth::{Deep, Shallow};
833 use self::ReadOrWrite::{Activation, Read, Reservation, Write};
834
835 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
836 enum ArtificialField {
837 ArrayLength,
838 ShallowBorrow,
839 }
840
841 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
842 enum AccessDepth {
843 /// From the RFC: "A *shallow* access means that the immediate
844 /// fields reached at P are accessed, but references or pointers
845 /// found within are not dereferenced. Right now, the only access
846 /// that is shallow is an assignment like `x = ...;`, which would
847 /// be a *shallow write* of `x`."
848 Shallow(Option<ArtificialField>),
849
850 /// From the RFC: "A *deep* access means that all data reachable
851 /// through the given place may be invalidated or accesses by
852 /// this action."
853 Deep,
854
855 /// Access is Deep only when there is a Drop implementation that
856 /// can reach the data behind the reference.
857 Drop,
858 }
859
860 /// Kind of access to a value: read or write
861 /// (For informational purposes only)
862 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
863 enum ReadOrWrite {
864 /// From the RFC: "A *read* means that the existing data may be
865 /// read, but will not be changed."
866 Read(ReadKind),
867
868 /// From the RFC: "A *write* means that the data may be mutated to
869 /// new values or otherwise invalidated (for example, it could be
870 /// de-initialized, as in a move operation).
871 Write(WriteKind),
872
873 /// For two-phase borrows, we distinguish a reservation (which is treated
874 /// like a Read) from an activation (which is treated like a write), and
875 /// each of those is furthermore distinguished from Reads/Writes above.
876 Reservation(WriteKind),
877 Activation(WriteKind, BorrowIndex),
878 }
879
880 /// Kind of read access to a value
881 /// (For informational purposes only)
882 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
883 enum ReadKind {
884 Borrow(BorrowKind),
885 Copy,
886 }
887
888 /// Kind of write access to a value
889 /// (For informational purposes only)
890 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
891 enum WriteKind {
892 StorageDeadOrDrop,
893 Replace,
894 MutableBorrow(BorrowKind),
895 Mutate,
896 Move,
897 }
898
899 /// When checking permissions for a place access, this flag is used to indicate that an immutable
900 /// local place can be mutated.
901 //
902 // FIXME: @nikomatsakis suggested that this flag could be removed with the following modifications:
903 // - Split `is_mutable()` into `is_assignable()` (can be directly assigned) and
904 // `is_declared_mutable()`.
905 // - Take flow state into consideration in `is_assignable()` for local variables.
906 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
907 enum LocalMutationIsAllowed {
908 Yes,
909 /// We want use of immutable upvars to cause a "write to immutable upvar"
910 /// error, not an "reassignment" error.
911 ExceptUpvars,
912 No,
913 }
914
915 #[derive(Copy, Clone, Debug)]
916 enum InitializationRequiringAction {
917 Borrow,
918 MatchOn,
919 Use,
920 Assignment,
921 PartialAssignment,
922 }
923
924 #[derive(Debug)]
925 struct RootPlace<'tcx> {
926 place_local: Local,
927 place_projection: &'tcx [PlaceElem<'tcx>],
928 is_local_mutation_allowed: LocalMutationIsAllowed,
929 }
930
931 impl InitializationRequiringAction {
as_noun(self) -> &'static str932 fn as_noun(self) -> &'static str {
933 match self {
934 InitializationRequiringAction::Borrow => "borrow",
935 InitializationRequiringAction::MatchOn => "use", // no good noun
936 InitializationRequiringAction::Use => "use",
937 InitializationRequiringAction::Assignment => "assign",
938 InitializationRequiringAction::PartialAssignment => "assign to part",
939 }
940 }
941
as_verb_in_past_tense(self) -> &'static str942 fn as_verb_in_past_tense(self) -> &'static str {
943 match self {
944 InitializationRequiringAction::Borrow => "borrowed",
945 InitializationRequiringAction::MatchOn => "matched on",
946 InitializationRequiringAction::Use => "used",
947 InitializationRequiringAction::Assignment => "assigned",
948 InitializationRequiringAction::PartialAssignment => "partially assigned",
949 }
950 }
951
as_general_verb_in_past_tense(self) -> &'static str952 fn as_general_verb_in_past_tense(self) -> &'static str {
953 match self {
954 InitializationRequiringAction::Borrow
955 | InitializationRequiringAction::MatchOn
956 | InitializationRequiringAction::Use => "used",
957 InitializationRequiringAction::Assignment => "assigned",
958 InitializationRequiringAction::PartialAssignment => "partially assigned",
959 }
960 }
961 }
962
963 impl<'cx, 'tcx> MirBorrowckCtxt<'cx, 'tcx> {
body(&self) -> &'cx Body<'tcx>964 fn body(&self) -> &'cx Body<'tcx> {
965 self.body
966 }
967
968 /// Checks an access to the given place to see if it is allowed. Examines the set of borrows
969 /// that are in scope, as well as which paths have been initialized, to ensure that (a) the
970 /// place is initialized and (b) it is not borrowed in some way that would prevent this
971 /// access.
972 ///
973 /// Returns `true` if an error is reported.
access_place( &mut self, location: Location, place_span: (Place<'tcx>, Span), kind: (AccessDepth, ReadOrWrite), is_local_mutation_allowed: LocalMutationIsAllowed, flow_state: &Flows<'cx, 'tcx>, )974 fn access_place(
975 &mut self,
976 location: Location,
977 place_span: (Place<'tcx>, Span),
978 kind: (AccessDepth, ReadOrWrite),
979 is_local_mutation_allowed: LocalMutationIsAllowed,
980 flow_state: &Flows<'cx, 'tcx>,
981 ) {
982 let (sd, rw) = kind;
983
984 if let Activation(_, borrow_index) = rw {
985 if self.reservation_error_reported.contains(&place_span.0) {
986 debug!(
987 "skipping access_place for activation of invalid reservation \
988 place: {:?} borrow_index: {:?}",
989 place_span.0, borrow_index
990 );
991 return;
992 }
993 }
994
995 // Check is_empty() first because it's the common case, and doing that
996 // way we avoid the clone() call.
997 if !self.access_place_error_reported.is_empty()
998 && self.access_place_error_reported.contains(&(place_span.0, place_span.1))
999 {
1000 debug!(
1001 "access_place: suppressing error place_span=`{:?}` kind=`{:?}`",
1002 place_span, kind
1003 );
1004 return;
1005 }
1006
1007 let mutability_error = self.check_access_permissions(
1008 place_span,
1009 rw,
1010 is_local_mutation_allowed,
1011 flow_state,
1012 location,
1013 );
1014 let conflict_error =
1015 self.check_access_for_conflict(location, place_span, sd, rw, flow_state);
1016
1017 if conflict_error || mutability_error {
1018 debug!("access_place: logging error place_span=`{:?}` kind=`{:?}`", place_span, kind);
1019 self.access_place_error_reported.insert((place_span.0, place_span.1));
1020 }
1021 }
1022
1023 #[instrument(level = "debug", skip(self, flow_state))]
check_access_for_conflict( &mut self, location: Location, place_span: (Place<'tcx>, Span), sd: AccessDepth, rw: ReadOrWrite, flow_state: &Flows<'cx, 'tcx>, ) -> bool1024 fn check_access_for_conflict(
1025 &mut self,
1026 location: Location,
1027 place_span: (Place<'tcx>, Span),
1028 sd: AccessDepth,
1029 rw: ReadOrWrite,
1030 flow_state: &Flows<'cx, 'tcx>,
1031 ) -> bool {
1032 let mut error_reported = false;
1033 let tcx = self.infcx.tcx;
1034 let body = self.body;
1035 let borrow_set = self.borrow_set.clone();
1036
1037 // Use polonius output if it has been enabled.
1038 let polonius_output = self.polonius_output.clone();
1039 let borrows_in_scope = if let Some(polonius) = &polonius_output {
1040 let location = self.location_table.start_index(location);
1041 Either::Left(polonius.errors_at(location).iter().copied())
1042 } else {
1043 Either::Right(flow_state.borrows.iter())
1044 };
1045
1046 each_borrow_involving_path(
1047 self,
1048 tcx,
1049 body,
1050 location,
1051 (sd, place_span.0),
1052 &borrow_set,
1053 borrows_in_scope,
1054 |this, borrow_index, borrow| match (rw, borrow.kind) {
1055 // Obviously an activation is compatible with its own
1056 // reservation (or even prior activating uses of same
1057 // borrow); so don't check if they interfere.
1058 //
1059 // NOTE: *reservations* do conflict with themselves;
1060 // thus aren't injecting unsoundness w/ this check.)
1061 (Activation(_, activating), _) if activating == borrow_index => {
1062 debug!(
1063 "check_access_for_conflict place_span: {:?} sd: {:?} rw: {:?} \
1064 skipping {:?} b/c activation of same borrow_index",
1065 place_span,
1066 sd,
1067 rw,
1068 (borrow_index, borrow),
1069 );
1070 Control::Continue
1071 }
1072
1073 (Read(_), BorrowKind::Shared | BorrowKind::Shallow)
1074 | (Read(ReadKind::Borrow(BorrowKind::Shallow)), BorrowKind::Mut { .. }) => {
1075 Control::Continue
1076 }
1077
1078 (Reservation(_), BorrowKind::Shallow | BorrowKind::Shared) => {
1079 // This used to be a future compatibility warning (to be
1080 // disallowed on NLL). See rust-lang/rust#56254
1081 Control::Continue
1082 }
1083
1084 (Write(WriteKind::Move), BorrowKind::Shallow) => {
1085 // Handled by initialization checks.
1086 Control::Continue
1087 }
1088
1089 (Read(kind), BorrowKind::Mut { .. }) => {
1090 // Reading from mere reservations of mutable-borrows is OK.
1091 if !is_active(this.dominators(), borrow, location) {
1092 assert!(allow_two_phase_borrow(borrow.kind));
1093 return Control::Continue;
1094 }
1095
1096 error_reported = true;
1097 match kind {
1098 ReadKind::Copy => {
1099 let err = this
1100 .report_use_while_mutably_borrowed(location, place_span, borrow);
1101 this.buffer_error(err);
1102 }
1103 ReadKind::Borrow(bk) => {
1104 let err =
1105 this.report_conflicting_borrow(location, place_span, bk, borrow);
1106 this.buffer_error(err);
1107 }
1108 }
1109 Control::Break
1110 }
1111
1112 (Reservation(kind) | Activation(kind, _) | Write(kind), _) => {
1113 match rw {
1114 Reservation(..) => {
1115 debug!(
1116 "recording invalid reservation of \
1117 place: {:?}",
1118 place_span.0
1119 );
1120 this.reservation_error_reported.insert(place_span.0);
1121 }
1122 Activation(_, activating) => {
1123 debug!(
1124 "observing check_place for activation of \
1125 borrow_index: {:?}",
1126 activating
1127 );
1128 }
1129 Read(..) | Write(..) => {}
1130 }
1131
1132 error_reported = true;
1133 match kind {
1134 WriteKind::MutableBorrow(bk) => {
1135 let err =
1136 this.report_conflicting_borrow(location, place_span, bk, borrow);
1137 this.buffer_error(err);
1138 }
1139 WriteKind::StorageDeadOrDrop => this
1140 .report_borrowed_value_does_not_live_long_enough(
1141 location,
1142 borrow,
1143 place_span,
1144 Some(WriteKind::StorageDeadOrDrop),
1145 ),
1146 WriteKind::Mutate => {
1147 this.report_illegal_mutation_of_borrowed(location, place_span, borrow)
1148 }
1149 WriteKind::Move => {
1150 this.report_move_out_while_borrowed(location, place_span, borrow)
1151 }
1152 WriteKind::Replace => {
1153 this.report_illegal_mutation_of_borrowed(location, place_span, borrow)
1154 }
1155 }
1156 Control::Break
1157 }
1158 },
1159 );
1160
1161 error_reported
1162 }
1163
mutate_place( &mut self, location: Location, place_span: (Place<'tcx>, Span), kind: AccessDepth, flow_state: &Flows<'cx, 'tcx>, )1164 fn mutate_place(
1165 &mut self,
1166 location: Location,
1167 place_span: (Place<'tcx>, Span),
1168 kind: AccessDepth,
1169 flow_state: &Flows<'cx, 'tcx>,
1170 ) {
1171 // Write of P[i] or *P requires P init'd.
1172 self.check_if_assigned_path_is_moved(location, place_span, flow_state);
1173
1174 self.access_place(
1175 location,
1176 place_span,
1177 (kind, Write(WriteKind::Mutate)),
1178 LocalMutationIsAllowed::No,
1179 flow_state,
1180 );
1181 }
1182
consume_rvalue( &mut self, location: Location, (rvalue, span): (&'cx Rvalue<'tcx>, Span), flow_state: &Flows<'cx, 'tcx>, )1183 fn consume_rvalue(
1184 &mut self,
1185 location: Location,
1186 (rvalue, span): (&'cx Rvalue<'tcx>, Span),
1187 flow_state: &Flows<'cx, 'tcx>,
1188 ) {
1189 match rvalue {
1190 &Rvalue::Ref(_ /*rgn*/, bk, place) => {
1191 let access_kind = match bk {
1192 BorrowKind::Shallow => {
1193 (Shallow(Some(ArtificialField::ShallowBorrow)), Read(ReadKind::Borrow(bk)))
1194 }
1195 BorrowKind::Shared => (Deep, Read(ReadKind::Borrow(bk))),
1196 BorrowKind::Mut { .. } => {
1197 let wk = WriteKind::MutableBorrow(bk);
1198 if allow_two_phase_borrow(bk) {
1199 (Deep, Reservation(wk))
1200 } else {
1201 (Deep, Write(wk))
1202 }
1203 }
1204 };
1205
1206 self.access_place(
1207 location,
1208 (place, span),
1209 access_kind,
1210 LocalMutationIsAllowed::No,
1211 flow_state,
1212 );
1213
1214 let action = if bk == BorrowKind::Shallow {
1215 InitializationRequiringAction::MatchOn
1216 } else {
1217 InitializationRequiringAction::Borrow
1218 };
1219
1220 self.check_if_path_or_subpath_is_moved(
1221 location,
1222 action,
1223 (place.as_ref(), span),
1224 flow_state,
1225 );
1226 }
1227
1228 &Rvalue::AddressOf(mutability, place) => {
1229 let access_kind = match mutability {
1230 Mutability::Mut => (
1231 Deep,
1232 Write(WriteKind::MutableBorrow(BorrowKind::Mut {
1233 kind: MutBorrowKind::Default,
1234 })),
1235 ),
1236 Mutability::Not => (Deep, Read(ReadKind::Borrow(BorrowKind::Shared))),
1237 };
1238
1239 self.access_place(
1240 location,
1241 (place, span),
1242 access_kind,
1243 LocalMutationIsAllowed::No,
1244 flow_state,
1245 );
1246
1247 self.check_if_path_or_subpath_is_moved(
1248 location,
1249 InitializationRequiringAction::Borrow,
1250 (place.as_ref(), span),
1251 flow_state,
1252 );
1253 }
1254
1255 Rvalue::ThreadLocalRef(_) => {}
1256
1257 Rvalue::Use(operand)
1258 | Rvalue::Repeat(operand, _)
1259 | Rvalue::UnaryOp(_ /*un_op*/, operand)
1260 | Rvalue::Cast(_ /*cast_kind*/, operand, _ /*ty*/)
1261 | Rvalue::ShallowInitBox(operand, _ /*ty*/) => {
1262 self.consume_operand(location, (operand, span), flow_state)
1263 }
1264
1265 &Rvalue::CopyForDeref(place) => {
1266 self.access_place(
1267 location,
1268 (place, span),
1269 (Deep, Read(ReadKind::Copy)),
1270 LocalMutationIsAllowed::No,
1271 flow_state,
1272 );
1273
1274 // Finally, check if path was already moved.
1275 self.check_if_path_or_subpath_is_moved(
1276 location,
1277 InitializationRequiringAction::Use,
1278 (place.as_ref(), span),
1279 flow_state,
1280 );
1281 }
1282
1283 &(Rvalue::Len(place) | Rvalue::Discriminant(place)) => {
1284 let af = match *rvalue {
1285 Rvalue::Len(..) => Some(ArtificialField::ArrayLength),
1286 Rvalue::Discriminant(..) => None,
1287 _ => unreachable!(),
1288 };
1289 self.access_place(
1290 location,
1291 (place, span),
1292 (Shallow(af), Read(ReadKind::Copy)),
1293 LocalMutationIsAllowed::No,
1294 flow_state,
1295 );
1296 self.check_if_path_or_subpath_is_moved(
1297 location,
1298 InitializationRequiringAction::Use,
1299 (place.as_ref(), span),
1300 flow_state,
1301 );
1302 }
1303
1304 Rvalue::BinaryOp(_bin_op, box (operand1, operand2))
1305 | Rvalue::CheckedBinaryOp(_bin_op, box (operand1, operand2)) => {
1306 self.consume_operand(location, (operand1, span), flow_state);
1307 self.consume_operand(location, (operand2, span), flow_state);
1308 }
1309
1310 Rvalue::NullaryOp(_op, _ty) => {
1311 // nullary ops take no dynamic input; no borrowck effect.
1312 }
1313
1314 Rvalue::Aggregate(aggregate_kind, operands) => {
1315 // We need to report back the list of mutable upvars that were
1316 // moved into the closure and subsequently used by the closure,
1317 // in order to populate our used_mut set.
1318 match **aggregate_kind {
1319 AggregateKind::Closure(def_id, _) | AggregateKind::Generator(def_id, _, _) => {
1320 let def_id = def_id.expect_local();
1321 let BorrowCheckResult { used_mut_upvars, .. } =
1322 self.infcx.tcx.mir_borrowck(def_id);
1323 debug!("{:?} used_mut_upvars={:?}", def_id, used_mut_upvars);
1324 for field in used_mut_upvars {
1325 self.propagate_closure_used_mut_upvar(&operands[*field]);
1326 }
1327 }
1328 AggregateKind::Adt(..)
1329 | AggregateKind::Array(..)
1330 | AggregateKind::Tuple { .. } => (),
1331 }
1332
1333 for operand in operands {
1334 self.consume_operand(location, (operand, span), flow_state);
1335 }
1336 }
1337 }
1338 }
1339
propagate_closure_used_mut_upvar(&mut self, operand: &Operand<'tcx>)1340 fn propagate_closure_used_mut_upvar(&mut self, operand: &Operand<'tcx>) {
1341 let propagate_closure_used_mut_place = |this: &mut Self, place: Place<'tcx>| {
1342 // We have three possibilities here:
1343 // a. We are modifying something through a mut-ref
1344 // b. We are modifying something that is local to our parent
1345 // c. Current body is a nested closure, and we are modifying path starting from
1346 // a Place captured by our parent closure.
1347
1348 // Handle (c), the path being modified is exactly the path captured by our parent
1349 if let Some(field) = this.is_upvar_field_projection(place.as_ref()) {
1350 this.used_mut_upvars.push(field);
1351 return;
1352 }
1353
1354 for (place_ref, proj) in place.iter_projections().rev() {
1355 // Handle (a)
1356 if proj == ProjectionElem::Deref {
1357 match place_ref.ty(this.body(), this.infcx.tcx).ty.kind() {
1358 // We aren't modifying a variable directly
1359 ty::Ref(_, _, hir::Mutability::Mut) => return,
1360
1361 _ => {}
1362 }
1363 }
1364
1365 // Handle (c)
1366 if let Some(field) = this.is_upvar_field_projection(place_ref) {
1367 this.used_mut_upvars.push(field);
1368 return;
1369 }
1370 }
1371
1372 // Handle(b)
1373 this.used_mut.insert(place.local);
1374 };
1375
1376 // This relies on the current way that by-value
1377 // captures of a closure are copied/moved directly
1378 // when generating MIR.
1379 match *operand {
1380 Operand::Move(place) | Operand::Copy(place) => {
1381 match place.as_local() {
1382 Some(local) if !self.body.local_decls[local].is_user_variable() => {
1383 if self.body.local_decls[local].ty.is_mutable_ptr() {
1384 // The variable will be marked as mutable by the borrow.
1385 return;
1386 }
1387 // This is an edge case where we have a `move` closure
1388 // inside a non-move closure, and the inner closure
1389 // contains a mutation:
1390 //
1391 // let mut i = 0;
1392 // || { move || { i += 1; }; };
1393 //
1394 // In this case our usual strategy of assuming that the
1395 // variable will be captured by mutable reference is
1396 // wrong, since `i` can be copied into the inner
1397 // closure from a shared reference.
1398 //
1399 // As such we have to search for the local that this
1400 // capture comes from and mark it as being used as mut.
1401
1402 let temp_mpi = self.move_data.rev_lookup.find_local(local);
1403 let init = if let [init_index] = *self.move_data.init_path_map[temp_mpi] {
1404 &self.move_data.inits[init_index]
1405 } else {
1406 bug!("temporary should be initialized exactly once")
1407 };
1408
1409 let InitLocation::Statement(loc) = init.location else {
1410 bug!("temporary initialized in arguments")
1411 };
1412
1413 let body = self.body;
1414 let bbd = &body[loc.block];
1415 let stmt = &bbd.statements[loc.statement_index];
1416 debug!("temporary assigned in: stmt={:?}", stmt);
1417
1418 if let StatementKind::Assign(box (_, Rvalue::Ref(_, _, source))) = stmt.kind
1419 {
1420 propagate_closure_used_mut_place(self, source);
1421 } else {
1422 bug!(
1423 "closures should only capture user variables \
1424 or references to user variables"
1425 );
1426 }
1427 }
1428 _ => propagate_closure_used_mut_place(self, place),
1429 }
1430 }
1431 Operand::Constant(..) => {}
1432 }
1433 }
1434
consume_operand( &mut self, location: Location, (operand, span): (&'cx Operand<'tcx>, Span), flow_state: &Flows<'cx, 'tcx>, )1435 fn consume_operand(
1436 &mut self,
1437 location: Location,
1438 (operand, span): (&'cx Operand<'tcx>, Span),
1439 flow_state: &Flows<'cx, 'tcx>,
1440 ) {
1441 match *operand {
1442 Operand::Copy(place) => {
1443 // copy of place: check if this is "copy of frozen path"
1444 // (FIXME: see check_loans.rs)
1445 self.access_place(
1446 location,
1447 (place, span),
1448 (Deep, Read(ReadKind::Copy)),
1449 LocalMutationIsAllowed::No,
1450 flow_state,
1451 );
1452
1453 // Finally, check if path was already moved.
1454 self.check_if_path_or_subpath_is_moved(
1455 location,
1456 InitializationRequiringAction::Use,
1457 (place.as_ref(), span),
1458 flow_state,
1459 );
1460 }
1461 Operand::Move(place) => {
1462 // move of place: check if this is move of already borrowed path
1463 self.access_place(
1464 location,
1465 (place, span),
1466 (Deep, Write(WriteKind::Move)),
1467 LocalMutationIsAllowed::Yes,
1468 flow_state,
1469 );
1470
1471 // Finally, check if path was already moved.
1472 self.check_if_path_or_subpath_is_moved(
1473 location,
1474 InitializationRequiringAction::Use,
1475 (place.as_ref(), span),
1476 flow_state,
1477 );
1478 }
1479 Operand::Constant(_) => {}
1480 }
1481 }
1482
1483 /// Checks whether a borrow of this place is invalidated when the function
1484 /// exits
1485 #[instrument(level = "debug", skip(self))]
check_for_invalidation_at_exit( &mut self, location: Location, borrow: &BorrowData<'tcx>, span: Span, )1486 fn check_for_invalidation_at_exit(
1487 &mut self,
1488 location: Location,
1489 borrow: &BorrowData<'tcx>,
1490 span: Span,
1491 ) {
1492 let place = borrow.borrowed_place;
1493 let mut root_place = PlaceRef { local: place.local, projection: &[] };
1494
1495 // FIXME(nll-rfc#40): do more precise destructor tracking here. For now
1496 // we just know that all locals are dropped at function exit (otherwise
1497 // we'll have a memory leak) and assume that all statics have a destructor.
1498 //
1499 // FIXME: allow thread-locals to borrow other thread locals?
1500
1501 let (might_be_alive, will_be_dropped) =
1502 if self.body.local_decls[root_place.local].is_ref_to_thread_local() {
1503 // Thread-locals might be dropped after the function exits
1504 // We have to dereference the outer reference because
1505 // borrows don't conflict behind shared references.
1506 root_place.projection = TyCtxtConsts::DEREF_PROJECTION;
1507 (true, true)
1508 } else {
1509 (false, self.locals_are_invalidated_at_exit)
1510 };
1511
1512 if !will_be_dropped {
1513 debug!("place_is_invalidated_at_exit({:?}) - won't be dropped", place);
1514 return;
1515 }
1516
1517 let sd = if might_be_alive { Deep } else { Shallow(None) };
1518
1519 if places_conflict::borrow_conflicts_with_place(
1520 self.infcx.tcx,
1521 &self.body,
1522 place,
1523 borrow.kind,
1524 root_place,
1525 sd,
1526 places_conflict::PlaceConflictBias::Overlap,
1527 ) {
1528 debug!("check_for_invalidation_at_exit({:?}): INVALID", place);
1529 // FIXME: should be talking about the region lifetime instead
1530 // of just a span here.
1531 let span = self.infcx.tcx.sess.source_map().end_point(span);
1532 self.report_borrowed_value_does_not_live_long_enough(
1533 location,
1534 borrow,
1535 (place, span),
1536 None,
1537 )
1538 }
1539 }
1540
1541 /// Reports an error if this is a borrow of local data.
1542 /// This is called for all Yield expressions on movable generators
check_for_local_borrow(&mut self, borrow: &BorrowData<'tcx>, yield_span: Span)1543 fn check_for_local_borrow(&mut self, borrow: &BorrowData<'tcx>, yield_span: Span) {
1544 debug!("check_for_local_borrow({:?})", borrow);
1545
1546 if borrow_of_local_data(borrow.borrowed_place) {
1547 let err = self.cannot_borrow_across_generator_yield(
1548 self.retrieve_borrow_spans(borrow).var_or_use(),
1549 yield_span,
1550 );
1551
1552 self.buffer_error(err);
1553 }
1554 }
1555
check_activations(&mut self, location: Location, span: Span, flow_state: &Flows<'cx, 'tcx>)1556 fn check_activations(&mut self, location: Location, span: Span, flow_state: &Flows<'cx, 'tcx>) {
1557 // Two-phase borrow support: For each activation that is newly
1558 // generated at this statement, check if it interferes with
1559 // another borrow.
1560 let borrow_set = self.borrow_set.clone();
1561 for &borrow_index in borrow_set.activations_at_location(location) {
1562 let borrow = &borrow_set[borrow_index];
1563
1564 // only mutable borrows should be 2-phase
1565 assert!(match borrow.kind {
1566 BorrowKind::Shared | BorrowKind::Shallow => false,
1567 BorrowKind::Mut { .. } => true,
1568 });
1569
1570 self.access_place(
1571 location,
1572 (borrow.borrowed_place, span),
1573 (Deep, Activation(WriteKind::MutableBorrow(borrow.kind), borrow_index)),
1574 LocalMutationIsAllowed::No,
1575 flow_state,
1576 );
1577 // We do not need to call `check_if_path_or_subpath_is_moved`
1578 // again, as we already called it when we made the
1579 // initial reservation.
1580 }
1581 }
1582
check_if_full_path_is_moved( &mut self, location: Location, desired_action: InitializationRequiringAction, place_span: (PlaceRef<'tcx>, Span), flow_state: &Flows<'cx, 'tcx>, )1583 fn check_if_full_path_is_moved(
1584 &mut self,
1585 location: Location,
1586 desired_action: InitializationRequiringAction,
1587 place_span: (PlaceRef<'tcx>, Span),
1588 flow_state: &Flows<'cx, 'tcx>,
1589 ) {
1590 let maybe_uninits = &flow_state.uninits;
1591
1592 // Bad scenarios:
1593 //
1594 // 1. Move of `a.b.c`, use of `a.b.c`
1595 // 2. Move of `a.b.c`, use of `a.b.c.d` (without first reinitializing `a.b.c.d`)
1596 // 3. Uninitialized `(a.b.c: &_)`, use of `*a.b.c`; note that with
1597 // partial initialization support, one might have `a.x`
1598 // initialized but not `a.b`.
1599 //
1600 // OK scenarios:
1601 //
1602 // 4. Move of `a.b.c`, use of `a.b.d`
1603 // 5. Uninitialized `a.x`, initialized `a.b`, use of `a.b`
1604 // 6. Copied `(a.b: &_)`, use of `*(a.b).c`; note that `a.b`
1605 // must have been initialized for the use to be sound.
1606 // 7. Move of `a.b.c` then reinit of `a.b.c.d`, use of `a.b.c.d`
1607
1608 // The dataflow tracks shallow prefixes distinctly (that is,
1609 // field-accesses on P distinctly from P itself), in order to
1610 // track substructure initialization separately from the whole
1611 // structure.
1612 //
1613 // E.g., when looking at (*a.b.c).d, if the closest prefix for
1614 // which we have a MovePath is `a.b`, then that means that the
1615 // initialization state of `a.b` is all we need to inspect to
1616 // know if `a.b.c` is valid (and from that we infer that the
1617 // dereference and `.d` access is also valid, since we assume
1618 // `a.b.c` is assigned a reference to an initialized and
1619 // well-formed record structure.)
1620
1621 // Therefore, if we seek out the *closest* prefix for which we
1622 // have a MovePath, that should capture the initialization
1623 // state for the place scenario.
1624 //
1625 // This code covers scenarios 1, 2, and 3.
1626
1627 debug!("check_if_full_path_is_moved place: {:?}", place_span.0);
1628 let (prefix, mpi) = self.move_path_closest_to(place_span.0);
1629 if maybe_uninits.contains(mpi) {
1630 self.report_use_of_moved_or_uninitialized(
1631 location,
1632 desired_action,
1633 (prefix, place_span.0, place_span.1),
1634 mpi,
1635 );
1636 } // Only query longest prefix with a MovePath, not further
1637 // ancestors; dataflow recurs on children when parents
1638 // move (to support partial (re)inits).
1639 //
1640 // (I.e., querying parents breaks scenario 7; but may want
1641 // to do such a query based on partial-init feature-gate.)
1642 }
1643
1644 /// Subslices correspond to multiple move paths, so we iterate through the
1645 /// elements of the base array. For each element we check
1646 ///
1647 /// * Does this element overlap with our slice.
1648 /// * Is any part of it uninitialized.
check_if_subslice_element_is_moved( &mut self, location: Location, desired_action: InitializationRequiringAction, place_span: (PlaceRef<'tcx>, Span), maybe_uninits: &ChunkedBitSet<MovePathIndex>, from: u64, to: u64, )1649 fn check_if_subslice_element_is_moved(
1650 &mut self,
1651 location: Location,
1652 desired_action: InitializationRequiringAction,
1653 place_span: (PlaceRef<'tcx>, Span),
1654 maybe_uninits: &ChunkedBitSet<MovePathIndex>,
1655 from: u64,
1656 to: u64,
1657 ) {
1658 if let Some(mpi) = self.move_path_for_place(place_span.0) {
1659 let move_paths = &self.move_data.move_paths;
1660
1661 let root_path = &move_paths[mpi];
1662 for (child_mpi, child_move_path) in root_path.children(move_paths) {
1663 let last_proj = child_move_path.place.projection.last().unwrap();
1664 if let ProjectionElem::ConstantIndex { offset, from_end, .. } = last_proj {
1665 debug_assert!(!from_end, "Array constant indexing shouldn't be `from_end`.");
1666
1667 if (from..to).contains(offset) {
1668 let uninit_child =
1669 self.move_data.find_in_move_path_or_its_descendants(child_mpi, |mpi| {
1670 maybe_uninits.contains(mpi)
1671 });
1672
1673 if let Some(uninit_child) = uninit_child {
1674 self.report_use_of_moved_or_uninitialized(
1675 location,
1676 desired_action,
1677 (place_span.0, place_span.0, place_span.1),
1678 uninit_child,
1679 );
1680 return; // don't bother finding other problems.
1681 }
1682 }
1683 }
1684 }
1685 }
1686 }
1687
check_if_path_or_subpath_is_moved( &mut self, location: Location, desired_action: InitializationRequiringAction, place_span: (PlaceRef<'tcx>, Span), flow_state: &Flows<'cx, 'tcx>, )1688 fn check_if_path_or_subpath_is_moved(
1689 &mut self,
1690 location: Location,
1691 desired_action: InitializationRequiringAction,
1692 place_span: (PlaceRef<'tcx>, Span),
1693 flow_state: &Flows<'cx, 'tcx>,
1694 ) {
1695 let maybe_uninits = &flow_state.uninits;
1696
1697 // Bad scenarios:
1698 //
1699 // 1. Move of `a.b.c`, use of `a` or `a.b`
1700 // partial initialization support, one might have `a.x`
1701 // initialized but not `a.b`.
1702 // 2. All bad scenarios from `check_if_full_path_is_moved`
1703 //
1704 // OK scenarios:
1705 //
1706 // 3. Move of `a.b.c`, use of `a.b.d`
1707 // 4. Uninitialized `a.x`, initialized `a.b`, use of `a.b`
1708 // 5. Copied `(a.b: &_)`, use of `*(a.b).c`; note that `a.b`
1709 // must have been initialized for the use to be sound.
1710 // 6. Move of `a.b.c` then reinit of `a.b.c.d`, use of `a.b.c.d`
1711
1712 self.check_if_full_path_is_moved(location, desired_action, place_span, flow_state);
1713
1714 if let Some((place_base, ProjectionElem::Subslice { from, to, from_end: false })) =
1715 place_span.0.last_projection()
1716 {
1717 let place_ty = place_base.ty(self.body(), self.infcx.tcx);
1718 if let ty::Array(..) = place_ty.ty.kind() {
1719 self.check_if_subslice_element_is_moved(
1720 location,
1721 desired_action,
1722 (place_base, place_span.1),
1723 maybe_uninits,
1724 from,
1725 to,
1726 );
1727 return;
1728 }
1729 }
1730
1731 // A move of any shallow suffix of `place` also interferes
1732 // with an attempt to use `place`. This is scenario 3 above.
1733 //
1734 // (Distinct from handling of scenarios 1+2+4 above because
1735 // `place` does not interfere with suffixes of its prefixes,
1736 // e.g., `a.b.c` does not interfere with `a.b.d`)
1737 //
1738 // This code covers scenario 1.
1739
1740 debug!("check_if_path_or_subpath_is_moved place: {:?}", place_span.0);
1741 if let Some(mpi) = self.move_path_for_place(place_span.0) {
1742 let uninit_mpi = self
1743 .move_data
1744 .find_in_move_path_or_its_descendants(mpi, |mpi| maybe_uninits.contains(mpi));
1745
1746 if let Some(uninit_mpi) = uninit_mpi {
1747 self.report_use_of_moved_or_uninitialized(
1748 location,
1749 desired_action,
1750 (place_span.0, place_span.0, place_span.1),
1751 uninit_mpi,
1752 );
1753 return; // don't bother finding other problems.
1754 }
1755 }
1756 }
1757
1758 /// Currently MoveData does not store entries for all places in
1759 /// the input MIR. For example it will currently filter out
1760 /// places that are Copy; thus we do not track places of shared
1761 /// reference type. This routine will walk up a place along its
1762 /// prefixes, searching for a foundational place that *is*
1763 /// tracked in the MoveData.
1764 ///
1765 /// An Err result includes a tag indicated why the search failed.
1766 /// Currently this can only occur if the place is built off of a
1767 /// static variable, as we do not track those in the MoveData.
move_path_closest_to(&mut self, place: PlaceRef<'tcx>) -> (PlaceRef<'tcx>, MovePathIndex)1768 fn move_path_closest_to(&mut self, place: PlaceRef<'tcx>) -> (PlaceRef<'tcx>, MovePathIndex) {
1769 match self.move_data.rev_lookup.find(place) {
1770 LookupResult::Parent(Some(mpi)) | LookupResult::Exact(mpi) => {
1771 (self.move_data.move_paths[mpi].place.as_ref(), mpi)
1772 }
1773 LookupResult::Parent(None) => panic!("should have move path for every Local"),
1774 }
1775 }
1776
move_path_for_place(&mut self, place: PlaceRef<'tcx>) -> Option<MovePathIndex>1777 fn move_path_for_place(&mut self, place: PlaceRef<'tcx>) -> Option<MovePathIndex> {
1778 // If returns None, then there is no move path corresponding
1779 // to a direct owner of `place` (which means there is nothing
1780 // that borrowck tracks for its analysis).
1781
1782 match self.move_data.rev_lookup.find(place) {
1783 LookupResult::Parent(_) => None,
1784 LookupResult::Exact(mpi) => Some(mpi),
1785 }
1786 }
1787
check_if_assigned_path_is_moved( &mut self, location: Location, (place, span): (Place<'tcx>, Span), flow_state: &Flows<'cx, 'tcx>, )1788 fn check_if_assigned_path_is_moved(
1789 &mut self,
1790 location: Location,
1791 (place, span): (Place<'tcx>, Span),
1792 flow_state: &Flows<'cx, 'tcx>,
1793 ) {
1794 debug!("check_if_assigned_path_is_moved place: {:?}", place);
1795
1796 // None case => assigning to `x` does not require `x` be initialized.
1797 for (place_base, elem) in place.iter_projections().rev() {
1798 match elem {
1799 ProjectionElem::Index(_/*operand*/) |
1800 ProjectionElem::OpaqueCast(_) |
1801 ProjectionElem::ConstantIndex { .. } |
1802 // assigning to P[i] requires P to be valid.
1803 ProjectionElem::Downcast(_/*adt_def*/, _/*variant_idx*/) =>
1804 // assigning to (P->variant) is okay if assigning to `P` is okay
1805 //
1806 // FIXME: is this true even if P is an adt with a dtor?
1807 { }
1808
1809 // assigning to (*P) requires P to be initialized
1810 ProjectionElem::Deref => {
1811 self.check_if_full_path_is_moved(
1812 location, InitializationRequiringAction::Use,
1813 (place_base, span), flow_state);
1814 // (base initialized; no need to
1815 // recur further)
1816 break;
1817 }
1818
1819 ProjectionElem::Subslice { .. } => {
1820 panic!("we don't allow assignments to subslices, location: {:?}",
1821 location);
1822 }
1823
1824 ProjectionElem::Field(..) => {
1825 // if type of `P` has a dtor, then
1826 // assigning to `P.f` requires `P` itself
1827 // be already initialized
1828 let tcx = self.infcx.tcx;
1829 let base_ty = place_base.ty(self.body(), tcx).ty;
1830 match base_ty.kind() {
1831 ty::Adt(def, _) if def.has_dtor(tcx) => {
1832 self.check_if_path_or_subpath_is_moved(
1833 location, InitializationRequiringAction::Assignment,
1834 (place_base, span), flow_state);
1835
1836 // (base initialized; no need to
1837 // recur further)
1838 break;
1839 }
1840
1841 // Once `let s; s.x = V; read(s.x);`,
1842 // is allowed, remove this match arm.
1843 ty::Adt(..) | ty::Tuple(..) => {
1844 check_parent_of_field(self, location, place_base, span, flow_state);
1845 }
1846
1847 _ => {}
1848 }
1849 }
1850 }
1851 }
1852
1853 fn check_parent_of_field<'cx, 'tcx>(
1854 this: &mut MirBorrowckCtxt<'cx, 'tcx>,
1855 location: Location,
1856 base: PlaceRef<'tcx>,
1857 span: Span,
1858 flow_state: &Flows<'cx, 'tcx>,
1859 ) {
1860 // rust-lang/rust#21232: Until Rust allows reads from the
1861 // initialized parts of partially initialized structs, we
1862 // will, starting with the 2018 edition, reject attempts
1863 // to write to structs that are not fully initialized.
1864 //
1865 // In other words, *until* we allow this:
1866 //
1867 // 1. `let mut s; s.x = Val; read(s.x);`
1868 //
1869 // we will for now disallow this:
1870 //
1871 // 2. `let mut s; s.x = Val;`
1872 //
1873 // and also this:
1874 //
1875 // 3. `let mut s = ...; drop(s); s.x=Val;`
1876 //
1877 // This does not use check_if_path_or_subpath_is_moved,
1878 // because we want to *allow* reinitializations of fields:
1879 // e.g., want to allow
1880 //
1881 // `let mut s = ...; drop(s.x); s.x=Val;`
1882 //
1883 // This does not use check_if_full_path_is_moved on
1884 // `base`, because that would report an error about the
1885 // `base` as a whole, but in this scenario we *really*
1886 // want to report an error about the actual thing that was
1887 // moved, which may be some prefix of `base`.
1888
1889 // Shallow so that we'll stop at any dereference; we'll
1890 // report errors about issues with such bases elsewhere.
1891 let maybe_uninits = &flow_state.uninits;
1892
1893 // Find the shortest uninitialized prefix you can reach
1894 // without going over a Deref.
1895 let mut shortest_uninit_seen = None;
1896 for prefix in this.prefixes(base, PrefixSet::Shallow) {
1897 let Some(mpi) = this.move_path_for_place(prefix) else { continue };
1898
1899 if maybe_uninits.contains(mpi) {
1900 debug!(
1901 "check_parent_of_field updating shortest_uninit_seen from {:?} to {:?}",
1902 shortest_uninit_seen,
1903 Some((prefix, mpi))
1904 );
1905 shortest_uninit_seen = Some((prefix, mpi));
1906 } else {
1907 debug!("check_parent_of_field {:?} is definitely initialized", (prefix, mpi));
1908 }
1909 }
1910
1911 if let Some((prefix, mpi)) = shortest_uninit_seen {
1912 // Check for a reassignment into an uninitialized field of a union (for example,
1913 // after a move out). In this case, do not report an error here. There is an
1914 // exception, if this is the first assignment into the union (that is, there is
1915 // no move out from an earlier location) then this is an attempt at initialization
1916 // of the union - we should error in that case.
1917 let tcx = this.infcx.tcx;
1918 if base.ty(this.body(), tcx).ty.is_union() {
1919 if this.move_data.path_map[mpi].iter().any(|moi| {
1920 this.move_data.moves[*moi].source.is_predecessor_of(location, this.body)
1921 }) {
1922 return;
1923 }
1924 }
1925
1926 this.report_use_of_moved_or_uninitialized(
1927 location,
1928 InitializationRequiringAction::PartialAssignment,
1929 (prefix, base, span),
1930 mpi,
1931 );
1932
1933 // rust-lang/rust#21232, #54499, #54986: during period where we reject
1934 // partial initialization, do not complain about unnecessary `mut` on
1935 // an attempt to do a partial initialization.
1936 this.used_mut.insert(base.local);
1937 }
1938 }
1939 }
1940
1941 /// Checks the permissions for the given place and read or write kind
1942 ///
1943 /// Returns `true` if an error is reported.
check_access_permissions( &mut self, (place, span): (Place<'tcx>, Span), kind: ReadOrWrite, is_local_mutation_allowed: LocalMutationIsAllowed, flow_state: &Flows<'cx, 'tcx>, location: Location, ) -> bool1944 fn check_access_permissions(
1945 &mut self,
1946 (place, span): (Place<'tcx>, Span),
1947 kind: ReadOrWrite,
1948 is_local_mutation_allowed: LocalMutationIsAllowed,
1949 flow_state: &Flows<'cx, 'tcx>,
1950 location: Location,
1951 ) -> bool {
1952 debug!(
1953 "check_access_permissions({:?}, {:?}, is_local_mutation_allowed: {:?})",
1954 place, kind, is_local_mutation_allowed
1955 );
1956
1957 let error_access;
1958 let the_place_err;
1959
1960 match kind {
1961 Reservation(WriteKind::MutableBorrow(BorrowKind::Mut { kind: mut_borrow_kind }))
1962 | Write(WriteKind::MutableBorrow(BorrowKind::Mut { kind: mut_borrow_kind })) => {
1963 let is_local_mutation_allowed = match mut_borrow_kind {
1964 // `ClosureCapture` is used for mutable variable with a immutable binding.
1965 // This is only behaviour difference between `ClosureCapture` and mutable borrows.
1966 MutBorrowKind::ClosureCapture => LocalMutationIsAllowed::Yes,
1967 MutBorrowKind::Default | MutBorrowKind::TwoPhaseBorrow => {
1968 is_local_mutation_allowed
1969 }
1970 };
1971 match self.is_mutable(place.as_ref(), is_local_mutation_allowed) {
1972 Ok(root_place) => {
1973 self.add_used_mut(root_place, flow_state);
1974 return false;
1975 }
1976 Err(place_err) => {
1977 error_access = AccessKind::MutableBorrow;
1978 the_place_err = place_err;
1979 }
1980 }
1981 }
1982 Reservation(WriteKind::Mutate) | Write(WriteKind::Mutate) => {
1983 match self.is_mutable(place.as_ref(), is_local_mutation_allowed) {
1984 Ok(root_place) => {
1985 self.add_used_mut(root_place, flow_state);
1986 return false;
1987 }
1988 Err(place_err) => {
1989 error_access = AccessKind::Mutate;
1990 the_place_err = place_err;
1991 }
1992 }
1993 }
1994
1995 Reservation(
1996 WriteKind::Move
1997 | WriteKind::Replace
1998 | WriteKind::StorageDeadOrDrop
1999 | WriteKind::MutableBorrow(BorrowKind::Shared)
2000 | WriteKind::MutableBorrow(BorrowKind::Shallow),
2001 )
2002 | Write(
2003 WriteKind::Move
2004 | WriteKind::Replace
2005 | WriteKind::StorageDeadOrDrop
2006 | WriteKind::MutableBorrow(BorrowKind::Shared)
2007 | WriteKind::MutableBorrow(BorrowKind::Shallow),
2008 ) => {
2009 if self.is_mutable(place.as_ref(), is_local_mutation_allowed).is_err()
2010 && !self.has_buffered_errors()
2011 {
2012 // rust-lang/rust#46908: In pure NLL mode this code path should be
2013 // unreachable, but we use `delay_span_bug` because we can hit this when
2014 // dereferencing a non-Copy raw pointer *and* have `-Ztreat-err-as-bug`
2015 // enabled. We don't want to ICE for that case, as other errors will have
2016 // been emitted (#52262).
2017 self.infcx.tcx.sess.delay_span_bug(
2018 span,
2019 format!(
2020 "Accessing `{:?}` with the kind `{:?}` shouldn't be possible",
2021 place, kind,
2022 ),
2023 );
2024 }
2025 return false;
2026 }
2027 Activation(..) => {
2028 // permission checks are done at Reservation point.
2029 return false;
2030 }
2031 Read(
2032 ReadKind::Borrow(BorrowKind::Mut { .. } | BorrowKind::Shared | BorrowKind::Shallow)
2033 | ReadKind::Copy,
2034 ) => {
2035 // Access authorized
2036 return false;
2037 }
2038 }
2039
2040 // rust-lang/rust#21232, #54986: during period where we reject
2041 // partial initialization, do not complain about mutability
2042 // errors except for actual mutation (as opposed to an attempt
2043 // to do a partial initialization).
2044 let previously_initialized = self.is_local_ever_initialized(place.local, flow_state);
2045
2046 // at this point, we have set up the error reporting state.
2047 if let Some(init_index) = previously_initialized {
2048 if let (AccessKind::Mutate, Some(_)) = (error_access, place.as_local()) {
2049 // If this is a mutate access to an immutable local variable with no projections
2050 // report the error as an illegal reassignment
2051 let init = &self.move_data.inits[init_index];
2052 let assigned_span = init.span(&self.body);
2053 self.report_illegal_reassignment(location, (place, span), assigned_span, place);
2054 } else {
2055 self.report_mutability_error(place, span, the_place_err, error_access, location)
2056 }
2057 true
2058 } else {
2059 false
2060 }
2061 }
2062
is_local_ever_initialized( &self, local: Local, flow_state: &Flows<'cx, 'tcx>, ) -> Option<InitIndex>2063 fn is_local_ever_initialized(
2064 &self,
2065 local: Local,
2066 flow_state: &Flows<'cx, 'tcx>,
2067 ) -> Option<InitIndex> {
2068 let mpi = self.move_data.rev_lookup.find_local(local);
2069 let ii = &self.move_data.init_path_map[mpi];
2070 ii.into_iter().find(|&&index| flow_state.ever_inits.contains(index)).copied()
2071 }
2072
2073 /// Adds the place into the used mutable variables set
add_used_mut(&mut self, root_place: RootPlace<'tcx>, flow_state: &Flows<'cx, 'tcx>)2074 fn add_used_mut(&mut self, root_place: RootPlace<'tcx>, flow_state: &Flows<'cx, 'tcx>) {
2075 match root_place {
2076 RootPlace { place_local: local, place_projection: [], is_local_mutation_allowed } => {
2077 // If the local may have been initialized, and it is now currently being
2078 // mutated, then it is justified to be annotated with the `mut`
2079 // keyword, since the mutation may be a possible reassignment.
2080 if is_local_mutation_allowed != LocalMutationIsAllowed::Yes
2081 && self.is_local_ever_initialized(local, flow_state).is_some()
2082 {
2083 self.used_mut.insert(local);
2084 }
2085 }
2086 RootPlace {
2087 place_local: _,
2088 place_projection: _,
2089 is_local_mutation_allowed: LocalMutationIsAllowed::Yes,
2090 } => {}
2091 RootPlace {
2092 place_local,
2093 place_projection: place_projection @ [.., _],
2094 is_local_mutation_allowed: _,
2095 } => {
2096 if let Some(field) = self.is_upvar_field_projection(PlaceRef {
2097 local: place_local,
2098 projection: place_projection,
2099 }) {
2100 self.used_mut_upvars.push(field);
2101 }
2102 }
2103 }
2104 }
2105
2106 /// Whether this value can be written or borrowed mutably.
2107 /// Returns the root place if the place passed in is a projection.
is_mutable( &self, place: PlaceRef<'tcx>, is_local_mutation_allowed: LocalMutationIsAllowed, ) -> Result<RootPlace<'tcx>, PlaceRef<'tcx>>2108 fn is_mutable(
2109 &self,
2110 place: PlaceRef<'tcx>,
2111 is_local_mutation_allowed: LocalMutationIsAllowed,
2112 ) -> Result<RootPlace<'tcx>, PlaceRef<'tcx>> {
2113 debug!("is_mutable: place={:?}, is_local...={:?}", place, is_local_mutation_allowed);
2114 match place.last_projection() {
2115 None => {
2116 let local = &self.body.local_decls[place.local];
2117 match local.mutability {
2118 Mutability::Not => match is_local_mutation_allowed {
2119 LocalMutationIsAllowed::Yes => Ok(RootPlace {
2120 place_local: place.local,
2121 place_projection: place.projection,
2122 is_local_mutation_allowed: LocalMutationIsAllowed::Yes,
2123 }),
2124 LocalMutationIsAllowed::ExceptUpvars => Ok(RootPlace {
2125 place_local: place.local,
2126 place_projection: place.projection,
2127 is_local_mutation_allowed: LocalMutationIsAllowed::ExceptUpvars,
2128 }),
2129 LocalMutationIsAllowed::No => Err(place),
2130 },
2131 Mutability::Mut => Ok(RootPlace {
2132 place_local: place.local,
2133 place_projection: place.projection,
2134 is_local_mutation_allowed,
2135 }),
2136 }
2137 }
2138 Some((place_base, elem)) => {
2139 match elem {
2140 ProjectionElem::Deref => {
2141 let base_ty = place_base.ty(self.body(), self.infcx.tcx).ty;
2142
2143 // Check the kind of deref to decide
2144 match base_ty.kind() {
2145 ty::Ref(_, _, mutbl) => {
2146 match mutbl {
2147 // Shared borrowed data is never mutable
2148 hir::Mutability::Not => Err(place),
2149 // Mutably borrowed data is mutable, but only if we have a
2150 // unique path to the `&mut`
2151 hir::Mutability::Mut => {
2152 let mode = match self.is_upvar_field_projection(place) {
2153 Some(field) if self.upvars[field.index()].by_ref => {
2154 is_local_mutation_allowed
2155 }
2156 _ => LocalMutationIsAllowed::Yes,
2157 };
2158
2159 self.is_mutable(place_base, mode)
2160 }
2161 }
2162 }
2163 ty::RawPtr(tnm) => {
2164 match tnm.mutbl {
2165 // `*const` raw pointers are not mutable
2166 hir::Mutability::Not => Err(place),
2167 // `*mut` raw pointers are always mutable, regardless of
2168 // context. The users have to check by themselves.
2169 hir::Mutability::Mut => Ok(RootPlace {
2170 place_local: place.local,
2171 place_projection: place.projection,
2172 is_local_mutation_allowed,
2173 }),
2174 }
2175 }
2176 // `Box<T>` owns its content, so mutable if its location is mutable
2177 _ if base_ty.is_box() => {
2178 self.is_mutable(place_base, is_local_mutation_allowed)
2179 }
2180 // Deref should only be for reference, pointers or boxes
2181 _ => bug!("Deref of unexpected type: {:?}", base_ty),
2182 }
2183 }
2184 // All other projections are owned by their base path, so mutable if
2185 // base path is mutable
2186 ProjectionElem::Field(..)
2187 | ProjectionElem::Index(..)
2188 | ProjectionElem::ConstantIndex { .. }
2189 | ProjectionElem::Subslice { .. }
2190 | ProjectionElem::OpaqueCast { .. }
2191 | ProjectionElem::Downcast(..) => {
2192 let upvar_field_projection = self.is_upvar_field_projection(place);
2193 if let Some(field) = upvar_field_projection {
2194 let upvar = &self.upvars[field.index()];
2195 debug!(
2196 "is_mutable: upvar.mutability={:?} local_mutation_is_allowed={:?} \
2197 place={:?}, place_base={:?}",
2198 upvar, is_local_mutation_allowed, place, place_base
2199 );
2200 match (upvar.place.mutability, is_local_mutation_allowed) {
2201 (
2202 Mutability::Not,
2203 LocalMutationIsAllowed::No
2204 | LocalMutationIsAllowed::ExceptUpvars,
2205 ) => Err(place),
2206 (Mutability::Not, LocalMutationIsAllowed::Yes)
2207 | (Mutability::Mut, _) => {
2208 // Subtle: this is an upvar
2209 // reference, so it looks like
2210 // `self.foo` -- we want to double
2211 // check that the location `*self`
2212 // is mutable (i.e., this is not a
2213 // `Fn` closure). But if that
2214 // check succeeds, we want to
2215 // *blame* the mutability on
2216 // `place` (that is,
2217 // `self.foo`). This is used to
2218 // propagate the info about
2219 // whether mutability declarations
2220 // are used outwards, so that we register
2221 // the outer variable as mutable. Otherwise a
2222 // test like this fails to record the `mut`
2223 // as needed:
2224 //
2225 // ```
2226 // fn foo<F: FnOnce()>(_f: F) { }
2227 // fn main() {
2228 // let var = Vec::new();
2229 // foo(move || {
2230 // var.push(1);
2231 // });
2232 // }
2233 // ```
2234 let _ =
2235 self.is_mutable(place_base, is_local_mutation_allowed)?;
2236 Ok(RootPlace {
2237 place_local: place.local,
2238 place_projection: place.projection,
2239 is_local_mutation_allowed,
2240 })
2241 }
2242 }
2243 } else {
2244 self.is_mutable(place_base, is_local_mutation_allowed)
2245 }
2246 }
2247 }
2248 }
2249 }
2250 }
2251
2252 /// If `place` is a field projection, and the field is being projected from a closure type,
2253 /// then returns the index of the field being projected. Note that this closure will always
2254 /// be `self` in the current MIR, because that is the only time we directly access the fields
2255 /// of a closure type.
is_upvar_field_projection(&self, place_ref: PlaceRef<'tcx>) -> Option<FieldIdx>2256 fn is_upvar_field_projection(&self, place_ref: PlaceRef<'tcx>) -> Option<FieldIdx> {
2257 path_utils::is_upvar_field_projection(self.infcx.tcx, &self.upvars, place_ref, self.body())
2258 }
2259
dominators(&self) -> &Dominators<BasicBlock>2260 fn dominators(&self) -> &Dominators<BasicBlock> {
2261 // `BasicBlocks` computes dominators on-demand and caches them.
2262 self.body.basic_blocks.dominators()
2263 }
2264 }
2265
2266 mod error {
2267 use rustc_errors::ErrorGuaranteed;
2268
2269 use super::*;
2270
2271 pub struct BorrowckErrors<'tcx> {
2272 tcx: TyCtxt<'tcx>,
2273 /// This field keeps track of move errors that are to be reported for given move indices.
2274 ///
2275 /// There are situations where many errors can be reported for a single move out (see #53807)
2276 /// and we want only the best of those errors.
2277 ///
2278 /// The `report_use_of_moved_or_uninitialized` function checks this map and replaces the
2279 /// diagnostic (if there is one) if the `Place` of the error being reported is a prefix of the
2280 /// `Place` of the previous most diagnostic. This happens instead of buffering the error. Once
2281 /// all move errors have been reported, any diagnostics in this map are added to the buffer
2282 /// to be emitted.
2283 ///
2284 /// `BTreeMap` is used to preserve the order of insertions when iterating. This is necessary
2285 /// when errors in the map are being re-added to the error buffer so that errors with the
2286 /// same primary span come out in a consistent order.
2287 buffered_move_errors:
2288 BTreeMap<Vec<MoveOutIndex>, (PlaceRef<'tcx>, DiagnosticBuilder<'tcx, ErrorGuaranteed>)>,
2289 buffered_mut_errors: FxIndexMap<Span, (DiagnosticBuilder<'tcx, ErrorGuaranteed>, usize)>,
2290 /// Diagnostics to be reported buffer.
2291 buffered: Vec<Diagnostic>,
2292 /// Set to Some if we emit an error during borrowck
2293 tainted_by_errors: Option<ErrorGuaranteed>,
2294 }
2295
2296 impl<'tcx> BorrowckErrors<'tcx> {
new(tcx: TyCtxt<'tcx>) -> Self2297 pub fn new(tcx: TyCtxt<'tcx>) -> Self {
2298 BorrowckErrors {
2299 tcx,
2300 buffered_move_errors: BTreeMap::new(),
2301 buffered_mut_errors: Default::default(),
2302 buffered: Default::default(),
2303 tainted_by_errors: None,
2304 }
2305 }
2306
buffer_error(&mut self, t: DiagnosticBuilder<'_, ErrorGuaranteed>)2307 pub fn buffer_error(&mut self, t: DiagnosticBuilder<'_, ErrorGuaranteed>) {
2308 if let None = self.tainted_by_errors {
2309 self.tainted_by_errors = Some(
2310 self.tcx
2311 .sess
2312 .delay_span_bug(t.span.clone(), "diagnostic buffered but not emitted"),
2313 )
2314 }
2315 t.buffer(&mut self.buffered);
2316 }
2317
buffer_non_error_diag(&mut self, t: DiagnosticBuilder<'_, ()>)2318 pub fn buffer_non_error_diag(&mut self, t: DiagnosticBuilder<'_, ()>) {
2319 t.buffer(&mut self.buffered);
2320 }
2321
set_tainted_by_errors(&mut self, e: ErrorGuaranteed)2322 pub fn set_tainted_by_errors(&mut self, e: ErrorGuaranteed) {
2323 self.tainted_by_errors = Some(e);
2324 }
2325 }
2326
2327 impl<'cx, 'tcx> MirBorrowckCtxt<'cx, 'tcx> {
buffer_error(&mut self, t: DiagnosticBuilder<'_, ErrorGuaranteed>)2328 pub fn buffer_error(&mut self, t: DiagnosticBuilder<'_, ErrorGuaranteed>) {
2329 self.errors.buffer_error(t);
2330 }
2331
buffer_non_error_diag(&mut self, t: DiagnosticBuilder<'_, ()>)2332 pub fn buffer_non_error_diag(&mut self, t: DiagnosticBuilder<'_, ()>) {
2333 self.errors.buffer_non_error_diag(t);
2334 }
2335
buffer_move_error( &mut self, move_out_indices: Vec<MoveOutIndex>, place_and_err: (PlaceRef<'tcx>, DiagnosticBuilder<'tcx, ErrorGuaranteed>), ) -> bool2336 pub fn buffer_move_error(
2337 &mut self,
2338 move_out_indices: Vec<MoveOutIndex>,
2339 place_and_err: (PlaceRef<'tcx>, DiagnosticBuilder<'tcx, ErrorGuaranteed>),
2340 ) -> bool {
2341 if let Some((_, diag)) =
2342 self.errors.buffered_move_errors.insert(move_out_indices, place_and_err)
2343 {
2344 // Cancel the old diagnostic so we don't ICE
2345 diag.cancel();
2346 false
2347 } else {
2348 true
2349 }
2350 }
2351
get_buffered_mut_error( &mut self, span: Span, ) -> Option<(DiagnosticBuilder<'tcx, ErrorGuaranteed>, usize)>2352 pub fn get_buffered_mut_error(
2353 &mut self,
2354 span: Span,
2355 ) -> Option<(DiagnosticBuilder<'tcx, ErrorGuaranteed>, usize)> {
2356 self.errors.buffered_mut_errors.remove(&span)
2357 }
2358
buffer_mut_error( &mut self, span: Span, t: DiagnosticBuilder<'tcx, ErrorGuaranteed>, count: usize, )2359 pub fn buffer_mut_error(
2360 &mut self,
2361 span: Span,
2362 t: DiagnosticBuilder<'tcx, ErrorGuaranteed>,
2363 count: usize,
2364 ) {
2365 self.errors.buffered_mut_errors.insert(span, (t, count));
2366 }
2367
emit_errors(&mut self) -> Option<ErrorGuaranteed>2368 pub fn emit_errors(&mut self) -> Option<ErrorGuaranteed> {
2369 // Buffer any move errors that we collected and de-duplicated.
2370 for (_, (_, diag)) in std::mem::take(&mut self.errors.buffered_move_errors) {
2371 // We have already set tainted for this error, so just buffer it.
2372 diag.buffer(&mut self.errors.buffered);
2373 }
2374 for (_, (mut diag, count)) in std::mem::take(&mut self.errors.buffered_mut_errors) {
2375 if count > 10 {
2376 diag.note(format!("...and {} other attempted mutable borrows", count - 10));
2377 }
2378 diag.buffer(&mut self.errors.buffered);
2379 }
2380
2381 if !self.errors.buffered.is_empty() {
2382 self.errors.buffered.sort_by_key(|diag| diag.sort_span);
2383
2384 for mut diag in self.errors.buffered.drain(..) {
2385 self.infcx.tcx.sess.diagnostic().emit_diagnostic(&mut diag);
2386 }
2387 }
2388
2389 self.errors.tainted_by_errors
2390 }
2391
has_buffered_errors(&self) -> bool2392 pub fn has_buffered_errors(&self) -> bool {
2393 self.errors.buffered.is_empty()
2394 }
2395
has_move_error( &self, move_out_indices: &[MoveOutIndex], ) -> Option<&(PlaceRef<'tcx>, DiagnosticBuilder<'cx, ErrorGuaranteed>)>2396 pub fn has_move_error(
2397 &self,
2398 move_out_indices: &[MoveOutIndex],
2399 ) -> Option<&(PlaceRef<'tcx>, DiagnosticBuilder<'cx, ErrorGuaranteed>)> {
2400 self.errors.buffered_move_errors.get(move_out_indices)
2401 }
2402 }
2403 }
2404
2405 /// The degree of overlap between 2 places for borrow-checking.
2406 enum Overlap {
2407 /// The places might partially overlap - in this case, we give
2408 /// up and say that they might conflict. This occurs when
2409 /// different fields of a union are borrowed. For example,
2410 /// if `u` is a union, we have no way of telling how disjoint
2411 /// `u.a.x` and `a.b.y` are.
2412 Arbitrary,
2413 /// The places have the same type, and are either completely disjoint
2414 /// or equal - i.e., they can't "partially" overlap as can occur with
2415 /// unions. This is the "base case" on which we recur for extensions
2416 /// of the place.
2417 EqualOrDisjoint,
2418 /// The places are disjoint, so we know all extensions of them
2419 /// will also be disjoint.
2420 Disjoint,
2421 }
2422