1 // Copyright 2003-2009 The RE2 Authors. All Rights Reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 #ifndef RE2_RE2_H_ 6 #define RE2_RE2_H_ 7 8 // C++ interface to the re2 regular-expression library. 9 // RE2 supports Perl-style regular expressions (with extensions like 10 // \d, \w, \s, ...). 11 // 12 // ----------------------------------------------------------------------- 13 // REGEXP SYNTAX: 14 // 15 // This module uses the re2 library and hence supports 16 // its syntax for regular expressions, which is similar to Perl's with 17 // some of the more complicated things thrown away. In particular, 18 // backreferences and generalized assertions are not available, nor is \Z. 19 // 20 // See https://github.com/google/re2/wiki/Syntax for the syntax 21 // supported by RE2, and a comparison with PCRE and PERL regexps. 22 // 23 // For those not familiar with Perl's regular expressions, 24 // here are some examples of the most commonly used extensions: 25 // 26 // "hello (\\w+) world" -- \w matches a "word" character 27 // "version (\\d+)" -- \d matches a digit 28 // "hello\\s+world" -- \s matches any whitespace character 29 // "\\b(\\w+)\\b" -- \b matches non-empty string at word boundary 30 // "(?i)hello" -- (?i) turns on case-insensitive matching 31 // "/\\*(.*?)\\*/" -- .*? matches . minimum no. of times possible 32 // 33 // The double backslashes are needed when writing C++ string literals. 34 // However, they should NOT be used when writing C++11 raw string literals: 35 // 36 // R"(hello (\w+) world)" -- \w matches a "word" character 37 // R"(version (\d+))" -- \d matches a digit 38 // R"(hello\s+world)" -- \s matches any whitespace character 39 // R"(\b(\w+)\b)" -- \b matches non-empty string at word boundary 40 // R"((?i)hello)" -- (?i) turns on case-insensitive matching 41 // R"(/\*(.*?)\*/)" -- .*? matches . minimum no. of times possible 42 // 43 // When using UTF-8 encoding, case-insensitive matching will perform 44 // simple case folding, not full case folding. 45 // 46 // ----------------------------------------------------------------------- 47 // MATCHING INTERFACE: 48 // 49 // The "FullMatch" operation checks that supplied text matches a 50 // supplied pattern exactly. 51 // 52 // Example: successful match 53 // ABSL_CHECK(RE2::FullMatch("hello", "h.*o")); 54 // 55 // Example: unsuccessful match (requires full match): 56 // ABSL_CHECK(!RE2::FullMatch("hello", "e")); 57 // 58 // ----------------------------------------------------------------------- 59 // UTF-8 AND THE MATCHING INTERFACE: 60 // 61 // By default, the pattern and input text are interpreted as UTF-8. 62 // The RE2::Latin1 option causes them to be interpreted as Latin-1. 63 // 64 // Example: 65 // ABSL_CHECK(RE2::FullMatch(utf8_string, RE2(utf8_pattern))); 66 // ABSL_CHECK(RE2::FullMatch(latin1_string, RE2(latin1_pattern, 67 // RE2::Latin1))); 68 // 69 // ----------------------------------------------------------------------- 70 // SUBMATCH EXTRACTION: 71 // 72 // You can supply extra pointer arguments to extract submatches. 73 // On match failure, none of the pointees will have been modified. 74 // On match success, the submatches will be converted (as necessary) and 75 // their values will be assigned to their pointees until all conversions 76 // have succeeded or one conversion has failed. 77 // On conversion failure, the pointees will be in an indeterminate state 78 // because the caller has no way of knowing which conversion failed. 79 // However, conversion cannot fail for types like string and string_view 80 // that do not inspect the submatch contents. Hence, in the common case 81 // where all of the pointees are of such types, failure is always due to 82 // match failure and thus none of the pointees will have been modified. 83 // 84 // Example: extracts "ruby" into "s" and 1234 into "i" 85 // int i; 86 // std::string s; 87 // ABSL_CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s, &i)); 88 // 89 // Example: extracts "ruby" into "s" and no value into "i" 90 // absl::optional<int> i; 91 // std::string s; 92 // ABSL_CHECK(RE2::FullMatch("ruby", "(\\w+)(?::(\\d+))?", &s, &i)); 93 // 94 // Example: fails because string cannot be stored in integer 95 // ABSL_CHECK(!RE2::FullMatch("ruby", "(.*)", &i)); 96 // 97 // Example: fails because there aren't enough sub-patterns 98 // ABSL_CHECK(!RE2::FullMatch("ruby:1234", "\\w+:\\d+", &s)); 99 // 100 // Example: does not try to extract any extra sub-patterns 101 // ABSL_CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s)); 102 // 103 // Example: does not try to extract into NULL 104 // ABSL_CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", NULL, &i)); 105 // 106 // Example: integer overflow causes failure 107 // ABSL_CHECK(!RE2::FullMatch("ruby:1234567891234", "\\w+:(\\d+)", &i)); 108 // 109 // NOTE(rsc): Asking for submatches slows successful matches quite a bit. 110 // This may get a little faster in the future, but right now is slower 111 // than PCRE. On the other hand, failed matches run *very* fast (faster 112 // than PCRE), as do matches without submatch extraction. 113 // 114 // ----------------------------------------------------------------------- 115 // PARTIAL MATCHES 116 // 117 // You can use the "PartialMatch" operation when you want the pattern 118 // to match any substring of the text. 119 // 120 // Example: simple search for a string: 121 // ABSL_CHECK(RE2::PartialMatch("hello", "ell")); 122 // 123 // Example: find first number in a string 124 // int number; 125 // ABSL_CHECK(RE2::PartialMatch("x*100 + 20", "(\\d+)", &number)); 126 // ABSL_CHECK_EQ(number, 100); 127 // 128 // ----------------------------------------------------------------------- 129 // PRE-COMPILED REGULAR EXPRESSIONS 130 // 131 // RE2 makes it easy to use any string as a regular expression, without 132 // requiring a separate compilation step. 133 // 134 // If speed is of the essence, you can create a pre-compiled "RE2" 135 // object from the pattern and use it multiple times. If you do so, 136 // you can typically parse text faster than with sscanf. 137 // 138 // Example: precompile pattern for faster matching: 139 // RE2 pattern("h.*o"); 140 // while (ReadLine(&str)) { 141 // if (RE2::FullMatch(str, pattern)) ...; 142 // } 143 // 144 // ----------------------------------------------------------------------- 145 // SCANNING TEXT INCREMENTALLY 146 // 147 // The "Consume" operation may be useful if you want to repeatedly 148 // match regular expressions at the front of a string and skip over 149 // them as they match. This requires use of the string_view type, 150 // which represents a sub-range of a real string. 151 // 152 // Example: read lines of the form "var = value" from a string. 153 // std::string contents = ...; // Fill string somehow 154 // absl::string_view input(contents); // Wrap a string_view around it 155 // 156 // std::string var; 157 // int value; 158 // while (RE2::Consume(&input, "(\\w+) = (\\d+)\n", &var, &value)) { 159 // ...; 160 // } 161 // 162 // Each successful call to "Consume" will set "var/value", and also 163 // advance "input" so it points past the matched text. Note that if the 164 // regular expression matches an empty string, input will advance 165 // by 0 bytes. If the regular expression being used might match 166 // an empty string, the loop body must check for this case and either 167 // advance the string or break out of the loop. 168 // 169 // The "FindAndConsume" operation is similar to "Consume" but does not 170 // anchor your match at the beginning of the string. For example, you 171 // could extract all words from a string by repeatedly calling 172 // RE2::FindAndConsume(&input, "(\\w+)", &word) 173 // 174 // ----------------------------------------------------------------------- 175 // USING VARIABLE NUMBER OF ARGUMENTS 176 // 177 // The above operations require you to know the number of arguments 178 // when you write the code. This is not always possible or easy (for 179 // example, the regular expression may be calculated at run time). 180 // You can use the "N" version of the operations when the number of 181 // match arguments are determined at run time. 182 // 183 // Example: 184 // const RE2::Arg* args[10]; 185 // int n; 186 // // ... populate args with pointers to RE2::Arg values ... 187 // // ... set n to the number of RE2::Arg objects ... 188 // bool match = RE2::FullMatchN(input, pattern, args, n); 189 // 190 // The last statement is equivalent to 191 // 192 // bool match = RE2::FullMatch(input, pattern, 193 // *args[0], *args[1], ..., *args[n - 1]); 194 // 195 // ----------------------------------------------------------------------- 196 // PARSING HEX/OCTAL/C-RADIX NUMBERS 197 // 198 // By default, if you pass a pointer to a numeric value, the 199 // corresponding text is interpreted as a base-10 number. You can 200 // instead wrap the pointer with a call to one of the operators Hex(), 201 // Octal(), or CRadix() to interpret the text in another base. The 202 // CRadix operator interprets C-style "0" (base-8) and "0x" (base-16) 203 // prefixes, but defaults to base-10. 204 // 205 // Example: 206 // int a, b, c, d; 207 // ABSL_CHECK(RE2::FullMatch("100 40 0100 0x40", "(.*) (.*) (.*) (.*)", 208 // RE2::Octal(&a), RE2::Hex(&b), RE2::CRadix(&c), RE2::CRadix(&d)); 209 // will leave 64 in a, b, c, and d. 210 211 #include <stddef.h> 212 #include <stdint.h> 213 214 #include <algorithm> 215 #include <map> 216 #include <string> 217 #include <type_traits> 218 #include <vector> 219 220 #include "absl/base/call_once.h" 221 #include "absl/strings/string_view.h" 222 #include "absl/types/optional.h" 223 #include "re2/stringpiece.h" 224 225 #if defined(__APPLE__) 226 #include <TargetConditionals.h> 227 #endif 228 229 namespace re2 { 230 class Prog; 231 class Regexp; 232 } // namespace re2 233 234 namespace re2 { 235 236 // Interface for regular expression matching. Also corresponds to a 237 // pre-compiled regular expression. An "RE2" object is safe for 238 // concurrent use by multiple threads. 239 class RE2 { 240 public: 241 // We convert user-passed pointers into special Arg objects 242 class Arg; 243 class Options; 244 245 // Defined in set.h. 246 class Set; 247 248 enum ErrorCode { 249 NoError = 0, 250 251 // Unexpected error 252 ErrorInternal, 253 254 // Parse errors 255 ErrorBadEscape, // bad escape sequence 256 ErrorBadCharClass, // bad character class 257 ErrorBadCharRange, // bad character class range 258 ErrorMissingBracket, // missing closing ] 259 ErrorMissingParen, // missing closing ) 260 ErrorUnexpectedParen, // unexpected closing ) 261 ErrorTrailingBackslash, // trailing \ at end of regexp 262 ErrorRepeatArgument, // repeat argument missing, e.g. "*" 263 ErrorRepeatSize, // bad repetition argument 264 ErrorRepeatOp, // bad repetition operator 265 ErrorBadPerlOp, // bad perl operator 266 ErrorBadUTF8, // invalid UTF-8 in regexp 267 ErrorBadNamedCapture, // bad named capture group 268 ErrorPatternTooLarge // pattern too large (compile failed) 269 }; 270 271 // Predefined common options. 272 // If you need more complicated things, instantiate 273 // an Option class, possibly passing one of these to 274 // the Option constructor, change the settings, and pass that 275 // Option class to the RE2 constructor. 276 enum CannedOptions { 277 DefaultOptions = 0, 278 Latin1, // treat input as Latin-1 (default UTF-8) 279 POSIX, // POSIX syntax, leftmost-longest match 280 Quiet // do not log about regexp parse errors 281 }; 282 283 // Need to have the const char* and const std::string& forms for implicit 284 // conversions when passing string literals to FullMatch and PartialMatch. 285 // Otherwise the absl::string_view form would be sufficient. 286 RE2(const char* pattern); 287 RE2(const std::string& pattern); 288 RE2(absl::string_view pattern); 289 RE2(absl::string_view pattern, const Options& options); 290 ~RE2(); 291 292 // Not copyable. 293 // RE2 objects are expensive. You should probably use std::shared_ptr<RE2> 294 // instead. If you really must copy, RE2(first.pattern(), first.options()) 295 // effectively does so: it produces a second object that mimics the first. 296 RE2(const RE2&) = delete; 297 RE2& operator=(const RE2&) = delete; 298 // Not movable. 299 // RE2 objects are thread-safe and logically immutable. You should probably 300 // use std::unique_ptr<RE2> instead. Otherwise, consider std::deque<RE2> if 301 // direct emplacement into a container is desired. If you really must move, 302 // be prepared to submit a design document along with your feature request. 303 RE2(RE2&&) = delete; 304 RE2& operator=(RE2&&) = delete; 305 306 // Returns whether RE2 was created properly. ok()307 bool ok() const { return error_code() == NoError; } 308 309 // The string specification for this RE2. E.g. 310 // RE2 re("ab*c?d+"); 311 // re.pattern(); // "ab*c?d+" pattern()312 const std::string& pattern() const { return *pattern_; } 313 314 // If RE2 could not be created properly, returns an error string. 315 // Else returns the empty string. error()316 const std::string& error() const { return *error_; } 317 318 // If RE2 could not be created properly, returns an error code. 319 // Else returns RE2::NoError (== 0). error_code()320 ErrorCode error_code() const { return error_code_; } 321 322 // If RE2 could not be created properly, returns the offending 323 // portion of the regexp. error_arg()324 const std::string& error_arg() const { return *error_arg_; } 325 326 // Returns the program size, a very approximate measure of a regexp's "cost". 327 // Larger numbers are more expensive than smaller numbers. 328 int ProgramSize() const; 329 int ReverseProgramSize() const; 330 331 // If histogram is not null, outputs the program fanout 332 // as a histogram bucketed by powers of 2. 333 // Returns the number of the largest non-empty bucket. 334 int ProgramFanout(std::vector<int>* histogram) const; 335 int ReverseProgramFanout(std::vector<int>* histogram) const; 336 337 // Returns the underlying Regexp; not for general use. 338 // Returns entire_regexp_ so that callers don't need 339 // to know about prefix_ and prefix_foldcase_. Regexp()340 re2::Regexp* Regexp() const { return entire_regexp_; } 341 342 /***** The array-based matching interface ******/ 343 344 // The functions here have names ending in 'N' and are used to implement 345 // the functions whose names are the prefix before the 'N'. It is sometimes 346 // useful to invoke them directly, but the syntax is awkward, so the 'N'-less 347 // versions should be preferred. 348 static bool FullMatchN(absl::string_view text, const RE2& re, 349 const Arg* const args[], int n); 350 static bool PartialMatchN(absl::string_view text, const RE2& re, 351 const Arg* const args[], int n); 352 static bool ConsumeN(absl::string_view* input, const RE2& re, 353 const Arg* const args[], int n); 354 static bool FindAndConsumeN(absl::string_view* input, const RE2& re, 355 const Arg* const args[], int n); 356 357 private: 358 template <typename F, typename SP> Apply(F f,SP sp,const RE2 & re)359 static inline bool Apply(F f, SP sp, const RE2& re) { 360 return f(sp, re, NULL, 0); 361 } 362 363 template <typename F, typename SP, typename... A> Apply(F f,SP sp,const RE2 & re,const A &...a)364 static inline bool Apply(F f, SP sp, const RE2& re, const A&... a) { 365 const Arg* const args[] = {&a...}; 366 const int n = sizeof...(a); 367 return f(sp, re, args, n); 368 } 369 370 public: 371 // In order to allow FullMatch() et al. to be called with a varying number 372 // of arguments of varying types, we use two layers of variadic templates. 373 // The first layer constructs the temporary Arg objects. The second layer 374 // (above) constructs the array of pointers to the temporary Arg objects. 375 376 /***** The useful part: the matching interface *****/ 377 378 // Matches "text" against "re". If pointer arguments are 379 // supplied, copies matched sub-patterns into them. 380 // 381 // You can pass in a "const char*" or a "std::string" for "text". 382 // You can pass in a "const char*" or a "std::string" or a "RE2" for "re". 383 // 384 // The provided pointer arguments can be pointers to any scalar numeric 385 // type, or one of: 386 // std::string (matched piece is copied to string) 387 // absl::string_view (string_view is mutated to point to matched piece) 388 // absl::optional<T> (T is a supported numeric or string type as above) 389 // T ("bool T::ParseFrom(const char*, size_t)" must exist) 390 // (void*)NULL (the corresponding matched sub-pattern is not copied) 391 // 392 // Returns true iff all of the following conditions are satisfied: 393 // a. "text" matches "re" fully - from the beginning to the end of "text". 394 // b. The number of matched sub-patterns is >= number of supplied pointers. 395 // c. The "i"th argument has a suitable type for holding the 396 // string captured as the "i"th sub-pattern. If you pass in 397 // NULL for the "i"th argument, or pass fewer arguments than 398 // number of sub-patterns, the "i"th captured sub-pattern is 399 // ignored. 400 // 401 // CAVEAT: An optional sub-pattern that does not exist in the 402 // matched string is assigned the null string. Therefore, the 403 // following returns false because the null string - absence of 404 // a string (not even the empty string) - is not a valid number: 405 // 406 // int number; 407 // RE2::FullMatch("abc", "[a-z]+(\\d+)?", &number); 408 // 409 // Use absl::optional<int> instead to handle this case correctly. 410 template <typename... A> FullMatch(absl::string_view text,const RE2 & re,A &&...a)411 static bool FullMatch(absl::string_view text, const RE2& re, A&&... a) { 412 return Apply(FullMatchN, text, re, Arg(std::forward<A>(a))...); 413 } 414 415 // Like FullMatch(), except that "re" is allowed to match a substring 416 // of "text". 417 // 418 // Returns true iff all of the following conditions are satisfied: 419 // a. "text" matches "re" partially - for some substring of "text". 420 // b. The number of matched sub-patterns is >= number of supplied pointers. 421 // c. The "i"th argument has a suitable type for holding the 422 // string captured as the "i"th sub-pattern. If you pass in 423 // NULL for the "i"th argument, or pass fewer arguments than 424 // number of sub-patterns, the "i"th captured sub-pattern is 425 // ignored. 426 template <typename... A> PartialMatch(absl::string_view text,const RE2 & re,A &&...a)427 static bool PartialMatch(absl::string_view text, const RE2& re, A&&... a) { 428 return Apply(PartialMatchN, text, re, Arg(std::forward<A>(a))...); 429 } 430 431 // Like FullMatch() and PartialMatch(), except that "re" has to match 432 // a prefix of the text, and "input" is advanced past the matched 433 // text. Note: "input" is modified iff this routine returns true 434 // and "re" matched a non-empty substring of "input". 435 // 436 // Returns true iff all of the following conditions are satisfied: 437 // a. "input" matches "re" partially - for some prefix of "input". 438 // b. The number of matched sub-patterns is >= number of supplied pointers. 439 // c. The "i"th argument has a suitable type for holding the 440 // string captured as the "i"th sub-pattern. If you pass in 441 // NULL for the "i"th argument, or pass fewer arguments than 442 // number of sub-patterns, the "i"th captured sub-pattern is 443 // ignored. 444 template <typename... A> Consume(absl::string_view * input,const RE2 & re,A &&...a)445 static bool Consume(absl::string_view* input, const RE2& re, A&&... a) { 446 return Apply(ConsumeN, input, re, Arg(std::forward<A>(a))...); 447 } 448 449 // Like Consume(), but does not anchor the match at the beginning of 450 // the text. That is, "re" need not start its match at the beginning 451 // of "input". For example, "FindAndConsume(s, "(\\w+)", &word)" finds 452 // the next word in "s" and stores it in "word". 453 // 454 // Returns true iff all of the following conditions are satisfied: 455 // a. "input" matches "re" partially - for some substring of "input". 456 // b. The number of matched sub-patterns is >= number of supplied pointers. 457 // c. The "i"th argument has a suitable type for holding the 458 // string captured as the "i"th sub-pattern. If you pass in 459 // NULL for the "i"th argument, or pass fewer arguments than 460 // number of sub-patterns, the "i"th captured sub-pattern is 461 // ignored. 462 template <typename... A> FindAndConsume(absl::string_view * input,const RE2 & re,A &&...a)463 static bool FindAndConsume(absl::string_view* input, const RE2& re, A&&... a) { 464 return Apply(FindAndConsumeN, input, re, Arg(std::forward<A>(a))...); 465 } 466 467 // Replace the first match of "re" in "str" with "rewrite". 468 // Within "rewrite", backslash-escaped digits (\1 to \9) can be 469 // used to insert text matching corresponding parenthesized group 470 // from the pattern. \0 in "rewrite" refers to the entire matching 471 // text. E.g., 472 // 473 // std::string s = "yabba dabba doo"; 474 // ABSL_CHECK(RE2::Replace(&s, "b+", "d")); 475 // 476 // will leave "s" containing "yada dabba doo" 477 // 478 // Returns true if the pattern matches and a replacement occurs, 479 // false otherwise. 480 static bool Replace(std::string* str, 481 const RE2& re, 482 absl::string_view rewrite); 483 484 // Like Replace(), except replaces successive non-overlapping occurrences 485 // of the pattern in the string with the rewrite. E.g. 486 // 487 // std::string s = "yabba dabba doo"; 488 // ABSL_CHECK(RE2::GlobalReplace(&s, "b+", "d")); 489 // 490 // will leave "s" containing "yada dada doo" 491 // Replacements are not subject to re-matching. 492 // 493 // Because GlobalReplace only replaces non-overlapping matches, 494 // replacing "ana" within "banana" makes only one replacement, not two. 495 // 496 // Returns the number of replacements made. 497 static int GlobalReplace(std::string* str, 498 const RE2& re, 499 absl::string_view rewrite); 500 501 // Like Replace, except that if the pattern matches, "rewrite" 502 // is copied into "out" with substitutions. The non-matching 503 // portions of "text" are ignored. 504 // 505 // Returns true iff a match occurred and the extraction happened 506 // successfully; if no match occurs, the string is left unaffected. 507 // 508 // REQUIRES: "text" must not alias any part of "*out". 509 static bool Extract(absl::string_view text, 510 const RE2& re, 511 absl::string_view rewrite, 512 std::string* out); 513 514 // Escapes all potentially meaningful regexp characters in 515 // 'unquoted'. The returned string, used as a regular expression, 516 // will match exactly the original string. For example, 517 // 1.5-2.0? 518 // may become: 519 // 1\.5\-2\.0\? 520 static std::string QuoteMeta(absl::string_view unquoted); 521 522 // Computes range for any strings matching regexp. The min and max can in 523 // some cases be arbitrarily precise, so the caller gets to specify the 524 // maximum desired length of string returned. 525 // 526 // Assuming PossibleMatchRange(&min, &max, N) returns successfully, any 527 // string s that is an anchored match for this regexp satisfies 528 // min <= s && s <= max. 529 // 530 // Note that PossibleMatchRange() will only consider the first copy of an 531 // infinitely repeated element (i.e., any regexp element followed by a '*' or 532 // '+' operator). Regexps with "{N}" constructions are not affected, as those 533 // do not compile down to infinite repetitions. 534 // 535 // Returns true on success, false on error. 536 bool PossibleMatchRange(std::string* min, std::string* max, 537 int maxlen) const; 538 539 // Generic matching interface 540 541 // Type of match. 542 enum Anchor { 543 UNANCHORED, // No anchoring 544 ANCHOR_START, // Anchor at start only 545 ANCHOR_BOTH // Anchor at start and end 546 }; 547 548 // Return the number of capturing sub-patterns, or -1 if the 549 // regexp wasn't valid on construction. The overall match ($0) 550 // does not count: if the regexp is "(a)(b)", returns 2. NumberOfCapturingGroups()551 int NumberOfCapturingGroups() const { return num_captures_; } 552 553 // Return a map from names to capturing indices. 554 // The map records the index of the leftmost group 555 // with the given name. 556 // Only valid until the re is deleted. 557 const std::map<std::string, int>& NamedCapturingGroups() const; 558 559 // Return a map from capturing indices to names. 560 // The map has no entries for unnamed groups. 561 // Only valid until the re is deleted. 562 const std::map<int, std::string>& CapturingGroupNames() const; 563 564 // General matching routine. 565 // Match against text starting at offset startpos 566 // and stopping the search at offset endpos. 567 // Returns true if match found, false if not. 568 // On a successful match, fills in submatch[] (up to nsubmatch entries) 569 // with information about submatches. 570 // I.e. matching RE2("(foo)|(bar)baz") on "barbazbla" will return true, with 571 // submatch[0] = "barbaz", submatch[1].data() = NULL, submatch[2] = "bar", 572 // submatch[3].data() = NULL, ..., up to submatch[nsubmatch-1].data() = NULL. 573 // Caveat: submatch[] may be clobbered even on match failure. 574 // 575 // Don't ask for more match information than you will use: 576 // runs much faster with nsubmatch == 1 than nsubmatch > 1, and 577 // runs even faster if nsubmatch == 0. 578 // Doesn't make sense to use nsubmatch > 1 + NumberOfCapturingGroups(), 579 // but will be handled correctly. 580 // 581 // Passing text == absl::string_view() will be handled like any other 582 // empty string, but note that on return, it will not be possible to tell 583 // whether submatch i matched the empty string or did not match: 584 // either way, submatch[i].data() == NULL. 585 bool Match(absl::string_view text, 586 size_t startpos, 587 size_t endpos, 588 Anchor re_anchor, 589 absl::string_view* submatch, 590 int nsubmatch) const; 591 592 // Check that the given rewrite string is suitable for use with this 593 // regular expression. It checks that: 594 // * The regular expression has enough parenthesized subexpressions 595 // to satisfy all of the \N tokens in rewrite 596 // * The rewrite string doesn't have any syntax errors. E.g., 597 // '\' followed by anything other than a digit or '\'. 598 // A true return value guarantees that Replace() and Extract() won't 599 // fail because of a bad rewrite string. 600 bool CheckRewriteString(absl::string_view rewrite, 601 std::string* error) const; 602 603 // Returns the maximum submatch needed for the rewrite to be done by 604 // Replace(). E.g. if rewrite == "foo \\2,\\1", returns 2. 605 static int MaxSubmatch(absl::string_view rewrite); 606 607 // Append the "rewrite" string, with backslash substitutions from "vec", 608 // to string "out". 609 // Returns true on success. This method can fail because of a malformed 610 // rewrite string. CheckRewriteString guarantees that the rewrite will 611 // be sucessful. 612 bool Rewrite(std::string* out, 613 absl::string_view rewrite, 614 const absl::string_view* vec, 615 int veclen) const; 616 617 // Constructor options 618 class Options { 619 public: 620 // The options are (defaults in parentheses): 621 // 622 // utf8 (true) text and pattern are UTF-8; otherwise Latin-1 623 // posix_syntax (false) restrict regexps to POSIX egrep syntax 624 // longest_match (false) search for longest match, not first match 625 // log_errors (true) log syntax and execution errors to ERROR 626 // max_mem (see below) approx. max memory footprint of RE2 627 // literal (false) interpret string as literal, not regexp 628 // never_nl (false) never match \n, even if it is in regexp 629 // dot_nl (false) dot matches everything including new line 630 // never_capture (false) parse all parens as non-capturing 631 // case_sensitive (true) match is case-sensitive (regexp can override 632 // with (?i) unless in posix_syntax mode) 633 // 634 // The following options are only consulted when posix_syntax == true. 635 // When posix_syntax == false, these features are always enabled and 636 // cannot be turned off; to perform multi-line matching in that case, 637 // begin the regexp with (?m). 638 // perl_classes (false) allow Perl's \d \s \w \D \S \W 639 // word_boundary (false) allow Perl's \b \B (word boundary and not) 640 // one_line (false) ^ and $ only match beginning and end of text 641 // 642 // The max_mem option controls how much memory can be used 643 // to hold the compiled form of the regexp (the Prog) and 644 // its cached DFA graphs. Code Search placed limits on the number 645 // of Prog instructions and DFA states: 10,000 for both. 646 // In RE2, those limits would translate to about 240 KB per Prog 647 // and perhaps 2.5 MB per DFA (DFA state sizes vary by regexp; RE2 does a 648 // better job of keeping them small than Code Search did). 649 // Each RE2 has two Progs (one forward, one reverse), and each Prog 650 // can have two DFAs (one first match, one longest match). 651 // That makes 4 DFAs: 652 // 653 // forward, first-match - used for UNANCHORED or ANCHOR_START searches 654 // if opt.longest_match() == false 655 // forward, longest-match - used for all ANCHOR_BOTH searches, 656 // and the other two kinds if 657 // opt.longest_match() == true 658 // reverse, first-match - never used 659 // reverse, longest-match - used as second phase for unanchored searches 660 // 661 // The RE2 memory budget is statically divided between the two 662 // Progs and then the DFAs: two thirds to the forward Prog 663 // and one third to the reverse Prog. The forward Prog gives half 664 // of what it has left over to each of its DFAs. The reverse Prog 665 // gives it all to its longest-match DFA. 666 // 667 // Once a DFA fills its budget, it flushes its cache and starts over. 668 // If this happens too often, RE2 falls back on the NFA implementation. 669 670 // For now, make the default budget something close to Code Search. 671 static const int kDefaultMaxMem = 8<<20; 672 673 enum Encoding { 674 EncodingUTF8 = 1, 675 EncodingLatin1 676 }; 677 Options()678 Options() : 679 max_mem_(kDefaultMaxMem), 680 encoding_(EncodingUTF8), 681 posix_syntax_(false), 682 longest_match_(false), 683 log_errors_(true), 684 literal_(false), 685 never_nl_(false), 686 dot_nl_(false), 687 never_capture_(false), 688 case_sensitive_(true), 689 perl_classes_(false), 690 word_boundary_(false), 691 one_line_(false) { 692 } 693 694 /*implicit*/ Options(CannedOptions); 695 max_mem()696 int64_t max_mem() const { return max_mem_; } set_max_mem(int64_t m)697 void set_max_mem(int64_t m) { max_mem_ = m; } 698 encoding()699 Encoding encoding() const { return encoding_; } set_encoding(Encoding encoding)700 void set_encoding(Encoding encoding) { encoding_ = encoding; } 701 posix_syntax()702 bool posix_syntax() const { return posix_syntax_; } set_posix_syntax(bool b)703 void set_posix_syntax(bool b) { posix_syntax_ = b; } 704 longest_match()705 bool longest_match() const { return longest_match_; } set_longest_match(bool b)706 void set_longest_match(bool b) { longest_match_ = b; } 707 log_errors()708 bool log_errors() const { return log_errors_; } set_log_errors(bool b)709 void set_log_errors(bool b) { log_errors_ = b; } 710 literal()711 bool literal() const { return literal_; } set_literal(bool b)712 void set_literal(bool b) { literal_ = b; } 713 never_nl()714 bool never_nl() const { return never_nl_; } set_never_nl(bool b)715 void set_never_nl(bool b) { never_nl_ = b; } 716 dot_nl()717 bool dot_nl() const { return dot_nl_; } set_dot_nl(bool b)718 void set_dot_nl(bool b) { dot_nl_ = b; } 719 never_capture()720 bool never_capture() const { return never_capture_; } set_never_capture(bool b)721 void set_never_capture(bool b) { never_capture_ = b; } 722 case_sensitive()723 bool case_sensitive() const { return case_sensitive_; } set_case_sensitive(bool b)724 void set_case_sensitive(bool b) { case_sensitive_ = b; } 725 perl_classes()726 bool perl_classes() const { return perl_classes_; } set_perl_classes(bool b)727 void set_perl_classes(bool b) { perl_classes_ = b; } 728 word_boundary()729 bool word_boundary() const { return word_boundary_; } set_word_boundary(bool b)730 void set_word_boundary(bool b) { word_boundary_ = b; } 731 one_line()732 bool one_line() const { return one_line_; } set_one_line(bool b)733 void set_one_line(bool b) { one_line_ = b; } 734 Copy(const Options & src)735 void Copy(const Options& src) { 736 *this = src; 737 } 738 739 int ParseFlags() const; 740 741 private: 742 int64_t max_mem_; 743 Encoding encoding_; 744 bool posix_syntax_; 745 bool longest_match_; 746 bool log_errors_; 747 bool literal_; 748 bool never_nl_; 749 bool dot_nl_; 750 bool never_capture_; 751 bool case_sensitive_; 752 bool perl_classes_; 753 bool word_boundary_; 754 bool one_line_; 755 }; 756 757 // Returns the options set in the constructor. options()758 const Options& options() const { return options_; } 759 760 // Argument converters; see below. 761 template <typename T> 762 static Arg CRadix(T* ptr); 763 template <typename T> 764 static Arg Hex(T* ptr); 765 template <typename T> 766 static Arg Octal(T* ptr); 767 768 // Controls the maximum count permitted by GlobalReplace(); -1 is unlimited. 769 // FOR FUZZING ONLY. 770 static void FUZZING_ONLY_set_maximum_global_replace_count(int i); 771 772 private: 773 void Init(absl::string_view pattern, const Options& options); 774 775 bool DoMatch(absl::string_view text, 776 Anchor re_anchor, 777 size_t* consumed, 778 const Arg* const args[], 779 int n) const; 780 781 re2::Prog* ReverseProg() const; 782 783 // First cache line is relatively cold fields. 784 const std::string* pattern_; // string regular expression 785 Options options_; // option flags 786 re2::Regexp* entire_regexp_; // parsed regular expression 787 re2::Regexp* suffix_regexp_; // parsed regular expression, prefix_ removed 788 const std::string* error_; // error indicator (or points to empty string) 789 const std::string* error_arg_; // fragment of regexp showing error (or ditto) 790 791 // Second cache line is relatively hot fields. 792 // These are ordered oddly to pack everything. 793 int num_captures_; // number of capturing groups 794 ErrorCode error_code_ : 29; // error code (29 bits is more than enough) 795 bool longest_match_ : 1; // cached copy of options_.longest_match() 796 bool is_one_pass_ : 1; // can use prog_->SearchOnePass? 797 bool prefix_foldcase_ : 1; // prefix_ is ASCII case-insensitive 798 std::string prefix_; // required prefix (before suffix_regexp_) 799 re2::Prog* prog_; // compiled program for regexp 800 801 // Reverse Prog for DFA execution only 802 mutable re2::Prog* rprog_; 803 // Map from capture names to indices 804 mutable const std::map<std::string, int>* named_groups_; 805 // Map from capture indices to names 806 mutable const std::map<int, std::string>* group_names_; 807 808 mutable absl::once_flag rprog_once_; 809 mutable absl::once_flag named_groups_once_; 810 mutable absl::once_flag group_names_once_; 811 }; 812 813 /***** Implementation details *****/ 814 815 namespace re2_internal { 816 817 // Types for which the 3-ary Parse() function template has specializations. 818 template <typename T> struct Parse3ary : public std::false_type {}; 819 template <> struct Parse3ary<void> : public std::true_type {}; 820 template <> struct Parse3ary<std::string> : public std::true_type {}; 821 template <> struct Parse3ary<absl::string_view> : public std::true_type {}; 822 template <> struct Parse3ary<char> : public std::true_type {}; 823 template <> struct Parse3ary<signed char> : public std::true_type {}; 824 template <> struct Parse3ary<unsigned char> : public std::true_type {}; 825 template <> struct Parse3ary<float> : public std::true_type {}; 826 template <> struct Parse3ary<double> : public std::true_type {}; 827 828 template <typename T> 829 bool Parse(const char* str, size_t n, T* dest); 830 831 // Types for which the 4-ary Parse() function template has specializations. 832 template <typename T> struct Parse4ary : public std::false_type {}; 833 template <> struct Parse4ary<long> : public std::true_type {}; 834 template <> struct Parse4ary<unsigned long> : public std::true_type {}; 835 template <> struct Parse4ary<short> : public std::true_type {}; 836 template <> struct Parse4ary<unsigned short> : public std::true_type {}; 837 template <> struct Parse4ary<int> : public std::true_type {}; 838 template <> struct Parse4ary<unsigned int> : public std::true_type {}; 839 template <> struct Parse4ary<long long> : public std::true_type {}; 840 template <> struct Parse4ary<unsigned long long> : public std::true_type {}; 841 842 template <typename T> 843 bool Parse(const char* str, size_t n, T* dest, int radix); 844 845 // Support absl::optional<T> for all T with a stock parser. 846 template <typename T> struct Parse3ary<absl::optional<T>> : public Parse3ary<T> {}; 847 template <typename T> struct Parse4ary<absl::optional<T>> : public Parse4ary<T> {}; 848 849 template <typename T> 850 bool Parse(const char* str, size_t n, absl::optional<T>* dest) { 851 if (str == NULL) { 852 if (dest != NULL) 853 dest->reset(); 854 return true; 855 } 856 T tmp; 857 if (Parse(str, n, &tmp)) { 858 if (dest != NULL) 859 dest->emplace(std::move(tmp)); 860 return true; 861 } 862 return false; 863 } 864 865 template <typename T> 866 bool Parse(const char* str, size_t n, absl::optional<T>* dest, int radix) { 867 if (str == NULL) { 868 if (dest != NULL) 869 dest->reset(); 870 return true; 871 } 872 T tmp; 873 if (Parse(str, n, &tmp, radix)) { 874 if (dest != NULL) 875 dest->emplace(std::move(tmp)); 876 return true; 877 } 878 return false; 879 } 880 881 } // namespace re2_internal 882 883 class RE2::Arg { 884 private: 885 template <typename T> 886 using CanParse3ary = typename std::enable_if< 887 re2_internal::Parse3ary<T>::value, 888 int>::type; 889 890 template <typename T> 891 using CanParse4ary = typename std::enable_if< 892 re2_internal::Parse4ary<T>::value, 893 int>::type; 894 895 template <typename T> 896 using CanParseFrom = typename std::enable_if< 897 std::is_member_function_pointer< 898 decltype(static_cast<bool (T::*)(const char*, size_t)>( 899 &T::ParseFrom))>::value, 900 int>::type; 901 902 public: 903 Arg() : Arg(nullptr) {} 904 Arg(std::nullptr_t ptr) : arg_(ptr), parser_(DoNothing) {} 905 906 template <typename T, CanParse3ary<T> = 0> 907 Arg(T* ptr) : arg_(ptr), parser_(DoParse3ary<T>) {} 908 909 template <typename T, CanParse4ary<T> = 0> 910 Arg(T* ptr) : arg_(ptr), parser_(DoParse4ary<T>) {} 911 912 template <typename T, CanParseFrom<T> = 0> 913 Arg(T* ptr) : arg_(ptr), parser_(DoParseFrom<T>) {} 914 915 typedef bool (*Parser)(const char* str, size_t n, void* dest); 916 917 template <typename T> 918 Arg(T* ptr, Parser parser) : arg_(ptr), parser_(parser) {} 919 920 bool Parse(const char* str, size_t n) const { 921 return (*parser_)(str, n, arg_); 922 } 923 924 private: 925 static bool DoNothing(const char* /*str*/, size_t /*n*/, void* /*dest*/) { 926 return true; 927 } 928 929 template <typename T> 930 static bool DoParse3ary(const char* str, size_t n, void* dest) { 931 return re2_internal::Parse(str, n, reinterpret_cast<T*>(dest)); 932 } 933 934 template <typename T> 935 static bool DoParse4ary(const char* str, size_t n, void* dest) { 936 return re2_internal::Parse(str, n, reinterpret_cast<T*>(dest), 10); 937 } 938 939 template <typename T> 940 static bool DoParseFrom(const char* str, size_t n, void* dest) { 941 if (dest == NULL) return true; 942 return reinterpret_cast<T*>(dest)->ParseFrom(str, n); 943 } 944 945 void* arg_; 946 Parser parser_; 947 }; 948 949 template <typename T> 950 inline RE2::Arg RE2::CRadix(T* ptr) { 951 return RE2::Arg(ptr, [](const char* str, size_t n, void* dest) -> bool { 952 return re2_internal::Parse(str, n, reinterpret_cast<T*>(dest), 0); 953 }); 954 } 955 956 template <typename T> 957 inline RE2::Arg RE2::Hex(T* ptr) { 958 return RE2::Arg(ptr, [](const char* str, size_t n, void* dest) -> bool { 959 return re2_internal::Parse(str, n, reinterpret_cast<T*>(dest), 16); 960 }); 961 } 962 963 template <typename T> 964 inline RE2::Arg RE2::Octal(T* ptr) { 965 return RE2::Arg(ptr, [](const char* str, size_t n, void* dest) -> bool { 966 return re2_internal::Parse(str, n, reinterpret_cast<T*>(dest), 8); 967 }); 968 } 969 970 // Silence warnings about missing initializers for members of LazyRE2. 971 #if defined(__GNUC__) 972 #pragma GCC diagnostic ignored "-Wmissing-field-initializers" 973 #endif 974 975 // Helper for writing global or static RE2s safely. 976 // Write 977 // static LazyRE2 re = {".*"}; 978 // and then use *re instead of writing 979 // static RE2 re(".*"); 980 // The former is more careful about multithreaded 981 // situations than the latter. 982 // 983 // N.B. This class never deletes the RE2 object that 984 // it constructs: that's a feature, so that it can be used 985 // for global and function static variables. 986 class LazyRE2 { 987 private: 988 struct NoArg {}; 989 990 public: 991 typedef RE2 element_type; // support std::pointer_traits 992 993 // Constructor omitted to preserve braced initialization in C++98. 994 995 // Pretend to be a pointer to Type (never NULL due to on-demand creation): 996 RE2& operator*() const { return *get(); } 997 RE2* operator->() const { return get(); } 998 999 // Named accessor/initializer: 1000 RE2* get() const { 1001 absl::call_once(once_, &LazyRE2::Init, this); 1002 return ptr_; 1003 } 1004 1005 // All data fields must be public to support {"foo"} initialization. 1006 const char* pattern_; 1007 RE2::CannedOptions options_; 1008 NoArg barrier_against_excess_initializers_; 1009 1010 mutable RE2* ptr_; 1011 mutable absl::once_flag once_; 1012 1013 private: 1014 static void Init(const LazyRE2* lazy_re2) { 1015 lazy_re2->ptr_ = new RE2(lazy_re2->pattern_, lazy_re2->options_); 1016 } 1017 1018 void operator=(const LazyRE2&); // disallowed 1019 }; 1020 1021 namespace hooks { 1022 1023 // Most platforms support thread_local. Older versions of iOS don't support 1024 // thread_local, but for the sake of brevity, we lump together all versions 1025 // of Apple platforms that aren't macOS. If an iOS application really needs 1026 // the context pointee someday, we can get more specific then... 1027 // 1028 // As per https://github.com/google/re2/issues/325, thread_local support in 1029 // MinGW seems to be buggy. (FWIW, Abseil folks also avoid it.) 1030 #define RE2_HAVE_THREAD_LOCAL 1031 #if (defined(__APPLE__) && !(defined(TARGET_OS_OSX) && TARGET_OS_OSX)) || defined(__MINGW32__) 1032 #undef RE2_HAVE_THREAD_LOCAL 1033 #endif 1034 1035 // A hook must not make any assumptions regarding the lifetime of the context 1036 // pointee beyond the current invocation of the hook. Pointers and references 1037 // obtained via the context pointee should be considered invalidated when the 1038 // hook returns. Hence, any data about the context pointee (e.g. its pattern) 1039 // would have to be copied in order for it to be kept for an indefinite time. 1040 // 1041 // A hook must not use RE2 for matching. Control flow reentering RE2::Match() 1042 // could result in infinite mutual recursion. To discourage that possibility, 1043 // RE2 will not maintain the context pointer correctly when used in that way. 1044 #ifdef RE2_HAVE_THREAD_LOCAL 1045 extern thread_local const RE2* context; 1046 #endif 1047 1048 struct DFAStateCacheReset { 1049 int64_t state_budget; 1050 size_t state_cache_size; 1051 }; 1052 1053 struct DFASearchFailure { 1054 // Nothing yet... 1055 }; 1056 1057 #define DECLARE_HOOK(type) \ 1058 using type##Callback = void(const type&); \ 1059 void Set##type##Hook(type##Callback* cb); \ 1060 type##Callback* Get##type##Hook(); 1061 1062 DECLARE_HOOK(DFAStateCacheReset) 1063 DECLARE_HOOK(DFASearchFailure) 1064 1065 #undef DECLARE_HOOK 1066 1067 } // namespace hooks 1068 1069 } // namespace re2 1070 1071 using re2::RE2; 1072 using re2::LazyRE2; 1073 1074 #endif // RE2_RE2_H_ 1075