1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/bug.h>
14 #include <linux/mm.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/preempt.h>
17 #include <linux/msi.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/rcupdate.h>
21 #include <linux/ratelimit.h>
22 #include <linux/err.h>
23 #include <linux/irqflags.h>
24 #include <linux/context_tracking.h>
25 #include <linux/irqbypass.h>
26 #include <linux/rcuwait.h>
27 #include <linux/refcount.h>
28 #include <linux/nospec.h>
29 #include <asm/signal.h>
30
31 #include <linux/kvm.h>
32 #include <linux/kvm_para.h>
33
34 #include <linux/kvm_types.h>
35
36 #include <asm/kvm_host.h>
37
38 #ifndef KVM_MAX_VCPU_ID
39 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
40 #endif
41
42 /*
43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
44 * in kvm, other bits are visible for userspace which are defined in
45 * include/linux/kvm_h.
46 */
47 #define KVM_MEMSLOT_INVALID (1UL << 16)
48
49 /*
50 * Bit 63 of the memslot generation number is an "update in-progress flag",
51 * e.g. is temporarily set for the duration of install_new_memslots().
52 * This flag effectively creates a unique generation number that is used to
53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
54 * i.e. may (or may not) have come from the previous memslots generation.
55 *
56 * This is necessary because the actual memslots update is not atomic with
57 * respect to the generation number update. Updating the generation number
58 * first would allow a vCPU to cache a spte from the old memslots using the
59 * new generation number, and updating the generation number after switching
60 * to the new memslots would allow cache hits using the old generation number
61 * to reference the defunct memslots.
62 *
63 * This mechanism is used to prevent getting hits in KVM's caches while a
64 * memslot update is in-progress, and to prevent cache hits *after* updating
65 * the actual generation number against accesses that were inserted into the
66 * cache *before* the memslots were updated.
67 */
68 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
69
70 /* Two fragments for cross MMIO pages. */
71 #define KVM_MAX_MMIO_FRAGMENTS 2
72
73 #ifndef KVM_ADDRESS_SPACE_NUM
74 #define KVM_ADDRESS_SPACE_NUM 1
75 #endif
76
77 /*
78 * For the normal pfn, the highest 12 bits should be zero,
79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
80 * mask bit 63 to indicate the noslot pfn.
81 */
82 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
83 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
84 #define KVM_PFN_NOSLOT (0x1ULL << 63)
85
86 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
87 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
88 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
89
90 /*
91 * error pfns indicate that the gfn is in slot but faild to
92 * translate it to pfn on host.
93 */
is_error_pfn(kvm_pfn_t pfn)94 static inline bool is_error_pfn(kvm_pfn_t pfn)
95 {
96 return !!(pfn & KVM_PFN_ERR_MASK);
97 }
98
99 /*
100 * error_noslot pfns indicate that the gfn can not be
101 * translated to pfn - it is not in slot or failed to
102 * translate it to pfn.
103 */
is_error_noslot_pfn(kvm_pfn_t pfn)104 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
105 {
106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
107 }
108
109 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)110 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
111 {
112 return pfn == KVM_PFN_NOSLOT;
113 }
114
115 /*
116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
117 * provide own defines and kvm_is_error_hva
118 */
119 #ifndef KVM_HVA_ERR_BAD
120
121 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
122 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
123
kvm_is_error_hva(unsigned long addr)124 static inline bool kvm_is_error_hva(unsigned long addr)
125 {
126 return addr >= PAGE_OFFSET;
127 }
128
129 #endif
130
131 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
132
is_error_page(struct page * page)133 static inline bool is_error_page(struct page *page)
134 {
135 return IS_ERR(page);
136 }
137
138 #define KVM_REQUEST_MASK GENMASK(7,0)
139 #define KVM_REQUEST_NO_WAKEUP BIT(8)
140 #define KVM_REQUEST_WAIT BIT(9)
141 /*
142 * Architecture-independent vcpu->requests bit members
143 * Bits 4-7 are reserved for more arch-independent bits.
144 */
145 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
146 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
147 #define KVM_REQ_PENDING_TIMER 2
148 #define KVM_REQ_UNHALT 3
149 #define KVM_REQ_VM_BUGGED (4 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
150 #define KVM_REQUEST_ARCH_BASE 8
151
152 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
153 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
154 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
155 })
156 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
157
158 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
159 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
160
161 extern struct mutex kvm_lock;
162 extern struct list_head vm_list;
163
164 struct kvm_io_range {
165 gpa_t addr;
166 int len;
167 struct kvm_io_device *dev;
168 };
169
170 #define NR_IOBUS_DEVS 1000
171
172 struct kvm_io_bus {
173 int dev_count;
174 int ioeventfd_count;
175 struct kvm_io_range range[];
176 };
177
178 enum kvm_bus {
179 KVM_MMIO_BUS,
180 KVM_PIO_BUS,
181 KVM_VIRTIO_CCW_NOTIFY_BUS,
182 KVM_FAST_MMIO_BUS,
183 KVM_NR_BUSES
184 };
185
186 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
187 int len, const void *val);
188 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
189 gpa_t addr, int len, const void *val, long cookie);
190 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
191 int len, void *val);
192 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
193 int len, struct kvm_io_device *dev);
194 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
195 struct kvm_io_device *dev);
196 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
197 gpa_t addr);
198
199 #ifdef CONFIG_KVM_ASYNC_PF
200 struct kvm_async_pf {
201 struct work_struct work;
202 struct list_head link;
203 struct list_head queue;
204 struct kvm_vcpu *vcpu;
205 struct mm_struct *mm;
206 gpa_t cr2_or_gpa;
207 unsigned long addr;
208 struct kvm_arch_async_pf arch;
209 bool wakeup_all;
210 bool notpresent_injected;
211 };
212
213 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
214 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
215 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
216 unsigned long hva, struct kvm_arch_async_pf *arch);
217 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
218 #endif
219
220 enum {
221 OUTSIDE_GUEST_MODE,
222 IN_GUEST_MODE,
223 EXITING_GUEST_MODE,
224 READING_SHADOW_PAGE_TABLES,
225 };
226
227 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
228
229 struct kvm_host_map {
230 /*
231 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
232 * a 'struct page' for it. When using mem= kernel parameter some memory
233 * can be used as guest memory but they are not managed by host
234 * kernel).
235 * If 'pfn' is not managed by the host kernel, this field is
236 * initialized to KVM_UNMAPPED_PAGE.
237 */
238 struct page *page;
239 void *hva;
240 kvm_pfn_t pfn;
241 kvm_pfn_t gfn;
242 };
243
244 /*
245 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
246 * directly to check for that.
247 */
kvm_vcpu_mapped(struct kvm_host_map * map)248 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
249 {
250 return !!map->hva;
251 }
252
253 /*
254 * Sometimes a large or cross-page mmio needs to be broken up into separate
255 * exits for userspace servicing.
256 */
257 struct kvm_mmio_fragment {
258 gpa_t gpa;
259 void *data;
260 unsigned len;
261 };
262
263 struct kvm_vcpu {
264 struct kvm *kvm;
265 #ifdef CONFIG_PREEMPT_NOTIFIERS
266 struct preempt_notifier preempt_notifier;
267 #endif
268 int cpu;
269 int vcpu_id; /* id given by userspace at creation */
270 int vcpu_idx; /* index in kvm->vcpus array */
271 int srcu_idx;
272 int mode;
273 u64 requests;
274 unsigned long guest_debug;
275
276 int pre_pcpu;
277 struct list_head blocked_vcpu_list;
278
279 struct mutex mutex;
280 struct kvm_run *run;
281
282 struct rcuwait wait;
283 struct pid __rcu *pid;
284 int sigset_active;
285 sigset_t sigset;
286 struct kvm_vcpu_stat stat;
287 unsigned int halt_poll_ns;
288 bool valid_wakeup;
289
290 #ifdef CONFIG_HAS_IOMEM
291 int mmio_needed;
292 int mmio_read_completed;
293 int mmio_is_write;
294 int mmio_cur_fragment;
295 int mmio_nr_fragments;
296 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
297 #endif
298
299 #ifdef CONFIG_KVM_ASYNC_PF
300 struct {
301 u32 queued;
302 struct list_head queue;
303 struct list_head done;
304 spinlock_t lock;
305 } async_pf;
306 #endif
307
308 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
309 /*
310 * Cpu relax intercept or pause loop exit optimization
311 * in_spin_loop: set when a vcpu does a pause loop exit
312 * or cpu relax intercepted.
313 * dy_eligible: indicates whether vcpu is eligible for directed yield.
314 */
315 struct {
316 bool in_spin_loop;
317 bool dy_eligible;
318 } spin_loop;
319 #endif
320 bool preempted;
321 bool ready;
322 struct kvm_vcpu_arch arch;
323 };
324
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)325 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
326 {
327 /*
328 * The memory barrier ensures a previous write to vcpu->requests cannot
329 * be reordered with the read of vcpu->mode. It pairs with the general
330 * memory barrier following the write of vcpu->mode in VCPU RUN.
331 */
332 smp_mb__before_atomic();
333 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
334 }
335
336 /*
337 * Some of the bitops functions do not support too long bitmaps.
338 * This number must be determined not to exceed such limits.
339 */
340 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
341
342 struct kvm_memory_slot {
343 gfn_t base_gfn;
344 unsigned long npages;
345 unsigned long *dirty_bitmap;
346 struct kvm_arch_memory_slot arch;
347 unsigned long userspace_addr;
348 u32 flags;
349 short id;
350 u16 as_id;
351 };
352
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)353 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
354 {
355 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
356 }
357
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)358 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
359 {
360 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
361
362 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
363 }
364
365 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
366 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
367 #endif
368
369 struct kvm_s390_adapter_int {
370 u64 ind_addr;
371 u64 summary_addr;
372 u64 ind_offset;
373 u32 summary_offset;
374 u32 adapter_id;
375 };
376
377 struct kvm_hv_sint {
378 u32 vcpu;
379 u32 sint;
380 };
381
382 struct kvm_kernel_irq_routing_entry {
383 u32 gsi;
384 u32 type;
385 int (*set)(struct kvm_kernel_irq_routing_entry *e,
386 struct kvm *kvm, int irq_source_id, int level,
387 bool line_status);
388 union {
389 struct {
390 unsigned irqchip;
391 unsigned pin;
392 } irqchip;
393 struct {
394 u32 address_lo;
395 u32 address_hi;
396 u32 data;
397 u32 flags;
398 u32 devid;
399 } msi;
400 struct kvm_s390_adapter_int adapter;
401 struct kvm_hv_sint hv_sint;
402 };
403 struct hlist_node link;
404 };
405
406 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
407 struct kvm_irq_routing_table {
408 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
409 u32 nr_rt_entries;
410 /*
411 * Array indexed by gsi. Each entry contains list of irq chips
412 * the gsi is connected to.
413 */
414 struct hlist_head map[];
415 };
416 #endif
417
418 #ifndef KVM_PRIVATE_MEM_SLOTS
419 #define KVM_PRIVATE_MEM_SLOTS 0
420 #endif
421
422 #ifndef KVM_MEM_SLOTS_NUM
423 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
424 #endif
425
426 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)427 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
428 {
429 return 0;
430 }
431 #endif
432
433 /*
434 * Note:
435 * memslots are not sorted by id anymore, please use id_to_memslot()
436 * to get the memslot by its id.
437 */
438 struct kvm_memslots {
439 u64 generation;
440 /* The mapping table from slot id to the index in memslots[]. */
441 short id_to_index[KVM_MEM_SLOTS_NUM];
442 atomic_t lru_slot;
443 int used_slots;
444 struct kvm_memory_slot memslots[];
445 };
446
447 struct kvm {
448 spinlock_t mmu_lock;
449 struct mutex slots_lock;
450 struct mm_struct *mm; /* userspace tied to this vm */
451 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
452 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
453
454 /*
455 * created_vcpus is protected by kvm->lock, and is incremented
456 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
457 * incremented after storing the kvm_vcpu pointer in vcpus,
458 * and is accessed atomically.
459 */
460 atomic_t online_vcpus;
461 int created_vcpus;
462 int last_boosted_vcpu;
463 struct list_head vm_list;
464 struct mutex lock;
465 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
466 #ifdef CONFIG_HAVE_KVM_EVENTFD
467 struct {
468 spinlock_t lock;
469 struct list_head items;
470 struct list_head resampler_list;
471 struct mutex resampler_lock;
472 } irqfds;
473 struct list_head ioeventfds;
474 #endif
475 struct kvm_vm_stat stat;
476 struct kvm_arch arch;
477 refcount_t users_count;
478 #ifdef CONFIG_KVM_MMIO
479 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
480 spinlock_t ring_lock;
481 struct list_head coalesced_zones;
482 #endif
483
484 struct mutex irq_lock;
485 #ifdef CONFIG_HAVE_KVM_IRQCHIP
486 /*
487 * Update side is protected by irq_lock.
488 */
489 struct kvm_irq_routing_table __rcu *irq_routing;
490 #endif
491 #ifdef CONFIG_HAVE_KVM_IRQFD
492 struct hlist_head irq_ack_notifier_list;
493 #endif
494
495 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
496 struct mmu_notifier mmu_notifier;
497 unsigned long mmu_notifier_seq;
498 long mmu_notifier_count;
499 #endif
500 long tlbs_dirty;
501 struct list_head devices;
502 u64 manual_dirty_log_protect;
503 struct dentry *debugfs_dentry;
504 struct kvm_stat_data **debugfs_stat_data;
505 struct srcu_struct srcu;
506 struct srcu_struct irq_srcu;
507 pid_t userspace_pid;
508 unsigned int max_halt_poll_ns;
509 bool vm_bugged;
510 };
511
512 #define kvm_err(fmt, ...) \
513 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
514 #define kvm_info(fmt, ...) \
515 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
516 #define kvm_debug(fmt, ...) \
517 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
518 #define kvm_debug_ratelimited(fmt, ...) \
519 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
520 ## __VA_ARGS__)
521 #define kvm_pr_unimpl(fmt, ...) \
522 pr_err_ratelimited("kvm [%i]: " fmt, \
523 task_tgid_nr(current), ## __VA_ARGS__)
524
525 /* The guest did something we don't support. */
526 #define vcpu_unimpl(vcpu, fmt, ...) \
527 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
528 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
529
530 #define vcpu_debug(vcpu, fmt, ...) \
531 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
532 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
533 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
534 ## __VA_ARGS__)
535 #define vcpu_err(vcpu, fmt, ...) \
536 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
537
538 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
kvm_vm_bugged(struct kvm * kvm)539 static inline void kvm_vm_bugged(struct kvm *kvm)
540 {
541 kvm->vm_bugged = true;
542 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_BUGGED);
543 }
544
545 #define KVM_BUG(cond, kvm, fmt...) \
546 ({ \
547 int __ret = (cond); \
548 \
549 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
550 kvm_vm_bugged(kvm); \
551 unlikely(__ret); \
552 })
553
554 #define KVM_BUG_ON(cond, kvm) \
555 ({ \
556 int __ret = (cond); \
557 \
558 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
559 kvm_vm_bugged(kvm); \
560 unlikely(__ret); \
561 })
562
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)563 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
564 {
565 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
566 }
567
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)568 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
569 {
570 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
571 lockdep_is_held(&kvm->slots_lock) ||
572 !refcount_read(&kvm->users_count));
573 }
574
kvm_get_vcpu(struct kvm * kvm,int i)575 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
576 {
577 int num_vcpus = atomic_read(&kvm->online_vcpus);
578
579 /*
580 * Explicitly verify the target vCPU is online, as the anti-speculation
581 * logic only limits the CPU's ability to speculate, e.g. given a "bad"
582 * index, clamping the index to 0 would return vCPU0, not NULL.
583 */
584 if (i >= num_vcpus)
585 return NULL;
586
587 i = array_index_nospec(i, num_vcpus);
588
589 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
590 smp_rmb();
591 return kvm->vcpus[i];
592 }
593
594 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
595 for (idx = 0; \
596 idx < atomic_read(&kvm->online_vcpus) && \
597 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
598 idx++)
599
kvm_get_vcpu_by_id(struct kvm * kvm,int id)600 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
601 {
602 struct kvm_vcpu *vcpu = NULL;
603 int i;
604
605 if (id < 0)
606 return NULL;
607 if (id < KVM_MAX_VCPUS)
608 vcpu = kvm_get_vcpu(kvm, id);
609 if (vcpu && vcpu->vcpu_id == id)
610 return vcpu;
611 kvm_for_each_vcpu(i, vcpu, kvm)
612 if (vcpu->vcpu_id == id)
613 return vcpu;
614 return NULL;
615 }
616
kvm_vcpu_get_idx(struct kvm_vcpu * vcpu)617 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
618 {
619 return vcpu->vcpu_idx;
620 }
621
622 #define kvm_for_each_memslot(memslot, slots) \
623 for (memslot = &slots->memslots[0]; \
624 memslot < slots->memslots + slots->used_slots; memslot++) \
625 if (WARN_ON_ONCE(!memslot->npages)) { \
626 } else
627
628 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
629
630 void vcpu_load(struct kvm_vcpu *vcpu);
631 void vcpu_put(struct kvm_vcpu *vcpu);
632
633 #ifdef __KVM_HAVE_IOAPIC
634 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
635 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
636 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)637 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
638 {
639 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)640 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
641 {
642 }
643 #endif
644
645 #ifdef CONFIG_HAVE_KVM_IRQFD
646 int kvm_irqfd_init(void);
647 void kvm_irqfd_exit(void);
648 #else
kvm_irqfd_init(void)649 static inline int kvm_irqfd_init(void)
650 {
651 return 0;
652 }
653
kvm_irqfd_exit(void)654 static inline void kvm_irqfd_exit(void)
655 {
656 }
657 #endif
658 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
659 struct module *module);
660 void kvm_exit(void);
661
662 void kvm_get_kvm(struct kvm *kvm);
663 void kvm_put_kvm(struct kvm *kvm);
664 void kvm_put_kvm_no_destroy(struct kvm *kvm);
665
__kvm_memslots(struct kvm * kvm,int as_id)666 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
667 {
668 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
669 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
670 lockdep_is_held(&kvm->slots_lock) ||
671 !refcount_read(&kvm->users_count));
672 }
673
kvm_memslots(struct kvm * kvm)674 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
675 {
676 return __kvm_memslots(kvm, 0);
677 }
678
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)679 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
680 {
681 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
682
683 return __kvm_memslots(vcpu->kvm, as_id);
684 }
685
686 static inline
id_to_memslot(struct kvm_memslots * slots,int id)687 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
688 {
689 int index = slots->id_to_index[id];
690 struct kvm_memory_slot *slot;
691
692 if (index < 0)
693 return NULL;
694
695 slot = &slots->memslots[index];
696
697 WARN_ON(slot->id != id);
698 return slot;
699 }
700
701 /*
702 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
703 * - create a new memory slot
704 * - delete an existing memory slot
705 * - modify an existing memory slot
706 * -- move it in the guest physical memory space
707 * -- just change its flags
708 *
709 * Since flags can be changed by some of these operations, the following
710 * differentiation is the best we can do for __kvm_set_memory_region():
711 */
712 enum kvm_mr_change {
713 KVM_MR_CREATE,
714 KVM_MR_DELETE,
715 KVM_MR_MOVE,
716 KVM_MR_FLAGS_ONLY,
717 };
718
719 int kvm_set_memory_region(struct kvm *kvm,
720 const struct kvm_userspace_memory_region *mem);
721 int __kvm_set_memory_region(struct kvm *kvm,
722 const struct kvm_userspace_memory_region *mem);
723 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
724 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
725 int kvm_arch_prepare_memory_region(struct kvm *kvm,
726 struct kvm_memory_slot *memslot,
727 const struct kvm_userspace_memory_region *mem,
728 enum kvm_mr_change change);
729 void kvm_arch_commit_memory_region(struct kvm *kvm,
730 const struct kvm_userspace_memory_region *mem,
731 struct kvm_memory_slot *old,
732 const struct kvm_memory_slot *new,
733 enum kvm_mr_change change);
734 /* flush all memory translations */
735 void kvm_arch_flush_shadow_all(struct kvm *kvm);
736 /* flush memory translations pointing to 'slot' */
737 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
738 struct kvm_memory_slot *slot);
739
740 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
741 struct page **pages, int nr_pages);
742
743 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
744 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
745 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
746 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
747 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
748 bool *writable);
749 void kvm_release_page_clean(struct page *page);
750 void kvm_release_page_dirty(struct page *page);
751 void kvm_set_page_accessed(struct page *page);
752
753 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
754 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
755 bool *writable);
756 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
757 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
758 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
759 bool atomic, bool *async, bool write_fault,
760 bool *writable);
761
762 void kvm_release_pfn_clean(kvm_pfn_t pfn);
763 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
764 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
765 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
766 void kvm_get_pfn(kvm_pfn_t pfn);
767
768 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
769 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
770 int len);
771 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
772 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
773 void *data, unsigned long len);
774 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
775 void *data, unsigned int offset,
776 unsigned long len);
777 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
778 int offset, int len);
779 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
780 unsigned long len);
781 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
782 void *data, unsigned long len);
783 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
784 void *data, unsigned int offset,
785 unsigned long len);
786 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
787 gpa_t gpa, unsigned long len);
788
789 #define __kvm_get_guest(kvm, gfn, offset, v) \
790 ({ \
791 unsigned long __addr = gfn_to_hva(kvm, gfn); \
792 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
793 int __ret = -EFAULT; \
794 \
795 if (!kvm_is_error_hva(__addr)) \
796 __ret = get_user(v, __uaddr); \
797 __ret; \
798 })
799
800 #define kvm_get_guest(kvm, gpa, v) \
801 ({ \
802 gpa_t __gpa = gpa; \
803 struct kvm *__kvm = kvm; \
804 \
805 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
806 offset_in_page(__gpa), v); \
807 })
808
809 #define __kvm_put_guest(kvm, gfn, offset, v) \
810 ({ \
811 unsigned long __addr = gfn_to_hva(kvm, gfn); \
812 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
813 int __ret = -EFAULT; \
814 \
815 if (!kvm_is_error_hva(__addr)) \
816 __ret = put_user(v, __uaddr); \
817 if (!__ret) \
818 mark_page_dirty(kvm, gfn); \
819 __ret; \
820 })
821
822 #define kvm_put_guest(kvm, gpa, v) \
823 ({ \
824 gpa_t __gpa = gpa; \
825 struct kvm *__kvm = kvm; \
826 \
827 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
828 offset_in_page(__gpa), v); \
829 })
830
831 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
832 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
833 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
834 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
835 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
836 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
837 void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
838 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
839
840 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
841 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
842 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
843 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
844 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
845 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
846 struct gfn_to_pfn_cache *cache, bool atomic);
847 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
848 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
849 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
850 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
851 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
852 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
853 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
854 int len);
855 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
856 unsigned long len);
857 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
858 unsigned long len);
859 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
860 int offset, int len);
861 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
862 unsigned long len);
863 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
864
865 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
866 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
867
868 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
869 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
870 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
871 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
872 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
873 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
874 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
875
876 void kvm_flush_remote_tlbs(struct kvm *kvm);
877 void kvm_reload_remote_mmus(struct kvm *kvm);
878
879 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
880 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
881 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
882 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
883 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
884 #endif
885
886 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
887 struct kvm_vcpu *except,
888 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
889 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
890 struct kvm_vcpu *except);
891 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
892 unsigned long *vcpu_bitmap);
893
894 long kvm_arch_dev_ioctl(struct file *filp,
895 unsigned int ioctl, unsigned long arg);
896 long kvm_arch_vcpu_ioctl(struct file *filp,
897 unsigned int ioctl, unsigned long arg);
898 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
899
900 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
901
902 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
903 struct kvm_memory_slot *slot,
904 gfn_t gfn_offset,
905 unsigned long mask);
906 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
907
908 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
909 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
910 struct kvm_memory_slot *memslot);
911 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
912 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
913 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
914 int *is_dirty, struct kvm_memory_slot **memslot);
915 #endif
916
917 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
918 bool line_status);
919 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
920 struct kvm_enable_cap *cap);
921 long kvm_arch_vm_ioctl(struct file *filp,
922 unsigned int ioctl, unsigned long arg);
923 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
924 unsigned long arg);
925
926 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
927 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
928
929 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
930 struct kvm_translation *tr);
931
932 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
933 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
934 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
935 struct kvm_sregs *sregs);
936 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
937 struct kvm_sregs *sregs);
938 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
939 struct kvm_mp_state *mp_state);
940 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
941 struct kvm_mp_state *mp_state);
942 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
943 struct kvm_guest_debug *dbg);
944 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
945
946 int kvm_arch_init(void *opaque);
947 void kvm_arch_exit(void);
948
949 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
950
951 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
952 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
953 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
954 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
955 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
956 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
957
958 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
959 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
960 #endif
961
962 int kvm_arch_hardware_enable(void);
963 void kvm_arch_hardware_disable(void);
964 int kvm_arch_hardware_setup(void *opaque);
965 void kvm_arch_hardware_unsetup(void);
966 int kvm_arch_check_processor_compat(void *opaque);
967 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
968 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
969 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
970 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
971 int kvm_arch_post_init_vm(struct kvm *kvm);
972 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
973
974 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
975 /*
976 * All architectures that want to use vzalloc currently also
977 * need their own kvm_arch_alloc_vm implementation.
978 */
kvm_arch_alloc_vm(void)979 static inline struct kvm *kvm_arch_alloc_vm(void)
980 {
981 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
982 }
983
kvm_arch_free_vm(struct kvm * kvm)984 static inline void kvm_arch_free_vm(struct kvm *kvm)
985 {
986 kfree(kvm);
987 }
988 #endif
989
990 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
kvm_arch_flush_remote_tlb(struct kvm * kvm)991 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
992 {
993 return -ENOTSUPP;
994 }
995 #endif
996
997 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
998 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
999 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1000 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1001 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1002 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1003 {
1004 }
1005
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1006 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1007 {
1008 }
1009
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1010 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1011 {
1012 return false;
1013 }
1014 #endif
1015 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1016 void kvm_arch_start_assignment(struct kvm *kvm);
1017 void kvm_arch_end_assignment(struct kvm *kvm);
1018 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1019 #else
kvm_arch_start_assignment(struct kvm * kvm)1020 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1021 {
1022 }
1023
kvm_arch_end_assignment(struct kvm * kvm)1024 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1025 {
1026 }
1027
kvm_arch_has_assigned_device(struct kvm * kvm)1028 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1029 {
1030 return false;
1031 }
1032 #endif
1033
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1034 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1035 {
1036 #ifdef __KVM_HAVE_ARCH_WQP
1037 return vcpu->arch.waitp;
1038 #else
1039 return &vcpu->wait;
1040 #endif
1041 }
1042
1043 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1044 /*
1045 * returns true if the virtual interrupt controller is initialized and
1046 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1047 * controller is dynamically instantiated and this is not always true.
1048 */
1049 bool kvm_arch_intc_initialized(struct kvm *kvm);
1050 #else
kvm_arch_intc_initialized(struct kvm * kvm)1051 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1052 {
1053 return true;
1054 }
1055 #endif
1056
1057 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1058 void kvm_arch_destroy_vm(struct kvm *kvm);
1059 void kvm_arch_sync_events(struct kvm *kvm);
1060
1061 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1062
1063 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1064 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1065 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1066
1067 struct kvm_irq_ack_notifier {
1068 struct hlist_node link;
1069 unsigned gsi;
1070 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1071 };
1072
1073 int kvm_irq_map_gsi(struct kvm *kvm,
1074 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1075 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1076
1077 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1078 bool line_status);
1079 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1080 int irq_source_id, int level, bool line_status);
1081 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1082 struct kvm *kvm, int irq_source_id,
1083 int level, bool line_status);
1084 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1085 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1086 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1087 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1088 struct kvm_irq_ack_notifier *kian);
1089 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1090 struct kvm_irq_ack_notifier *kian);
1091 int kvm_request_irq_source_id(struct kvm *kvm);
1092 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1093 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1094
1095 /*
1096 * search_memslots() and __gfn_to_memslot() are here because they are
1097 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1098 * gfn_to_memslot() itself isn't here as an inline because that would
1099 * bloat other code too much.
1100 *
1101 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1102 */
1103 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn)1104 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1105 {
1106 int start = 0, end = slots->used_slots;
1107 int slot = atomic_read(&slots->lru_slot);
1108 struct kvm_memory_slot *memslots = slots->memslots;
1109
1110 if (unlikely(!slots->used_slots))
1111 return NULL;
1112
1113 if (gfn >= memslots[slot].base_gfn &&
1114 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1115 return &memslots[slot];
1116
1117 while (start < end) {
1118 slot = start + (end - start) / 2;
1119
1120 if (gfn >= memslots[slot].base_gfn)
1121 end = slot;
1122 else
1123 start = slot + 1;
1124 }
1125
1126 if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1127 gfn < memslots[start].base_gfn + memslots[start].npages) {
1128 atomic_set(&slots->lru_slot, start);
1129 return &memslots[start];
1130 }
1131
1132 return NULL;
1133 }
1134
1135 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1136 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1137 {
1138 return search_memslots(slots, gfn);
1139 }
1140
1141 static inline unsigned long
__gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1142 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1143 {
1144 /*
1145 * The index was checked originally in search_memslots. To avoid
1146 * that a malicious guest builds a Spectre gadget out of e.g. page
1147 * table walks, do not let the processor speculate loads outside
1148 * the guest's registered memslots.
1149 */
1150 unsigned long offset = gfn - slot->base_gfn;
1151 offset = array_index_nospec(offset, slot->npages);
1152 return slot->userspace_addr + offset * PAGE_SIZE;
1153 }
1154
memslot_id(struct kvm * kvm,gfn_t gfn)1155 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1156 {
1157 return gfn_to_memslot(kvm, gfn)->id;
1158 }
1159
1160 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1161 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1162 {
1163 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1164
1165 return slot->base_gfn + gfn_offset;
1166 }
1167
gfn_to_gpa(gfn_t gfn)1168 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1169 {
1170 return (gpa_t)gfn << PAGE_SHIFT;
1171 }
1172
gpa_to_gfn(gpa_t gpa)1173 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1174 {
1175 return (gfn_t)(gpa >> PAGE_SHIFT);
1176 }
1177
pfn_to_hpa(kvm_pfn_t pfn)1178 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1179 {
1180 return (hpa_t)pfn << PAGE_SHIFT;
1181 }
1182
kvm_vcpu_gpa_to_page(struct kvm_vcpu * vcpu,gpa_t gpa)1183 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1184 gpa_t gpa)
1185 {
1186 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1187 }
1188
kvm_is_error_gpa(struct kvm * kvm,gpa_t gpa)1189 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1190 {
1191 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1192
1193 return kvm_is_error_hva(hva);
1194 }
1195
1196 enum kvm_stat_kind {
1197 KVM_STAT_VM,
1198 KVM_STAT_VCPU,
1199 };
1200
1201 struct kvm_stat_data {
1202 struct kvm *kvm;
1203 struct kvm_stats_debugfs_item *dbgfs_item;
1204 };
1205
1206 struct kvm_stats_debugfs_item {
1207 const char *name;
1208 int offset;
1209 enum kvm_stat_kind kind;
1210 int mode;
1211 };
1212
1213 #define KVM_DBGFS_GET_MODE(dbgfs_item) \
1214 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1215
1216 #define VM_STAT(n, x, ...) \
1217 { n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ }
1218 #define VCPU_STAT(n, x, ...) \
1219 { n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ }
1220
1221 extern struct kvm_stats_debugfs_item debugfs_entries[];
1222 extern struct dentry *kvm_debugfs_dir;
1223
1224 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_retry(struct kvm * kvm,unsigned long mmu_seq)1225 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1226 {
1227 if (unlikely(kvm->mmu_notifier_count))
1228 return 1;
1229 /*
1230 * Ensure the read of mmu_notifier_count happens before the read
1231 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1232 * mmu_notifier_invalidate_range_end to make sure that the caller
1233 * either sees the old (non-zero) value of mmu_notifier_count or
1234 * the new (incremented) value of mmu_notifier_seq.
1235 * PowerPC Book3s HV KVM calls this under a per-page lock
1236 * rather than under kvm->mmu_lock, for scalability, so
1237 * can't rely on kvm->mmu_lock to keep things ordered.
1238 */
1239 smp_rmb();
1240 if (kvm->mmu_notifier_seq != mmu_seq)
1241 return 1;
1242 return 0;
1243 }
1244 #endif
1245
1246 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1247
1248 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1249
1250 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1251 int kvm_set_irq_routing(struct kvm *kvm,
1252 const struct kvm_irq_routing_entry *entries,
1253 unsigned nr,
1254 unsigned flags);
1255 int kvm_set_routing_entry(struct kvm *kvm,
1256 struct kvm_kernel_irq_routing_entry *e,
1257 const struct kvm_irq_routing_entry *ue);
1258 void kvm_free_irq_routing(struct kvm *kvm);
1259
1260 #else
1261
kvm_free_irq_routing(struct kvm * kvm)1262 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1263
1264 #endif
1265
1266 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1267
1268 #ifdef CONFIG_HAVE_KVM_EVENTFD
1269
1270 void kvm_eventfd_init(struct kvm *kvm);
1271 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1272
1273 #ifdef CONFIG_HAVE_KVM_IRQFD
1274 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1275 void kvm_irqfd_release(struct kvm *kvm);
1276 void kvm_irq_routing_update(struct kvm *);
1277 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1278 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1279 {
1280 return -EINVAL;
1281 }
1282
kvm_irqfd_release(struct kvm * kvm)1283 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1284 #endif
1285
1286 #else
1287
kvm_eventfd_init(struct kvm * kvm)1288 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1289
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1290 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1291 {
1292 return -EINVAL;
1293 }
1294
kvm_irqfd_release(struct kvm * kvm)1295 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1296
1297 #ifdef CONFIG_HAVE_KVM_IRQCHIP
kvm_irq_routing_update(struct kvm * kvm)1298 static inline void kvm_irq_routing_update(struct kvm *kvm)
1299 {
1300 }
1301 #endif
1302
kvm_ioeventfd(struct kvm * kvm,struct kvm_ioeventfd * args)1303 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1304 {
1305 return -ENOSYS;
1306 }
1307
1308 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1309
1310 void kvm_arch_irq_routing_update(struct kvm *kvm);
1311
kvm_make_request(int req,struct kvm_vcpu * vcpu)1312 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1313 {
1314 /*
1315 * Ensure the rest of the request is published to kvm_check_request's
1316 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1317 */
1318 smp_wmb();
1319 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1320 }
1321
kvm_request_pending(struct kvm_vcpu * vcpu)1322 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1323 {
1324 return READ_ONCE(vcpu->requests);
1325 }
1326
kvm_test_request(int req,struct kvm_vcpu * vcpu)1327 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1328 {
1329 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1330 }
1331
kvm_clear_request(int req,struct kvm_vcpu * vcpu)1332 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1333 {
1334 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1335 }
1336
kvm_check_request(int req,struct kvm_vcpu * vcpu)1337 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1338 {
1339 if (kvm_test_request(req, vcpu)) {
1340 kvm_clear_request(req, vcpu);
1341
1342 /*
1343 * Ensure the rest of the request is visible to kvm_check_request's
1344 * caller. Paired with the smp_wmb in kvm_make_request.
1345 */
1346 smp_mb__after_atomic();
1347 return true;
1348 } else {
1349 return false;
1350 }
1351 }
1352
1353 extern bool kvm_rebooting;
1354
1355 extern unsigned int halt_poll_ns;
1356 extern unsigned int halt_poll_ns_grow;
1357 extern unsigned int halt_poll_ns_grow_start;
1358 extern unsigned int halt_poll_ns_shrink;
1359
1360 struct kvm_device {
1361 const struct kvm_device_ops *ops;
1362 struct kvm *kvm;
1363 void *private;
1364 struct list_head vm_node;
1365 };
1366
1367 /* create, destroy, and name are mandatory */
1368 struct kvm_device_ops {
1369 const char *name;
1370
1371 /*
1372 * create is called holding kvm->lock and any operations not suitable
1373 * to do while holding the lock should be deferred to init (see
1374 * below).
1375 */
1376 int (*create)(struct kvm_device *dev, u32 type);
1377
1378 /*
1379 * init is called after create if create is successful and is called
1380 * outside of holding kvm->lock.
1381 */
1382 void (*init)(struct kvm_device *dev);
1383
1384 /*
1385 * Destroy is responsible for freeing dev.
1386 *
1387 * Destroy may be called before or after destructors are called
1388 * on emulated I/O regions, depending on whether a reference is
1389 * held by a vcpu or other kvm component that gets destroyed
1390 * after the emulated I/O.
1391 */
1392 void (*destroy)(struct kvm_device *dev);
1393
1394 /*
1395 * Release is an alternative method to free the device. It is
1396 * called when the device file descriptor is closed. Once
1397 * release is called, the destroy method will not be called
1398 * anymore as the device is removed from the device list of
1399 * the VM. kvm->lock is held.
1400 */
1401 void (*release)(struct kvm_device *dev);
1402
1403 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1404 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1405 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1406 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1407 unsigned long arg);
1408 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1409 };
1410
1411 void kvm_device_get(struct kvm_device *dev);
1412 void kvm_device_put(struct kvm_device *dev);
1413 struct kvm_device *kvm_device_from_filp(struct file *filp);
1414 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1415 void kvm_unregister_device_ops(u32 type);
1416
1417 extern struct kvm_device_ops kvm_mpic_ops;
1418 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1419 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1420
1421 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1422
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1423 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1424 {
1425 vcpu->spin_loop.in_spin_loop = val;
1426 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1427 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1428 {
1429 vcpu->spin_loop.dy_eligible = val;
1430 }
1431
1432 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1433
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1434 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1435 {
1436 }
1437
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1438 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1439 {
1440 }
1441 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1442
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)1443 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1444 {
1445 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1446 !(memslot->flags & KVM_MEMSLOT_INVALID));
1447 }
1448
1449 struct kvm_vcpu *kvm_get_running_vcpu(void);
1450 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1451
1452 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1453 bool kvm_arch_has_irq_bypass(void);
1454 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1455 struct irq_bypass_producer *);
1456 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1457 struct irq_bypass_producer *);
1458 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1459 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1460 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1461 uint32_t guest_irq, bool set);
1462 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1463
1464 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1465 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1466 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1467 {
1468 return vcpu->valid_wakeup;
1469 }
1470
1471 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1472 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1473 {
1474 return true;
1475 }
1476 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1477
1478 #ifdef CONFIG_HAVE_KVM_NO_POLL
1479 /* Callback that tells if we must not poll */
1480 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1481 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)1482 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1483 {
1484 return false;
1485 }
1486 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1487
1488 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1489 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1490 unsigned int ioctl, unsigned long arg);
1491 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1492 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1493 unsigned int ioctl,
1494 unsigned long arg)
1495 {
1496 return -ENOIOCTLCMD;
1497 }
1498 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1499
1500 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1501 unsigned long start, unsigned long end);
1502
1503 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
1504
1505 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1506 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1507 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)1508 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1509 {
1510 return 0;
1511 }
1512 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1513
1514 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1515
1516 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1517 uintptr_t data, const char *name,
1518 struct task_struct **thread_ptr);
1519
1520 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)1521 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1522 {
1523 vcpu->run->exit_reason = KVM_EXIT_INTR;
1524 vcpu->stat.signal_exits++;
1525 }
1526 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1527
1528 #endif
1529