1 use crate::dep_graph::DepKind;
2 use crate::error::CycleStack;
3 use crate::query::plumbing::CycleError;
4 use crate::query::{QueryContext, QueryStackFrame};
5 use core::marker::PhantomData;
6
7 use rustc_data_structures::fx::FxHashMap;
8 use rustc_errors::{
9 Diagnostic, DiagnosticBuilder, ErrorGuaranteed, Handler, IntoDiagnostic, Level,
10 };
11 use rustc_hir::def::DefKind;
12 use rustc_session::Session;
13 use rustc_span::Span;
14
15 use std::hash::Hash;
16 use std::num::NonZeroU64;
17
18 #[cfg(parallel_compiler)]
19 use {
20 parking_lot::{Condvar, Mutex},
21 rayon_core,
22 rustc_data_structures::fx::FxHashSet,
23 rustc_data_structures::sync::Lock,
24 rustc_data_structures::sync::Lrc,
25 rustc_data_structures::{defer, jobserver},
26 rustc_span::DUMMY_SP,
27 std::iter,
28 std::process,
29 };
30
31 /// Represents a span and a query key.
32 #[derive(Clone, Debug)]
33 pub struct QueryInfo<D: DepKind> {
34 /// The span corresponding to the reason for which this query was required.
35 pub span: Span,
36 pub query: QueryStackFrame<D>,
37 }
38
39 pub type QueryMap<D> = FxHashMap<QueryJobId, QueryJobInfo<D>>;
40
41 /// A value uniquely identifying an active query job.
42 #[derive(Copy, Clone, Eq, PartialEq, Hash)]
43 pub struct QueryJobId(pub NonZeroU64);
44
45 impl QueryJobId {
query<D: DepKind>(self, map: &QueryMap<D>) -> QueryStackFrame<D>46 fn query<D: DepKind>(self, map: &QueryMap<D>) -> QueryStackFrame<D> {
47 map.get(&self).unwrap().query.clone()
48 }
49
50 #[cfg(parallel_compiler)]
span<D: DepKind>(self, map: &QueryMap<D>) -> Span51 fn span<D: DepKind>(self, map: &QueryMap<D>) -> Span {
52 map.get(&self).unwrap().job.span
53 }
54
55 #[cfg(parallel_compiler)]
parent<D: DepKind>(self, map: &QueryMap<D>) -> Option<QueryJobId>56 fn parent<D: DepKind>(self, map: &QueryMap<D>) -> Option<QueryJobId> {
57 map.get(&self).unwrap().job.parent
58 }
59
60 #[cfg(parallel_compiler)]
latch<D: DepKind>(self, map: &QueryMap<D>) -> Option<&QueryLatch<D>>61 fn latch<D: DepKind>(self, map: &QueryMap<D>) -> Option<&QueryLatch<D>> {
62 map.get(&self).unwrap().job.latch.as_ref()
63 }
64 }
65
66 #[derive(Clone)]
67 pub struct QueryJobInfo<D: DepKind> {
68 pub query: QueryStackFrame<D>,
69 pub job: QueryJob<D>,
70 }
71
72 /// Represents an active query job.
73 #[derive(Clone)]
74 pub struct QueryJob<D: DepKind> {
75 pub id: QueryJobId,
76
77 /// The span corresponding to the reason for which this query was required.
78 pub span: Span,
79
80 /// The parent query job which created this job and is implicitly waiting on it.
81 pub parent: Option<QueryJobId>,
82
83 /// The latch that is used to wait on this job.
84 #[cfg(parallel_compiler)]
85 latch: Option<QueryLatch<D>>,
86 spooky: core::marker::PhantomData<D>,
87 }
88
89 impl<D: DepKind> QueryJob<D> {
90 /// Creates a new query job.
91 #[inline]
new(id: QueryJobId, span: Span, parent: Option<QueryJobId>) -> Self92 pub fn new(id: QueryJobId, span: Span, parent: Option<QueryJobId>) -> Self {
93 QueryJob {
94 id,
95 span,
96 parent,
97 #[cfg(parallel_compiler)]
98 latch: None,
99 spooky: PhantomData,
100 }
101 }
102
103 #[cfg(parallel_compiler)]
latch(&mut self) -> QueryLatch<D>104 pub(super) fn latch(&mut self) -> QueryLatch<D> {
105 if self.latch.is_none() {
106 self.latch = Some(QueryLatch::new());
107 }
108 self.latch.as_ref().unwrap().clone()
109 }
110
111 /// Signals to waiters that the query is complete.
112 ///
113 /// This does nothing for single threaded rustc,
114 /// as there are no concurrent jobs which could be waiting on us
115 #[inline]
signal_complete(self)116 pub fn signal_complete(self) {
117 #[cfg(parallel_compiler)]
118 {
119 if let Some(latch) = self.latch {
120 latch.set();
121 }
122 }
123 }
124 }
125
126 impl QueryJobId {
127 #[cfg(not(parallel_compiler))]
find_cycle_in_stack<D: DepKind>( &self, query_map: QueryMap<D>, current_job: &Option<QueryJobId>, span: Span, ) -> CycleError<D>128 pub(super) fn find_cycle_in_stack<D: DepKind>(
129 &self,
130 query_map: QueryMap<D>,
131 current_job: &Option<QueryJobId>,
132 span: Span,
133 ) -> CycleError<D> {
134 // Find the waitee amongst `current_job` parents
135 let mut cycle = Vec::new();
136 let mut current_job = Option::clone(current_job);
137
138 while let Some(job) = current_job {
139 let info = query_map.get(&job).unwrap();
140 cycle.push(QueryInfo { span: info.job.span, query: info.query.clone() });
141
142 if job == *self {
143 cycle.reverse();
144
145 // This is the end of the cycle
146 // The span entry we included was for the usage
147 // of the cycle itself, and not part of the cycle
148 // Replace it with the span which caused the cycle to form
149 cycle[0].span = span;
150 // Find out why the cycle itself was used
151 let usage = info
152 .job
153 .parent
154 .as_ref()
155 .map(|parent| (info.job.span, parent.query(&query_map)));
156 return CycleError { usage, cycle };
157 }
158
159 current_job = info.job.parent;
160 }
161
162 panic!("did not find a cycle")
163 }
164
165 #[cold]
166 #[inline(never)]
try_find_layout_root<D: DepKind>( &self, query_map: QueryMap<D>, ) -> Option<(QueryJobInfo<D>, usize)>167 pub fn try_find_layout_root<D: DepKind>(
168 &self,
169 query_map: QueryMap<D>,
170 ) -> Option<(QueryJobInfo<D>, usize)> {
171 let mut last_layout = None;
172 let mut current_id = Some(*self);
173 let mut depth = 0;
174
175 while let Some(id) = current_id {
176 let info = query_map.get(&id).unwrap();
177 // FIXME: This string comparison should probably not be done.
178 if format!("{:?}", info.query.dep_kind) == "layout_of" {
179 depth += 1;
180 last_layout = Some((info.clone(), depth));
181 }
182 current_id = info.job.parent;
183 }
184 last_layout
185 }
186 }
187
188 #[cfg(parallel_compiler)]
189 struct QueryWaiter<D: DepKind> {
190 query: Option<QueryJobId>,
191 condvar: Condvar,
192 span: Span,
193 cycle: Lock<Option<CycleError<D>>>,
194 }
195
196 #[cfg(parallel_compiler)]
197 impl<D: DepKind> QueryWaiter<D> {
notify(&self, registry: &rayon_core::Registry)198 fn notify(&self, registry: &rayon_core::Registry) {
199 rayon_core::mark_unblocked(registry);
200 self.condvar.notify_one();
201 }
202 }
203
204 #[cfg(parallel_compiler)]
205 struct QueryLatchInfo<D: DepKind> {
206 complete: bool,
207 waiters: Vec<Lrc<QueryWaiter<D>>>,
208 }
209
210 #[cfg(parallel_compiler)]
211 #[derive(Clone)]
212 pub(super) struct QueryLatch<D: DepKind> {
213 info: Lrc<Mutex<QueryLatchInfo<D>>>,
214 }
215
216 #[cfg(parallel_compiler)]
217 impl<D: DepKind> QueryLatch<D> {
new() -> Self218 fn new() -> Self {
219 QueryLatch {
220 info: Lrc::new(Mutex::new(QueryLatchInfo { complete: false, waiters: Vec::new() })),
221 }
222 }
223
224 /// Awaits for the query job to complete.
wait_on( &self, query: Option<QueryJobId>, span: Span, ) -> Result<(), CycleError<D>>225 pub(super) fn wait_on(
226 &self,
227 query: Option<QueryJobId>,
228 span: Span,
229 ) -> Result<(), CycleError<D>> {
230 let waiter =
231 Lrc::new(QueryWaiter { query, span, cycle: Lock::new(None), condvar: Condvar::new() });
232 self.wait_on_inner(&waiter);
233 // FIXME: Get rid of this lock. We have ownership of the QueryWaiter
234 // although another thread may still have a Lrc reference so we cannot
235 // use Lrc::get_mut
236 let mut cycle = waiter.cycle.lock();
237 match cycle.take() {
238 None => Ok(()),
239 Some(cycle) => Err(cycle),
240 }
241 }
242
243 /// Awaits the caller on this latch by blocking the current thread.
wait_on_inner(&self, waiter: &Lrc<QueryWaiter<D>>)244 fn wait_on_inner(&self, waiter: &Lrc<QueryWaiter<D>>) {
245 let mut info = self.info.lock();
246 if !info.complete {
247 // We push the waiter on to the `waiters` list. It can be accessed inside
248 // the `wait` call below, by 1) the `set` method or 2) by deadlock detection.
249 // Both of these will remove it from the `waiters` list before resuming
250 // this thread.
251 info.waiters.push(waiter.clone());
252
253 // If this detects a deadlock and the deadlock handler wants to resume this thread
254 // we have to be in the `wait` call. This is ensured by the deadlock handler
255 // getting the self.info lock.
256 rayon_core::mark_blocked();
257 jobserver::release_thread();
258 waiter.condvar.wait(&mut info);
259 // Release the lock before we potentially block in `acquire_thread`
260 drop(info);
261 jobserver::acquire_thread();
262 }
263 }
264
265 /// Sets the latch and resumes all waiters on it
set(&self)266 fn set(&self) {
267 let mut info = self.info.lock();
268 debug_assert!(!info.complete);
269 info.complete = true;
270 let registry = rayon_core::Registry::current();
271 for waiter in info.waiters.drain(..) {
272 waiter.notify(®istry);
273 }
274 }
275
276 /// Removes a single waiter from the list of waiters.
277 /// This is used to break query cycles.
extract_waiter(&self, waiter: usize) -> Lrc<QueryWaiter<D>>278 fn extract_waiter(&self, waiter: usize) -> Lrc<QueryWaiter<D>> {
279 let mut info = self.info.lock();
280 debug_assert!(!info.complete);
281 // Remove the waiter from the list of waiters
282 info.waiters.remove(waiter)
283 }
284 }
285
286 /// A resumable waiter of a query. The usize is the index into waiters in the query's latch
287 #[cfg(parallel_compiler)]
288 type Waiter = (QueryJobId, usize);
289
290 /// Visits all the non-resumable and resumable waiters of a query.
291 /// Only waiters in a query are visited.
292 /// `visit` is called for every waiter and is passed a query waiting on `query_ref`
293 /// and a span indicating the reason the query waited on `query_ref`.
294 /// If `visit` returns Some, this function returns.
295 /// For visits of non-resumable waiters it returns the return value of `visit`.
296 /// For visits of resumable waiters it returns Some(Some(Waiter)) which has the
297 /// required information to resume the waiter.
298 /// If all `visit` calls returns None, this function also returns None.
299 #[cfg(parallel_compiler)]
visit_waiters<F, D>( query_map: &QueryMap<D>, query: QueryJobId, mut visit: F, ) -> Option<Option<Waiter>> where F: FnMut(Span, QueryJobId) -> Option<Option<Waiter>>, D: DepKind,300 fn visit_waiters<F, D>(
301 query_map: &QueryMap<D>,
302 query: QueryJobId,
303 mut visit: F,
304 ) -> Option<Option<Waiter>>
305 where
306 F: FnMut(Span, QueryJobId) -> Option<Option<Waiter>>,
307 D: DepKind,
308 {
309 // Visit the parent query which is a non-resumable waiter since it's on the same stack
310 if let Some(parent) = query.parent(query_map) {
311 if let Some(cycle) = visit(query.span(query_map), parent) {
312 return Some(cycle);
313 }
314 }
315
316 // Visit the explicit waiters which use condvars and are resumable
317 if let Some(latch) = query.latch(query_map) {
318 for (i, waiter) in latch.info.lock().waiters.iter().enumerate() {
319 if let Some(waiter_query) = waiter.query {
320 if visit(waiter.span, waiter_query).is_some() {
321 // Return a value which indicates that this waiter can be resumed
322 return Some(Some((query, i)));
323 }
324 }
325 }
326 }
327
328 None
329 }
330
331 /// Look for query cycles by doing a depth first search starting at `query`.
332 /// `span` is the reason for the `query` to execute. This is initially DUMMY_SP.
333 /// If a cycle is detected, this initial value is replaced with the span causing
334 /// the cycle.
335 #[cfg(parallel_compiler)]
cycle_check<D: DepKind>( query_map: &QueryMap<D>, query: QueryJobId, span: Span, stack: &mut Vec<(Span, QueryJobId)>, visited: &mut FxHashSet<QueryJobId>, ) -> Option<Option<Waiter>>336 fn cycle_check<D: DepKind>(
337 query_map: &QueryMap<D>,
338 query: QueryJobId,
339 span: Span,
340 stack: &mut Vec<(Span, QueryJobId)>,
341 visited: &mut FxHashSet<QueryJobId>,
342 ) -> Option<Option<Waiter>> {
343 if !visited.insert(query) {
344 return if let Some(p) = stack.iter().position(|q| q.1 == query) {
345 // We detected a query cycle, fix up the initial span and return Some
346
347 // Remove previous stack entries
348 stack.drain(0..p);
349 // Replace the span for the first query with the cycle cause
350 stack[0].0 = span;
351 Some(None)
352 } else {
353 None
354 };
355 }
356
357 // Query marked as visited is added it to the stack
358 stack.push((span, query));
359
360 // Visit all the waiters
361 let r = visit_waiters(query_map, query, |span, successor| {
362 cycle_check(query_map, successor, span, stack, visited)
363 });
364
365 // Remove the entry in our stack if we didn't find a cycle
366 if r.is_none() {
367 stack.pop();
368 }
369
370 r
371 }
372
373 /// Finds out if there's a path to the compiler root (aka. code which isn't in a query)
374 /// from `query` without going through any of the queries in `visited`.
375 /// This is achieved with a depth first search.
376 #[cfg(parallel_compiler)]
connected_to_root<D: DepKind>( query_map: &QueryMap<D>, query: QueryJobId, visited: &mut FxHashSet<QueryJobId>, ) -> bool377 fn connected_to_root<D: DepKind>(
378 query_map: &QueryMap<D>,
379 query: QueryJobId,
380 visited: &mut FxHashSet<QueryJobId>,
381 ) -> bool {
382 // We already visited this or we're deliberately ignoring it
383 if !visited.insert(query) {
384 return false;
385 }
386
387 // This query is connected to the root (it has no query parent), return true
388 if query.parent(query_map).is_none() {
389 return true;
390 }
391
392 visit_waiters(query_map, query, |_, successor| {
393 connected_to_root(query_map, successor, visited).then_some(None)
394 })
395 .is_some()
396 }
397
398 // Deterministically pick an query from a list
399 #[cfg(parallel_compiler)]
pick_query<'a, T, F, D>(query_map: &QueryMap<D>, queries: &'a [T], f: F) -> &'a T where F: Fn(&T) -> (Span, QueryJobId), D: DepKind,400 fn pick_query<'a, T, F, D>(query_map: &QueryMap<D>, queries: &'a [T], f: F) -> &'a T
401 where
402 F: Fn(&T) -> (Span, QueryJobId),
403 D: DepKind,
404 {
405 // Deterministically pick an entry point
406 // FIXME: Sort this instead
407 queries
408 .iter()
409 .min_by_key(|v| {
410 let (span, query) = f(v);
411 let hash = query.query(query_map).hash;
412 // Prefer entry points which have valid spans for nicer error messages
413 // We add an integer to the tuple ensuring that entry points
414 // with valid spans are picked first
415 let span_cmp = if span == DUMMY_SP { 1 } else { 0 };
416 (span_cmp, hash)
417 })
418 .unwrap()
419 }
420
421 /// Looks for query cycles starting from the last query in `jobs`.
422 /// If a cycle is found, all queries in the cycle is removed from `jobs` and
423 /// the function return true.
424 /// If a cycle was not found, the starting query is removed from `jobs` and
425 /// the function returns false.
426 #[cfg(parallel_compiler)]
remove_cycle<D: DepKind>( query_map: &QueryMap<D>, jobs: &mut Vec<QueryJobId>, wakelist: &mut Vec<Lrc<QueryWaiter<D>>>, ) -> bool427 fn remove_cycle<D: DepKind>(
428 query_map: &QueryMap<D>,
429 jobs: &mut Vec<QueryJobId>,
430 wakelist: &mut Vec<Lrc<QueryWaiter<D>>>,
431 ) -> bool {
432 let mut visited = FxHashSet::default();
433 let mut stack = Vec::new();
434 // Look for a cycle starting with the last query in `jobs`
435 if let Some(waiter) =
436 cycle_check(query_map, jobs.pop().unwrap(), DUMMY_SP, &mut stack, &mut visited)
437 {
438 // The stack is a vector of pairs of spans and queries; reverse it so that
439 // the earlier entries require later entries
440 let (mut spans, queries): (Vec<_>, Vec<_>) = stack.into_iter().rev().unzip();
441
442 // Shift the spans so that queries are matched with the span for their waitee
443 spans.rotate_right(1);
444
445 // Zip them back together
446 let mut stack: Vec<_> = iter::zip(spans, queries).collect();
447
448 // Remove the queries in our cycle from the list of jobs to look at
449 for r in &stack {
450 if let Some(pos) = jobs.iter().position(|j| j == &r.1) {
451 jobs.remove(pos);
452 }
453 }
454
455 // Find the queries in the cycle which are
456 // connected to queries outside the cycle
457 let entry_points = stack
458 .iter()
459 .filter_map(|&(span, query)| {
460 if query.parent(query_map).is_none() {
461 // This query is connected to the root (it has no query parent)
462 Some((span, query, None))
463 } else {
464 let mut waiters = Vec::new();
465 // Find all the direct waiters who lead to the root
466 visit_waiters(query_map, query, |span, waiter| {
467 // Mark all the other queries in the cycle as already visited
468 let mut visited = FxHashSet::from_iter(stack.iter().map(|q| q.1));
469
470 if connected_to_root(query_map, waiter, &mut visited) {
471 waiters.push((span, waiter));
472 }
473
474 None
475 });
476 if waiters.is_empty() {
477 None
478 } else {
479 // Deterministically pick one of the waiters to show to the user
480 let waiter = *pick_query(query_map, &waiters, |s| *s);
481 Some((span, query, Some(waiter)))
482 }
483 }
484 })
485 .collect::<Vec<(Span, QueryJobId, Option<(Span, QueryJobId)>)>>();
486
487 // Deterministically pick an entry point
488 let (_, entry_point, usage) = pick_query(query_map, &entry_points, |e| (e.0, e.1));
489
490 // Shift the stack so that our entry point is first
491 let entry_point_pos = stack.iter().position(|(_, query)| query == entry_point);
492 if let Some(pos) = entry_point_pos {
493 stack.rotate_left(pos);
494 }
495
496 let usage = usage.as_ref().map(|(span, query)| (*span, query.query(query_map)));
497
498 // Create the cycle error
499 let error = CycleError {
500 usage,
501 cycle: stack
502 .iter()
503 .map(|&(s, ref q)| QueryInfo { span: s, query: q.query(query_map) })
504 .collect(),
505 };
506
507 // We unwrap `waiter` here since there must always be one
508 // edge which is resumable / waited using a query latch
509 let (waitee_query, waiter_idx) = waiter.unwrap();
510
511 // Extract the waiter we want to resume
512 let waiter = waitee_query.latch(query_map).unwrap().extract_waiter(waiter_idx);
513
514 // Set the cycle error so it will be picked up when resumed
515 *waiter.cycle.lock() = Some(error);
516
517 // Put the waiter on the list of things to resume
518 wakelist.push(waiter);
519
520 true
521 } else {
522 false
523 }
524 }
525
526 /// Detects query cycles by using depth first search over all active query jobs.
527 /// If a query cycle is found it will break the cycle by finding an edge which
528 /// uses a query latch and then resuming that waiter.
529 /// There may be multiple cycles involved in a deadlock, so this searches
530 /// all active queries for cycles before finally resuming all the waiters at once.
531 #[cfg(parallel_compiler)]
deadlock<D: DepKind>(query_map: QueryMap<D>, registry: &rayon_core::Registry)532 pub fn deadlock<D: DepKind>(query_map: QueryMap<D>, registry: &rayon_core::Registry) {
533 let on_panic = defer(|| {
534 eprintln!("deadlock handler panicked, aborting process");
535 process::abort();
536 });
537
538 let mut wakelist = Vec::new();
539 let mut jobs: Vec<QueryJobId> = query_map.keys().cloned().collect();
540
541 let mut found_cycle = false;
542
543 while jobs.len() > 0 {
544 if remove_cycle(&query_map, &mut jobs, &mut wakelist) {
545 found_cycle = true;
546 }
547 }
548
549 // Check that a cycle was found. It is possible for a deadlock to occur without
550 // a query cycle if a query which can be waited on uses Rayon to do multithreading
551 // internally. Such a query (X) may be executing on 2 threads (A and B) and A may
552 // wait using Rayon on B. Rayon may then switch to executing another query (Y)
553 // which in turn will wait on X causing a deadlock. We have a false dependency from
554 // X to Y due to Rayon waiting and a true dependency from Y to X. The algorithm here
555 // only considers the true dependency and won't detect a cycle.
556 assert!(found_cycle);
557
558 // FIXME: Ensure this won't cause a deadlock before we return
559 for waiter in wakelist.into_iter() {
560 waiter.notify(registry);
561 }
562
563 on_panic.disable();
564 }
565
566 #[inline(never)]
567 #[cold]
568 pub(crate) fn report_cycle<'a, D: DepKind>(
569 sess: &'a Session,
570 CycleError { usage, cycle: stack }: &CycleError<D>,
571 ) -> DiagnosticBuilder<'a, ErrorGuaranteed> {
572 assert!(!stack.is_empty());
573
574 let span = stack[0].query.default_span(stack[1 % stack.len()].span);
575
576 let mut cycle_stack = Vec::new();
577
578 use crate::error::StackCount;
579 let stack_count = if stack.len() == 1 { StackCount::Single } else { StackCount::Multiple };
580
581 for i in 1..stack.len() {
582 let query = &stack[i].query;
583 let span = query.default_span(stack[(i + 1) % stack.len()].span);
584 cycle_stack.push(CycleStack { span, desc: query.description.to_owned() });
585 }
586
587 let mut cycle_usage = None;
588 if let Some((span, ref query)) = *usage {
589 cycle_usage = Some(crate::error::CycleUsage {
590 span: query.default_span(span),
591 usage: query.description.to_string(),
592 });
593 }
594
595 let alias = if stack.iter().all(|entry| entry.query.def_kind == Some(DefKind::TyAlias)) {
596 Some(crate::error::Alias::Ty)
597 } else if stack.iter().all(|entry| entry.query.def_kind == Some(DefKind::TraitAlias)) {
598 Some(crate::error::Alias::Trait)
599 } else {
600 None
601 };
602
603 let cycle_diag = crate::error::Cycle {
604 span,
605 cycle_stack,
606 stack_bottom: stack[0].query.description.to_owned(),
607 alias,
608 cycle_usage: cycle_usage,
609 stack_count,
610 };
611
612 cycle_diag.into_diagnostic(&sess.parse_sess.span_diagnostic)
613 }
614
print_query_stack<Qcx: QueryContext>( qcx: Qcx, mut current_query: Option<QueryJobId>, handler: &Handler, num_frames: Option<usize>, ) -> usize615 pub fn print_query_stack<Qcx: QueryContext>(
616 qcx: Qcx,
617 mut current_query: Option<QueryJobId>,
618 handler: &Handler,
619 num_frames: Option<usize>,
620 ) -> usize {
621 // Be careful relying on global state here: this code is called from
622 // a panic hook, which means that the global `Handler` may be in a weird
623 // state if it was responsible for triggering the panic.
624 let mut i = 0;
625 let query_map = qcx.try_collect_active_jobs();
626
627 while let Some(query) = current_query {
628 if Some(i) == num_frames {
629 break;
630 }
631 let Some(query_info) = query_map.as_ref().and_then(|map| map.get(&query)) else {
632 break;
633 };
634 let mut diag = Diagnostic::new(
635 Level::FailureNote,
636 format!("#{} [{:?}] {}", i, query_info.query.dep_kind, query_info.query.description),
637 );
638 diag.span = query_info.job.span.into();
639 handler.force_print_diagnostic(diag);
640
641 current_query = query_info.job.parent;
642 i += 1;
643 }
644
645 i
646 }
647