1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 #include <linux/irq.h>
68 #include <linux/delay.h>
69 #ifdef CONFIG_QOS_CTRL
70 #include <linux/sched/qos_ctrl.h>
71 #endif
72 #ifdef CONFIG_PREEMPT_DYNAMIC
73 # ifdef CONFIG_GENERIC_ENTRY
74 # include <linux/entry-common.h>
75 # endif
76 #endif
77
78 #include <uapi/linux/sched/types.h>
79
80 #include <asm/irq_regs.h>
81 #include <asm/switch_to.h>
82 #include <asm/tlb.h>
83
84 #define CREATE_TRACE_POINTS
85 #include <linux/sched/rseq_api.h>
86 #include <trace/events/sched.h>
87 #include <trace/events/ipi.h>
88 #undef CREATE_TRACE_POINTS
89
90 #include "sched.h"
91 #include "stats.h"
92 #include "autogroup.h"
93
94 #include "autogroup.h"
95 #include "pelt.h"
96 #include "smp.h"
97 #include "stats.h"
98 #include "walt.h"
99 #include "rtg/rtg.h"
100
101 #include "../workqueue_internal.h"
102 #include "../../io_uring/io-wq.h"
103 #include "../smpboot.h"
104
105 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
107
108 /*
109 * Export tracepoints that act as a bare tracehook (ie: have no trace event
110 * associated with them) to allow external modules to probe them.
111 */
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
119 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
120 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
121 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
122 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
123
124 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
125
126 #ifdef CONFIG_SCHED_DEBUG
127 /*
128 * Debugging: various feature bits
129 *
130 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
131 * sysctl_sched_features, defined in sched.h, to allow constants propagation
132 * at compile time and compiler optimization based on features default.
133 */
134 #define SCHED_FEAT(name, enabled) \
135 (1UL << __SCHED_FEAT_##name) * enabled |
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
139 #undef SCHED_FEAT
140
141 /*
142 * Print a warning if need_resched is set for the given duration (if
143 * LATENCY_WARN is enabled).
144 *
145 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
146 * per boot.
147 */
148 __read_mostly int sysctl_resched_latency_warn_ms = 100;
149 __read_mostly int sysctl_resched_latency_warn_once = 1;
150 #endif /* CONFIG_SCHED_DEBUG */
151
152 /*
153 * Number of tasks to iterate in a single balance run.
154 * Limited because this is done with IRQs disabled.
155 */
156 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
157
158 __read_mostly int scheduler_running;
159
160 #ifdef CONFIG_SCHED_CORE
161
162 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
163
164 /* kernel prio, less is more */
__task_prio(const struct task_struct * p)165 static inline int __task_prio(const struct task_struct *p)
166 {
167 if (p->sched_class == &stop_sched_class) /* trumps deadline */
168 return -2;
169
170 if (rt_prio(p->prio)) /* includes deadline */
171 return p->prio; /* [-1, 99] */
172
173 if (p->sched_class == &idle_sched_class)
174 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
175
176 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
177 }
178
179 /*
180 * l(a,b)
181 * le(a,b) := !l(b,a)
182 * g(a,b) := l(b,a)
183 * ge(a,b) := !l(a,b)
184 */
185
186 /* real prio, less is less */
prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)187 static inline bool prio_less(const struct task_struct *a,
188 const struct task_struct *b, bool in_fi)
189 {
190
191 int pa = __task_prio(a), pb = __task_prio(b);
192
193 if (-pa < -pb)
194 return true;
195
196 if (-pb < -pa)
197 return false;
198
199 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
200 return !dl_time_before(a->dl.deadline, b->dl.deadline);
201
202 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
203 return cfs_prio_less(a, b, in_fi);
204
205 return false;
206 }
207
__sched_core_less(const struct task_struct * a,const struct task_struct * b)208 static inline bool __sched_core_less(const struct task_struct *a,
209 const struct task_struct *b)
210 {
211 if (a->core_cookie < b->core_cookie)
212 return true;
213
214 if (a->core_cookie > b->core_cookie)
215 return false;
216
217 /* flip prio, so high prio is leftmost */
218 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
219 return true;
220
221 return false;
222 }
223
224 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
225
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)226 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
227 {
228 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
229 }
230
rb_sched_core_cmp(const void * key,const struct rb_node * node)231 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
232 {
233 const struct task_struct *p = __node_2_sc(node);
234 unsigned long cookie = (unsigned long)key;
235
236 if (cookie < p->core_cookie)
237 return -1;
238
239 if (cookie > p->core_cookie)
240 return 1;
241
242 return 0;
243 }
244
sched_core_enqueue(struct rq * rq,struct task_struct * p)245 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
246 {
247 rq->core->core_task_seq++;
248
249 if (!p->core_cookie)
250 return;
251
252 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
253 }
254
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)255 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
256 {
257 rq->core->core_task_seq++;
258
259 if (sched_core_enqueued(p)) {
260 rb_erase(&p->core_node, &rq->core_tree);
261 RB_CLEAR_NODE(&p->core_node);
262 }
263
264 /*
265 * Migrating the last task off the cpu, with the cpu in forced idle
266 * state. Reschedule to create an accounting edge for forced idle,
267 * and re-examine whether the core is still in forced idle state.
268 */
269 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
270 rq->core->core_forceidle_count && rq->curr == rq->idle)
271 resched_curr(rq);
272 }
273
sched_task_is_throttled(struct task_struct * p,int cpu)274 static int sched_task_is_throttled(struct task_struct *p, int cpu)
275 {
276 if (p->sched_class->task_is_throttled)
277 return p->sched_class->task_is_throttled(p, cpu);
278
279 return 0;
280 }
281
sched_core_next(struct task_struct * p,unsigned long cookie)282 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
283 {
284 struct rb_node *node = &p->core_node;
285 int cpu = task_cpu(p);
286
287 do {
288 node = rb_next(node);
289 if (!node)
290 return NULL;
291
292 p = __node_2_sc(node);
293 if (p->core_cookie != cookie)
294 return NULL;
295
296 } while (sched_task_is_throttled(p, cpu));
297
298 return p;
299 }
300
301 /*
302 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
303 * If no suitable task is found, NULL will be returned.
304 */
sched_core_find(struct rq * rq,unsigned long cookie)305 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
306 {
307 struct task_struct *p;
308 struct rb_node *node;
309
310 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
311 if (!node)
312 return NULL;
313
314 p = __node_2_sc(node);
315 if (!sched_task_is_throttled(p, rq->cpu))
316 return p;
317
318 return sched_core_next(p, cookie);
319 }
320
321 /*
322 * Magic required such that:
323 *
324 * raw_spin_rq_lock(rq);
325 * ...
326 * raw_spin_rq_unlock(rq);
327 *
328 * ends up locking and unlocking the _same_ lock, and all CPUs
329 * always agree on what rq has what lock.
330 *
331 * XXX entirely possible to selectively enable cores, don't bother for now.
332 */
333
334 static DEFINE_MUTEX(sched_core_mutex);
335 static atomic_t sched_core_count;
336 static struct cpumask sched_core_mask;
337
sched_core_lock(int cpu,unsigned long * flags)338 static void sched_core_lock(int cpu, unsigned long *flags)
339 {
340 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
341 int t, i = 0;
342
343 local_irq_save(*flags);
344 for_each_cpu(t, smt_mask)
345 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
346 }
347
sched_core_unlock(int cpu,unsigned long * flags)348 static void sched_core_unlock(int cpu, unsigned long *flags)
349 {
350 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
351 int t;
352
353 for_each_cpu(t, smt_mask)
354 raw_spin_unlock(&cpu_rq(t)->__lock);
355 local_irq_restore(*flags);
356 }
357
__sched_core_flip(bool enabled)358 static void __sched_core_flip(bool enabled)
359 {
360 unsigned long flags;
361 int cpu, t;
362
363 cpus_read_lock();
364
365 /*
366 * Toggle the online cores, one by one.
367 */
368 cpumask_copy(&sched_core_mask, cpu_online_mask);
369 for_each_cpu(cpu, &sched_core_mask) {
370 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
371
372 sched_core_lock(cpu, &flags);
373
374 for_each_cpu(t, smt_mask)
375 cpu_rq(t)->core_enabled = enabled;
376
377 cpu_rq(cpu)->core->core_forceidle_start = 0;
378
379 sched_core_unlock(cpu, &flags);
380
381 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
382 }
383
384 /*
385 * Toggle the offline CPUs.
386 */
387 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
388 cpu_rq(cpu)->core_enabled = enabled;
389
390 cpus_read_unlock();
391 }
392
sched_core_assert_empty(void)393 static void sched_core_assert_empty(void)
394 {
395 int cpu;
396
397 for_each_possible_cpu(cpu)
398 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
399 }
400
__sched_core_enable(void)401 static void __sched_core_enable(void)
402 {
403 static_branch_enable(&__sched_core_enabled);
404 /*
405 * Ensure all previous instances of raw_spin_rq_*lock() have finished
406 * and future ones will observe !sched_core_disabled().
407 */
408 synchronize_rcu();
409 __sched_core_flip(true);
410 sched_core_assert_empty();
411 }
412
__sched_core_disable(void)413 static void __sched_core_disable(void)
414 {
415 sched_core_assert_empty();
416 __sched_core_flip(false);
417 static_branch_disable(&__sched_core_enabled);
418 }
419
sched_core_get(void)420 void sched_core_get(void)
421 {
422 if (atomic_inc_not_zero(&sched_core_count))
423 return;
424
425 mutex_lock(&sched_core_mutex);
426 if (!atomic_read(&sched_core_count))
427 __sched_core_enable();
428
429 smp_mb__before_atomic();
430 atomic_inc(&sched_core_count);
431 mutex_unlock(&sched_core_mutex);
432 }
433
__sched_core_put(struct work_struct * work)434 static void __sched_core_put(struct work_struct *work)
435 {
436 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
437 __sched_core_disable();
438 mutex_unlock(&sched_core_mutex);
439 }
440 }
441
sched_core_put(void)442 void sched_core_put(void)
443 {
444 static DECLARE_WORK(_work, __sched_core_put);
445
446 /*
447 * "There can be only one"
448 *
449 * Either this is the last one, or we don't actually need to do any
450 * 'work'. If it is the last *again*, we rely on
451 * WORK_STRUCT_PENDING_BIT.
452 */
453 if (!atomic_add_unless(&sched_core_count, -1, 1))
454 schedule_work(&_work);
455 }
456
457 #else /* !CONFIG_SCHED_CORE */
458
sched_core_enqueue(struct rq * rq,struct task_struct * p)459 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
460 static inline void
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)461 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
462
463 #endif /* CONFIG_SCHED_CORE */
464
465 /*
466 * Serialization rules:
467 *
468 * Lock order:
469 *
470 * p->pi_lock
471 * rq->lock
472 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
473 *
474 * rq1->lock
475 * rq2->lock where: rq1 < rq2
476 *
477 * Regular state:
478 *
479 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
480 * local CPU's rq->lock, it optionally removes the task from the runqueue and
481 * always looks at the local rq data structures to find the most eligible task
482 * to run next.
483 *
484 * Task enqueue is also under rq->lock, possibly taken from another CPU.
485 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
486 * the local CPU to avoid bouncing the runqueue state around [ see
487 * ttwu_queue_wakelist() ]
488 *
489 * Task wakeup, specifically wakeups that involve migration, are horribly
490 * complicated to avoid having to take two rq->locks.
491 *
492 * Special state:
493 *
494 * System-calls and anything external will use task_rq_lock() which acquires
495 * both p->pi_lock and rq->lock. As a consequence the state they change is
496 * stable while holding either lock:
497 *
498 * - sched_setaffinity()/
499 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
500 * - set_user_nice(): p->se.load, p->*prio
501 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
502 * p->se.load, p->rt_priority,
503 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
504 * - sched_setnuma(): p->numa_preferred_nid
505 * - sched_move_task(): p->sched_task_group
506 * - uclamp_update_active() p->uclamp*
507 *
508 * p->state <- TASK_*:
509 *
510 * is changed locklessly using set_current_state(), __set_current_state() or
511 * set_special_state(), see their respective comments, or by
512 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
513 * concurrent self.
514 *
515 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
516 *
517 * is set by activate_task() and cleared by deactivate_task(), under
518 * rq->lock. Non-zero indicates the task is runnable, the special
519 * ON_RQ_MIGRATING state is used for migration without holding both
520 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
521 *
522 * p->on_cpu <- { 0, 1 }:
523 *
524 * is set by prepare_task() and cleared by finish_task() such that it will be
525 * set before p is scheduled-in and cleared after p is scheduled-out, both
526 * under rq->lock. Non-zero indicates the task is running on its CPU.
527 *
528 * [ The astute reader will observe that it is possible for two tasks on one
529 * CPU to have ->on_cpu = 1 at the same time. ]
530 *
531 * task_cpu(p): is changed by set_task_cpu(), the rules are:
532 *
533 * - Don't call set_task_cpu() on a blocked task:
534 *
535 * We don't care what CPU we're not running on, this simplifies hotplug,
536 * the CPU assignment of blocked tasks isn't required to be valid.
537 *
538 * - for try_to_wake_up(), called under p->pi_lock:
539 *
540 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
541 *
542 * - for migration called under rq->lock:
543 * [ see task_on_rq_migrating() in task_rq_lock() ]
544 *
545 * o move_queued_task()
546 * o detach_task()
547 *
548 * - for migration called under double_rq_lock():
549 *
550 * o __migrate_swap_task()
551 * o push_rt_task() / pull_rt_task()
552 * o push_dl_task() / pull_dl_task()
553 * o dl_task_offline_migration()
554 *
555 */
556
raw_spin_rq_lock_nested(struct rq * rq,int subclass)557 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
558 {
559 raw_spinlock_t *lock;
560
561 /* Matches synchronize_rcu() in __sched_core_enable() */
562 preempt_disable();
563 if (sched_core_disabled()) {
564 raw_spin_lock_nested(&rq->__lock, subclass);
565 /* preempt_count *MUST* be > 1 */
566 preempt_enable_no_resched();
567 return;
568 }
569
570 for (;;) {
571 lock = __rq_lockp(rq);
572 raw_spin_lock_nested(lock, subclass);
573 if (likely(lock == __rq_lockp(rq))) {
574 /* preempt_count *MUST* be > 1 */
575 preempt_enable_no_resched();
576 return;
577 }
578 raw_spin_unlock(lock);
579 }
580 }
581
raw_spin_rq_trylock(struct rq * rq)582 bool raw_spin_rq_trylock(struct rq *rq)
583 {
584 raw_spinlock_t *lock;
585 bool ret;
586
587 /* Matches synchronize_rcu() in __sched_core_enable() */
588 preempt_disable();
589 if (sched_core_disabled()) {
590 ret = raw_spin_trylock(&rq->__lock);
591 preempt_enable();
592 return ret;
593 }
594
595 for (;;) {
596 lock = __rq_lockp(rq);
597 ret = raw_spin_trylock(lock);
598 if (!ret || (likely(lock == __rq_lockp(rq)))) {
599 preempt_enable();
600 return ret;
601 }
602 raw_spin_unlock(lock);
603 }
604 }
605
raw_spin_rq_unlock(struct rq * rq)606 void raw_spin_rq_unlock(struct rq *rq)
607 {
608 raw_spin_unlock(rq_lockp(rq));
609 }
610
611 #ifdef CONFIG_SMP
612 /*
613 * double_rq_lock - safely lock two runqueues
614 */
double_rq_lock(struct rq * rq1,struct rq * rq2)615 void double_rq_lock(struct rq *rq1, struct rq *rq2)
616 {
617 lockdep_assert_irqs_disabled();
618
619 if (rq_order_less(rq2, rq1))
620 swap(rq1, rq2);
621
622 raw_spin_rq_lock(rq1);
623 if (__rq_lockp(rq1) != __rq_lockp(rq2))
624 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
625
626 double_rq_clock_clear_update(rq1, rq2);
627 }
628 #endif
629
630 /*
631 * __task_rq_lock - lock the rq @p resides on.
632 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)633 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
634 __acquires(rq->lock)
635 {
636 struct rq *rq;
637
638 lockdep_assert_held(&p->pi_lock);
639
640 for (;;) {
641 rq = task_rq(p);
642 raw_spin_rq_lock(rq);
643 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
644 rq_pin_lock(rq, rf);
645 return rq;
646 }
647 raw_spin_rq_unlock(rq);
648
649 while (unlikely(task_on_rq_migrating(p)))
650 cpu_relax();
651 }
652 }
653
654 /*
655 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
656 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)657 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
658 __acquires(p->pi_lock)
659 __acquires(rq->lock)
660 {
661 struct rq *rq;
662
663 for (;;) {
664 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
665 rq = task_rq(p);
666 raw_spin_rq_lock(rq);
667 /*
668 * move_queued_task() task_rq_lock()
669 *
670 * ACQUIRE (rq->lock)
671 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
672 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
673 * [S] ->cpu = new_cpu [L] task_rq()
674 * [L] ->on_rq
675 * RELEASE (rq->lock)
676 *
677 * If we observe the old CPU in task_rq_lock(), the acquire of
678 * the old rq->lock will fully serialize against the stores.
679 *
680 * If we observe the new CPU in task_rq_lock(), the address
681 * dependency headed by '[L] rq = task_rq()' and the acquire
682 * will pair with the WMB to ensure we then also see migrating.
683 */
684 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
685 rq_pin_lock(rq, rf);
686 return rq;
687 }
688 raw_spin_rq_unlock(rq);
689 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
690
691 while (unlikely(task_on_rq_migrating(p)))
692 cpu_relax();
693 }
694 }
695
696 /*
697 * RQ-clock updating methods:
698 */
699
update_rq_clock_task(struct rq * rq,s64 delta)700 static void update_rq_clock_task(struct rq *rq, s64 delta)
701 {
702 /*
703 * In theory, the compile should just see 0 here, and optimize out the call
704 * to sched_rt_avg_update. But I don't trust it...
705 */
706 s64 __maybe_unused steal = 0, irq_delta = 0;
707
708 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
709 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
710
711 /*
712 * Since irq_time is only updated on {soft,}irq_exit, we might run into
713 * this case when a previous update_rq_clock() happened inside a
714 * {soft,}irq region.
715 *
716 * When this happens, we stop ->clock_task and only update the
717 * prev_irq_time stamp to account for the part that fit, so that a next
718 * update will consume the rest. This ensures ->clock_task is
719 * monotonic.
720 *
721 * It does however cause some slight miss-attribution of {soft,}irq
722 * time, a more accurate solution would be to update the irq_time using
723 * the current rq->clock timestamp, except that would require using
724 * atomic ops.
725 */
726 if (irq_delta > delta)
727 irq_delta = delta;
728
729 rq->prev_irq_time += irq_delta;
730 delta -= irq_delta;
731 delayacct_irq(rq->curr, irq_delta);
732 #endif
733 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
734 if (static_key_false((¶virt_steal_rq_enabled))) {
735 u64 prev_steal;
736
737 steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
738 steal -= rq->prev_steal_time_rq;
739
740 if (unlikely(steal > delta))
741 steal = delta;
742
743 rq->prev_steal_time_rq = prev_steal;
744 delta -= steal;
745 }
746 #endif
747
748 rq->clock_task += delta;
749
750 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
751 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
752 update_irq_load_avg(rq, irq_delta + steal);
753 #endif
754 update_rq_clock_pelt(rq, delta);
755 }
756
update_rq_clock(struct rq * rq)757 void update_rq_clock(struct rq *rq)
758 {
759 s64 delta;
760
761 lockdep_assert_rq_held(rq);
762
763 if (rq->clock_update_flags & RQCF_ACT_SKIP)
764 return;
765
766 #ifdef CONFIG_SCHED_DEBUG
767 if (sched_feat(WARN_DOUBLE_CLOCK))
768 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
769 rq->clock_update_flags |= RQCF_UPDATED;
770 #endif
771
772 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
773 if (delta < 0)
774 return;
775 rq->clock += delta;
776 update_rq_clock_task(rq, delta);
777 }
778
779 #ifdef CONFIG_SCHED_HRTICK
780 /*
781 * Use HR-timers to deliver accurate preemption points.
782 */
783
hrtick_clear(struct rq * rq)784 static void hrtick_clear(struct rq *rq)
785 {
786 if (hrtimer_active(&rq->hrtick_timer))
787 hrtimer_cancel(&rq->hrtick_timer);
788 }
789
790 /*
791 * High-resolution timer tick.
792 * Runs from hardirq context with interrupts disabled.
793 */
hrtick(struct hrtimer * timer)794 static enum hrtimer_restart hrtick(struct hrtimer *timer)
795 {
796 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
797 struct rq_flags rf;
798
799 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
800
801 rq_lock(rq, &rf);
802 update_rq_clock(rq);
803 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
804 rq_unlock(rq, &rf);
805
806 return HRTIMER_NORESTART;
807 }
808
809 #ifdef CONFIG_SMP
810
__hrtick_restart(struct rq * rq)811 static void __hrtick_restart(struct rq *rq)
812 {
813 struct hrtimer *timer = &rq->hrtick_timer;
814 ktime_t time = rq->hrtick_time;
815
816 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
817 }
818
819 /*
820 * called from hardirq (IPI) context
821 */
__hrtick_start(void * arg)822 static void __hrtick_start(void *arg)
823 {
824 struct rq *rq = arg;
825 struct rq_flags rf;
826
827 rq_lock(rq, &rf);
828 __hrtick_restart(rq);
829 rq_unlock(rq, &rf);
830 }
831
832 /*
833 * Called to set the hrtick timer state.
834 *
835 * called with rq->lock held and irqs disabled
836 */
hrtick_start(struct rq * rq,u64 delay)837 void hrtick_start(struct rq *rq, u64 delay)
838 {
839 struct hrtimer *timer = &rq->hrtick_timer;
840 s64 delta;
841
842 /*
843 * Don't schedule slices shorter than 10000ns, that just
844 * doesn't make sense and can cause timer DoS.
845 */
846 delta = max_t(s64, delay, 10000LL);
847 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
848
849 if (rq == this_rq())
850 __hrtick_restart(rq);
851 else
852 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
853 }
854
855 #else
856 /*
857 * Called to set the hrtick timer state.
858 *
859 * called with rq->lock held and irqs disabled
860 */
hrtick_start(struct rq * rq,u64 delay)861 void hrtick_start(struct rq *rq, u64 delay)
862 {
863 /*
864 * Don't schedule slices shorter than 10000ns, that just
865 * doesn't make sense. Rely on vruntime for fairness.
866 */
867 delay = max_t(u64, delay, 10000LL);
868 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
869 HRTIMER_MODE_REL_PINNED_HARD);
870 }
871
872 #endif /* CONFIG_SMP */
873
hrtick_rq_init(struct rq * rq)874 static void hrtick_rq_init(struct rq *rq)
875 {
876 #ifdef CONFIG_SMP
877 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
878 #endif
879 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
880 rq->hrtick_timer.function = hrtick;
881 }
882 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)883 static inline void hrtick_clear(struct rq *rq)
884 {
885 }
886
hrtick_rq_init(struct rq * rq)887 static inline void hrtick_rq_init(struct rq *rq)
888 {
889 }
890 #endif /* CONFIG_SCHED_HRTICK */
891
892 /*
893 * cmpxchg based fetch_or, macro so it works for different integer types
894 */
895 #define fetch_or(ptr, mask) \
896 ({ \
897 typeof(ptr) _ptr = (ptr); \
898 typeof(mask) _mask = (mask); \
899 typeof(*_ptr) _val = *_ptr; \
900 \
901 do { \
902 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
903 _val; \
904 })
905
906 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
907 /*
908 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
909 * this avoids any races wrt polling state changes and thereby avoids
910 * spurious IPIs.
911 */
set_nr_and_not_polling(struct task_struct * p)912 static inline bool set_nr_and_not_polling(struct task_struct *p)
913 {
914 struct thread_info *ti = task_thread_info(p);
915 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
916 }
917
918 /*
919 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
920 *
921 * If this returns true, then the idle task promises to call
922 * sched_ttwu_pending() and reschedule soon.
923 */
set_nr_if_polling(struct task_struct * p)924 static bool set_nr_if_polling(struct task_struct *p)
925 {
926 struct thread_info *ti = task_thread_info(p);
927 typeof(ti->flags) val = READ_ONCE(ti->flags);
928
929 for (;;) {
930 if (!(val & _TIF_POLLING_NRFLAG))
931 return false;
932 if (val & _TIF_NEED_RESCHED)
933 return true;
934 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
935 break;
936 }
937 return true;
938 }
939
940 #else
set_nr_and_not_polling(struct task_struct * p)941 static inline bool set_nr_and_not_polling(struct task_struct *p)
942 {
943 set_tsk_need_resched(p);
944 return true;
945 }
946
947 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)948 static inline bool set_nr_if_polling(struct task_struct *p)
949 {
950 return false;
951 }
952 #endif
953 #endif
954
__wake_q_add(struct wake_q_head * head,struct task_struct * task)955 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
956 {
957 struct wake_q_node *node = &task->wake_q;
958
959 /*
960 * Atomically grab the task, if ->wake_q is !nil already it means
961 * it's already queued (either by us or someone else) and will get the
962 * wakeup due to that.
963 *
964 * In order to ensure that a pending wakeup will observe our pending
965 * state, even in the failed case, an explicit smp_mb() must be used.
966 */
967 smp_mb__before_atomic();
968 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
969 return false;
970
971 /*
972 * The head is context local, there can be no concurrency.
973 */
974 *head->lastp = node;
975 head->lastp = &node->next;
976 return true;
977 }
978
979 /**
980 * wake_q_add() - queue a wakeup for 'later' waking.
981 * @head: the wake_q_head to add @task to
982 * @task: the task to queue for 'later' wakeup
983 *
984 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
985 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
986 * instantly.
987 *
988 * This function must be used as-if it were wake_up_process(); IOW the task
989 * must be ready to be woken at this location.
990 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)991 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
992 {
993 if (__wake_q_add(head, task))
994 get_task_struct(task);
995 }
996
997 /**
998 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
999 * @head: the wake_q_head to add @task to
1000 * @task: the task to queue for 'later' wakeup
1001 *
1002 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1003 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1004 * instantly.
1005 *
1006 * This function must be used as-if it were wake_up_process(); IOW the task
1007 * must be ready to be woken at this location.
1008 *
1009 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1010 * that already hold reference to @task can call the 'safe' version and trust
1011 * wake_q to do the right thing depending whether or not the @task is already
1012 * queued for wakeup.
1013 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)1014 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1015 {
1016 if (!__wake_q_add(head, task))
1017 put_task_struct(task);
1018 }
1019
wake_up_q(struct wake_q_head * head)1020 void wake_up_q(struct wake_q_head *head)
1021 {
1022 struct wake_q_node *node = head->first;
1023
1024 while (node != WAKE_Q_TAIL) {
1025 struct task_struct *task;
1026
1027 task = container_of(node, struct task_struct, wake_q);
1028 node = node->next;
1029 /* pairs with cmpxchg_relaxed() in __wake_q_add() */
1030 WRITE_ONCE(task->wake_q.next, NULL);
1031 /* Task can safely be re-inserted now. */
1032
1033 /*
1034 * wake_up_process() executes a full barrier, which pairs with
1035 * the queueing in wake_q_add() so as not to miss wakeups.
1036 */
1037 wake_up_process(task);
1038 put_task_struct(task);
1039 }
1040 }
1041
1042 /*
1043 * resched_curr - mark rq's current task 'to be rescheduled now'.
1044 *
1045 * On UP this means the setting of the need_resched flag, on SMP it
1046 * might also involve a cross-CPU call to trigger the scheduler on
1047 * the target CPU.
1048 */
resched_curr(struct rq * rq)1049 void resched_curr(struct rq *rq)
1050 {
1051 struct task_struct *curr = rq->curr;
1052 int cpu;
1053
1054 lockdep_assert_rq_held(rq);
1055
1056 if (test_tsk_need_resched(curr))
1057 return;
1058
1059 cpu = cpu_of(rq);
1060
1061 if (cpu == smp_processor_id()) {
1062 set_tsk_need_resched(curr);
1063 set_preempt_need_resched();
1064 return;
1065 }
1066
1067 if (set_nr_and_not_polling(curr))
1068 smp_send_reschedule(cpu);
1069 else
1070 trace_sched_wake_idle_without_ipi(cpu);
1071 }
1072
resched_cpu(int cpu)1073 void resched_cpu(int cpu)
1074 {
1075 struct rq *rq = cpu_rq(cpu);
1076 unsigned long flags;
1077
1078 raw_spin_rq_lock_irqsave(rq, flags);
1079 if (cpu_online(cpu) || cpu == smp_processor_id())
1080 resched_curr(rq);
1081 raw_spin_rq_unlock_irqrestore(rq, flags);
1082 }
1083
1084 #ifdef CONFIG_SMP
1085 #ifdef CONFIG_NO_HZ_COMMON
1086 /*
1087 * In the semi idle case, use the nearest busy CPU for migrating timers
1088 * from an idle CPU. This is good for power-savings.
1089 *
1090 * We don't do similar optimization for completely idle system, as
1091 * selecting an idle CPU will add more delays to the timers than intended
1092 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1093 */
get_nohz_timer_target(void)1094 int get_nohz_timer_target(void)
1095 {
1096 int i, cpu = smp_processor_id(), default_cpu = -1;
1097 struct sched_domain *sd;
1098 const struct cpumask *hk_mask;
1099
1100 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1101 if (!idle_cpu(cpu))
1102 return cpu;
1103 default_cpu = cpu;
1104 }
1105
1106 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1107
1108 guard(rcu)();
1109
1110 for_each_domain(cpu, sd) {
1111 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1112 if (cpu == i)
1113 continue;
1114
1115 if (!idle_cpu(i))
1116 return i;
1117 }
1118 }
1119
1120 if (default_cpu == -1)
1121 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1122
1123 return default_cpu;
1124 }
1125
1126 /*
1127 * When add_timer_on() enqueues a timer into the timer wheel of an
1128 * idle CPU then this timer might expire before the next timer event
1129 * which is scheduled to wake up that CPU. In case of a completely
1130 * idle system the next event might even be infinite time into the
1131 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1132 * leaves the inner idle loop so the newly added timer is taken into
1133 * account when the CPU goes back to idle and evaluates the timer
1134 * wheel for the next timer event.
1135 */
wake_up_idle_cpu(int cpu)1136 static void wake_up_idle_cpu(int cpu)
1137 {
1138 struct rq *rq = cpu_rq(cpu);
1139
1140 if (cpu == smp_processor_id())
1141 return;
1142
1143 if (set_nr_and_not_polling(rq->idle))
1144 smp_send_reschedule(cpu);
1145 else
1146 trace_sched_wake_idle_without_ipi(cpu);
1147 }
1148
wake_up_full_nohz_cpu(int cpu)1149 static bool wake_up_full_nohz_cpu(int cpu)
1150 {
1151 /*
1152 * We just need the target to call irq_exit() and re-evaluate
1153 * the next tick. The nohz full kick at least implies that.
1154 * If needed we can still optimize that later with an
1155 * empty IRQ.
1156 */
1157 if (cpu_is_offline(cpu))
1158 return true; /* Don't try to wake offline CPUs. */
1159 if (tick_nohz_full_cpu(cpu)) {
1160 if (cpu != smp_processor_id() ||
1161 tick_nohz_tick_stopped())
1162 tick_nohz_full_kick_cpu(cpu);
1163 return true;
1164 }
1165
1166 return false;
1167 }
1168
1169 /*
1170 * Wake up the specified CPU. If the CPU is going offline, it is the
1171 * caller's responsibility to deal with the lost wakeup, for example,
1172 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1173 */
wake_up_nohz_cpu(int cpu)1174 void wake_up_nohz_cpu(int cpu)
1175 {
1176 if (!wake_up_full_nohz_cpu(cpu))
1177 wake_up_idle_cpu(cpu);
1178 }
1179
nohz_csd_func(void * info)1180 static void nohz_csd_func(void *info)
1181 {
1182 struct rq *rq = info;
1183 int cpu = cpu_of(rq);
1184 unsigned int flags;
1185
1186 /*
1187 * Release the rq::nohz_csd.
1188 */
1189 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1190 WARN_ON(!(flags & NOHZ_KICK_MASK));
1191
1192 rq->idle_balance = idle_cpu(cpu);
1193 if (rq->idle_balance) {
1194 rq->nohz_idle_balance = flags;
1195 __raise_softirq_irqoff(SCHED_SOFTIRQ);
1196 }
1197 }
1198
1199 #endif /* CONFIG_NO_HZ_COMMON */
1200
1201 #ifdef CONFIG_NO_HZ_FULL
__need_bw_check(struct rq * rq,struct task_struct * p)1202 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1203 {
1204 if (rq->nr_running != 1)
1205 return false;
1206
1207 if (p->sched_class != &fair_sched_class)
1208 return false;
1209
1210 if (!task_on_rq_queued(p))
1211 return false;
1212
1213 return true;
1214 }
1215
sched_can_stop_tick(struct rq * rq)1216 bool sched_can_stop_tick(struct rq *rq)
1217 {
1218 int fifo_nr_running;
1219
1220 /* Deadline tasks, even if single, need the tick */
1221 if (rq->dl.dl_nr_running)
1222 return false;
1223
1224 /*
1225 * If there are more than one RR tasks, we need the tick to affect the
1226 * actual RR behaviour.
1227 */
1228 if (rq->rt.rr_nr_running) {
1229 if (rq->rt.rr_nr_running == 1)
1230 return true;
1231 else
1232 return false;
1233 }
1234
1235 /*
1236 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1237 * forced preemption between FIFO tasks.
1238 */
1239 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1240 if (fifo_nr_running)
1241 return true;
1242
1243 /*
1244 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1245 * if there's more than one we need the tick for involuntary
1246 * preemption.
1247 */
1248 if (rq->nr_running > 1)
1249 return false;
1250
1251 /*
1252 * If there is one task and it has CFS runtime bandwidth constraints
1253 * and it's on the cpu now we don't want to stop the tick.
1254 * This check prevents clearing the bit if a newly enqueued task here is
1255 * dequeued by migrating while the constrained task continues to run.
1256 * E.g. going from 2->1 without going through pick_next_task().
1257 */
1258 if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1259 if (cfs_task_bw_constrained(rq->curr))
1260 return false;
1261 }
1262
1263 return true;
1264 }
1265 #endif /* CONFIG_NO_HZ_FULL */
1266 #endif /* CONFIG_SMP */
1267
1268 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1269 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1270 /*
1271 * Iterate task_group tree rooted at *from, calling @down when first entering a
1272 * node and @up when leaving it for the final time.
1273 *
1274 * Caller must hold rcu_lock or sufficient equivalent.
1275 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1276 int walk_tg_tree_from(struct task_group *from,
1277 tg_visitor down, tg_visitor up, void *data)
1278 {
1279 struct task_group *parent, *child;
1280 int ret;
1281
1282 parent = from;
1283
1284 down:
1285 ret = (*down)(parent, data);
1286 if (ret)
1287 goto out;
1288 list_for_each_entry_rcu(child, &parent->children, siblings) {
1289 parent = child;
1290 goto down;
1291
1292 up:
1293 continue;
1294 }
1295 ret = (*up)(parent, data);
1296 if (ret || parent == from)
1297 goto out;
1298
1299 child = parent;
1300 parent = parent->parent;
1301 if (parent)
1302 goto up;
1303 out:
1304 return ret;
1305 }
1306
tg_nop(struct task_group * tg,void * data)1307 int tg_nop(struct task_group *tg, void *data)
1308 {
1309 return 0;
1310 }
1311 #endif
1312
set_load_weight(struct task_struct * p,bool update_load)1313 static void set_load_weight(struct task_struct *p, bool update_load)
1314 {
1315 int prio = p->static_prio - MAX_RT_PRIO;
1316 struct load_weight lw;
1317
1318 if (task_has_idle_policy(p)) {
1319 lw.weight = scale_load(WEIGHT_IDLEPRIO);
1320 lw.inv_weight = WMULT_IDLEPRIO;
1321 } else {
1322 lw.weight = scale_load(sched_prio_to_weight[prio]);
1323 lw.inv_weight = sched_prio_to_wmult[prio];
1324 }
1325
1326 /*
1327 * SCHED_OTHER tasks have to update their load when changing their
1328 * weight
1329 */
1330 if (update_load && p->sched_class == &fair_sched_class)
1331 reweight_task(p, &lw);
1332 else
1333 p->se.load = lw;
1334 }
1335
1336 #ifdef CONFIG_SCHED_LATENCY_NICE
set_latency_weight(struct task_struct * p)1337 static void set_latency_weight(struct task_struct *p)
1338 {
1339 p->se.latency_weight = sched_latency_to_weight[p->latency_prio];
1340 }
1341
__setscheduler_latency(struct task_struct * p,const struct sched_attr * attr)1342 static void __setscheduler_latency(struct task_struct *p,
1343 const struct sched_attr *attr)
1344 {
1345 if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE) {
1346 p->latency_prio = NICE_TO_LATENCY(attr->sched_latency_nice);
1347 set_latency_weight(p);
1348 }
1349 }
1350
latency_nice_validate(struct task_struct * p,bool user,const struct sched_attr * attr)1351 static int latency_nice_validate(struct task_struct *p, bool user,
1352 const struct sched_attr *attr)
1353 {
1354 if (attr->sched_latency_nice > MAX_LATENCY_NICE)
1355 return -EINVAL;
1356 if (attr->sched_latency_nice < MIN_LATENCY_NICE)
1357 return -EINVAL;
1358 /* Use the same security checks as NICE */
1359 if (user && attr->sched_latency_nice < LATENCY_TO_NICE(p->latency_prio)
1360 && !capable(CAP_SYS_NICE))
1361 return -EPERM;
1362
1363 return 0;
1364 }
1365 #else
1366 static void
__setscheduler_latency(struct task_struct * p,const struct sched_attr * attr)1367 __setscheduler_latency(struct task_struct *p, const struct sched_attr *attr)
1368 {
1369 }
1370
1371 static inline
latency_nice_validate(struct task_struct * p,bool user,const struct sched_attr * attr)1372 int latency_nice_validate(struct task_struct *p, bool user,
1373 const struct sched_attr *attr)
1374 {
1375 return -EOPNOTSUPP;
1376 }
1377 #endif
1378
1379 #ifdef CONFIG_UCLAMP_TASK
1380 /*
1381 * Serializes updates of utilization clamp values
1382 *
1383 * The (slow-path) user-space triggers utilization clamp value updates which
1384 * can require updates on (fast-path) scheduler's data structures used to
1385 * support enqueue/dequeue operations.
1386 * While the per-CPU rq lock protects fast-path update operations, user-space
1387 * requests are serialized using a mutex to reduce the risk of conflicting
1388 * updates or API abuses.
1389 */
1390 static DEFINE_MUTEX(uclamp_mutex);
1391
1392 /* Max allowed minimum utilization */
1393 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1394
1395 /* Max allowed maximum utilization */
1396 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1397
1398 /*
1399 * By default RT tasks run at the maximum performance point/capacity of the
1400 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1401 * SCHED_CAPACITY_SCALE.
1402 *
1403 * This knob allows admins to change the default behavior when uclamp is being
1404 * used. In battery powered devices, particularly, running at the maximum
1405 * capacity and frequency will increase energy consumption and shorten the
1406 * battery life.
1407 *
1408 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1409 *
1410 * This knob will not override the system default sched_util_clamp_min defined
1411 * above.
1412 */
1413 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1414
1415 /* All clamps are required to be less or equal than these values */
1416 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1417
1418 /*
1419 * This static key is used to reduce the uclamp overhead in the fast path. It
1420 * primarily disables the call to uclamp_rq_{inc, dec}() in
1421 * enqueue/dequeue_task().
1422 *
1423 * This allows users to continue to enable uclamp in their kernel config with
1424 * minimum uclamp overhead in the fast path.
1425 *
1426 * As soon as userspace modifies any of the uclamp knobs, the static key is
1427 * enabled, since we have an actual users that make use of uclamp
1428 * functionality.
1429 *
1430 * The knobs that would enable this static key are:
1431 *
1432 * * A task modifying its uclamp value with sched_setattr().
1433 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1434 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1435 */
1436 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1437
1438 /* Integer rounded range for each bucket */
1439 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1440
1441 #define for_each_clamp_id(clamp_id) \
1442 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1443
uclamp_bucket_id(unsigned int clamp_value)1444 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1445 {
1446 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1447 }
1448
uclamp_none(enum uclamp_id clamp_id)1449 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1450 {
1451 if (clamp_id == UCLAMP_MIN)
1452 return 0;
1453 return SCHED_CAPACITY_SCALE;
1454 }
1455
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)1456 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1457 unsigned int value, bool user_defined)
1458 {
1459 uc_se->value = value;
1460 uc_se->bucket_id = uclamp_bucket_id(value);
1461 uc_se->user_defined = user_defined;
1462 }
1463
1464 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1465 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1466 unsigned int clamp_value)
1467 {
1468 /*
1469 * Avoid blocked utilization pushing up the frequency when we go
1470 * idle (which drops the max-clamp) by retaining the last known
1471 * max-clamp.
1472 */
1473 if (clamp_id == UCLAMP_MAX) {
1474 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1475 return clamp_value;
1476 }
1477
1478 return uclamp_none(UCLAMP_MIN);
1479 }
1480
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1481 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1482 unsigned int clamp_value)
1483 {
1484 /* Reset max-clamp retention only on idle exit */
1485 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1486 return;
1487
1488 uclamp_rq_set(rq, clamp_id, clamp_value);
1489 }
1490
1491 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1492 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1493 unsigned int clamp_value)
1494 {
1495 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1496 int bucket_id = UCLAMP_BUCKETS - 1;
1497
1498 /*
1499 * Since both min and max clamps are max aggregated, find the
1500 * top most bucket with tasks in.
1501 */
1502 for ( ; bucket_id >= 0; bucket_id--) {
1503 if (!bucket[bucket_id].tasks)
1504 continue;
1505 return bucket[bucket_id].value;
1506 }
1507
1508 /* No tasks -- default clamp values */
1509 return uclamp_idle_value(rq, clamp_id, clamp_value);
1510 }
1511
__uclamp_update_util_min_rt_default(struct task_struct * p)1512 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1513 {
1514 unsigned int default_util_min;
1515 struct uclamp_se *uc_se;
1516
1517 lockdep_assert_held(&p->pi_lock);
1518
1519 uc_se = &p->uclamp_req[UCLAMP_MIN];
1520
1521 /* Only sync if user didn't override the default */
1522 if (uc_se->user_defined)
1523 return;
1524
1525 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1526 uclamp_se_set(uc_se, default_util_min, false);
1527 }
1528
uclamp_update_util_min_rt_default(struct task_struct * p)1529 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1530 {
1531 struct rq_flags rf;
1532 struct rq *rq;
1533
1534 if (!rt_task(p))
1535 return;
1536
1537 /* Protect updates to p->uclamp_* */
1538 rq = task_rq_lock(p, &rf);
1539 __uclamp_update_util_min_rt_default(p);
1540 task_rq_unlock(rq, p, &rf);
1541 }
1542
1543 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1544 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1545 {
1546 /* Copy by value as we could modify it */
1547 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1548 #ifdef CONFIG_UCLAMP_TASK_GROUP
1549 unsigned int tg_min, tg_max, value;
1550
1551 /*
1552 * Tasks in autogroups or root task group will be
1553 * restricted by system defaults.
1554 */
1555 if (task_group_is_autogroup(task_group(p)))
1556 return uc_req;
1557 if (task_group(p) == &root_task_group)
1558 return uc_req;
1559
1560 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1561 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1562 value = uc_req.value;
1563 value = clamp(value, tg_min, tg_max);
1564 uclamp_se_set(&uc_req, value, false);
1565 #endif
1566
1567 return uc_req;
1568 }
1569
1570 /*
1571 * The effective clamp bucket index of a task depends on, by increasing
1572 * priority:
1573 * - the task specific clamp value, when explicitly requested from userspace
1574 * - the task group effective clamp value, for tasks not either in the root
1575 * group or in an autogroup
1576 * - the system default clamp value, defined by the sysadmin
1577 */
1578 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1579 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1580 {
1581 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1582 struct uclamp_se uc_max = uclamp_default[clamp_id];
1583
1584 /* System default restrictions always apply */
1585 if (unlikely(uc_req.value > uc_max.value))
1586 return uc_max;
1587
1588 return uc_req;
1589 }
1590
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1591 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1592 {
1593 struct uclamp_se uc_eff;
1594
1595 /* Task currently refcounted: use back-annotated (effective) value */
1596 if (p->uclamp[clamp_id].active)
1597 return (unsigned long)p->uclamp[clamp_id].value;
1598
1599 uc_eff = uclamp_eff_get(p, clamp_id);
1600
1601 return (unsigned long)uc_eff.value;
1602 }
1603
1604 /*
1605 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1606 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1607 * updates the rq's clamp value if required.
1608 *
1609 * Tasks can have a task-specific value requested from user-space, track
1610 * within each bucket the maximum value for tasks refcounted in it.
1611 * This "local max aggregation" allows to track the exact "requested" value
1612 * for each bucket when all its RUNNABLE tasks require the same clamp.
1613 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1614 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1615 enum uclamp_id clamp_id)
1616 {
1617 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1618 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1619 struct uclamp_bucket *bucket;
1620
1621 lockdep_assert_rq_held(rq);
1622
1623 /* Update task effective clamp */
1624 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1625
1626 bucket = &uc_rq->bucket[uc_se->bucket_id];
1627 bucket->tasks++;
1628 uc_se->active = true;
1629
1630 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1631
1632 /*
1633 * Local max aggregation: rq buckets always track the max
1634 * "requested" clamp value of its RUNNABLE tasks.
1635 */
1636 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1637 bucket->value = uc_se->value;
1638
1639 if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1640 uclamp_rq_set(rq, clamp_id, uc_se->value);
1641 }
1642
1643 /*
1644 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1645 * is released. If this is the last task reference counting the rq's max
1646 * active clamp value, then the rq's clamp value is updated.
1647 *
1648 * Both refcounted tasks and rq's cached clamp values are expected to be
1649 * always valid. If it's detected they are not, as defensive programming,
1650 * enforce the expected state and warn.
1651 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1652 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1653 enum uclamp_id clamp_id)
1654 {
1655 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1656 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1657 struct uclamp_bucket *bucket;
1658 unsigned int bkt_clamp;
1659 unsigned int rq_clamp;
1660
1661 lockdep_assert_rq_held(rq);
1662
1663 /*
1664 * If sched_uclamp_used was enabled after task @p was enqueued,
1665 * we could end up with unbalanced call to uclamp_rq_dec_id().
1666 *
1667 * In this case the uc_se->active flag should be false since no uclamp
1668 * accounting was performed at enqueue time and we can just return
1669 * here.
1670 *
1671 * Need to be careful of the following enqueue/dequeue ordering
1672 * problem too
1673 *
1674 * enqueue(taskA)
1675 * // sched_uclamp_used gets enabled
1676 * enqueue(taskB)
1677 * dequeue(taskA)
1678 * // Must not decrement bucket->tasks here
1679 * dequeue(taskB)
1680 *
1681 * where we could end up with stale data in uc_se and
1682 * bucket[uc_se->bucket_id].
1683 *
1684 * The following check here eliminates the possibility of such race.
1685 */
1686 if (unlikely(!uc_se->active))
1687 return;
1688
1689 bucket = &uc_rq->bucket[uc_se->bucket_id];
1690
1691 SCHED_WARN_ON(!bucket->tasks);
1692 if (likely(bucket->tasks))
1693 bucket->tasks--;
1694
1695 uc_se->active = false;
1696
1697 /*
1698 * Keep "local max aggregation" simple and accept to (possibly)
1699 * overboost some RUNNABLE tasks in the same bucket.
1700 * The rq clamp bucket value is reset to its base value whenever
1701 * there are no more RUNNABLE tasks refcounting it.
1702 */
1703 if (likely(bucket->tasks))
1704 return;
1705
1706 rq_clamp = uclamp_rq_get(rq, clamp_id);
1707 /*
1708 * Defensive programming: this should never happen. If it happens,
1709 * e.g. due to future modification, warn and fixup the expected value.
1710 */
1711 SCHED_WARN_ON(bucket->value > rq_clamp);
1712 if (bucket->value >= rq_clamp) {
1713 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1714 uclamp_rq_set(rq, clamp_id, bkt_clamp);
1715 }
1716 }
1717
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1718 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1719 {
1720 enum uclamp_id clamp_id;
1721
1722 /*
1723 * Avoid any overhead until uclamp is actually used by the userspace.
1724 *
1725 * The condition is constructed such that a NOP is generated when
1726 * sched_uclamp_used is disabled.
1727 */
1728 if (!static_branch_unlikely(&sched_uclamp_used))
1729 return;
1730
1731 if (unlikely(!p->sched_class->uclamp_enabled))
1732 return;
1733
1734 for_each_clamp_id(clamp_id)
1735 uclamp_rq_inc_id(rq, p, clamp_id);
1736
1737 /* Reset clamp idle holding when there is one RUNNABLE task */
1738 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1739 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1740 }
1741
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1742 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1743 {
1744 enum uclamp_id clamp_id;
1745
1746 /*
1747 * Avoid any overhead until uclamp is actually used by the userspace.
1748 *
1749 * The condition is constructed such that a NOP is generated when
1750 * sched_uclamp_used is disabled.
1751 */
1752 if (!static_branch_unlikely(&sched_uclamp_used))
1753 return;
1754
1755 if (unlikely(!p->sched_class->uclamp_enabled))
1756 return;
1757
1758 for_each_clamp_id(clamp_id)
1759 uclamp_rq_dec_id(rq, p, clamp_id);
1760 }
1761
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1762 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1763 enum uclamp_id clamp_id)
1764 {
1765 if (!p->uclamp[clamp_id].active)
1766 return;
1767
1768 uclamp_rq_dec_id(rq, p, clamp_id);
1769 uclamp_rq_inc_id(rq, p, clamp_id);
1770
1771 /*
1772 * Make sure to clear the idle flag if we've transiently reached 0
1773 * active tasks on rq.
1774 */
1775 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1776 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1777 }
1778
1779 static inline void
uclamp_update_active(struct task_struct * p)1780 uclamp_update_active(struct task_struct *p)
1781 {
1782 enum uclamp_id clamp_id;
1783 struct rq_flags rf;
1784 struct rq *rq;
1785
1786 /*
1787 * Lock the task and the rq where the task is (or was) queued.
1788 *
1789 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1790 * price to pay to safely serialize util_{min,max} updates with
1791 * enqueues, dequeues and migration operations.
1792 * This is the same locking schema used by __set_cpus_allowed_ptr().
1793 */
1794 rq = task_rq_lock(p, &rf);
1795
1796 /*
1797 * Setting the clamp bucket is serialized by task_rq_lock().
1798 * If the task is not yet RUNNABLE and its task_struct is not
1799 * affecting a valid clamp bucket, the next time it's enqueued,
1800 * it will already see the updated clamp bucket value.
1801 */
1802 for_each_clamp_id(clamp_id)
1803 uclamp_rq_reinc_id(rq, p, clamp_id);
1804
1805 task_rq_unlock(rq, p, &rf);
1806 }
1807
1808 #ifdef CONFIG_UCLAMP_TASK_GROUP
1809 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1810 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1811 {
1812 struct css_task_iter it;
1813 struct task_struct *p;
1814
1815 css_task_iter_start(css, 0, &it);
1816 while ((p = css_task_iter_next(&it)))
1817 uclamp_update_active(p);
1818 css_task_iter_end(&it);
1819 }
1820
1821 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1822 #endif
1823
1824 #ifdef CONFIG_SYSCTL
1825 #ifdef CONFIG_UCLAMP_TASK
1826 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_update_root_tg(void)1827 static void uclamp_update_root_tg(void)
1828 {
1829 struct task_group *tg = &root_task_group;
1830
1831 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1832 sysctl_sched_uclamp_util_min, false);
1833 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1834 sysctl_sched_uclamp_util_max, false);
1835
1836 rcu_read_lock();
1837 cpu_util_update_eff(&root_task_group.css);
1838 rcu_read_unlock();
1839 }
1840 #else
uclamp_update_root_tg(void)1841 static void uclamp_update_root_tg(void) { }
1842 #endif
1843
uclamp_sync_util_min_rt_default(void)1844 static void uclamp_sync_util_min_rt_default(void)
1845 {
1846 struct task_struct *g, *p;
1847
1848 /*
1849 * copy_process() sysctl_uclamp
1850 * uclamp_min_rt = X;
1851 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1852 * // link thread smp_mb__after_spinlock()
1853 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1854 * sched_post_fork() for_each_process_thread()
1855 * __uclamp_sync_rt() __uclamp_sync_rt()
1856 *
1857 * Ensures that either sched_post_fork() will observe the new
1858 * uclamp_min_rt or for_each_process_thread() will observe the new
1859 * task.
1860 */
1861 read_lock(&tasklist_lock);
1862 smp_mb__after_spinlock();
1863 read_unlock(&tasklist_lock);
1864
1865 rcu_read_lock();
1866 for_each_process_thread(g, p)
1867 uclamp_update_util_min_rt_default(p);
1868 rcu_read_unlock();
1869 }
1870
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1871 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1872 void *buffer, size_t *lenp, loff_t *ppos)
1873 {
1874 bool update_root_tg = false;
1875 int old_min, old_max, old_min_rt;
1876 int result;
1877
1878 guard(mutex)(&uclamp_mutex);
1879
1880 old_min = sysctl_sched_uclamp_util_min;
1881 old_max = sysctl_sched_uclamp_util_max;
1882 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1883
1884 result = proc_dointvec(table, write, buffer, lenp, ppos);
1885 if (result)
1886 goto undo;
1887 if (!write)
1888 return 0;
1889
1890 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1891 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1892 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1893
1894 result = -EINVAL;
1895 goto undo;
1896 }
1897
1898 if (old_min != sysctl_sched_uclamp_util_min) {
1899 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1900 sysctl_sched_uclamp_util_min, false);
1901 update_root_tg = true;
1902 }
1903 if (old_max != sysctl_sched_uclamp_util_max) {
1904 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1905 sysctl_sched_uclamp_util_max, false);
1906 update_root_tg = true;
1907 }
1908
1909 if (update_root_tg) {
1910 static_branch_enable(&sched_uclamp_used);
1911 uclamp_update_root_tg();
1912 }
1913
1914 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1915 static_branch_enable(&sched_uclamp_used);
1916 uclamp_sync_util_min_rt_default();
1917 }
1918
1919 /*
1920 * We update all RUNNABLE tasks only when task groups are in use.
1921 * Otherwise, keep it simple and do just a lazy update at each next
1922 * task enqueue time.
1923 */
1924 return 0;
1925
1926 undo:
1927 sysctl_sched_uclamp_util_min = old_min;
1928 sysctl_sched_uclamp_util_max = old_max;
1929 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1930 return result;
1931 }
1932 #endif
1933 #endif
1934
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1935 static int uclamp_validate(struct task_struct *p,
1936 const struct sched_attr *attr)
1937 {
1938 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1939 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1940
1941 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1942 util_min = attr->sched_util_min;
1943
1944 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1945 return -EINVAL;
1946 }
1947
1948 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1949 util_max = attr->sched_util_max;
1950
1951 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1952 return -EINVAL;
1953 }
1954
1955 if (util_min != -1 && util_max != -1 && util_min > util_max)
1956 return -EINVAL;
1957
1958 /*
1959 * We have valid uclamp attributes; make sure uclamp is enabled.
1960 *
1961 * We need to do that here, because enabling static branches is a
1962 * blocking operation which obviously cannot be done while holding
1963 * scheduler locks.
1964 */
1965 static_branch_enable(&sched_uclamp_used);
1966
1967 return 0;
1968 }
1969
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)1970 static bool uclamp_reset(const struct sched_attr *attr,
1971 enum uclamp_id clamp_id,
1972 struct uclamp_se *uc_se)
1973 {
1974 /* Reset on sched class change for a non user-defined clamp value. */
1975 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1976 !uc_se->user_defined)
1977 return true;
1978
1979 /* Reset on sched_util_{min,max} == -1. */
1980 if (clamp_id == UCLAMP_MIN &&
1981 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1982 attr->sched_util_min == -1) {
1983 return true;
1984 }
1985
1986 if (clamp_id == UCLAMP_MAX &&
1987 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1988 attr->sched_util_max == -1) {
1989 return true;
1990 }
1991
1992 return false;
1993 }
1994
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1995 static void __setscheduler_uclamp(struct task_struct *p,
1996 const struct sched_attr *attr)
1997 {
1998 enum uclamp_id clamp_id;
1999
2000 for_each_clamp_id(clamp_id) {
2001 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
2002 unsigned int value;
2003
2004 if (!uclamp_reset(attr, clamp_id, uc_se))
2005 continue;
2006
2007 /*
2008 * RT by default have a 100% boost value that could be modified
2009 * at runtime.
2010 */
2011 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
2012 value = sysctl_sched_uclamp_util_min_rt_default;
2013 else
2014 value = uclamp_none(clamp_id);
2015
2016 uclamp_se_set(uc_se, value, false);
2017
2018 }
2019
2020 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
2021 return;
2022
2023 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
2024 attr->sched_util_min != -1) {
2025 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
2026 attr->sched_util_min, true);
2027 }
2028
2029 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
2030 attr->sched_util_max != -1) {
2031 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
2032 attr->sched_util_max, true);
2033 }
2034 }
2035
uclamp_fork(struct task_struct * p)2036 static void uclamp_fork(struct task_struct *p)
2037 {
2038 enum uclamp_id clamp_id;
2039
2040 /*
2041 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
2042 * as the task is still at its early fork stages.
2043 */
2044 for_each_clamp_id(clamp_id)
2045 p->uclamp[clamp_id].active = false;
2046
2047 if (likely(!p->sched_reset_on_fork))
2048 return;
2049
2050 for_each_clamp_id(clamp_id) {
2051 uclamp_se_set(&p->uclamp_req[clamp_id],
2052 uclamp_none(clamp_id), false);
2053 }
2054 }
2055
uclamp_post_fork(struct task_struct * p)2056 static void uclamp_post_fork(struct task_struct *p)
2057 {
2058 uclamp_update_util_min_rt_default(p);
2059 }
2060
init_uclamp_rq(struct rq * rq)2061 static void __init init_uclamp_rq(struct rq *rq)
2062 {
2063 enum uclamp_id clamp_id;
2064 struct uclamp_rq *uc_rq = rq->uclamp;
2065
2066 for_each_clamp_id(clamp_id) {
2067 uc_rq[clamp_id] = (struct uclamp_rq) {
2068 .value = uclamp_none(clamp_id)
2069 };
2070 }
2071
2072 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2073 }
2074
init_uclamp(void)2075 static void __init init_uclamp(void)
2076 {
2077 struct uclamp_se uc_max = {};
2078 enum uclamp_id clamp_id;
2079 int cpu;
2080
2081 for_each_possible_cpu(cpu)
2082 init_uclamp_rq(cpu_rq(cpu));
2083
2084 for_each_clamp_id(clamp_id) {
2085 uclamp_se_set(&init_task.uclamp_req[clamp_id],
2086 uclamp_none(clamp_id), false);
2087 }
2088
2089 /* System defaults allow max clamp values for both indexes */
2090 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2091 for_each_clamp_id(clamp_id) {
2092 uclamp_default[clamp_id] = uc_max;
2093 #ifdef CONFIG_UCLAMP_TASK_GROUP
2094 root_task_group.uclamp_req[clamp_id] = uc_max;
2095 root_task_group.uclamp[clamp_id] = uc_max;
2096 #endif
2097 }
2098 }
2099
2100 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)2101 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)2102 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)2103 static inline int uclamp_validate(struct task_struct *p,
2104 const struct sched_attr *attr)
2105 {
2106 return -EOPNOTSUPP;
2107 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)2108 static void __setscheduler_uclamp(struct task_struct *p,
2109 const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)2110 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)2111 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)2112 static inline void init_uclamp(void) { }
2113 #endif /* CONFIG_UCLAMP_TASK */
2114
sched_task_on_rq(struct task_struct * p)2115 bool sched_task_on_rq(struct task_struct *p)
2116 {
2117 return task_on_rq_queued(p);
2118 }
2119
get_wchan(struct task_struct * p)2120 unsigned long get_wchan(struct task_struct *p)
2121 {
2122 unsigned long ip = 0;
2123 unsigned int state;
2124
2125 if (!p || p == current)
2126 return 0;
2127
2128 /* Only get wchan if task is blocked and we can keep it that way. */
2129 raw_spin_lock_irq(&p->pi_lock);
2130 state = READ_ONCE(p->__state);
2131 smp_rmb(); /* see try_to_wake_up() */
2132 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2133 ip = __get_wchan(p);
2134 raw_spin_unlock_irq(&p->pi_lock);
2135
2136 return ip;
2137 }
2138
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2139 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2140 {
2141 if (!(flags & ENQUEUE_NOCLOCK))
2142 update_rq_clock(rq);
2143
2144 if (!(flags & ENQUEUE_RESTORE)) {
2145 sched_info_enqueue(rq, p);
2146 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2147 }
2148
2149 uclamp_rq_inc(rq, p);
2150 p->sched_class->enqueue_task(rq, p, flags);
2151
2152 if (sched_core_enabled(rq))
2153 sched_core_enqueue(rq, p);
2154 }
2155
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2156 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2157 {
2158 if (sched_core_enabled(rq))
2159 sched_core_dequeue(rq, p, flags);
2160
2161 if (!(flags & DEQUEUE_NOCLOCK))
2162 update_rq_clock(rq);
2163
2164 if (!(flags & DEQUEUE_SAVE)) {
2165 sched_info_dequeue(rq, p);
2166 psi_dequeue(p, flags & DEQUEUE_SLEEP);
2167 }
2168
2169 uclamp_rq_dec(rq, p);
2170 p->sched_class->dequeue_task(rq, p, flags);
2171 }
2172
activate_task(struct rq * rq,struct task_struct * p,int flags)2173 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2174 {
2175 if (task_on_rq_migrating(p))
2176 flags |= ENQUEUE_MIGRATED;
2177 if (flags & ENQUEUE_MIGRATED)
2178 sched_mm_cid_migrate_to(rq, p);
2179
2180 enqueue_task(rq, p, flags);
2181
2182 p->on_rq = TASK_ON_RQ_QUEUED;
2183 }
2184
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2185 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2186 {
2187 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2188
2189 dequeue_task(rq, p, flags);
2190 }
2191
__normal_prio(int policy,int rt_prio,int nice)2192 static inline int __normal_prio(int policy, int rt_prio, int nice)
2193 {
2194 int prio;
2195
2196 if (dl_policy(policy))
2197 prio = MAX_DL_PRIO - 1;
2198 else if (rt_policy(policy))
2199 prio = MAX_RT_PRIO - 1 - rt_prio;
2200 else
2201 prio = NICE_TO_PRIO(nice);
2202
2203 return prio;
2204 }
2205
2206 /*
2207 * Calculate the expected normal priority: i.e. priority
2208 * without taking RT-inheritance into account. Might be
2209 * boosted by interactivity modifiers. Changes upon fork,
2210 * setprio syscalls, and whenever the interactivity
2211 * estimator recalculates.
2212 */
normal_prio(struct task_struct * p)2213 static inline int normal_prio(struct task_struct *p)
2214 {
2215 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2216 }
2217
2218 /*
2219 * Calculate the current priority, i.e. the priority
2220 * taken into account by the scheduler. This value might
2221 * be boosted by RT tasks, or might be boosted by
2222 * interactivity modifiers. Will be RT if the task got
2223 * RT-boosted. If not then it returns p->normal_prio.
2224 */
effective_prio(struct task_struct * p)2225 static int effective_prio(struct task_struct *p)
2226 {
2227 p->normal_prio = normal_prio(p);
2228 /*
2229 * If we are RT tasks or we were boosted to RT priority,
2230 * keep the priority unchanged. Otherwise, update priority
2231 * to the normal priority:
2232 */
2233 if (!rt_prio(p->prio))
2234 return p->normal_prio;
2235 return p->prio;
2236 }
2237
2238 /**
2239 * task_curr - is this task currently executing on a CPU?
2240 * @p: the task in question.
2241 *
2242 * Return: 1 if the task is currently executing. 0 otherwise.
2243 */
task_curr(const struct task_struct * p)2244 inline int task_curr(const struct task_struct *p)
2245 {
2246 return cpu_curr(task_cpu(p)) == p;
2247 }
2248
2249 /*
2250 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2251 * use the balance_callback list if you want balancing.
2252 *
2253 * this means any call to check_class_changed() must be followed by a call to
2254 * balance_callback().
2255 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2256 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2257 const struct sched_class *prev_class,
2258 int oldprio)
2259 {
2260 if (prev_class != p->sched_class) {
2261 if (prev_class->switched_from)
2262 prev_class->switched_from(rq, p);
2263
2264 p->sched_class->switched_to(rq, p);
2265 } else if (oldprio != p->prio || dl_task(p))
2266 p->sched_class->prio_changed(rq, p, oldprio);
2267 }
2268
wakeup_preempt(struct rq * rq,struct task_struct * p,int flags)2269 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2270 {
2271 if (p->sched_class == rq->curr->sched_class)
2272 rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2273 else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2274 resched_curr(rq);
2275
2276 /*
2277 * A queue event has occurred, and we're going to schedule. In
2278 * this case, we can save a useless back to back clock update.
2279 */
2280 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2281 rq_clock_skip_update(rq);
2282 }
2283
2284 static __always_inline
__task_state_match(struct task_struct * p,unsigned int state)2285 int __task_state_match(struct task_struct *p, unsigned int state)
2286 {
2287 if (READ_ONCE(p->__state) & state)
2288 return 1;
2289
2290 #ifdef CONFIG_PREEMPT_RT
2291 if (READ_ONCE(p->saved_state) & state)
2292 return -1;
2293 #endif
2294 return 0;
2295 }
2296
2297 static __always_inline
task_state_match(struct task_struct * p,unsigned int state)2298 int task_state_match(struct task_struct *p, unsigned int state)
2299 {
2300 #ifdef CONFIG_PREEMPT_RT
2301 int match;
2302
2303 /*
2304 * Serialize against current_save_and_set_rtlock_wait_state() and
2305 * current_restore_rtlock_saved_state().
2306 */
2307 raw_spin_lock_irq(&p->pi_lock);
2308 match = __task_state_match(p, state);
2309 raw_spin_unlock_irq(&p->pi_lock);
2310
2311 return match;
2312 #else
2313 return __task_state_match(p, state);
2314 #endif
2315 }
2316
2317 /*
2318 * wait_task_inactive - wait for a thread to unschedule.
2319 *
2320 * Wait for the thread to block in any of the states set in @match_state.
2321 * If it changes, i.e. @p might have woken up, then return zero. When we
2322 * succeed in waiting for @p to be off its CPU, we return a positive number
2323 * (its total switch count). If a second call a short while later returns the
2324 * same number, the caller can be sure that @p has remained unscheduled the
2325 * whole time.
2326 *
2327 * The caller must ensure that the task *will* unschedule sometime soon,
2328 * else this function might spin for a *long* time. This function can't
2329 * be called with interrupts off, or it may introduce deadlock with
2330 * smp_call_function() if an IPI is sent by the same process we are
2331 * waiting to become inactive.
2332 */
wait_task_inactive(struct task_struct * p,unsigned int match_state)2333 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2334 {
2335 int running, queued, match;
2336 struct rq_flags rf;
2337 unsigned long ncsw;
2338 struct rq *rq;
2339
2340 for (;;) {
2341 /*
2342 * We do the initial early heuristics without holding
2343 * any task-queue locks at all. We'll only try to get
2344 * the runqueue lock when things look like they will
2345 * work out!
2346 */
2347 rq = task_rq(p);
2348
2349 /*
2350 * If the task is actively running on another CPU
2351 * still, just relax and busy-wait without holding
2352 * any locks.
2353 *
2354 * NOTE! Since we don't hold any locks, it's not
2355 * even sure that "rq" stays as the right runqueue!
2356 * But we don't care, since "task_on_cpu()" will
2357 * return false if the runqueue has changed and p
2358 * is actually now running somewhere else!
2359 */
2360 while (task_on_cpu(rq, p)) {
2361 if (!task_state_match(p, match_state))
2362 return 0;
2363 cpu_relax();
2364 }
2365
2366 /*
2367 * Ok, time to look more closely! We need the rq
2368 * lock now, to be *sure*. If we're wrong, we'll
2369 * just go back and repeat.
2370 */
2371 rq = task_rq_lock(p, &rf);
2372 trace_sched_wait_task(p);
2373 running = task_on_cpu(rq, p);
2374 queued = task_on_rq_queued(p);
2375 ncsw = 0;
2376 if ((match = __task_state_match(p, match_state))) {
2377 /*
2378 * When matching on p->saved_state, consider this task
2379 * still queued so it will wait.
2380 */
2381 if (match < 0)
2382 queued = 1;
2383 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2384 }
2385 task_rq_unlock(rq, p, &rf);
2386
2387 /*
2388 * If it changed from the expected state, bail out now.
2389 */
2390 if (unlikely(!ncsw))
2391 break;
2392
2393 /*
2394 * Was it really running after all now that we
2395 * checked with the proper locks actually held?
2396 *
2397 * Oops. Go back and try again..
2398 */
2399 if (unlikely(running)) {
2400 cpu_relax();
2401 continue;
2402 }
2403
2404 /*
2405 * It's not enough that it's not actively running,
2406 * it must be off the runqueue _entirely_, and not
2407 * preempted!
2408 *
2409 * So if it was still runnable (but just not actively
2410 * running right now), it's preempted, and we should
2411 * yield - it could be a while.
2412 */
2413 if (unlikely(queued)) {
2414 ktime_t to = NSEC_PER_SEC / HZ;
2415
2416 set_current_state(TASK_UNINTERRUPTIBLE);
2417 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2418 continue;
2419 }
2420
2421 /*
2422 * Ahh, all good. It wasn't running, and it wasn't
2423 * runnable, which means that it will never become
2424 * running in the future either. We're all done!
2425 */
2426 break;
2427 }
2428
2429 return ncsw;
2430 }
2431
2432 #ifdef CONFIG_SMP
2433
2434 static void
2435 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2436
2437 static int __set_cpus_allowed_ptr(struct task_struct *p,
2438 struct affinity_context *ctx);
2439
migrate_disable_switch(struct rq * rq,struct task_struct * p)2440 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2441 {
2442 struct affinity_context ac = {
2443 .new_mask = cpumask_of(rq->cpu),
2444 .flags = SCA_MIGRATE_DISABLE,
2445 };
2446
2447 if (likely(!p->migration_disabled))
2448 return;
2449
2450 if (p->cpus_ptr != &p->cpus_mask)
2451 return;
2452
2453 /*
2454 * Violates locking rules! see comment in __do_set_cpus_allowed().
2455 */
2456 __do_set_cpus_allowed(p, &ac);
2457 }
2458
migrate_disable(void)2459 void migrate_disable(void)
2460 {
2461 struct task_struct *p = current;
2462
2463 if (p->migration_disabled) {
2464 p->migration_disabled++;
2465 return;
2466 }
2467
2468 preempt_disable();
2469 this_rq()->nr_pinned++;
2470 p->migration_disabled = 1;
2471 preempt_enable();
2472 }
2473 EXPORT_SYMBOL_GPL(migrate_disable);
2474
migrate_enable(void)2475 void migrate_enable(void)
2476 {
2477 struct task_struct *p = current;
2478 struct affinity_context ac = {
2479 .new_mask = &p->cpus_mask,
2480 .flags = SCA_MIGRATE_ENABLE,
2481 };
2482
2483 if (p->migration_disabled > 1) {
2484 p->migration_disabled--;
2485 return;
2486 }
2487
2488 if (WARN_ON_ONCE(!p->migration_disabled))
2489 return;
2490
2491 /*
2492 * Ensure stop_task runs either before or after this, and that
2493 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2494 */
2495 preempt_disable();
2496 if (p->cpus_ptr != &p->cpus_mask)
2497 __set_cpus_allowed_ptr(p, &ac);
2498 /*
2499 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2500 * regular cpus_mask, otherwise things that race (eg.
2501 * select_fallback_rq) get confused.
2502 */
2503 barrier();
2504 p->migration_disabled = 0;
2505 this_rq()->nr_pinned--;
2506 preempt_enable();
2507 }
2508 EXPORT_SYMBOL_GPL(migrate_enable);
2509
rq_has_pinned_tasks(struct rq * rq)2510 static inline bool rq_has_pinned_tasks(struct rq *rq)
2511 {
2512 return rq->nr_pinned;
2513 }
2514
2515 /*
2516 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2517 * __set_cpus_allowed_ptr() and select_fallback_rq().
2518 */
is_cpu_allowed(struct task_struct * p,int cpu)2519 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2520 {
2521 /* When not in the task's cpumask, no point in looking further. */
2522 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2523 return false;
2524
2525 /* migrate_disabled() must be allowed to finish. */
2526 if (is_migration_disabled(p))
2527 return cpu_online(cpu);
2528
2529 /* Non kernel threads are not allowed during either online or offline. */
2530 if (!(p->flags & PF_KTHREAD))
2531 return cpu_active(cpu) && task_cpu_possible(cpu, p);
2532
2533 /* KTHREAD_IS_PER_CPU is always allowed. */
2534 if (kthread_is_per_cpu(p))
2535 return cpu_online(cpu);
2536
2537 /* Regular kernel threads don't get to stay during offline. */
2538 if (cpu_dying(cpu))
2539 return false;
2540
2541 /* But are allowed during online. */
2542 return cpu_online(cpu);
2543 }
2544
2545 /*
2546 * This is how migration works:
2547 *
2548 * 1) we invoke migration_cpu_stop() on the target CPU using
2549 * stop_one_cpu().
2550 * 2) stopper starts to run (implicitly forcing the migrated thread
2551 * off the CPU)
2552 * 3) it checks whether the migrated task is still in the wrong runqueue.
2553 * 4) if it's in the wrong runqueue then the migration thread removes
2554 * it and puts it into the right queue.
2555 * 5) stopper completes and stop_one_cpu() returns and the migration
2556 * is done.
2557 */
2558
2559 /*
2560 * move_queued_task - move a queued task to new rq.
2561 *
2562 * Returns (locked) new rq. Old rq's lock is released.
2563 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2564 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2565 struct task_struct *p, int new_cpu)
2566 {
2567 lockdep_assert_rq_held(rq);
2568
2569 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2570 #ifdef CONFIG_SCHED_WALT
2571 double_lock_balance(rq, cpu_rq(new_cpu));
2572 if (!(rq->clock_update_flags & RQCF_UPDATED))
2573 update_rq_clock(rq);
2574 #endif
2575 set_task_cpu(p, new_cpu);
2576 #ifdef CONFIG_SCHED_WALT
2577 double_rq_unlock(cpu_rq(new_cpu), rq);
2578 #else
2579 rq_unlock(rq, rf);
2580 #endif
2581
2582 rq = cpu_rq(new_cpu);
2583
2584 rq_lock(rq, rf);
2585 WARN_ON_ONCE(task_cpu(p) != new_cpu);
2586 activate_task(rq, p, 0);
2587 wakeup_preempt(rq, p, 0);
2588
2589 return rq;
2590 }
2591
2592 struct migration_arg {
2593 struct task_struct *task;
2594 int dest_cpu;
2595 struct set_affinity_pending *pending;
2596 };
2597
2598 /*
2599 * @refs: number of wait_for_completion()
2600 * @stop_pending: is @stop_work in use
2601 */
2602 struct set_affinity_pending {
2603 refcount_t refs;
2604 unsigned int stop_pending;
2605 struct completion done;
2606 struct cpu_stop_work stop_work;
2607 struct migration_arg arg;
2608 };
2609
2610 /*
2611 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2612 * this because either it can't run here any more (set_cpus_allowed()
2613 * away from this CPU, or CPU going down), or because we're
2614 * attempting to rebalance this task on exec (sched_exec).
2615 *
2616 * So we race with normal scheduler movements, but that's OK, as long
2617 * as the task is no longer on this CPU.
2618 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2619 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2620 struct task_struct *p, int dest_cpu)
2621 {
2622 /* Affinity changed (again). */
2623 if (!is_cpu_allowed(p, dest_cpu))
2624 return rq;
2625
2626 rq = move_queued_task(rq, rf, p, dest_cpu);
2627
2628 return rq;
2629 }
2630
2631 /*
2632 * migration_cpu_stop - this will be executed by a highprio stopper thread
2633 * and performs thread migration by bumping thread off CPU then
2634 * 'pushing' onto another runqueue.
2635 */
migration_cpu_stop(void * data)2636 static int migration_cpu_stop(void *data)
2637 {
2638 struct migration_arg *arg = data;
2639 struct set_affinity_pending *pending = arg->pending;
2640 struct task_struct *p = arg->task;
2641 struct rq *rq = this_rq();
2642 bool complete = false;
2643 struct rq_flags rf;
2644
2645 /*
2646 * The original target CPU might have gone down and we might
2647 * be on another CPU but it doesn't matter.
2648 */
2649 local_irq_save(rf.flags);
2650 /*
2651 * We need to explicitly wake pending tasks before running
2652 * __migrate_task() such that we will not miss enforcing cpus_ptr
2653 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2654 */
2655 flush_smp_call_function_queue();
2656
2657 raw_spin_lock(&p->pi_lock);
2658 rq_lock(rq, &rf);
2659
2660 /*
2661 * If we were passed a pending, then ->stop_pending was set, thus
2662 * p->migration_pending must have remained stable.
2663 */
2664 WARN_ON_ONCE(pending && pending != p->migration_pending);
2665
2666 /*
2667 * If task_rq(p) != rq, it cannot be migrated here, because we're
2668 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2669 * we're holding p->pi_lock.
2670 */
2671 if (task_rq(p) == rq) {
2672 if (is_migration_disabled(p))
2673 goto out;
2674
2675 if (pending) {
2676 p->migration_pending = NULL;
2677 complete = true;
2678
2679 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2680 goto out;
2681 }
2682
2683 if (task_on_rq_queued(p)) {
2684 update_rq_clock(rq);
2685 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2686 } else {
2687 p->wake_cpu = arg->dest_cpu;
2688 }
2689
2690 /*
2691 * XXX __migrate_task() can fail, at which point we might end
2692 * up running on a dodgy CPU, AFAICT this can only happen
2693 * during CPU hotplug, at which point we'll get pushed out
2694 * anyway, so it's probably not a big deal.
2695 */
2696
2697 } else if (pending) {
2698 /*
2699 * This happens when we get migrated between migrate_enable()'s
2700 * preempt_enable() and scheduling the stopper task. At that
2701 * point we're a regular task again and not current anymore.
2702 *
2703 * A !PREEMPT kernel has a giant hole here, which makes it far
2704 * more likely.
2705 */
2706
2707 /*
2708 * The task moved before the stopper got to run. We're holding
2709 * ->pi_lock, so the allowed mask is stable - if it got
2710 * somewhere allowed, we're done.
2711 */
2712 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2713 p->migration_pending = NULL;
2714 complete = true;
2715 goto out;
2716 }
2717
2718 /*
2719 * When migrate_enable() hits a rq mis-match we can't reliably
2720 * determine is_migration_disabled() and so have to chase after
2721 * it.
2722 */
2723 WARN_ON_ONCE(!pending->stop_pending);
2724 preempt_disable();
2725 task_rq_unlock(rq, p, &rf);
2726 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2727 &pending->arg, &pending->stop_work);
2728 preempt_enable();
2729 return 0;
2730 }
2731 out:
2732 if (pending)
2733 pending->stop_pending = false;
2734 task_rq_unlock(rq, p, &rf);
2735
2736 if (complete)
2737 complete_all(&pending->done);
2738
2739 return 0;
2740 }
2741
push_cpu_stop(void * arg)2742 int push_cpu_stop(void *arg)
2743 {
2744 struct rq *lowest_rq = NULL, *rq = this_rq();
2745 struct task_struct *p = arg;
2746
2747 raw_spin_lock_irq(&p->pi_lock);
2748 raw_spin_rq_lock(rq);
2749
2750 if (task_rq(p) != rq)
2751 goto out_unlock;
2752
2753 if (is_migration_disabled(p)) {
2754 p->migration_flags |= MDF_PUSH;
2755 goto out_unlock;
2756 }
2757
2758 p->migration_flags &= ~MDF_PUSH;
2759
2760 if (p->sched_class->find_lock_rq)
2761 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2762
2763 if (!lowest_rq)
2764 goto out_unlock;
2765
2766 // XXX validate p is still the highest prio task
2767 if (task_rq(p) == rq) {
2768 deactivate_task(rq, p, 0);
2769 set_task_cpu(p, lowest_rq->cpu);
2770 activate_task(lowest_rq, p, 0);
2771 resched_curr(lowest_rq);
2772 }
2773
2774 double_unlock_balance(rq, lowest_rq);
2775
2776 out_unlock:
2777 rq->push_busy = false;
2778 raw_spin_rq_unlock(rq);
2779 raw_spin_unlock_irq(&p->pi_lock);
2780
2781 put_task_struct(p);
2782 return 0;
2783 }
2784
2785 /*
2786 * sched_class::set_cpus_allowed must do the below, but is not required to
2787 * actually call this function.
2788 */
set_cpus_allowed_common(struct task_struct * p,struct affinity_context * ctx)2789 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2790 {
2791 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2792 p->cpus_ptr = ctx->new_mask;
2793 return;
2794 }
2795
2796 cpumask_copy(&p->cpus_mask, ctx->new_mask);
2797 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2798
2799 /*
2800 * Swap in a new user_cpus_ptr if SCA_USER flag set
2801 */
2802 if (ctx->flags & SCA_USER)
2803 swap(p->user_cpus_ptr, ctx->user_mask);
2804 }
2805
2806 static void
__do_set_cpus_allowed(struct task_struct * p,struct affinity_context * ctx)2807 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2808 {
2809 struct rq *rq = task_rq(p);
2810 bool queued, running;
2811
2812 /*
2813 * This here violates the locking rules for affinity, since we're only
2814 * supposed to change these variables while holding both rq->lock and
2815 * p->pi_lock.
2816 *
2817 * HOWEVER, it magically works, because ttwu() is the only code that
2818 * accesses these variables under p->pi_lock and only does so after
2819 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2820 * before finish_task().
2821 *
2822 * XXX do further audits, this smells like something putrid.
2823 */
2824 if (ctx->flags & SCA_MIGRATE_DISABLE)
2825 SCHED_WARN_ON(!p->on_cpu);
2826 else
2827 lockdep_assert_held(&p->pi_lock);
2828
2829 queued = task_on_rq_queued(p);
2830 running = task_current(rq, p);
2831
2832 if (queued) {
2833 /*
2834 * Because __kthread_bind() calls this on blocked tasks without
2835 * holding rq->lock.
2836 */
2837 lockdep_assert_rq_held(rq);
2838 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2839 }
2840 if (running)
2841 put_prev_task(rq, p);
2842
2843 p->sched_class->set_cpus_allowed(p, ctx);
2844
2845 if (queued)
2846 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2847 if (running)
2848 set_next_task(rq, p);
2849 }
2850
2851 /*
2852 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2853 * affinity (if any) should be destroyed too.
2854 */
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2855 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2856 {
2857 struct affinity_context ac = {
2858 .new_mask = new_mask,
2859 .user_mask = NULL,
2860 .flags = SCA_USER, /* clear the user requested mask */
2861 };
2862 union cpumask_rcuhead {
2863 cpumask_t cpumask;
2864 struct rcu_head rcu;
2865 };
2866
2867 __do_set_cpus_allowed(p, &ac);
2868
2869 /*
2870 * Because this is called with p->pi_lock held, it is not possible
2871 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2872 * kfree_rcu().
2873 */
2874 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2875 }
2876
alloc_user_cpus_ptr(int node)2877 static cpumask_t *alloc_user_cpus_ptr(int node)
2878 {
2879 /*
2880 * See do_set_cpus_allowed() above for the rcu_head usage.
2881 */
2882 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2883
2884 return kmalloc_node(size, GFP_KERNEL, node);
2885 }
2886
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2887 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2888 int node)
2889 {
2890 cpumask_t *user_mask;
2891 unsigned long flags;
2892
2893 /*
2894 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2895 * may differ by now due to racing.
2896 */
2897 dst->user_cpus_ptr = NULL;
2898
2899 /*
2900 * This check is racy and losing the race is a valid situation.
2901 * It is not worth the extra overhead of taking the pi_lock on
2902 * every fork/clone.
2903 */
2904 if (data_race(!src->user_cpus_ptr))
2905 return 0;
2906
2907 user_mask = alloc_user_cpus_ptr(node);
2908 if (!user_mask)
2909 return -ENOMEM;
2910
2911 /*
2912 * Use pi_lock to protect content of user_cpus_ptr
2913 *
2914 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2915 * do_set_cpus_allowed().
2916 */
2917 raw_spin_lock_irqsave(&src->pi_lock, flags);
2918 if (src->user_cpus_ptr) {
2919 swap(dst->user_cpus_ptr, user_mask);
2920 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2921 }
2922 raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2923
2924 if (unlikely(user_mask))
2925 kfree(user_mask);
2926
2927 return 0;
2928 }
2929
clear_user_cpus_ptr(struct task_struct * p)2930 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2931 {
2932 struct cpumask *user_mask = NULL;
2933
2934 swap(p->user_cpus_ptr, user_mask);
2935
2936 return user_mask;
2937 }
2938
release_user_cpus_ptr(struct task_struct * p)2939 void release_user_cpus_ptr(struct task_struct *p)
2940 {
2941 kfree(clear_user_cpus_ptr(p));
2942 }
2943
2944 /*
2945 * This function is wildly self concurrent; here be dragons.
2946 *
2947 *
2948 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2949 * designated task is enqueued on an allowed CPU. If that task is currently
2950 * running, we have to kick it out using the CPU stopper.
2951 *
2952 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2953 * Consider:
2954 *
2955 * Initial conditions: P0->cpus_mask = [0, 1]
2956 *
2957 * P0@CPU0 P1
2958 *
2959 * migrate_disable();
2960 * <preempted>
2961 * set_cpus_allowed_ptr(P0, [1]);
2962 *
2963 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2964 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2965 * This means we need the following scheme:
2966 *
2967 * P0@CPU0 P1
2968 *
2969 * migrate_disable();
2970 * <preempted>
2971 * set_cpus_allowed_ptr(P0, [1]);
2972 * <blocks>
2973 * <resumes>
2974 * migrate_enable();
2975 * __set_cpus_allowed_ptr();
2976 * <wakes local stopper>
2977 * `--> <woken on migration completion>
2978 *
2979 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2980 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2981 * task p are serialized by p->pi_lock, which we can leverage: the one that
2982 * should come into effect at the end of the Migrate-Disable region is the last
2983 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2984 * but we still need to properly signal those waiting tasks at the appropriate
2985 * moment.
2986 *
2987 * This is implemented using struct set_affinity_pending. The first
2988 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2989 * setup an instance of that struct and install it on the targeted task_struct.
2990 * Any and all further callers will reuse that instance. Those then wait for
2991 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2992 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2993 *
2994 *
2995 * (1) In the cases covered above. There is one more where the completion is
2996 * signaled within affine_move_task() itself: when a subsequent affinity request
2997 * occurs after the stopper bailed out due to the targeted task still being
2998 * Migrate-Disable. Consider:
2999 *
3000 * Initial conditions: P0->cpus_mask = [0, 1]
3001 *
3002 * CPU0 P1 P2
3003 * <P0>
3004 * migrate_disable();
3005 * <preempted>
3006 * set_cpus_allowed_ptr(P0, [1]);
3007 * <blocks>
3008 * <migration/0>
3009 * migration_cpu_stop()
3010 * is_migration_disabled()
3011 * <bails>
3012 * set_cpus_allowed_ptr(P0, [0, 1]);
3013 * <signal completion>
3014 * <awakes>
3015 *
3016 * Note that the above is safe vs a concurrent migrate_enable(), as any
3017 * pending affinity completion is preceded by an uninstallation of
3018 * p->migration_pending done with p->pi_lock held.
3019 */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)3020 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
3021 int dest_cpu, unsigned int flags)
3022 __releases(rq->lock)
3023 __releases(p->pi_lock)
3024 {
3025 struct set_affinity_pending my_pending = { }, *pending = NULL;
3026 bool stop_pending, complete = false;
3027
3028 /* Can the task run on the task's current CPU? If so, we're done */
3029 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
3030 struct task_struct *push_task = NULL;
3031
3032 if ((flags & SCA_MIGRATE_ENABLE) &&
3033 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
3034 rq->push_busy = true;
3035 push_task = get_task_struct(p);
3036 }
3037
3038 /*
3039 * If there are pending waiters, but no pending stop_work,
3040 * then complete now.
3041 */
3042 pending = p->migration_pending;
3043 if (pending && !pending->stop_pending) {
3044 p->migration_pending = NULL;
3045 complete = true;
3046 }
3047
3048 preempt_disable();
3049 task_rq_unlock(rq, p, rf);
3050 if (push_task) {
3051 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
3052 p, &rq->push_work);
3053 }
3054 preempt_enable();
3055
3056 if (complete)
3057 complete_all(&pending->done);
3058
3059 return 0;
3060 }
3061
3062 if (!(flags & SCA_MIGRATE_ENABLE)) {
3063 /* serialized by p->pi_lock */
3064 if (!p->migration_pending) {
3065 /* Install the request */
3066 refcount_set(&my_pending.refs, 1);
3067 init_completion(&my_pending.done);
3068 my_pending.arg = (struct migration_arg) {
3069 .task = p,
3070 .dest_cpu = dest_cpu,
3071 .pending = &my_pending,
3072 };
3073
3074 p->migration_pending = &my_pending;
3075 } else {
3076 pending = p->migration_pending;
3077 refcount_inc(&pending->refs);
3078 /*
3079 * Affinity has changed, but we've already installed a
3080 * pending. migration_cpu_stop() *must* see this, else
3081 * we risk a completion of the pending despite having a
3082 * task on a disallowed CPU.
3083 *
3084 * Serialized by p->pi_lock, so this is safe.
3085 */
3086 pending->arg.dest_cpu = dest_cpu;
3087 }
3088 }
3089 pending = p->migration_pending;
3090 /*
3091 * - !MIGRATE_ENABLE:
3092 * we'll have installed a pending if there wasn't one already.
3093 *
3094 * - MIGRATE_ENABLE:
3095 * we're here because the current CPU isn't matching anymore,
3096 * the only way that can happen is because of a concurrent
3097 * set_cpus_allowed_ptr() call, which should then still be
3098 * pending completion.
3099 *
3100 * Either way, we really should have a @pending here.
3101 */
3102 if (WARN_ON_ONCE(!pending)) {
3103 task_rq_unlock(rq, p, rf);
3104 return -EINVAL;
3105 }
3106
3107 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3108 /*
3109 * MIGRATE_ENABLE gets here because 'p == current', but for
3110 * anything else we cannot do is_migration_disabled(), punt
3111 * and have the stopper function handle it all race-free.
3112 */
3113 stop_pending = pending->stop_pending;
3114 if (!stop_pending)
3115 pending->stop_pending = true;
3116
3117 if (flags & SCA_MIGRATE_ENABLE)
3118 p->migration_flags &= ~MDF_PUSH;
3119
3120 preempt_disable();
3121 task_rq_unlock(rq, p, rf);
3122 if (!stop_pending) {
3123 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3124 &pending->arg, &pending->stop_work);
3125 }
3126 preempt_enable();
3127
3128 if (flags & SCA_MIGRATE_ENABLE)
3129 return 0;
3130 } else {
3131
3132 if (!is_migration_disabled(p)) {
3133 if (task_on_rq_queued(p))
3134 rq = move_queued_task(rq, rf, p, dest_cpu);
3135
3136 if (!pending->stop_pending) {
3137 p->migration_pending = NULL;
3138 complete = true;
3139 }
3140 }
3141 task_rq_unlock(rq, p, rf);
3142
3143 if (complete)
3144 complete_all(&pending->done);
3145 }
3146
3147 wait_for_completion(&pending->done);
3148
3149 if (refcount_dec_and_test(&pending->refs))
3150 wake_up_var(&pending->refs); /* No UaF, just an address */
3151
3152 /*
3153 * Block the original owner of &pending until all subsequent callers
3154 * have seen the completion and decremented the refcount
3155 */
3156 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3157
3158 /* ARGH */
3159 WARN_ON_ONCE(my_pending.stop_pending);
3160
3161 return 0;
3162 }
3163
3164 /*
3165 * Called with both p->pi_lock and rq->lock held; drops both before returning.
3166 */
__set_cpus_allowed_ptr_locked(struct task_struct * p,struct affinity_context * ctx,struct rq * rq,struct rq_flags * rf)3167 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3168 struct affinity_context *ctx,
3169 struct rq *rq,
3170 struct rq_flags *rf)
3171 __releases(rq->lock)
3172 __releases(p->pi_lock)
3173 {
3174 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3175 const struct cpumask *cpu_valid_mask = cpu_active_mask;
3176 bool kthread = p->flags & PF_KTHREAD;
3177 unsigned int dest_cpu;
3178 int ret = 0;
3179 #ifdef CONFIG_CPU_ISOLATION_OPT
3180 cpumask_t allowed_mask;
3181 #endif
3182
3183 update_rq_clock(rq);
3184
3185 if (kthread || is_migration_disabled(p)) {
3186 /*
3187 * Kernel threads are allowed on online && !active CPUs,
3188 * however, during cpu-hot-unplug, even these might get pushed
3189 * away if not KTHREAD_IS_PER_CPU.
3190 *
3191 * Specifically, migration_disabled() tasks must not fail the
3192 * cpumask_any_and_distribute() pick below, esp. so on
3193 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3194 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3195 */
3196 cpu_valid_mask = cpu_online_mask;
3197 }
3198
3199 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3200 ret = -EINVAL;
3201 goto out;
3202 }
3203
3204 /*
3205 * Must re-check here, to close a race against __kthread_bind(),
3206 * sched_setaffinity() is not guaranteed to observe the flag.
3207 */
3208 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3209 ret = -EINVAL;
3210 goto out;
3211 }
3212
3213 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3214 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3215 if (ctx->flags & SCA_USER)
3216 swap(p->user_cpus_ptr, ctx->user_mask);
3217 goto out;
3218 }
3219
3220 if (WARN_ON_ONCE(p == current &&
3221 is_migration_disabled(p) &&
3222 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3223 ret = -EBUSY;
3224 goto out;
3225 }
3226 }
3227 #ifdef CONFIG_CPU_ISOLATION_OPT
3228 cpumask_andnot(&allowed_mask, ctx->new_mask, cpu_isolated_mask);
3229 cpumask_and(&allowed_mask, &allowed_mask, cpu_valid_mask);
3230
3231 dest_cpu = cpumask_any(&allowed_mask);
3232 if (dest_cpu >= nr_cpu_ids) {
3233 cpumask_and(&allowed_mask, cpu_valid_mask, ctx->new_mask);
3234 dest_cpu = cpumask_any(&allowed_mask);
3235 if (!cpumask_intersects(ctx->new_mask, cpu_valid_mask)) {
3236 ret = -EINVAL;
3237 goto out;
3238 }
3239 }
3240 #else
3241 /*
3242 * Picking a ~random cpu helps in cases where we are changing affinity
3243 * for groups of tasks (ie. cpuset), so that load balancing is not
3244 * immediately required to distribute the tasks within their new mask.
3245 */
3246 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3247 if (dest_cpu >= nr_cpu_ids) {
3248 ret = -EINVAL;
3249 goto out;
3250 }
3251 #endif
3252
3253 __do_set_cpus_allowed(p, ctx);
3254
3255 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3256
3257 out:
3258 task_rq_unlock(rq, p, rf);
3259
3260 return ret;
3261 }
3262
3263 /*
3264 * Change a given task's CPU affinity. Migrate the thread to a
3265 * proper CPU and schedule it away if the CPU it's executing on
3266 * is removed from the allowed bitmask.
3267 *
3268 * NOTE: the caller must have a valid reference to the task, the
3269 * task must not exit() & deallocate itself prematurely. The
3270 * call is not atomic; no spinlocks may be held.
3271 */
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3272 static int __set_cpus_allowed_ptr(struct task_struct *p,
3273 struct affinity_context *ctx)
3274 {
3275 struct rq_flags rf;
3276 struct rq *rq;
3277
3278 rq = task_rq_lock(p, &rf);
3279 /*
3280 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3281 * flags are set.
3282 */
3283 if (p->user_cpus_ptr &&
3284 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3285 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3286 ctx->new_mask = rq->scratch_mask;
3287
3288 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3289 }
3290
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)3291 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3292 {
3293 struct affinity_context ac = {
3294 .new_mask = new_mask,
3295 .flags = 0,
3296 };
3297
3298 return __set_cpus_allowed_ptr(p, &ac);
3299 }
3300 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3301
3302 /*
3303 * Change a given task's CPU affinity to the intersection of its current
3304 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3305 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3306 * affinity or use cpu_online_mask instead.
3307 *
3308 * If the resulting mask is empty, leave the affinity unchanged and return
3309 * -EINVAL.
3310 */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)3311 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3312 struct cpumask *new_mask,
3313 const struct cpumask *subset_mask)
3314 {
3315 struct affinity_context ac = {
3316 .new_mask = new_mask,
3317 .flags = 0,
3318 };
3319 struct rq_flags rf;
3320 struct rq *rq;
3321 int err;
3322
3323 rq = task_rq_lock(p, &rf);
3324
3325 /*
3326 * Forcefully restricting the affinity of a deadline task is
3327 * likely to cause problems, so fail and noisily override the
3328 * mask entirely.
3329 */
3330 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3331 err = -EPERM;
3332 goto err_unlock;
3333 }
3334
3335 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3336 err = -EINVAL;
3337 goto err_unlock;
3338 }
3339
3340 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3341
3342 err_unlock:
3343 task_rq_unlock(rq, p, &rf);
3344 return err;
3345 }
3346
3347 /*
3348 * Restrict the CPU affinity of task @p so that it is a subset of
3349 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3350 * old affinity mask. If the resulting mask is empty, we warn and walk
3351 * up the cpuset hierarchy until we find a suitable mask.
3352 */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3353 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3354 {
3355 cpumask_var_t new_mask;
3356 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3357
3358 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3359
3360 /*
3361 * __migrate_task() can fail silently in the face of concurrent
3362 * offlining of the chosen destination CPU, so take the hotplug
3363 * lock to ensure that the migration succeeds.
3364 */
3365 cpus_read_lock();
3366 if (!cpumask_available(new_mask))
3367 goto out_set_mask;
3368
3369 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3370 goto out_free_mask;
3371
3372 /*
3373 * We failed to find a valid subset of the affinity mask for the
3374 * task, so override it based on its cpuset hierarchy.
3375 */
3376 cpuset_cpus_allowed(p, new_mask);
3377 override_mask = new_mask;
3378
3379 out_set_mask:
3380 if (printk_ratelimit()) {
3381 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3382 task_pid_nr(p), p->comm,
3383 cpumask_pr_args(override_mask));
3384 }
3385
3386 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3387 out_free_mask:
3388 cpus_read_unlock();
3389 free_cpumask_var(new_mask);
3390 }
3391
3392 static int
3393 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3394
3395 /*
3396 * Restore the affinity of a task @p which was previously restricted by a
3397 * call to force_compatible_cpus_allowed_ptr().
3398 *
3399 * It is the caller's responsibility to serialise this with any calls to
3400 * force_compatible_cpus_allowed_ptr(@p).
3401 */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3402 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3403 {
3404 struct affinity_context ac = {
3405 .new_mask = task_user_cpus(p),
3406 .flags = 0,
3407 };
3408 int ret;
3409
3410 /*
3411 * Try to restore the old affinity mask with __sched_setaffinity().
3412 * Cpuset masking will be done there too.
3413 */
3414 ret = __sched_setaffinity(p, &ac);
3415 WARN_ON_ONCE(ret);
3416 }
3417
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3418 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3419 {
3420 #ifdef CONFIG_SCHED_DEBUG
3421 unsigned int state = READ_ONCE(p->__state);
3422
3423 /*
3424 * We should never call set_task_cpu() on a blocked task,
3425 * ttwu() will sort out the placement.
3426 */
3427 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3428
3429 /*
3430 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3431 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3432 * time relying on p->on_rq.
3433 */
3434 WARN_ON_ONCE(state == TASK_RUNNING &&
3435 p->sched_class == &fair_sched_class &&
3436 (p->on_rq && !task_on_rq_migrating(p)));
3437
3438 #ifdef CONFIG_LOCKDEP
3439 /*
3440 * The caller should hold either p->pi_lock or rq->lock, when changing
3441 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3442 *
3443 * sched_move_task() holds both and thus holding either pins the cgroup,
3444 * see task_group().
3445 *
3446 * Furthermore, all task_rq users should acquire both locks, see
3447 * task_rq_lock().
3448 */
3449 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3450 lockdep_is_held(__rq_lockp(task_rq(p)))));
3451 #endif
3452 /*
3453 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3454 */
3455 WARN_ON_ONCE(!cpu_online(new_cpu));
3456
3457 WARN_ON_ONCE(is_migration_disabled(p));
3458 #endif
3459
3460 trace_sched_migrate_task(p, new_cpu);
3461
3462 if (task_cpu(p) != new_cpu) {
3463 if (p->sched_class->migrate_task_rq)
3464 p->sched_class->migrate_task_rq(p, new_cpu);
3465 p->se.nr_migrations++;
3466 rseq_migrate(p);
3467 sched_mm_cid_migrate_from(p);
3468 perf_event_task_migrate(p);
3469 fixup_busy_time(p, new_cpu);
3470 }
3471
3472 __set_task_cpu(p, new_cpu);
3473 }
3474
3475 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)3476 static void __migrate_swap_task(struct task_struct *p, int cpu)
3477 {
3478 if (task_on_rq_queued(p)) {
3479 struct rq *src_rq, *dst_rq;
3480 struct rq_flags srf, drf;
3481
3482 src_rq = task_rq(p);
3483 dst_rq = cpu_rq(cpu);
3484
3485 rq_pin_lock(src_rq, &srf);
3486 rq_pin_lock(dst_rq, &drf);
3487
3488 deactivate_task(src_rq, p, 0);
3489 set_task_cpu(p, cpu);
3490 activate_task(dst_rq, p, 0);
3491 wakeup_preempt(dst_rq, p, 0);
3492
3493 rq_unpin_lock(dst_rq, &drf);
3494 rq_unpin_lock(src_rq, &srf);
3495
3496 } else {
3497 /*
3498 * Task isn't running anymore; make it appear like we migrated
3499 * it before it went to sleep. This means on wakeup we make the
3500 * previous CPU our target instead of where it really is.
3501 */
3502 p->wake_cpu = cpu;
3503 }
3504 }
3505
3506 struct migration_swap_arg {
3507 struct task_struct *src_task, *dst_task;
3508 int src_cpu, dst_cpu;
3509 };
3510
migrate_swap_stop(void * data)3511 static int migrate_swap_stop(void *data)
3512 {
3513 struct migration_swap_arg *arg = data;
3514 struct rq *src_rq, *dst_rq;
3515
3516 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3517 return -EAGAIN;
3518
3519 src_rq = cpu_rq(arg->src_cpu);
3520 dst_rq = cpu_rq(arg->dst_cpu);
3521
3522 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3523 guard(double_rq_lock)(src_rq, dst_rq);
3524
3525 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3526 return -EAGAIN;
3527
3528 if (task_cpu(arg->src_task) != arg->src_cpu)
3529 return -EAGAIN;
3530
3531 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3532 return -EAGAIN;
3533
3534 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3535 return -EAGAIN;
3536
3537 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3538 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3539
3540 return 0;
3541 }
3542
3543 /*
3544 * Cross migrate two tasks
3545 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3546 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3547 int target_cpu, int curr_cpu)
3548 {
3549 struct migration_swap_arg arg;
3550 int ret = -EINVAL;
3551
3552 arg = (struct migration_swap_arg){
3553 .src_task = cur,
3554 .src_cpu = curr_cpu,
3555 .dst_task = p,
3556 .dst_cpu = target_cpu,
3557 };
3558
3559 if (arg.src_cpu == arg.dst_cpu)
3560 goto out;
3561
3562 /*
3563 * These three tests are all lockless; this is OK since all of them
3564 * will be re-checked with proper locks held further down the line.
3565 */
3566 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3567 goto out;
3568
3569 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3570 goto out;
3571
3572 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3573 goto out;
3574
3575 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3576 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3577
3578 out:
3579 return ret;
3580 }
3581 #endif /* CONFIG_NUMA_BALANCING */
3582
3583 /***
3584 * kick_process - kick a running thread to enter/exit the kernel
3585 * @p: the to-be-kicked thread
3586 *
3587 * Cause a process which is running on another CPU to enter
3588 * kernel-mode, without any delay. (to get signals handled.)
3589 *
3590 * NOTE: this function doesn't have to take the runqueue lock,
3591 * because all it wants to ensure is that the remote task enters
3592 * the kernel. If the IPI races and the task has been migrated
3593 * to another CPU then no harm is done and the purpose has been
3594 * achieved as well.
3595 */
kick_process(struct task_struct * p)3596 void kick_process(struct task_struct *p)
3597 {
3598 int cpu;
3599
3600 preempt_disable();
3601 cpu = task_cpu(p);
3602 if ((cpu != smp_processor_id()) && task_curr(p))
3603 smp_send_reschedule(cpu);
3604 preempt_enable();
3605 }
3606 EXPORT_SYMBOL_GPL(kick_process);
3607
3608 /*
3609 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3610 *
3611 * A few notes on cpu_active vs cpu_online:
3612 *
3613 * - cpu_active must be a subset of cpu_online
3614 *
3615 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3616 * see __set_cpus_allowed_ptr(). At this point the newly online
3617 * CPU isn't yet part of the sched domains, and balancing will not
3618 * see it.
3619 *
3620 * - on CPU-down we clear cpu_active() to mask the sched domains and
3621 * avoid the load balancer to place new tasks on the to be removed
3622 * CPU. Existing tasks will remain running there and will be taken
3623 * off.
3624 *
3625 * This means that fallback selection must not select !active CPUs.
3626 * And can assume that any active CPU must be online. Conversely
3627 * select_task_rq() below may allow selection of !active CPUs in order
3628 * to satisfy the above rules.
3629 */
3630 #ifdef CONFIG_CPU_ISOLATION_OPT
select_fallback_rq(int cpu,struct task_struct * p,bool allow_iso)3631 static int select_fallback_rq(int cpu, struct task_struct *p, bool allow_iso)
3632 #else
3633 static int select_fallback_rq(int cpu, struct task_struct *p)
3634 #endif
3635 {
3636 int nid = cpu_to_node(cpu);
3637 const struct cpumask *nodemask = NULL;
3638 enum { cpuset, possible, fail, bug } state = cpuset;
3639 int dest_cpu;
3640 #ifdef CONFIG_CPU_ISOLATION_OPT
3641 int isolated_candidate = -1;
3642 #endif
3643
3644 /*
3645 * If the node that the CPU is on has been offlined, cpu_to_node()
3646 * will return -1. There is no CPU on the node, and we should
3647 * select the CPU on the other node.
3648 */
3649 if (nid != -1) {
3650 nodemask = cpumask_of_node(nid);
3651
3652 /* Look for allowed, online CPU in same node. */
3653 for_each_cpu(dest_cpu, nodemask) {
3654 if (cpu_isolated(dest_cpu))
3655 continue;
3656 if (is_cpu_allowed(p, dest_cpu))
3657 return dest_cpu;
3658 }
3659 }
3660
3661 for (;;) {
3662 /* Any allowed, online CPU? */
3663 for_each_cpu(dest_cpu, p->cpus_ptr) {
3664 if (!is_cpu_allowed(p, dest_cpu))
3665 continue;
3666 #ifdef CONFIG_CPU_ISOLATION_OPT
3667 if (cpu_isolated(dest_cpu)) {
3668 if (allow_iso)
3669 isolated_candidate = dest_cpu;
3670 continue;
3671 }
3672 goto out;
3673 }
3674
3675 if (isolated_candidate != -1) {
3676 dest_cpu = isolated_candidate;
3677 #endif
3678 goto out;
3679 }
3680
3681 /* No more Mr. Nice Guy. */
3682 switch (state) {
3683 case cpuset:
3684 if (cpuset_cpus_allowed_fallback(p)) {
3685 state = possible;
3686 break;
3687 }
3688 fallthrough;
3689 case possible:
3690 /*
3691 * XXX When called from select_task_rq() we only
3692 * hold p->pi_lock and again violate locking order.
3693 *
3694 * More yuck to audit.
3695 */
3696 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3697 state = fail;
3698 break;
3699 case fail:
3700 #ifdef CONFIG_CPU_ISOLATION_OPT
3701 allow_iso = true;
3702 state = bug;
3703 break;
3704 #else
3705 /* fall through; */
3706 #endif
3707
3708 case bug:
3709 BUG();
3710 break;
3711 }
3712 }
3713
3714 out:
3715 if (state != cpuset) {
3716 /*
3717 * Don't tell them about moving exiting tasks or
3718 * kernel threads (both mm NULL), since they never
3719 * leave kernel.
3720 */
3721 if (p->mm && printk_ratelimit()) {
3722 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3723 task_pid_nr(p), p->comm, cpu);
3724 }
3725 }
3726
3727 return dest_cpu;
3728 }
3729
3730 /*
3731 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3732 */
3733 static inline
select_task_rq(struct task_struct * p,int cpu,int wake_flags)3734 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3735 {
3736 #ifdef CONFIG_CPU_ISOLATION_OPT
3737 bool allow_isolated = (p->flags & PF_KTHREAD);
3738 #endif
3739
3740 lockdep_assert_held(&p->pi_lock);
3741
3742 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3743 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3744 else
3745 cpu = cpumask_any(p->cpus_ptr);
3746
3747 /*
3748 * In order not to call set_task_cpu() on a blocking task we need
3749 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3750 * CPU.
3751 *
3752 * Since this is common to all placement strategies, this lives here.
3753 *
3754 * [ this allows ->select_task() to simply return task_cpu(p) and
3755 * not worry about this generic constraint ]
3756 */
3757 #ifdef CONFIG_CPU_ISOLATION_OPT
3758 if (unlikely(!is_cpu_allowed(p, cpu)) ||
3759 (cpu_isolated(cpu) && !allow_isolated))
3760 cpu = select_fallback_rq(task_cpu(p), p, allow_isolated);
3761 #else
3762 if (unlikely(!is_cpu_allowed(p, cpu)))
3763 cpu = select_fallback_rq(task_cpu(p), p);
3764 #endif
3765
3766 return cpu;
3767 }
3768
sched_set_stop_task(int cpu,struct task_struct * stop)3769 void sched_set_stop_task(int cpu, struct task_struct *stop)
3770 {
3771 static struct lock_class_key stop_pi_lock;
3772 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3773 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3774
3775 if (stop) {
3776 /*
3777 * Make it appear like a SCHED_FIFO task, its something
3778 * userspace knows about and won't get confused about.
3779 *
3780 * Also, it will make PI more or less work without too
3781 * much confusion -- but then, stop work should not
3782 * rely on PI working anyway.
3783 */
3784 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3785
3786 stop->sched_class = &stop_sched_class;
3787
3788 /*
3789 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3790 * adjust the effective priority of a task. As a result,
3791 * rt_mutex_setprio() can trigger (RT) balancing operations,
3792 * which can then trigger wakeups of the stop thread to push
3793 * around the current task.
3794 *
3795 * The stop task itself will never be part of the PI-chain, it
3796 * never blocks, therefore that ->pi_lock recursion is safe.
3797 * Tell lockdep about this by placing the stop->pi_lock in its
3798 * own class.
3799 */
3800 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3801 }
3802
3803 cpu_rq(cpu)->stop = stop;
3804
3805 if (old_stop) {
3806 /*
3807 * Reset it back to a normal scheduling class so that
3808 * it can die in pieces.
3809 */
3810 old_stop->sched_class = &rt_sched_class;
3811 }
3812 }
3813
3814 #else /* CONFIG_SMP */
3815
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3816 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3817 struct affinity_context *ctx)
3818 {
3819 return set_cpus_allowed_ptr(p, ctx->new_mask);
3820 }
3821
migrate_disable_switch(struct rq * rq,struct task_struct * p)3822 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3823
rq_has_pinned_tasks(struct rq * rq)3824 static inline bool rq_has_pinned_tasks(struct rq *rq)
3825 {
3826 return false;
3827 }
3828
alloc_user_cpus_ptr(int node)3829 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3830 {
3831 return NULL;
3832 }
3833
3834 #endif /* !CONFIG_SMP */
3835
3836 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3837 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3838 {
3839 struct rq *rq;
3840
3841 if (!schedstat_enabled())
3842 return;
3843
3844 rq = this_rq();
3845
3846 #ifdef CONFIG_SMP
3847 if (cpu == rq->cpu) {
3848 __schedstat_inc(rq->ttwu_local);
3849 __schedstat_inc(p->stats.nr_wakeups_local);
3850 } else {
3851 struct sched_domain *sd;
3852
3853 __schedstat_inc(p->stats.nr_wakeups_remote);
3854
3855 guard(rcu)();
3856 for_each_domain(rq->cpu, sd) {
3857 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3858 __schedstat_inc(sd->ttwu_wake_remote);
3859 break;
3860 }
3861 }
3862 }
3863
3864 if (wake_flags & WF_MIGRATED)
3865 __schedstat_inc(p->stats.nr_wakeups_migrate);
3866 #endif /* CONFIG_SMP */
3867
3868 __schedstat_inc(rq->ttwu_count);
3869 __schedstat_inc(p->stats.nr_wakeups);
3870
3871 if (wake_flags & WF_SYNC)
3872 __schedstat_inc(p->stats.nr_wakeups_sync);
3873 }
3874
3875 /*
3876 * Mark the task runnable.
3877 */
ttwu_do_wakeup(struct task_struct * p)3878 static inline void ttwu_do_wakeup(struct task_struct *p)
3879 {
3880 WRITE_ONCE(p->__state, TASK_RUNNING);
3881 trace_sched_wakeup(p);
3882 }
3883
3884 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3885 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3886 struct rq_flags *rf)
3887 {
3888 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3889
3890 lockdep_assert_rq_held(rq);
3891
3892 if (p->sched_contributes_to_load)
3893 rq->nr_uninterruptible--;
3894
3895 #ifdef CONFIG_SMP
3896 if (wake_flags & WF_MIGRATED)
3897 en_flags |= ENQUEUE_MIGRATED;
3898 else
3899 #endif
3900 if (p->in_iowait) {
3901 delayacct_blkio_end(p);
3902 atomic_dec(&task_rq(p)->nr_iowait);
3903 }
3904
3905 activate_task(rq, p, en_flags);
3906 wakeup_preempt(rq, p, wake_flags);
3907
3908 ttwu_do_wakeup(p);
3909
3910 #ifdef CONFIG_SMP
3911 if (p->sched_class->task_woken) {
3912 /*
3913 * Our task @p is fully woken up and running; so it's safe to
3914 * drop the rq->lock, hereafter rq is only used for statistics.
3915 */
3916 rq_unpin_lock(rq, rf);
3917 p->sched_class->task_woken(rq, p);
3918 rq_repin_lock(rq, rf);
3919 }
3920
3921 if (rq->idle_stamp) {
3922 u64 delta = rq_clock(rq) - rq->idle_stamp;
3923 u64 max = 2*rq->max_idle_balance_cost;
3924
3925 update_avg(&rq->avg_idle, delta);
3926
3927 if (rq->avg_idle > max)
3928 rq->avg_idle = max;
3929
3930 rq->wake_stamp = jiffies;
3931 rq->wake_avg_idle = rq->avg_idle / 2;
3932
3933 rq->idle_stamp = 0;
3934 }
3935 #endif
3936 }
3937
3938 /*
3939 * Consider @p being inside a wait loop:
3940 *
3941 * for (;;) {
3942 * set_current_state(TASK_UNINTERRUPTIBLE);
3943 *
3944 * if (CONDITION)
3945 * break;
3946 *
3947 * schedule();
3948 * }
3949 * __set_current_state(TASK_RUNNING);
3950 *
3951 * between set_current_state() and schedule(). In this case @p is still
3952 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3953 * an atomic manner.
3954 *
3955 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3956 * then schedule() must still happen and p->state can be changed to
3957 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3958 * need to do a full wakeup with enqueue.
3959 *
3960 * Returns: %true when the wakeup is done,
3961 * %false otherwise.
3962 */
ttwu_runnable(struct task_struct * p,int wake_flags)3963 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3964 {
3965 struct rq_flags rf;
3966 struct rq *rq;
3967 int ret = 0;
3968
3969 rq = __task_rq_lock(p, &rf);
3970 if (task_on_rq_queued(p)) {
3971 if (!task_on_cpu(rq, p)) {
3972 /*
3973 * When on_rq && !on_cpu the task is preempted, see if
3974 * it should preempt the task that is current now.
3975 */
3976 update_rq_clock(rq);
3977 wakeup_preempt(rq, p, wake_flags);
3978 }
3979 ttwu_do_wakeup(p);
3980 ret = 1;
3981 }
3982 __task_rq_unlock(rq, &rf);
3983
3984 return ret;
3985 }
3986
3987 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3988 void sched_ttwu_pending(void *arg)
3989 {
3990 struct llist_node *llist = arg;
3991 struct rq *rq = this_rq();
3992 struct task_struct *p, *t;
3993 struct rq_flags rf;
3994
3995 if (!llist)
3996 return;
3997
3998 rq_lock_irqsave(rq, &rf);
3999 update_rq_clock(rq);
4000
4001 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
4002 if (WARN_ON_ONCE(p->on_cpu))
4003 smp_cond_load_acquire(&p->on_cpu, !VAL);
4004
4005 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
4006 set_task_cpu(p, cpu_of(rq));
4007
4008 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
4009 }
4010
4011 /*
4012 * Must be after enqueueing at least once task such that
4013 * idle_cpu() does not observe a false-negative -- if it does,
4014 * it is possible for select_idle_siblings() to stack a number
4015 * of tasks on this CPU during that window.
4016 *
4017 * It is ok to clear ttwu_pending when another task pending.
4018 * We will receive IPI after local irq enabled and then enqueue it.
4019 * Since now nr_running > 0, idle_cpu() will always get correct result.
4020 */
4021 WRITE_ONCE(rq->ttwu_pending, 0);
4022 rq_unlock_irqrestore(rq, &rf);
4023 }
4024
4025 /*
4026 * Prepare the scene for sending an IPI for a remote smp_call
4027 *
4028 * Returns true if the caller can proceed with sending the IPI.
4029 * Returns false otherwise.
4030 */
call_function_single_prep_ipi(int cpu)4031 bool call_function_single_prep_ipi(int cpu)
4032 {
4033 if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
4034 trace_sched_wake_idle_without_ipi(cpu);
4035 return false;
4036 }
4037
4038 return true;
4039 }
4040
4041 /*
4042 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
4043 * necessary. The wakee CPU on receipt of the IPI will queue the task
4044 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
4045 * of the wakeup instead of the waker.
4046 */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4047 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4048 {
4049 struct rq *rq = cpu_rq(cpu);
4050
4051 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
4052
4053 WRITE_ONCE(rq->ttwu_pending, 1);
4054 __smp_call_single_queue(cpu, &p->wake_entry.llist);
4055 }
4056
wake_up_if_idle(int cpu)4057 void wake_up_if_idle(int cpu)
4058 {
4059 struct rq *rq = cpu_rq(cpu);
4060
4061 guard(rcu)();
4062 if (is_idle_task(rcu_dereference(rq->curr))) {
4063 guard(rq_lock_irqsave)(rq);
4064 if (is_idle_task(rq->curr))
4065 resched_curr(rq);
4066 }
4067 }
4068
cpus_share_cache(int this_cpu,int that_cpu)4069 bool cpus_share_cache(int this_cpu, int that_cpu)
4070 {
4071 if (this_cpu == that_cpu)
4072 return true;
4073
4074 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
4075 }
4076
ttwu_queue_cond(struct task_struct * p,int cpu)4077 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
4078 {
4079 /*
4080 * Do not complicate things with the async wake_list while the CPU is
4081 * in hotplug state.
4082 */
4083 if (!cpu_active(cpu))
4084 return false;
4085
4086 /* Ensure the task will still be allowed to run on the CPU. */
4087 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
4088 return false;
4089
4090 /*
4091 * If the CPU does not share cache, then queue the task on the
4092 * remote rqs wakelist to avoid accessing remote data.
4093 */
4094 if (!cpus_share_cache(smp_processor_id(), cpu))
4095 return true;
4096
4097 if (cpu == smp_processor_id())
4098 return false;
4099
4100 /*
4101 * If the wakee cpu is idle, or the task is descheduling and the
4102 * only running task on the CPU, then use the wakelist to offload
4103 * the task activation to the idle (or soon-to-be-idle) CPU as
4104 * the current CPU is likely busy. nr_running is checked to
4105 * avoid unnecessary task stacking.
4106 *
4107 * Note that we can only get here with (wakee) p->on_rq=0,
4108 * p->on_cpu can be whatever, we've done the dequeue, so
4109 * the wakee has been accounted out of ->nr_running.
4110 */
4111 if (!cpu_rq(cpu)->nr_running)
4112 return true;
4113
4114 return false;
4115 }
4116
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4117 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4118 {
4119 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
4120 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4121 __ttwu_queue_wakelist(p, cpu, wake_flags);
4122 return true;
4123 }
4124
4125 return false;
4126 }
4127
4128 #else /* !CONFIG_SMP */
4129
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4130 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4131 {
4132 return false;
4133 }
4134
4135 #endif /* CONFIG_SMP */
4136
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)4137 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4138 {
4139 struct rq *rq = cpu_rq(cpu);
4140 struct rq_flags rf;
4141
4142 if (ttwu_queue_wakelist(p, cpu, wake_flags))
4143 return;
4144
4145 rq_lock(rq, &rf);
4146 update_rq_clock(rq);
4147 ttwu_do_activate(rq, p, wake_flags, &rf);
4148 rq_unlock(rq, &rf);
4149 }
4150
4151 /*
4152 * Invoked from try_to_wake_up() to check whether the task can be woken up.
4153 *
4154 * The caller holds p::pi_lock if p != current or has preemption
4155 * disabled when p == current.
4156 *
4157 * The rules of PREEMPT_RT saved_state:
4158 *
4159 * The related locking code always holds p::pi_lock when updating
4160 * p::saved_state, which means the code is fully serialized in both cases.
4161 *
4162 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
4163 * bits set. This allows to distinguish all wakeup scenarios.
4164 */
4165 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)4166 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4167 {
4168 int match;
4169
4170 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4171 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4172 state != TASK_RTLOCK_WAIT);
4173 }
4174
4175 *success = !!(match = __task_state_match(p, state));
4176
4177 #ifdef CONFIG_PREEMPT_RT
4178 /*
4179 * Saved state preserves the task state across blocking on
4180 * an RT lock. If the state matches, set p::saved_state to
4181 * TASK_RUNNING, but do not wake the task because it waits
4182 * for a lock wakeup. Also indicate success because from
4183 * the regular waker's point of view this has succeeded.
4184 *
4185 * After acquiring the lock the task will restore p::__state
4186 * from p::saved_state which ensures that the regular
4187 * wakeup is not lost. The restore will also set
4188 * p::saved_state to TASK_RUNNING so any further tests will
4189 * not result in false positives vs. @success
4190 */
4191 if (match < 0)
4192 p->saved_state = TASK_RUNNING;
4193 #endif
4194 return match > 0;
4195 }
4196
4197 /*
4198 * Notes on Program-Order guarantees on SMP systems.
4199 *
4200 * MIGRATION
4201 *
4202 * The basic program-order guarantee on SMP systems is that when a task [t]
4203 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4204 * execution on its new CPU [c1].
4205 *
4206 * For migration (of runnable tasks) this is provided by the following means:
4207 *
4208 * A) UNLOCK of the rq(c0)->lock scheduling out task t
4209 * B) migration for t is required to synchronize *both* rq(c0)->lock and
4210 * rq(c1)->lock (if not at the same time, then in that order).
4211 * C) LOCK of the rq(c1)->lock scheduling in task
4212 *
4213 * Release/acquire chaining guarantees that B happens after A and C after B.
4214 * Note: the CPU doing B need not be c0 or c1
4215 *
4216 * Example:
4217 *
4218 * CPU0 CPU1 CPU2
4219 *
4220 * LOCK rq(0)->lock
4221 * sched-out X
4222 * sched-in Y
4223 * UNLOCK rq(0)->lock
4224 *
4225 * LOCK rq(0)->lock // orders against CPU0
4226 * dequeue X
4227 * UNLOCK rq(0)->lock
4228 *
4229 * LOCK rq(1)->lock
4230 * enqueue X
4231 * UNLOCK rq(1)->lock
4232 *
4233 * LOCK rq(1)->lock // orders against CPU2
4234 * sched-out Z
4235 * sched-in X
4236 * UNLOCK rq(1)->lock
4237 *
4238 *
4239 * BLOCKING -- aka. SLEEP + WAKEUP
4240 *
4241 * For blocking we (obviously) need to provide the same guarantee as for
4242 * migration. However the means are completely different as there is no lock
4243 * chain to provide order. Instead we do:
4244 *
4245 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
4246 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4247 *
4248 * Example:
4249 *
4250 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
4251 *
4252 * LOCK rq(0)->lock LOCK X->pi_lock
4253 * dequeue X
4254 * sched-out X
4255 * smp_store_release(X->on_cpu, 0);
4256 *
4257 * smp_cond_load_acquire(&X->on_cpu, !VAL);
4258 * X->state = WAKING
4259 * set_task_cpu(X,2)
4260 *
4261 * LOCK rq(2)->lock
4262 * enqueue X
4263 * X->state = RUNNING
4264 * UNLOCK rq(2)->lock
4265 *
4266 * LOCK rq(2)->lock // orders against CPU1
4267 * sched-out Z
4268 * sched-in X
4269 * UNLOCK rq(2)->lock
4270 *
4271 * UNLOCK X->pi_lock
4272 * UNLOCK rq(0)->lock
4273 *
4274 *
4275 * However, for wakeups there is a second guarantee we must provide, namely we
4276 * must ensure that CONDITION=1 done by the caller can not be reordered with
4277 * accesses to the task state; see try_to_wake_up() and set_current_state().
4278 */
4279
4280 #ifdef CONFIG_SMP
4281 #ifdef CONFIG_SCHED_WALT
4282 /* utility function to update walt signals at wakeup */
walt_try_to_wake_up(struct task_struct * p)4283 static inline void walt_try_to_wake_up(struct task_struct *p)
4284 {
4285 struct rq *rq = cpu_rq(task_cpu(p));
4286 struct rq_flags rf;
4287 u64 wallclock;
4288
4289 rq_lock_irqsave(rq, &rf);
4290 wallclock = sched_ktime_clock();
4291 update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
4292 update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
4293 rq_unlock_irqrestore(rq, &rf);
4294 }
4295 #else
4296 #define walt_try_to_wake_up(a) {}
4297 #endif
4298 #endif
4299
4300 /**
4301 * try_to_wake_up - wake up a thread
4302 * @p: the thread to be awakened
4303 * @state: the mask of task states that can be woken
4304 * @wake_flags: wake modifier flags (WF_*)
4305 *
4306 * Conceptually does:
4307 *
4308 * If (@state & @p->state) @p->state = TASK_RUNNING.
4309 *
4310 * If the task was not queued/runnable, also place it back on a runqueue.
4311 *
4312 * This function is atomic against schedule() which would dequeue the task.
4313 *
4314 * It issues a full memory barrier before accessing @p->state, see the comment
4315 * with set_current_state().
4316 *
4317 * Uses p->pi_lock to serialize against concurrent wake-ups.
4318 *
4319 * Relies on p->pi_lock stabilizing:
4320 * - p->sched_class
4321 * - p->cpus_ptr
4322 * - p->sched_task_group
4323 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4324 *
4325 * Tries really hard to only take one task_rq(p)->lock for performance.
4326 * Takes rq->lock in:
4327 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4328 * - ttwu_queue() -- new rq, for enqueue of the task;
4329 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4330 *
4331 * As a consequence we race really badly with just about everything. See the
4332 * many memory barriers and their comments for details.
4333 *
4334 * Return: %true if @p->state changes (an actual wakeup was done),
4335 * %false otherwise.
4336 */
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4337 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4338 {
4339 guard(preempt)();
4340 int cpu, success = 0;
4341
4342 if (p == current) {
4343 /*
4344 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4345 * == smp_processor_id()'. Together this means we can special
4346 * case the whole 'p->on_rq && ttwu_runnable()' case below
4347 * without taking any locks.
4348 *
4349 * In particular:
4350 * - we rely on Program-Order guarantees for all the ordering,
4351 * - we're serialized against set_special_state() by virtue of
4352 * it disabling IRQs (this allows not taking ->pi_lock).
4353 */
4354 if (!ttwu_state_match(p, state, &success))
4355 goto out;
4356
4357 trace_sched_waking(p);
4358 ttwu_do_wakeup(p);
4359 goto out;
4360 }
4361
4362 /*
4363 * If we are going to wake up a thread waiting for CONDITION we
4364 * need to ensure that CONDITION=1 done by the caller can not be
4365 * reordered with p->state check below. This pairs with smp_store_mb()
4366 * in set_current_state() that the waiting thread does.
4367 */
4368 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4369 smp_mb__after_spinlock();
4370 if (!ttwu_state_match(p, state, &success))
4371 break;
4372
4373 trace_sched_waking(p);
4374
4375 /*
4376 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4377 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4378 * in smp_cond_load_acquire() below.
4379 *
4380 * sched_ttwu_pending() try_to_wake_up()
4381 * STORE p->on_rq = 1 LOAD p->state
4382 * UNLOCK rq->lock
4383 *
4384 * __schedule() (switch to task 'p')
4385 * LOCK rq->lock smp_rmb();
4386 * smp_mb__after_spinlock();
4387 * UNLOCK rq->lock
4388 *
4389 * [task p]
4390 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4391 *
4392 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4393 * __schedule(). See the comment for smp_mb__after_spinlock().
4394 *
4395 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4396 */
4397 smp_rmb();
4398 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4399 break;
4400
4401 #ifdef CONFIG_SMP
4402 /*
4403 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4404 * possible to, falsely, observe p->on_cpu == 0.
4405 *
4406 * One must be running (->on_cpu == 1) in order to remove oneself
4407 * from the runqueue.
4408 *
4409 * __schedule() (switch to task 'p') try_to_wake_up()
4410 * STORE p->on_cpu = 1 LOAD p->on_rq
4411 * UNLOCK rq->lock
4412 *
4413 * __schedule() (put 'p' to sleep)
4414 * LOCK rq->lock smp_rmb();
4415 * smp_mb__after_spinlock();
4416 * STORE p->on_rq = 0 LOAD p->on_cpu
4417 *
4418 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4419 * __schedule(). See the comment for smp_mb__after_spinlock().
4420 *
4421 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4422 * schedule()'s deactivate_task() has 'happened' and p will no longer
4423 * care about it's own p->state. See the comment in __schedule().
4424 */
4425 smp_acquire__after_ctrl_dep();
4426
4427 walt_try_to_wake_up(p);
4428 /*
4429 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4430 * == 0), which means we need to do an enqueue, change p->state to
4431 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4432 * enqueue, such as ttwu_queue_wakelist().
4433 */
4434 WRITE_ONCE(p->__state, TASK_WAKING);
4435
4436 /*
4437 * If the owning (remote) CPU is still in the middle of schedule() with
4438 * this task as prev, considering queueing p on the remote CPUs wake_list
4439 * which potentially sends an IPI instead of spinning on p->on_cpu to
4440 * let the waker make forward progress. This is safe because IRQs are
4441 * disabled and the IPI will deliver after on_cpu is cleared.
4442 *
4443 * Ensure we load task_cpu(p) after p->on_cpu:
4444 *
4445 * set_task_cpu(p, cpu);
4446 * STORE p->cpu = @cpu
4447 * __schedule() (switch to task 'p')
4448 * LOCK rq->lock
4449 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4450 * STORE p->on_cpu = 1 LOAD p->cpu
4451 *
4452 * to ensure we observe the correct CPU on which the task is currently
4453 * scheduling.
4454 */
4455 if (smp_load_acquire(&p->on_cpu) &&
4456 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4457 break;
4458
4459 /*
4460 * If the owning (remote) CPU is still in the middle of schedule() with
4461 * this task as prev, wait until it's done referencing the task.
4462 *
4463 * Pairs with the smp_store_release() in finish_task().
4464 *
4465 * This ensures that tasks getting woken will be fully ordered against
4466 * their previous state and preserve Program Order.
4467 */
4468 smp_cond_load_acquire(&p->on_cpu, !VAL);
4469
4470 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4471 if (task_cpu(p) != cpu) {
4472 if (p->in_iowait) {
4473 delayacct_blkio_end(p);
4474 atomic_dec(&task_rq(p)->nr_iowait);
4475 }
4476
4477 wake_flags |= WF_MIGRATED;
4478 psi_ttwu_dequeue(p);
4479 set_task_cpu(p, cpu);
4480 }
4481 #else
4482 cpu = task_cpu(p);
4483 #endif /* CONFIG_SMP */
4484
4485 ttwu_queue(p, cpu, wake_flags);
4486 }
4487 out:
4488 if (success)
4489 ttwu_stat(p, task_cpu(p), wake_flags);
4490
4491 return success;
4492 }
4493
__task_needs_rq_lock(struct task_struct * p)4494 static bool __task_needs_rq_lock(struct task_struct *p)
4495 {
4496 unsigned int state = READ_ONCE(p->__state);
4497
4498 /*
4499 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4500 * the task is blocked. Make sure to check @state since ttwu() can drop
4501 * locks at the end, see ttwu_queue_wakelist().
4502 */
4503 if (state == TASK_RUNNING || state == TASK_WAKING)
4504 return true;
4505
4506 /*
4507 * Ensure we load p->on_rq after p->__state, otherwise it would be
4508 * possible to, falsely, observe p->on_rq == 0.
4509 *
4510 * See try_to_wake_up() for a longer comment.
4511 */
4512 smp_rmb();
4513 if (p->on_rq)
4514 return true;
4515
4516 #ifdef CONFIG_SMP
4517 /*
4518 * Ensure the task has finished __schedule() and will not be referenced
4519 * anymore. Again, see try_to_wake_up() for a longer comment.
4520 */
4521 smp_rmb();
4522 smp_cond_load_acquire(&p->on_cpu, !VAL);
4523 #endif
4524
4525 return false;
4526 }
4527
4528 /**
4529 * task_call_func - Invoke a function on task in fixed state
4530 * @p: Process for which the function is to be invoked, can be @current.
4531 * @func: Function to invoke.
4532 * @arg: Argument to function.
4533 *
4534 * Fix the task in it's current state by avoiding wakeups and or rq operations
4535 * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
4536 * to work out what the state is, if required. Given that @func can be invoked
4537 * with a runqueue lock held, it had better be quite lightweight.
4538 *
4539 * Returns:
4540 * Whatever @func returns
4541 */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4542 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4543 {
4544 struct rq *rq = NULL;
4545 struct rq_flags rf;
4546 int ret;
4547
4548 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4549
4550 if (__task_needs_rq_lock(p))
4551 rq = __task_rq_lock(p, &rf);
4552
4553 /*
4554 * At this point the task is pinned; either:
4555 * - blocked and we're holding off wakeups (pi->lock)
4556 * - woken, and we're holding off enqueue (rq->lock)
4557 * - queued, and we're holding off schedule (rq->lock)
4558 * - running, and we're holding off de-schedule (rq->lock)
4559 *
4560 * The called function (@func) can use: task_curr(), p->on_rq and
4561 * p->__state to differentiate between these states.
4562 */
4563 ret = func(p, arg);
4564
4565 if (rq)
4566 rq_unlock(rq, &rf);
4567
4568 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4569 return ret;
4570 }
4571
4572 /**
4573 * cpu_curr_snapshot - Return a snapshot of the currently running task
4574 * @cpu: The CPU on which to snapshot the task.
4575 *
4576 * Returns the task_struct pointer of the task "currently" running on
4577 * the specified CPU.
4578 *
4579 * If the specified CPU was offline, the return value is whatever it
4580 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4581 * task, but there is no guarantee. Callers wishing a useful return
4582 * value must take some action to ensure that the specified CPU remains
4583 * online throughout.
4584 *
4585 * This function executes full memory barriers before and after fetching
4586 * the pointer, which permits the caller to confine this function's fetch
4587 * with respect to the caller's accesses to other shared variables.
4588 */
cpu_curr_snapshot(int cpu)4589 struct task_struct *cpu_curr_snapshot(int cpu)
4590 {
4591 struct rq *rq = cpu_rq(cpu);
4592 struct task_struct *t;
4593 struct rq_flags rf;
4594
4595 rq_lock_irqsave(rq, &rf);
4596 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4597 t = rcu_dereference(cpu_curr(cpu));
4598 rq_unlock_irqrestore(rq, &rf);
4599 smp_mb(); /* Pairing determined by caller's synchronization design. */
4600
4601 return t;
4602 }
4603
4604 /**
4605 * wake_up_process - Wake up a specific process
4606 * @p: The process to be woken up.
4607 *
4608 * Attempt to wake up the nominated process and move it to the set of runnable
4609 * processes.
4610 *
4611 * Return: 1 if the process was woken up, 0 if it was already running.
4612 *
4613 * This function executes a full memory barrier before accessing the task state.
4614 */
wake_up_process(struct task_struct * p)4615 int wake_up_process(struct task_struct *p)
4616 {
4617 return try_to_wake_up(p, TASK_NORMAL, 0);
4618 }
4619 EXPORT_SYMBOL(wake_up_process);
4620
wake_up_state(struct task_struct * p,unsigned int state)4621 int wake_up_state(struct task_struct *p, unsigned int state)
4622 {
4623 return try_to_wake_up(p, state, 0);
4624 }
4625
4626 /*
4627 * Perform scheduler related setup for a newly forked process p.
4628 * p is forked by current.
4629 *
4630 * __sched_fork() is basic setup which is also used by sched_init() to
4631 * initialize the boot CPU's idle task.
4632 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4633 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4634 {
4635 p->on_rq = 0;
4636
4637 p->se.on_rq = 0;
4638 p->se.exec_start = 0;
4639 p->se.sum_exec_runtime = 0;
4640 p->se.prev_sum_exec_runtime = 0;
4641 p->se.nr_migrations = 0;
4642 p->se.vruntime = 0;
4643 p->se.vlag = 0;
4644 p->se.slice = sysctl_sched_base_slice;
4645 INIT_LIST_HEAD(&p->se.group_node);
4646
4647 #ifdef CONFIG_FAIR_GROUP_SCHED
4648 p->se.cfs_rq = NULL;
4649 #endif
4650
4651 #ifdef CONFIG_SCHEDSTATS
4652 /* Even if schedstat is disabled, there should not be garbage */
4653 memset(&p->stats, 0, sizeof(p->stats));
4654 #endif
4655
4656 init_dl_entity(&p->dl);
4657
4658 INIT_LIST_HEAD(&p->rt.run_list);
4659 p->rt.timeout = 0;
4660 p->rt.time_slice = sched_rr_timeslice;
4661 p->rt.on_rq = 0;
4662 p->rt.on_list = 0;
4663
4664 #ifdef CONFIG_PREEMPT_NOTIFIERS
4665 INIT_HLIST_HEAD(&p->preempt_notifiers);
4666 #endif
4667
4668 #ifdef CONFIG_COMPACTION
4669 p->capture_control = NULL;
4670 #endif
4671 init_numa_balancing(clone_flags, p);
4672 #ifdef CONFIG_SMP
4673 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4674 p->migration_pending = NULL;
4675 #endif
4676 #ifdef CONFIG_SCHED_RTG
4677 p->rtg_depth = 0;
4678 #endif
4679 init_sched_mm_cid(p);
4680 }
4681
4682 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4683
4684 #ifdef CONFIG_NUMA_BALANCING
4685
4686 int sysctl_numa_balancing_mode;
4687
__set_numabalancing_state(bool enabled)4688 static void __set_numabalancing_state(bool enabled)
4689 {
4690 if (enabled)
4691 static_branch_enable(&sched_numa_balancing);
4692 else
4693 static_branch_disable(&sched_numa_balancing);
4694 }
4695
set_numabalancing_state(bool enabled)4696 void set_numabalancing_state(bool enabled)
4697 {
4698 if (enabled)
4699 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4700 else
4701 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4702 __set_numabalancing_state(enabled);
4703 }
4704
4705 #ifdef CONFIG_PROC_SYSCTL
reset_memory_tiering(void)4706 static void reset_memory_tiering(void)
4707 {
4708 struct pglist_data *pgdat;
4709
4710 for_each_online_pgdat(pgdat) {
4711 pgdat->nbp_threshold = 0;
4712 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4713 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4714 }
4715 }
4716
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4717 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4718 void *buffer, size_t *lenp, loff_t *ppos)
4719 {
4720 struct ctl_table t;
4721 int err;
4722 int state = sysctl_numa_balancing_mode;
4723
4724 if (write && !capable(CAP_SYS_ADMIN))
4725 return -EPERM;
4726
4727 t = *table;
4728 t.data = &state;
4729 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4730 if (err < 0)
4731 return err;
4732 if (write) {
4733 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4734 (state & NUMA_BALANCING_MEMORY_TIERING))
4735 reset_memory_tiering();
4736 sysctl_numa_balancing_mode = state;
4737 __set_numabalancing_state(state);
4738 }
4739 return err;
4740 }
4741 #endif
4742 #endif
4743
4744 #ifdef CONFIG_SCHEDSTATS
4745
4746 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4747
set_schedstats(bool enabled)4748 static void set_schedstats(bool enabled)
4749 {
4750 if (enabled)
4751 static_branch_enable(&sched_schedstats);
4752 else
4753 static_branch_disable(&sched_schedstats);
4754 }
4755
force_schedstat_enabled(void)4756 void force_schedstat_enabled(void)
4757 {
4758 if (!schedstat_enabled()) {
4759 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4760 static_branch_enable(&sched_schedstats);
4761 }
4762 }
4763
setup_schedstats(char * str)4764 static int __init setup_schedstats(char *str)
4765 {
4766 int ret = 0;
4767 if (!str)
4768 goto out;
4769
4770 if (!strcmp(str, "enable")) {
4771 set_schedstats(true);
4772 ret = 1;
4773 } else if (!strcmp(str, "disable")) {
4774 set_schedstats(false);
4775 ret = 1;
4776 }
4777 out:
4778 if (!ret)
4779 pr_warn("Unable to parse schedstats=\n");
4780
4781 return ret;
4782 }
4783 __setup("schedstats=", setup_schedstats);
4784
4785 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4786 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4787 size_t *lenp, loff_t *ppos)
4788 {
4789 struct ctl_table t;
4790 int err;
4791 int state = static_branch_likely(&sched_schedstats);
4792
4793 if (write && !capable(CAP_SYS_ADMIN))
4794 return -EPERM;
4795
4796 t = *table;
4797 t.data = &state;
4798 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4799 if (err < 0)
4800 return err;
4801 if (write)
4802 set_schedstats(state);
4803 return err;
4804 }
4805 #endif /* CONFIG_PROC_SYSCTL */
4806 #endif /* CONFIG_SCHEDSTATS */
4807
4808 #ifdef CONFIG_SYSCTL
4809 static struct ctl_table sched_core_sysctls[] = {
4810 #ifdef CONFIG_SCHEDSTATS
4811 {
4812 .procname = "sched_schedstats",
4813 .data = NULL,
4814 .maxlen = sizeof(unsigned int),
4815 .mode = 0644,
4816 .proc_handler = sysctl_schedstats,
4817 .extra1 = SYSCTL_ZERO,
4818 .extra2 = SYSCTL_ONE,
4819 },
4820 #endif /* CONFIG_SCHEDSTATS */
4821 #ifdef CONFIG_UCLAMP_TASK
4822 {
4823 .procname = "sched_util_clamp_min",
4824 .data = &sysctl_sched_uclamp_util_min,
4825 .maxlen = sizeof(unsigned int),
4826 .mode = 0644,
4827 .proc_handler = sysctl_sched_uclamp_handler,
4828 },
4829 {
4830 .procname = "sched_util_clamp_max",
4831 .data = &sysctl_sched_uclamp_util_max,
4832 .maxlen = sizeof(unsigned int),
4833 .mode = 0644,
4834 .proc_handler = sysctl_sched_uclamp_handler,
4835 },
4836 {
4837 .procname = "sched_util_clamp_min_rt_default",
4838 .data = &sysctl_sched_uclamp_util_min_rt_default,
4839 .maxlen = sizeof(unsigned int),
4840 .mode = 0644,
4841 .proc_handler = sysctl_sched_uclamp_handler,
4842 },
4843 #endif /* CONFIG_UCLAMP_TASK */
4844 #ifdef CONFIG_NUMA_BALANCING
4845 {
4846 .procname = "numa_balancing",
4847 .data = NULL, /* filled in by handler */
4848 .maxlen = sizeof(unsigned int),
4849 .mode = 0644,
4850 .proc_handler = sysctl_numa_balancing,
4851 .extra1 = SYSCTL_ZERO,
4852 .extra2 = SYSCTL_FOUR,
4853 },
4854 #endif /* CONFIG_NUMA_BALANCING */
4855 {}
4856 };
sched_core_sysctl_init(void)4857 static int __init sched_core_sysctl_init(void)
4858 {
4859 register_sysctl_init("kernel", sched_core_sysctls);
4860 return 0;
4861 }
4862 late_initcall(sched_core_sysctl_init);
4863 #endif /* CONFIG_SYSCTL */
4864
4865 /*
4866 * fork()/clone()-time setup:
4867 */
sched_fork(unsigned long clone_flags,struct task_struct * p)4868 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4869 {
4870 init_new_task_load(p);
4871
4872 #ifdef CONFIG_QOS_CTRL
4873 init_task_qos(p);
4874 #endif
4875
4876 __sched_fork(clone_flags, p);
4877 /*
4878 * We mark the process as NEW here. This guarantees that
4879 * nobody will actually run it, and a signal or other external
4880 * event cannot wake it up and insert it on the runqueue either.
4881 */
4882 p->__state = TASK_NEW;
4883
4884 /*
4885 * Make sure we do not leak PI boosting priority to the child.
4886 */
4887 p->prio = current->normal_prio;
4888
4889 #ifdef CONFIG_SCHED_LATENCY_NICE
4890 /* Propagate the parent's latency requirements to the child as well */
4891 p->latency_prio = current->latency_prio;
4892 #endif
4893
4894 uclamp_fork(p);
4895
4896 /*
4897 * Revert to default priority/policy on fork if requested.
4898 */
4899 if (unlikely(p->sched_reset_on_fork)) {
4900 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4901 p->policy = SCHED_NORMAL;
4902 #ifdef CONFIG_SCHED_RTG
4903 if (current->rtg_depth != 0)
4904 p->static_prio = current->static_prio;
4905 else
4906 p->static_prio = NICE_TO_PRIO(0);
4907 #else
4908 p->static_prio = NICE_TO_PRIO(0);
4909 #endif
4910 p->rt_priority = 0;
4911 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4912 p->static_prio = NICE_TO_PRIO(0);
4913
4914 p->prio = p->normal_prio = p->static_prio;
4915 set_load_weight(p, false);
4916
4917 #ifdef CONFIG_SCHED_LATENCY_NICE
4918 p->latency_prio = NICE_TO_LATENCY(0);
4919 set_latency_weight(p);
4920 #endif
4921
4922 /*
4923 * We don't need the reset flag anymore after the fork. It has
4924 * fulfilled its duty:
4925 */
4926 p->sched_reset_on_fork = 0;
4927 }
4928
4929 if (dl_prio(p->prio))
4930 return -EAGAIN;
4931 else if (rt_prio(p->prio))
4932 p->sched_class = &rt_sched_class;
4933 else
4934 p->sched_class = &fair_sched_class;
4935
4936 init_entity_runnable_average(&p->se);
4937
4938
4939 #ifdef CONFIG_SCHED_INFO
4940 if (likely(sched_info_on()))
4941 memset(&p->sched_info, 0, sizeof(p->sched_info));
4942 #endif
4943 #if defined(CONFIG_SMP)
4944 p->on_cpu = 0;
4945 #endif
4946 init_task_preempt_count(p);
4947 #ifdef CONFIG_SMP
4948 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4949 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4950 #endif
4951 return 0;
4952 }
4953
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)4954 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4955 {
4956 unsigned long flags;
4957
4958 /*
4959 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4960 * required yet, but lockdep gets upset if rules are violated.
4961 */
4962 raw_spin_lock_irqsave(&p->pi_lock, flags);
4963 #ifdef CONFIG_CGROUP_SCHED
4964 if (1) {
4965 struct task_group *tg;
4966 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4967 struct task_group, css);
4968 tg = autogroup_task_group(p, tg);
4969 p->sched_task_group = tg;
4970 }
4971 #endif
4972 rseq_migrate(p);
4973 /*
4974 * We're setting the CPU for the first time, we don't migrate,
4975 * so use __set_task_cpu().
4976 */
4977 __set_task_cpu(p, smp_processor_id());
4978 if (p->sched_class->task_fork)
4979 p->sched_class->task_fork(p);
4980 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4981 }
4982
sched_post_fork(struct task_struct * p)4983 void sched_post_fork(struct task_struct *p)
4984 {
4985 uclamp_post_fork(p);
4986 }
4987
to_ratio(u64 period,u64 runtime)4988 unsigned long to_ratio(u64 period, u64 runtime)
4989 {
4990 if (runtime == RUNTIME_INF)
4991 return BW_UNIT;
4992
4993 /*
4994 * Doing this here saves a lot of checks in all
4995 * the calling paths, and returning zero seems
4996 * safe for them anyway.
4997 */
4998 if (period == 0)
4999 return 0;
5000
5001 return div64_u64(runtime << BW_SHIFT, period);
5002 }
5003
5004 /*
5005 * wake_up_new_task - wake up a newly created task for the first time.
5006 *
5007 * This function will do some initial scheduler statistics housekeeping
5008 * that must be done for every newly created context, then puts the task
5009 * on the runqueue and wakes it.
5010 */
wake_up_new_task(struct task_struct * p)5011 void wake_up_new_task(struct task_struct *p)
5012 {
5013 struct rq_flags rf;
5014 struct rq *rq;
5015
5016 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
5017 WRITE_ONCE(p->__state, TASK_RUNNING);
5018 #ifdef CONFIG_SMP
5019 /*
5020 * Fork balancing, do it here and not earlier because:
5021 * - cpus_ptr can change in the fork path
5022 * - any previously selected CPU might disappear through hotplug
5023 *
5024 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
5025 * as we're not fully set-up yet.
5026 */
5027 p->recent_used_cpu = task_cpu(p);
5028 rseq_migrate(p);
5029 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
5030 #endif
5031 rq = __task_rq_lock(p, &rf);
5032 update_rq_clock(rq);
5033 post_init_entity_util_avg(p);
5034
5035 mark_task_starting(p);
5036
5037 activate_task(rq, p, ENQUEUE_NOCLOCK);
5038 trace_sched_wakeup_new(p);
5039 wakeup_preempt(rq, p, WF_FORK);
5040 #ifdef CONFIG_SMP
5041 if (p->sched_class->task_woken) {
5042 /*
5043 * Nothing relies on rq->lock after this, so it's fine to
5044 * drop it.
5045 */
5046 rq_unpin_lock(rq, &rf);
5047 p->sched_class->task_woken(rq, p);
5048 rq_repin_lock(rq, &rf);
5049 }
5050 #endif
5051 task_rq_unlock(rq, p, &rf);
5052 }
5053
5054 #ifdef CONFIG_PREEMPT_NOTIFIERS
5055
5056 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
5057
preempt_notifier_inc(void)5058 void preempt_notifier_inc(void)
5059 {
5060 static_branch_inc(&preempt_notifier_key);
5061 }
5062 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
5063
preempt_notifier_dec(void)5064 void preempt_notifier_dec(void)
5065 {
5066 static_branch_dec(&preempt_notifier_key);
5067 }
5068 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
5069
5070 /**
5071 * preempt_notifier_register - tell me when current is being preempted & rescheduled
5072 * @notifier: notifier struct to register
5073 */
preempt_notifier_register(struct preempt_notifier * notifier)5074 void preempt_notifier_register(struct preempt_notifier *notifier)
5075 {
5076 if (!static_branch_unlikely(&preempt_notifier_key))
5077 WARN(1, "registering preempt_notifier while notifiers disabled\n");
5078
5079 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
5080 }
5081 EXPORT_SYMBOL_GPL(preempt_notifier_register);
5082
5083 /**
5084 * preempt_notifier_unregister - no longer interested in preemption notifications
5085 * @notifier: notifier struct to unregister
5086 *
5087 * This is *not* safe to call from within a preemption notifier.
5088 */
preempt_notifier_unregister(struct preempt_notifier * notifier)5089 void preempt_notifier_unregister(struct preempt_notifier *notifier)
5090 {
5091 hlist_del(¬ifier->link);
5092 }
5093 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
5094
__fire_sched_in_preempt_notifiers(struct task_struct * curr)5095 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
5096 {
5097 struct preempt_notifier *notifier;
5098
5099 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
5100 notifier->ops->sched_in(notifier, raw_smp_processor_id());
5101 }
5102
fire_sched_in_preempt_notifiers(struct task_struct * curr)5103 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
5104 {
5105 if (static_branch_unlikely(&preempt_notifier_key))
5106 __fire_sched_in_preempt_notifiers(curr);
5107 }
5108
5109 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)5110 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
5111 struct task_struct *next)
5112 {
5113 struct preempt_notifier *notifier;
5114
5115 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
5116 notifier->ops->sched_out(notifier, next);
5117 }
5118
5119 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)5120 fire_sched_out_preempt_notifiers(struct task_struct *curr,
5121 struct task_struct *next)
5122 {
5123 if (static_branch_unlikely(&preempt_notifier_key))
5124 __fire_sched_out_preempt_notifiers(curr, next);
5125 }
5126
5127 #else /* !CONFIG_PREEMPT_NOTIFIERS */
5128
fire_sched_in_preempt_notifiers(struct task_struct * curr)5129 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
5130 {
5131 }
5132
5133 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)5134 fire_sched_out_preempt_notifiers(struct task_struct *curr,
5135 struct task_struct *next)
5136 {
5137 }
5138
5139 #endif /* CONFIG_PREEMPT_NOTIFIERS */
5140
prepare_task(struct task_struct * next)5141 static inline void prepare_task(struct task_struct *next)
5142 {
5143 #ifdef CONFIG_SMP
5144 /*
5145 * Claim the task as running, we do this before switching to it
5146 * such that any running task will have this set.
5147 *
5148 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
5149 * its ordering comment.
5150 */
5151 WRITE_ONCE(next->on_cpu, 1);
5152 #endif
5153 }
5154
finish_task(struct task_struct * prev)5155 static inline void finish_task(struct task_struct *prev)
5156 {
5157 #ifdef CONFIG_SMP
5158 /*
5159 * This must be the very last reference to @prev from this CPU. After
5160 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5161 * must ensure this doesn't happen until the switch is completely
5162 * finished.
5163 *
5164 * In particular, the load of prev->state in finish_task_switch() must
5165 * happen before this.
5166 *
5167 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5168 */
5169 smp_store_release(&prev->on_cpu, 0);
5170 #endif
5171 }
5172
5173 #ifdef CONFIG_SMP
5174
do_balance_callbacks(struct rq * rq,struct balance_callback * head)5175 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5176 {
5177 void (*func)(struct rq *rq);
5178 struct balance_callback *next;
5179
5180 lockdep_assert_rq_held(rq);
5181
5182 while (head) {
5183 func = (void (*)(struct rq *))head->func;
5184 next = head->next;
5185 head->next = NULL;
5186 head = next;
5187
5188 func(rq);
5189 }
5190 }
5191
5192 static void balance_push(struct rq *rq);
5193
5194 /*
5195 * balance_push_callback is a right abuse of the callback interface and plays
5196 * by significantly different rules.
5197 *
5198 * Where the normal balance_callback's purpose is to be ran in the same context
5199 * that queued it (only later, when it's safe to drop rq->lock again),
5200 * balance_push_callback is specifically targeted at __schedule().
5201 *
5202 * This abuse is tolerated because it places all the unlikely/odd cases behind
5203 * a single test, namely: rq->balance_callback == NULL.
5204 */
5205 struct balance_callback balance_push_callback = {
5206 .next = NULL,
5207 .func = balance_push,
5208 };
5209
5210 static inline struct balance_callback *
__splice_balance_callbacks(struct rq * rq,bool split)5211 __splice_balance_callbacks(struct rq *rq, bool split)
5212 {
5213 struct balance_callback *head = rq->balance_callback;
5214
5215 if (likely(!head))
5216 return NULL;
5217
5218 lockdep_assert_rq_held(rq);
5219 /*
5220 * Must not take balance_push_callback off the list when
5221 * splice_balance_callbacks() and balance_callbacks() are not
5222 * in the same rq->lock section.
5223 *
5224 * In that case it would be possible for __schedule() to interleave
5225 * and observe the list empty.
5226 */
5227 if (split && head == &balance_push_callback)
5228 head = NULL;
5229 else
5230 rq->balance_callback = NULL;
5231
5232 return head;
5233 }
5234
splice_balance_callbacks(struct rq * rq)5235 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5236 {
5237 return __splice_balance_callbacks(rq, true);
5238 }
5239
__balance_callbacks(struct rq * rq)5240 static void __balance_callbacks(struct rq *rq)
5241 {
5242 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5243 }
5244
balance_callbacks(struct rq * rq,struct balance_callback * head)5245 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5246 {
5247 unsigned long flags;
5248
5249 if (unlikely(head)) {
5250 raw_spin_rq_lock_irqsave(rq, flags);
5251 do_balance_callbacks(rq, head);
5252 raw_spin_rq_unlock_irqrestore(rq, flags);
5253 }
5254 }
5255
5256 #else
5257
__balance_callbacks(struct rq * rq)5258 static inline void __balance_callbacks(struct rq *rq)
5259 {
5260 }
5261
splice_balance_callbacks(struct rq * rq)5262 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5263 {
5264 return NULL;
5265 }
5266
balance_callbacks(struct rq * rq,struct balance_callback * head)5267 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5268 {
5269 }
5270
5271 #endif
5272
5273 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)5274 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5275 {
5276 /*
5277 * Since the runqueue lock will be released by the next
5278 * task (which is an invalid locking op but in the case
5279 * of the scheduler it's an obvious special-case), so we
5280 * do an early lockdep release here:
5281 */
5282 rq_unpin_lock(rq, rf);
5283 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5284 #ifdef CONFIG_DEBUG_SPINLOCK
5285 /* this is a valid case when another task releases the spinlock */
5286 rq_lockp(rq)->owner = next;
5287 #endif
5288 }
5289
finish_lock_switch(struct rq * rq)5290 static inline void finish_lock_switch(struct rq *rq)
5291 {
5292 /*
5293 * If we are tracking spinlock dependencies then we have to
5294 * fix up the runqueue lock - which gets 'carried over' from
5295 * prev into current:
5296 */
5297 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5298 __balance_callbacks(rq);
5299 raw_spin_rq_unlock_irq(rq);
5300 }
5301
5302 /*
5303 * NOP if the arch has not defined these:
5304 */
5305
5306 #ifndef prepare_arch_switch
5307 # define prepare_arch_switch(next) do { } while (0)
5308 #endif
5309
5310 #ifndef finish_arch_post_lock_switch
5311 # define finish_arch_post_lock_switch() do { } while (0)
5312 #endif
5313
kmap_local_sched_out(void)5314 static inline void kmap_local_sched_out(void)
5315 {
5316 #ifdef CONFIG_KMAP_LOCAL
5317 if (unlikely(current->kmap_ctrl.idx))
5318 __kmap_local_sched_out();
5319 #endif
5320 }
5321
kmap_local_sched_in(void)5322 static inline void kmap_local_sched_in(void)
5323 {
5324 #ifdef CONFIG_KMAP_LOCAL
5325 if (unlikely(current->kmap_ctrl.idx))
5326 __kmap_local_sched_in();
5327 #endif
5328 }
5329
5330 /**
5331 * prepare_task_switch - prepare to switch tasks
5332 * @rq: the runqueue preparing to switch
5333 * @prev: the current task that is being switched out
5334 * @next: the task we are going to switch to.
5335 *
5336 * This is called with the rq lock held and interrupts off. It must
5337 * be paired with a subsequent finish_task_switch after the context
5338 * switch.
5339 *
5340 * prepare_task_switch sets up locking and calls architecture specific
5341 * hooks.
5342 */
5343 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)5344 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5345 struct task_struct *next)
5346 {
5347 kcov_prepare_switch(prev);
5348 sched_info_switch(rq, prev, next);
5349 perf_event_task_sched_out(prev, next);
5350 rseq_preempt(prev);
5351 fire_sched_out_preempt_notifiers(prev, next);
5352 kmap_local_sched_out();
5353 prepare_task(next);
5354 prepare_arch_switch(next);
5355 }
5356
5357 /**
5358 * finish_task_switch - clean up after a task-switch
5359 * @prev: the thread we just switched away from.
5360 *
5361 * finish_task_switch must be called after the context switch, paired
5362 * with a prepare_task_switch call before the context switch.
5363 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5364 * and do any other architecture-specific cleanup actions.
5365 *
5366 * Note that we may have delayed dropping an mm in context_switch(). If
5367 * so, we finish that here outside of the runqueue lock. (Doing it
5368 * with the lock held can cause deadlocks; see schedule() for
5369 * details.)
5370 *
5371 * The context switch have flipped the stack from under us and restored the
5372 * local variables which were saved when this task called schedule() in the
5373 * past. prev == current is still correct but we need to recalculate this_rq
5374 * because prev may have moved to another CPU.
5375 */
finish_task_switch(struct task_struct * prev)5376 static struct rq *finish_task_switch(struct task_struct *prev)
5377 __releases(rq->lock)
5378 {
5379 struct rq *rq = this_rq();
5380 struct mm_struct *mm = rq->prev_mm;
5381 unsigned int prev_state;
5382
5383 /*
5384 * The previous task will have left us with a preempt_count of 2
5385 * because it left us after:
5386 *
5387 * schedule()
5388 * preempt_disable(); // 1
5389 * __schedule()
5390 * raw_spin_lock_irq(&rq->lock) // 2
5391 *
5392 * Also, see FORK_PREEMPT_COUNT.
5393 */
5394 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5395 "corrupted preempt_count: %s/%d/0x%x\n",
5396 current->comm, current->pid, preempt_count()))
5397 preempt_count_set(FORK_PREEMPT_COUNT);
5398
5399 rq->prev_mm = NULL;
5400
5401 /*
5402 * A task struct has one reference for the use as "current".
5403 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5404 * schedule one last time. The schedule call will never return, and
5405 * the scheduled task must drop that reference.
5406 *
5407 * We must observe prev->state before clearing prev->on_cpu (in
5408 * finish_task), otherwise a concurrent wakeup can get prev
5409 * running on another CPU and we could rave with its RUNNING -> DEAD
5410 * transition, resulting in a double drop.
5411 */
5412 prev_state = READ_ONCE(prev->__state);
5413 vtime_task_switch(prev);
5414 perf_event_task_sched_in(prev, current);
5415 finish_task(prev);
5416 tick_nohz_task_switch();
5417 finish_lock_switch(rq);
5418 finish_arch_post_lock_switch();
5419 kcov_finish_switch(current);
5420 /*
5421 * kmap_local_sched_out() is invoked with rq::lock held and
5422 * interrupts disabled. There is no requirement for that, but the
5423 * sched out code does not have an interrupt enabled section.
5424 * Restoring the maps on sched in does not require interrupts being
5425 * disabled either.
5426 */
5427 kmap_local_sched_in();
5428
5429 fire_sched_in_preempt_notifiers(current);
5430 /*
5431 * When switching through a kernel thread, the loop in
5432 * membarrier_{private,global}_expedited() may have observed that
5433 * kernel thread and not issued an IPI. It is therefore possible to
5434 * schedule between user->kernel->user threads without passing though
5435 * switch_mm(). Membarrier requires a barrier after storing to
5436 * rq->curr, before returning to userspace, so provide them here:
5437 *
5438 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5439 * provided by mmdrop_lazy_tlb(),
5440 * - a sync_core for SYNC_CORE.
5441 */
5442 if (mm) {
5443 membarrier_mm_sync_core_before_usermode(mm);
5444 mmdrop_lazy_tlb_sched(mm);
5445 }
5446
5447 if (unlikely(prev_state == TASK_DEAD)) {
5448 if (prev->sched_class->task_dead)
5449 prev->sched_class->task_dead(prev);
5450
5451 /* Task is done with its stack. */
5452 put_task_stack(prev);
5453
5454 put_task_struct_rcu_user(prev);
5455 }
5456
5457 return rq;
5458 }
5459
5460 /**
5461 * schedule_tail - first thing a freshly forked thread must call.
5462 * @prev: the thread we just switched away from.
5463 */
schedule_tail(struct task_struct * prev)5464 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5465 __releases(rq->lock)
5466 {
5467 /*
5468 * New tasks start with FORK_PREEMPT_COUNT, see there and
5469 * finish_task_switch() for details.
5470 *
5471 * finish_task_switch() will drop rq->lock() and lower preempt_count
5472 * and the preempt_enable() will end up enabling preemption (on
5473 * PREEMPT_COUNT kernels).
5474 */
5475
5476 finish_task_switch(prev);
5477 preempt_enable();
5478
5479 if (current->set_child_tid)
5480 put_user(task_pid_vnr(current), current->set_child_tid);
5481
5482 calculate_sigpending();
5483 }
5484
5485 /*
5486 * context_switch - switch to the new MM and the new thread's register state.
5487 */
5488 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5489 context_switch(struct rq *rq, struct task_struct *prev,
5490 struct task_struct *next, struct rq_flags *rf)
5491 {
5492 prepare_task_switch(rq, prev, next);
5493
5494 /*
5495 * For paravirt, this is coupled with an exit in switch_to to
5496 * combine the page table reload and the switch backend into
5497 * one hypercall.
5498 */
5499 arch_start_context_switch(prev);
5500
5501 /*
5502 * kernel -> kernel lazy + transfer active
5503 * user -> kernel lazy + mmgrab_lazy_tlb() active
5504 *
5505 * kernel -> user switch + mmdrop_lazy_tlb() active
5506 * user -> user switch
5507 *
5508 * switch_mm_cid() needs to be updated if the barriers provided
5509 * by context_switch() are modified.
5510 */
5511 if (!next->mm) { // to kernel
5512 enter_lazy_tlb(prev->active_mm, next);
5513
5514 next->active_mm = prev->active_mm;
5515 if (prev->mm) // from user
5516 mmgrab_lazy_tlb(prev->active_mm);
5517 else
5518 prev->active_mm = NULL;
5519 } else { // to user
5520 membarrier_switch_mm(rq, prev->active_mm, next->mm);
5521 /*
5522 * sys_membarrier() requires an smp_mb() between setting
5523 * rq->curr / membarrier_switch_mm() and returning to userspace.
5524 *
5525 * The below provides this either through switch_mm(), or in
5526 * case 'prev->active_mm == next->mm' through
5527 * finish_task_switch()'s mmdrop().
5528 */
5529 switch_mm_irqs_off(prev->active_mm, next->mm, next);
5530 lru_gen_use_mm(next->mm);
5531
5532 if (!prev->mm) { // from kernel
5533 /* will mmdrop_lazy_tlb() in finish_task_switch(). */
5534 rq->prev_mm = prev->active_mm;
5535 prev->active_mm = NULL;
5536 }
5537 }
5538
5539 /* switch_mm_cid() requires the memory barriers above. */
5540 switch_mm_cid(rq, prev, next);
5541
5542 prepare_lock_switch(rq, next, rf);
5543
5544 /* Here we just switch the register state and the stack. */
5545 switch_to(prev, next, prev);
5546 barrier();
5547
5548 return finish_task_switch(prev);
5549 }
5550
5551 /*
5552 * nr_running and nr_context_switches:
5553 *
5554 * externally visible scheduler statistics: current number of runnable
5555 * threads, total number of context switches performed since bootup.
5556 */
nr_running(void)5557 unsigned int nr_running(void)
5558 {
5559 unsigned int i, sum = 0;
5560
5561 for_each_online_cpu(i)
5562 sum += cpu_rq(i)->nr_running;
5563
5564 return sum;
5565 }
5566
5567 /*
5568 * Check if only the current task is running on the CPU.
5569 *
5570 * Caution: this function does not check that the caller has disabled
5571 * preemption, thus the result might have a time-of-check-to-time-of-use
5572 * race. The caller is responsible to use it correctly, for example:
5573 *
5574 * - from a non-preemptible section (of course)
5575 *
5576 * - from a thread that is bound to a single CPU
5577 *
5578 * - in a loop with very short iterations (e.g. a polling loop)
5579 */
single_task_running(void)5580 bool single_task_running(void)
5581 {
5582 return raw_rq()->nr_running == 1;
5583 }
5584 EXPORT_SYMBOL(single_task_running);
5585
nr_context_switches_cpu(int cpu)5586 unsigned long long nr_context_switches_cpu(int cpu)
5587 {
5588 return cpu_rq(cpu)->nr_switches;
5589 }
5590
nr_context_switches(void)5591 unsigned long long nr_context_switches(void)
5592 {
5593 int i;
5594 unsigned long long sum = 0;
5595
5596 for_each_possible_cpu(i)
5597 sum += cpu_rq(i)->nr_switches;
5598
5599 return sum;
5600 }
5601
5602 /*
5603 * Consumers of these two interfaces, like for example the cpuidle menu
5604 * governor, are using nonsensical data. Preferring shallow idle state selection
5605 * for a CPU that has IO-wait which might not even end up running the task when
5606 * it does become runnable.
5607 */
5608
nr_iowait_cpu(int cpu)5609 unsigned int nr_iowait_cpu(int cpu)
5610 {
5611 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5612 }
5613
5614 /*
5615 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5616 *
5617 * The idea behind IO-wait account is to account the idle time that we could
5618 * have spend running if it were not for IO. That is, if we were to improve the
5619 * storage performance, we'd have a proportional reduction in IO-wait time.
5620 *
5621 * This all works nicely on UP, where, when a task blocks on IO, we account
5622 * idle time as IO-wait, because if the storage were faster, it could've been
5623 * running and we'd not be idle.
5624 *
5625 * This has been extended to SMP, by doing the same for each CPU. This however
5626 * is broken.
5627 *
5628 * Imagine for instance the case where two tasks block on one CPU, only the one
5629 * CPU will have IO-wait accounted, while the other has regular idle. Even
5630 * though, if the storage were faster, both could've ran at the same time,
5631 * utilising both CPUs.
5632 *
5633 * This means, that when looking globally, the current IO-wait accounting on
5634 * SMP is a lower bound, by reason of under accounting.
5635 *
5636 * Worse, since the numbers are provided per CPU, they are sometimes
5637 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5638 * associated with any one particular CPU, it can wake to another CPU than it
5639 * blocked on. This means the per CPU IO-wait number is meaningless.
5640 *
5641 * Task CPU affinities can make all that even more 'interesting'.
5642 */
5643
nr_iowait(void)5644 unsigned int nr_iowait(void)
5645 {
5646 unsigned int i, sum = 0;
5647
5648 for_each_possible_cpu(i)
5649 sum += nr_iowait_cpu(i);
5650
5651 return sum;
5652 }
5653
5654 #ifdef CONFIG_SMP
5655
5656 /*
5657 * sched_exec - execve() is a valuable balancing opportunity, because at
5658 * this point the task has the smallest effective memory and cache footprint.
5659 */
sched_exec(void)5660 void sched_exec(void)
5661 {
5662 struct task_struct *p = current;
5663 struct migration_arg arg;
5664 int dest_cpu;
5665
5666 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5667 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5668 if (dest_cpu == smp_processor_id())
5669 return;
5670
5671 if (unlikely(!cpu_active(dest_cpu) && likely(!cpu_isolated(dest_cpu))))
5672 return;
5673
5674 arg = (struct migration_arg){ p, dest_cpu };
5675 }
5676 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5677 }
5678
5679 #endif
5680
5681 DEFINE_PER_CPU(struct kernel_stat, kstat);
5682 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5683
5684 EXPORT_PER_CPU_SYMBOL(kstat);
5685 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5686
5687 /*
5688 * The function fair_sched_class.update_curr accesses the struct curr
5689 * and its field curr->exec_start; when called from task_sched_runtime(),
5690 * we observe a high rate of cache misses in practice.
5691 * Prefetching this data results in improved performance.
5692 */
prefetch_curr_exec_start(struct task_struct * p)5693 static inline void prefetch_curr_exec_start(struct task_struct *p)
5694 {
5695 #ifdef CONFIG_FAIR_GROUP_SCHED
5696 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5697 #else
5698 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5699 #endif
5700 prefetch(curr);
5701 prefetch(&curr->exec_start);
5702 }
5703
5704 /*
5705 * Return accounted runtime for the task.
5706 * In case the task is currently running, return the runtime plus current's
5707 * pending runtime that have not been accounted yet.
5708 */
task_sched_runtime(struct task_struct * p)5709 unsigned long long task_sched_runtime(struct task_struct *p)
5710 {
5711 struct rq_flags rf;
5712 struct rq *rq;
5713 u64 ns;
5714
5715 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5716 /*
5717 * 64-bit doesn't need locks to atomically read a 64-bit value.
5718 * So we have a optimization chance when the task's delta_exec is 0.
5719 * Reading ->on_cpu is racy, but this is ok.
5720 *
5721 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5722 * If we race with it entering CPU, unaccounted time is 0. This is
5723 * indistinguishable from the read occurring a few cycles earlier.
5724 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5725 * been accounted, so we're correct here as well.
5726 */
5727 if (!p->on_cpu || !task_on_rq_queued(p))
5728 return p->se.sum_exec_runtime;
5729 #endif
5730
5731 rq = task_rq_lock(p, &rf);
5732 /*
5733 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5734 * project cycles that may never be accounted to this
5735 * thread, breaking clock_gettime().
5736 */
5737 if (task_current(rq, p) && task_on_rq_queued(p)) {
5738 prefetch_curr_exec_start(p);
5739 update_rq_clock(rq);
5740 p->sched_class->update_curr(rq);
5741 }
5742 ns = p->se.sum_exec_runtime;
5743 task_rq_unlock(rq, p, &rf);
5744
5745 return ns;
5746 }
5747
5748 #ifdef CONFIG_SCHED_DEBUG
cpu_resched_latency(struct rq * rq)5749 static u64 cpu_resched_latency(struct rq *rq)
5750 {
5751 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5752 u64 resched_latency, now = rq_clock(rq);
5753 static bool warned_once;
5754
5755 if (sysctl_resched_latency_warn_once && warned_once)
5756 return 0;
5757
5758 if (!need_resched() || !latency_warn_ms)
5759 return 0;
5760
5761 if (system_state == SYSTEM_BOOTING)
5762 return 0;
5763
5764 if (!rq->last_seen_need_resched_ns) {
5765 rq->last_seen_need_resched_ns = now;
5766 rq->ticks_without_resched = 0;
5767 return 0;
5768 }
5769
5770 rq->ticks_without_resched++;
5771 resched_latency = now - rq->last_seen_need_resched_ns;
5772 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5773 return 0;
5774
5775 warned_once = true;
5776
5777 return resched_latency;
5778 }
5779
setup_resched_latency_warn_ms(char * str)5780 static int __init setup_resched_latency_warn_ms(char *str)
5781 {
5782 long val;
5783
5784 if ((kstrtol(str, 0, &val))) {
5785 pr_warn("Unable to set resched_latency_warn_ms\n");
5786 return 1;
5787 }
5788
5789 sysctl_resched_latency_warn_ms = val;
5790 return 1;
5791 }
5792 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5793 #else
cpu_resched_latency(struct rq * rq)5794 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5795 #endif /* CONFIG_SCHED_DEBUG */
5796
5797 /*
5798 * This function gets called by the timer code, with HZ frequency.
5799 * We call it with interrupts disabled.
5800 */
scheduler_tick(void)5801 void scheduler_tick(void)
5802 {
5803 int cpu = smp_processor_id();
5804 struct rq *rq = cpu_rq(cpu);
5805 struct task_struct *curr;
5806 struct rq_flags rf;
5807 u64 wallclock;
5808 unsigned long thermal_pressure;
5809 u64 resched_latency;
5810
5811 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5812 arch_scale_freq_tick();
5813
5814 sched_clock_tick();
5815
5816 rq_lock(rq, &rf);
5817
5818 set_window_start(rq);
5819 wallclock = sched_ktime_clock();
5820 update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
5821
5822 curr = rq->curr;
5823 psi_account_irqtime(rq, curr, NULL);
5824
5825 update_rq_clock(rq);
5826 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5827 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5828 curr->sched_class->task_tick(rq, curr, 0);
5829 if (sched_feat(LATENCY_WARN))
5830 resched_latency = cpu_resched_latency(rq);
5831 calc_global_load_tick(rq);
5832 sched_core_tick(rq);
5833 task_tick_mm_cid(rq, curr);
5834
5835 rq_unlock(rq, &rf);
5836 #ifdef CONFIG_SCHED_RTG
5837 sched_update_rtg_tick(curr);
5838 #endif
5839 if (sched_feat(LATENCY_WARN) && resched_latency)
5840 resched_latency_warn(cpu, resched_latency);
5841
5842 perf_event_task_tick();
5843
5844 if (curr->flags & PF_WQ_WORKER)
5845 wq_worker_tick(curr);
5846
5847 #ifdef CONFIG_SMP
5848 rq->idle_balance = idle_cpu(cpu);
5849 trigger_load_balance(rq);
5850
5851 #ifdef CONFIG_SCHED_EAS
5852 if (curr->sched_class->check_for_migration)
5853 curr->sched_class->check_for_migration(rq, curr);
5854 #endif
5855 #endif
5856 }
5857
5858 #ifdef CONFIG_NO_HZ_FULL
5859
5860 struct tick_work {
5861 int cpu;
5862 atomic_t state;
5863 struct delayed_work work;
5864 };
5865 /* Values for ->state, see diagram below. */
5866 #define TICK_SCHED_REMOTE_OFFLINE 0
5867 #define TICK_SCHED_REMOTE_OFFLINING 1
5868 #define TICK_SCHED_REMOTE_RUNNING 2
5869
5870 /*
5871 * State diagram for ->state:
5872 *
5873 *
5874 * TICK_SCHED_REMOTE_OFFLINE
5875 * | ^
5876 * | |
5877 * | | sched_tick_remote()
5878 * | |
5879 * | |
5880 * +--TICK_SCHED_REMOTE_OFFLINING
5881 * | ^
5882 * | |
5883 * sched_tick_start() | | sched_tick_stop()
5884 * | |
5885 * V |
5886 * TICK_SCHED_REMOTE_RUNNING
5887 *
5888 *
5889 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5890 * and sched_tick_start() are happy to leave the state in RUNNING.
5891 */
5892
5893 static struct tick_work __percpu *tick_work_cpu;
5894
sched_tick_remote(struct work_struct * work)5895 static void sched_tick_remote(struct work_struct *work)
5896 {
5897 struct delayed_work *dwork = to_delayed_work(work);
5898 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5899 int cpu = twork->cpu;
5900 struct rq *rq = cpu_rq(cpu);
5901 int os;
5902
5903 /*
5904 * Handle the tick only if it appears the remote CPU is running in full
5905 * dynticks mode. The check is racy by nature, but missing a tick or
5906 * having one too much is no big deal because the scheduler tick updates
5907 * statistics and checks timeslices in a time-independent way, regardless
5908 * of when exactly it is running.
5909 */
5910 if (tick_nohz_tick_stopped_cpu(cpu)) {
5911 guard(rq_lock_irq)(rq);
5912 struct task_struct *curr = rq->curr;
5913
5914 if (cpu_online(cpu)) {
5915 update_rq_clock(rq);
5916
5917 if (!is_idle_task(curr)) {
5918 /*
5919 * Make sure the next tick runs within a
5920 * reasonable amount of time.
5921 */
5922 u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5923 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5924 }
5925 curr->sched_class->task_tick(rq, curr, 0);
5926
5927 calc_load_nohz_remote(rq);
5928 }
5929 }
5930
5931 /*
5932 * Run the remote tick once per second (1Hz). This arbitrary
5933 * frequency is large enough to avoid overload but short enough
5934 * to keep scheduler internal stats reasonably up to date. But
5935 * first update state to reflect hotplug activity if required.
5936 */
5937 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5938 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5939 if (os == TICK_SCHED_REMOTE_RUNNING)
5940 queue_delayed_work(system_unbound_wq, dwork, HZ);
5941 }
5942
sched_tick_start(int cpu)5943 static void sched_tick_start(int cpu)
5944 {
5945 int os;
5946 struct tick_work *twork;
5947
5948 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5949 return;
5950
5951 WARN_ON_ONCE(!tick_work_cpu);
5952
5953 twork = per_cpu_ptr(tick_work_cpu, cpu);
5954 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5955 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5956 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5957 twork->cpu = cpu;
5958 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5959 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5960 }
5961 }
5962
5963 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5964 static void sched_tick_stop(int cpu)
5965 {
5966 struct tick_work *twork;
5967 int os;
5968
5969 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5970 return;
5971
5972 WARN_ON_ONCE(!tick_work_cpu);
5973
5974 twork = per_cpu_ptr(tick_work_cpu, cpu);
5975 /* There cannot be competing actions, but don't rely on stop-machine. */
5976 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5977 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5978 /* Don't cancel, as this would mess up the state machine. */
5979 }
5980 #endif /* CONFIG_HOTPLUG_CPU */
5981
sched_tick_offload_init(void)5982 int __init sched_tick_offload_init(void)
5983 {
5984 tick_work_cpu = alloc_percpu(struct tick_work);
5985 BUG_ON(!tick_work_cpu);
5986 return 0;
5987 }
5988
5989 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5990 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5991 static inline void sched_tick_stop(int cpu) { }
5992 #endif
5993
5994 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5995 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5996 /*
5997 * If the value passed in is equal to the current preempt count
5998 * then we just disabled preemption. Start timing the latency.
5999 */
preempt_latency_start(int val)6000 static inline void preempt_latency_start(int val)
6001 {
6002 if (preempt_count() == val) {
6003 unsigned long ip = get_lock_parent_ip();
6004 #ifdef CONFIG_DEBUG_PREEMPT
6005 current->preempt_disable_ip = ip;
6006 #endif
6007 trace_preempt_off(CALLER_ADDR0, ip);
6008 }
6009 }
6010
preempt_count_add(int val)6011 void preempt_count_add(int val)
6012 {
6013 #ifdef CONFIG_DEBUG_PREEMPT
6014 /*
6015 * Underflow?
6016 */
6017 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
6018 return;
6019 #endif
6020 __preempt_count_add(val);
6021 #ifdef CONFIG_DEBUG_PREEMPT
6022 /*
6023 * Spinlock count overflowing soon?
6024 */
6025 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
6026 PREEMPT_MASK - 10);
6027 #endif
6028 preempt_latency_start(val);
6029 }
6030 EXPORT_SYMBOL(preempt_count_add);
6031 NOKPROBE_SYMBOL(preempt_count_add);
6032
6033 /*
6034 * If the value passed in equals to the current preempt count
6035 * then we just enabled preemption. Stop timing the latency.
6036 */
preempt_latency_stop(int val)6037 static inline void preempt_latency_stop(int val)
6038 {
6039 if (preempt_count() == val)
6040 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
6041 }
6042
preempt_count_sub(int val)6043 void preempt_count_sub(int val)
6044 {
6045 #ifdef CONFIG_DEBUG_PREEMPT
6046 /*
6047 * Underflow?
6048 */
6049 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
6050 return;
6051 /*
6052 * Is the spinlock portion underflowing?
6053 */
6054 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
6055 !(preempt_count() & PREEMPT_MASK)))
6056 return;
6057 #endif
6058
6059 preempt_latency_stop(val);
6060 __preempt_count_sub(val);
6061 }
6062 EXPORT_SYMBOL(preempt_count_sub);
6063 NOKPROBE_SYMBOL(preempt_count_sub);
6064
6065 #else
preempt_latency_start(int val)6066 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)6067 static inline void preempt_latency_stop(int val) { }
6068 #endif
6069
get_preempt_disable_ip(struct task_struct * p)6070 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
6071 {
6072 #ifdef CONFIG_DEBUG_PREEMPT
6073 return p->preempt_disable_ip;
6074 #else
6075 return 0;
6076 #endif
6077 }
6078
6079 /*
6080 * Print scheduling while atomic bug:
6081 */
__schedule_bug(struct task_struct * prev)6082 static noinline void __schedule_bug(struct task_struct *prev)
6083 {
6084 /* Save this before calling printk(), since that will clobber it */
6085 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
6086
6087 if (oops_in_progress)
6088 return;
6089
6090 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
6091 prev->comm, prev->pid, preempt_count());
6092
6093 debug_show_held_locks(prev);
6094 print_modules();
6095 if (irqs_disabled())
6096 print_irqtrace_events(prev);
6097 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6098 && in_atomic_preempt_off()) {
6099 pr_err("Preemption disabled at:");
6100 print_ip_sym(KERN_ERR, preempt_disable_ip);
6101 }
6102 check_panic_on_warn("scheduling while atomic");
6103
6104 dump_stack();
6105 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6106 }
6107
6108 /*
6109 * Various schedule()-time debugging checks and statistics:
6110 */
schedule_debug(struct task_struct * prev,bool preempt)6111 static inline void schedule_debug(struct task_struct *prev, bool preempt)
6112 {
6113 #ifdef CONFIG_SCHED_STACK_END_CHECK
6114 if (task_stack_end_corrupted(prev))
6115 panic("corrupted stack end detected inside scheduler\n");
6116
6117 if (task_scs_end_corrupted(prev))
6118 panic("corrupted shadow stack detected inside scheduler\n");
6119 #endif
6120
6121 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6122 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
6123 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
6124 prev->comm, prev->pid, prev->non_block_count);
6125 dump_stack();
6126 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6127 }
6128 #endif
6129
6130 if (unlikely(in_atomic_preempt_off())) {
6131 __schedule_bug(prev);
6132 preempt_count_set(PREEMPT_DISABLED);
6133 }
6134 rcu_sleep_check();
6135 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
6136
6137 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
6138
6139 schedstat_inc(this_rq()->sched_count);
6140 }
6141
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6142 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
6143 struct rq_flags *rf)
6144 {
6145 #ifdef CONFIG_SMP
6146 const struct sched_class *class;
6147 /*
6148 * We must do the balancing pass before put_prev_task(), such
6149 * that when we release the rq->lock the task is in the same
6150 * state as before we took rq->lock.
6151 *
6152 * We can terminate the balance pass as soon as we know there is
6153 * a runnable task of @class priority or higher.
6154 */
6155 for_class_range(class, prev->sched_class, &idle_sched_class) {
6156 if (class->balance(rq, prev, rf))
6157 break;
6158 }
6159 #endif
6160
6161 put_prev_task(rq, prev);
6162 }
6163
6164 /*
6165 * Pick up the highest-prio task:
6166 */
6167 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6168 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6169 {
6170 const struct sched_class *class;
6171 struct task_struct *p;
6172
6173 /*
6174 * Optimization: we know that if all tasks are in the fair class we can
6175 * call that function directly, but only if the @prev task wasn't of a
6176 * higher scheduling class, because otherwise those lose the
6177 * opportunity to pull in more work from other CPUs.
6178 */
6179 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6180 rq->nr_running == rq->cfs.h_nr_running)) {
6181
6182 p = pick_next_task_fair(rq, prev, rf);
6183 if (unlikely(p == RETRY_TASK))
6184 goto restart;
6185
6186 /* Assume the next prioritized class is idle_sched_class */
6187 if (!p) {
6188 put_prev_task(rq, prev);
6189 p = pick_next_task_idle(rq);
6190 }
6191
6192 return p;
6193 }
6194
6195 restart:
6196 put_prev_task_balance(rq, prev, rf);
6197
6198 for_each_class(class) {
6199 p = class->pick_next_task(rq);
6200 if (p)
6201 return p;
6202 }
6203
6204 BUG(); /* The idle class should always have a runnable task. */
6205 }
6206
6207 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)6208 static inline bool is_task_rq_idle(struct task_struct *t)
6209 {
6210 return (task_rq(t)->idle == t);
6211 }
6212
cookie_equals(struct task_struct * a,unsigned long cookie)6213 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6214 {
6215 return is_task_rq_idle(a) || (a->core_cookie == cookie);
6216 }
6217
cookie_match(struct task_struct * a,struct task_struct * b)6218 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6219 {
6220 if (is_task_rq_idle(a) || is_task_rq_idle(b))
6221 return true;
6222
6223 return a->core_cookie == b->core_cookie;
6224 }
6225
pick_task(struct rq * rq)6226 static inline struct task_struct *pick_task(struct rq *rq)
6227 {
6228 const struct sched_class *class;
6229 struct task_struct *p;
6230
6231 for_each_class(class) {
6232 p = class->pick_task(rq);
6233 if (p)
6234 return p;
6235 }
6236
6237 BUG(); /* The idle class should always have a runnable task. */
6238 }
6239
6240 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6241
6242 static void queue_core_balance(struct rq *rq);
6243
6244 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6245 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6246 {
6247 struct task_struct *next, *p, *max = NULL;
6248 const struct cpumask *smt_mask;
6249 bool fi_before = false;
6250 bool core_clock_updated = (rq == rq->core);
6251 unsigned long cookie;
6252 int i, cpu, occ = 0;
6253 struct rq *rq_i;
6254 bool need_sync;
6255
6256 if (!sched_core_enabled(rq))
6257 return __pick_next_task(rq, prev, rf);
6258
6259 cpu = cpu_of(rq);
6260
6261 /* Stopper task is switching into idle, no need core-wide selection. */
6262 if (cpu_is_offline(cpu)) {
6263 /*
6264 * Reset core_pick so that we don't enter the fastpath when
6265 * coming online. core_pick would already be migrated to
6266 * another cpu during offline.
6267 */
6268 rq->core_pick = NULL;
6269 return __pick_next_task(rq, prev, rf);
6270 }
6271
6272 /*
6273 * If there were no {en,de}queues since we picked (IOW, the task
6274 * pointers are all still valid), and we haven't scheduled the last
6275 * pick yet, do so now.
6276 *
6277 * rq->core_pick can be NULL if no selection was made for a CPU because
6278 * it was either offline or went offline during a sibling's core-wide
6279 * selection. In this case, do a core-wide selection.
6280 */
6281 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6282 rq->core->core_pick_seq != rq->core_sched_seq &&
6283 rq->core_pick) {
6284 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6285
6286 next = rq->core_pick;
6287 if (next != prev) {
6288 put_prev_task(rq, prev);
6289 set_next_task(rq, next);
6290 }
6291
6292 rq->core_pick = NULL;
6293 goto out;
6294 }
6295
6296 put_prev_task_balance(rq, prev, rf);
6297
6298 smt_mask = cpu_smt_mask(cpu);
6299 need_sync = !!rq->core->core_cookie;
6300
6301 /* reset state */
6302 rq->core->core_cookie = 0UL;
6303 if (rq->core->core_forceidle_count) {
6304 if (!core_clock_updated) {
6305 update_rq_clock(rq->core);
6306 core_clock_updated = true;
6307 }
6308 sched_core_account_forceidle(rq);
6309 /* reset after accounting force idle */
6310 rq->core->core_forceidle_start = 0;
6311 rq->core->core_forceidle_count = 0;
6312 rq->core->core_forceidle_occupation = 0;
6313 need_sync = true;
6314 fi_before = true;
6315 }
6316
6317 /*
6318 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6319 *
6320 * @task_seq guards the task state ({en,de}queues)
6321 * @pick_seq is the @task_seq we did a selection on
6322 * @sched_seq is the @pick_seq we scheduled
6323 *
6324 * However, preemptions can cause multiple picks on the same task set.
6325 * 'Fix' this by also increasing @task_seq for every pick.
6326 */
6327 rq->core->core_task_seq++;
6328
6329 /*
6330 * Optimize for common case where this CPU has no cookies
6331 * and there are no cookied tasks running on siblings.
6332 */
6333 if (!need_sync) {
6334 next = pick_task(rq);
6335 if (!next->core_cookie) {
6336 rq->core_pick = NULL;
6337 /*
6338 * For robustness, update the min_vruntime_fi for
6339 * unconstrained picks as well.
6340 */
6341 WARN_ON_ONCE(fi_before);
6342 task_vruntime_update(rq, next, false);
6343 goto out_set_next;
6344 }
6345 }
6346
6347 /*
6348 * For each thread: do the regular task pick and find the max prio task
6349 * amongst them.
6350 *
6351 * Tie-break prio towards the current CPU
6352 */
6353 for_each_cpu_wrap(i, smt_mask, cpu) {
6354 rq_i = cpu_rq(i);
6355
6356 /*
6357 * Current cpu always has its clock updated on entrance to
6358 * pick_next_task(). If the current cpu is not the core,
6359 * the core may also have been updated above.
6360 */
6361 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6362 update_rq_clock(rq_i);
6363
6364 p = rq_i->core_pick = pick_task(rq_i);
6365 if (!max || prio_less(max, p, fi_before))
6366 max = p;
6367 }
6368
6369 cookie = rq->core->core_cookie = max->core_cookie;
6370
6371 /*
6372 * For each thread: try and find a runnable task that matches @max or
6373 * force idle.
6374 */
6375 for_each_cpu(i, smt_mask) {
6376 rq_i = cpu_rq(i);
6377 p = rq_i->core_pick;
6378
6379 if (!cookie_equals(p, cookie)) {
6380 p = NULL;
6381 if (cookie)
6382 p = sched_core_find(rq_i, cookie);
6383 if (!p)
6384 p = idle_sched_class.pick_task(rq_i);
6385 }
6386
6387 rq_i->core_pick = p;
6388
6389 if (p == rq_i->idle) {
6390 if (rq_i->nr_running) {
6391 rq->core->core_forceidle_count++;
6392 if (!fi_before)
6393 rq->core->core_forceidle_seq++;
6394 }
6395 } else {
6396 occ++;
6397 }
6398 }
6399
6400 if (schedstat_enabled() && rq->core->core_forceidle_count) {
6401 rq->core->core_forceidle_start = rq_clock(rq->core);
6402 rq->core->core_forceidle_occupation = occ;
6403 }
6404
6405 rq->core->core_pick_seq = rq->core->core_task_seq;
6406 next = rq->core_pick;
6407 rq->core_sched_seq = rq->core->core_pick_seq;
6408
6409 /* Something should have been selected for current CPU */
6410 WARN_ON_ONCE(!next);
6411
6412 /*
6413 * Reschedule siblings
6414 *
6415 * NOTE: L1TF -- at this point we're no longer running the old task and
6416 * sending an IPI (below) ensures the sibling will no longer be running
6417 * their task. This ensures there is no inter-sibling overlap between
6418 * non-matching user state.
6419 */
6420 for_each_cpu(i, smt_mask) {
6421 rq_i = cpu_rq(i);
6422
6423 /*
6424 * An online sibling might have gone offline before a task
6425 * could be picked for it, or it might be offline but later
6426 * happen to come online, but its too late and nothing was
6427 * picked for it. That's Ok - it will pick tasks for itself,
6428 * so ignore it.
6429 */
6430 if (!rq_i->core_pick)
6431 continue;
6432
6433 /*
6434 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6435 * fi_before fi update?
6436 * 0 0 1
6437 * 0 1 1
6438 * 1 0 1
6439 * 1 1 0
6440 */
6441 if (!(fi_before && rq->core->core_forceidle_count))
6442 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6443
6444 rq_i->core_pick->core_occupation = occ;
6445
6446 if (i == cpu) {
6447 rq_i->core_pick = NULL;
6448 continue;
6449 }
6450
6451 /* Did we break L1TF mitigation requirements? */
6452 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6453
6454 if (rq_i->curr == rq_i->core_pick) {
6455 rq_i->core_pick = NULL;
6456 continue;
6457 }
6458
6459 resched_curr(rq_i);
6460 }
6461
6462 out_set_next:
6463 set_next_task(rq, next);
6464 out:
6465 if (rq->core->core_forceidle_count && next == rq->idle)
6466 queue_core_balance(rq);
6467
6468 return next;
6469 }
6470
try_steal_cookie(int this,int that)6471 static bool try_steal_cookie(int this, int that)
6472 {
6473 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6474 struct task_struct *p;
6475 unsigned long cookie;
6476 bool success = false;
6477
6478 guard(irq)();
6479 guard(double_rq_lock)(dst, src);
6480
6481 cookie = dst->core->core_cookie;
6482 if (!cookie)
6483 return false;
6484
6485 if (dst->curr != dst->idle)
6486 return false;
6487
6488 p = sched_core_find(src, cookie);
6489 if (!p)
6490 return false;
6491
6492 do {
6493 if (p == src->core_pick || p == src->curr)
6494 goto next;
6495
6496 if (!is_cpu_allowed(p, this))
6497 goto next;
6498
6499 if (p->core_occupation > dst->idle->core_occupation)
6500 goto next;
6501 /*
6502 * sched_core_find() and sched_core_next() will ensure
6503 * that task @p is not throttled now, we also need to
6504 * check whether the runqueue of the destination CPU is
6505 * being throttled.
6506 */
6507 if (sched_task_is_throttled(p, this))
6508 goto next;
6509
6510 deactivate_task(src, p, 0);
6511 set_task_cpu(p, this);
6512 activate_task(dst, p, 0);
6513
6514 resched_curr(dst);
6515
6516 success = true;
6517 break;
6518
6519 next:
6520 p = sched_core_next(p, cookie);
6521 } while (p);
6522
6523 return success;
6524 }
6525
steal_cookie_task(int cpu,struct sched_domain * sd)6526 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6527 {
6528 int i;
6529
6530 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6531 if (i == cpu)
6532 continue;
6533
6534 if (need_resched())
6535 break;
6536
6537 if (try_steal_cookie(cpu, i))
6538 return true;
6539 }
6540
6541 return false;
6542 }
6543
sched_core_balance(struct rq * rq)6544 static void sched_core_balance(struct rq *rq)
6545 {
6546 struct sched_domain *sd;
6547 int cpu = cpu_of(rq);
6548
6549 preempt_disable();
6550 rcu_read_lock();
6551 raw_spin_rq_unlock_irq(rq);
6552 for_each_domain(cpu, sd) {
6553 if (need_resched())
6554 break;
6555
6556 if (steal_cookie_task(cpu, sd))
6557 break;
6558 }
6559 raw_spin_rq_lock_irq(rq);
6560 rcu_read_unlock();
6561 preempt_enable();
6562 }
6563
6564 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6565
queue_core_balance(struct rq * rq)6566 static void queue_core_balance(struct rq *rq)
6567 {
6568 if (!sched_core_enabled(rq))
6569 return;
6570
6571 if (!rq->core->core_cookie)
6572 return;
6573
6574 if (!rq->nr_running) /* not forced idle */
6575 return;
6576
6577 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6578 }
6579
6580 DEFINE_LOCK_GUARD_1(core_lock, int,
6581 sched_core_lock(*_T->lock, &_T->flags),
6582 sched_core_unlock(*_T->lock, &_T->flags),
6583 unsigned long flags)
6584
sched_core_cpu_starting(unsigned int cpu)6585 static void sched_core_cpu_starting(unsigned int cpu)
6586 {
6587 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6588 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6589 int t;
6590
6591 guard(core_lock)(&cpu);
6592
6593 WARN_ON_ONCE(rq->core != rq);
6594
6595 /* if we're the first, we'll be our own leader */
6596 if (cpumask_weight(smt_mask) == 1)
6597 return;
6598
6599 /* find the leader */
6600 for_each_cpu(t, smt_mask) {
6601 if (t == cpu)
6602 continue;
6603 rq = cpu_rq(t);
6604 if (rq->core == rq) {
6605 core_rq = rq;
6606 break;
6607 }
6608 }
6609
6610 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6611 return;
6612
6613 /* install and validate core_rq */
6614 for_each_cpu(t, smt_mask) {
6615 rq = cpu_rq(t);
6616
6617 if (t == cpu)
6618 rq->core = core_rq;
6619
6620 WARN_ON_ONCE(rq->core != core_rq);
6621 }
6622 }
6623
sched_core_cpu_deactivate(unsigned int cpu)6624 static void sched_core_cpu_deactivate(unsigned int cpu)
6625 {
6626 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6627 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6628 int t;
6629
6630 guard(core_lock)(&cpu);
6631
6632 /* if we're the last man standing, nothing to do */
6633 if (cpumask_weight(smt_mask) == 1) {
6634 WARN_ON_ONCE(rq->core != rq);
6635 return;
6636 }
6637
6638 /* if we're not the leader, nothing to do */
6639 if (rq->core != rq)
6640 return;
6641
6642 /* find a new leader */
6643 for_each_cpu(t, smt_mask) {
6644 if (t == cpu)
6645 continue;
6646 core_rq = cpu_rq(t);
6647 break;
6648 }
6649
6650 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6651 return;
6652
6653 /* copy the shared state to the new leader */
6654 core_rq->core_task_seq = rq->core_task_seq;
6655 core_rq->core_pick_seq = rq->core_pick_seq;
6656 core_rq->core_cookie = rq->core_cookie;
6657 core_rq->core_forceidle_count = rq->core_forceidle_count;
6658 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6659 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6660
6661 /*
6662 * Accounting edge for forced idle is handled in pick_next_task().
6663 * Don't need another one here, since the hotplug thread shouldn't
6664 * have a cookie.
6665 */
6666 core_rq->core_forceidle_start = 0;
6667
6668 /* install new leader */
6669 for_each_cpu(t, smt_mask) {
6670 rq = cpu_rq(t);
6671 rq->core = core_rq;
6672 }
6673 }
6674
sched_core_cpu_dying(unsigned int cpu)6675 static inline void sched_core_cpu_dying(unsigned int cpu)
6676 {
6677 struct rq *rq = cpu_rq(cpu);
6678
6679 if (rq->core != rq)
6680 rq->core = rq;
6681 }
6682
6683 #else /* !CONFIG_SCHED_CORE */
6684
sched_core_cpu_starting(unsigned int cpu)6685 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6686 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6687 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6688
6689 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6690 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6691 {
6692 return __pick_next_task(rq, prev, rf);
6693 }
6694
6695 #endif /* CONFIG_SCHED_CORE */
6696
6697 /*
6698 * Constants for the sched_mode argument of __schedule().
6699 *
6700 * The mode argument allows RT enabled kernels to differentiate a
6701 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6702 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6703 * optimize the AND operation out and just check for zero.
6704 */
6705 #define SM_NONE 0x0
6706 #define SM_PREEMPT 0x1
6707 #define SM_RTLOCK_WAIT 0x2
6708
6709 #ifndef CONFIG_PREEMPT_RT
6710 # define SM_MASK_PREEMPT (~0U)
6711 #else
6712 # define SM_MASK_PREEMPT SM_PREEMPT
6713 #endif
6714
6715 /*
6716 * __schedule() is the main scheduler function.
6717 *
6718 * The main means of driving the scheduler and thus entering this function are:
6719 *
6720 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6721 *
6722 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6723 * paths. For example, see arch/x86/entry_64.S.
6724 *
6725 * To drive preemption between tasks, the scheduler sets the flag in timer
6726 * interrupt handler scheduler_tick().
6727 *
6728 * 3. Wakeups don't really cause entry into schedule(). They add a
6729 * task to the run-queue and that's it.
6730 *
6731 * Now, if the new task added to the run-queue preempts the current
6732 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6733 * called on the nearest possible occasion:
6734 *
6735 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6736 *
6737 * - in syscall or exception context, at the next outmost
6738 * preempt_enable(). (this might be as soon as the wake_up()'s
6739 * spin_unlock()!)
6740 *
6741 * - in IRQ context, return from interrupt-handler to
6742 * preemptible context
6743 *
6744 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6745 * then at the next:
6746 *
6747 * - cond_resched() call
6748 * - explicit schedule() call
6749 * - return from syscall or exception to user-space
6750 * - return from interrupt-handler to user-space
6751 *
6752 * WARNING: must be called with preemption disabled!
6753 */
__schedule(unsigned int sched_mode)6754 static void __sched notrace __schedule(unsigned int sched_mode)
6755 {
6756 struct task_struct *prev, *next;
6757 unsigned long *switch_count;
6758 unsigned long prev_state;
6759 struct rq_flags rf;
6760 struct rq *rq;
6761 int cpu;
6762 u64 wallclock;
6763
6764 cpu = smp_processor_id();
6765 rq = cpu_rq(cpu);
6766 prev = rq->curr;
6767
6768 schedule_debug(prev, !!sched_mode);
6769
6770 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6771 hrtick_clear(rq);
6772
6773 local_irq_disable();
6774 rcu_note_context_switch(!!sched_mode);
6775
6776 /*
6777 * Make sure that signal_pending_state()->signal_pending() below
6778 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6779 * done by the caller to avoid the race with signal_wake_up():
6780 *
6781 * __set_current_state(@state) signal_wake_up()
6782 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6783 * wake_up_state(p, state)
6784 * LOCK rq->lock LOCK p->pi_state
6785 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6786 * if (signal_pending_state()) if (p->state & @state)
6787 *
6788 * Also, the membarrier system call requires a full memory barrier
6789 * after coming from user-space, before storing to rq->curr.
6790 */
6791 rq_lock(rq, &rf);
6792 smp_mb__after_spinlock();
6793
6794 /* Promote REQ to ACT */
6795 rq->clock_update_flags <<= 1;
6796 update_rq_clock(rq);
6797 rq->clock_update_flags = RQCF_UPDATED;
6798
6799 switch_count = &prev->nivcsw;
6800
6801 /*
6802 * We must load prev->state once (task_struct::state is volatile), such
6803 * that we form a control dependency vs deactivate_task() below.
6804 */
6805 prev_state = READ_ONCE(prev->__state);
6806 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6807 if (signal_pending_state(prev_state, prev)) {
6808 WRITE_ONCE(prev->__state, TASK_RUNNING);
6809 } else {
6810 prev->sched_contributes_to_load =
6811 (prev_state & TASK_UNINTERRUPTIBLE) &&
6812 !(prev_state & TASK_NOLOAD) &&
6813 !(prev_state & TASK_FROZEN);
6814
6815 if (prev->sched_contributes_to_load)
6816 rq->nr_uninterruptible++;
6817
6818 /*
6819 * __schedule() ttwu()
6820 * prev_state = prev->state; if (p->on_rq && ...)
6821 * if (prev_state) goto out;
6822 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6823 * p->state = TASK_WAKING
6824 *
6825 * Where __schedule() and ttwu() have matching control dependencies.
6826 *
6827 * After this, schedule() must not care about p->state any more.
6828 */
6829 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6830
6831 if (prev->in_iowait) {
6832 atomic_inc(&rq->nr_iowait);
6833 delayacct_blkio_start();
6834 }
6835 }
6836 switch_count = &prev->nvcsw;
6837 }
6838
6839 next = pick_next_task(rq, prev, &rf);
6840 clear_tsk_need_resched(prev);
6841 clear_preempt_need_resched();
6842 wallclock = sched_ktime_clock();
6843 #ifdef CONFIG_SCHED_DEBUG
6844 rq->last_seen_need_resched_ns = 0;
6845 #endif
6846
6847 if (likely(prev != next)) {
6848 #ifdef CONFIG_SCHED_WALT
6849 if (!prev->on_rq)
6850 prev->last_sleep_ts = wallclock;
6851 #endif
6852 update_task_ravg(prev, rq, PUT_PREV_TASK, wallclock, 0);
6853 update_task_ravg(next, rq, PICK_NEXT_TASK, wallclock, 0);
6854 rq->nr_switches++;
6855 /*
6856 * RCU users of rcu_dereference(rq->curr) may not see
6857 * changes to task_struct made by pick_next_task().
6858 */
6859 RCU_INIT_POINTER(rq->curr, next);
6860 /*
6861 * The membarrier system call requires each architecture
6862 * to have a full memory barrier after updating
6863 * rq->curr, before returning to user-space.
6864 *
6865 * Here are the schemes providing that barrier on the
6866 * various architectures:
6867 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6868 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm()
6869 * on PowerPC and on RISC-V.
6870 * - finish_lock_switch() for weakly-ordered
6871 * architectures where spin_unlock is a full barrier,
6872 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6873 * is a RELEASE barrier),
6874 */
6875 ++*switch_count;
6876
6877 migrate_disable_switch(rq, prev);
6878 psi_account_irqtime(rq, prev, next);
6879 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6880
6881 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6882
6883 /* Also unlocks the rq: */
6884 rq = context_switch(rq, prev, next, &rf);
6885 } else {
6886 update_task_ravg(prev, rq, TASK_UPDATE, wallclock, 0);
6887 rq_unpin_lock(rq, &rf);
6888 __balance_callbacks(rq);
6889 raw_spin_rq_unlock_irq(rq);
6890 }
6891 }
6892
do_task_dead(void)6893 void __noreturn do_task_dead(void)
6894 {
6895 /* Causes final put_task_struct in finish_task_switch(): */
6896 set_special_state(TASK_DEAD);
6897
6898 /* Tell freezer to ignore us: */
6899 current->flags |= PF_NOFREEZE;
6900
6901 __schedule(SM_NONE);
6902 BUG();
6903
6904 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6905 for (;;)
6906 cpu_relax();
6907 }
6908
sched_submit_work(struct task_struct * tsk)6909 static inline void sched_submit_work(struct task_struct *tsk)
6910 {
6911 unsigned int task_flags;
6912
6913 if (task_is_running(tsk))
6914 return;
6915
6916 task_flags = tsk->flags;
6917 /*
6918 * If a worker goes to sleep, notify and ask workqueue whether it
6919 * wants to wake up a task to maintain concurrency.
6920 */
6921 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6922 if (task_flags & PF_WQ_WORKER)
6923 wq_worker_sleeping(tsk);
6924 else
6925 io_wq_worker_sleeping(tsk);
6926 }
6927
6928 /*
6929 * spinlock and rwlock must not flush block requests. This will
6930 * deadlock if the callback attempts to acquire a lock which is
6931 * already acquired.
6932 */
6933 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6934
6935 /*
6936 * If we are going to sleep and we have plugged IO queued,
6937 * make sure to submit it to avoid deadlocks.
6938 */
6939 blk_flush_plug(tsk->plug, true);
6940 }
6941
sched_update_worker(struct task_struct * tsk)6942 static void sched_update_worker(struct task_struct *tsk)
6943 {
6944 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6945 if (tsk->flags & PF_WQ_WORKER)
6946 wq_worker_running(tsk);
6947 else
6948 io_wq_worker_running(tsk);
6949 }
6950 }
6951
schedule(void)6952 asmlinkage __visible void __sched schedule(void)
6953 {
6954 struct task_struct *tsk = current;
6955
6956 sched_submit_work(tsk);
6957 do {
6958 preempt_disable();
6959 __schedule(SM_NONE);
6960 sched_preempt_enable_no_resched();
6961 } while (need_resched());
6962 sched_update_worker(tsk);
6963 }
6964 EXPORT_SYMBOL(schedule);
6965
6966 /*
6967 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6968 * state (have scheduled out non-voluntarily) by making sure that all
6969 * tasks have either left the run queue or have gone into user space.
6970 * As idle tasks do not do either, they must not ever be preempted
6971 * (schedule out non-voluntarily).
6972 *
6973 * schedule_idle() is similar to schedule_preempt_disable() except that it
6974 * never enables preemption because it does not call sched_submit_work().
6975 */
schedule_idle(void)6976 void __sched schedule_idle(void)
6977 {
6978 /*
6979 * As this skips calling sched_submit_work(), which the idle task does
6980 * regardless because that function is a nop when the task is in a
6981 * TASK_RUNNING state, make sure this isn't used someplace that the
6982 * current task can be in any other state. Note, idle is always in the
6983 * TASK_RUNNING state.
6984 */
6985 WARN_ON_ONCE(current->__state);
6986 do {
6987 __schedule(SM_NONE);
6988 } while (need_resched());
6989 }
6990
6991 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
schedule_user(void)6992 asmlinkage __visible void __sched schedule_user(void)
6993 {
6994 /*
6995 * If we come here after a random call to set_need_resched(),
6996 * or we have been woken up remotely but the IPI has not yet arrived,
6997 * we haven't yet exited the RCU idle mode. Do it here manually until
6998 * we find a better solution.
6999 *
7000 * NB: There are buggy callers of this function. Ideally we
7001 * should warn if prev_state != CONTEXT_USER, but that will trigger
7002 * too frequently to make sense yet.
7003 */
7004 enum ctx_state prev_state = exception_enter();
7005 schedule();
7006 exception_exit(prev_state);
7007 }
7008 #endif
7009
7010 /**
7011 * schedule_preempt_disabled - called with preemption disabled
7012 *
7013 * Returns with preemption disabled. Note: preempt_count must be 1
7014 */
schedule_preempt_disabled(void)7015 void __sched schedule_preempt_disabled(void)
7016 {
7017 sched_preempt_enable_no_resched();
7018 schedule();
7019 preempt_disable();
7020 }
7021
7022 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)7023 void __sched notrace schedule_rtlock(void)
7024 {
7025 do {
7026 preempt_disable();
7027 __schedule(SM_RTLOCK_WAIT);
7028 sched_preempt_enable_no_resched();
7029 } while (need_resched());
7030 }
7031 NOKPROBE_SYMBOL(schedule_rtlock);
7032 #endif
7033
preempt_schedule_common(void)7034 static void __sched notrace preempt_schedule_common(void)
7035 {
7036 do {
7037 /*
7038 * Because the function tracer can trace preempt_count_sub()
7039 * and it also uses preempt_enable/disable_notrace(), if
7040 * NEED_RESCHED is set, the preempt_enable_notrace() called
7041 * by the function tracer will call this function again and
7042 * cause infinite recursion.
7043 *
7044 * Preemption must be disabled here before the function
7045 * tracer can trace. Break up preempt_disable() into two
7046 * calls. One to disable preemption without fear of being
7047 * traced. The other to still record the preemption latency,
7048 * which can also be traced by the function tracer.
7049 */
7050 preempt_disable_notrace();
7051 preempt_latency_start(1);
7052 __schedule(SM_PREEMPT);
7053 preempt_latency_stop(1);
7054 preempt_enable_no_resched_notrace();
7055
7056 /*
7057 * Check again in case we missed a preemption opportunity
7058 * between schedule and now.
7059 */
7060 } while (need_resched());
7061 }
7062
7063 #ifdef CONFIG_PREEMPTION
7064 /*
7065 * This is the entry point to schedule() from in-kernel preemption
7066 * off of preempt_enable.
7067 */
preempt_schedule(void)7068 asmlinkage __visible void __sched notrace preempt_schedule(void)
7069 {
7070 /*
7071 * If there is a non-zero preempt_count or interrupts are disabled,
7072 * we do not want to preempt the current task. Just return..
7073 */
7074 if (likely(!preemptible()))
7075 return;
7076 preempt_schedule_common();
7077 }
7078 NOKPROBE_SYMBOL(preempt_schedule);
7079 EXPORT_SYMBOL(preempt_schedule);
7080
7081 #ifdef CONFIG_PREEMPT_DYNAMIC
7082 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7083 #ifndef preempt_schedule_dynamic_enabled
7084 #define preempt_schedule_dynamic_enabled preempt_schedule
7085 #define preempt_schedule_dynamic_disabled NULL
7086 #endif
7087 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
7088 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
7089 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7090 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
dynamic_preempt_schedule(void)7091 void __sched notrace dynamic_preempt_schedule(void)
7092 {
7093 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
7094 return;
7095 preempt_schedule();
7096 }
7097 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
7098 EXPORT_SYMBOL(dynamic_preempt_schedule);
7099 #endif
7100 #endif
7101
7102 /**
7103 * preempt_schedule_notrace - preempt_schedule called by tracing
7104 *
7105 * The tracing infrastructure uses preempt_enable_notrace to prevent
7106 * recursion and tracing preempt enabling caused by the tracing
7107 * infrastructure itself. But as tracing can happen in areas coming
7108 * from userspace or just about to enter userspace, a preempt enable
7109 * can occur before user_exit() is called. This will cause the scheduler
7110 * to be called when the system is still in usermode.
7111 *
7112 * To prevent this, the preempt_enable_notrace will use this function
7113 * instead of preempt_schedule() to exit user context if needed before
7114 * calling the scheduler.
7115 */
preempt_schedule_notrace(void)7116 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
7117 {
7118 enum ctx_state prev_ctx;
7119
7120 if (likely(!preemptible()))
7121 return;
7122
7123 do {
7124 /*
7125 * Because the function tracer can trace preempt_count_sub()
7126 * and it also uses preempt_enable/disable_notrace(), if
7127 * NEED_RESCHED is set, the preempt_enable_notrace() called
7128 * by the function tracer will call this function again and
7129 * cause infinite recursion.
7130 *
7131 * Preemption must be disabled here before the function
7132 * tracer can trace. Break up preempt_disable() into two
7133 * calls. One to disable preemption without fear of being
7134 * traced. The other to still record the preemption latency,
7135 * which can also be traced by the function tracer.
7136 */
7137 preempt_disable_notrace();
7138 preempt_latency_start(1);
7139 /*
7140 * Needs preempt disabled in case user_exit() is traced
7141 * and the tracer calls preempt_enable_notrace() causing
7142 * an infinite recursion.
7143 */
7144 prev_ctx = exception_enter();
7145 __schedule(SM_PREEMPT);
7146 exception_exit(prev_ctx);
7147
7148 preempt_latency_stop(1);
7149 preempt_enable_no_resched_notrace();
7150 } while (need_resched());
7151 }
7152 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7153
7154 #ifdef CONFIG_PREEMPT_DYNAMIC
7155 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7156 #ifndef preempt_schedule_notrace_dynamic_enabled
7157 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
7158 #define preempt_schedule_notrace_dynamic_disabled NULL
7159 #endif
7160 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7161 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7162 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7163 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
dynamic_preempt_schedule_notrace(void)7164 void __sched notrace dynamic_preempt_schedule_notrace(void)
7165 {
7166 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7167 return;
7168 preempt_schedule_notrace();
7169 }
7170 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7171 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7172 #endif
7173 #endif
7174
7175 #endif /* CONFIG_PREEMPTION */
7176
7177 /*
7178 * This is the entry point to schedule() from kernel preemption
7179 * off of irq context.
7180 * Note, that this is called and return with irqs disabled. This will
7181 * protect us against recursive calling from irq.
7182 */
preempt_schedule_irq(void)7183 asmlinkage __visible void __sched preempt_schedule_irq(void)
7184 {
7185 enum ctx_state prev_state;
7186
7187 /* Catch callers which need to be fixed */
7188 BUG_ON(preempt_count() || !irqs_disabled());
7189
7190 prev_state = exception_enter();
7191
7192 do {
7193 preempt_disable();
7194 local_irq_enable();
7195 __schedule(SM_PREEMPT);
7196 local_irq_disable();
7197 sched_preempt_enable_no_resched();
7198 } while (need_resched());
7199
7200 exception_exit(prev_state);
7201 }
7202
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)7203 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7204 void *key)
7205 {
7206 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7207 return try_to_wake_up(curr->private, mode, wake_flags);
7208 }
7209 EXPORT_SYMBOL(default_wake_function);
7210
__setscheduler_prio(struct task_struct * p,int prio)7211 static void __setscheduler_prio(struct task_struct *p, int prio)
7212 {
7213 if (dl_prio(prio))
7214 p->sched_class = &dl_sched_class;
7215 else if (rt_prio(prio))
7216 p->sched_class = &rt_sched_class;
7217 else
7218 p->sched_class = &fair_sched_class;
7219
7220 p->prio = prio;
7221 }
7222
7223 #ifdef CONFIG_RT_MUTEXES
7224
__rt_effective_prio(struct task_struct * pi_task,int prio)7225 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7226 {
7227 if (pi_task)
7228 prio = min(prio, pi_task->prio);
7229
7230 return prio;
7231 }
7232
rt_effective_prio(struct task_struct * p,int prio)7233 static inline int rt_effective_prio(struct task_struct *p, int prio)
7234 {
7235 struct task_struct *pi_task = rt_mutex_get_top_task(p);
7236
7237 return __rt_effective_prio(pi_task, prio);
7238 }
7239
7240 /*
7241 * rt_mutex_setprio - set the current priority of a task
7242 * @p: task to boost
7243 * @pi_task: donor task
7244 *
7245 * This function changes the 'effective' priority of a task. It does
7246 * not touch ->normal_prio like __setscheduler().
7247 *
7248 * Used by the rt_mutex code to implement priority inheritance
7249 * logic. Call site only calls if the priority of the task changed.
7250 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)7251 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7252 {
7253 int prio, oldprio, queued, running, queue_flag =
7254 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7255 const struct sched_class *prev_class;
7256 struct rq_flags rf;
7257 struct rq *rq;
7258
7259 /* XXX used to be waiter->prio, not waiter->task->prio */
7260 prio = __rt_effective_prio(pi_task, p->normal_prio);
7261
7262 /*
7263 * If nothing changed; bail early.
7264 */
7265 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7266 return;
7267
7268 rq = __task_rq_lock(p, &rf);
7269 update_rq_clock(rq);
7270 /*
7271 * Set under pi_lock && rq->lock, such that the value can be used under
7272 * either lock.
7273 *
7274 * Note that there is loads of tricky to make this pointer cache work
7275 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7276 * ensure a task is de-boosted (pi_task is set to NULL) before the
7277 * task is allowed to run again (and can exit). This ensures the pointer
7278 * points to a blocked task -- which guarantees the task is present.
7279 */
7280 p->pi_top_task = pi_task;
7281
7282 /*
7283 * For FIFO/RR we only need to set prio, if that matches we're done.
7284 */
7285 if (prio == p->prio && !dl_prio(prio))
7286 goto out_unlock;
7287
7288 /*
7289 * Idle task boosting is a nono in general. There is one
7290 * exception, when PREEMPT_RT and NOHZ is active:
7291 *
7292 * The idle task calls get_next_timer_interrupt() and holds
7293 * the timer wheel base->lock on the CPU and another CPU wants
7294 * to access the timer (probably to cancel it). We can safely
7295 * ignore the boosting request, as the idle CPU runs this code
7296 * with interrupts disabled and will complete the lock
7297 * protected section without being interrupted. So there is no
7298 * real need to boost.
7299 */
7300 if (unlikely(p == rq->idle)) {
7301 WARN_ON(p != rq->curr);
7302 WARN_ON(p->pi_blocked_on);
7303 goto out_unlock;
7304 }
7305
7306 trace_sched_pi_setprio(p, pi_task);
7307 oldprio = p->prio;
7308
7309 if (oldprio == prio)
7310 queue_flag &= ~DEQUEUE_MOVE;
7311
7312 prev_class = p->sched_class;
7313 queued = task_on_rq_queued(p);
7314 running = task_current(rq, p);
7315 if (queued)
7316 dequeue_task(rq, p, queue_flag);
7317 if (running)
7318 put_prev_task(rq, p);
7319
7320 /*
7321 * Boosting condition are:
7322 * 1. -rt task is running and holds mutex A
7323 * --> -dl task blocks on mutex A
7324 *
7325 * 2. -dl task is running and holds mutex A
7326 * --> -dl task blocks on mutex A and could preempt the
7327 * running task
7328 */
7329 if (dl_prio(prio)) {
7330 if (!dl_prio(p->normal_prio) ||
7331 (pi_task && dl_prio(pi_task->prio) &&
7332 dl_entity_preempt(&pi_task->dl, &p->dl))) {
7333 p->dl.pi_se = pi_task->dl.pi_se;
7334 queue_flag |= ENQUEUE_REPLENISH;
7335 } else {
7336 p->dl.pi_se = &p->dl;
7337 }
7338 } else if (rt_prio(prio)) {
7339 if (dl_prio(oldprio))
7340 p->dl.pi_se = &p->dl;
7341 if (oldprio < prio)
7342 queue_flag |= ENQUEUE_HEAD;
7343 } else {
7344 if (dl_prio(oldprio))
7345 p->dl.pi_se = &p->dl;
7346 if (rt_prio(oldprio))
7347 p->rt.timeout = 0;
7348 }
7349
7350 __setscheduler_prio(p, prio);
7351
7352 if (queued)
7353 enqueue_task(rq, p, queue_flag);
7354 if (running)
7355 set_next_task(rq, p);
7356
7357 check_class_changed(rq, p, prev_class, oldprio);
7358 out_unlock:
7359 /* Avoid rq from going away on us: */
7360 preempt_disable();
7361
7362 rq_unpin_lock(rq, &rf);
7363 __balance_callbacks(rq);
7364 raw_spin_rq_unlock(rq);
7365
7366 preempt_enable();
7367 }
7368 #else
rt_effective_prio(struct task_struct * p,int prio)7369 static inline int rt_effective_prio(struct task_struct *p, int prio)
7370 {
7371 return prio;
7372 }
7373 #endif
7374
set_user_nice(struct task_struct * p,long nice)7375 void set_user_nice(struct task_struct *p, long nice)
7376 {
7377 bool queued, running;
7378 int old_prio;
7379 struct rq_flags rf;
7380 struct rq *rq;
7381
7382 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7383 return;
7384 /*
7385 * We have to be careful, if called from sys_setpriority(),
7386 * the task might be in the middle of scheduling on another CPU.
7387 */
7388 rq = task_rq_lock(p, &rf);
7389 update_rq_clock(rq);
7390
7391 /*
7392 * The RT priorities are set via sched_setscheduler(), but we still
7393 * allow the 'normal' nice value to be set - but as expected
7394 * it won't have any effect on scheduling until the task is
7395 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7396 */
7397 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7398 p->static_prio = NICE_TO_PRIO(nice);
7399 goto out_unlock;
7400 }
7401 queued = task_on_rq_queued(p);
7402 running = task_current(rq, p);
7403 if (queued)
7404 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7405 if (running)
7406 put_prev_task(rq, p);
7407
7408 p->static_prio = NICE_TO_PRIO(nice);
7409 set_load_weight(p, true);
7410 old_prio = p->prio;
7411 p->prio = effective_prio(p);
7412
7413 if (queued)
7414 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7415 if (running)
7416 set_next_task(rq, p);
7417
7418 /*
7419 * If the task increased its priority or is running and
7420 * lowered its priority, then reschedule its CPU:
7421 */
7422 p->sched_class->prio_changed(rq, p, old_prio);
7423
7424 out_unlock:
7425 task_rq_unlock(rq, p, &rf);
7426 }
7427 EXPORT_SYMBOL(set_user_nice);
7428
7429 /*
7430 * is_nice_reduction - check if nice value is an actual reduction
7431 *
7432 * Similar to can_nice() but does not perform a capability check.
7433 *
7434 * @p: task
7435 * @nice: nice value
7436 */
is_nice_reduction(const struct task_struct * p,const int nice)7437 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7438 {
7439 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7440 int nice_rlim = nice_to_rlimit(nice);
7441
7442 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7443 }
7444
7445 /*
7446 * can_nice - check if a task can reduce its nice value
7447 * @p: task
7448 * @nice: nice value
7449 */
can_nice(const struct task_struct * p,const int nice)7450 int can_nice(const struct task_struct *p, const int nice)
7451 {
7452 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7453 }
7454
7455 #ifdef __ARCH_WANT_SYS_NICE
7456
7457 /*
7458 * sys_nice - change the priority of the current process.
7459 * @increment: priority increment
7460 *
7461 * sys_setpriority is a more generic, but much slower function that
7462 * does similar things.
7463 */
SYSCALL_DEFINE1(nice,int,increment)7464 SYSCALL_DEFINE1(nice, int, increment)
7465 {
7466 long nice, retval;
7467
7468 /*
7469 * Setpriority might change our priority at the same moment.
7470 * We don't have to worry. Conceptually one call occurs first
7471 * and we have a single winner.
7472 */
7473 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7474 nice = task_nice(current) + increment;
7475
7476 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7477 if (increment < 0 && !can_nice(current, nice))
7478 return -EPERM;
7479
7480 retval = security_task_setnice(current, nice);
7481 if (retval)
7482 return retval;
7483
7484 set_user_nice(current, nice);
7485 return 0;
7486 }
7487
7488 #endif
7489
7490 /**
7491 * task_prio - return the priority value of a given task.
7492 * @p: the task in question.
7493 *
7494 * Return: The priority value as seen by users in /proc.
7495 *
7496 * sched policy return value kernel prio user prio/nice
7497 *
7498 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
7499 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
7500 * deadline -101 -1 0
7501 */
task_prio(const struct task_struct * p)7502 int task_prio(const struct task_struct *p)
7503 {
7504 return p->prio - MAX_RT_PRIO;
7505 }
7506
7507 /**
7508 * idle_cpu - is a given CPU idle currently?
7509 * @cpu: the processor in question.
7510 *
7511 * Return: 1 if the CPU is currently idle. 0 otherwise.
7512 */
idle_cpu(int cpu)7513 int idle_cpu(int cpu)
7514 {
7515 struct rq *rq = cpu_rq(cpu);
7516
7517 if (rq->curr != rq->idle)
7518 return 0;
7519
7520 if (rq->nr_running)
7521 return 0;
7522
7523 #ifdef CONFIG_SMP
7524 if (rq->ttwu_pending)
7525 return 0;
7526 #endif
7527
7528 return 1;
7529 }
7530
7531 /**
7532 * available_idle_cpu - is a given CPU idle for enqueuing work.
7533 * @cpu: the CPU in question.
7534 *
7535 * Return: 1 if the CPU is currently idle. 0 otherwise.
7536 */
available_idle_cpu(int cpu)7537 int available_idle_cpu(int cpu)
7538 {
7539 if (!idle_cpu(cpu))
7540 return 0;
7541
7542 if (vcpu_is_preempted(cpu))
7543 return 0;
7544
7545 return 1;
7546 }
7547
7548 /**
7549 * idle_task - return the idle task for a given CPU.
7550 * @cpu: the processor in question.
7551 *
7552 * Return: The idle task for the CPU @cpu.
7553 */
idle_task(int cpu)7554 struct task_struct *idle_task(int cpu)
7555 {
7556 return cpu_rq(cpu)->idle;
7557 }
7558
7559 #ifdef CONFIG_SCHED_CORE
sched_core_idle_cpu(int cpu)7560 int sched_core_idle_cpu(int cpu)
7561 {
7562 struct rq *rq = cpu_rq(cpu);
7563
7564 if (sched_core_enabled(rq) && rq->curr == rq->idle)
7565 return 1;
7566
7567 return idle_cpu(cpu);
7568 }
7569
7570 #endif
7571
7572 #ifdef CONFIG_SMP
7573 /*
7574 * This function computes an effective utilization for the given CPU, to be
7575 * used for frequency selection given the linear relation: f = u * f_max.
7576 *
7577 * The scheduler tracks the following metrics:
7578 *
7579 * cpu_util_{cfs,rt,dl,irq}()
7580 * cpu_bw_dl()
7581 *
7582 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7583 * synchronized windows and are thus directly comparable.
7584 *
7585 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7586 * which excludes things like IRQ and steal-time. These latter are then accrued
7587 * in the irq utilization.
7588 *
7589 * The DL bandwidth number otoh is not a measured metric but a value computed
7590 * based on the task model parameters and gives the minimal utilization
7591 * required to meet deadlines.
7592 */
effective_cpu_util(int cpu,unsigned long util_cfs,enum cpu_util_type type,struct task_struct * p)7593 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7594 enum cpu_util_type type,
7595 struct task_struct *p)
7596 {
7597 unsigned long dl_util, util, irq, max;
7598 struct rq *rq = cpu_rq(cpu);
7599
7600 max = arch_scale_cpu_capacity(cpu);
7601
7602 if (!uclamp_is_used() &&
7603 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7604 return max;
7605 }
7606
7607 /*
7608 * Early check to see if IRQ/steal time saturates the CPU, can be
7609 * because of inaccuracies in how we track these -- see
7610 * update_irq_load_avg().
7611 */
7612 irq = cpu_util_irq(rq);
7613 if (unlikely(irq >= max))
7614 return max;
7615
7616 /*
7617 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7618 * CFS tasks and we use the same metric to track the effective
7619 * utilization (PELT windows are synchronized) we can directly add them
7620 * to obtain the CPU's actual utilization.
7621 *
7622 * CFS and RT utilization can be boosted or capped, depending on
7623 * utilization clamp constraints requested by currently RUNNABLE
7624 * tasks.
7625 * When there are no CFS RUNNABLE tasks, clamps are released and
7626 * frequency will be gracefully reduced with the utilization decay.
7627 */
7628 util = util_cfs + cpu_util_rt(rq);
7629 if (type == FREQUENCY_UTIL)
7630 util = uclamp_rq_util_with(rq, util, p);
7631
7632 dl_util = cpu_util_dl(rq);
7633
7634 /*
7635 * For frequency selection we do not make cpu_util_dl() a permanent part
7636 * of this sum because we want to use cpu_bw_dl() later on, but we need
7637 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7638 * that we select f_max when there is no idle time.
7639 *
7640 * NOTE: numerical errors or stop class might cause us to not quite hit
7641 * saturation when we should -- something for later.
7642 */
7643 if (util + dl_util >= max)
7644 return max;
7645
7646 /*
7647 * OTOH, for energy computation we need the estimated running time, so
7648 * include util_dl and ignore dl_bw.
7649 */
7650 if (type == ENERGY_UTIL)
7651 util += dl_util;
7652
7653 /*
7654 * There is still idle time; further improve the number by using the
7655 * irq metric. Because IRQ/steal time is hidden from the task clock we
7656 * need to scale the task numbers:
7657 *
7658 * max - irq
7659 * U' = irq + --------- * U
7660 * max
7661 */
7662 util = scale_irq_capacity(util, irq, max);
7663 util += irq;
7664
7665 /*
7666 * Bandwidth required by DEADLINE must always be granted while, for
7667 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7668 * to gracefully reduce the frequency when no tasks show up for longer
7669 * periods of time.
7670 *
7671 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7672 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7673 * an interface. So, we only do the latter for now.
7674 */
7675 if (type == FREQUENCY_UTIL)
7676 util += cpu_bw_dl(rq);
7677
7678 return min(max, util);
7679 }
7680
sched_cpu_util(int cpu)7681 unsigned long sched_cpu_util(int cpu)
7682 {
7683 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7684 }
7685 #endif /* CONFIG_SMP */
7686
7687 /**
7688 * find_process_by_pid - find a process with a matching PID value.
7689 * @pid: the pid in question.
7690 *
7691 * The task of @pid, if found. %NULL otherwise.
7692 */
find_process_by_pid(pid_t pid)7693 static struct task_struct *find_process_by_pid(pid_t pid)
7694 {
7695 return pid ? find_task_by_vpid(pid) : current;
7696 }
7697
7698 /*
7699 * sched_setparam() passes in -1 for its policy, to let the functions
7700 * it calls know not to change it.
7701 */
7702 #define SETPARAM_POLICY -1
7703
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)7704 static void __setscheduler_params(struct task_struct *p,
7705 const struct sched_attr *attr)
7706 {
7707 int policy = attr->sched_policy;
7708
7709 if (policy == SETPARAM_POLICY)
7710 policy = p->policy;
7711
7712 p->policy = policy;
7713
7714 if (dl_policy(policy))
7715 __setparam_dl(p, attr);
7716 else if (fair_policy(policy))
7717 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7718
7719 /* rt-policy tasks do not have a timerslack */
7720 if (task_is_realtime(p)) {
7721 p->timer_slack_ns = 0;
7722 } else if (p->timer_slack_ns == 0) {
7723 /* when switching back to non-rt policy, restore timerslack */
7724 p->timer_slack_ns = p->default_timer_slack_ns;
7725 }
7726
7727 /*
7728 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7729 * !rt_policy. Always setting this ensures that things like
7730 * getparam()/getattr() don't report silly values for !rt tasks.
7731 */
7732 p->rt_priority = attr->sched_priority;
7733 p->normal_prio = normal_prio(p);
7734 set_load_weight(p, true);
7735 }
7736
7737 /*
7738 * Check the target process has a UID that matches the current process's:
7739 */
check_same_owner(struct task_struct * p)7740 static bool check_same_owner(struct task_struct *p)
7741 {
7742 const struct cred *cred = current_cred(), *pcred;
7743 bool match;
7744
7745 rcu_read_lock();
7746 pcred = __task_cred(p);
7747 match = (uid_eq(cred->euid, pcred->euid) ||
7748 uid_eq(cred->euid, pcred->uid));
7749 rcu_read_unlock();
7750 return match;
7751 }
7752
7753 /*
7754 * Allow unprivileged RT tasks to decrease priority.
7755 * Only issue a capable test if needed and only once to avoid an audit
7756 * event on permitted non-privileged operations:
7757 */
user_check_sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,int policy,int reset_on_fork)7758 static int user_check_sched_setscheduler(struct task_struct *p,
7759 const struct sched_attr *attr,
7760 int policy, int reset_on_fork)
7761 {
7762 if (fair_policy(policy)) {
7763 if (attr->sched_nice < task_nice(p) &&
7764 !is_nice_reduction(p, attr->sched_nice))
7765 goto req_priv;
7766 }
7767
7768 if (rt_policy(policy)) {
7769 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7770
7771 /* Can't set/change the rt policy: */
7772 if (policy != p->policy && !rlim_rtprio)
7773 goto req_priv;
7774
7775 /* Can't increase priority: */
7776 if (attr->sched_priority > p->rt_priority &&
7777 attr->sched_priority > rlim_rtprio)
7778 goto req_priv;
7779 }
7780
7781 /*
7782 * Can't set/change SCHED_DEADLINE policy at all for now
7783 * (safest behavior); in the future we would like to allow
7784 * unprivileged DL tasks to increase their relative deadline
7785 * or reduce their runtime (both ways reducing utilization)
7786 */
7787 if (dl_policy(policy))
7788 goto req_priv;
7789
7790 /*
7791 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7792 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7793 */
7794 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7795 if (!is_nice_reduction(p, task_nice(p)))
7796 goto req_priv;
7797 }
7798
7799 /* Can't change other user's priorities: */
7800 if (!check_same_owner(p))
7801 goto req_priv;
7802
7803 /* Normal users shall not reset the sched_reset_on_fork flag: */
7804 if (p->sched_reset_on_fork && !reset_on_fork)
7805 goto req_priv;
7806
7807 return 0;
7808
7809 req_priv:
7810 if (!capable(CAP_SYS_NICE))
7811 return -EPERM;
7812
7813 return 0;
7814 }
7815
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)7816 static int __sched_setscheduler(struct task_struct *p,
7817 const struct sched_attr *attr,
7818 bool user, bool pi)
7819 {
7820 int oldpolicy = -1, policy = attr->sched_policy;
7821 int retval, oldprio, newprio, queued, running;
7822 const struct sched_class *prev_class;
7823 struct balance_callback *head;
7824 struct rq_flags rf;
7825 int reset_on_fork;
7826 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7827 struct rq *rq;
7828 bool cpuset_locked = false;
7829
7830 /* The pi code expects interrupts enabled */
7831 BUG_ON(pi && in_interrupt());
7832 recheck:
7833 /* Double check policy once rq lock held: */
7834 if (policy < 0) {
7835 reset_on_fork = p->sched_reset_on_fork;
7836 policy = oldpolicy = p->policy;
7837 } else {
7838 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7839
7840 if (!valid_policy(policy))
7841 return -EINVAL;
7842 }
7843
7844 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7845 return -EINVAL;
7846
7847 /*
7848 * Valid priorities for SCHED_FIFO and SCHED_RR are
7849 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7850 * SCHED_BATCH and SCHED_IDLE is 0.
7851 */
7852 if (attr->sched_priority > MAX_RT_PRIO-1)
7853 return -EINVAL;
7854 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7855 (rt_policy(policy) != (attr->sched_priority != 0)))
7856 return -EINVAL;
7857
7858 if (user) {
7859 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7860 if (retval)
7861 return retval;
7862
7863 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7864 return -EINVAL;
7865
7866 retval = security_task_setscheduler(p);
7867 if (retval)
7868 return retval;
7869 }
7870
7871 /* Update task specific "requested" clamps */
7872 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7873 retval = uclamp_validate(p, attr);
7874 if (retval)
7875 return retval;
7876 }
7877
7878 /*
7879 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7880 * information.
7881 */
7882 if (dl_policy(policy) || dl_policy(p->policy)) {
7883 cpuset_locked = true;
7884 cpuset_lock();
7885 }
7886
7887 /*
7888 * Make sure no PI-waiters arrive (or leave) while we are
7889 * changing the priority of the task:
7890 *
7891 * To be able to change p->policy safely, the appropriate
7892 * runqueue lock must be held.
7893 */
7894 rq = task_rq_lock(p, &rf);
7895 update_rq_clock(rq);
7896
7897 /*
7898 * Changing the policy of the stop threads its a very bad idea:
7899 */
7900 if (p == rq->stop) {
7901 retval = -EINVAL;
7902 goto unlock;
7903 }
7904
7905 /*
7906 * If not changing anything there's no need to proceed further,
7907 * but store a possible modification of reset_on_fork.
7908 */
7909 if (unlikely(policy == p->policy)) {
7910 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7911 goto change;
7912 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7913 goto change;
7914 if (dl_policy(policy) && dl_param_changed(p, attr))
7915 goto change;
7916 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7917 goto change;
7918 #ifdef CONFIG_SCHED_LATENCY_NICE
7919 if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE &&
7920 attr->sched_latency_nice != LATENCY_TO_NICE(p->latency_prio))
7921 goto change;
7922 #endif
7923
7924 p->sched_reset_on_fork = reset_on_fork;
7925 retval = 0;
7926 goto unlock;
7927 }
7928 change:
7929
7930 if (user) {
7931 #ifdef CONFIG_RT_GROUP_SCHED
7932 /*
7933 * Do not allow realtime tasks into groups that have no runtime
7934 * assigned.
7935 */
7936 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7937 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7938 !task_group_is_autogroup(task_group(p))) {
7939 retval = -EPERM;
7940 goto unlock;
7941 }
7942 #endif
7943 #ifdef CONFIG_SMP
7944 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7945 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7946 cpumask_t *span = rq->rd->span;
7947
7948 /*
7949 * Don't allow tasks with an affinity mask smaller than
7950 * the entire root_domain to become SCHED_DEADLINE. We
7951 * will also fail if there's no bandwidth available.
7952 */
7953 if (!cpumask_subset(span, p->cpus_ptr) ||
7954 rq->rd->dl_bw.bw == 0) {
7955 retval = -EPERM;
7956 goto unlock;
7957 }
7958 }
7959 #endif
7960 }
7961
7962 /* Re-check policy now with rq lock held: */
7963 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7964 policy = oldpolicy = -1;
7965 task_rq_unlock(rq, p, &rf);
7966 if (cpuset_locked)
7967 cpuset_unlock();
7968 goto recheck;
7969 }
7970
7971 /*
7972 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7973 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7974 * is available.
7975 */
7976 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7977 retval = -EBUSY;
7978 goto unlock;
7979 }
7980
7981 p->sched_reset_on_fork = reset_on_fork;
7982 oldprio = p->prio;
7983
7984 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7985 if (pi) {
7986 /*
7987 * Take priority boosted tasks into account. If the new
7988 * effective priority is unchanged, we just store the new
7989 * normal parameters and do not touch the scheduler class and
7990 * the runqueue. This will be done when the task deboost
7991 * itself.
7992 */
7993 newprio = rt_effective_prio(p, newprio);
7994 if (newprio == oldprio)
7995 queue_flags &= ~DEQUEUE_MOVE;
7996 }
7997
7998 queued = task_on_rq_queued(p);
7999 running = task_current(rq, p);
8000 if (queued)
8001 dequeue_task(rq, p, queue_flags);
8002 if (running)
8003 put_prev_task(rq, p);
8004
8005 prev_class = p->sched_class;
8006
8007 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
8008 __setscheduler_params(p, attr);
8009 __setscheduler_prio(p, newprio);
8010 }
8011 __setscheduler_uclamp(p, attr);
8012
8013 if (queued) {
8014 /*
8015 * We enqueue to tail when the priority of a task is
8016 * increased (user space view).
8017 */
8018 if (oldprio < p->prio)
8019 queue_flags |= ENQUEUE_HEAD;
8020
8021 enqueue_task(rq, p, queue_flags);
8022 }
8023 if (running)
8024 set_next_task(rq, p);
8025
8026 check_class_changed(rq, p, prev_class, oldprio);
8027
8028 /* Avoid rq from going away on us: */
8029 preempt_disable();
8030 head = splice_balance_callbacks(rq);
8031 task_rq_unlock(rq, p, &rf);
8032
8033 if (pi) {
8034 if (cpuset_locked)
8035 cpuset_unlock();
8036 rt_mutex_adjust_pi(p);
8037 }
8038
8039 /* Run balance callbacks after we've adjusted the PI chain: */
8040 balance_callbacks(rq, head);
8041 preempt_enable();
8042
8043 return 0;
8044
8045 unlock:
8046 task_rq_unlock(rq, p, &rf);
8047 if (cpuset_locked)
8048 cpuset_unlock();
8049 return retval;
8050 }
8051
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)8052 static int _sched_setscheduler(struct task_struct *p, int policy,
8053 const struct sched_param *param, bool check)
8054 {
8055 struct sched_attr attr = {
8056 .sched_policy = policy,
8057 .sched_priority = param->sched_priority,
8058 .sched_nice = PRIO_TO_NICE(p->static_prio),
8059 };
8060
8061 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
8062 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
8063 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8064 policy &= ~SCHED_RESET_ON_FORK;
8065 attr.sched_policy = policy;
8066 }
8067
8068 return __sched_setscheduler(p, &attr, check, true);
8069 }
8070 /**
8071 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
8072 * @p: the task in question.
8073 * @policy: new policy.
8074 * @param: structure containing the new RT priority.
8075 *
8076 * Use sched_set_fifo(), read its comment.
8077 *
8078 * Return: 0 on success. An error code otherwise.
8079 *
8080 * NOTE that the task may be already dead.
8081 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)8082 int sched_setscheduler(struct task_struct *p, int policy,
8083 const struct sched_param *param)
8084 {
8085 return _sched_setscheduler(p, policy, param, true);
8086 }
8087
sched_setattr(struct task_struct * p,const struct sched_attr * attr)8088 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
8089 {
8090 return __sched_setscheduler(p, attr, true, true);
8091 }
8092
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)8093 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
8094 {
8095 return __sched_setscheduler(p, attr, false, true);
8096 }
8097 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
8098
8099 /**
8100 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
8101 * @p: the task in question.
8102 * @policy: new policy.
8103 * @param: structure containing the new RT priority.
8104 *
8105 * Just like sched_setscheduler, only don't bother checking if the
8106 * current context has permission. For example, this is needed in
8107 * stop_machine(): we create temporary high priority worker threads,
8108 * but our caller might not have that capability.
8109 *
8110 * Return: 0 on success. An error code otherwise.
8111 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)8112 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
8113 const struct sched_param *param)
8114 {
8115 return _sched_setscheduler(p, policy, param, false);
8116 }
8117
8118 /*
8119 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
8120 * incapable of resource management, which is the one thing an OS really should
8121 * be doing.
8122 *
8123 * This is of course the reason it is limited to privileged users only.
8124 *
8125 * Worse still; it is fundamentally impossible to compose static priority
8126 * workloads. You cannot take two correctly working static prio workloads
8127 * and smash them together and still expect them to work.
8128 *
8129 * For this reason 'all' FIFO tasks the kernel creates are basically at:
8130 *
8131 * MAX_RT_PRIO / 2
8132 *
8133 * The administrator _MUST_ configure the system, the kernel simply doesn't
8134 * know enough information to make a sensible choice.
8135 */
sched_set_fifo(struct task_struct * p)8136 void sched_set_fifo(struct task_struct *p)
8137 {
8138 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8139 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
8140 }
8141 EXPORT_SYMBOL_GPL(sched_set_fifo);
8142
8143 /*
8144 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
8145 */
sched_set_fifo_low(struct task_struct * p)8146 void sched_set_fifo_low(struct task_struct *p)
8147 {
8148 struct sched_param sp = { .sched_priority = 1 };
8149 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
8150 }
8151 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
8152
sched_set_normal(struct task_struct * p,int nice)8153 void sched_set_normal(struct task_struct *p, int nice)
8154 {
8155 struct sched_attr attr = {
8156 .sched_policy = SCHED_NORMAL,
8157 .sched_nice = nice,
8158 };
8159 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
8160 }
8161 EXPORT_SYMBOL_GPL(sched_set_normal);
8162
8163 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)8164 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
8165 {
8166 struct sched_param lparam;
8167 struct task_struct *p;
8168 int retval;
8169
8170 if (!param || pid < 0)
8171 return -EINVAL;
8172 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
8173 return -EFAULT;
8174
8175 rcu_read_lock();
8176 retval = -ESRCH;
8177 p = find_process_by_pid(pid);
8178 if (likely(p))
8179 get_task_struct(p);
8180 rcu_read_unlock();
8181
8182 if (likely(p)) {
8183 retval = sched_setscheduler(p, policy, &lparam);
8184 put_task_struct(p);
8185 }
8186
8187 return retval;
8188 }
8189
8190 /*
8191 * Mimics kernel/events/core.c perf_copy_attr().
8192 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)8193 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
8194 {
8195 u32 size;
8196 int ret;
8197
8198 /* Zero the full structure, so that a short copy will be nice: */
8199 memset(attr, 0, sizeof(*attr));
8200
8201 ret = get_user(size, &uattr->size);
8202 if (ret)
8203 return ret;
8204
8205 /* ABI compatibility quirk: */
8206 if (!size)
8207 size = SCHED_ATTR_SIZE_VER0;
8208 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8209 goto err_size;
8210
8211 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8212 if (ret) {
8213 if (ret == -E2BIG)
8214 goto err_size;
8215 return ret;
8216 }
8217
8218 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8219 size < SCHED_ATTR_SIZE_VER1)
8220 return -EINVAL;
8221
8222 #ifdef CONFIG_SCHED_LATENCY_NICE
8223 if ((attr->sched_flags & SCHED_FLAG_LATENCY_NICE) &&
8224 size < SCHED_ATTR_SIZE_VER2)
8225 return -EINVAL;
8226 #endif
8227 /*
8228 * XXX: Do we want to be lenient like existing syscalls; or do we want
8229 * to be strict and return an error on out-of-bounds values?
8230 */
8231 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8232
8233 return 0;
8234
8235 err_size:
8236 put_user(sizeof(*attr), &uattr->size);
8237 return -E2BIG;
8238 }
8239
get_params(struct task_struct * p,struct sched_attr * attr)8240 static void get_params(struct task_struct *p, struct sched_attr *attr)
8241 {
8242 if (task_has_dl_policy(p))
8243 __getparam_dl(p, attr);
8244 else if (task_has_rt_policy(p))
8245 attr->sched_priority = p->rt_priority;
8246 else
8247 attr->sched_nice = task_nice(p);
8248 }
8249
8250 /**
8251 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8252 * @pid: the pid in question.
8253 * @policy: new policy.
8254 * @param: structure containing the new RT priority.
8255 *
8256 * Return: 0 on success. An error code otherwise.
8257 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)8258 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8259 {
8260 if (policy < 0)
8261 return -EINVAL;
8262
8263 return do_sched_setscheduler(pid, policy, param);
8264 }
8265
8266 /**
8267 * sys_sched_setparam - set/change the RT priority of a thread
8268 * @pid: the pid in question.
8269 * @param: structure containing the new RT priority.
8270 *
8271 * Return: 0 on success. An error code otherwise.
8272 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)8273 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8274 {
8275 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8276 }
8277
8278 /**
8279 * sys_sched_setattr - same as above, but with extended sched_attr
8280 * @pid: the pid in question.
8281 * @uattr: structure containing the extended parameters.
8282 * @flags: for future extension.
8283 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)8284 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8285 unsigned int, flags)
8286 {
8287 struct sched_attr attr;
8288 struct task_struct *p;
8289 int retval;
8290
8291 if (!uattr || pid < 0 || flags)
8292 return -EINVAL;
8293
8294 retval = sched_copy_attr(uattr, &attr);
8295 if (retval)
8296 return retval;
8297
8298 if ((int)attr.sched_policy < 0)
8299 return -EINVAL;
8300 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8301 attr.sched_policy = SETPARAM_POLICY;
8302
8303 rcu_read_lock();
8304 retval = -ESRCH;
8305 p = find_process_by_pid(pid);
8306 if (likely(p))
8307 get_task_struct(p);
8308 rcu_read_unlock();
8309
8310 if (likely(p)) {
8311 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8312 get_params(p, &attr);
8313 retval = sched_setattr(p, &attr);
8314 put_task_struct(p);
8315 }
8316
8317 return retval;
8318 }
8319
8320 /**
8321 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8322 * @pid: the pid in question.
8323 *
8324 * Return: On success, the policy of the thread. Otherwise, a negative error
8325 * code.
8326 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)8327 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8328 {
8329 struct task_struct *p;
8330 int retval;
8331
8332 if (pid < 0)
8333 return -EINVAL;
8334
8335 retval = -ESRCH;
8336 rcu_read_lock();
8337 p = find_process_by_pid(pid);
8338 if (p) {
8339 retval = security_task_getscheduler(p);
8340 if (!retval)
8341 retval = p->policy
8342 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8343 }
8344 rcu_read_unlock();
8345 return retval;
8346 }
8347
8348 /**
8349 * sys_sched_getparam - get the RT priority of a thread
8350 * @pid: the pid in question.
8351 * @param: structure containing the RT priority.
8352 *
8353 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8354 * code.
8355 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)8356 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8357 {
8358 struct sched_param lp = { .sched_priority = 0 };
8359 struct task_struct *p;
8360 int retval;
8361
8362 if (!param || pid < 0)
8363 return -EINVAL;
8364
8365 rcu_read_lock();
8366 p = find_process_by_pid(pid);
8367 retval = -ESRCH;
8368 if (!p)
8369 goto out_unlock;
8370
8371 retval = security_task_getscheduler(p);
8372 if (retval)
8373 goto out_unlock;
8374
8375 if (task_has_rt_policy(p))
8376 lp.sched_priority = p->rt_priority;
8377 rcu_read_unlock();
8378
8379 /*
8380 * This one might sleep, we cannot do it with a spinlock held ...
8381 */
8382 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8383
8384 return retval;
8385
8386 out_unlock:
8387 rcu_read_unlock();
8388 return retval;
8389 }
8390
8391 /*
8392 * Copy the kernel size attribute structure (which might be larger
8393 * than what user-space knows about) to user-space.
8394 *
8395 * Note that all cases are valid: user-space buffer can be larger or
8396 * smaller than the kernel-space buffer. The usual case is that both
8397 * have the same size.
8398 */
8399 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)8400 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8401 struct sched_attr *kattr,
8402 unsigned int usize)
8403 {
8404 unsigned int ksize = sizeof(*kattr);
8405
8406 if (!access_ok(uattr, usize))
8407 return -EFAULT;
8408
8409 /*
8410 * sched_getattr() ABI forwards and backwards compatibility:
8411 *
8412 * If usize == ksize then we just copy everything to user-space and all is good.
8413 *
8414 * If usize < ksize then we only copy as much as user-space has space for,
8415 * this keeps ABI compatibility as well. We skip the rest.
8416 *
8417 * If usize > ksize then user-space is using a newer version of the ABI,
8418 * which part the kernel doesn't know about. Just ignore it - tooling can
8419 * detect the kernel's knowledge of attributes from the attr->size value
8420 * which is set to ksize in this case.
8421 */
8422 kattr->size = min(usize, ksize);
8423
8424 if (copy_to_user(uattr, kattr, kattr->size))
8425 return -EFAULT;
8426
8427 return 0;
8428 }
8429
8430 /**
8431 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8432 * @pid: the pid in question.
8433 * @uattr: structure containing the extended parameters.
8434 * @usize: sizeof(attr) for fwd/bwd comp.
8435 * @flags: for future extension.
8436 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)8437 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8438 unsigned int, usize, unsigned int, flags)
8439 {
8440 struct sched_attr kattr = { };
8441 struct task_struct *p;
8442 int retval;
8443
8444 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8445 usize < SCHED_ATTR_SIZE_VER0 || flags)
8446 return -EINVAL;
8447
8448 rcu_read_lock();
8449 p = find_process_by_pid(pid);
8450 retval = -ESRCH;
8451 if (!p)
8452 goto out_unlock;
8453
8454 retval = security_task_getscheduler(p);
8455 if (retval)
8456 goto out_unlock;
8457
8458 kattr.sched_policy = p->policy;
8459 if (p->sched_reset_on_fork)
8460 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8461 get_params(p, &kattr);
8462 kattr.sched_flags &= SCHED_FLAG_ALL;
8463
8464 #ifdef CONFIG_SCHED_LATENCY_NICE
8465 kattr.sched_latency_nice = LATENCY_TO_NICE(p->latency_prio);
8466 #endif
8467
8468 #ifdef CONFIG_UCLAMP_TASK
8469 /*
8470 * This could race with another potential updater, but this is fine
8471 * because it'll correctly read the old or the new value. We don't need
8472 * to guarantee who wins the race as long as it doesn't return garbage.
8473 */
8474 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8475 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8476 #endif
8477
8478 rcu_read_unlock();
8479
8480 return sched_attr_copy_to_user(uattr, &kattr, usize);
8481
8482 out_unlock:
8483 rcu_read_unlock();
8484 return retval;
8485 }
8486
8487 #ifdef CONFIG_SMP
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)8488 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8489 {
8490 int ret = 0;
8491
8492 /*
8493 * If the task isn't a deadline task or admission control is
8494 * disabled then we don't care about affinity changes.
8495 */
8496 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8497 return 0;
8498
8499 /*
8500 * Since bandwidth control happens on root_domain basis,
8501 * if admission test is enabled, we only admit -deadline
8502 * tasks allowed to run on all the CPUs in the task's
8503 * root_domain.
8504 */
8505 rcu_read_lock();
8506 if (!cpumask_subset(task_rq(p)->rd->span, mask))
8507 ret = -EBUSY;
8508 rcu_read_unlock();
8509 return ret;
8510 }
8511 #endif
8512
8513 static int
__sched_setaffinity(struct task_struct * p,struct affinity_context * ctx)8514 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8515 {
8516 int retval;
8517 cpumask_var_t cpus_allowed, new_mask;
8518 #ifdef CONFIG_CPU_ISOLATION_OPT
8519 int dest_cpu;
8520 cpumask_t allowed_mask;
8521 #endif
8522 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8523 return -ENOMEM;
8524
8525 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8526 retval = -ENOMEM;
8527 goto out_free_cpus_allowed;
8528 }
8529
8530 cpuset_cpus_allowed(p, cpus_allowed);
8531 cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8532
8533 ctx->new_mask = new_mask;
8534 ctx->flags |= SCA_CHECK;
8535
8536 retval = dl_task_check_affinity(p, new_mask);
8537 if (retval)
8538 goto out_free_new_mask;
8539 #ifdef CONFIG_CPU_ISOLATION_OPT
8540 cpumask_andnot(&allowed_mask, new_mask, cpu_isolated_mask);
8541 dest_cpu = cpumask_any_and(cpu_active_mask, &allowed_mask);
8542 if (dest_cpu < nr_cpu_ids) {
8543 #endif
8544 retval = __set_cpus_allowed_ptr(p, ctx);
8545 if (retval)
8546 goto out_free_new_mask;
8547 #ifdef CONFIG_CPU_ISOLATION_OPT
8548 } else {
8549 retval = -EINVAL;
8550 }
8551 #endif
8552 cpuset_cpus_allowed(p, cpus_allowed);
8553 if (!cpumask_subset(new_mask, cpus_allowed)) {
8554 /*
8555 * We must have raced with a concurrent cpuset update.
8556 * Just reset the cpumask to the cpuset's cpus_allowed.
8557 */
8558 cpumask_copy(new_mask, cpus_allowed);
8559
8560 /*
8561 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8562 * will restore the previous user_cpus_ptr value.
8563 *
8564 * In the unlikely event a previous user_cpus_ptr exists,
8565 * we need to further restrict the mask to what is allowed
8566 * by that old user_cpus_ptr.
8567 */
8568 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8569 bool empty = !cpumask_and(new_mask, new_mask,
8570 ctx->user_mask);
8571
8572 if (empty)
8573 cpumask_copy(new_mask, cpus_allowed);
8574 }
8575 __set_cpus_allowed_ptr(p, ctx);
8576 retval = -EINVAL;
8577 }
8578
8579 out_free_new_mask:
8580 free_cpumask_var(new_mask);
8581 out_free_cpus_allowed:
8582 free_cpumask_var(cpus_allowed);
8583 return retval;
8584 }
8585
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)8586 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8587 {
8588 struct affinity_context ac;
8589 struct cpumask *user_mask;
8590 struct task_struct *p;
8591 int retval;
8592 #ifdef CONFIG_CPU_ISOLATION_OPT
8593 int dest_cpu;
8594 cpumask_t allowed_mask;
8595 #endif
8596
8597 rcu_read_lock();
8598
8599 p = find_process_by_pid(pid);
8600 if (!p) {
8601 rcu_read_unlock();
8602 return -ESRCH;
8603 }
8604
8605 /* Prevent p going away */
8606 get_task_struct(p);
8607 rcu_read_unlock();
8608
8609 if (p->flags & PF_NO_SETAFFINITY) {
8610 retval = -EINVAL;
8611 goto out_put_task;
8612 }
8613
8614 if (!check_same_owner(p)) {
8615 rcu_read_lock();
8616 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8617 rcu_read_unlock();
8618 retval = -EPERM;
8619 goto out_put_task;
8620 }
8621 rcu_read_unlock();
8622 }
8623
8624 retval = security_task_setscheduler(p);
8625 if (retval)
8626 goto out_put_task;
8627
8628 /*
8629 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8630 * alloc_user_cpus_ptr() returns NULL.
8631 */
8632 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8633 if (user_mask) {
8634 cpumask_copy(user_mask, in_mask);
8635 } else if (IS_ENABLED(CONFIG_SMP)) {
8636 retval = -ENOMEM;
8637 goto out_put_task;
8638 }
8639
8640 ac = (struct affinity_context){
8641 .new_mask = in_mask,
8642 .user_mask = user_mask,
8643 .flags = SCA_USER,
8644 };
8645
8646 retval = __sched_setaffinity(p, &ac);
8647 kfree(ac.user_mask);
8648
8649 out_put_task:
8650 put_task_struct(p);
8651 return retval;
8652 }
8653
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)8654 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8655 struct cpumask *new_mask)
8656 {
8657 if (len < cpumask_size())
8658 cpumask_clear(new_mask);
8659 else if (len > cpumask_size())
8660 len = cpumask_size();
8661
8662 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8663 }
8664
8665 /**
8666 * sys_sched_setaffinity - set the CPU affinity of a process
8667 * @pid: pid of the process
8668 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8669 * @user_mask_ptr: user-space pointer to the new CPU mask
8670 *
8671 * Return: 0 on success. An error code otherwise.
8672 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8673 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8674 unsigned long __user *, user_mask_ptr)
8675 {
8676 cpumask_var_t new_mask;
8677 int retval;
8678
8679 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8680 return -ENOMEM;
8681
8682 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8683 if (retval == 0)
8684 retval = sched_setaffinity(pid, new_mask);
8685 free_cpumask_var(new_mask);
8686 return retval;
8687 }
8688
sched_getaffinity(pid_t pid,struct cpumask * mask)8689 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8690 {
8691 struct task_struct *p;
8692 unsigned long flags;
8693 int retval;
8694
8695 rcu_read_lock();
8696
8697 retval = -ESRCH;
8698 p = find_process_by_pid(pid);
8699 if (!p)
8700 goto out_unlock;
8701
8702 retval = security_task_getscheduler(p);
8703 if (retval)
8704 goto out_unlock;
8705
8706 raw_spin_lock_irqsave(&p->pi_lock, flags);
8707 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8708
8709 #ifdef CONFIG_CPU_ISOLATION_OPT
8710 /* The userspace tasks are forbidden to run on
8711 * isolated CPUs. So exclude isolated CPUs from
8712 * the getaffinity.
8713 */
8714 if (!(p->flags & PF_KTHREAD))
8715 cpumask_andnot(mask, mask, cpu_isolated_mask);
8716 #endif
8717
8718 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8719
8720 out_unlock:
8721 rcu_read_unlock();
8722
8723 return retval;
8724 }
8725
8726 /**
8727 * sys_sched_getaffinity - get the CPU affinity of a process
8728 * @pid: pid of the process
8729 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8730 * @user_mask_ptr: user-space pointer to hold the current CPU mask
8731 *
8732 * Return: size of CPU mask copied to user_mask_ptr on success. An
8733 * error code otherwise.
8734 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8735 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8736 unsigned long __user *, user_mask_ptr)
8737 {
8738 int ret;
8739 cpumask_var_t mask;
8740
8741 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8742 return -EINVAL;
8743 if (len & (sizeof(unsigned long)-1))
8744 return -EINVAL;
8745
8746 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8747 return -ENOMEM;
8748
8749 ret = sched_getaffinity(pid, mask);
8750 if (ret == 0) {
8751 unsigned int retlen = min(len, cpumask_size());
8752
8753 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8754 ret = -EFAULT;
8755 else
8756 ret = retlen;
8757 }
8758 free_cpumask_var(mask);
8759
8760 return ret;
8761 }
8762
do_sched_yield(void)8763 static void do_sched_yield(void)
8764 {
8765 struct rq_flags rf;
8766 struct rq *rq;
8767
8768 rq = this_rq_lock_irq(&rf);
8769
8770 schedstat_inc(rq->yld_count);
8771 current->sched_class->yield_task(rq);
8772
8773 preempt_disable();
8774 rq_unlock_irq(rq, &rf);
8775 sched_preempt_enable_no_resched();
8776
8777 schedule();
8778 }
8779
8780 /**
8781 * sys_sched_yield - yield the current processor to other threads.
8782 *
8783 * This function yields the current CPU to other tasks. If there are no
8784 * other threads running on this CPU then this function will return.
8785 *
8786 * Return: 0.
8787 */
SYSCALL_DEFINE0(sched_yield)8788 SYSCALL_DEFINE0(sched_yield)
8789 {
8790 do_sched_yield();
8791 return 0;
8792 }
8793
8794 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)8795 int __sched __cond_resched(void)
8796 {
8797 if (should_resched(0) && !irqs_disabled()) {
8798 preempt_schedule_common();
8799 return 1;
8800 }
8801 /*
8802 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8803 * whether the current CPU is in an RCU read-side critical section,
8804 * so the tick can report quiescent states even for CPUs looping
8805 * in kernel context. In contrast, in non-preemptible kernels,
8806 * RCU readers leave no in-memory hints, which means that CPU-bound
8807 * processes executing in kernel context might never report an
8808 * RCU quiescent state. Therefore, the following code causes
8809 * cond_resched() to report a quiescent state, but only when RCU
8810 * is in urgent need of one.
8811 */
8812 #ifndef CONFIG_PREEMPT_RCU
8813 rcu_all_qs();
8814 #endif
8815 return 0;
8816 }
8817 EXPORT_SYMBOL(__cond_resched);
8818 #endif
8819
8820 #ifdef CONFIG_PREEMPT_DYNAMIC
8821 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8822 #define cond_resched_dynamic_enabled __cond_resched
8823 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
8824 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8825 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8826
8827 #define might_resched_dynamic_enabled __cond_resched
8828 #define might_resched_dynamic_disabled ((void *)&__static_call_return0)
8829 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8830 EXPORT_STATIC_CALL_TRAMP(might_resched);
8831 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8832 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
dynamic_cond_resched(void)8833 int __sched dynamic_cond_resched(void)
8834 {
8835 klp_sched_try_switch();
8836 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8837 return 0;
8838 return __cond_resched();
8839 }
8840 EXPORT_SYMBOL(dynamic_cond_resched);
8841
8842 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
dynamic_might_resched(void)8843 int __sched dynamic_might_resched(void)
8844 {
8845 if (!static_branch_unlikely(&sk_dynamic_might_resched))
8846 return 0;
8847 return __cond_resched();
8848 }
8849 EXPORT_SYMBOL(dynamic_might_resched);
8850 #endif
8851 #endif
8852
8853 /*
8854 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8855 * call schedule, and on return reacquire the lock.
8856 *
8857 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8858 * operations here to prevent schedule() from being called twice (once via
8859 * spin_unlock(), once by hand).
8860 */
__cond_resched_lock(spinlock_t * lock)8861 int __cond_resched_lock(spinlock_t *lock)
8862 {
8863 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8864 int ret = 0;
8865
8866 lockdep_assert_held(lock);
8867
8868 if (spin_needbreak(lock) || resched) {
8869 spin_unlock(lock);
8870 if (!_cond_resched())
8871 cpu_relax();
8872 ret = 1;
8873 spin_lock(lock);
8874 }
8875 return ret;
8876 }
8877 EXPORT_SYMBOL(__cond_resched_lock);
8878
__cond_resched_rwlock_read(rwlock_t * lock)8879 int __cond_resched_rwlock_read(rwlock_t *lock)
8880 {
8881 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8882 int ret = 0;
8883
8884 lockdep_assert_held_read(lock);
8885
8886 if (rwlock_needbreak(lock) || resched) {
8887 read_unlock(lock);
8888 if (!_cond_resched())
8889 cpu_relax();
8890 ret = 1;
8891 read_lock(lock);
8892 }
8893 return ret;
8894 }
8895 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8896
__cond_resched_rwlock_write(rwlock_t * lock)8897 int __cond_resched_rwlock_write(rwlock_t *lock)
8898 {
8899 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8900 int ret = 0;
8901
8902 lockdep_assert_held_write(lock);
8903
8904 if (rwlock_needbreak(lock) || resched) {
8905 write_unlock(lock);
8906 if (!_cond_resched())
8907 cpu_relax();
8908 ret = 1;
8909 write_lock(lock);
8910 }
8911 return ret;
8912 }
8913 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8914
8915 #ifdef CONFIG_PREEMPT_DYNAMIC
8916
8917 #ifdef CONFIG_GENERIC_ENTRY
8918 #include <linux/entry-common.h>
8919 #endif
8920
8921 /*
8922 * SC:cond_resched
8923 * SC:might_resched
8924 * SC:preempt_schedule
8925 * SC:preempt_schedule_notrace
8926 * SC:irqentry_exit_cond_resched
8927 *
8928 *
8929 * NONE:
8930 * cond_resched <- __cond_resched
8931 * might_resched <- RET0
8932 * preempt_schedule <- NOP
8933 * preempt_schedule_notrace <- NOP
8934 * irqentry_exit_cond_resched <- NOP
8935 *
8936 * VOLUNTARY:
8937 * cond_resched <- __cond_resched
8938 * might_resched <- __cond_resched
8939 * preempt_schedule <- NOP
8940 * preempt_schedule_notrace <- NOP
8941 * irqentry_exit_cond_resched <- NOP
8942 *
8943 * FULL:
8944 * cond_resched <- RET0
8945 * might_resched <- RET0
8946 * preempt_schedule <- preempt_schedule
8947 * preempt_schedule_notrace <- preempt_schedule_notrace
8948 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8949 */
8950
8951 enum {
8952 preempt_dynamic_undefined = -1,
8953 preempt_dynamic_none,
8954 preempt_dynamic_voluntary,
8955 preempt_dynamic_full,
8956 };
8957
8958 int preempt_dynamic_mode = preempt_dynamic_undefined;
8959
sched_dynamic_mode(const char * str)8960 int sched_dynamic_mode(const char *str)
8961 {
8962 if (!strcmp(str, "none"))
8963 return preempt_dynamic_none;
8964
8965 if (!strcmp(str, "voluntary"))
8966 return preempt_dynamic_voluntary;
8967
8968 if (!strcmp(str, "full"))
8969 return preempt_dynamic_full;
8970
8971 return -EINVAL;
8972 }
8973
8974 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8975 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
8976 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
8977 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8978 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
8979 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
8980 #else
8981 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8982 #endif
8983
8984 static DEFINE_MUTEX(sched_dynamic_mutex);
8985 static bool klp_override;
8986
__sched_dynamic_update(int mode)8987 static void __sched_dynamic_update(int mode)
8988 {
8989 /*
8990 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8991 * the ZERO state, which is invalid.
8992 */
8993 if (!klp_override)
8994 preempt_dynamic_enable(cond_resched);
8995 preempt_dynamic_enable(might_resched);
8996 preempt_dynamic_enable(preempt_schedule);
8997 preempt_dynamic_enable(preempt_schedule_notrace);
8998 preempt_dynamic_enable(irqentry_exit_cond_resched);
8999
9000 switch (mode) {
9001 case preempt_dynamic_none:
9002 if (!klp_override)
9003 preempt_dynamic_enable(cond_resched);
9004 preempt_dynamic_disable(might_resched);
9005 preempt_dynamic_disable(preempt_schedule);
9006 preempt_dynamic_disable(preempt_schedule_notrace);
9007 preempt_dynamic_disable(irqentry_exit_cond_resched);
9008 if (mode != preempt_dynamic_mode)
9009 pr_info("Dynamic Preempt: none\n");
9010 break;
9011
9012 case preempt_dynamic_voluntary:
9013 if (!klp_override)
9014 preempt_dynamic_enable(cond_resched);
9015 preempt_dynamic_enable(might_resched);
9016 preempt_dynamic_disable(preempt_schedule);
9017 preempt_dynamic_disable(preempt_schedule_notrace);
9018 preempt_dynamic_disable(irqentry_exit_cond_resched);
9019 if (mode != preempt_dynamic_mode)
9020 pr_info("Dynamic Preempt: voluntary\n");
9021 break;
9022
9023 case preempt_dynamic_full:
9024 if (!klp_override)
9025 preempt_dynamic_disable(cond_resched);
9026 preempt_dynamic_disable(might_resched);
9027 preempt_dynamic_enable(preempt_schedule);
9028 preempt_dynamic_enable(preempt_schedule_notrace);
9029 preempt_dynamic_enable(irqentry_exit_cond_resched);
9030 if (mode != preempt_dynamic_mode)
9031 pr_info("Dynamic Preempt: full\n");
9032 break;
9033 }
9034
9035 preempt_dynamic_mode = mode;
9036 }
9037
sched_dynamic_update(int mode)9038 void sched_dynamic_update(int mode)
9039 {
9040 mutex_lock(&sched_dynamic_mutex);
9041 __sched_dynamic_update(mode);
9042 mutex_unlock(&sched_dynamic_mutex);
9043 }
9044
9045 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
9046
klp_cond_resched(void)9047 static int klp_cond_resched(void)
9048 {
9049 __klp_sched_try_switch();
9050 return __cond_resched();
9051 }
9052
sched_dynamic_klp_enable(void)9053 void sched_dynamic_klp_enable(void)
9054 {
9055 mutex_lock(&sched_dynamic_mutex);
9056
9057 klp_override = true;
9058 static_call_update(cond_resched, klp_cond_resched);
9059
9060 mutex_unlock(&sched_dynamic_mutex);
9061 }
9062
sched_dynamic_klp_disable(void)9063 void sched_dynamic_klp_disable(void)
9064 {
9065 mutex_lock(&sched_dynamic_mutex);
9066
9067 klp_override = false;
9068 __sched_dynamic_update(preempt_dynamic_mode);
9069
9070 mutex_unlock(&sched_dynamic_mutex);
9071 }
9072
9073 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
9074
setup_preempt_mode(char * str)9075 static int __init setup_preempt_mode(char *str)
9076 {
9077 int mode = sched_dynamic_mode(str);
9078 if (mode < 0) {
9079 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
9080 return 0;
9081 }
9082
9083 sched_dynamic_update(mode);
9084 return 1;
9085 }
9086 __setup("preempt=", setup_preempt_mode);
9087
preempt_dynamic_init(void)9088 static void __init preempt_dynamic_init(void)
9089 {
9090 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
9091 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
9092 sched_dynamic_update(preempt_dynamic_none);
9093 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
9094 sched_dynamic_update(preempt_dynamic_voluntary);
9095 } else {
9096 /* Default static call setting, nothing to do */
9097 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
9098 preempt_dynamic_mode = preempt_dynamic_full;
9099 pr_info("Dynamic Preempt: full\n");
9100 }
9101 }
9102 }
9103
9104 #define PREEMPT_MODEL_ACCESSOR(mode) \
9105 bool preempt_model_##mode(void) \
9106 { \
9107 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
9108 return preempt_dynamic_mode == preempt_dynamic_##mode; \
9109 } \
9110 EXPORT_SYMBOL_GPL(preempt_model_##mode)
9111
9112 PREEMPT_MODEL_ACCESSOR(none);
9113 PREEMPT_MODEL_ACCESSOR(voluntary);
9114 PREEMPT_MODEL_ACCESSOR(full);
9115
9116 #else /* !CONFIG_PREEMPT_DYNAMIC */
9117
preempt_dynamic_init(void)9118 static inline void preempt_dynamic_init(void) { }
9119
9120 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
9121
9122 /**
9123 * yield - yield the current processor to other threads.
9124 *
9125 * Do not ever use this function, there's a 99% chance you're doing it wrong.
9126 *
9127 * The scheduler is at all times free to pick the calling task as the most
9128 * eligible task to run, if removing the yield() call from your code breaks
9129 * it, it's already broken.
9130 *
9131 * Typical broken usage is:
9132 *
9133 * while (!event)
9134 * yield();
9135 *
9136 * where one assumes that yield() will let 'the other' process run that will
9137 * make event true. If the current task is a SCHED_FIFO task that will never
9138 * happen. Never use yield() as a progress guarantee!!
9139 *
9140 * If you want to use yield() to wait for something, use wait_event().
9141 * If you want to use yield() to be 'nice' for others, use cond_resched().
9142 * If you still want to use yield(), do not!
9143 */
yield(void)9144 void __sched yield(void)
9145 {
9146 set_current_state(TASK_RUNNING);
9147 do_sched_yield();
9148 }
9149 EXPORT_SYMBOL(yield);
9150
9151 /**
9152 * yield_to - yield the current processor to another thread in
9153 * your thread group, or accelerate that thread toward the
9154 * processor it's on.
9155 * @p: target task
9156 * @preempt: whether task preemption is allowed or not
9157 *
9158 * It's the caller's job to ensure that the target task struct
9159 * can't go away on us before we can do any checks.
9160 *
9161 * Return:
9162 * true (>0) if we indeed boosted the target task.
9163 * false (0) if we failed to boost the target.
9164 * -ESRCH if there's no task to yield to.
9165 */
yield_to(struct task_struct * p,bool preempt)9166 int __sched yield_to(struct task_struct *p, bool preempt)
9167 {
9168 struct task_struct *curr = current;
9169 struct rq *rq, *p_rq;
9170 unsigned long flags;
9171 int yielded = 0;
9172
9173 local_irq_save(flags);
9174 rq = this_rq();
9175
9176 again:
9177 p_rq = task_rq(p);
9178 /*
9179 * If we're the only runnable task on the rq and target rq also
9180 * has only one task, there's absolutely no point in yielding.
9181 */
9182 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
9183 yielded = -ESRCH;
9184 goto out_irq;
9185 }
9186
9187 double_rq_lock(rq, p_rq);
9188 if (task_rq(p) != p_rq) {
9189 double_rq_unlock(rq, p_rq);
9190 goto again;
9191 }
9192
9193 if (!curr->sched_class->yield_to_task)
9194 goto out_unlock;
9195
9196 if (curr->sched_class != p->sched_class)
9197 goto out_unlock;
9198
9199 if (task_on_cpu(p_rq, p) || !task_is_running(p))
9200 goto out_unlock;
9201
9202 yielded = curr->sched_class->yield_to_task(rq, p);
9203 if (yielded) {
9204 schedstat_inc(rq->yld_count);
9205 /*
9206 * Make p's CPU reschedule; pick_next_entity takes care of
9207 * fairness.
9208 */
9209 if (preempt && rq != p_rq)
9210 resched_curr(p_rq);
9211 }
9212
9213 out_unlock:
9214 double_rq_unlock(rq, p_rq);
9215 out_irq:
9216 local_irq_restore(flags);
9217
9218 if (yielded > 0)
9219 schedule();
9220
9221 return yielded;
9222 }
9223 EXPORT_SYMBOL_GPL(yield_to);
9224
io_schedule_prepare(void)9225 int io_schedule_prepare(void)
9226 {
9227 int old_iowait = current->in_iowait;
9228
9229 current->in_iowait = 1;
9230 blk_flush_plug(current->plug, true);
9231 return old_iowait;
9232 }
9233
io_schedule_finish(int token)9234 void io_schedule_finish(int token)
9235 {
9236 current->in_iowait = token;
9237 }
9238
9239 /*
9240 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
9241 * that process accounting knows that this is a task in IO wait state.
9242 */
io_schedule_timeout(long timeout)9243 long __sched io_schedule_timeout(long timeout)
9244 {
9245 int token;
9246 long ret;
9247
9248 token = io_schedule_prepare();
9249 ret = schedule_timeout(timeout);
9250 io_schedule_finish(token);
9251
9252 return ret;
9253 }
9254 EXPORT_SYMBOL(io_schedule_timeout);
9255
io_schedule(void)9256 void __sched io_schedule(void)
9257 {
9258 int token;
9259
9260 token = io_schedule_prepare();
9261 schedule();
9262 io_schedule_finish(token);
9263 }
9264 EXPORT_SYMBOL(io_schedule);
9265
9266 /**
9267 * sys_sched_get_priority_max - return maximum RT priority.
9268 * @policy: scheduling class.
9269 *
9270 * Return: On success, this syscall returns the maximum
9271 * rt_priority that can be used by a given scheduling class.
9272 * On failure, a negative error code is returned.
9273 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)9274 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9275 {
9276 int ret = -EINVAL;
9277
9278 switch (policy) {
9279 case SCHED_FIFO:
9280 case SCHED_RR:
9281 ret = MAX_RT_PRIO-1;
9282 break;
9283 case SCHED_DEADLINE:
9284 case SCHED_NORMAL:
9285 case SCHED_BATCH:
9286 case SCHED_IDLE:
9287 ret = 0;
9288 break;
9289 }
9290 return ret;
9291 }
9292
9293 /**
9294 * sys_sched_get_priority_min - return minimum RT priority.
9295 * @policy: scheduling class.
9296 *
9297 * Return: On success, this syscall returns the minimum
9298 * rt_priority that can be used by a given scheduling class.
9299 * On failure, a negative error code is returned.
9300 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)9301 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9302 {
9303 int ret = -EINVAL;
9304
9305 switch (policy) {
9306 case SCHED_FIFO:
9307 case SCHED_RR:
9308 ret = 1;
9309 break;
9310 case SCHED_DEADLINE:
9311 case SCHED_NORMAL:
9312 case SCHED_BATCH:
9313 case SCHED_IDLE:
9314 ret = 0;
9315 }
9316 return ret;
9317 }
9318
sched_rr_get_interval(pid_t pid,struct timespec64 * t)9319 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9320 {
9321 struct task_struct *p;
9322 unsigned int time_slice;
9323 struct rq_flags rf;
9324 struct rq *rq;
9325 int retval;
9326
9327 if (pid < 0)
9328 return -EINVAL;
9329
9330 retval = -ESRCH;
9331 rcu_read_lock();
9332 p = find_process_by_pid(pid);
9333 if (!p)
9334 goto out_unlock;
9335
9336 retval = security_task_getscheduler(p);
9337 if (retval)
9338 goto out_unlock;
9339
9340 rq = task_rq_lock(p, &rf);
9341 time_slice = 0;
9342 if (p->sched_class->get_rr_interval)
9343 time_slice = p->sched_class->get_rr_interval(rq, p);
9344 task_rq_unlock(rq, p, &rf);
9345
9346 rcu_read_unlock();
9347 jiffies_to_timespec64(time_slice, t);
9348 return 0;
9349
9350 out_unlock:
9351 rcu_read_unlock();
9352 return retval;
9353 }
9354
9355 /**
9356 * sys_sched_rr_get_interval - return the default timeslice of a process.
9357 * @pid: pid of the process.
9358 * @interval: userspace pointer to the timeslice value.
9359 *
9360 * this syscall writes the default timeslice value of a given process
9361 * into the user-space timespec buffer. A value of '0' means infinity.
9362 *
9363 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9364 * an error code.
9365 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)9366 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9367 struct __kernel_timespec __user *, interval)
9368 {
9369 struct timespec64 t;
9370 int retval = sched_rr_get_interval(pid, &t);
9371
9372 if (retval == 0)
9373 retval = put_timespec64(&t, interval);
9374
9375 return retval;
9376 }
9377
9378 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)9379 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9380 struct old_timespec32 __user *, interval)
9381 {
9382 struct timespec64 t;
9383 int retval = sched_rr_get_interval(pid, &t);
9384
9385 if (retval == 0)
9386 retval = put_old_timespec32(&t, interval);
9387 return retval;
9388 }
9389 #endif
9390
sched_show_task(struct task_struct * p)9391 void sched_show_task(struct task_struct *p)
9392 {
9393 unsigned long free = 0;
9394 int ppid;
9395
9396 if (!try_get_task_stack(p))
9397 return;
9398
9399 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9400
9401 if (task_is_running(p))
9402 pr_cont(" running task ");
9403 #ifdef CONFIG_DEBUG_STACK_USAGE
9404 free = stack_not_used(p);
9405 #endif
9406 ppid = 0;
9407 rcu_read_lock();
9408 if (pid_alive(p))
9409 ppid = task_pid_nr(rcu_dereference(p->real_parent));
9410 rcu_read_unlock();
9411 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
9412 free, task_pid_nr(p), ppid,
9413 read_task_thread_flags(p));
9414
9415 print_worker_info(KERN_INFO, p);
9416 print_stop_info(KERN_INFO, p);
9417 show_stack(p, NULL, KERN_INFO);
9418 put_task_stack(p);
9419 }
9420 EXPORT_SYMBOL_GPL(sched_show_task);
9421
9422 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)9423 state_filter_match(unsigned long state_filter, struct task_struct *p)
9424 {
9425 unsigned int state = READ_ONCE(p->__state);
9426
9427 /* no filter, everything matches */
9428 if (!state_filter)
9429 return true;
9430
9431 /* filter, but doesn't match */
9432 if (!(state & state_filter))
9433 return false;
9434
9435 /*
9436 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9437 * TASK_KILLABLE).
9438 */
9439 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9440 return false;
9441
9442 return true;
9443 }
9444
9445
show_state_filter(unsigned int state_filter)9446 void show_state_filter(unsigned int state_filter)
9447 {
9448 struct task_struct *g, *p;
9449
9450 rcu_read_lock();
9451 for_each_process_thread(g, p) {
9452 /*
9453 * reset the NMI-timeout, listing all files on a slow
9454 * console might take a lot of time:
9455 * Also, reset softlockup watchdogs on all CPUs, because
9456 * another CPU might be blocked waiting for us to process
9457 * an IPI.
9458 */
9459 touch_nmi_watchdog();
9460 touch_all_softlockup_watchdogs();
9461 if (state_filter_match(state_filter, p))
9462 sched_show_task(p);
9463 }
9464
9465 #ifdef CONFIG_SCHED_DEBUG
9466 if (!state_filter)
9467 sysrq_sched_debug_show();
9468 #endif
9469 rcu_read_unlock();
9470 /*
9471 * Only show locks if all tasks are dumped:
9472 */
9473 if (!state_filter)
9474 debug_show_all_locks();
9475 }
9476
9477 /**
9478 * init_idle - set up an idle thread for a given CPU
9479 * @idle: task in question
9480 * @cpu: CPU the idle task belongs to
9481 *
9482 * NOTE: this function does not set the idle thread's NEED_RESCHED
9483 * flag, to make booting more robust.
9484 */
init_idle(struct task_struct * idle,int cpu)9485 void __init init_idle(struct task_struct *idle, int cpu)
9486 {
9487 #ifdef CONFIG_SMP
9488 struct affinity_context ac = (struct affinity_context) {
9489 .new_mask = cpumask_of(cpu),
9490 .flags = 0,
9491 };
9492 #endif
9493 struct rq *rq = cpu_rq(cpu);
9494 unsigned long flags;
9495
9496 raw_spin_lock_irqsave(&idle->pi_lock, flags);
9497 raw_spin_rq_lock(rq);
9498
9499 idle->__state = TASK_RUNNING;
9500 idle->se.exec_start = sched_clock();
9501 /*
9502 * PF_KTHREAD should already be set at this point; regardless, make it
9503 * look like a proper per-CPU kthread.
9504 */
9505 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9506 kthread_set_per_cpu(idle, cpu);
9507
9508 #ifdef CONFIG_SMP
9509 /*
9510 * No validation and serialization required at boot time and for
9511 * setting up the idle tasks of not yet online CPUs.
9512 */
9513 set_cpus_allowed_common(idle, &ac);
9514 #endif
9515 /*
9516 * We're having a chicken and egg problem, even though we are
9517 * holding rq->lock, the CPU isn't yet set to this CPU so the
9518 * lockdep check in task_group() will fail.
9519 *
9520 * Similar case to sched_fork(). / Alternatively we could
9521 * use task_rq_lock() here and obtain the other rq->lock.
9522 *
9523 * Silence PROVE_RCU
9524 */
9525 rcu_read_lock();
9526 __set_task_cpu(idle, cpu);
9527 rcu_read_unlock();
9528
9529 rq->idle = idle;
9530 rcu_assign_pointer(rq->curr, idle);
9531 idle->on_rq = TASK_ON_RQ_QUEUED;
9532 #ifdef CONFIG_SMP
9533 idle->on_cpu = 1;
9534 #endif
9535 raw_spin_rq_unlock(rq);
9536 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9537
9538 /* Set the preempt count _outside_ the spinlocks! */
9539 init_idle_preempt_count(idle, cpu);
9540
9541 /*
9542 * The idle tasks have their own, simple scheduling class:
9543 */
9544 idle->sched_class = &idle_sched_class;
9545 ftrace_graph_init_idle_task(idle, cpu);
9546 vtime_init_idle(idle, cpu);
9547 #ifdef CONFIG_SMP
9548 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9549 #endif
9550 }
9551
9552 #ifdef CONFIG_SMP
9553
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)9554 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9555 const struct cpumask *trial)
9556 {
9557 int ret = 1;
9558
9559 if (cpumask_empty(cur))
9560 return ret;
9561
9562 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9563
9564 return ret;
9565 }
9566
task_can_attach(struct task_struct * p)9567 int task_can_attach(struct task_struct *p)
9568 {
9569 int ret = 0;
9570
9571 /*
9572 * Kthreads which disallow setaffinity shouldn't be moved
9573 * to a new cpuset; we don't want to change their CPU
9574 * affinity and isolating such threads by their set of
9575 * allowed nodes is unnecessary. Thus, cpusets are not
9576 * applicable for such threads. This prevents checking for
9577 * success of set_cpus_allowed_ptr() on all attached tasks
9578 * before cpus_mask may be changed.
9579 */
9580 if (p->flags & PF_NO_SETAFFINITY)
9581 ret = -EINVAL;
9582
9583 return ret;
9584 }
9585
9586 bool sched_smp_initialized __read_mostly;
9587
9588 #ifdef CONFIG_NUMA_BALANCING
9589 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)9590 int migrate_task_to(struct task_struct *p, int target_cpu)
9591 {
9592 struct migration_arg arg = { p, target_cpu };
9593 int curr_cpu = task_cpu(p);
9594
9595 if (curr_cpu == target_cpu)
9596 return 0;
9597
9598 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9599 return -EINVAL;
9600
9601 /* TODO: This is not properly updating schedstats */
9602
9603 trace_sched_move_numa(p, curr_cpu, target_cpu);
9604 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9605 }
9606
9607 /*
9608 * Requeue a task on a given node and accurately track the number of NUMA
9609 * tasks on the runqueues
9610 */
sched_setnuma(struct task_struct * p,int nid)9611 void sched_setnuma(struct task_struct *p, int nid)
9612 {
9613 bool queued, running;
9614 struct rq_flags rf;
9615 struct rq *rq;
9616
9617 rq = task_rq_lock(p, &rf);
9618 queued = task_on_rq_queued(p);
9619 running = task_current(rq, p);
9620
9621 if (queued)
9622 dequeue_task(rq, p, DEQUEUE_SAVE);
9623 if (running)
9624 put_prev_task(rq, p);
9625
9626 p->numa_preferred_nid = nid;
9627
9628 if (queued)
9629 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9630 if (running)
9631 set_next_task(rq, p);
9632 task_rq_unlock(rq, p, &rf);
9633 }
9634 #endif /* CONFIG_NUMA_BALANCING */
9635
9636 #ifdef CONFIG_HOTPLUG_CPU
9637 /*
9638 * Ensure that the idle task is using init_mm right before its CPU goes
9639 * offline.
9640 */
idle_task_exit(void)9641 void idle_task_exit(void)
9642 {
9643 struct mm_struct *mm = current->active_mm;
9644
9645 BUG_ON(cpu_online(smp_processor_id()));
9646 BUG_ON(current != this_rq()->idle);
9647
9648 if (mm != &init_mm) {
9649 switch_mm(mm, &init_mm, current);
9650 finish_arch_post_lock_switch();
9651 }
9652
9653 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9654 }
9655
__balance_push_cpu_stop(void * arg)9656 static int __balance_push_cpu_stop(void *arg)
9657 {
9658 struct task_struct *p = arg;
9659 struct rq *rq = this_rq();
9660 struct rq_flags rf;
9661 int cpu;
9662 #ifdef CONFIG_CPU_ISOLATION_OPT
9663 bool allow_isolated = (p->flags & PF_KTHREAD);
9664 #endif
9665
9666 raw_spin_lock_irq(&p->pi_lock);
9667 rq_lock(rq, &rf);
9668
9669 update_rq_clock(rq);
9670
9671 if (task_rq(p) == rq && task_on_rq_queued(p)) {
9672 #ifdef CONFIG_CPU_ISOLATION_OPT
9673 cpu = select_fallback_rq(rq->cpu, p, allow_isolated);
9674 #else
9675 cpu = select_fallback_rq(rq->cpu, p);
9676 #endif
9677 rq = __migrate_task(rq, &rf, p, cpu);
9678 }
9679
9680 rq_unlock(rq, &rf);
9681 raw_spin_unlock_irq(&p->pi_lock);
9682
9683 put_task_struct(p);
9684
9685 return 0;
9686 }
9687
9688 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9689
__pick_migrate_task(struct rq * rq)9690 static struct task_struct *__pick_migrate_task(struct rq *rq)
9691 {
9692 const struct sched_class *class;
9693 struct task_struct *next;
9694
9695 for_each_class(class) {
9696 next = class->pick_next_task(rq);
9697 if (next) {
9698 next->sched_class->put_prev_task(rq, next);
9699 return next;
9700 }
9701 }
9702
9703 /* The idle class should always have a runnable task */
9704 BUG();
9705 }
9706
9707
9708 #ifdef CONFIG_CPU_ISOLATION_OPT
9709 /*
9710 * Remove a task from the runqueue and pretend that it's migrating. This
9711 * should prevent migrations for the detached task and disallow further
9712 * changes to tsk_cpus_allowed.
9713 */
9714 static void
detach_one_task_core(struct task_struct * p,struct rq * rq,struct list_head * tasks)9715 detach_one_task_core(struct task_struct *p, struct rq *rq,
9716 struct list_head *tasks)
9717 {
9718 lockdep_assert_held(&rq->__lock);
9719
9720 p->on_rq = TASK_ON_RQ_MIGRATING;
9721 deactivate_task(rq, p, 0);
9722 list_add(&p->se.group_node, tasks);
9723 }
9724
attach_tasks_core(struct list_head * tasks,struct rq * rq)9725 static void attach_tasks_core(struct list_head *tasks, struct rq *rq)
9726 {
9727 struct task_struct *p;
9728
9729 lockdep_assert_held(&rq->__lock);
9730
9731 while (!list_empty(tasks)) {
9732 p = list_first_entry(tasks, struct task_struct, se.group_node);
9733 list_del_init(&p->se.group_node);
9734
9735 BUG_ON(task_rq(p) != rq);
9736 activate_task(rq, p, 0);
9737 p->on_rq = TASK_ON_RQ_QUEUED;
9738 }
9739 }
9740
9741 #else
9742
9743 static void
detach_one_task_core(struct task_struct * p,struct rq * rq,struct list_head * tasks)9744 detach_one_task_core(struct task_struct *p, struct rq *rq,
9745 struct list_head *tasks)
9746 {
9747 }
9748
attach_tasks_core(struct list_head * tasks,struct rq * rq)9749 static void attach_tasks_core(struct list_head *tasks, struct rq *rq)
9750 {
9751 }
9752
9753 #endif /* CONFIG_CPU_ISOLATION_OPT */
9754
9755 /*
9756 * Ensure we only run per-cpu kthreads once the CPU goes !active.
9757 *
9758 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9759 * effective when the hotplug motion is down.
9760 */
balance_push(struct rq * rq)9761 static void balance_push(struct rq *rq)
9762 {
9763 struct task_struct *push_task = rq->curr;
9764
9765 lockdep_assert_rq_held(rq);
9766
9767 /*
9768 * Ensure the thing is persistent until balance_push_set(.on = false);
9769 */
9770 rq->balance_callback = &balance_push_callback;
9771
9772 /*
9773 * Only active while going offline and when invoked on the outgoing
9774 * CPU.
9775 */
9776 if (!cpu_dying(rq->cpu) || rq != this_rq())
9777 return;
9778
9779 /*
9780 * Both the cpu-hotplug and stop task are in this case and are
9781 * required to complete the hotplug process.
9782 */
9783 if (kthread_is_per_cpu(push_task) ||
9784 is_migration_disabled(push_task)) {
9785
9786 /*
9787 * If this is the idle task on the outgoing CPU try to wake
9788 * up the hotplug control thread which might wait for the
9789 * last task to vanish. The rcuwait_active() check is
9790 * accurate here because the waiter is pinned on this CPU
9791 * and can't obviously be running in parallel.
9792 *
9793 * On RT kernels this also has to check whether there are
9794 * pinned and scheduled out tasks on the runqueue. They
9795 * need to leave the migrate disabled section first.
9796 */
9797 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9798 rcuwait_active(&rq->hotplug_wait)) {
9799 raw_spin_rq_unlock(rq);
9800 rcuwait_wake_up(&rq->hotplug_wait);
9801 raw_spin_rq_lock(rq);
9802 }
9803 return;
9804 }
9805
9806 get_task_struct(push_task);
9807 /*
9808 * Temporarily drop rq->lock such that we can wake-up the stop task.
9809 * Both preemption and IRQs are still disabled.
9810 */
9811 preempt_disable();
9812 raw_spin_rq_unlock(rq);
9813 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9814 this_cpu_ptr(&push_work));
9815 preempt_enable();
9816 /*
9817 * At this point need_resched() is true and we'll take the loop in
9818 * schedule(). The next pick is obviously going to be the stop task
9819 * which kthread_is_per_cpu() and will push this task away.
9820 */
9821 raw_spin_rq_lock(rq);
9822 }
9823
balance_push_set(int cpu,bool on)9824 static void balance_push_set(int cpu, bool on)
9825 {
9826 struct rq *rq = cpu_rq(cpu);
9827 struct rq_flags rf;
9828
9829 rq_lock_irqsave(rq, &rf);
9830 if (on) {
9831 WARN_ON_ONCE(rq->balance_callback);
9832 rq->balance_callback = &balance_push_callback;
9833 } else if (rq->balance_callback == &balance_push_callback) {
9834 rq->balance_callback = NULL;
9835 }
9836 rq_unlock_irqrestore(rq, &rf);
9837 }
9838
9839 /*
9840 * Invoked from a CPUs hotplug control thread after the CPU has been marked
9841 * inactive. All tasks which are not per CPU kernel threads are either
9842 * pushed off this CPU now via balance_push() or placed on a different CPU
9843 * during wakeup. Wait until the CPU is quiescent.
9844 */
balance_hotplug_wait(void)9845 static void balance_hotplug_wait(void)
9846 {
9847 struct rq *rq = this_rq();
9848
9849 rcuwait_wait_event(&rq->hotplug_wait,
9850 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9851 TASK_UNINTERRUPTIBLE);
9852 }
9853
9854 #else
9855
balance_push(struct rq * rq)9856 static inline void balance_push(struct rq *rq)
9857 {
9858 }
9859
balance_push_set(int cpu,bool on)9860 static inline void balance_push_set(int cpu, bool on)
9861 {
9862 }
9863
balance_hotplug_wait(void)9864 static inline void balance_hotplug_wait(void)
9865 {
9866 }
9867 #endif /* CONFIG_HOTPLUG_CPU */
9868
9869
9870 /*
9871 * Migrate all tasks (not pinned if pinned argument say so) from the rq,
9872 * sleeping tasks will be migrated by try_to_wake_up()->select_task_rq().
9873 *
9874 * Called with rq->lock held even though we'er in stop_machine() and
9875 * there's no concurrency possible, we hold the required locks anyway
9876 * because of lock validation efforts.
9877 */
migrate_tasks(struct rq * dead_rq,struct rq_flags * rf,bool migrate_pinned_tasks)9878 void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf,
9879 bool migrate_pinned_tasks)
9880 {
9881 struct rq *rq = dead_rq;
9882 struct task_struct *next, *stop = rq->stop;
9883 struct rq_flags orf = *rf;
9884 int dest_cpu;
9885 unsigned int num_pinned_kthreads = 1; /* this thread */
9886 LIST_HEAD(tasks);
9887 cpumask_t avail_cpus;
9888
9889 #ifdef CONFIG_CPU_ISOLATION_OPT
9890 cpumask_andnot(&avail_cpus, cpu_online_mask, cpu_isolated_mask);
9891 #else
9892 cpumask_copy(&avail_cpus, cpu_online_mask);
9893 #endif
9894
9895 /*
9896 * Fudge the rq selection such that the below task selection loop
9897 * doesn't get stuck on the currently eligible stop task.
9898 *
9899 * We're currently inside stop_machine() and the rq is either stuck
9900 * in the stop_machine_cpu_stop() loop, or we're executing this code,
9901 * either way we should never end up calling schedule() until we're
9902 * done here.
9903 */
9904 rq->stop = NULL;
9905
9906 /*
9907 * put_prev_task() and pick_next_task() sched
9908 * class method both need to have an up-to-date
9909 * value of rq->clock[_task]
9910 */
9911 update_rq_clock(rq);
9912
9913 for (;;) {
9914 /*
9915 * There's this thread running, bail when that's the only
9916 * remaining thread.
9917 */
9918 if (rq->nr_running == 1)
9919 break;
9920
9921 next = __pick_migrate_task(rq);
9922
9923 if (!migrate_pinned_tasks && next->flags & PF_KTHREAD &&
9924 !cpumask_intersects(&avail_cpus, &next->cpus_mask)) {
9925 detach_one_task_core(next, rq, &tasks);
9926 num_pinned_kthreads += 1;
9927 continue;
9928 }
9929
9930 /*
9931 * Rules for changing task_struct::cpus_mask are holding
9932 * both pi_lock and rq->lock, such that holding either
9933 * stabilizes the mask.
9934 *
9935 * Drop rq->lock is not quite as disastrous as it usually is
9936 * because !cpu_active at this point, which means load-balance
9937 * will not interfere. Also, stop-machine.
9938 */
9939 rq_unlock(rq, rf);
9940 raw_spin_lock(&next->pi_lock);
9941 rq_relock(rq, rf);
9942 if (!(rq->clock_update_flags & RQCF_UPDATED))
9943 update_rq_clock(rq);
9944
9945 /*
9946 * Since we're inside stop-machine, _nothing_ should have
9947 * changed the task, WARN if weird stuff happened, because in
9948 * that case the above rq->lock drop is a fail too.
9949 * However, during cpu isolation the load balancer might have
9950 * interferred since we don't stop all CPUs. Ignore warning for
9951 * this case.
9952 */
9953 if (task_rq(next) != rq || !task_on_rq_queued(next)) {
9954 WARN_ON(migrate_pinned_tasks);
9955 raw_spin_unlock(&next->pi_lock);
9956 continue;
9957 }
9958
9959 /* Find suitable destination for @next, with force if needed. */
9960 #ifdef CONFIG_CPU_ISOLATION_OPT
9961 dest_cpu = select_fallback_rq(dead_rq->cpu, next, false);
9962 #else
9963 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
9964 #endif
9965 rq = __migrate_task(rq, rf, next, dest_cpu);
9966 if (rq != dead_rq) {
9967 rq_unlock(rq, rf);
9968 rq = dead_rq;
9969 *rf = orf;
9970 rq_relock(rq, rf);
9971 if (!(rq->clock_update_flags & RQCF_UPDATED))
9972 update_rq_clock(rq);
9973 }
9974 raw_spin_unlock(&next->pi_lock);
9975 }
9976
9977 rq->stop = stop;
9978
9979 if (num_pinned_kthreads > 1)
9980 attach_tasks_core(&tasks, rq);
9981 }
9982
9983 #ifdef CONFIG_SCHED_EAS
clear_eas_migration_request(int cpu)9984 static void clear_eas_migration_request(int cpu)
9985 {
9986 struct rq *rq = cpu_rq(cpu);
9987 unsigned long flags;
9988
9989 clear_reserved(cpu);
9990 if (rq->push_task) {
9991 struct task_struct *push_task = NULL;
9992
9993 raw_spin_lock_irqsave(&rq->__lock, flags);
9994 if (rq->push_task) {
9995 clear_reserved(rq->push_cpu);
9996 push_task = rq->push_task;
9997 rq->push_task = NULL;
9998 }
9999 rq->active_balance = 0;
10000 raw_spin_unlock_irqrestore(&rq->__lock, flags);
10001 if (push_task)
10002 put_task_struct(push_task);
10003 }
10004 }
10005 #else
clear_eas_migration_request(int cpu)10006 static inline void clear_eas_migration_request(int cpu) {}
10007 #endif
10008
10009 #ifdef CONFIG_CPU_ISOLATION_OPT
do_isolation_work_cpu_stop(void * data)10010 int do_isolation_work_cpu_stop(void *data)
10011 {
10012 unsigned int cpu = smp_processor_id();
10013 struct rq *rq = cpu_rq(cpu);
10014 struct rq_flags rf;
10015
10016 watchdog_disable(cpu);
10017
10018 local_irq_disable();
10019
10020 irq_migrate_all_off_this_cpu();
10021
10022 flush_smp_call_function_queue();
10023
10024 /* Update our root-domain */
10025 rq_lock(rq, &rf);
10026
10027 /*
10028 * Temporarily mark the rq as offline. This will allow us to
10029 * move tasks off the CPU.
10030 */
10031 if (rq->rd) {
10032 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
10033 set_rq_offline(rq);
10034 }
10035
10036 migrate_tasks(rq, &rf, false);
10037
10038 if (rq->rd)
10039 set_rq_online(rq);
10040 rq_unlock(rq, &rf);
10041
10042 clear_eas_migration_request(cpu);
10043 local_irq_enable();
10044 return 0;
10045 }
10046
do_unisolation_work_cpu_stop(void * data)10047 int do_unisolation_work_cpu_stop(void *data)
10048 {
10049 watchdog_enable(smp_processor_id());
10050 return 0;
10051 }
10052
sched_update_group_capacities(int cpu)10053 static void sched_update_group_capacities(int cpu)
10054 {
10055 struct sched_domain *sd;
10056
10057 mutex_lock(&sched_domains_mutex);
10058 rcu_read_lock();
10059
10060 for_each_domain(cpu, sd) {
10061 int balance_cpu = group_balance_cpu(sd->groups);
10062
10063 init_sched_groups_capacity(cpu, sd);
10064 /*
10065 * Need to ensure this is also called with balancing
10066 * cpu.
10067 */
10068 if (cpu != balance_cpu)
10069 init_sched_groups_capacity(balance_cpu, sd);
10070 }
10071
10072 rcu_read_unlock();
10073 mutex_unlock(&sched_domains_mutex);
10074 }
10075
10076 static unsigned int cpu_isolation_vote[NR_CPUS];
10077
sched_isolate_count(const cpumask_t * mask,bool include_offline)10078 int sched_isolate_count(const cpumask_t *mask, bool include_offline)
10079 {
10080 cpumask_t count_mask = CPU_MASK_NONE;
10081
10082 if (include_offline) {
10083 cpumask_complement(&count_mask, cpu_online_mask);
10084 cpumask_or(&count_mask, &count_mask, cpu_isolated_mask);
10085 cpumask_and(&count_mask, &count_mask, mask);
10086 } else {
10087 cpumask_and(&count_mask, mask, cpu_isolated_mask);
10088 }
10089
10090 return cpumask_weight(&count_mask);
10091 }
10092
10093 /*
10094 * 1) CPU is isolated and cpu is offlined:
10095 * Unisolate the core.
10096 * 2) CPU is not isolated and CPU is offlined:
10097 * No action taken.
10098 * 3) CPU is offline and request to isolate
10099 * Request ignored.
10100 * 4) CPU is offline and isolated:
10101 * Not a possible state.
10102 * 5) CPU is online and request to isolate
10103 * Normal case: Isolate the CPU
10104 * 6) CPU is not isolated and comes back online
10105 * Nothing to do
10106 *
10107 * Note: The client calling sched_isolate_cpu() is repsonsible for ONLY
10108 * calling sched_unisolate_cpu() on a CPU that the client previously isolated.
10109 * Client is also responsible for unisolating when a core goes offline
10110 * (after CPU is marked offline).
10111 */
10112 static void calc_load_migrate(struct rq *rq);
sched_isolate_cpu(int cpu)10113 int sched_isolate_cpu(int cpu)
10114 {
10115 struct rq *rq;
10116 cpumask_t avail_cpus;
10117 int ret_code = 0;
10118 u64 start_time = 0;
10119
10120 if (trace_sched_isolate_enabled())
10121 start_time = sched_clock();
10122
10123 cpu_maps_update_begin();
10124
10125 cpumask_andnot(&avail_cpus, cpu_online_mask, cpu_isolated_mask);
10126
10127 if (cpu < 0 || cpu >= nr_cpu_ids || !cpu_possible(cpu) ||
10128 !cpu_online(cpu) || cpu >= NR_CPUS) {
10129 ret_code = -EINVAL;
10130 goto out;
10131 }
10132
10133 rq = cpu_rq(cpu);
10134
10135 if (++cpu_isolation_vote[cpu] > 1)
10136 goto out;
10137
10138 /* We cannot isolate ALL cpus in the system */
10139 if (cpumask_weight(&avail_cpus) == 1) {
10140 --cpu_isolation_vote[cpu];
10141 ret_code = -EINVAL;
10142 goto out;
10143 }
10144
10145 /*
10146 * There is a race between watchdog being enabled by hotplug and
10147 * core isolation disabling the watchdog. When a CPU is hotplugged in
10148 * and the hotplug lock has been released the watchdog thread might
10149 * not have run yet to enable the watchdog.
10150 * We have to wait for the watchdog to be enabled before proceeding.
10151 */
10152 if (!watchdog_configured(cpu)) {
10153 msleep(20);
10154 if (!watchdog_configured(cpu)) {
10155 --cpu_isolation_vote[cpu];
10156 ret_code = -EBUSY;
10157 goto out;
10158 }
10159 }
10160
10161 set_cpu_isolated(cpu, true);
10162 cpumask_clear_cpu(cpu, &avail_cpus);
10163
10164 /* Migrate timers */
10165 //smp_call_function_any(&avail_cpus, hrtimer_quiesce_cpu, &cpu, 1);
10166 smp_call_function_any(&avail_cpus, timer_quiesce_cpu, &cpu, 1);
10167
10168 watchdog_disable(cpu);
10169 irq_lock_sparse();
10170 stop_cpus(cpumask_of(cpu), do_isolation_work_cpu_stop, 0);
10171 irq_unlock_sparse();
10172
10173 calc_load_migrate(rq);
10174 update_max_interval();
10175 sched_update_group_capacities(cpu);
10176
10177 out:
10178 cpu_maps_update_done();
10179 trace_sched_isolate(cpu, cpumask_bits(cpu_isolated_mask)[0],
10180 start_time, 1);
10181 return ret_code;
10182 }
10183
10184 /*
10185 * Note: The client calling sched_isolate_cpu() is repsonsible for ONLY
10186 * calling sched_unisolate_cpu() on a CPU that the client previously isolated.
10187 * Client is also responsible for unisolating when a core goes offline
10188 * (after CPU is marked offline).
10189 */
sched_unisolate_cpu_unlocked(int cpu)10190 int sched_unisolate_cpu_unlocked(int cpu)
10191 {
10192 int ret_code = 0;
10193 u64 start_time = 0;
10194
10195 if (cpu < 0 || cpu >= nr_cpu_ids || !cpu_possible(cpu)
10196 || cpu >= NR_CPUS) {
10197 ret_code = -EINVAL;
10198 goto out;
10199 }
10200
10201 if (trace_sched_isolate_enabled())
10202 start_time = sched_clock();
10203
10204 if (!cpu_isolation_vote[cpu]) {
10205 ret_code = -EINVAL;
10206 goto out;
10207 }
10208
10209 if (--cpu_isolation_vote[cpu])
10210 goto out;
10211
10212 set_cpu_isolated(cpu, false);
10213 update_max_interval();
10214 sched_update_group_capacities(cpu);
10215
10216 if (cpu_online(cpu)) {
10217 stop_cpus(cpumask_of(cpu), do_unisolation_work_cpu_stop, 0);
10218
10219 /* Kick CPU to immediately do load balancing */
10220 if (!atomic_fetch_or(NOHZ_KICK_MASK, nohz_flags(cpu)))
10221 smp_send_reschedule(cpu);
10222 }
10223
10224 out:
10225 trace_sched_isolate(cpu, cpumask_bits(cpu_isolated_mask)[0],
10226 start_time, 0);
10227 return ret_code;
10228 }
10229
sched_unisolate_cpu(int cpu)10230 int sched_unisolate_cpu(int cpu)
10231 {
10232 int ret_code;
10233
10234 cpu_maps_update_begin();
10235 ret_code = sched_unisolate_cpu_unlocked(cpu);
10236 cpu_maps_update_done();
10237 return ret_code;
10238 }
10239
10240 #endif /* CONFIG_CPU_ISOLATION_OPT */
10241
set_rq_online(struct rq * rq)10242 void set_rq_online(struct rq *rq)
10243 {
10244 if (!rq->online) {
10245 const struct sched_class *class;
10246
10247 cpumask_set_cpu(rq->cpu, rq->rd->online);
10248 rq->online = 1;
10249
10250 for_each_class(class) {
10251 if (class->rq_online)
10252 class->rq_online(rq);
10253 }
10254 }
10255 }
10256
set_rq_offline(struct rq * rq)10257 void set_rq_offline(struct rq *rq)
10258 {
10259 if (rq->online) {
10260 const struct sched_class *class;
10261
10262 update_rq_clock(rq);
10263 for_each_class(class) {
10264 if (class->rq_offline)
10265 class->rq_offline(rq);
10266 }
10267
10268 cpumask_clear_cpu(rq->cpu, rq->rd->online);
10269 rq->online = 0;
10270 }
10271 }
10272
sched_set_rq_online(struct rq * rq,int cpu)10273 static inline void sched_set_rq_online(struct rq *rq, int cpu)
10274 {
10275 struct rq_flags rf;
10276
10277 rq_lock_irqsave(rq, &rf);
10278 if (rq->rd) {
10279 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
10280 set_rq_online(rq);
10281 }
10282 rq_unlock_irqrestore(rq, &rf);
10283 }
10284
sched_set_rq_offline(struct rq * rq,int cpu)10285 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
10286 {
10287 struct rq_flags rf;
10288
10289 rq_lock_irqsave(rq, &rf);
10290 if (rq->rd) {
10291 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
10292 set_rq_offline(rq);
10293 }
10294 rq_unlock_irqrestore(rq, &rf);
10295 }
10296
10297 /*
10298 * used to mark begin/end of suspend/resume:
10299 */
10300 static int num_cpus_frozen;
10301
10302 /*
10303 * Update cpusets according to cpu_active mask. If cpusets are
10304 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
10305 * around partition_sched_domains().
10306 *
10307 * If we come here as part of a suspend/resume, don't touch cpusets because we
10308 * want to restore it back to its original state upon resume anyway.
10309 */
cpuset_cpu_active(void)10310 static void cpuset_cpu_active(void)
10311 {
10312 if (cpuhp_tasks_frozen) {
10313 /*
10314 * num_cpus_frozen tracks how many CPUs are involved in suspend
10315 * resume sequence. As long as this is not the last online
10316 * operation in the resume sequence, just build a single sched
10317 * domain, ignoring cpusets.
10318 */
10319 partition_sched_domains(1, NULL, NULL);
10320 if (--num_cpus_frozen)
10321 return;
10322 /*
10323 * This is the last CPU online operation. So fall through and
10324 * restore the original sched domains by considering the
10325 * cpuset configurations.
10326 */
10327 cpuset_force_rebuild();
10328 }
10329 cpuset_update_active_cpus();
10330 }
10331
cpuset_cpu_inactive(unsigned int cpu)10332 static int cpuset_cpu_inactive(unsigned int cpu)
10333 {
10334 if (!cpuhp_tasks_frozen) {
10335 int ret = dl_bw_check_overflow(cpu);
10336
10337 if (ret)
10338 return ret;
10339 cpuset_update_active_cpus();
10340 } else {
10341 num_cpus_frozen++;
10342 partition_sched_domains(1, NULL, NULL);
10343 }
10344 return 0;
10345 }
10346
sched_smt_present_inc(int cpu)10347 static inline void sched_smt_present_inc(int cpu)
10348 {
10349 #ifdef CONFIG_SCHED_SMT
10350 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
10351 static_branch_inc_cpuslocked(&sched_smt_present);
10352 #endif
10353 }
10354
sched_smt_present_dec(int cpu)10355 static inline void sched_smt_present_dec(int cpu)
10356 {
10357 #ifdef CONFIG_SCHED_SMT
10358 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
10359 static_branch_dec_cpuslocked(&sched_smt_present);
10360 #endif
10361 }
10362
sched_cpu_activate(unsigned int cpu)10363 int sched_cpu_activate(unsigned int cpu)
10364 {
10365 struct rq *rq = cpu_rq(cpu);
10366
10367 /*
10368 * Clear the balance_push callback and prepare to schedule
10369 * regular tasks.
10370 */
10371 balance_push_set(cpu, false);
10372
10373 /*
10374 * When going up, increment the number of cores with SMT present.
10375 */
10376 sched_smt_present_inc(cpu);
10377 set_cpu_active(cpu, true);
10378
10379 if (sched_smp_initialized) {
10380 sched_update_numa(cpu, true);
10381 sched_domains_numa_masks_set(cpu);
10382 cpuset_cpu_active();
10383 }
10384
10385 /*
10386 * Put the rq online, if not already. This happens:
10387 *
10388 * 1) In the early boot process, because we build the real domains
10389 * after all CPUs have been brought up.
10390 *
10391 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
10392 * domains.
10393 */
10394 sched_set_rq_online(rq, cpu);
10395
10396 return 0;
10397 }
10398
sched_cpu_deactivate(unsigned int cpu)10399 int sched_cpu_deactivate(unsigned int cpu)
10400 {
10401 struct rq *rq = cpu_rq(cpu);
10402 int ret;
10403
10404 /*
10405 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
10406 * load balancing when not active
10407 */
10408 nohz_balance_exit_idle(rq);
10409
10410 set_cpu_active(cpu, false);
10411
10412 /*
10413 * From this point forward, this CPU will refuse to run any task that
10414 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
10415 * push those tasks away until this gets cleared, see
10416 * sched_cpu_dying().
10417 */
10418 balance_push_set(cpu, true);
10419
10420 /*
10421 * We've cleared cpu_active_mask / set balance_push, wait for all
10422 * preempt-disabled and RCU users of this state to go away such that
10423 * all new such users will observe it.
10424 *
10425 * Specifically, we rely on ttwu to no longer target this CPU, see
10426 * ttwu_queue_cond() and is_cpu_allowed().
10427 *
10428 * Do sync before park smpboot threads to take care the rcu boost case.
10429 */
10430 synchronize_rcu();
10431
10432 sched_set_rq_offline(rq, cpu);
10433
10434 /*
10435 * When going down, decrement the number of cores with SMT present.
10436 */
10437 sched_smt_present_dec(cpu);
10438
10439 #ifdef CONFIG_SCHED_SMT
10440 sched_core_cpu_deactivate(cpu);
10441 #endif
10442
10443 if (!sched_smp_initialized)
10444 return 0;
10445
10446 sched_update_numa(cpu, false);
10447 ret = cpuset_cpu_inactive(cpu);
10448 if (ret) {
10449 sched_smt_present_inc(cpu);
10450 sched_set_rq_online(rq, cpu);
10451 balance_push_set(cpu, false);
10452 set_cpu_active(cpu, true);
10453 sched_update_numa(cpu, true);
10454 return ret;
10455 }
10456 sched_domains_numa_masks_clear(cpu);
10457 return 0;
10458 }
10459
sched_rq_cpu_starting(unsigned int cpu)10460 static void sched_rq_cpu_starting(unsigned int cpu)
10461 {
10462 struct rq *rq = cpu_rq(cpu);
10463 unsigned long flags;
10464
10465 raw_spin_lock_irqsave(&rq->__lock, flags);
10466 set_window_start(rq);
10467 raw_spin_unlock_irqrestore(&rq->__lock, flags);
10468
10469 rq->calc_load_update = calc_load_update;
10470 update_max_interval();
10471 }
10472
sched_cpu_starting(unsigned int cpu)10473 int sched_cpu_starting(unsigned int cpu)
10474 {
10475 sched_core_cpu_starting(cpu);
10476 sched_rq_cpu_starting(cpu);
10477 sched_tick_start(cpu);
10478 clear_eas_migration_request(cpu);
10479 return 0;
10480 }
10481
10482 #ifdef CONFIG_HOTPLUG_CPU
10483
10484 /*
10485 * Invoked immediately before the stopper thread is invoked to bring the
10486 * CPU down completely. At this point all per CPU kthreads except the
10487 * hotplug thread (current) and the stopper thread (inactive) have been
10488 * either parked or have been unbound from the outgoing CPU. Ensure that
10489 * any of those which might be on the way out are gone.
10490 *
10491 * If after this point a bound task is being woken on this CPU then the
10492 * responsible hotplug callback has failed to do it's job.
10493 * sched_cpu_dying() will catch it with the appropriate fireworks.
10494 */
sched_cpu_wait_empty(unsigned int cpu)10495 int sched_cpu_wait_empty(unsigned int cpu)
10496 {
10497 balance_hotplug_wait();
10498 return 0;
10499 }
10500
10501 /*
10502 * Since this CPU is going 'away' for a while, fold any nr_active delta we
10503 * might have. Called from the CPU stopper task after ensuring that the
10504 * stopper is the last running task on the CPU, so nr_active count is
10505 * stable. We need to take the teardown thread which is calling this into
10506 * account, so we hand in adjust = 1 to the load calculation.
10507 *
10508 * Also see the comment "Global load-average calculations".
10509 */
calc_load_migrate(struct rq * rq)10510 static void calc_load_migrate(struct rq *rq)
10511 {
10512 long delta = calc_load_fold_active(rq, 1);
10513
10514 if (delta)
10515 atomic_long_add(delta, &calc_load_tasks);
10516 }
10517
dump_rq_tasks(struct rq * rq,const char * loglvl)10518 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
10519 {
10520 struct task_struct *g, *p;
10521 int cpu = cpu_of(rq);
10522
10523 lockdep_assert_rq_held(rq);
10524
10525 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
10526 for_each_process_thread(g, p) {
10527 if (task_cpu(p) != cpu)
10528 continue;
10529
10530 if (!task_on_rq_queued(p))
10531 continue;
10532
10533 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
10534 }
10535 }
10536
sched_cpu_dying(unsigned int cpu)10537 int sched_cpu_dying(unsigned int cpu)
10538 {
10539 struct rq *rq = cpu_rq(cpu);
10540 struct rq_flags rf;
10541
10542 /* Handle pending wakeups and then migrate everything off */
10543 sched_tick_stop(cpu);
10544
10545 rq_lock_irqsave(rq, &rf);
10546 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
10547 WARN(true, "Dying CPU not properly vacated!");
10548 dump_rq_tasks(rq, KERN_WARNING);
10549 }
10550 rq_unlock_irqrestore(rq, &rf);
10551
10552 clear_eas_migration_request(cpu);
10553
10554 calc_load_migrate(rq);
10555 update_max_interval();
10556 hrtick_clear(rq);
10557 sched_core_cpu_dying(cpu);
10558 return 0;
10559 }
10560 #endif
10561
sched_init_smp(void)10562 void __init sched_init_smp(void)
10563 {
10564 sched_init_numa(NUMA_NO_NODE);
10565
10566 /*
10567 * There's no userspace yet to cause hotplug operations; hence all the
10568 * CPU masks are stable and all blatant races in the below code cannot
10569 * happen.
10570 */
10571 mutex_lock(&sched_domains_mutex);
10572 sched_init_domains(cpu_active_mask);
10573 mutex_unlock(&sched_domains_mutex);
10574
10575 update_cluster_topology();
10576
10577 /* Move init over to a non-isolated CPU */
10578 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
10579 BUG();
10580 current->flags &= ~PF_NO_SETAFFINITY;
10581 sched_init_granularity();
10582
10583 init_sched_rt_class();
10584 init_sched_dl_class();
10585
10586 sched_smp_initialized = true;
10587 }
10588
migration_init(void)10589 static int __init migration_init(void)
10590 {
10591 sched_cpu_starting(smp_processor_id());
10592 return 0;
10593 }
10594 early_initcall(migration_init);
10595
10596 #else
sched_init_smp(void)10597 void __init sched_init_smp(void)
10598 {
10599 sched_init_granularity();
10600 }
10601 #endif /* CONFIG_SMP */
10602
in_sched_functions(unsigned long addr)10603 int in_sched_functions(unsigned long addr)
10604 {
10605 return in_lock_functions(addr) ||
10606 (addr >= (unsigned long)__sched_text_start
10607 && addr < (unsigned long)__sched_text_end);
10608 }
10609
10610 #ifdef CONFIG_CGROUP_SCHED
10611 /*
10612 * Default task group.
10613 * Every task in system belongs to this group at bootup.
10614 */
10615 struct task_group root_task_group;
10616 LIST_HEAD(task_groups);
10617
10618 /* Cacheline aligned slab cache for task_group */
10619 static struct kmem_cache *task_group_cache __read_mostly;
10620 #endif
10621
sched_init(void)10622 void __init sched_init(void)
10623 {
10624 unsigned long ptr = 0;
10625 int i;
10626
10627 /* Make sure the linker didn't screw up */
10628 BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
10629 &fair_sched_class != &rt_sched_class + 1 ||
10630 &rt_sched_class != &dl_sched_class + 1);
10631 #ifdef CONFIG_SMP
10632 BUG_ON(&dl_sched_class != &stop_sched_class + 1);
10633 #endif
10634
10635 wait_bit_init();
10636
10637 init_clusters();
10638
10639 #ifdef CONFIG_FAIR_GROUP_SCHED
10640 ptr += 2 * nr_cpu_ids * sizeof(void **);
10641 #endif
10642 #ifdef CONFIG_RT_GROUP_SCHED
10643 ptr += 2 * nr_cpu_ids * sizeof(void **);
10644 #endif
10645 if (ptr) {
10646 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
10647
10648 #ifdef CONFIG_FAIR_GROUP_SCHED
10649 root_task_group.se = (struct sched_entity **)ptr;
10650 ptr += nr_cpu_ids * sizeof(void **);
10651
10652 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
10653 ptr += nr_cpu_ids * sizeof(void **);
10654
10655 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
10656 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
10657 #endif /* CONFIG_FAIR_GROUP_SCHED */
10658 #ifdef CONFIG_RT_GROUP_SCHED
10659 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
10660 ptr += nr_cpu_ids * sizeof(void **);
10661
10662 root_task_group.rt_rq = (struct rt_rq **)ptr;
10663 ptr += nr_cpu_ids * sizeof(void **);
10664
10665 #endif /* CONFIG_RT_GROUP_SCHED */
10666 }
10667
10668 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
10669
10670 #ifdef CONFIG_SMP
10671 init_defrootdomain();
10672 #endif
10673
10674 #ifdef CONFIG_RT_GROUP_SCHED
10675 init_rt_bandwidth(&root_task_group.rt_bandwidth,
10676 global_rt_period(), global_rt_runtime());
10677 #endif /* CONFIG_RT_GROUP_SCHED */
10678
10679 #ifdef CONFIG_CGROUP_SCHED
10680 task_group_cache = KMEM_CACHE(task_group, 0);
10681
10682 list_add(&root_task_group.list, &task_groups);
10683 INIT_LIST_HEAD(&root_task_group.children);
10684 INIT_LIST_HEAD(&root_task_group.siblings);
10685 autogroup_init(&init_task);
10686 #endif /* CONFIG_CGROUP_SCHED */
10687
10688 for_each_possible_cpu(i) {
10689 struct rq *rq;
10690
10691 rq = cpu_rq(i);
10692 raw_spin_lock_init(&rq->__lock);
10693 rq->nr_running = 0;
10694 rq->calc_load_active = 0;
10695 rq->calc_load_update = jiffies + LOAD_FREQ;
10696 init_cfs_rq(&rq->cfs);
10697 init_rt_rq(&rq->rt);
10698 init_dl_rq(&rq->dl);
10699 #ifdef CONFIG_FAIR_GROUP_SCHED
10700 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
10701 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
10702 /*
10703 * How much CPU bandwidth does root_task_group get?
10704 *
10705 * In case of task-groups formed thr' the cgroup filesystem, it
10706 * gets 100% of the CPU resources in the system. This overall
10707 * system CPU resource is divided among the tasks of
10708 * root_task_group and its child task-groups in a fair manner,
10709 * based on each entity's (task or task-group's) weight
10710 * (se->load.weight).
10711 *
10712 * In other words, if root_task_group has 10 tasks of weight
10713 * 1024) and two child groups A0 and A1 (of weight 1024 each),
10714 * then A0's share of the CPU resource is:
10715 *
10716 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
10717 *
10718 * We achieve this by letting root_task_group's tasks sit
10719 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
10720 */
10721 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
10722 #endif /* CONFIG_FAIR_GROUP_SCHED */
10723
10724 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10725 #ifdef CONFIG_RT_GROUP_SCHED
10726 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10727 #endif
10728 #ifdef CONFIG_SMP
10729 rq->sd = NULL;
10730 rq->rd = NULL;
10731 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
10732 rq->balance_callback = &balance_push_callback;
10733 rq->active_balance = 0;
10734 rq->next_balance = jiffies;
10735 rq->push_cpu = 0;
10736 rq->cpu = i;
10737 rq->online = 0;
10738 rq->idle_stamp = 0;
10739 rq->avg_idle = 2*sysctl_sched_migration_cost;
10740 rq->wake_stamp = jiffies;
10741 rq->wake_avg_idle = rq->avg_idle;
10742 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10743 walt_sched_init_rq(rq);
10744
10745 INIT_LIST_HEAD(&rq->cfs_tasks);
10746
10747 rq_attach_root(rq, &def_root_domain);
10748 #ifdef CONFIG_NO_HZ_COMMON
10749 rq->last_blocked_load_update_tick = jiffies;
10750 atomic_set(&rq->nohz_flags, 0);
10751
10752 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10753 #endif
10754 #ifdef CONFIG_HOTPLUG_CPU
10755 rcuwait_init(&rq->hotplug_wait);
10756 #endif
10757 #endif /* CONFIG_SMP */
10758 hrtick_rq_init(rq);
10759 atomic_set(&rq->nr_iowait, 0);
10760
10761 #ifdef CONFIG_SCHED_CORE
10762 rq->core = rq;
10763 rq->core_pick = NULL;
10764 rq->core_enabled = 0;
10765 rq->core_tree = RB_ROOT;
10766 rq->core_forceidle_count = 0;
10767 rq->core_forceidle_occupation = 0;
10768 rq->core_forceidle_start = 0;
10769
10770 rq->core_cookie = 0UL;
10771 #endif
10772 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10773 }
10774
10775 BUG_ON(alloc_related_thread_groups());
10776 set_load_weight(&init_task, false);
10777
10778 /*
10779 * The boot idle thread does lazy MMU switching as well:
10780 */
10781 mmgrab_lazy_tlb(&init_mm);
10782 enter_lazy_tlb(&init_mm, current);
10783
10784 /*
10785 * The idle task doesn't need the kthread struct to function, but it
10786 * is dressed up as a per-CPU kthread and thus needs to play the part
10787 * if we want to avoid special-casing it in code that deals with per-CPU
10788 * kthreads.
10789 */
10790 WARN_ON(!set_kthread_struct(current));
10791
10792 /*
10793 * Make us the idle thread. Technically, schedule() should not be
10794 * called from this thread, however somewhere below it might be,
10795 * but because we are the idle thread, we just pick up running again
10796 * when this runqueue becomes "idle".
10797 */
10798 __sched_fork(0, current);
10799 init_idle(current, smp_processor_id());
10800 init_new_task_load(current);
10801
10802 #ifdef CONIG_QOS_CTRL
10803 init_task_qos(current);
10804 #endif
10805
10806 calc_load_update = jiffies + LOAD_FREQ;
10807
10808 #ifdef CONFIG_SMP
10809 idle_thread_set_boot_cpu();
10810 balance_push_set(smp_processor_id(), false);
10811 #endif
10812 init_sched_fair_class();
10813
10814 psi_init();
10815
10816 init_uclamp();
10817
10818 preempt_dynamic_init();
10819
10820 scheduler_running = 1;
10821 }
10822
10823 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10824
__might_sleep(const char * file,int line)10825 void __might_sleep(const char *file, int line)
10826 {
10827 unsigned int state = get_current_state();
10828 /*
10829 * Blocking primitives will set (and therefore destroy) current->state,
10830 * since we will exit with TASK_RUNNING make sure we enter with it,
10831 * otherwise we will destroy state.
10832 */
10833 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10834 "do not call blocking ops when !TASK_RUNNING; "
10835 "state=%x set at [<%p>] %pS\n", state,
10836 (void *)current->task_state_change,
10837 (void *)current->task_state_change);
10838
10839 __might_resched(file, line, 0);
10840 }
10841 EXPORT_SYMBOL(__might_sleep);
10842
print_preempt_disable_ip(int preempt_offset,unsigned long ip)10843 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10844 {
10845 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10846 return;
10847
10848 if (preempt_count() == preempt_offset)
10849 return;
10850
10851 pr_err("Preemption disabled at:");
10852 print_ip_sym(KERN_ERR, ip);
10853 }
10854
resched_offsets_ok(unsigned int offsets)10855 static inline bool resched_offsets_ok(unsigned int offsets)
10856 {
10857 unsigned int nested = preempt_count();
10858
10859 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10860
10861 return nested == offsets;
10862 }
10863
__might_resched(const char * file,int line,unsigned int offsets)10864 void __might_resched(const char *file, int line, unsigned int offsets)
10865 {
10866 /* Ratelimiting timestamp: */
10867 static unsigned long prev_jiffy;
10868
10869 unsigned long preempt_disable_ip;
10870
10871 /* WARN_ON_ONCE() by default, no rate limit required: */
10872 rcu_sleep_check();
10873
10874 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10875 !is_idle_task(current) && !current->non_block_count) ||
10876 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10877 oops_in_progress)
10878 return;
10879
10880 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10881 return;
10882 prev_jiffy = jiffies;
10883
10884 /* Save this before calling printk(), since that will clobber it: */
10885 preempt_disable_ip = get_preempt_disable_ip(current);
10886
10887 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10888 file, line);
10889 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10890 in_atomic(), irqs_disabled(), current->non_block_count,
10891 current->pid, current->comm);
10892 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10893 offsets & MIGHT_RESCHED_PREEMPT_MASK);
10894
10895 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10896 pr_err("RCU nest depth: %d, expected: %u\n",
10897 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10898 }
10899
10900 if (task_stack_end_corrupted(current))
10901 pr_emerg("Thread overran stack, or stack corrupted\n");
10902
10903 debug_show_held_locks(current);
10904 if (irqs_disabled())
10905 print_irqtrace_events(current);
10906
10907 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10908 preempt_disable_ip);
10909
10910 dump_stack();
10911 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10912 }
10913 EXPORT_SYMBOL(__might_resched);
10914
__cant_sleep(const char * file,int line,int preempt_offset)10915 void __cant_sleep(const char *file, int line, int preempt_offset)
10916 {
10917 static unsigned long prev_jiffy;
10918
10919 if (irqs_disabled())
10920 return;
10921
10922 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10923 return;
10924
10925 if (preempt_count() > preempt_offset)
10926 return;
10927
10928 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10929 return;
10930 prev_jiffy = jiffies;
10931
10932 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10933 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10934 in_atomic(), irqs_disabled(),
10935 current->pid, current->comm);
10936
10937 debug_show_held_locks(current);
10938 dump_stack();
10939 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10940 }
10941 EXPORT_SYMBOL_GPL(__cant_sleep);
10942
10943 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)10944 void __cant_migrate(const char *file, int line)
10945 {
10946 static unsigned long prev_jiffy;
10947
10948 if (irqs_disabled())
10949 return;
10950
10951 if (is_migration_disabled(current))
10952 return;
10953
10954 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10955 return;
10956
10957 if (preempt_count() > 0)
10958 return;
10959
10960 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10961 return;
10962 prev_jiffy = jiffies;
10963
10964 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10965 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10966 in_atomic(), irqs_disabled(), is_migration_disabled(current),
10967 current->pid, current->comm);
10968
10969 debug_show_held_locks(current);
10970 dump_stack();
10971 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10972 }
10973 EXPORT_SYMBOL_GPL(__cant_migrate);
10974 #endif
10975 #endif
10976
10977 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)10978 void normalize_rt_tasks(void)
10979 {
10980 struct task_struct *g, *p;
10981 struct sched_attr attr = {
10982 .sched_policy = SCHED_NORMAL,
10983 };
10984
10985 read_lock(&tasklist_lock);
10986 for_each_process_thread(g, p) {
10987 /*
10988 * Only normalize user tasks:
10989 */
10990 if (p->flags & PF_KTHREAD)
10991 continue;
10992
10993 p->se.exec_start = 0;
10994 schedstat_set(p->stats.wait_start, 0);
10995 schedstat_set(p->stats.sleep_start, 0);
10996 schedstat_set(p->stats.block_start, 0);
10997
10998 if (!dl_task(p) && !rt_task(p)) {
10999 /*
11000 * Renice negative nice level userspace
11001 * tasks back to 0:
11002 */
11003 if (task_nice(p) < 0)
11004 set_user_nice(p, 0);
11005 continue;
11006 }
11007
11008 __sched_setscheduler(p, &attr, false, false);
11009 }
11010 read_unlock(&tasklist_lock);
11011 }
11012
11013 #endif /* CONFIG_MAGIC_SYSRQ */
11014
11015 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
11016 /*
11017 * These functions are only useful for the IA64 MCA handling, or kdb.
11018 *
11019 * They can only be called when the whole system has been
11020 * stopped - every CPU needs to be quiescent, and no scheduling
11021 * activity can take place. Using them for anything else would
11022 * be a serious bug, and as a result, they aren't even visible
11023 * under any other configuration.
11024 */
11025
11026 /**
11027 * curr_task - return the current task for a given CPU.
11028 * @cpu: the processor in question.
11029 *
11030 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
11031 *
11032 * Return: The current task for @cpu.
11033 */
curr_task(int cpu)11034 struct task_struct *curr_task(int cpu)
11035 {
11036 return cpu_curr(cpu);
11037 }
11038
11039 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
11040
11041 #ifdef CONFIG_IA64
11042 /**
11043 * ia64_set_curr_task - set the current task for a given CPU.
11044 * @cpu: the processor in question.
11045 * @p: the task pointer to set.
11046 *
11047 * Description: This function must only be used when non-maskable interrupts
11048 * are serviced on a separate stack. It allows the architecture to switch the
11049 * notion of the current task on a CPU in a non-blocking manner. This function
11050 * must be called with all CPU's synchronized, and interrupts disabled, the
11051 * and caller must save the original value of the current task (see
11052 * curr_task() above) and restore that value before reenabling interrupts and
11053 * re-starting the system.
11054 *
11055 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
11056 */
ia64_set_curr_task(int cpu,struct task_struct * p)11057 void ia64_set_curr_task(int cpu, struct task_struct *p)
11058 {
11059 cpu_curr(cpu) = p;
11060 }
11061
11062 #endif
11063
11064 #ifdef CONFIG_CGROUP_SCHED
11065 /* task_group_lock serializes the addition/removal of task groups */
11066 static DEFINE_SPINLOCK(task_group_lock);
11067
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)11068 static inline void alloc_uclamp_sched_group(struct task_group *tg,
11069 struct task_group *parent)
11070 {
11071 #ifdef CONFIG_UCLAMP_TASK_GROUP
11072 enum uclamp_id clamp_id;
11073
11074 for_each_clamp_id(clamp_id) {
11075 uclamp_se_set(&tg->uclamp_req[clamp_id],
11076 uclamp_none(clamp_id), false);
11077 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
11078 }
11079 #endif
11080 }
11081
sched_free_group(struct task_group * tg)11082 static void sched_free_group(struct task_group *tg)
11083 {
11084 free_fair_sched_group(tg);
11085 free_rt_sched_group(tg);
11086 autogroup_free(tg);
11087 kmem_cache_free(task_group_cache, tg);
11088 }
11089
sched_free_group_rcu(struct rcu_head * rcu)11090 static void sched_free_group_rcu(struct rcu_head *rcu)
11091 {
11092 sched_free_group(container_of(rcu, struct task_group, rcu));
11093 }
11094
sched_unregister_group(struct task_group * tg)11095 static void sched_unregister_group(struct task_group *tg)
11096 {
11097 unregister_fair_sched_group(tg);
11098 unregister_rt_sched_group(tg);
11099 /*
11100 * We have to wait for yet another RCU grace period to expire, as
11101 * print_cfs_stats() might run concurrently.
11102 */
11103 call_rcu(&tg->rcu, sched_free_group_rcu);
11104 }
11105
11106 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)11107 struct task_group *sched_create_group(struct task_group *parent)
11108 {
11109 struct task_group *tg;
11110
11111 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
11112 if (!tg)
11113 return ERR_PTR(-ENOMEM);
11114
11115 if (!alloc_fair_sched_group(tg, parent))
11116 goto err;
11117
11118 if (!alloc_rt_sched_group(tg, parent))
11119 goto err;
11120
11121 alloc_uclamp_sched_group(tg, parent);
11122
11123 return tg;
11124
11125 err:
11126 sched_free_group(tg);
11127 return ERR_PTR(-ENOMEM);
11128 }
11129
sched_online_group(struct task_group * tg,struct task_group * parent)11130 void sched_online_group(struct task_group *tg, struct task_group *parent)
11131 {
11132 unsigned long flags;
11133
11134 spin_lock_irqsave(&task_group_lock, flags);
11135 list_add_rcu(&tg->list, &task_groups);
11136
11137 /* Root should already exist: */
11138 WARN_ON(!parent);
11139
11140 tg->parent = parent;
11141 INIT_LIST_HEAD(&tg->children);
11142 list_add_rcu(&tg->siblings, &parent->children);
11143 spin_unlock_irqrestore(&task_group_lock, flags);
11144
11145 online_fair_sched_group(tg);
11146 }
11147
11148 /* rcu callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)11149 static void sched_unregister_group_rcu(struct rcu_head *rhp)
11150 {
11151 /* Now it should be safe to free those cfs_rqs: */
11152 sched_unregister_group(container_of(rhp, struct task_group, rcu));
11153 }
11154
sched_destroy_group(struct task_group * tg)11155 void sched_destroy_group(struct task_group *tg)
11156 {
11157 /* Wait for possible concurrent references to cfs_rqs complete: */
11158 call_rcu(&tg->rcu, sched_unregister_group_rcu);
11159 }
11160
sched_release_group(struct task_group * tg)11161 void sched_release_group(struct task_group *tg)
11162 {
11163 unsigned long flags;
11164
11165 /*
11166 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
11167 * sched_cfs_period_timer()).
11168 *
11169 * For this to be effective, we have to wait for all pending users of
11170 * this task group to leave their RCU critical section to ensure no new
11171 * user will see our dying task group any more. Specifically ensure
11172 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
11173 *
11174 * We therefore defer calling unregister_fair_sched_group() to
11175 * sched_unregister_group() which is guarantied to get called only after the
11176 * current RCU grace period has expired.
11177 */
11178 spin_lock_irqsave(&task_group_lock, flags);
11179 list_del_rcu(&tg->list);
11180 list_del_rcu(&tg->siblings);
11181 spin_unlock_irqrestore(&task_group_lock, flags);
11182 }
11183
sched_change_group(struct task_struct * tsk)11184 static void sched_change_group(struct task_struct *tsk)
11185 {
11186 struct task_group *tg;
11187
11188 /*
11189 * All callers are synchronized by task_rq_lock(); we do not use RCU
11190 * which is pointless here. Thus, we pass "true" to task_css_check()
11191 * to prevent lockdep warnings.
11192 */
11193 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
11194 struct task_group, css);
11195 tg = autogroup_task_group(tsk, tg);
11196 tsk->sched_task_group = tg;
11197
11198 #ifdef CONFIG_FAIR_GROUP_SCHED
11199 if (tsk->sched_class->task_change_group)
11200 tsk->sched_class->task_change_group(tsk);
11201 else
11202 #endif
11203 set_task_rq(tsk, task_cpu(tsk));
11204 }
11205
11206 /*
11207 * Change task's runqueue when it moves between groups.
11208 *
11209 * The caller of this function should have put the task in its new group by
11210 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
11211 * its new group.
11212 */
sched_move_task(struct task_struct * tsk)11213 void sched_move_task(struct task_struct *tsk)
11214 {
11215 int queued, running, queue_flags =
11216 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
11217 struct rq_flags rf;
11218 struct rq *rq;
11219
11220 rq = task_rq_lock(tsk, &rf);
11221 update_rq_clock(rq);
11222
11223 running = task_current(rq, tsk);
11224 queued = task_on_rq_queued(tsk);
11225
11226 if (queued)
11227 dequeue_task(rq, tsk, queue_flags);
11228 if (running)
11229 put_prev_task(rq, tsk);
11230
11231 sched_change_group(tsk);
11232
11233 if (queued)
11234 enqueue_task(rq, tsk, queue_flags);
11235 if (running) {
11236 set_next_task(rq, tsk);
11237 /*
11238 * After changing group, the running task may have joined a
11239 * throttled one but it's still the running task. Trigger a
11240 * resched to make sure that task can still run.
11241 */
11242 resched_curr(rq);
11243 }
11244
11245 task_rq_unlock(rq, tsk, &rf);
11246 }
11247
css_tg(struct cgroup_subsys_state * css)11248 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
11249 {
11250 return css ? container_of(css, struct task_group, css) : NULL;
11251 }
11252
11253 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)11254 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11255 {
11256 struct task_group *parent = css_tg(parent_css);
11257 struct task_group *tg;
11258
11259 if (!parent) {
11260 /* This is early initialization for the top cgroup */
11261 return &root_task_group.css;
11262 }
11263
11264 tg = sched_create_group(parent);
11265 if (IS_ERR(tg))
11266 return ERR_PTR(-ENOMEM);
11267
11268 #ifdef CONFIG_SCHED_RTG_CGROUP
11269 tg->colocate = false;
11270 tg->colocate_update_disabled = false;
11271 #endif
11272
11273 return &tg->css;
11274 }
11275
11276 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)11277 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
11278 {
11279 struct task_group *tg = css_tg(css);
11280 struct task_group *parent = css_tg(css->parent);
11281
11282 if (parent)
11283 sched_online_group(tg, parent);
11284
11285 #ifdef CONFIG_UCLAMP_TASK_GROUP
11286 /* Propagate the effective uclamp value for the new group */
11287 mutex_lock(&uclamp_mutex);
11288 rcu_read_lock();
11289 cpu_util_update_eff(css);
11290 rcu_read_unlock();
11291 mutex_unlock(&uclamp_mutex);
11292 #endif
11293
11294 return 0;
11295 }
11296
cpu_cgroup_css_released(struct cgroup_subsys_state * css)11297 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
11298 {
11299 struct task_group *tg = css_tg(css);
11300
11301 sched_release_group(tg);
11302 }
11303
cpu_cgroup_css_free(struct cgroup_subsys_state * css)11304 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
11305 {
11306 struct task_group *tg = css_tg(css);
11307
11308 /*
11309 * Relies on the RCU grace period between css_released() and this.
11310 */
11311 sched_unregister_group(tg);
11312 }
11313
11314 #ifdef CONFIG_RT_GROUP_SCHED
cpu_cgroup_can_attach(struct cgroup_taskset * tset)11315 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
11316 {
11317 struct task_struct *task;
11318 struct cgroup_subsys_state *css;
11319
11320 cgroup_taskset_for_each(task, css, tset) {
11321 if (!sched_rt_can_attach(css_tg(css), task))
11322 return -EINVAL;
11323 }
11324 return 0;
11325 }
11326 #endif
11327
11328 #if defined(CONFIG_UCLAMP_TASK_GROUP) && defined(CONFIG_SCHED_RTG_CGROUP)
schedgp_attach(struct cgroup_taskset * tset)11329 static void schedgp_attach(struct cgroup_taskset *tset)
11330 {
11331 struct task_struct *task;
11332 struct cgroup_subsys_state *css;
11333 bool colocate;
11334 struct task_group *tg;
11335
11336 cgroup_taskset_first(tset, &css);
11337 tg = css_tg(css);
11338
11339 colocate = tg->colocate;
11340
11341 cgroup_taskset_for_each(task, css, tset)
11342 sync_cgroup_colocation(task, colocate);
11343 }
11344 #else
schedgp_attach(struct cgroup_taskset * tset)11345 static void schedgp_attach(struct cgroup_taskset *tset) { }
11346 #endif
11347
cpu_cgroup_attach(struct cgroup_taskset * tset)11348 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
11349 {
11350 struct task_struct *task;
11351 struct cgroup_subsys_state *css;
11352
11353 cgroup_taskset_for_each(task, css, tset)
11354 sched_move_task(task);
11355 }
11356
11357 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)11358 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
11359 {
11360 struct cgroup_subsys_state *top_css = css;
11361 struct uclamp_se *uc_parent = NULL;
11362 struct uclamp_se *uc_se = NULL;
11363 unsigned int eff[UCLAMP_CNT];
11364 enum uclamp_id clamp_id;
11365 unsigned int clamps;
11366
11367 lockdep_assert_held(&uclamp_mutex);
11368 SCHED_WARN_ON(!rcu_read_lock_held());
11369
11370 css_for_each_descendant_pre(css, top_css) {
11371 uc_parent = css_tg(css)->parent
11372 ? css_tg(css)->parent->uclamp : NULL;
11373
11374 for_each_clamp_id(clamp_id) {
11375 /* Assume effective clamps matches requested clamps */
11376 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
11377 /* Cap effective clamps with parent's effective clamps */
11378 if (uc_parent &&
11379 eff[clamp_id] > uc_parent[clamp_id].value) {
11380 eff[clamp_id] = uc_parent[clamp_id].value;
11381 }
11382 }
11383 /* Ensure protection is always capped by limit */
11384 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
11385
11386 /* Propagate most restrictive effective clamps */
11387 clamps = 0x0;
11388 uc_se = css_tg(css)->uclamp;
11389 for_each_clamp_id(clamp_id) {
11390 if (eff[clamp_id] == uc_se[clamp_id].value)
11391 continue;
11392 uc_se[clamp_id].value = eff[clamp_id];
11393 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
11394 clamps |= (0x1 << clamp_id);
11395 }
11396 if (!clamps) {
11397 css = css_rightmost_descendant(css);
11398 continue;
11399 }
11400
11401 /* Immediately update descendants RUNNABLE tasks */
11402 uclamp_update_active_tasks(css);
11403 }
11404 }
11405
11406 /*
11407 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
11408 * C expression. Since there is no way to convert a macro argument (N) into a
11409 * character constant, use two levels of macros.
11410 */
11411 #define _POW10(exp) ((unsigned int)1e##exp)
11412 #define POW10(exp) _POW10(exp)
11413
11414 struct uclamp_request {
11415 #define UCLAMP_PERCENT_SHIFT 2
11416 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
11417 s64 percent;
11418 u64 util;
11419 int ret;
11420 };
11421
11422 static inline struct uclamp_request
capacity_from_percent(char * buf)11423 capacity_from_percent(char *buf)
11424 {
11425 struct uclamp_request req = {
11426 .percent = UCLAMP_PERCENT_SCALE,
11427 .util = SCHED_CAPACITY_SCALE,
11428 .ret = 0,
11429 };
11430
11431 buf = strim(buf);
11432 if (strcmp(buf, "max")) {
11433 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
11434 &req.percent);
11435 if (req.ret)
11436 return req;
11437 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
11438 req.ret = -ERANGE;
11439 return req;
11440 }
11441
11442 req.util = req.percent << SCHED_CAPACITY_SHIFT;
11443 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
11444 }
11445
11446 return req;
11447 }
11448
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)11449 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
11450 size_t nbytes, loff_t off,
11451 enum uclamp_id clamp_id)
11452 {
11453 struct uclamp_request req;
11454 struct task_group *tg;
11455
11456 req = capacity_from_percent(buf);
11457 if (req.ret)
11458 return req.ret;
11459
11460 static_branch_enable(&sched_uclamp_used);
11461
11462 mutex_lock(&uclamp_mutex);
11463 rcu_read_lock();
11464
11465 tg = css_tg(of_css(of));
11466 if (tg->uclamp_req[clamp_id].value != req.util)
11467 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
11468
11469 /*
11470 * Because of not recoverable conversion rounding we keep track of the
11471 * exact requested value
11472 */
11473 tg->uclamp_pct[clamp_id] = req.percent;
11474
11475 /* Update effective clamps to track the most restrictive value */
11476 cpu_util_update_eff(of_css(of));
11477
11478 rcu_read_unlock();
11479 mutex_unlock(&uclamp_mutex);
11480
11481 return nbytes;
11482 }
11483
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)11484 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
11485 char *buf, size_t nbytes,
11486 loff_t off)
11487 {
11488 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
11489 }
11490
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)11491 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
11492 char *buf, size_t nbytes,
11493 loff_t off)
11494 {
11495 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
11496 }
11497
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)11498 static inline void cpu_uclamp_print(struct seq_file *sf,
11499 enum uclamp_id clamp_id)
11500 {
11501 struct task_group *tg;
11502 u64 util_clamp;
11503 u64 percent;
11504 u32 rem;
11505
11506 rcu_read_lock();
11507 tg = css_tg(seq_css(sf));
11508 util_clamp = tg->uclamp_req[clamp_id].value;
11509 rcu_read_unlock();
11510
11511 if (util_clamp == SCHED_CAPACITY_SCALE) {
11512 seq_puts(sf, "max\n");
11513 return;
11514 }
11515
11516 percent = tg->uclamp_pct[clamp_id];
11517 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
11518 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
11519 }
11520
cpu_uclamp_min_show(struct seq_file * sf,void * v)11521 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
11522 {
11523 cpu_uclamp_print(sf, UCLAMP_MIN);
11524 return 0;
11525 }
11526
cpu_uclamp_max_show(struct seq_file * sf,void * v)11527 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
11528 {
11529 cpu_uclamp_print(sf, UCLAMP_MAX);
11530 return 0;
11531 }
11532
11533 #ifdef CONFIG_SCHED_RTG_CGROUP
sched_colocate_read(struct cgroup_subsys_state * css,struct cftype * cft)11534 static u64 sched_colocate_read(struct cgroup_subsys_state *css,
11535 struct cftype *cft)
11536 {
11537 struct task_group *tg = css_tg(css);
11538
11539 return (u64) tg->colocate;
11540 }
11541
sched_colocate_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 colocate)11542 static int sched_colocate_write(struct cgroup_subsys_state *css,
11543 struct cftype *cft, u64 colocate)
11544 {
11545 struct task_group *tg = css_tg(css);
11546
11547 if (tg->colocate_update_disabled)
11548 return -EPERM;
11549
11550 tg->colocate = !!colocate;
11551 tg->colocate_update_disabled = true;
11552
11553 return 0;
11554 }
11555 #endif /* CONFIG_SCHED_RTG_CGROUP */
11556 #endif /* CONFIG_UCLAMP_TASK_GROUP */
11557
11558 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)11559 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
11560 struct cftype *cftype, u64 shareval)
11561 {
11562 if (shareval > scale_load_down(ULONG_MAX))
11563 shareval = MAX_SHARES;
11564 return sched_group_set_shares(css_tg(css), scale_load(shareval));
11565 }
11566
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11567 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
11568 struct cftype *cft)
11569 {
11570 struct task_group *tg = css_tg(css);
11571
11572 return (u64) scale_load_down(tg->shares);
11573 }
11574
11575 #ifdef CONFIG_CFS_BANDWIDTH
11576 static DEFINE_MUTEX(cfs_constraints_mutex);
11577
11578 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
11579 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
11580 /* More than 203 days if BW_SHIFT equals 20. */
11581 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
11582
11583 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
11584
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)11585 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
11586 u64 burst)
11587 {
11588 int i, ret = 0, runtime_enabled, runtime_was_enabled;
11589 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11590
11591 if (tg == &root_task_group)
11592 return -EINVAL;
11593
11594 /*
11595 * Ensure we have at some amount of bandwidth every period. This is
11596 * to prevent reaching a state of large arrears when throttled via
11597 * entity_tick() resulting in prolonged exit starvation.
11598 */
11599 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
11600 return -EINVAL;
11601
11602 /*
11603 * Likewise, bound things on the other side by preventing insane quota
11604 * periods. This also allows us to normalize in computing quota
11605 * feasibility.
11606 */
11607 if (period > max_cfs_quota_period)
11608 return -EINVAL;
11609
11610 /*
11611 * Bound quota to defend quota against overflow during bandwidth shift.
11612 */
11613 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
11614 return -EINVAL;
11615
11616 if (quota != RUNTIME_INF && (burst > quota ||
11617 burst + quota > max_cfs_runtime))
11618 return -EINVAL;
11619
11620 /*
11621 * Prevent race between setting of cfs_rq->runtime_enabled and
11622 * unthrottle_offline_cfs_rqs().
11623 */
11624 guard(cpus_read_lock)();
11625 guard(mutex)(&cfs_constraints_mutex);
11626
11627 ret = __cfs_schedulable(tg, period, quota);
11628 if (ret)
11629 return ret;
11630
11631 runtime_enabled = quota != RUNTIME_INF;
11632 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
11633 /*
11634 * If we need to toggle cfs_bandwidth_used, off->on must occur
11635 * before making related changes, and on->off must occur afterwards
11636 */
11637 if (runtime_enabled && !runtime_was_enabled)
11638 cfs_bandwidth_usage_inc();
11639
11640 scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
11641 cfs_b->period = ns_to_ktime(period);
11642 cfs_b->quota = quota;
11643 cfs_b->burst = burst;
11644
11645 __refill_cfs_bandwidth_runtime(cfs_b);
11646
11647 /*
11648 * Restart the period timer (if active) to handle new
11649 * period expiry:
11650 */
11651 if (runtime_enabled)
11652 start_cfs_bandwidth(cfs_b);
11653 }
11654
11655 for_each_online_cpu(i) {
11656 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
11657 struct rq *rq = cfs_rq->rq;
11658
11659 guard(rq_lock_irq)(rq);
11660 cfs_rq->runtime_enabled = runtime_enabled;
11661 cfs_rq->runtime_remaining = 0;
11662
11663 if (cfs_rq->throttled)
11664 unthrottle_cfs_rq(cfs_rq);
11665 }
11666
11667 if (runtime_was_enabled && !runtime_enabled)
11668 cfs_bandwidth_usage_dec();
11669
11670 return 0;
11671 }
11672
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)11673 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
11674 {
11675 u64 quota, period, burst;
11676
11677 period = ktime_to_ns(tg->cfs_bandwidth.period);
11678 burst = tg->cfs_bandwidth.burst;
11679 if (cfs_quota_us < 0)
11680 quota = RUNTIME_INF;
11681 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
11682 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
11683 else
11684 return -EINVAL;
11685
11686 return tg_set_cfs_bandwidth(tg, period, quota, burst);
11687 }
11688
tg_get_cfs_quota(struct task_group * tg)11689 static long tg_get_cfs_quota(struct task_group *tg)
11690 {
11691 u64 quota_us;
11692
11693 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
11694 return -1;
11695
11696 quota_us = tg->cfs_bandwidth.quota;
11697 do_div(quota_us, NSEC_PER_USEC);
11698
11699 return quota_us;
11700 }
11701
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)11702 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
11703 {
11704 u64 quota, period, burst;
11705
11706 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
11707 return -EINVAL;
11708
11709 period = (u64)cfs_period_us * NSEC_PER_USEC;
11710 quota = tg->cfs_bandwidth.quota;
11711 burst = tg->cfs_bandwidth.burst;
11712
11713 return tg_set_cfs_bandwidth(tg, period, quota, burst);
11714 }
11715
tg_get_cfs_period(struct task_group * tg)11716 static long tg_get_cfs_period(struct task_group *tg)
11717 {
11718 u64 cfs_period_us;
11719
11720 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
11721 do_div(cfs_period_us, NSEC_PER_USEC);
11722
11723 return cfs_period_us;
11724 }
11725
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)11726 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
11727 {
11728 u64 quota, period, burst;
11729
11730 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
11731 return -EINVAL;
11732
11733 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
11734 period = ktime_to_ns(tg->cfs_bandwidth.period);
11735 quota = tg->cfs_bandwidth.quota;
11736
11737 return tg_set_cfs_bandwidth(tg, period, quota, burst);
11738 }
11739
tg_get_cfs_burst(struct task_group * tg)11740 static long tg_get_cfs_burst(struct task_group *tg)
11741 {
11742 u64 burst_us;
11743
11744 burst_us = tg->cfs_bandwidth.burst;
11745 do_div(burst_us, NSEC_PER_USEC);
11746
11747 return burst_us;
11748 }
11749
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11750 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
11751 struct cftype *cft)
11752 {
11753 return tg_get_cfs_quota(css_tg(css));
11754 }
11755
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)11756 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
11757 struct cftype *cftype, s64 cfs_quota_us)
11758 {
11759 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
11760 }
11761
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11762 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
11763 struct cftype *cft)
11764 {
11765 return tg_get_cfs_period(css_tg(css));
11766 }
11767
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)11768 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
11769 struct cftype *cftype, u64 cfs_period_us)
11770 {
11771 return tg_set_cfs_period(css_tg(css), cfs_period_us);
11772 }
11773
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11774 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
11775 struct cftype *cft)
11776 {
11777 return tg_get_cfs_burst(css_tg(css));
11778 }
11779
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)11780 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
11781 struct cftype *cftype, u64 cfs_burst_us)
11782 {
11783 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
11784 }
11785
11786 struct cfs_schedulable_data {
11787 struct task_group *tg;
11788 u64 period, quota;
11789 };
11790
11791 /*
11792 * normalize group quota/period to be quota/max_period
11793 * note: units are usecs
11794 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)11795 static u64 normalize_cfs_quota(struct task_group *tg,
11796 struct cfs_schedulable_data *d)
11797 {
11798 u64 quota, period;
11799
11800 if (tg == d->tg) {
11801 period = d->period;
11802 quota = d->quota;
11803 } else {
11804 period = tg_get_cfs_period(tg);
11805 quota = tg_get_cfs_quota(tg);
11806 }
11807
11808 /* note: these should typically be equivalent */
11809 if (quota == RUNTIME_INF || quota == -1)
11810 return RUNTIME_INF;
11811
11812 return to_ratio(period, quota);
11813 }
11814
tg_cfs_schedulable_down(struct task_group * tg,void * data)11815 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11816 {
11817 struct cfs_schedulable_data *d = data;
11818 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11819 s64 quota = 0, parent_quota = -1;
11820
11821 if (!tg->parent) {
11822 quota = RUNTIME_INF;
11823 } else {
11824 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11825
11826 quota = normalize_cfs_quota(tg, d);
11827 parent_quota = parent_b->hierarchical_quota;
11828
11829 /*
11830 * Ensure max(child_quota) <= parent_quota. On cgroup2,
11831 * always take the non-RUNTIME_INF min. On cgroup1, only
11832 * inherit when no limit is set. In both cases this is used
11833 * by the scheduler to determine if a given CFS task has a
11834 * bandwidth constraint at some higher level.
11835 */
11836 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11837 if (quota == RUNTIME_INF)
11838 quota = parent_quota;
11839 else if (parent_quota != RUNTIME_INF)
11840 quota = min(quota, parent_quota);
11841 } else {
11842 if (quota == RUNTIME_INF)
11843 quota = parent_quota;
11844 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11845 return -EINVAL;
11846 }
11847 }
11848 cfs_b->hierarchical_quota = quota;
11849
11850 return 0;
11851 }
11852
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)11853 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11854 {
11855 int ret;
11856 struct cfs_schedulable_data data = {
11857 .tg = tg,
11858 .period = period,
11859 .quota = quota,
11860 };
11861
11862 if (quota != RUNTIME_INF) {
11863 do_div(data.period, NSEC_PER_USEC);
11864 do_div(data.quota, NSEC_PER_USEC);
11865 }
11866
11867 rcu_read_lock();
11868 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11869 rcu_read_unlock();
11870
11871 return ret;
11872 }
11873
cpu_cfs_stat_show(struct seq_file * sf,void * v)11874 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11875 {
11876 struct task_group *tg = css_tg(seq_css(sf));
11877 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11878
11879 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11880 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11881 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11882
11883 if (schedstat_enabled() && tg != &root_task_group) {
11884 struct sched_statistics *stats;
11885 u64 ws = 0;
11886 int i;
11887
11888 for_each_possible_cpu(i) {
11889 stats = __schedstats_from_se(tg->se[i]);
11890 ws += schedstat_val(stats->wait_sum);
11891 }
11892
11893 seq_printf(sf, "wait_sum %llu\n", ws);
11894 }
11895
11896 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11897 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11898
11899 return 0;
11900 }
11901
throttled_time_self(struct task_group * tg)11902 static u64 throttled_time_self(struct task_group *tg)
11903 {
11904 int i;
11905 u64 total = 0;
11906
11907 for_each_possible_cpu(i) {
11908 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11909 }
11910
11911 return total;
11912 }
11913
cpu_cfs_local_stat_show(struct seq_file * sf,void * v)11914 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11915 {
11916 struct task_group *tg = css_tg(seq_css(sf));
11917
11918 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11919
11920 return 0;
11921 }
11922 #endif /* CONFIG_CFS_BANDWIDTH */
11923 #endif /* CONFIG_FAIR_GROUP_SCHED */
11924
11925 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)11926 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11927 struct cftype *cft, s64 val)
11928 {
11929 return sched_group_set_rt_runtime(css_tg(css), val);
11930 }
11931
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)11932 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11933 struct cftype *cft)
11934 {
11935 return sched_group_rt_runtime(css_tg(css));
11936 }
11937
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)11938 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11939 struct cftype *cftype, u64 rt_period_us)
11940 {
11941 return sched_group_set_rt_period(css_tg(css), rt_period_us);
11942 }
11943
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)11944 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11945 struct cftype *cft)
11946 {
11947 return sched_group_rt_period(css_tg(css));
11948 }
11949 #endif /* CONFIG_RT_GROUP_SCHED */
11950
11951 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11952 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11953 struct cftype *cft)
11954 {
11955 return css_tg(css)->idle;
11956 }
11957
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)11958 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11959 struct cftype *cft, s64 idle)
11960 {
11961 return sched_group_set_idle(css_tg(css), idle);
11962 }
11963 #endif
11964
11965 static struct cftype cpu_legacy_files[] = {
11966 #ifdef CONFIG_FAIR_GROUP_SCHED
11967 {
11968 .name = "shares",
11969 .read_u64 = cpu_shares_read_u64,
11970 .write_u64 = cpu_shares_write_u64,
11971 },
11972 {
11973 .name = "idle",
11974 .read_s64 = cpu_idle_read_s64,
11975 .write_s64 = cpu_idle_write_s64,
11976 },
11977 #endif
11978 #ifdef CONFIG_CFS_BANDWIDTH
11979 {
11980 .name = "cfs_quota_us",
11981 .read_s64 = cpu_cfs_quota_read_s64,
11982 .write_s64 = cpu_cfs_quota_write_s64,
11983 },
11984 {
11985 .name = "cfs_period_us",
11986 .read_u64 = cpu_cfs_period_read_u64,
11987 .write_u64 = cpu_cfs_period_write_u64,
11988 },
11989 {
11990 .name = "cfs_burst_us",
11991 .read_u64 = cpu_cfs_burst_read_u64,
11992 .write_u64 = cpu_cfs_burst_write_u64,
11993 },
11994 {
11995 .name = "stat",
11996 .seq_show = cpu_cfs_stat_show,
11997 },
11998 {
11999 .name = "stat.local",
12000 .seq_show = cpu_cfs_local_stat_show,
12001 },
12002 #endif
12003 #ifdef CONFIG_RT_GROUP_SCHED
12004 {
12005 .name = "rt_runtime_us",
12006 .read_s64 = cpu_rt_runtime_read,
12007 .write_s64 = cpu_rt_runtime_write,
12008 },
12009 {
12010 .name = "rt_period_us",
12011 .read_u64 = cpu_rt_period_read_uint,
12012 .write_u64 = cpu_rt_period_write_uint,
12013 },
12014 #endif
12015 #ifdef CONFIG_UCLAMP_TASK_GROUP
12016 {
12017 .name = "uclamp.min",
12018 .flags = CFTYPE_NOT_ON_ROOT,
12019 .seq_show = cpu_uclamp_min_show,
12020 .write = cpu_uclamp_min_write,
12021 },
12022 {
12023 .name = "uclamp.max",
12024 .flags = CFTYPE_NOT_ON_ROOT,
12025 .seq_show = cpu_uclamp_max_show,
12026 .write = cpu_uclamp_max_write,
12027 },
12028 #ifdef CONFIG_SCHED_RTG_CGROUP
12029 {
12030 .name = "uclamp.colocate",
12031 .flags = CFTYPE_NOT_ON_ROOT,
12032 .read_u64 = sched_colocate_read,
12033 .write_u64 = sched_colocate_write,
12034 },
12035 #endif
12036 #endif
12037 { } /* Terminate */
12038 };
12039
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)12040 static int cpu_extra_stat_show(struct seq_file *sf,
12041 struct cgroup_subsys_state *css)
12042 {
12043 #ifdef CONFIG_CFS_BANDWIDTH
12044 {
12045 struct task_group *tg = css_tg(css);
12046 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
12047 u64 throttled_usec, burst_usec;
12048
12049 throttled_usec = cfs_b->throttled_time;
12050 do_div(throttled_usec, NSEC_PER_USEC);
12051 burst_usec = cfs_b->burst_time;
12052 do_div(burst_usec, NSEC_PER_USEC);
12053
12054 seq_printf(sf, "nr_periods %d\n"
12055 "nr_throttled %d\n"
12056 "throttled_usec %llu\n"
12057 "nr_bursts %d\n"
12058 "burst_usec %llu\n",
12059 cfs_b->nr_periods, cfs_b->nr_throttled,
12060 throttled_usec, cfs_b->nr_burst, burst_usec);
12061 }
12062 #endif
12063 return 0;
12064 }
12065
cpu_local_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)12066 static int cpu_local_stat_show(struct seq_file *sf,
12067 struct cgroup_subsys_state *css)
12068 {
12069 #ifdef CONFIG_CFS_BANDWIDTH
12070 {
12071 struct task_group *tg = css_tg(css);
12072 u64 throttled_self_usec;
12073
12074 throttled_self_usec = throttled_time_self(tg);
12075 do_div(throttled_self_usec, NSEC_PER_USEC);
12076
12077 seq_printf(sf, "throttled_usec %llu\n",
12078 throttled_self_usec);
12079 }
12080 #endif
12081 return 0;
12082 }
12083
12084 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)12085 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
12086 struct cftype *cft)
12087 {
12088 struct task_group *tg = css_tg(css);
12089 u64 weight = scale_load_down(tg->shares);
12090
12091 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
12092 }
12093
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)12094 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
12095 struct cftype *cft, u64 weight)
12096 {
12097 /*
12098 * cgroup weight knobs should use the common MIN, DFL and MAX
12099 * values which are 1, 100 and 10000 respectively. While it loses
12100 * a bit of range on both ends, it maps pretty well onto the shares
12101 * value used by scheduler and the round-trip conversions preserve
12102 * the original value over the entire range.
12103 */
12104 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
12105 return -ERANGE;
12106
12107 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
12108
12109 return sched_group_set_shares(css_tg(css), scale_load(weight));
12110 }
12111
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)12112 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
12113 struct cftype *cft)
12114 {
12115 unsigned long weight = scale_load_down(css_tg(css)->shares);
12116 int last_delta = INT_MAX;
12117 int prio, delta;
12118
12119 /* find the closest nice value to the current weight */
12120 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
12121 delta = abs(sched_prio_to_weight[prio] - weight);
12122 if (delta >= last_delta)
12123 break;
12124 last_delta = delta;
12125 }
12126
12127 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
12128 }
12129
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)12130 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
12131 struct cftype *cft, s64 nice)
12132 {
12133 unsigned long weight;
12134 int idx;
12135
12136 if (nice < MIN_NICE || nice > MAX_NICE)
12137 return -ERANGE;
12138
12139 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
12140 idx = array_index_nospec(idx, 40);
12141 weight = sched_prio_to_weight[idx];
12142
12143 return sched_group_set_shares(css_tg(css), scale_load(weight));
12144 }
12145 #endif
12146
cpu_period_quota_print(struct seq_file * sf,long period,long quota)12147 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
12148 long period, long quota)
12149 {
12150 if (quota < 0)
12151 seq_puts(sf, "max");
12152 else
12153 seq_printf(sf, "%ld", quota);
12154
12155 seq_printf(sf, " %ld\n", period);
12156 }
12157
12158 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)12159 static int __maybe_unused cpu_period_quota_parse(char *buf,
12160 u64 *periodp, u64 *quotap)
12161 {
12162 char tok[21]; /* U64_MAX */
12163
12164 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
12165 return -EINVAL;
12166
12167 *periodp *= NSEC_PER_USEC;
12168
12169 if (sscanf(tok, "%llu", quotap))
12170 *quotap *= NSEC_PER_USEC;
12171 else if (!strcmp(tok, "max"))
12172 *quotap = RUNTIME_INF;
12173 else
12174 return -EINVAL;
12175
12176 return 0;
12177 }
12178
12179 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)12180 static int cpu_max_show(struct seq_file *sf, void *v)
12181 {
12182 struct task_group *tg = css_tg(seq_css(sf));
12183
12184 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
12185 return 0;
12186 }
12187
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)12188 static ssize_t cpu_max_write(struct kernfs_open_file *of,
12189 char *buf, size_t nbytes, loff_t off)
12190 {
12191 struct task_group *tg = css_tg(of_css(of));
12192 u64 period = tg_get_cfs_period(tg);
12193 u64 burst = tg->cfs_bandwidth.burst;
12194 u64 quota;
12195 int ret;
12196
12197 ret = cpu_period_quota_parse(buf, &period, "a);
12198 if (!ret)
12199 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
12200 return ret ?: nbytes;
12201 }
12202 #endif
12203
12204 static struct cftype cpu_files[] = {
12205 #ifdef CONFIG_FAIR_GROUP_SCHED
12206 {
12207 .name = "weight",
12208 .flags = CFTYPE_NOT_ON_ROOT,
12209 .read_u64 = cpu_weight_read_u64,
12210 .write_u64 = cpu_weight_write_u64,
12211 },
12212 {
12213 .name = "weight.nice",
12214 .flags = CFTYPE_NOT_ON_ROOT,
12215 .read_s64 = cpu_weight_nice_read_s64,
12216 .write_s64 = cpu_weight_nice_write_s64,
12217 },
12218 {
12219 .name = "idle",
12220 .flags = CFTYPE_NOT_ON_ROOT,
12221 .read_s64 = cpu_idle_read_s64,
12222 .write_s64 = cpu_idle_write_s64,
12223 },
12224 #endif
12225 #ifdef CONFIG_CFS_BANDWIDTH
12226 {
12227 .name = "max",
12228 .flags = CFTYPE_NOT_ON_ROOT,
12229 .seq_show = cpu_max_show,
12230 .write = cpu_max_write,
12231 },
12232 {
12233 .name = "max.burst",
12234 .flags = CFTYPE_NOT_ON_ROOT,
12235 .read_u64 = cpu_cfs_burst_read_u64,
12236 .write_u64 = cpu_cfs_burst_write_u64,
12237 },
12238 #endif
12239 #ifdef CONFIG_UCLAMP_TASK_GROUP
12240 {
12241 .name = "uclamp.min",
12242 .flags = CFTYPE_NOT_ON_ROOT,
12243 .seq_show = cpu_uclamp_min_show,
12244 .write = cpu_uclamp_min_write,
12245 },
12246 {
12247 .name = "uclamp.max",
12248 .flags = CFTYPE_NOT_ON_ROOT,
12249 .seq_show = cpu_uclamp_max_show,
12250 .write = cpu_uclamp_max_write,
12251 },
12252 #endif
12253 { } /* terminate */
12254 };
12255
12256 struct cgroup_subsys cpu_cgrp_subsys = {
12257 .css_alloc = cpu_cgroup_css_alloc,
12258 .css_online = cpu_cgroup_css_online,
12259 .css_released = cpu_cgroup_css_released,
12260 .css_free = cpu_cgroup_css_free,
12261 .css_extra_stat_show = cpu_extra_stat_show,
12262 .css_local_stat_show = cpu_local_stat_show,
12263 #ifdef CONFIG_RT_GROUP_SCHED
12264 .can_attach = cpu_cgroup_can_attach,
12265 #endif
12266 .attach = cpu_cgroup_attach,
12267 .legacy_cftypes = cpu_legacy_files,
12268 .dfl_cftypes = cpu_files,
12269 .early_init = true,
12270 .threaded = true,
12271 };
12272
12273 #endif /* CONFIG_CGROUP_SCHED */
12274
dump_cpu_task(int cpu)12275 void dump_cpu_task(int cpu)
12276 {
12277 if (cpu == smp_processor_id() && in_hardirq()) {
12278 struct pt_regs *regs;
12279
12280 regs = get_irq_regs();
12281 if (regs) {
12282 show_regs(regs);
12283 return;
12284 }
12285 }
12286
12287 if (trigger_single_cpu_backtrace(cpu))
12288 return;
12289
12290 pr_info("Task dump for CPU %d:\n", cpu);
12291 sched_show_task(cpu_curr(cpu));
12292 }
12293
12294 /*
12295 * Nice levels are multiplicative, with a gentle 10% change for every
12296 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
12297 * nice 1, it will get ~10% less CPU time than another CPU-bound task
12298 * that remained on nice 0.
12299 *
12300 * The "10% effect" is relative and cumulative: from _any_ nice level,
12301 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
12302 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
12303 * If a task goes up by ~10% and another task goes down by ~10% then
12304 * the relative distance between them is ~25%.)
12305 */
12306 const int sched_prio_to_weight[40] = {
12307 /* -20 */ 88761, 71755, 56483, 46273, 36291,
12308 /* -15 */ 29154, 23254, 18705, 14949, 11916,
12309 /* -10 */ 9548, 7620, 6100, 4904, 3906,
12310 /* -5 */ 3121, 2501, 1991, 1586, 1277,
12311 /* 0 */ 1024, 820, 655, 526, 423,
12312 /* 5 */ 335, 272, 215, 172, 137,
12313 /* 10 */ 110, 87, 70, 56, 45,
12314 /* 15 */ 36, 29, 23, 18, 15,
12315 };
12316
12317 /*
12318 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
12319 *
12320 * In cases where the weight does not change often, we can use the
12321 * precalculated inverse to speed up arithmetics by turning divisions
12322 * into multiplications:
12323 */
12324 const u32 sched_prio_to_wmult[40] = {
12325 /* -20 */ 48388, 59856, 76040, 92818, 118348,
12326 /* -15 */ 147320, 184698, 229616, 287308, 360437,
12327 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
12328 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
12329 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
12330 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
12331 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
12332 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
12333 };
12334
12335 #ifdef CONFIG_SCHED_LATENCY_NICE
12336 /*
12337 * latency weight for wakeup preemption
12338 */
12339 const int sched_latency_to_weight[40] = {
12340 /* -20 */ 1024, 973, 922, 870, 819,
12341 /* -15 */ 768, 717, 666, 614, 563,
12342 /* -10 */ 512, 461, 410, 358, 307,
12343 /* -5 */ 256, 205, 154, 102, 51,
12344 /* 0 */ 0, -51, -102, -154, -205,
12345 /* 5 */ -256, -307, -358, -410, -461,
12346 /* 10 */ -512, -563, -614, -666, -717,
12347 /* 15 */ -768, -819, -870, -922, -973,
12348 };
12349 #endif
12350
call_trace_sched_update_nr_running(struct rq * rq,int count)12351 void call_trace_sched_update_nr_running(struct rq *rq, int count)
12352 {
12353 trace_sched_update_nr_running_tp(rq, count);
12354 }
12355
12356 #ifdef CONFIG_SCHED_MM_CID
12357
12358 /*
12359 * @cid_lock: Guarantee forward-progress of cid allocation.
12360 *
12361 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
12362 * is only used when contention is detected by the lock-free allocation so
12363 * forward progress can be guaranteed.
12364 */
12365 DEFINE_RAW_SPINLOCK(cid_lock);
12366
12367 /*
12368 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
12369 *
12370 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
12371 * detected, it is set to 1 to ensure that all newly coming allocations are
12372 * serialized by @cid_lock until the allocation which detected contention
12373 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
12374 * of a cid allocation.
12375 */
12376 int use_cid_lock;
12377
12378 /*
12379 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
12380 * concurrently with respect to the execution of the source runqueue context
12381 * switch.
12382 *
12383 * There is one basic properties we want to guarantee here:
12384 *
12385 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
12386 * used by a task. That would lead to concurrent allocation of the cid and
12387 * userspace corruption.
12388 *
12389 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
12390 * that a pair of loads observe at least one of a pair of stores, which can be
12391 * shown as:
12392 *
12393 * X = Y = 0
12394 *
12395 * w[X]=1 w[Y]=1
12396 * MB MB
12397 * r[Y]=y r[X]=x
12398 *
12399 * Which guarantees that x==0 && y==0 is impossible. But rather than using
12400 * values 0 and 1, this algorithm cares about specific state transitions of the
12401 * runqueue current task (as updated by the scheduler context switch), and the
12402 * per-mm/cpu cid value.
12403 *
12404 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
12405 * task->mm != mm for the rest of the discussion. There are two scheduler state
12406 * transitions on context switch we care about:
12407 *
12408 * (TSA) Store to rq->curr with transition from (N) to (Y)
12409 *
12410 * (TSB) Store to rq->curr with transition from (Y) to (N)
12411 *
12412 * On the remote-clear side, there is one transition we care about:
12413 *
12414 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
12415 *
12416 * There is also a transition to UNSET state which can be performed from all
12417 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
12418 * guarantees that only a single thread will succeed:
12419 *
12420 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
12421 *
12422 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
12423 * when a thread is actively using the cid (property (1)).
12424 *
12425 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
12426 *
12427 * Scenario A) (TSA)+(TMA) (from next task perspective)
12428 *
12429 * CPU0 CPU1
12430 *
12431 * Context switch CS-1 Remote-clear
12432 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
12433 * (implied barrier after cmpxchg)
12434 * - switch_mm_cid()
12435 * - memory barrier (see switch_mm_cid()
12436 * comment explaining how this barrier
12437 * is combined with other scheduler
12438 * barriers)
12439 * - mm_cid_get (next)
12440 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
12441 *
12442 * This Dekker ensures that either task (Y) is observed by the
12443 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
12444 * observed.
12445 *
12446 * If task (Y) store is observed by rcu_dereference(), it means that there is
12447 * still an active task on the cpu. Remote-clear will therefore not transition
12448 * to UNSET, which fulfills property (1).
12449 *
12450 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
12451 * it will move its state to UNSET, which clears the percpu cid perhaps
12452 * uselessly (which is not an issue for correctness). Because task (Y) is not
12453 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
12454 * state to UNSET is done with a cmpxchg expecting that the old state has the
12455 * LAZY flag set, only one thread will successfully UNSET.
12456 *
12457 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
12458 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
12459 * CPU1 will observe task (Y) and do nothing more, which is fine.
12460 *
12461 * What we are effectively preventing with this Dekker is a scenario where
12462 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
12463 * because this would UNSET a cid which is actively used.
12464 */
12465
sched_mm_cid_migrate_from(struct task_struct * t)12466 void sched_mm_cid_migrate_from(struct task_struct *t)
12467 {
12468 t->migrate_from_cpu = task_cpu(t);
12469 }
12470
12471 static
__sched_mm_cid_migrate_from_fetch_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid)12472 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
12473 struct task_struct *t,
12474 struct mm_cid *src_pcpu_cid)
12475 {
12476 struct mm_struct *mm = t->mm;
12477 struct task_struct *src_task;
12478 int src_cid, last_mm_cid;
12479
12480 if (!mm)
12481 return -1;
12482
12483 last_mm_cid = t->last_mm_cid;
12484 /*
12485 * If the migrated task has no last cid, or if the current
12486 * task on src rq uses the cid, it means the source cid does not need
12487 * to be moved to the destination cpu.
12488 */
12489 if (last_mm_cid == -1)
12490 return -1;
12491 src_cid = READ_ONCE(src_pcpu_cid->cid);
12492 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
12493 return -1;
12494
12495 /*
12496 * If we observe an active task using the mm on this rq, it means we
12497 * are not the last task to be migrated from this cpu for this mm, so
12498 * there is no need to move src_cid to the destination cpu.
12499 */
12500 rcu_read_lock();
12501 src_task = rcu_dereference(src_rq->curr);
12502 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
12503 rcu_read_unlock();
12504 t->last_mm_cid = -1;
12505 return -1;
12506 }
12507 rcu_read_unlock();
12508
12509 return src_cid;
12510 }
12511
12512 static
__sched_mm_cid_migrate_from_try_steal_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid,int src_cid)12513 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
12514 struct task_struct *t,
12515 struct mm_cid *src_pcpu_cid,
12516 int src_cid)
12517 {
12518 struct task_struct *src_task;
12519 struct mm_struct *mm = t->mm;
12520 int lazy_cid;
12521
12522 if (src_cid == -1)
12523 return -1;
12524
12525 /*
12526 * Attempt to clear the source cpu cid to move it to the destination
12527 * cpu.
12528 */
12529 lazy_cid = mm_cid_set_lazy_put(src_cid);
12530 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
12531 return -1;
12532
12533 /*
12534 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
12535 * rq->curr->mm matches the scheduler barrier in context_switch()
12536 * between store to rq->curr and load of prev and next task's
12537 * per-mm/cpu cid.
12538 *
12539 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
12540 * rq->curr->mm_cid_active matches the barrier in
12541 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
12542 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
12543 * load of per-mm/cpu cid.
12544 */
12545
12546 /*
12547 * If we observe an active task using the mm on this rq after setting
12548 * the lazy-put flag, this task will be responsible for transitioning
12549 * from lazy-put flag set to MM_CID_UNSET.
12550 */
12551 rcu_read_lock();
12552 src_task = rcu_dereference(src_rq->curr);
12553 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
12554 rcu_read_unlock();
12555 /*
12556 * We observed an active task for this mm, there is therefore
12557 * no point in moving this cid to the destination cpu.
12558 */
12559 t->last_mm_cid = -1;
12560 return -1;
12561 }
12562 rcu_read_unlock();
12563
12564 /*
12565 * The src_cid is unused, so it can be unset.
12566 */
12567 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
12568 return -1;
12569 return src_cid;
12570 }
12571
12572 /*
12573 * Migration to dst cpu. Called with dst_rq lock held.
12574 * Interrupts are disabled, which keeps the window of cid ownership without the
12575 * source rq lock held small.
12576 */
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)12577 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
12578 {
12579 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
12580 struct mm_struct *mm = t->mm;
12581 int src_cid, dst_cid, src_cpu;
12582 struct rq *src_rq;
12583
12584 lockdep_assert_rq_held(dst_rq);
12585
12586 if (!mm)
12587 return;
12588 src_cpu = t->migrate_from_cpu;
12589 if (src_cpu == -1) {
12590 t->last_mm_cid = -1;
12591 return;
12592 }
12593 /*
12594 * Move the src cid if the dst cid is unset. This keeps id
12595 * allocation closest to 0 in cases where few threads migrate around
12596 * many cpus.
12597 *
12598 * If destination cid is already set, we may have to just clear
12599 * the src cid to ensure compactness in frequent migrations
12600 * scenarios.
12601 *
12602 * It is not useful to clear the src cid when the number of threads is
12603 * greater or equal to the number of allowed cpus, because user-space
12604 * can expect that the number of allowed cids can reach the number of
12605 * allowed cpus.
12606 */
12607 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
12608 dst_cid = READ_ONCE(dst_pcpu_cid->cid);
12609 if (!mm_cid_is_unset(dst_cid) &&
12610 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
12611 return;
12612 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
12613 src_rq = cpu_rq(src_cpu);
12614 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
12615 if (src_cid == -1)
12616 return;
12617 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
12618 src_cid);
12619 if (src_cid == -1)
12620 return;
12621 if (!mm_cid_is_unset(dst_cid)) {
12622 __mm_cid_put(mm, src_cid);
12623 return;
12624 }
12625 /* Move src_cid to dst cpu. */
12626 mm_cid_snapshot_time(dst_rq, mm);
12627 WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
12628 }
12629
sched_mm_cid_remote_clear(struct mm_struct * mm,struct mm_cid * pcpu_cid,int cpu)12630 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
12631 int cpu)
12632 {
12633 struct rq *rq = cpu_rq(cpu);
12634 struct task_struct *t;
12635 unsigned long flags;
12636 int cid, lazy_cid;
12637
12638 cid = READ_ONCE(pcpu_cid->cid);
12639 if (!mm_cid_is_valid(cid))
12640 return;
12641
12642 /*
12643 * Clear the cpu cid if it is set to keep cid allocation compact. If
12644 * there happens to be other tasks left on the source cpu using this
12645 * mm, the next task using this mm will reallocate its cid on context
12646 * switch.
12647 */
12648 lazy_cid = mm_cid_set_lazy_put(cid);
12649 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
12650 return;
12651
12652 /*
12653 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
12654 * rq->curr->mm matches the scheduler barrier in context_switch()
12655 * between store to rq->curr and load of prev and next task's
12656 * per-mm/cpu cid.
12657 *
12658 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
12659 * rq->curr->mm_cid_active matches the barrier in
12660 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
12661 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
12662 * load of per-mm/cpu cid.
12663 */
12664
12665 /*
12666 * If we observe an active task using the mm on this rq after setting
12667 * the lazy-put flag, that task will be responsible for transitioning
12668 * from lazy-put flag set to MM_CID_UNSET.
12669 */
12670 rcu_read_lock();
12671 t = rcu_dereference(rq->curr);
12672 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
12673 rcu_read_unlock();
12674 return;
12675 }
12676 rcu_read_unlock();
12677
12678 /*
12679 * The cid is unused, so it can be unset.
12680 * Disable interrupts to keep the window of cid ownership without rq
12681 * lock small.
12682 */
12683 local_irq_save(flags);
12684 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
12685 __mm_cid_put(mm, cid);
12686 local_irq_restore(flags);
12687 }
12688
sched_mm_cid_remote_clear_old(struct mm_struct * mm,int cpu)12689 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
12690 {
12691 struct rq *rq = cpu_rq(cpu);
12692 struct mm_cid *pcpu_cid;
12693 struct task_struct *curr;
12694 u64 rq_clock;
12695
12696 /*
12697 * rq->clock load is racy on 32-bit but one spurious clear once in a
12698 * while is irrelevant.
12699 */
12700 rq_clock = READ_ONCE(rq->clock);
12701 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
12702
12703 /*
12704 * In order to take care of infrequently scheduled tasks, bump the time
12705 * snapshot associated with this cid if an active task using the mm is
12706 * observed on this rq.
12707 */
12708 rcu_read_lock();
12709 curr = rcu_dereference(rq->curr);
12710 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
12711 WRITE_ONCE(pcpu_cid->time, rq_clock);
12712 rcu_read_unlock();
12713 return;
12714 }
12715 rcu_read_unlock();
12716
12717 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
12718 return;
12719 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
12720 }
12721
sched_mm_cid_remote_clear_weight(struct mm_struct * mm,int cpu,int weight)12722 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
12723 int weight)
12724 {
12725 struct mm_cid *pcpu_cid;
12726 int cid;
12727
12728 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
12729 cid = READ_ONCE(pcpu_cid->cid);
12730 if (!mm_cid_is_valid(cid) || cid < weight)
12731 return;
12732 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
12733 }
12734
task_mm_cid_work(struct callback_head * work)12735 static void task_mm_cid_work(struct callback_head *work)
12736 {
12737 unsigned long now = jiffies, old_scan, next_scan;
12738 struct task_struct *t = current;
12739 struct cpumask *cidmask;
12740 struct mm_struct *mm;
12741 int weight, cpu;
12742
12743 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
12744
12745 work->next = work; /* Prevent double-add */
12746 if (t->flags & PF_EXITING)
12747 return;
12748 mm = t->mm;
12749 if (!mm)
12750 return;
12751 old_scan = READ_ONCE(mm->mm_cid_next_scan);
12752 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12753 if (!old_scan) {
12754 unsigned long res;
12755
12756 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
12757 if (res != old_scan)
12758 old_scan = res;
12759 else
12760 old_scan = next_scan;
12761 }
12762 if (time_before(now, old_scan))
12763 return;
12764 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
12765 return;
12766 cidmask = mm_cidmask(mm);
12767 /* Clear cids that were not recently used. */
12768 for_each_possible_cpu(cpu)
12769 sched_mm_cid_remote_clear_old(mm, cpu);
12770 weight = cpumask_weight(cidmask);
12771 /*
12772 * Clear cids that are greater or equal to the cidmask weight to
12773 * recompact it.
12774 */
12775 for_each_possible_cpu(cpu)
12776 sched_mm_cid_remote_clear_weight(mm, cpu, weight);
12777 }
12778
init_sched_mm_cid(struct task_struct * t)12779 void init_sched_mm_cid(struct task_struct *t)
12780 {
12781 struct mm_struct *mm = t->mm;
12782 int mm_users = 0;
12783
12784 if (mm) {
12785 mm_users = atomic_read(&mm->mm_users);
12786 if (mm_users == 1)
12787 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12788 }
12789 t->cid_work.next = &t->cid_work; /* Protect against double add */
12790 init_task_work(&t->cid_work, task_mm_cid_work);
12791 }
12792
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)12793 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
12794 {
12795 struct callback_head *work = &curr->cid_work;
12796 unsigned long now = jiffies;
12797
12798 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
12799 work->next != work)
12800 return;
12801 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
12802 return;
12803
12804 /* No page allocation under rq lock */
12805 task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC);
12806 }
12807
sched_mm_cid_exit_signals(struct task_struct * t)12808 void sched_mm_cid_exit_signals(struct task_struct *t)
12809 {
12810 struct mm_struct *mm = t->mm;
12811 struct rq_flags rf;
12812 struct rq *rq;
12813
12814 if (!mm)
12815 return;
12816
12817 preempt_disable();
12818 rq = this_rq();
12819 rq_lock_irqsave(rq, &rf);
12820 preempt_enable_no_resched(); /* holding spinlock */
12821 WRITE_ONCE(t->mm_cid_active, 0);
12822 /*
12823 * Store t->mm_cid_active before loading per-mm/cpu cid.
12824 * Matches barrier in sched_mm_cid_remote_clear_old().
12825 */
12826 smp_mb();
12827 mm_cid_put(mm);
12828 t->last_mm_cid = t->mm_cid = -1;
12829 rq_unlock_irqrestore(rq, &rf);
12830 }
12831
sched_mm_cid_before_execve(struct task_struct * t)12832 void sched_mm_cid_before_execve(struct task_struct *t)
12833 {
12834 struct mm_struct *mm = t->mm;
12835 struct rq_flags rf;
12836 struct rq *rq;
12837
12838 if (!mm)
12839 return;
12840
12841 preempt_disable();
12842 rq = this_rq();
12843 rq_lock_irqsave(rq, &rf);
12844 preempt_enable_no_resched(); /* holding spinlock */
12845 WRITE_ONCE(t->mm_cid_active, 0);
12846 /*
12847 * Store t->mm_cid_active before loading per-mm/cpu cid.
12848 * Matches barrier in sched_mm_cid_remote_clear_old().
12849 */
12850 smp_mb();
12851 mm_cid_put(mm);
12852 t->last_mm_cid = t->mm_cid = -1;
12853 rq_unlock_irqrestore(rq, &rf);
12854 }
12855
sched_mm_cid_after_execve(struct task_struct * t)12856 void sched_mm_cid_after_execve(struct task_struct *t)
12857 {
12858 struct mm_struct *mm = t->mm;
12859 struct rq_flags rf;
12860 struct rq *rq;
12861
12862 if (!mm)
12863 return;
12864
12865 preempt_disable();
12866 rq = this_rq();
12867 rq_lock_irqsave(rq, &rf);
12868 preempt_enable_no_resched(); /* holding spinlock */
12869 WRITE_ONCE(t->mm_cid_active, 1);
12870 /*
12871 * Store t->mm_cid_active before loading per-mm/cpu cid.
12872 * Matches barrier in sched_mm_cid_remote_clear_old().
12873 */
12874 smp_mb();
12875 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12876 rq_unlock_irqrestore(rq, &rf);
12877 rseq_set_notify_resume(t);
12878 }
12879
sched_mm_cid_fork(struct task_struct * t)12880 void sched_mm_cid_fork(struct task_struct *t)
12881 {
12882 WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12883 t->mm_cid_active = 1;
12884 }
12885 #endif
12886
12887 #ifdef CONFIG_SCHED_WALT
12888 /*
12889 * sched_exit() - Set EXITING_TASK_MARKER in task's ravg.demand field
12890 *
12891 * Stop accounting (exiting) task's future cpu usage
12892 *
12893 * We need this so that reset_all_windows_stats() can function correctly.
12894 * reset_all_window_stats() depends on do_each_thread/for_each_thread task
12895 * iterators to reset *all* task's statistics. Exiting tasks however become
12896 * invisible to those iterators. sched_exit() is called on a exiting task prior
12897 * to being removed from task_list, which will let reset_all_window_stats()
12898 * function correctly.
12899 */
sched_exit(struct task_struct * p)12900 void sched_exit(struct task_struct *p)
12901 {
12902 struct rq_flags rf;
12903 struct rq *rq;
12904 u64 wallclock;
12905
12906 #ifdef CONFIG_SCHED_RTG
12907 sched_set_group_id(p, 0);
12908 #endif
12909
12910 rq = task_rq_lock(p, &rf);
12911
12912 /* rq->curr == p */
12913 wallclock = sched_ktime_clock();
12914 update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
12915 dequeue_task(rq, p, 0);
12916 /*
12917 * task's contribution is already removed from the
12918 * cumulative window demand in dequeue. As the
12919 * task's stats are reset, the next enqueue does
12920 * not change the cumulative window demand.
12921 */
12922 reset_task_stats(p);
12923 p->ravg.mark_start = wallclock;
12924 p->ravg.sum_history[0] = EXITING_TASK_MARKER;
12925
12926 enqueue_task(rq, p, 0);
12927 task_rq_unlock(rq, p, &rf);
12928 free_task_load_ptrs(p);
12929 }
12930 #endif /* CONFIG_SCHED_WALT */
12931