• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2016 Red Hat.
3  * Copyright © 2016 Bas Nieuwenhuizen
4  *
5  * based in part on anv driver which is:
6  * Copyright © 2015 Intel Corporation
7  *
8  * SPDX-License-Identifier: MIT
9  */
10 
11 #include "radv_cmd_buffer.h"
12 #include "meta/radv_meta.h"
13 #include "radv_cp_dma.h"
14 #include "radv_cs.h"
15 #include "radv_debug.h"
16 #include "radv_dgc.h"
17 #include "radv_event.h"
18 #include "radv_pipeline_rt.h"
19 #include "radv_radeon_winsys.h"
20 #include "radv_rmv.h"
21 #include "radv_rra.h"
22 #include "radv_shader.h"
23 #include "radv_shader_object.h"
24 #include "radv_sqtt.h"
25 #include "sid.h"
26 #include "vk_command_pool.h"
27 #include "vk_common_entrypoints.h"
28 #include "vk_enum_defines.h"
29 #include "vk_format.h"
30 #include "vk_framebuffer.h"
31 #include "vk_render_pass.h"
32 #include "vk_synchronization.h"
33 #include "vk_util.h"
34 
35 #include "ac_debug.h"
36 #include "ac_descriptors.h"
37 #include "ac_nir.h"
38 #include "ac_shader_args.h"
39 
40 #include "aco_interface.h"
41 
42 #include "util/fast_idiv_by_const.h"
43 
44 enum {
45    RADV_PREFETCH_VBO_DESCRIPTORS = (1 << 0),
46    RADV_PREFETCH_VS = (1 << 1),
47    RADV_PREFETCH_TCS = (1 << 2),
48    RADV_PREFETCH_TES = (1 << 3),
49    RADV_PREFETCH_GS = (1 << 4),
50    RADV_PREFETCH_PS = (1 << 5),
51    RADV_PREFETCH_MS = (1 << 6),
52    RADV_PREFETCH_SHADERS = (RADV_PREFETCH_VS | RADV_PREFETCH_TCS | RADV_PREFETCH_TES | RADV_PREFETCH_GS |
53                             RADV_PREFETCH_PS | RADV_PREFETCH_MS)
54 };
55 
56 static void radv_handle_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
57                                          VkImageLayout src_layout, VkImageLayout dst_layout, uint32_t src_family_index,
58                                          uint32_t dst_family_index, const VkImageSubresourceRange *range,
59                                          struct radv_sample_locations_state *sample_locs);
60 
61 static void
radv_bind_dynamic_state(struct radv_cmd_buffer * cmd_buffer,const struct radv_dynamic_state * src)62 radv_bind_dynamic_state(struct radv_cmd_buffer *cmd_buffer, const struct radv_dynamic_state *src)
63 {
64    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
65    const struct radv_physical_device *pdev = radv_device_physical(device);
66    struct radv_dynamic_state *dest = &cmd_buffer->state.dynamic;
67    uint64_t copy_mask = src->mask;
68    uint64_t dest_mask = 0;
69 
70    dest->vk.dr.rectangle_count = src->vk.dr.rectangle_count;
71    dest->sample_location.count = src->sample_location.count;
72 
73    if (copy_mask & RADV_DYNAMIC_VIEWPORT) {
74       if (dest->vk.vp.viewport_count != src->vk.vp.viewport_count) {
75          dest->vk.vp.viewport_count = src->vk.vp.viewport_count;
76          dest_mask |= RADV_DYNAMIC_VIEWPORT;
77       }
78 
79       if (memcmp(&dest->vk.vp.viewports, &src->vk.vp.viewports, src->vk.vp.viewport_count * sizeof(VkViewport))) {
80          typed_memcpy(dest->vk.vp.viewports, src->vk.vp.viewports, src->vk.vp.viewport_count);
81          typed_memcpy(dest->hw_vp.xform, src->hw_vp.xform, src->vk.vp.viewport_count);
82          dest_mask |= RADV_DYNAMIC_VIEWPORT;
83       }
84    }
85 
86    if (copy_mask & RADV_DYNAMIC_SCISSOR) {
87       if (dest->vk.vp.scissor_count != src->vk.vp.scissor_count) {
88          dest->vk.vp.scissor_count = src->vk.vp.scissor_count;
89          dest_mask |= RADV_DYNAMIC_SCISSOR;
90       }
91 
92       if (memcmp(&dest->vk.vp.scissors, &src->vk.vp.scissors, src->vk.vp.scissor_count * sizeof(VkRect2D))) {
93          typed_memcpy(dest->vk.vp.scissors, src->vk.vp.scissors, src->vk.vp.scissor_count);
94          dest_mask |= RADV_DYNAMIC_SCISSOR;
95       }
96    }
97 
98    if (copy_mask & RADV_DYNAMIC_BLEND_CONSTANTS) {
99       if (memcmp(&dest->vk.cb.blend_constants, &src->vk.cb.blend_constants, sizeof(src->vk.cb.blend_constants))) {
100          typed_memcpy(dest->vk.cb.blend_constants, src->vk.cb.blend_constants, 4);
101          dest_mask |= RADV_DYNAMIC_BLEND_CONSTANTS;
102       }
103    }
104 
105    if (copy_mask & RADV_DYNAMIC_DISCARD_RECTANGLE) {
106       if (memcmp(&dest->vk.dr.rectangles, &src->vk.dr.rectangles, src->vk.dr.rectangle_count * sizeof(VkRect2D))) {
107          typed_memcpy(dest->vk.dr.rectangles, src->vk.dr.rectangles, src->vk.dr.rectangle_count);
108          dest_mask |= RADV_DYNAMIC_DISCARD_RECTANGLE;
109       }
110    }
111 
112    if (copy_mask & RADV_DYNAMIC_SAMPLE_LOCATIONS) {
113       if (dest->sample_location.per_pixel != src->sample_location.per_pixel ||
114           dest->sample_location.grid_size.width != src->sample_location.grid_size.width ||
115           dest->sample_location.grid_size.height != src->sample_location.grid_size.height ||
116           memcmp(&dest->sample_location.locations, &src->sample_location.locations,
117                  src->sample_location.count * sizeof(VkSampleLocationEXT))) {
118          dest->sample_location.per_pixel = src->sample_location.per_pixel;
119          dest->sample_location.grid_size = src->sample_location.grid_size;
120          typed_memcpy(dest->sample_location.locations, src->sample_location.locations, src->sample_location.count);
121          dest_mask |= RADV_DYNAMIC_SAMPLE_LOCATIONS;
122       }
123    }
124 
125    if (copy_mask & RADV_DYNAMIC_COLOR_WRITE_MASK) {
126       for (uint32_t i = 0; i < MAX_RTS; i++) {
127          if (dest->vk.cb.attachments[i].write_mask != src->vk.cb.attachments[i].write_mask) {
128             dest->vk.cb.attachments[i].write_mask = src->vk.cb.attachments[i].write_mask;
129             dest_mask |= RADV_DYNAMIC_COLOR_WRITE_MASK;
130          }
131       }
132    }
133 
134    if (copy_mask & RADV_DYNAMIC_COLOR_BLEND_ENABLE) {
135       for (uint32_t i = 0; i < MAX_RTS; i++) {
136          if (dest->vk.cb.attachments[i].blend_enable != src->vk.cb.attachments[i].blend_enable) {
137             dest->vk.cb.attachments[i].blend_enable = src->vk.cb.attachments[i].blend_enable;
138             dest_mask |= RADV_DYNAMIC_COLOR_BLEND_ENABLE;
139          }
140       }
141    }
142 
143    if (copy_mask & RADV_DYNAMIC_COLOR_BLEND_EQUATION) {
144       for (uint32_t i = 0; i < MAX_RTS; i++) {
145          if (dest->vk.cb.attachments[i].src_color_blend_factor != src->vk.cb.attachments[i].src_color_blend_factor ||
146              dest->vk.cb.attachments[i].dst_color_blend_factor != src->vk.cb.attachments[i].dst_color_blend_factor ||
147              dest->vk.cb.attachments[i].color_blend_op != src->vk.cb.attachments[i].color_blend_op ||
148              dest->vk.cb.attachments[i].src_alpha_blend_factor != src->vk.cb.attachments[i].src_alpha_blend_factor ||
149              dest->vk.cb.attachments[i].dst_alpha_blend_factor != src->vk.cb.attachments[i].dst_alpha_blend_factor ||
150              dest->vk.cb.attachments[i].alpha_blend_op != src->vk.cb.attachments[i].alpha_blend_op) {
151             dest->vk.cb.attachments[i].src_color_blend_factor = src->vk.cb.attachments[i].src_color_blend_factor;
152             dest->vk.cb.attachments[i].dst_color_blend_factor = src->vk.cb.attachments[i].dst_color_blend_factor;
153             dest->vk.cb.attachments[i].color_blend_op = src->vk.cb.attachments[i].color_blend_op;
154             dest->vk.cb.attachments[i].src_alpha_blend_factor = src->vk.cb.attachments[i].src_alpha_blend_factor;
155             dest->vk.cb.attachments[i].dst_alpha_blend_factor = src->vk.cb.attachments[i].dst_alpha_blend_factor;
156             dest->vk.cb.attachments[i].alpha_blend_op = src->vk.cb.attachments[i].alpha_blend_op;
157             dest_mask |= RADV_DYNAMIC_COLOR_BLEND_EQUATION;
158          }
159       }
160    }
161 
162    if (memcmp(&dest->vk.cal.color_map, &src->vk.cal.color_map, sizeof(src->vk.cal.color_map))) {
163       typed_memcpy(dest->vk.cal.color_map, src->vk.cal.color_map, MAX_RTS);
164       dest_mask |= RADV_DYNAMIC_COLOR_ATTACHMENT_MAP;
165    }
166 
167    if (memcmp(&dest->vk.ial, &src->vk.ial, sizeof(src->vk.ial))) {
168       typed_memcpy(dest->vk.ial.color_map, src->vk.ial.color_map, MAX_RTS);
169       dest->vk.ial.depth_att = src->vk.ial.depth_att;
170       dest->vk.ial.stencil_att = src->vk.ial.stencil_att;
171       dest_mask |= RADV_DYNAMIC_INPUT_ATTACHMENT_MAP;
172    }
173 
174 #define RADV_CMP_COPY(field, flag)                                                                                     \
175    if (copy_mask & flag) {                                                                                             \
176       if (dest->field != src->field) {                                                                                 \
177          dest->field = src->field;                                                                                     \
178          dest_mask |= flag;                                                                                            \
179       }                                                                                                                \
180    }
181 
182    RADV_CMP_COPY(vk.ia.primitive_topology, RADV_DYNAMIC_PRIMITIVE_TOPOLOGY);
183    RADV_CMP_COPY(vk.ia.primitive_restart_enable, RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE);
184 
185    RADV_CMP_COPY(vk.vp.depth_clip_negative_one_to_one, RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE);
186    RADV_CMP_COPY(vk.vp.depth_clamp_mode, RADV_DYNAMIC_DEPTH_CLAMP_RANGE);
187    RADV_CMP_COPY(vk.vp.depth_clamp_range.minDepthClamp, RADV_DYNAMIC_DEPTH_CLAMP_RANGE);
188    RADV_CMP_COPY(vk.vp.depth_clamp_range.maxDepthClamp, RADV_DYNAMIC_DEPTH_CLAMP_RANGE);
189 
190    RADV_CMP_COPY(vk.ts.patch_control_points, RADV_DYNAMIC_PATCH_CONTROL_POINTS);
191    RADV_CMP_COPY(vk.ts.domain_origin, RADV_DYNAMIC_TESS_DOMAIN_ORIGIN);
192 
193    RADV_CMP_COPY(vk.rs.line.width, RADV_DYNAMIC_LINE_WIDTH);
194    RADV_CMP_COPY(vk.rs.depth_bias.constant_factor, RADV_DYNAMIC_DEPTH_BIAS);
195    RADV_CMP_COPY(vk.rs.depth_bias.clamp, RADV_DYNAMIC_DEPTH_BIAS);
196    RADV_CMP_COPY(vk.rs.depth_bias.slope_factor, RADV_DYNAMIC_DEPTH_BIAS);
197    RADV_CMP_COPY(vk.rs.depth_bias.representation, RADV_DYNAMIC_DEPTH_BIAS);
198    RADV_CMP_COPY(vk.rs.line.stipple.factor, RADV_DYNAMIC_LINE_STIPPLE);
199    RADV_CMP_COPY(vk.rs.line.stipple.pattern, RADV_DYNAMIC_LINE_STIPPLE);
200    RADV_CMP_COPY(vk.rs.cull_mode, RADV_DYNAMIC_CULL_MODE);
201    RADV_CMP_COPY(vk.rs.front_face, RADV_DYNAMIC_FRONT_FACE);
202    RADV_CMP_COPY(vk.rs.depth_bias.enable, RADV_DYNAMIC_DEPTH_BIAS_ENABLE);
203    RADV_CMP_COPY(vk.rs.rasterizer_discard_enable, RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE);
204    RADV_CMP_COPY(vk.rs.polygon_mode, RADV_DYNAMIC_POLYGON_MODE);
205    RADV_CMP_COPY(vk.rs.line.stipple.enable, RADV_DYNAMIC_LINE_STIPPLE_ENABLE);
206    RADV_CMP_COPY(vk.rs.depth_clip_enable, RADV_DYNAMIC_DEPTH_CLIP_ENABLE);
207    RADV_CMP_COPY(vk.rs.conservative_mode, RADV_DYNAMIC_CONSERVATIVE_RAST_MODE);
208    RADV_CMP_COPY(vk.rs.provoking_vertex, RADV_DYNAMIC_PROVOKING_VERTEX_MODE);
209    RADV_CMP_COPY(vk.rs.depth_clamp_enable, RADV_DYNAMIC_DEPTH_CLAMP_ENABLE);
210    RADV_CMP_COPY(vk.rs.line.mode, RADV_DYNAMIC_LINE_RASTERIZATION_MODE);
211 
212    RADV_CMP_COPY(vk.ms.alpha_to_coverage_enable, RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE);
213    RADV_CMP_COPY(vk.ms.alpha_to_one_enable, RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE);
214    RADV_CMP_COPY(vk.ms.sample_mask, RADV_DYNAMIC_SAMPLE_MASK);
215    RADV_CMP_COPY(vk.ms.rasterization_samples, RADV_DYNAMIC_RASTERIZATION_SAMPLES);
216    RADV_CMP_COPY(vk.ms.sample_locations_enable, RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE);
217 
218    RADV_CMP_COPY(vk.ds.depth.bounds_test.min, RADV_DYNAMIC_DEPTH_BOUNDS);
219    RADV_CMP_COPY(vk.ds.depth.bounds_test.max, RADV_DYNAMIC_DEPTH_BOUNDS);
220    RADV_CMP_COPY(vk.ds.stencil.front.compare_mask, RADV_DYNAMIC_STENCIL_COMPARE_MASK);
221    RADV_CMP_COPY(vk.ds.stencil.back.compare_mask, RADV_DYNAMIC_STENCIL_COMPARE_MASK);
222    RADV_CMP_COPY(vk.ds.stencil.front.write_mask, RADV_DYNAMIC_STENCIL_WRITE_MASK);
223    RADV_CMP_COPY(vk.ds.stencil.back.write_mask, RADV_DYNAMIC_STENCIL_WRITE_MASK);
224    RADV_CMP_COPY(vk.ds.stencil.front.reference, RADV_DYNAMIC_STENCIL_REFERENCE);
225    RADV_CMP_COPY(vk.ds.stencil.back.reference, RADV_DYNAMIC_STENCIL_REFERENCE);
226    RADV_CMP_COPY(vk.ds.depth.test_enable, RADV_DYNAMIC_DEPTH_TEST_ENABLE);
227    RADV_CMP_COPY(vk.ds.depth.write_enable, RADV_DYNAMIC_DEPTH_WRITE_ENABLE);
228    RADV_CMP_COPY(vk.ds.depth.compare_op, RADV_DYNAMIC_DEPTH_COMPARE_OP);
229    RADV_CMP_COPY(vk.ds.depth.bounds_test.enable, RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE);
230    RADV_CMP_COPY(vk.ds.stencil.test_enable, RADV_DYNAMIC_STENCIL_TEST_ENABLE);
231    RADV_CMP_COPY(vk.ds.stencil.front.op.fail, RADV_DYNAMIC_STENCIL_OP);
232    RADV_CMP_COPY(vk.ds.stencil.front.op.pass, RADV_DYNAMIC_STENCIL_OP);
233    RADV_CMP_COPY(vk.ds.stencil.front.op.depth_fail, RADV_DYNAMIC_STENCIL_OP);
234    RADV_CMP_COPY(vk.ds.stencil.front.op.compare, RADV_DYNAMIC_STENCIL_OP);
235    RADV_CMP_COPY(vk.ds.stencil.back.op.fail, RADV_DYNAMIC_STENCIL_OP);
236    RADV_CMP_COPY(vk.ds.stencil.back.op.pass, RADV_DYNAMIC_STENCIL_OP);
237    RADV_CMP_COPY(vk.ds.stencil.back.op.depth_fail, RADV_DYNAMIC_STENCIL_OP);
238    RADV_CMP_COPY(vk.ds.stencil.back.op.compare, RADV_DYNAMIC_STENCIL_OP);
239 
240    RADV_CMP_COPY(vk.cb.logic_op, RADV_DYNAMIC_LOGIC_OP);
241    RADV_CMP_COPY(vk.cb.color_write_enables, RADV_DYNAMIC_COLOR_WRITE_ENABLE);
242    RADV_CMP_COPY(vk.cb.logic_op_enable, RADV_DYNAMIC_LOGIC_OP_ENABLE);
243 
244    RADV_CMP_COPY(vk.fsr.fragment_size.width, RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
245    RADV_CMP_COPY(vk.fsr.fragment_size.height, RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
246    RADV_CMP_COPY(vk.fsr.combiner_ops[0], RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
247    RADV_CMP_COPY(vk.fsr.combiner_ops[1], RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
248 
249    RADV_CMP_COPY(vk.dr.enable, RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE);
250    RADV_CMP_COPY(vk.dr.mode, RADV_DYNAMIC_DISCARD_RECTANGLE_MODE);
251 
252    RADV_CMP_COPY(feedback_loop_aspects, RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE);
253 
254 #undef RADV_CMP_COPY
255 
256    cmd_buffer->state.dirty_dynamic |= dest_mask;
257 
258    /* Handle driver specific states that need to be re-emitted when PSO are bound. */
259    if (dest_mask & (RADV_DYNAMIC_VIEWPORT | RADV_DYNAMIC_POLYGON_MODE | RADV_DYNAMIC_LINE_WIDTH |
260                     RADV_DYNAMIC_PRIMITIVE_TOPOLOGY)) {
261       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_GUARDBAND;
262    }
263 
264    if (pdev->info.rbplus_allowed && (dest_mask & RADV_DYNAMIC_COLOR_WRITE_MASK)) {
265       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RBPLUS;
266    }
267 
268    if (dest_mask & (RADV_DYNAMIC_COLOR_ATTACHMENT_MAP | RADV_DYNAMIC_INPUT_ATTACHMENT_MAP)) {
269       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FBFETCH_OUTPUT;
270    }
271 }
272 
273 bool
radv_cmd_buffer_uses_mec(struct radv_cmd_buffer * cmd_buffer)274 radv_cmd_buffer_uses_mec(struct radv_cmd_buffer *cmd_buffer)
275 {
276    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
277    const struct radv_physical_device *pdev = radv_device_physical(device);
278    return cmd_buffer->qf == RADV_QUEUE_COMPUTE && pdev->info.gfx_level >= GFX7;
279 }
280 
281 static void
radv_write_data(struct radv_cmd_buffer * cmd_buffer,const unsigned engine_sel,const uint64_t va,const unsigned count,const uint32_t * data,const bool predicating)282 radv_write_data(struct radv_cmd_buffer *cmd_buffer, const unsigned engine_sel, const uint64_t va, const unsigned count,
283                 const uint32_t *data, const bool predicating)
284 {
285    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
286 
287    radv_cs_write_data(device, cmd_buffer->cs, cmd_buffer->qf, engine_sel, va, count, data, predicating);
288 }
289 
290 static void
radv_emit_clear_data(struct radv_cmd_buffer * cmd_buffer,unsigned engine_sel,uint64_t va,unsigned size)291 radv_emit_clear_data(struct radv_cmd_buffer *cmd_buffer, unsigned engine_sel, uint64_t va, unsigned size)
292 {
293    uint32_t *zeroes = alloca(size);
294    memset(zeroes, 0, size);
295    radv_write_data(cmd_buffer, engine_sel, va, size / 4, zeroes, false);
296 }
297 
298 static void
radv_cmd_buffer_finish_shader_part_cache(struct radv_cmd_buffer * cmd_buffer)299 radv_cmd_buffer_finish_shader_part_cache(struct radv_cmd_buffer *cmd_buffer)
300 {
301    ralloc_free(cmd_buffer->vs_prologs.table);
302    ralloc_free(cmd_buffer->ps_epilogs.table);
303 }
304 
305 static bool
radv_cmd_buffer_init_shader_part_cache(struct radv_device * device,struct radv_cmd_buffer * cmd_buffer)306 radv_cmd_buffer_init_shader_part_cache(struct radv_device *device, struct radv_cmd_buffer *cmd_buffer)
307 {
308    if (device->vs_prologs.ops) {
309       if (!_mesa_set_init(&cmd_buffer->vs_prologs, NULL, device->vs_prologs.ops->hash, device->vs_prologs.ops->equals))
310          return false;
311    }
312    if (device->ps_epilogs.ops) {
313       if (!_mesa_set_init(&cmd_buffer->ps_epilogs, NULL, device->ps_epilogs.ops->hash, device->ps_epilogs.ops->equals))
314          return false;
315    }
316    return true;
317 }
318 
319 static void
radv_destroy_cmd_buffer(struct vk_command_buffer * vk_cmd_buffer)320 radv_destroy_cmd_buffer(struct vk_command_buffer *vk_cmd_buffer)
321 {
322    struct radv_cmd_buffer *cmd_buffer = container_of(vk_cmd_buffer, struct radv_cmd_buffer, vk);
323    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
324 
325    if (cmd_buffer->qf != RADV_QUEUE_SPARSE) {
326       util_dynarray_fini(&cmd_buffer->ray_history);
327 
328       radv_rra_accel_struct_buffers_unref(device, cmd_buffer->accel_struct_buffers);
329       _mesa_set_destroy(cmd_buffer->accel_struct_buffers, NULL);
330 
331       list_for_each_entry_safe (struct radv_cmd_buffer_upload, up, &cmd_buffer->upload.list, list) {
332          radv_rmv_log_command_buffer_bo_destroy(device, up->upload_bo);
333          radv_bo_destroy(device, &cmd_buffer->vk.base, up->upload_bo);
334          list_del(&up->list);
335          free(up);
336       }
337 
338       if (cmd_buffer->upload.upload_bo) {
339          radv_rmv_log_command_buffer_bo_destroy(device, cmd_buffer->upload.upload_bo);
340          radv_bo_destroy(device, &cmd_buffer->vk.base, cmd_buffer->upload.upload_bo);
341       }
342 
343       if (cmd_buffer->cs)
344          device->ws->cs_destroy(cmd_buffer->cs);
345       if (cmd_buffer->gang.cs)
346          device->ws->cs_destroy(cmd_buffer->gang.cs);
347       if (cmd_buffer->transfer.copy_temp)
348          radv_bo_destroy(device, &cmd_buffer->vk.base, cmd_buffer->transfer.copy_temp);
349 
350       radv_cmd_buffer_finish_shader_part_cache(cmd_buffer);
351 
352       for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
353          struct radv_descriptor_set_header *set = &cmd_buffer->descriptors[i].push_set.set;
354          free(set->mapped_ptr);
355          if (set->layout)
356             vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
357          vk_object_base_finish(&set->base);
358       }
359 
360       vk_object_base_finish(&cmd_buffer->meta_push_descriptors.base);
361    }
362 
363    vk_command_buffer_finish(&cmd_buffer->vk);
364    vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer);
365 }
366 
367 static VkResult
radv_create_cmd_buffer(struct vk_command_pool * pool,VkCommandBufferLevel level,struct vk_command_buffer ** cmd_buffer_out)368 radv_create_cmd_buffer(struct vk_command_pool *pool, VkCommandBufferLevel level,
369                        struct vk_command_buffer **cmd_buffer_out)
370 {
371    struct radv_device *device = container_of(pool->base.device, struct radv_device, vk);
372    const struct radv_physical_device *pdev = radv_device_physical(device);
373    struct radv_cmd_buffer *cmd_buffer;
374    unsigned ring;
375    cmd_buffer = vk_zalloc(&pool->alloc, sizeof(*cmd_buffer), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
376    if (cmd_buffer == NULL)
377       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
378 
379    VkResult result = vk_command_buffer_init(pool, &cmd_buffer->vk, &radv_cmd_buffer_ops, level);
380    if (result != VK_SUCCESS) {
381       vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer);
382       return result;
383    }
384 
385    cmd_buffer->qf = vk_queue_to_radv(pdev, pool->queue_family_index);
386 
387    if (cmd_buffer->qf != RADV_QUEUE_SPARSE) {
388       list_inithead(&cmd_buffer->upload.list);
389 
390       if (!radv_cmd_buffer_init_shader_part_cache(device, cmd_buffer)) {
391          radv_destroy_cmd_buffer(&cmd_buffer->vk);
392          return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
393       }
394 
395       ring = radv_queue_family_to_ring(pdev, cmd_buffer->qf);
396 
397       cmd_buffer->cs =
398          device->ws->cs_create(device->ws, ring, cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
399       if (!cmd_buffer->cs) {
400          radv_destroy_cmd_buffer(&cmd_buffer->vk);
401          return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
402       }
403 
404       vk_object_base_init(&device->vk, &cmd_buffer->meta_push_descriptors.base, VK_OBJECT_TYPE_DESCRIPTOR_SET);
405 
406       for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
407          vk_object_base_init(&device->vk, &cmd_buffer->descriptors[i].push_set.set.base, VK_OBJECT_TYPE_DESCRIPTOR_SET);
408 
409       cmd_buffer->accel_struct_buffers = _mesa_pointer_set_create(NULL);
410       util_dynarray_init(&cmd_buffer->ray_history, NULL);
411    }
412 
413    *cmd_buffer_out = &cmd_buffer->vk;
414 
415    return VK_SUCCESS;
416 }
417 
418 void
radv_cmd_buffer_reset_rendering(struct radv_cmd_buffer * cmd_buffer)419 radv_cmd_buffer_reset_rendering(struct radv_cmd_buffer *cmd_buffer)
420 {
421    memset(&cmd_buffer->state.render, 0, sizeof(cmd_buffer->state.render));
422 }
423 
424 static void
radv_reset_tracked_regs(struct radv_cmd_buffer * cmd_buffer)425 radv_reset_tracked_regs(struct radv_cmd_buffer *cmd_buffer)
426 {
427    struct radv_tracked_regs *tracked_regs = &cmd_buffer->tracked_regs;
428 
429    /* Mark all registers as unknown. */
430    memset(tracked_regs->reg_value, 0, RADV_NUM_ALL_TRACKED_REGS * sizeof(uint32_t));
431    BITSET_ZERO(tracked_regs->reg_saved_mask);
432 
433    /* 0xffffffff is an impossible value for SPI_PS_INPUT_CNTL_n registers */
434    memset(tracked_regs->spi_ps_input_cntl, 0xff, sizeof(uint32_t) * 32);
435 }
436 
437 static void
radv_reset_cmd_buffer(struct vk_command_buffer * vk_cmd_buffer,UNUSED VkCommandBufferResetFlags flags)438 radv_reset_cmd_buffer(struct vk_command_buffer *vk_cmd_buffer, UNUSED VkCommandBufferResetFlags flags)
439 {
440    struct radv_cmd_buffer *cmd_buffer = container_of(vk_cmd_buffer, struct radv_cmd_buffer, vk);
441    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
442 
443    vk_command_buffer_reset(&cmd_buffer->vk);
444 
445    if (cmd_buffer->qf == RADV_QUEUE_SPARSE)
446       return;
447 
448    device->ws->cs_reset(cmd_buffer->cs);
449    if (cmd_buffer->gang.cs)
450       device->ws->cs_reset(cmd_buffer->gang.cs);
451 
452    list_for_each_entry_safe (struct radv_cmd_buffer_upload, up, &cmd_buffer->upload.list, list) {
453       radv_rmv_log_command_buffer_bo_destroy(device, up->upload_bo);
454       radv_bo_destroy(device, &cmd_buffer->vk.base, up->upload_bo);
455       list_del(&up->list);
456       free(up);
457    }
458 
459    util_dynarray_clear(&cmd_buffer->ray_history);
460 
461    radv_rra_accel_struct_buffers_unref(device, cmd_buffer->accel_struct_buffers);
462 
463    cmd_buffer->push_constant_stages = 0;
464    cmd_buffer->scratch_size_per_wave_needed = 0;
465    cmd_buffer->scratch_waves_wanted = 0;
466    cmd_buffer->compute_scratch_size_per_wave_needed = 0;
467    cmd_buffer->compute_scratch_waves_wanted = 0;
468    cmd_buffer->esgs_ring_size_needed = 0;
469    cmd_buffer->gsvs_ring_size_needed = 0;
470    cmd_buffer->tess_rings_needed = false;
471    cmd_buffer->task_rings_needed = false;
472    cmd_buffer->mesh_scratch_ring_needed = false;
473    cmd_buffer->gds_needed = false;
474    cmd_buffer->gds_oa_needed = false;
475    cmd_buffer->sample_positions_needed = false;
476    cmd_buffer->gang.sem.leader_value = 0;
477    cmd_buffer->gang.sem.emitted_leader_value = 0;
478    cmd_buffer->gang.sem.va = 0;
479    cmd_buffer->shader_upload_seq = 0;
480 
481    if (cmd_buffer->upload.upload_bo)
482       radv_cs_add_buffer(device->ws, cmd_buffer->cs, cmd_buffer->upload.upload_bo);
483    cmd_buffer->upload.offset = 0;
484 
485    memset(cmd_buffer->vertex_binding_buffers, 0, sizeof(struct radv_buffer *) * cmd_buffer->used_vertex_bindings);
486    cmd_buffer->used_vertex_bindings = 0;
487 
488    for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
489       cmd_buffer->descriptors[i].dirty = 0;
490       cmd_buffer->descriptors[i].valid = 0;
491    }
492 
493    radv_cmd_buffer_reset_rendering(cmd_buffer);
494 }
495 
496 const struct vk_command_buffer_ops radv_cmd_buffer_ops = {
497    .create = radv_create_cmd_buffer,
498    .reset = radv_reset_cmd_buffer,
499    .destroy = radv_destroy_cmd_buffer,
500 };
501 
502 static bool
radv_cmd_buffer_resize_upload_buf(struct radv_cmd_buffer * cmd_buffer,uint64_t min_needed)503 radv_cmd_buffer_resize_upload_buf(struct radv_cmd_buffer *cmd_buffer, uint64_t min_needed)
504 {
505    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
506    uint64_t new_size;
507    struct radeon_winsys_bo *bo = NULL;
508    struct radv_cmd_buffer_upload *upload;
509 
510    new_size = MAX2(min_needed, 16 * 1024);
511    new_size = MAX2(new_size, 2 * cmd_buffer->upload.size);
512 
513    VkResult result = radv_bo_create(
514       device, &cmd_buffer->vk.base, new_size, 4096, device->ws->cs_domain(device->ws),
515       RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_32BIT | RADEON_FLAG_GTT_WC,
516       RADV_BO_PRIORITY_UPLOAD_BUFFER, 0, true, &bo);
517 
518    if (result != VK_SUCCESS) {
519       vk_command_buffer_set_error(&cmd_buffer->vk, result);
520       return false;
521    }
522 
523    radv_cs_add_buffer(device->ws, cmd_buffer->cs, bo);
524    if (cmd_buffer->upload.upload_bo) {
525       upload = malloc(sizeof(*upload));
526 
527       if (!upload) {
528          vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
529          radv_bo_destroy(device, &cmd_buffer->vk.base, bo);
530          return false;
531       }
532 
533       memcpy(upload, &cmd_buffer->upload, sizeof(*upload));
534       list_add(&upload->list, &cmd_buffer->upload.list);
535    }
536 
537    cmd_buffer->upload.upload_bo = bo;
538    cmd_buffer->upload.size = new_size;
539    cmd_buffer->upload.offset = 0;
540    cmd_buffer->upload.map = radv_buffer_map(device->ws, cmd_buffer->upload.upload_bo);
541 
542    if (!cmd_buffer->upload.map) {
543       vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_DEVICE_MEMORY);
544       return false;
545    }
546 
547    radv_rmv_log_command_buffer_bo_create(device, cmd_buffer->upload.upload_bo, 0, cmd_buffer->upload.size, 0);
548 
549    return true;
550 }
551 
552 bool
radv_cmd_buffer_upload_alloc_aligned(struct radv_cmd_buffer * cmd_buffer,unsigned size,unsigned alignment,unsigned * out_offset,void ** ptr)553 radv_cmd_buffer_upload_alloc_aligned(struct radv_cmd_buffer *cmd_buffer, unsigned size, unsigned alignment,
554                                      unsigned *out_offset, void **ptr)
555 {
556    assert(size % 4 == 0);
557 
558    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
559    const struct radv_physical_device *pdev = radv_device_physical(device);
560    const struct radeon_info *gpu_info = &pdev->info;
561 
562    /* Align to the scalar cache line size if it results in this allocation
563     * being placed in less of them.
564     */
565    unsigned offset = cmd_buffer->upload.offset;
566    unsigned line_size = gpu_info->gfx_level >= GFX10 ? 64 : 32;
567    unsigned gap = align(offset, line_size) - offset;
568    if ((size & (line_size - 1)) > gap)
569       offset = align(offset, line_size);
570 
571    if (alignment)
572       offset = align(offset, alignment);
573    if (offset + size > cmd_buffer->upload.size) {
574       if (!radv_cmd_buffer_resize_upload_buf(cmd_buffer, size))
575          return false;
576       offset = 0;
577    }
578 
579    *out_offset = offset;
580    *ptr = cmd_buffer->upload.map + offset;
581 
582    cmd_buffer->upload.offset = offset + size;
583    return true;
584 }
585 
586 bool
radv_cmd_buffer_upload_alloc(struct radv_cmd_buffer * cmd_buffer,unsigned size,unsigned * out_offset,void ** ptr)587 radv_cmd_buffer_upload_alloc(struct radv_cmd_buffer *cmd_buffer, unsigned size, unsigned *out_offset, void **ptr)
588 {
589    return radv_cmd_buffer_upload_alloc_aligned(cmd_buffer, size, 0, out_offset, ptr);
590 }
591 
592 bool
radv_cmd_buffer_upload_data(struct radv_cmd_buffer * cmd_buffer,unsigned size,const void * data,unsigned * out_offset)593 radv_cmd_buffer_upload_data(struct radv_cmd_buffer *cmd_buffer, unsigned size, const void *data, unsigned *out_offset)
594 {
595    uint8_t *ptr;
596 
597    if (!radv_cmd_buffer_upload_alloc(cmd_buffer, size, out_offset, (void **)&ptr))
598       return false;
599    assert(ptr);
600 
601    memcpy(ptr, data, size);
602    return true;
603 }
604 
605 void
radv_cmd_buffer_trace_emit(struct radv_cmd_buffer * cmd_buffer)606 radv_cmd_buffer_trace_emit(struct radv_cmd_buffer *cmd_buffer)
607 {
608    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
609    struct radeon_cmdbuf *cs = cmd_buffer->cs;
610    uint64_t va;
611 
612    if (cmd_buffer->qf != RADV_QUEUE_GENERAL && cmd_buffer->qf != RADV_QUEUE_COMPUTE)
613       return;
614 
615    va = radv_buffer_get_va(device->trace_bo);
616    if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
617       va += offsetof(struct radv_trace_data, primary_id);
618    else
619       va += offsetof(struct radv_trace_data, secondary_id);
620 
621    ++cmd_buffer->state.trace_id;
622    radv_write_data(cmd_buffer, V_370_ME, va, 1, &cmd_buffer->state.trace_id, false);
623 
624    radeon_check_space(device->ws, cs, 2);
625 
626    radeon_emit(cs, PKT3(PKT3_NOP, 0, 0));
627    radeon_emit(cs, AC_ENCODE_TRACE_POINT(cmd_buffer->state.trace_id));
628 }
629 
630 void
radv_cmd_buffer_annotate(struct radv_cmd_buffer * cmd_buffer,const char * annotation)631 radv_cmd_buffer_annotate(struct radv_cmd_buffer *cmd_buffer, const char *annotation)
632 {
633    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
634 
635    device->ws->cs_annotate(cmd_buffer->cs, annotation);
636 }
637 
638 #define RADV_TASK_SHADER_SENSITIVE_STAGES (\
639       VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT |\
640       VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT |\
641       VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT |\
642       VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT)
643 
644 static void
radv_gang_barrier(struct radv_cmd_buffer * cmd_buffer,VkPipelineStageFlags2 src_stage_mask,VkPipelineStageFlags2 dst_stage_mask)645 radv_gang_barrier(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 src_stage_mask,
646                   VkPipelineStageFlags2 dst_stage_mask)
647 {
648    /* Update flush bits from the main cmdbuf, except the stage flush. */
649    cmd_buffer->gang.flush_bits |=
650       cmd_buffer->state.flush_bits & RADV_CMD_FLUSH_ALL_COMPUTE & ~RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
651 
652    /* Add stage flush only when necessary. */
653    if (src_stage_mask & (VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT | VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_EXT |
654                          VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT | RADV_TASK_SHADER_SENSITIVE_STAGES |
655                          VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT))
656       cmd_buffer->gang.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
657 
658    /* Block task shaders when we have to wait for CP DMA on the GFX cmdbuf. */
659    if (src_stage_mask &
660        (VK_PIPELINE_STAGE_2_COPY_BIT | VK_PIPELINE_STAGE_2_CLEAR_BIT | VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT |
661         VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT))
662       dst_stage_mask |= cmd_buffer->state.dma_is_busy ? VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT : 0;
663 
664    /* Increment the GFX/ACE semaphore when task shaders are blocked. */
665    if (dst_stage_mask & (VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT | VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT |
666                          RADV_TASK_SHADER_SENSITIVE_STAGES))
667       cmd_buffer->gang.sem.leader_value++;
668 }
669 
670 void
radv_gang_cache_flush(struct radv_cmd_buffer * cmd_buffer)671 radv_gang_cache_flush(struct radv_cmd_buffer *cmd_buffer)
672 {
673    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
674    const struct radv_physical_device *pdev = radv_device_physical(device);
675    struct radeon_cmdbuf *ace_cs = cmd_buffer->gang.cs;
676    const uint32_t flush_bits = cmd_buffer->gang.flush_bits;
677    enum rgp_flush_bits sqtt_flush_bits = 0;
678 
679    radv_cs_emit_cache_flush(device->ws, ace_cs, pdev->info.gfx_level, NULL, 0, RADV_QUEUE_COMPUTE, flush_bits,
680                             &sqtt_flush_bits, 0);
681 
682    cmd_buffer->gang.flush_bits = 0;
683 }
684 
685 static bool
radv_gang_sem_init(struct radv_cmd_buffer * cmd_buffer)686 radv_gang_sem_init(struct radv_cmd_buffer *cmd_buffer)
687 {
688    if (cmd_buffer->gang.sem.va)
689       return true;
690 
691    /* DWORD 0: GFX->ACE semaphore (GFX blocks ACE, ie. ACE waits for GFX)
692     * DWORD 1: ACE->GFX semaphore
693     */
694    uint64_t sem_init = 0;
695    uint32_t va_off = 0;
696    if (!radv_cmd_buffer_upload_data(cmd_buffer, sizeof(uint64_t), &sem_init, &va_off)) {
697       vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
698       return false;
699    }
700 
701    cmd_buffer->gang.sem.va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + va_off;
702    return true;
703 }
704 
705 static bool
radv_gang_leader_sem_dirty(const struct radv_cmd_buffer * cmd_buffer)706 radv_gang_leader_sem_dirty(const struct radv_cmd_buffer *cmd_buffer)
707 {
708    return cmd_buffer->gang.sem.leader_value != cmd_buffer->gang.sem.emitted_leader_value;
709 }
710 
711 static bool
radv_gang_follower_sem_dirty(const struct radv_cmd_buffer * cmd_buffer)712 radv_gang_follower_sem_dirty(const struct radv_cmd_buffer *cmd_buffer)
713 {
714    return cmd_buffer->gang.sem.follower_value != cmd_buffer->gang.sem.emitted_follower_value;
715 }
716 
717 ALWAYS_INLINE static bool
radv_flush_gang_semaphore(struct radv_cmd_buffer * cmd_buffer,struct radeon_cmdbuf * cs,const enum radv_queue_family qf,const uint32_t va_off,const uint32_t value)718 radv_flush_gang_semaphore(struct radv_cmd_buffer *cmd_buffer, struct radeon_cmdbuf *cs, const enum radv_queue_family qf,
719                           const uint32_t va_off, const uint32_t value)
720 {
721    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
722    const struct radv_physical_device *pdev = radv_device_physical(device);
723 
724    if (!radv_gang_sem_init(cmd_buffer))
725       return false;
726 
727    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cs, 12);
728 
729    radv_cs_emit_write_event_eop(cs, pdev->info.gfx_level, qf, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM,
730                                 EOP_DATA_SEL_VALUE_32BIT, cmd_buffer->gang.sem.va + va_off, value,
731                                 cmd_buffer->gfx9_eop_bug_va);
732 
733    assert(cmd_buffer->cs->cdw <= cdw_max);
734    return true;
735 }
736 
737 ALWAYS_INLINE static bool
radv_flush_gang_leader_semaphore(struct radv_cmd_buffer * cmd_buffer)738 radv_flush_gang_leader_semaphore(struct radv_cmd_buffer *cmd_buffer)
739 {
740    if (!radv_gang_leader_sem_dirty(cmd_buffer))
741       return false;
742 
743    /* Gang leader writes a value to the semaphore which the follower can wait for. */
744    cmd_buffer->gang.sem.emitted_leader_value = cmd_buffer->gang.sem.leader_value;
745    return radv_flush_gang_semaphore(cmd_buffer, cmd_buffer->cs, cmd_buffer->qf, 0, cmd_buffer->gang.sem.leader_value);
746 }
747 
748 ALWAYS_INLINE static bool
radv_flush_gang_follower_semaphore(struct radv_cmd_buffer * cmd_buffer)749 radv_flush_gang_follower_semaphore(struct radv_cmd_buffer *cmd_buffer)
750 {
751    if (!radv_gang_follower_sem_dirty(cmd_buffer))
752       return false;
753 
754    /* Follower writes a value to the semaphore which the gang leader can wait for. */
755    cmd_buffer->gang.sem.emitted_follower_value = cmd_buffer->gang.sem.follower_value;
756    return radv_flush_gang_semaphore(cmd_buffer, cmd_buffer->gang.cs, RADV_QUEUE_COMPUTE, 4,
757                                     cmd_buffer->gang.sem.follower_value);
758 }
759 
760 ALWAYS_INLINE static void
radv_wait_gang_semaphore(struct radv_cmd_buffer * cmd_buffer,struct radeon_cmdbuf * cs,const enum radv_queue_family qf,const uint32_t va_off,const uint32_t value)761 radv_wait_gang_semaphore(struct radv_cmd_buffer *cmd_buffer, struct radeon_cmdbuf *cs, const enum radv_queue_family qf,
762                          const uint32_t va_off, const uint32_t value)
763 {
764    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
765 
766    assert(cmd_buffer->gang.sem.va);
767    radeon_check_space(device->ws, cs, 7);
768    radv_cp_wait_mem(cs, qf, WAIT_REG_MEM_GREATER_OR_EQUAL, cmd_buffer->gang.sem.va + va_off, value, 0xffffffff);
769 }
770 
771 ALWAYS_INLINE static void
radv_wait_gang_leader(struct radv_cmd_buffer * cmd_buffer)772 radv_wait_gang_leader(struct radv_cmd_buffer *cmd_buffer)
773 {
774    /* Follower waits for the semaphore which the gang leader wrote. */
775    radv_wait_gang_semaphore(cmd_buffer, cmd_buffer->gang.cs, RADV_QUEUE_COMPUTE, 0, cmd_buffer->gang.sem.leader_value);
776 }
777 
778 ALWAYS_INLINE static void
radv_wait_gang_follower(struct radv_cmd_buffer * cmd_buffer)779 radv_wait_gang_follower(struct radv_cmd_buffer *cmd_buffer)
780 {
781    /* Gang leader waits for the semaphore which the follower wrote. */
782    radv_wait_gang_semaphore(cmd_buffer, cmd_buffer->cs, cmd_buffer->qf, 4, cmd_buffer->gang.sem.follower_value);
783 }
784 
785 bool
radv_gang_init(struct radv_cmd_buffer * cmd_buffer)786 radv_gang_init(struct radv_cmd_buffer *cmd_buffer)
787 {
788    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
789 
790    if (cmd_buffer->gang.cs)
791       return true;
792 
793    struct radeon_cmdbuf *ace_cs =
794       device->ws->cs_create(device->ws, AMD_IP_COMPUTE, cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
795 
796    if (!ace_cs) {
797       vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_DEVICE_MEMORY);
798       return false;
799    }
800 
801    cmd_buffer->gang.cs = ace_cs;
802    return true;
803 }
804 
805 static VkResult
radv_gang_finalize(struct radv_cmd_buffer * cmd_buffer)806 radv_gang_finalize(struct radv_cmd_buffer *cmd_buffer)
807 {
808    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
809 
810    assert(cmd_buffer->gang.cs);
811    struct radeon_cmdbuf *ace_cs = cmd_buffer->gang.cs;
812 
813    /* Emit pending cache flush. */
814    radv_gang_cache_flush(cmd_buffer);
815 
816    /* Clear the leader<->follower semaphores if they exist.
817     * This is necessary in case the same cmd buffer is submitted again in the future.
818     */
819    if (cmd_buffer->gang.sem.va) {
820       uint64_t leader2follower_va = cmd_buffer->gang.sem.va;
821       uint64_t follower2leader_va = cmd_buffer->gang.sem.va + 4;
822       const uint32_t zero = 0;
823 
824       /* Follower: write 0 to the leader->follower semaphore. */
825       radv_cs_write_data(device, ace_cs, RADV_QUEUE_COMPUTE, V_370_ME, leader2follower_va, 1, &zero, false);
826 
827       /* Leader: write 0 to the follower->leader semaphore. */
828       radv_write_data(cmd_buffer, V_370_ME, follower2leader_va, 1, &zero, false);
829    }
830 
831    return device->ws->cs_finalize(ace_cs);
832 }
833 
834 static void
radv_cmd_buffer_after_draw(struct radv_cmd_buffer * cmd_buffer,enum radv_cmd_flush_bits flags,bool dgc)835 radv_cmd_buffer_after_draw(struct radv_cmd_buffer *cmd_buffer, enum radv_cmd_flush_bits flags, bool dgc)
836 {
837    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
838    const struct radv_physical_device *pdev = radv_device_physical(device);
839    const struct radv_instance *instance = radv_physical_device_instance(pdev);
840 
841    if (unlikely(device->sqtt.bo) && !dgc) {
842       radeon_check_space(device->ws, cmd_buffer->cs, 2);
843 
844       radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, cmd_buffer->state.predicating));
845       radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_THREAD_TRACE_MARKER) | EVENT_INDEX(0));
846    }
847 
848    if (instance->debug_flags & RADV_DEBUG_SYNC_SHADERS) {
849       enum rgp_flush_bits sqtt_flush_bits = 0;
850       assert(flags & (RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH));
851 
852       /* Force wait for graphics or compute engines to be idle. */
853       radv_cs_emit_cache_flush(device->ws, cmd_buffer->cs, pdev->info.gfx_level, &cmd_buffer->gfx9_fence_idx,
854                                cmd_buffer->gfx9_fence_va, cmd_buffer->qf, flags, &sqtt_flush_bits,
855                                cmd_buffer->gfx9_eop_bug_va);
856 
857       if ((flags & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) && radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TASK)) {
858          /* Force wait for compute engines to be idle on the internal cmdbuf. */
859          radv_cs_emit_cache_flush(device->ws, cmd_buffer->gang.cs, pdev->info.gfx_level, NULL, 0, RADV_QUEUE_COMPUTE,
860                                   RADV_CMD_FLAG_CS_PARTIAL_FLUSH, &sqtt_flush_bits, 0);
861       }
862    }
863 
864    if (radv_device_fault_detection_enabled(device))
865       radv_cmd_buffer_trace_emit(cmd_buffer);
866 }
867 
868 static void
radv_save_pipeline(struct radv_cmd_buffer * cmd_buffer,struct radv_pipeline * pipeline)869 radv_save_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_pipeline *pipeline)
870 {
871    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
872    const struct radv_physical_device *pdev = radv_device_physical(device);
873    enum amd_ip_type ring;
874    uint32_t data[2];
875    uint64_t va;
876 
877    va = radv_buffer_get_va(device->trace_bo);
878 
879    ring = radv_queue_family_to_ring(pdev, cmd_buffer->qf);
880 
881    switch (ring) {
882    case AMD_IP_GFX:
883       va += offsetof(struct radv_trace_data, gfx_ring_pipeline);
884       break;
885    case AMD_IP_COMPUTE:
886       va += offsetof(struct radv_trace_data, comp_ring_pipeline);
887       break;
888    default:
889       assert(!"invalid IP type");
890    }
891 
892    uint64_t pipeline_address = (uintptr_t)pipeline;
893    data[0] = pipeline_address;
894    data[1] = pipeline_address >> 32;
895 
896    radv_write_data(cmd_buffer, V_370_ME, va, 2, data, false);
897 }
898 
899 static void
radv_save_vertex_descriptors(struct radv_cmd_buffer * cmd_buffer,uint64_t vb_ptr)900 radv_save_vertex_descriptors(struct radv_cmd_buffer *cmd_buffer, uint64_t vb_ptr)
901 {
902    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
903    uint32_t data[2];
904    uint64_t va;
905 
906    va = radv_buffer_get_va(device->trace_bo) + offsetof(struct radv_trace_data, vertex_descriptors);
907 
908    data[0] = vb_ptr;
909    data[1] = vb_ptr >> 32;
910 
911    radv_write_data(cmd_buffer, V_370_ME, va, 2, data, false);
912 }
913 
914 static void
radv_save_vs_prolog(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader_part * prolog)915 radv_save_vs_prolog(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader_part *prolog)
916 {
917    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
918    uint32_t data[2];
919    uint64_t va;
920 
921    va = radv_buffer_get_va(device->trace_bo) + offsetof(struct radv_trace_data, vertex_prolog);
922 
923    uint64_t prolog_address = (uintptr_t)prolog;
924    data[0] = prolog_address;
925    data[1] = prolog_address >> 32;
926 
927    radv_write_data(cmd_buffer, V_370_ME, va, 2, data, false);
928 }
929 
930 void
radv_set_descriptor_set(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint bind_point,struct radv_descriptor_set * set,unsigned idx)931 radv_set_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point,
932                         struct radv_descriptor_set *set, unsigned idx)
933 {
934    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
935 
936    descriptors_state->sets[idx] = set;
937 
938    descriptors_state->valid |= (1u << idx); /* active descriptors */
939    descriptors_state->dirty |= (1u << idx);
940 }
941 
942 static void
radv_save_descriptors(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint bind_point)943 radv_save_descriptors(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
944 {
945    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
946    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
947    uint32_t data[MAX_SETS * 2] = {0};
948    uint64_t va;
949    va = radv_buffer_get_va(device->trace_bo) + offsetof(struct radv_trace_data, descriptor_sets);
950 
951    u_foreach_bit (i, descriptors_state->valid) {
952       struct radv_descriptor_set *set = descriptors_state->sets[i];
953       data[i * 2] = (uint64_t)(uintptr_t)set;
954       data[i * 2 + 1] = (uint64_t)(uintptr_t)set >> 32;
955    }
956 
957    radv_write_data(cmd_buffer, V_370_ME, va, MAX_SETS * 2, data, false);
958 }
959 
960 static void
radv_emit_userdata_address(const struct radv_device * device,struct radeon_cmdbuf * cs,const struct radv_shader * shader,int idx,uint64_t va)961 radv_emit_userdata_address(const struct radv_device *device, struct radeon_cmdbuf *cs, const struct radv_shader *shader,
962                            int idx, uint64_t va)
963 {
964    const uint32_t offset = radv_get_user_sgpr_loc(shader, idx);
965 
966    if (!offset)
967       return;
968 
969    radv_emit_shader_pointer(device, cs, offset, va, false);
970 }
971 
972 uint64_t
radv_descriptor_get_va(const struct radv_descriptor_state * descriptors_state,unsigned set_idx)973 radv_descriptor_get_va(const struct radv_descriptor_state *descriptors_state, unsigned set_idx)
974 {
975    struct radv_descriptor_set *set = descriptors_state->sets[set_idx];
976    uint64_t va;
977 
978    if (set) {
979       va = set->header.va;
980    } else {
981       va = descriptors_state->descriptor_buffers[set_idx];
982    }
983 
984    return va;
985 }
986 
987 static void
radv_emit_descriptors_per_stage(const struct radv_device * device,struct radeon_cmdbuf * cs,const struct radv_shader * shader,const struct radv_descriptor_state * descriptors_state)988 radv_emit_descriptors_per_stage(const struct radv_device *device, struct radeon_cmdbuf *cs,
989                                 const struct radv_shader *shader, const struct radv_descriptor_state *descriptors_state)
990 {
991    const uint32_t indirect_descriptor_sets_offset = radv_get_user_sgpr_loc(shader, AC_UD_INDIRECT_DESCRIPTOR_SETS);
992 
993    if (indirect_descriptor_sets_offset) {
994       radv_emit_shader_pointer(device, cs, indirect_descriptor_sets_offset,
995                                descriptors_state->indirect_descriptor_sets_va, false);
996    } else {
997       const struct radv_userdata_locations *locs = &shader->info.user_sgprs_locs;
998       const uint32_t sh_base = shader->info.user_data_0;
999       unsigned mask = locs->descriptor_sets_enabled;
1000 
1001       mask &= descriptors_state->dirty & descriptors_state->valid;
1002 
1003       while (mask) {
1004          int start, count;
1005 
1006          u_bit_scan_consecutive_range(&mask, &start, &count);
1007 
1008          const struct radv_userdata_info *loc = &locs->descriptor_sets[start];
1009          const unsigned sh_offset = sh_base + loc->sgpr_idx * 4;
1010 
1011          radv_emit_shader_pointer_head(cs, sh_offset, count, true);
1012          for (int i = 0; i < count; i++) {
1013             uint64_t va = radv_descriptor_get_va(descriptors_state, start + i);
1014 
1015             radv_emit_shader_pointer_body(device, cs, va, true);
1016          }
1017       }
1018    }
1019 }
1020 
1021 static unsigned
radv_get_rasterization_prim(const struct radv_cmd_buffer * cmd_buffer)1022 radv_get_rasterization_prim(const struct radv_cmd_buffer *cmd_buffer)
1023 {
1024    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
1025    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1026 
1027    if (cmd_buffer->state.active_stages &
1028        (VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT |
1029         VK_SHADER_STAGE_GEOMETRY_BIT | VK_SHADER_STAGE_MESH_BIT_EXT)) {
1030       /* Ignore dynamic primitive topology for TES/GS/MS stages. */
1031       return cmd_buffer->state.rast_prim;
1032    }
1033 
1034    return radv_conv_prim_to_gs_out(d->vk.ia.primitive_topology, last_vgt_shader->info.is_ngg);
1035 }
1036 
1037 static ALWAYS_INLINE VkLineRasterizationModeEXT
radv_get_line_mode(const struct radv_cmd_buffer * cmd_buffer)1038 radv_get_line_mode(const struct radv_cmd_buffer *cmd_buffer)
1039 {
1040    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1041 
1042    const unsigned rast_prim = radv_get_rasterization_prim(cmd_buffer);
1043 
1044    bool draw_lines = radv_rast_prim_is_line(rast_prim) || radv_polygon_mode_is_line(d->vk.rs.polygon_mode);
1045    draw_lines &= !radv_rast_prim_is_point(rast_prim);
1046    draw_lines &= !radv_polygon_mode_is_point(d->vk.rs.polygon_mode);
1047    if (draw_lines)
1048       return d->vk.rs.line.mode;
1049 
1050    return VK_LINE_RASTERIZATION_MODE_DEFAULT;
1051 }
1052 
1053 static ALWAYS_INLINE unsigned
radv_get_rasterization_samples(struct radv_cmd_buffer * cmd_buffer)1054 radv_get_rasterization_samples(struct radv_cmd_buffer *cmd_buffer)
1055 {
1056    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1057 
1058    VkLineRasterizationModeEXT line_mode = radv_get_line_mode(cmd_buffer);
1059 
1060    if (line_mode == VK_LINE_RASTERIZATION_MODE_BRESENHAM) {
1061       /* From the Vulkan spec 1.3.221:
1062        *
1063        * "When Bresenham lines are being rasterized, sample locations may all be treated as being at
1064        * the pixel center (this may affect attribute and depth interpolation)."
1065        *
1066        * "One consequence of this is that Bresenham lines cover the same pixels regardless of the
1067        * number of rasterization samples, and cover all samples in those pixels (unless masked out
1068        * or killed)."
1069        */
1070       return 1;
1071    }
1072 
1073    if (line_mode == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH) {
1074       return RADV_NUM_SMOOTH_AA_SAMPLES;
1075    }
1076 
1077    return MAX2(1, d->vk.ms.rasterization_samples);
1078 }
1079 
1080 static ALWAYS_INLINE unsigned
radv_get_ps_iter_samples(struct radv_cmd_buffer * cmd_buffer)1081 radv_get_ps_iter_samples(struct radv_cmd_buffer *cmd_buffer)
1082 {
1083    const struct radv_rendering_state *render = &cmd_buffer->state.render;
1084    unsigned ps_iter_samples = 1;
1085 
1086    if (cmd_buffer->state.ms.sample_shading_enable) {
1087       unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
1088       unsigned color_samples = MAX2(render->color_samples, rasterization_samples);
1089 
1090       ps_iter_samples = ceilf(cmd_buffer->state.ms.min_sample_shading * color_samples);
1091       ps_iter_samples = util_next_power_of_two(ps_iter_samples);
1092    }
1093 
1094    return ps_iter_samples;
1095 }
1096 
1097 /**
1098  * Convert the user sample locations to hardware sample locations (the values
1099  * that will be emitted by PA_SC_AA_SAMPLE_LOCS_PIXEL_*).
1100  */
1101 static void
radv_convert_user_sample_locs(const struct radv_sample_locations_state * state,uint32_t x,uint32_t y,VkOffset2D * sample_locs)1102 radv_convert_user_sample_locs(const struct radv_sample_locations_state *state, uint32_t x, uint32_t y,
1103                               VkOffset2D *sample_locs)
1104 {
1105    uint32_t x_offset = x % state->grid_size.width;
1106    uint32_t y_offset = y % state->grid_size.height;
1107    uint32_t num_samples = (uint32_t)state->per_pixel;
1108    uint32_t pixel_offset;
1109 
1110    pixel_offset = (x_offset + y_offset * state->grid_size.width) * num_samples;
1111 
1112    assert(pixel_offset <= MAX_SAMPLE_LOCATIONS);
1113    const VkSampleLocationEXT *user_locs = &state->locations[pixel_offset];
1114 
1115    for (uint32_t i = 0; i < num_samples; i++) {
1116       float shifted_pos_x = user_locs[i].x - 0.5;
1117       float shifted_pos_y = user_locs[i].y - 0.5;
1118 
1119       int32_t scaled_pos_x = floorf(shifted_pos_x * 16);
1120       int32_t scaled_pos_y = floorf(shifted_pos_y * 16);
1121 
1122       sample_locs[i].x = CLAMP(scaled_pos_x, -8, 7);
1123       sample_locs[i].y = CLAMP(scaled_pos_y, -8, 7);
1124    }
1125 }
1126 
1127 /**
1128  * Compute the PA_SC_AA_SAMPLE_LOCS_PIXEL_* mask based on hardware sample
1129  * locations.
1130  */
1131 static void
radv_compute_sample_locs_pixel(uint32_t num_samples,VkOffset2D * sample_locs,uint32_t * sample_locs_pixel)1132 radv_compute_sample_locs_pixel(uint32_t num_samples, VkOffset2D *sample_locs, uint32_t *sample_locs_pixel)
1133 {
1134    for (uint32_t i = 0; i < num_samples; i++) {
1135       uint32_t sample_reg_idx = i / 4;
1136       uint32_t sample_loc_idx = i % 4;
1137       int32_t pos_x = sample_locs[i].x;
1138       int32_t pos_y = sample_locs[i].y;
1139 
1140       uint32_t shift_x = 8 * sample_loc_idx;
1141       uint32_t shift_y = shift_x + 4;
1142 
1143       sample_locs_pixel[sample_reg_idx] |= (pos_x & 0xf) << shift_x;
1144       sample_locs_pixel[sample_reg_idx] |= (pos_y & 0xf) << shift_y;
1145    }
1146 }
1147 
1148 /**
1149  * Compute the PA_SC_CENTROID_PRIORITY_* mask based on the top left hardware
1150  * sample locations.
1151  */
1152 static uint64_t
radv_compute_centroid_priority(struct radv_cmd_buffer * cmd_buffer,VkOffset2D * sample_locs,uint32_t num_samples)1153 radv_compute_centroid_priority(struct radv_cmd_buffer *cmd_buffer, VkOffset2D *sample_locs, uint32_t num_samples)
1154 {
1155    uint32_t *centroid_priorities = alloca(num_samples * sizeof(*centroid_priorities));
1156    uint32_t sample_mask = num_samples - 1;
1157    uint32_t *distances = alloca(num_samples * sizeof(*distances));
1158    uint64_t centroid_priority = 0;
1159 
1160    /* Compute the distances from center for each sample. */
1161    for (int i = 0; i < num_samples; i++) {
1162       distances[i] = (sample_locs[i].x * sample_locs[i].x) + (sample_locs[i].y * sample_locs[i].y);
1163    }
1164 
1165    /* Compute the centroid priorities by looking at the distances array. */
1166    for (int i = 0; i < num_samples; i++) {
1167       uint32_t min_idx = 0;
1168 
1169       for (int j = 1; j < num_samples; j++) {
1170          if (distances[j] < distances[min_idx])
1171             min_idx = j;
1172       }
1173 
1174       centroid_priorities[i] = min_idx;
1175       distances[min_idx] = 0xffffffff;
1176    }
1177 
1178    /* Compute the final centroid priority. */
1179    for (int i = 0; i < 8; i++) {
1180       centroid_priority |= centroid_priorities[i & sample_mask] << (i * 4);
1181    }
1182 
1183    return centroid_priority << 32 | centroid_priority;
1184 }
1185 
1186 /**
1187  * Emit the sample locations that are specified with VK_EXT_sample_locations.
1188  */
1189 static void
radv_emit_sample_locations(struct radv_cmd_buffer * cmd_buffer)1190 radv_emit_sample_locations(struct radv_cmd_buffer *cmd_buffer)
1191 {
1192    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1193    const struct radv_physical_device *pdev = radv_device_physical(device);
1194    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1195    uint32_t num_samples = (uint32_t)d->sample_location.per_pixel;
1196    struct radeon_cmdbuf *cs = cmd_buffer->cs;
1197    uint32_t sample_locs_pixel[4][2] = {0};
1198    VkOffset2D sample_locs[4][8]; /* 8 is the max. sample count supported */
1199    uint64_t centroid_priority;
1200 
1201    if (!d->sample_location.count || !d->vk.ms.sample_locations_enable)
1202       return;
1203 
1204    /* Convert the user sample locations to hardware sample locations. */
1205    radv_convert_user_sample_locs(&d->sample_location, 0, 0, sample_locs[0]);
1206    radv_convert_user_sample_locs(&d->sample_location, 1, 0, sample_locs[1]);
1207    radv_convert_user_sample_locs(&d->sample_location, 0, 1, sample_locs[2]);
1208    radv_convert_user_sample_locs(&d->sample_location, 1, 1, sample_locs[3]);
1209 
1210    /* Compute the PA_SC_AA_SAMPLE_LOCS_PIXEL_* mask. */
1211    for (uint32_t i = 0; i < 4; i++) {
1212       radv_compute_sample_locs_pixel(num_samples, sample_locs[i], sample_locs_pixel[i]);
1213    }
1214 
1215    /* Compute the PA_SC_CENTROID_PRIORITY_* mask. */
1216    centroid_priority = radv_compute_centroid_priority(cmd_buffer, sample_locs[0], num_samples);
1217 
1218    /* Emit the specified user sample locations. */
1219    switch (num_samples) {
1220    case 2:
1221    case 4:
1222       radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_pixel[0][0]);
1223       radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_pixel[1][0]);
1224       radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_pixel[2][0]);
1225       radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_pixel[3][0]);
1226       break;
1227    case 8:
1228       radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_pixel[0][0]);
1229       radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_pixel[1][0]);
1230       radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_pixel[2][0]);
1231       radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_pixel[3][0]);
1232       radeon_set_context_reg(cs, R_028BFC_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_1, sample_locs_pixel[0][1]);
1233       radeon_set_context_reg(cs, R_028C0C_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_1, sample_locs_pixel[1][1]);
1234       radeon_set_context_reg(cs, R_028C1C_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_1, sample_locs_pixel[2][1]);
1235       radeon_set_context_reg(cs, R_028C2C_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_1, sample_locs_pixel[3][1]);
1236       break;
1237    default:
1238       unreachable("invalid number of samples");
1239    }
1240 
1241    if (pdev->info.gfx_level >= GFX12) {
1242       radeon_set_context_reg_seq(cs, R_028BF0_PA_SC_CENTROID_PRIORITY_0, 2);
1243    } else {
1244       radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1245    }
1246    radeon_emit(cs, centroid_priority);
1247    radeon_emit(cs, centroid_priority >> 32);
1248 
1249    if (pdev->info.gfx_level >= GFX7) {
1250       /* The exclusion bits can be set to improve rasterization efficiency if no sample lies on the pixel boundary
1251        * (-8 sample offset).
1252        */
1253       uint32_t pa_su_prim_filter_cntl = S_02882C_XMAX_RIGHT_EXCLUSION(1) | S_02882C_YMAX_BOTTOM_EXCLUSION(1);
1254       for (uint32_t i = 0; i < 4; ++i) {
1255          for (uint32_t j = 0; j < num_samples; ++j) {
1256             if (sample_locs[i][j].x <= -8)
1257                pa_su_prim_filter_cntl &= C_02882C_XMAX_RIGHT_EXCLUSION;
1258             if (sample_locs[i][j].y <= -8)
1259                pa_su_prim_filter_cntl &= C_02882C_YMAX_BOTTOM_EXCLUSION;
1260          }
1261       }
1262 
1263       radeon_set_context_reg(cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, pa_su_prim_filter_cntl);
1264    }
1265 }
1266 
1267 static void
radv_emit_inline_push_consts(const struct radv_device * device,struct radeon_cmdbuf * cs,const struct radv_shader * shader,int idx,const uint32_t * values)1268 radv_emit_inline_push_consts(const struct radv_device *device, struct radeon_cmdbuf *cs,
1269                              const struct radv_shader *shader, int idx, const uint32_t *values)
1270 {
1271    const struct radv_userdata_info *loc = &shader->info.user_sgprs_locs.shader_data[idx];
1272    const uint32_t base_reg = shader->info.user_data_0;
1273 
1274    if (loc->sgpr_idx == -1)
1275       return;
1276 
1277    radeon_check_space(device->ws, cs, 2 + loc->num_sgprs);
1278 
1279    radeon_set_sh_reg_seq(cs, base_reg + loc->sgpr_idx * 4, loc->num_sgprs);
1280    radeon_emit_array(cs, values, loc->num_sgprs);
1281 }
1282 
1283 struct radv_bin_size_entry {
1284    unsigned bpp;
1285    VkExtent2D extent;
1286 };
1287 
1288 static VkExtent2D
radv_gfx10_compute_bin_size(struct radv_cmd_buffer * cmd_buffer)1289 radv_gfx10_compute_bin_size(struct radv_cmd_buffer *cmd_buffer)
1290 {
1291    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1292    const struct radv_physical_device *pdev = radv_device_physical(device);
1293    const struct radv_rendering_state *render = &cmd_buffer->state.render;
1294    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1295    VkExtent2D extent = {512, 512};
1296 
1297    const unsigned db_tag_size = 64;
1298    const unsigned db_tag_count = 312;
1299    const unsigned color_tag_size = 1024;
1300    const unsigned color_tag_count = 31;
1301    const unsigned fmask_tag_size = 256;
1302    const unsigned fmask_tag_count = 44;
1303 
1304    const unsigned rb_count = pdev->info.max_render_backends;
1305    const unsigned pipe_count = MAX2(rb_count, pdev->info.num_tcc_blocks);
1306 
1307    const unsigned db_tag_part = (db_tag_count * rb_count / pipe_count) * db_tag_size * pipe_count;
1308    const unsigned color_tag_part = (color_tag_count * rb_count / pipe_count) * color_tag_size * pipe_count;
1309    const unsigned fmask_tag_part = (fmask_tag_count * rb_count / pipe_count) * fmask_tag_size * pipe_count;
1310 
1311    const unsigned total_samples = radv_get_rasterization_samples(cmd_buffer);
1312    const unsigned samples_log = util_logbase2_ceil(total_samples);
1313 
1314    unsigned color_bytes_per_pixel = 0;
1315    unsigned fmask_bytes_per_pixel = 0;
1316 
1317    for (unsigned i = 0; i < render->color_att_count; ++i) {
1318       struct radv_image_view *iview = render->color_att[i].iview;
1319 
1320       if (!iview)
1321          continue;
1322 
1323       if (!d->vk.cb.attachments[i].write_mask)
1324          continue;
1325 
1326       color_bytes_per_pixel += vk_format_get_blocksize(render->color_att[i].format);
1327 
1328       if (total_samples > 1) {
1329          assert(samples_log <= 3);
1330          const unsigned fmask_array[] = {0, 1, 1, 4};
1331          fmask_bytes_per_pixel += fmask_array[samples_log];
1332       }
1333    }
1334 
1335    color_bytes_per_pixel *= total_samples;
1336    color_bytes_per_pixel = MAX2(color_bytes_per_pixel, 1);
1337 
1338    const unsigned color_pixel_count_log = util_logbase2(color_tag_part / color_bytes_per_pixel);
1339    extent.width = 1ull << ((color_pixel_count_log + 1) / 2);
1340    extent.height = 1ull << (color_pixel_count_log / 2);
1341 
1342    if (fmask_bytes_per_pixel) {
1343       const unsigned fmask_pixel_count_log = util_logbase2(fmask_tag_part / fmask_bytes_per_pixel);
1344 
1345       const VkExtent2D fmask_extent = (VkExtent2D){.width = 1ull << ((fmask_pixel_count_log + 1) / 2),
1346                                                    .height = 1ull << (color_pixel_count_log / 2)};
1347 
1348       if (fmask_extent.width * fmask_extent.height < extent.width * extent.height)
1349          extent = fmask_extent;
1350    }
1351 
1352    if (render->ds_att.iview) {
1353       /* Coefficients taken from AMDVLK */
1354       unsigned depth_coeff = vk_format_has_depth(render->ds_att.format) ? 5 : 0;
1355       unsigned stencil_coeff = vk_format_has_stencil(render->ds_att.format) ? 1 : 0;
1356       unsigned db_bytes_per_pixel = (depth_coeff + stencil_coeff) * total_samples;
1357 
1358       const unsigned db_pixel_count_log = util_logbase2(db_tag_part / db_bytes_per_pixel);
1359 
1360       const VkExtent2D db_extent =
1361          (VkExtent2D){.width = 1ull << ((db_pixel_count_log + 1) / 2), .height = 1ull << (color_pixel_count_log / 2)};
1362 
1363       if (db_extent.width * db_extent.height < extent.width * extent.height)
1364          extent = db_extent;
1365    }
1366 
1367    extent.width = MAX2(extent.width, 128);
1368    extent.height = MAX2(extent.width, pdev->info.gfx_level >= GFX12 ? 128 : 64);
1369 
1370    return extent;
1371 }
1372 
1373 static VkExtent2D
radv_gfx9_compute_bin_size(struct radv_cmd_buffer * cmd_buffer)1374 radv_gfx9_compute_bin_size(struct radv_cmd_buffer *cmd_buffer)
1375 {
1376    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1377    const struct radv_physical_device *pdev = radv_device_physical(device);
1378    const struct radv_rendering_state *render = &cmd_buffer->state.render;
1379    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1380    static const struct radv_bin_size_entry color_size_table[][3][9] = {
1381       {
1382          /* One RB / SE */
1383          {
1384             /* One shader engine */
1385             {0, {128, 128}},
1386             {1, {64, 128}},
1387             {2, {32, 128}},
1388             {3, {16, 128}},
1389             {17, {0, 0}},
1390             {UINT_MAX, {0, 0}},
1391          },
1392          {
1393             /* Two shader engines */
1394             {0, {128, 128}},
1395             {2, {64, 128}},
1396             {3, {32, 128}},
1397             {5, {16, 128}},
1398             {17, {0, 0}},
1399             {UINT_MAX, {0, 0}},
1400          },
1401          {
1402             /* Four shader engines */
1403             {0, {128, 128}},
1404             {3, {64, 128}},
1405             {5, {16, 128}},
1406             {17, {0, 0}},
1407             {UINT_MAX, {0, 0}},
1408          },
1409       },
1410       {
1411          /* Two RB / SE */
1412          {
1413             /* One shader engine */
1414             {0, {128, 128}},
1415             {2, {64, 128}},
1416             {3, {32, 128}},
1417             {5, {16, 128}},
1418             {33, {0, 0}},
1419             {UINT_MAX, {0, 0}},
1420          },
1421          {
1422             /* Two shader engines */
1423             {0, {128, 128}},
1424             {3, {64, 128}},
1425             {5, {32, 128}},
1426             {9, {16, 128}},
1427             {33, {0, 0}},
1428             {UINT_MAX, {0, 0}},
1429          },
1430          {
1431             /* Four shader engines */
1432             {0, {256, 256}},
1433             {2, {128, 256}},
1434             {3, {128, 128}},
1435             {5, {64, 128}},
1436             {9, {16, 128}},
1437             {33, {0, 0}},
1438             {UINT_MAX, {0, 0}},
1439          },
1440       },
1441       {
1442          /* Four RB / SE */
1443          {
1444             /* One shader engine */
1445             {0, {128, 256}},
1446             {2, {128, 128}},
1447             {3, {64, 128}},
1448             {5, {32, 128}},
1449             {9, {16, 128}},
1450             {33, {0, 0}},
1451             {UINT_MAX, {0, 0}},
1452          },
1453          {
1454             /* Two shader engines */
1455             {0, {256, 256}},
1456             {2, {128, 256}},
1457             {3, {128, 128}},
1458             {5, {64, 128}},
1459             {9, {32, 128}},
1460             {17, {16, 128}},
1461             {33, {0, 0}},
1462             {UINT_MAX, {0, 0}},
1463          },
1464          {
1465             /* Four shader engines */
1466             {0, {256, 512}},
1467             {2, {256, 256}},
1468             {3, {128, 256}},
1469             {5, {128, 128}},
1470             {9, {64, 128}},
1471             {17, {16, 128}},
1472             {33, {0, 0}},
1473             {UINT_MAX, {0, 0}},
1474          },
1475       },
1476    };
1477    static const struct radv_bin_size_entry ds_size_table[][3][9] = {
1478       {
1479          // One RB / SE
1480          {
1481             // One shader engine
1482             {0, {128, 256}},
1483             {2, {128, 128}},
1484             {4, {64, 128}},
1485             {7, {32, 128}},
1486             {13, {16, 128}},
1487             {49, {0, 0}},
1488             {UINT_MAX, {0, 0}},
1489          },
1490          {
1491             // Two shader engines
1492             {0, {256, 256}},
1493             {2, {128, 256}},
1494             {4, {128, 128}},
1495             {7, {64, 128}},
1496             {13, {32, 128}},
1497             {25, {16, 128}},
1498             {49, {0, 0}},
1499             {UINT_MAX, {0, 0}},
1500          },
1501          {
1502             // Four shader engines
1503             {0, {256, 512}},
1504             {2, {256, 256}},
1505             {4, {128, 256}},
1506             {7, {128, 128}},
1507             {13, {64, 128}},
1508             {25, {16, 128}},
1509             {49, {0, 0}},
1510             {UINT_MAX, {0, 0}},
1511          },
1512       },
1513       {
1514          // Two RB / SE
1515          {
1516             // One shader engine
1517             {0, {256, 256}},
1518             {2, {128, 256}},
1519             {4, {128, 128}},
1520             {7, {64, 128}},
1521             {13, {32, 128}},
1522             {25, {16, 128}},
1523             {97, {0, 0}},
1524             {UINT_MAX, {0, 0}},
1525          },
1526          {
1527             // Two shader engines
1528             {0, {256, 512}},
1529             {2, {256, 256}},
1530             {4, {128, 256}},
1531             {7, {128, 128}},
1532             {13, {64, 128}},
1533             {25, {32, 128}},
1534             {49, {16, 128}},
1535             {97, {0, 0}},
1536             {UINT_MAX, {0, 0}},
1537          },
1538          {
1539             // Four shader engines
1540             {0, {512, 512}},
1541             {2, {256, 512}},
1542             {4, {256, 256}},
1543             {7, {128, 256}},
1544             {13, {128, 128}},
1545             {25, {64, 128}},
1546             {49, {16, 128}},
1547             {97, {0, 0}},
1548             {UINT_MAX, {0, 0}},
1549          },
1550       },
1551       {
1552          // Four RB / SE
1553          {
1554             // One shader engine
1555             {0, {256, 512}},
1556             {2, {256, 256}},
1557             {4, {128, 256}},
1558             {7, {128, 128}},
1559             {13, {64, 128}},
1560             {25, {32, 128}},
1561             {49, {16, 128}},
1562             {UINT_MAX, {0, 0}},
1563          },
1564          {
1565             // Two shader engines
1566             {0, {512, 512}},
1567             {2, {256, 512}},
1568             {4, {256, 256}},
1569             {7, {128, 256}},
1570             {13, {128, 128}},
1571             {25, {64, 128}},
1572             {49, {32, 128}},
1573             {97, {16, 128}},
1574             {UINT_MAX, {0, 0}},
1575          },
1576          {
1577             // Four shader engines
1578             {0, {512, 512}},
1579             {4, {256, 512}},
1580             {7, {256, 256}},
1581             {13, {128, 256}},
1582             {25, {128, 128}},
1583             {49, {64, 128}},
1584             {97, {16, 128}},
1585             {UINT_MAX, {0, 0}},
1586          },
1587       },
1588    };
1589 
1590    VkExtent2D extent = {512, 512};
1591 
1592    unsigned log_num_rb_per_se = util_logbase2_ceil(pdev->info.max_render_backends / pdev->info.max_se);
1593    unsigned log_num_se = util_logbase2_ceil(pdev->info.max_se);
1594 
1595    unsigned total_samples = radv_get_rasterization_samples(cmd_buffer);
1596    unsigned ps_iter_samples = radv_get_ps_iter_samples(cmd_buffer);
1597    unsigned effective_samples = total_samples;
1598    unsigned color_bytes_per_pixel = 0;
1599 
1600    for (unsigned i = 0; i < render->color_att_count; ++i) {
1601       struct radv_image_view *iview = render->color_att[i].iview;
1602 
1603       if (!iview)
1604          continue;
1605 
1606       if (!d->vk.cb.attachments[i].write_mask)
1607          continue;
1608 
1609       color_bytes_per_pixel += vk_format_get_blocksize(render->color_att[i].format);
1610    }
1611 
1612    /* MSAA images typically don't use all samples all the time. */
1613    if (effective_samples >= 2 && ps_iter_samples <= 1)
1614       effective_samples = 2;
1615    color_bytes_per_pixel *= effective_samples;
1616 
1617    const struct radv_bin_size_entry *color_entry = color_size_table[log_num_rb_per_se][log_num_se];
1618    while (color_entry[1].bpp <= color_bytes_per_pixel)
1619       ++color_entry;
1620 
1621    extent = color_entry->extent;
1622 
1623    if (render->ds_att.iview) {
1624       /* Coefficients taken from AMDVLK */
1625       unsigned depth_coeff = vk_format_has_depth(render->ds_att.format) ? 5 : 0;
1626       unsigned stencil_coeff = vk_format_has_stencil(render->ds_att.format) ? 1 : 0;
1627       unsigned ds_bytes_per_pixel = 4 * (depth_coeff + stencil_coeff) * total_samples;
1628 
1629       const struct radv_bin_size_entry *ds_entry = ds_size_table[log_num_rb_per_se][log_num_se];
1630       while (ds_entry[1].bpp <= ds_bytes_per_pixel)
1631          ++ds_entry;
1632 
1633       if (ds_entry->extent.width * ds_entry->extent.height < extent.width * extent.height)
1634          extent = ds_entry->extent;
1635    }
1636 
1637    return extent;
1638 }
1639 
1640 static unsigned
radv_get_disabled_binning_state(struct radv_cmd_buffer * cmd_buffer)1641 radv_get_disabled_binning_state(struct radv_cmd_buffer *cmd_buffer)
1642 {
1643    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1644    const struct radv_physical_device *pdev = radv_device_physical(device);
1645    const struct radv_rendering_state *render = &cmd_buffer->state.render;
1646    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1647    uint32_t pa_sc_binner_cntl_0;
1648 
1649    if (pdev->info.gfx_level >= GFX12) {
1650       const uint32_t bin_size_x = 128, bin_size_y = 128;
1651 
1652       pa_sc_binner_cntl_0 =
1653          S_028C44_BINNING_MODE(V_028C44_BINNING_DISABLED) | S_028C44_BIN_SIZE_X_EXTEND(util_logbase2(bin_size_x) - 5) |
1654          S_028C44_BIN_SIZE_Y_EXTEND(util_logbase2(bin_size_y) - 5) | S_028C44_DISABLE_START_OF_PRIM(1) |
1655          S_028C44_FPOVS_PER_BATCH(63) | S_028C44_OPTIMAL_BIN_SELECTION(1) | S_028C44_FLUSH_ON_BINNING_TRANSITION(1);
1656    } else if (pdev->info.gfx_level >= GFX10) {
1657       const unsigned binning_disabled =
1658          pdev->info.gfx_level >= GFX11_5 ? V_028C44_BINNING_DISABLED : V_028C44_DISABLE_BINNING_USE_NEW_SC;
1659       unsigned min_bytes_per_pixel = 0;
1660 
1661       for (unsigned i = 0; i < render->color_att_count; ++i) {
1662          struct radv_image_view *iview = render->color_att[i].iview;
1663 
1664          if (!iview)
1665             continue;
1666 
1667          if (!d->vk.cb.attachments[i].write_mask)
1668             continue;
1669 
1670          unsigned bytes = vk_format_get_blocksize(render->color_att[i].format);
1671          if (!min_bytes_per_pixel || bytes < min_bytes_per_pixel)
1672             min_bytes_per_pixel = bytes;
1673       }
1674 
1675       pa_sc_binner_cntl_0 = S_028C44_BINNING_MODE(binning_disabled) | S_028C44_BIN_SIZE_X(0) | S_028C44_BIN_SIZE_Y(0) |
1676                             S_028C44_BIN_SIZE_X_EXTEND(2) |                                /* 128 */
1677                             S_028C44_BIN_SIZE_Y_EXTEND(min_bytes_per_pixel <= 4 ? 2 : 1) | /* 128 or 64 */
1678                             S_028C44_DISABLE_START_OF_PRIM(1) | S_028C44_FLUSH_ON_BINNING_TRANSITION(1);
1679    } else {
1680       pa_sc_binner_cntl_0 =
1681          S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_LEGACY_SC) | S_028C44_DISABLE_START_OF_PRIM(1) |
1682          S_028C44_FLUSH_ON_BINNING_TRANSITION(pdev->info.family == CHIP_VEGA12 || pdev->info.family == CHIP_VEGA20 ||
1683                                               pdev->info.family >= CHIP_RAVEN2);
1684    }
1685 
1686    return pa_sc_binner_cntl_0;
1687 }
1688 
1689 static unsigned
radv_get_binning_state(struct radv_cmd_buffer * cmd_buffer)1690 radv_get_binning_state(struct radv_cmd_buffer *cmd_buffer)
1691 {
1692    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1693    const struct radv_physical_device *pdev = radv_device_physical(device);
1694    unsigned pa_sc_binner_cntl_0;
1695    VkExtent2D bin_size;
1696 
1697    if (pdev->info.gfx_level >= GFX10) {
1698       bin_size = radv_gfx10_compute_bin_size(cmd_buffer);
1699    } else {
1700       assert(pdev->info.gfx_level == GFX9);
1701       bin_size = radv_gfx9_compute_bin_size(cmd_buffer);
1702    }
1703 
1704    if (device->pbb_allowed && bin_size.width && bin_size.height) {
1705       const struct radv_binning_settings *settings = &pdev->binning_settings;
1706 
1707       pa_sc_binner_cntl_0 =
1708          S_028C44_BINNING_MODE(V_028C44_BINNING_ALLOWED) | S_028C44_BIN_SIZE_X(bin_size.width == 16) |
1709          S_028C44_BIN_SIZE_Y(bin_size.height == 16) |
1710          S_028C44_BIN_SIZE_X_EXTEND(util_logbase2(MAX2(bin_size.width, 32)) - 5) |
1711          S_028C44_BIN_SIZE_Y_EXTEND(util_logbase2(MAX2(bin_size.height, 32)) - 5) |
1712          S_028C44_CONTEXT_STATES_PER_BIN(settings->context_states_per_bin - 1) |
1713          S_028C44_PERSISTENT_STATES_PER_BIN(settings->persistent_states_per_bin - 1) |
1714          S_028C44_DISABLE_START_OF_PRIM(1) | S_028C44_FPOVS_PER_BATCH(settings->fpovs_per_batch) |
1715          S_028C44_OPTIMAL_BIN_SELECTION(1) |
1716          S_028C44_FLUSH_ON_BINNING_TRANSITION(pdev->info.family == CHIP_VEGA12 || pdev->info.family == CHIP_VEGA20 ||
1717                                               pdev->info.family >= CHIP_RAVEN2);
1718    } else {
1719       pa_sc_binner_cntl_0 = radv_get_disabled_binning_state(cmd_buffer);
1720    }
1721 
1722    return pa_sc_binner_cntl_0;
1723 }
1724 
1725 static void
radv_emit_binning_state(struct radv_cmd_buffer * cmd_buffer)1726 radv_emit_binning_state(struct radv_cmd_buffer *cmd_buffer)
1727 {
1728    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1729    const struct radv_physical_device *pdev = radv_device_physical(device);
1730    unsigned pa_sc_binner_cntl_0;
1731 
1732    if (pdev->info.gfx_level < GFX9)
1733       return;
1734 
1735    pa_sc_binner_cntl_0 = radv_get_binning_state(cmd_buffer);
1736 
1737    radeon_opt_set_context_reg(cmd_buffer, R_028C44_PA_SC_BINNER_CNTL_0, RADV_TRACKED_PA_SC_BINNER_CNTL_0,
1738                               pa_sc_binner_cntl_0);
1739 }
1740 
1741 static void
radv_emit_shader_prefetch(struct radv_cmd_buffer * cmd_buffer,struct radv_shader * shader)1742 radv_emit_shader_prefetch(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *shader)
1743 {
1744    uint64_t va;
1745 
1746    if (!shader)
1747       return;
1748 
1749    va = radv_shader_get_va(shader);
1750 
1751    radv_cp_dma_prefetch(cmd_buffer, va, shader->code_size);
1752 }
1753 
1754 ALWAYS_INLINE static void
radv_emit_prefetch_L2(struct radv_cmd_buffer * cmd_buffer,bool first_stage_only)1755 radv_emit_prefetch_L2(struct radv_cmd_buffer *cmd_buffer, bool first_stage_only)
1756 {
1757    struct radv_cmd_state *state = &cmd_buffer->state;
1758    uint32_t mask = state->prefetch_L2_mask;
1759 
1760    /* Fast prefetch path for starting draws as soon as possible. */
1761    if (first_stage_only)
1762       mask &= RADV_PREFETCH_VS | RADV_PREFETCH_VBO_DESCRIPTORS | RADV_PREFETCH_MS;
1763 
1764    if (mask & RADV_PREFETCH_VS)
1765       radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_VERTEX]);
1766 
1767    if (mask & RADV_PREFETCH_MS)
1768       radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_MESH]);
1769 
1770    if (mask & RADV_PREFETCH_VBO_DESCRIPTORS)
1771       radv_cp_dma_prefetch(cmd_buffer, state->vb_va, state->vb_size);
1772 
1773    if (mask & RADV_PREFETCH_TCS)
1774       radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL]);
1775 
1776    if (mask & RADV_PREFETCH_TES)
1777       radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL]);
1778 
1779    if (mask & RADV_PREFETCH_GS) {
1780       radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]);
1781       if (cmd_buffer->state.gs_copy_shader)
1782          radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.gs_copy_shader);
1783    }
1784 
1785    if (mask & RADV_PREFETCH_PS) {
1786       radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]);
1787    }
1788 
1789    state->prefetch_L2_mask &= ~mask;
1790 }
1791 
1792 static void
radv_emit_rbplus_state(struct radv_cmd_buffer * cmd_buffer)1793 radv_emit_rbplus_state(struct radv_cmd_buffer *cmd_buffer)
1794 {
1795    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1796    const struct radv_physical_device *pdev = radv_device_physical(device);
1797 
1798    assert(pdev->info.rbplus_allowed);
1799 
1800    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1801    struct radv_rendering_state *render = &cmd_buffer->state.render;
1802 
1803    unsigned sx_ps_downconvert = 0;
1804    unsigned sx_blend_opt_epsilon = 0;
1805    unsigned sx_blend_opt_control = 0;
1806 
1807    for (unsigned i = 0; i < render->color_att_count; i++) {
1808       unsigned format, swap;
1809       bool has_alpha, has_rgb;
1810       if (render->color_att[i].iview == NULL) {
1811          /* We don't set the DISABLE bits, because the HW can't have holes,
1812           * so the SPI color format is set to 32-bit 1-component. */
1813          sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_R << (i * 4);
1814          continue;
1815       }
1816 
1817       struct radv_color_buffer_info *cb = &render->color_att[i].cb;
1818 
1819       format = pdev->info.gfx_level >= GFX11 ? G_028C70_FORMAT_GFX11(cb->ac.cb_color_info)
1820                                              : G_028C70_FORMAT_GFX6(cb->ac.cb_color_info);
1821       swap = G_028C70_COMP_SWAP(cb->ac.cb_color_info);
1822       has_alpha = pdev->info.gfx_level >= GFX11 ? !G_028C74_FORCE_DST_ALPHA_1_GFX11(cb->ac.cb_color_attrib)
1823                                                 : !G_028C74_FORCE_DST_ALPHA_1_GFX6(cb->ac.cb_color_attrib);
1824 
1825       uint32_t spi_format = (cmd_buffer->state.spi_shader_col_format >> (i * 4)) & 0xf;
1826       uint32_t colormask = d->vk.cb.attachments[i].write_mask;
1827 
1828       if (format == V_028C70_COLOR_8 || format == V_028C70_COLOR_16 || format == V_028C70_COLOR_32)
1829          has_rgb = !has_alpha;
1830       else
1831          has_rgb = true;
1832 
1833       /* Check the colormask and export format. */
1834       if (!(colormask & 0x7))
1835          has_rgb = false;
1836       if (!(colormask & 0x8))
1837          has_alpha = false;
1838 
1839       if (spi_format == V_028714_SPI_SHADER_ZERO) {
1840          has_rgb = false;
1841          has_alpha = false;
1842       }
1843 
1844       /* The HW doesn't quite blend correctly with rgb9e5 if we disable the alpha
1845        * optimization, even though it has no alpha. */
1846       if (has_rgb && format == V_028C70_COLOR_5_9_9_9)
1847          has_alpha = true;
1848 
1849       /* Disable value checking for disabled channels. */
1850       if (!has_rgb)
1851          sx_blend_opt_control |= S_02875C_MRT0_COLOR_OPT_DISABLE(1) << (i * 4);
1852       if (!has_alpha)
1853          sx_blend_opt_control |= S_02875C_MRT0_ALPHA_OPT_DISABLE(1) << (i * 4);
1854 
1855       /* Enable down-conversion for 32bpp and smaller formats. */
1856       switch (format) {
1857       case V_028C70_COLOR_8:
1858       case V_028C70_COLOR_8_8:
1859       case V_028C70_COLOR_8_8_8_8:
1860          /* For 1 and 2-channel formats, use the superset thereof. */
1861          if (spi_format == V_028714_SPI_SHADER_FP16_ABGR || spi_format == V_028714_SPI_SHADER_UINT16_ABGR ||
1862              spi_format == V_028714_SPI_SHADER_SINT16_ABGR) {
1863             sx_ps_downconvert |= V_028754_SX_RT_EXPORT_8_8_8_8 << (i * 4);
1864 
1865             if (G_028C70_NUMBER_TYPE(cb->ac.cb_color_info) != V_028C70_NUMBER_SRGB)
1866                sx_blend_opt_epsilon |= V_028758_8BIT_FORMAT_0_5 << (i * 4);
1867          }
1868          break;
1869 
1870       case V_028C70_COLOR_5_6_5:
1871          if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
1872             sx_ps_downconvert |= V_028754_SX_RT_EXPORT_5_6_5 << (i * 4);
1873             sx_blend_opt_epsilon |= V_028758_6BIT_FORMAT_0_5 << (i * 4);
1874          }
1875          break;
1876 
1877       case V_028C70_COLOR_1_5_5_5:
1878          if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
1879             sx_ps_downconvert |= V_028754_SX_RT_EXPORT_1_5_5_5 << (i * 4);
1880             sx_blend_opt_epsilon |= V_028758_5BIT_FORMAT_0_5 << (i * 4);
1881          }
1882          break;
1883 
1884       case V_028C70_COLOR_4_4_4_4:
1885          if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
1886             sx_ps_downconvert |= V_028754_SX_RT_EXPORT_4_4_4_4 << (i * 4);
1887             sx_blend_opt_epsilon |= V_028758_4BIT_FORMAT_0_5 << (i * 4);
1888          }
1889          break;
1890 
1891       case V_028C70_COLOR_32:
1892          if (swap == V_028C70_SWAP_STD && spi_format == V_028714_SPI_SHADER_32_R)
1893             sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_R << (i * 4);
1894          else if (swap == V_028C70_SWAP_ALT_REV && spi_format == V_028714_SPI_SHADER_32_AR)
1895             sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_A << (i * 4);
1896          break;
1897 
1898       case V_028C70_COLOR_16:
1899       case V_028C70_COLOR_16_16:
1900          /* For 1-channel formats, use the superset thereof. */
1901          if (spi_format == V_028714_SPI_SHADER_UNORM16_ABGR || spi_format == V_028714_SPI_SHADER_SNORM16_ABGR ||
1902              spi_format == V_028714_SPI_SHADER_UINT16_ABGR || spi_format == V_028714_SPI_SHADER_SINT16_ABGR) {
1903             if (swap == V_028C70_SWAP_STD || swap == V_028C70_SWAP_STD_REV)
1904                sx_ps_downconvert |= V_028754_SX_RT_EXPORT_16_16_GR << (i * 4);
1905             else
1906                sx_ps_downconvert |= V_028754_SX_RT_EXPORT_16_16_AR << (i * 4);
1907          }
1908          break;
1909 
1910       case V_028C70_COLOR_10_11_11:
1911          if (spi_format == V_028714_SPI_SHADER_FP16_ABGR)
1912             sx_ps_downconvert |= V_028754_SX_RT_EXPORT_10_11_11 << (i * 4);
1913          break;
1914 
1915       case V_028C70_COLOR_2_10_10_10:
1916          if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
1917             sx_ps_downconvert |= V_028754_SX_RT_EXPORT_2_10_10_10 << (i * 4);
1918             sx_blend_opt_epsilon |= V_028758_10BIT_FORMAT_0_5 << (i * 4);
1919          }
1920          break;
1921       case V_028C70_COLOR_5_9_9_9:
1922          if (spi_format == V_028714_SPI_SHADER_FP16_ABGR)
1923             sx_ps_downconvert |= V_028754_SX_RT_EXPORT_9_9_9_E5 << (i * 4);
1924          break;
1925       }
1926    }
1927 
1928    /* Do not set the DISABLE bits for the unused attachments, as that
1929     * breaks dual source blending in SkQP and does not seem to improve
1930     * performance. */
1931 
1932    radeon_opt_set_context_reg3(cmd_buffer, R_028754_SX_PS_DOWNCONVERT, RADV_TRACKED_SX_PS_DOWNCONVERT,
1933                                sx_ps_downconvert, sx_blend_opt_epsilon, sx_blend_opt_control);
1934 
1935    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_RBPLUS;
1936 }
1937 
1938 static void
radv_emit_ps_epilog_state(struct radv_cmd_buffer * cmd_buffer,struct radv_shader_part * ps_epilog)1939 radv_emit_ps_epilog_state(struct radv_cmd_buffer *cmd_buffer, struct radv_shader_part *ps_epilog)
1940 {
1941    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1942    const struct radv_physical_device *pdev = radv_device_physical(device);
1943    struct radv_shader *ps_shader = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
1944 
1945    if (cmd_buffer->state.emitted_ps_epilog == ps_epilog)
1946       return;
1947 
1948    assert(ps_shader->config.num_shared_vgprs == 0);
1949    if (G_00B848_VGPRS(ps_epilog->rsrc1) > G_00B848_VGPRS(ps_shader->config.rsrc1)) {
1950       uint32_t rsrc1 = ps_shader->config.rsrc1;
1951       rsrc1 = (rsrc1 & C_00B848_VGPRS) | (ps_epilog->rsrc1 & ~C_00B848_VGPRS);
1952       radeon_set_sh_reg(cmd_buffer->cs, ps_shader->info.regs.pgm_rsrc1, rsrc1);
1953    }
1954 
1955    radv_cs_add_buffer(device->ws, cmd_buffer->cs, ps_epilog->bo);
1956 
1957    assert((ps_epilog->va >> 32) == pdev->info.address32_hi);
1958 
1959    const uint32_t epilog_pc_offset = radv_get_user_sgpr_loc(ps_shader, AC_UD_EPILOG_PC);
1960    radv_emit_shader_pointer(device, cmd_buffer->cs, epilog_pc_offset, ps_epilog->va, false);
1961 
1962    cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, ps_epilog->upload_seq);
1963 
1964    cmd_buffer->state.emitted_ps_epilog = ps_epilog;
1965 }
1966 
1967 void
radv_emit_compute_shader(const struct radv_physical_device * pdev,struct radeon_cmdbuf * cs,const struct radv_shader * shader)1968 radv_emit_compute_shader(const struct radv_physical_device *pdev, struct radeon_cmdbuf *cs,
1969                          const struct radv_shader *shader)
1970 {
1971    uint64_t va = radv_shader_get_va(shader);
1972 
1973    radeon_set_sh_reg(cs, shader->info.regs.pgm_lo, va >> 8);
1974 
1975    radeon_set_sh_reg_seq(cs, shader->info.regs.pgm_rsrc1, 2);
1976    radeon_emit(cs, shader->config.rsrc1);
1977    radeon_emit(cs, shader->config.rsrc2);
1978    if (pdev->info.gfx_level >= GFX10) {
1979       radeon_set_sh_reg(cs, shader->info.regs.pgm_rsrc3, shader->config.rsrc3);
1980    }
1981 
1982    radeon_set_sh_reg(cs, R_00B854_COMPUTE_RESOURCE_LIMITS, shader->info.regs.cs.compute_resource_limits);
1983    radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
1984    radeon_emit(cs, shader->info.regs.cs.compute_num_thread_x);
1985    radeon_emit(cs, shader->info.regs.cs.compute_num_thread_y);
1986    radeon_emit(cs, shader->info.regs.cs.compute_num_thread_z);
1987 }
1988 
1989 static void
radv_emit_vgt_gs_mode(struct radv_cmd_buffer * cmd_buffer)1990 radv_emit_vgt_gs_mode(struct radv_cmd_buffer *cmd_buffer)
1991 {
1992    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1993    const struct radv_physical_device *pdev = radv_device_physical(device);
1994    const struct radv_shader_info *info = &cmd_buffer->state.last_vgt_shader->info;
1995    unsigned vgt_primitiveid_en = 0;
1996    uint32_t vgt_gs_mode = 0;
1997 
1998    if (info->is_ngg)
1999       return;
2000 
2001    if (info->stage == MESA_SHADER_GEOMETRY) {
2002       vgt_gs_mode = ac_vgt_gs_mode(info->gs.vertices_out, pdev->info.gfx_level);
2003    } else if (info->outinfo.export_prim_id || info->uses_prim_id) {
2004       vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A);
2005       vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(1);
2006    }
2007 
2008    radeon_opt_set_context_reg(cmd_buffer, R_028A84_VGT_PRIMITIVEID_EN, RADV_TRACKED_VGT_PRIMITIVEID_EN,
2009                               vgt_primitiveid_en);
2010    radeon_opt_set_context_reg(cmd_buffer, R_028A40_VGT_GS_MODE, RADV_TRACKED_VGT_GS_MODE, vgt_gs_mode);
2011 }
2012 
2013 static void
radv_emit_hw_vs(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * shader)2014 radv_emit_hw_vs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader)
2015 {
2016    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2017    const struct radv_physical_device *pdev = radv_device_physical(device);
2018    const uint64_t va = radv_shader_get_va(shader);
2019 
2020    radeon_set_sh_reg_seq(cmd_buffer->cs, shader->info.regs.pgm_lo, 4);
2021    radeon_emit(cmd_buffer->cs, va >> 8);
2022    radeon_emit(cmd_buffer->cs, S_00B124_MEM_BASE(va >> 40));
2023    radeon_emit(cmd_buffer->cs, shader->config.rsrc1);
2024    radeon_emit(cmd_buffer->cs, shader->config.rsrc2);
2025 
2026    radeon_opt_set_context_reg(cmd_buffer, R_0286C4_SPI_VS_OUT_CONFIG, RADV_TRACKED_SPI_VS_OUT_CONFIG,
2027                               shader->info.regs.spi_vs_out_config);
2028    radeon_opt_set_context_reg(cmd_buffer, R_02870C_SPI_SHADER_POS_FORMAT, RADV_TRACKED_SPI_SHADER_POS_FORMAT,
2029                               shader->info.regs.spi_shader_pos_format);
2030    radeon_opt_set_context_reg(cmd_buffer, R_02881C_PA_CL_VS_OUT_CNTL, RADV_TRACKED_PA_CL_VS_OUT_CNTL,
2031                               shader->info.regs.pa_cl_vs_out_cntl);
2032 
2033    if (pdev->info.gfx_level <= GFX8)
2034       radeon_opt_set_context_reg(cmd_buffer, R_028AB4_VGT_REUSE_OFF, RADV_TRACKED_VGT_REUSE_OFF,
2035                                  shader->info.regs.vs.vgt_reuse_off);
2036 
2037    if (pdev->info.gfx_level >= GFX7) {
2038       radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS, 3,
2039                             shader->info.regs.vs.spi_shader_pgm_rsrc3_vs);
2040       radeon_set_sh_reg(cmd_buffer->cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS,
2041                         shader->info.regs.vs.spi_shader_late_alloc_vs);
2042 
2043       if (pdev->info.gfx_level >= GFX10) {
2044          radeon_set_uconfig_reg(cmd_buffer->cs, R_030980_GE_PC_ALLOC, shader->info.regs.ge_pc_alloc);
2045 
2046          if (shader->info.stage == MESA_SHADER_TESS_EVAL) {
2047             radeon_opt_set_context_reg(cmd_buffer, R_028A44_VGT_GS_ONCHIP_CNTL, RADV_TRACKED_VGT_GS_ONCHIP_CNTL,
2048                                        shader->info.regs.vgt_gs_onchip_cntl);
2049          }
2050       }
2051    }
2052 }
2053 
2054 static void
radv_emit_hw_es(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * shader)2055 radv_emit_hw_es(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader)
2056 {
2057    const uint64_t va = radv_shader_get_va(shader);
2058 
2059    radeon_set_sh_reg_seq(cmd_buffer->cs, shader->info.regs.pgm_lo, 4);
2060    radeon_emit(cmd_buffer->cs, va >> 8);
2061    radeon_emit(cmd_buffer->cs, S_00B324_MEM_BASE(va >> 40));
2062    radeon_emit(cmd_buffer->cs, shader->config.rsrc1);
2063    radeon_emit(cmd_buffer->cs, shader->config.rsrc2);
2064 }
2065 
2066 static void
radv_emit_hw_ls(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * shader)2067 radv_emit_hw_ls(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader)
2068 {
2069    const uint64_t va = radv_shader_get_va(shader);
2070 
2071    radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_lo, va >> 8);
2072 
2073    radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_rsrc1, shader->config.rsrc1);
2074 }
2075 
2076 static void
radv_emit_hw_ngg(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * es,const struct radv_shader * shader)2077 radv_emit_hw_ngg(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *es, const struct radv_shader *shader)
2078 {
2079    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2080    const struct radv_physical_device *pdev = radv_device_physical(device);
2081    const uint64_t va = radv_shader_get_va(shader);
2082    gl_shader_stage es_type;
2083    const struct gfx10_ngg_info *ngg_state = &shader->info.ngg_info;
2084 
2085    if (shader->info.stage == MESA_SHADER_GEOMETRY) {
2086       if (shader->info.merged_shader_compiled_separately) {
2087          es_type = es->info.stage;
2088       } else {
2089          es_type = shader->info.gs.es_type;
2090       }
2091    } else {
2092       es_type = shader->info.stage;
2093    }
2094 
2095    if (!shader->info.merged_shader_compiled_separately) {
2096       radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_lo, va >> 8);
2097 
2098       radeon_set_sh_reg_seq(cmd_buffer->cs, shader->info.regs.pgm_rsrc1, 2);
2099       radeon_emit(cmd_buffer->cs, shader->config.rsrc1);
2100       radeon_emit(cmd_buffer->cs, shader->config.rsrc2);
2101    }
2102 
2103    const struct radv_vs_output_info *outinfo = &shader->info.outinfo;
2104 
2105    const bool es_enable_prim_id = outinfo->export_prim_id || (es && es->info.uses_prim_id);
2106    bool break_wave_at_eoi = false;
2107 
2108    if (es_type == MESA_SHADER_TESS_EVAL) {
2109       if (es_enable_prim_id || (shader->info.uses_prim_id))
2110          break_wave_at_eoi = true;
2111    }
2112 
2113    if (pdev->info.gfx_level >= GFX12) {
2114       radeon_opt_set_context_reg(cmd_buffer, R_028818_PA_CL_VS_OUT_CNTL, RADV_TRACKED_PA_CL_VS_OUT_CNTL,
2115                                  shader->info.regs.pa_cl_vs_out_cntl);
2116 
2117       radeon_opt_set_context_reg(cmd_buffer, R_028B3C_VGT_GS_INSTANCE_CNT, RADV_TRACKED_VGT_GS_INSTANCE_CNT,
2118                                  shader->info.regs.vgt_gs_instance_cnt);
2119 
2120       radeon_set_uconfig_reg(cmd_buffer->cs, R_030988_VGT_PRIMITIVEID_EN, shader->info.regs.ngg.vgt_primitiveid_en);
2121 
2122       radeon_opt_set_context_reg2(cmd_buffer, R_028648_SPI_SHADER_IDX_FORMAT, RADV_TRACKED_SPI_SHADER_IDX_FORMAT,
2123                                   shader->info.regs.ngg.spi_shader_idx_format, shader->info.regs.spi_shader_pos_format);
2124    } else {
2125       radeon_opt_set_context_reg(cmd_buffer, R_02881C_PA_CL_VS_OUT_CNTL, RADV_TRACKED_PA_CL_VS_OUT_CNTL,
2126                                  shader->info.regs.pa_cl_vs_out_cntl);
2127 
2128       radeon_opt_set_context_reg(cmd_buffer, R_028B90_VGT_GS_INSTANCE_CNT, RADV_TRACKED_VGT_GS_INSTANCE_CNT,
2129                                  shader->info.regs.vgt_gs_instance_cnt);
2130 
2131       radeon_opt_set_context_reg(cmd_buffer, R_028A84_VGT_PRIMITIVEID_EN, RADV_TRACKED_VGT_PRIMITIVEID_EN,
2132                                  shader->info.regs.ngg.vgt_primitiveid_en | S_028A84_PRIMITIVEID_EN(es_enable_prim_id));
2133 
2134       radeon_opt_set_context_reg2(cmd_buffer, R_028708_SPI_SHADER_IDX_FORMAT, RADV_TRACKED_SPI_SHADER_IDX_FORMAT,
2135                                   shader->info.regs.ngg.spi_shader_idx_format, shader->info.regs.spi_shader_pos_format);
2136 
2137       radeon_opt_set_context_reg(cmd_buffer, R_0286C4_SPI_VS_OUT_CONFIG, RADV_TRACKED_SPI_VS_OUT_CONFIG,
2138                                  shader->info.regs.spi_vs_out_config);
2139    }
2140 
2141    radeon_opt_set_context_reg(cmd_buffer, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP, RADV_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP,
2142                               shader->info.regs.ngg.ge_max_output_per_subgroup);
2143 
2144    radeon_opt_set_context_reg(cmd_buffer, R_028B4C_GE_NGG_SUBGRP_CNTL, RADV_TRACKED_GE_NGG_SUBGRP_CNTL,
2145                               shader->info.regs.ngg.ge_ngg_subgrp_cntl);
2146 
2147    uint32_t ge_cntl = shader->info.regs.ngg.ge_cntl;
2148    if (pdev->info.gfx_level >= GFX11) {
2149       ge_cntl |= S_03096C_BREAK_PRIMGRP_AT_EOI(break_wave_at_eoi);
2150    } else {
2151       ge_cntl |= S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
2152 
2153       /* Bug workaround for a possible hang with non-tessellation cases.
2154        * Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0
2155        *
2156        * Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5
2157        */
2158       if (pdev->info.gfx_level == GFX10 && es_type != MESA_SHADER_TESS_EVAL && ngg_state->hw_max_esverts != 256) {
2159          ge_cntl &= C_03096C_VERT_GRP_SIZE;
2160 
2161          if (ngg_state->hw_max_esverts > 5) {
2162             ge_cntl |= S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts - 5);
2163          }
2164       }
2165 
2166       radeon_opt_set_context_reg(cmd_buffer, R_028A44_VGT_GS_ONCHIP_CNTL, RADV_TRACKED_VGT_GS_ONCHIP_CNTL,
2167                                  shader->info.regs.vgt_gs_onchip_cntl);
2168    }
2169 
2170    radeon_set_uconfig_reg(cmd_buffer->cs, R_03096C_GE_CNTL, ge_cntl);
2171 
2172    if (pdev->info.gfx_level >= GFX12) {
2173       radeon_set_sh_reg(cmd_buffer->cs, R_00B220_SPI_SHADER_PGM_RSRC4_GS, shader->info.regs.spi_shader_pgm_rsrc4_gs);
2174    } else {
2175       if (pdev->info.gfx_level >= GFX7) {
2176          radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3,
2177                                shader->info.regs.spi_shader_pgm_rsrc3_gs);
2178       }
2179 
2180       radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3,
2181                             shader->info.regs.spi_shader_pgm_rsrc4_gs);
2182 
2183       radeon_set_uconfig_reg(cmd_buffer->cs, R_030980_GE_PC_ALLOC, shader->info.regs.ge_pc_alloc);
2184    }
2185 }
2186 
2187 static void
radv_emit_hw_hs(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * shader)2188 radv_emit_hw_hs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader)
2189 {
2190    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2191    const struct radv_physical_device *pdev = radv_device_physical(device);
2192    const uint64_t va = radv_shader_get_va(shader);
2193 
2194    if (pdev->info.gfx_level >= GFX9) {
2195       radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_lo, va >> 8);
2196       radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_rsrc1, shader->config.rsrc1);
2197    } else {
2198       radeon_set_sh_reg_seq(cmd_buffer->cs, shader->info.regs.pgm_lo, 4);
2199       radeon_emit(cmd_buffer->cs, va >> 8);
2200       radeon_emit(cmd_buffer->cs, S_00B424_MEM_BASE(va >> 40));
2201       radeon_emit(cmd_buffer->cs, shader->config.rsrc1);
2202       radeon_emit(cmd_buffer->cs, shader->config.rsrc2);
2203    }
2204 }
2205 
2206 static void
radv_emit_vertex_shader(struct radv_cmd_buffer * cmd_buffer)2207 radv_emit_vertex_shader(struct radv_cmd_buffer *cmd_buffer)
2208 {
2209    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2210    const struct radv_physical_device *pdev = radv_device_physical(device);
2211    const struct radv_shader *vs = cmd_buffer->state.shaders[MESA_SHADER_VERTEX];
2212 
2213    if (vs->info.merged_shader_compiled_separately) {
2214       assert(vs->info.next_stage == MESA_SHADER_TESS_CTRL || vs->info.next_stage == MESA_SHADER_GEOMETRY);
2215 
2216       const struct radv_shader *next_stage = cmd_buffer->state.shaders[vs->info.next_stage];
2217 
2218       if (!vs->info.vs.has_prolog) {
2219          uint32_t rsrc1, rsrc2;
2220 
2221          radeon_set_sh_reg(cmd_buffer->cs, vs->info.regs.pgm_lo, vs->va >> 8);
2222 
2223          if (vs->info.next_stage == MESA_SHADER_TESS_CTRL) {
2224             radv_shader_combine_cfg_vs_tcs(vs, next_stage, &rsrc1, NULL);
2225 
2226             radeon_set_sh_reg(cmd_buffer->cs, vs->info.regs.pgm_rsrc1, rsrc1);
2227          } else {
2228             radv_shader_combine_cfg_vs_gs(vs, next_stage, &rsrc1, &rsrc2);
2229 
2230             unsigned lds_size;
2231             if (next_stage->info.is_ngg) {
2232                lds_size = DIV_ROUND_UP(next_stage->info.ngg_info.lds_size, pdev->info.lds_encode_granularity);
2233             } else {
2234                lds_size = next_stage->info.gs_ring_info.lds_size;
2235             }
2236 
2237             radeon_set_sh_reg_seq(cmd_buffer->cs, vs->info.regs.pgm_rsrc1, 2);
2238             radeon_emit(cmd_buffer->cs, rsrc1);
2239             radeon_emit(cmd_buffer->cs, rsrc2 | S_00B22C_LDS_SIZE(lds_size));
2240          }
2241       }
2242 
2243       const uint32_t next_stage_pc_offset = radv_get_user_sgpr_loc(vs, AC_UD_NEXT_STAGE_PC);
2244       radv_emit_shader_pointer(device, cmd_buffer->cs, next_stage_pc_offset, next_stage->va, false);
2245       return;
2246    }
2247 
2248    if (vs->info.vs.as_ls)
2249       radv_emit_hw_ls(cmd_buffer, vs);
2250    else if (vs->info.vs.as_es)
2251       radv_emit_hw_es(cmd_buffer, vs);
2252    else if (vs->info.is_ngg)
2253       radv_emit_hw_ngg(cmd_buffer, NULL, vs);
2254    else
2255       radv_emit_hw_vs(cmd_buffer, vs);
2256 }
2257 
2258 static void
radv_emit_tess_ctrl_shader(struct radv_cmd_buffer * cmd_buffer)2259 radv_emit_tess_ctrl_shader(struct radv_cmd_buffer *cmd_buffer)
2260 {
2261    const struct radv_shader *tcs = cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL];
2262 
2263    if (tcs->info.merged_shader_compiled_separately) {
2264       /* When VS+TCS are compiled separately on GFX9+, the VS will jump to the TCS and everything is
2265        * emitted as part of the VS.
2266        */
2267       return;
2268    }
2269 
2270    radv_emit_hw_hs(cmd_buffer, tcs);
2271 }
2272 
2273 static void
radv_emit_tess_eval_shader(struct radv_cmd_buffer * cmd_buffer)2274 radv_emit_tess_eval_shader(struct radv_cmd_buffer *cmd_buffer)
2275 {
2276    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2277    const struct radv_physical_device *pdev = radv_device_physical(device);
2278    const struct radv_shader *tes = cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL];
2279 
2280    if (tes->info.merged_shader_compiled_separately) {
2281       assert(tes->info.next_stage == MESA_SHADER_GEOMETRY);
2282 
2283       const struct radv_shader *gs = cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY];
2284       uint32_t rsrc1, rsrc2;
2285 
2286       radv_shader_combine_cfg_tes_gs(tes, gs, &rsrc1, &rsrc2);
2287 
2288       radeon_set_sh_reg(cmd_buffer->cs, tes->info.regs.pgm_lo, tes->va >> 8);
2289 
2290       unsigned lds_size;
2291       if (gs->info.is_ngg) {
2292          lds_size = DIV_ROUND_UP(gs->info.ngg_info.lds_size, pdev->info.lds_encode_granularity);
2293       } else {
2294          lds_size = gs->info.gs_ring_info.lds_size;
2295       }
2296 
2297       radeon_set_sh_reg_seq(cmd_buffer->cs, tes->info.regs.pgm_rsrc1, 2);
2298       radeon_emit(cmd_buffer->cs, rsrc1);
2299       radeon_emit(cmd_buffer->cs, rsrc2 | S_00B22C_LDS_SIZE(lds_size));
2300 
2301       const uint32_t next_stage_pc_offset = radv_get_user_sgpr_loc(tes, AC_UD_NEXT_STAGE_PC);
2302       radv_emit_shader_pointer(device, cmd_buffer->cs, next_stage_pc_offset, gs->va, false);
2303       return;
2304    }
2305 
2306    if (tes->info.is_ngg) {
2307       radv_emit_hw_ngg(cmd_buffer, NULL, tes);
2308    } else if (tes->info.tes.as_es) {
2309       radv_emit_hw_es(cmd_buffer, tes);
2310    } else {
2311       radv_emit_hw_vs(cmd_buffer, tes);
2312    }
2313 }
2314 
2315 static void
radv_emit_hw_gs(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * gs)2316 radv_emit_hw_gs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *gs)
2317 {
2318    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2319    const struct radv_physical_device *pdev = radv_device_physical(device);
2320    const struct radv_legacy_gs_info *gs_state = &gs->info.gs_ring_info;
2321    const uint64_t va = radv_shader_get_va(gs);
2322 
2323    radeon_opt_set_context_reg3(cmd_buffer, R_028A60_VGT_GSVS_RING_OFFSET_1, RADV_TRACKED_VGT_GSVS_RING_OFFSET_1,
2324                                gs->info.regs.gs.vgt_gsvs_ring_offset[0], gs->info.regs.gs.vgt_gsvs_ring_offset[1],
2325                                gs->info.regs.gs.vgt_gsvs_ring_offset[2]);
2326 
2327    radeon_opt_set_context_reg(cmd_buffer, R_028AB0_VGT_GSVS_RING_ITEMSIZE, RADV_TRACKED_VGT_GSVS_RING_ITEMSIZE,
2328                               gs->info.regs.gs.vgt_gsvs_ring_itemsize);
2329 
2330    radeon_opt_set_context_reg4(cmd_buffer, R_028B5C_VGT_GS_VERT_ITEMSIZE, RADV_TRACKED_VGT_GS_VERT_ITEMSIZE,
2331                                gs->info.regs.gs.vgt_gs_vert_itemsize[0], gs->info.regs.gs.vgt_gs_vert_itemsize[1],
2332                                gs->info.regs.gs.vgt_gs_vert_itemsize[2], gs->info.regs.gs.vgt_gs_vert_itemsize[3]);
2333 
2334    radeon_opt_set_context_reg(cmd_buffer, R_028B90_VGT_GS_INSTANCE_CNT, RADV_TRACKED_VGT_GS_INSTANCE_CNT,
2335                               gs->info.regs.gs.vgt_gs_instance_cnt);
2336 
2337    if (pdev->info.gfx_level >= GFX9) {
2338       if (!gs->info.merged_shader_compiled_separately) {
2339          radeon_set_sh_reg(cmd_buffer->cs, gs->info.regs.pgm_lo, va >> 8);
2340 
2341          radeon_set_sh_reg_seq(cmd_buffer->cs, gs->info.regs.pgm_rsrc1, 2);
2342          radeon_emit(cmd_buffer->cs, gs->config.rsrc1);
2343          radeon_emit(cmd_buffer->cs, gs->config.rsrc2 | S_00B22C_LDS_SIZE(gs_state->lds_size));
2344       }
2345 
2346       radeon_opt_set_context_reg(cmd_buffer, R_028A44_VGT_GS_ONCHIP_CNTL, RADV_TRACKED_VGT_GS_ONCHIP_CNTL,
2347                                  gs->info.regs.vgt_gs_onchip_cntl);
2348 
2349       if (pdev->info.gfx_level == GFX9) {
2350          radeon_opt_set_context_reg(cmd_buffer, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
2351                                     RADV_TRACKED_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
2352                                     gs->info.regs.gs.vgt_gs_max_prims_per_subgroup);
2353       }
2354    } else {
2355       radeon_set_sh_reg_seq(cmd_buffer->cs, gs->info.regs.pgm_lo, 4);
2356       radeon_emit(cmd_buffer->cs, va >> 8);
2357       radeon_emit(cmd_buffer->cs, S_00B224_MEM_BASE(va >> 40));
2358       radeon_emit(cmd_buffer->cs, gs->config.rsrc1);
2359       radeon_emit(cmd_buffer->cs, gs->config.rsrc2);
2360 
2361       /* GFX6-8: ESGS offchip ring buffer is allocated according to VGT_ESGS_RING_ITEMSIZE.
2362        * GFX9+: Only used to set the GS input VGPRs, emulated in shaders.
2363        */
2364       radeon_opt_set_context_reg(cmd_buffer, R_028AAC_VGT_ESGS_RING_ITEMSIZE, RADV_TRACKED_VGT_ESGS_RING_ITEMSIZE,
2365                                  gs->info.regs.gs.vgt_esgs_ring_itemsize);
2366    }
2367 
2368    if (pdev->info.gfx_level >= GFX7) {
2369       radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3,
2370                             gs->info.regs.spi_shader_pgm_rsrc3_gs);
2371    }
2372 
2373    if (pdev->info.gfx_level >= GFX10) {
2374       radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3,
2375                             gs->info.regs.spi_shader_pgm_rsrc4_gs);
2376    }
2377 }
2378 
2379 static void
radv_emit_geometry_shader(struct radv_cmd_buffer * cmd_buffer)2380 radv_emit_geometry_shader(struct radv_cmd_buffer *cmd_buffer)
2381 {
2382    const struct radv_shader *gs = cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY];
2383    const struct radv_shader *es = cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL]
2384                                      ? cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL]
2385                                      : cmd_buffer->state.shaders[MESA_SHADER_VERTEX];
2386    if (gs->info.is_ngg) {
2387       radv_emit_hw_ngg(cmd_buffer, es, gs);
2388    } else {
2389       radv_emit_hw_gs(cmd_buffer, gs);
2390       radv_emit_hw_vs(cmd_buffer, cmd_buffer->state.gs_copy_shader);
2391    }
2392 
2393    radeon_opt_set_context_reg(cmd_buffer, R_028B38_VGT_GS_MAX_VERT_OUT, RADV_TRACKED_VGT_GS_MAX_VERT_OUT,
2394                               gs->info.regs.vgt_gs_max_vert_out);
2395 
2396    if (gs->info.merged_shader_compiled_separately) {
2397       const uint32_t vgt_esgs_ring_itemsize_offset = radv_get_user_sgpr_loc(gs, AC_UD_VGT_ESGS_RING_ITEMSIZE);
2398 
2399       assert(vgt_esgs_ring_itemsize_offset);
2400 
2401       radeon_set_sh_reg(cmd_buffer->cs, vgt_esgs_ring_itemsize_offset, es->info.esgs_itemsize / 4);
2402 
2403       if (gs->info.is_ngg) {
2404          const uint32_t ngg_lds_layout_offset = radv_get_user_sgpr_loc(gs, AC_UD_NGG_LDS_LAYOUT);
2405 
2406          assert(ngg_lds_layout_offset);
2407          assert(!(gs->info.ngg_info.esgs_ring_size & 0xffff0000) && !(gs->info.ngg_info.scratch_lds_base & 0xffff0000));
2408 
2409          radeon_set_sh_reg(cmd_buffer->cs, ngg_lds_layout_offset,
2410                            SET_SGPR_FIELD(NGG_LDS_LAYOUT_GS_OUT_VERTEX_BASE, gs->info.ngg_info.esgs_ring_size) |
2411                               SET_SGPR_FIELD(NGG_LDS_LAYOUT_SCRATCH_BASE, gs->info.ngg_info.scratch_lds_base));
2412       }
2413    }
2414 }
2415 
2416 static void
radv_emit_vgt_gs_out(struct radv_cmd_buffer * cmd_buffer,uint32_t vgt_gs_out_prim_type)2417 radv_emit_vgt_gs_out(struct radv_cmd_buffer *cmd_buffer, uint32_t vgt_gs_out_prim_type)
2418 {
2419    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2420    const struct radv_physical_device *pdev = radv_device_physical(device);
2421 
2422    if (pdev->info.gfx_level >= GFX11) {
2423       radeon_set_uconfig_reg(cmd_buffer->cs, R_030998_VGT_GS_OUT_PRIM_TYPE, vgt_gs_out_prim_type);
2424    } else {
2425       radeon_opt_set_context_reg(cmd_buffer, R_028A6C_VGT_GS_OUT_PRIM_TYPE, RADV_TRACKED_VGT_GS_OUT_PRIM_TYPE,
2426                                  vgt_gs_out_prim_type);
2427    }
2428 }
2429 
2430 static void
radv_emit_mesh_shader(struct radv_cmd_buffer * cmd_buffer)2431 radv_emit_mesh_shader(struct radv_cmd_buffer *cmd_buffer)
2432 {
2433    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2434    const struct radv_physical_device *pdev = radv_device_physical(device);
2435    const struct radv_shader *ms = cmd_buffer->state.shaders[MESA_SHADER_MESH];
2436    const uint32_t gs_out = radv_conv_gl_prim_to_gs_out(ms->info.ms.output_prim);
2437 
2438    radv_emit_hw_ngg(cmd_buffer, NULL, ms);
2439    radeon_opt_set_context_reg(cmd_buffer, R_028B38_VGT_GS_MAX_VERT_OUT, RADV_TRACKED_VGT_GS_MAX_VERT_OUT,
2440                               ms->info.regs.vgt_gs_max_vert_out);
2441    radeon_set_uconfig_reg_idx(&pdev->info, cmd_buffer->cs, R_030908_VGT_PRIMITIVE_TYPE, 1, V_008958_DI_PT_POINTLIST);
2442 
2443    if (pdev->mesh_fast_launch_2) {
2444       radeon_set_sh_reg_seq(cmd_buffer->cs, R_00B2B0_SPI_SHADER_GS_MESHLET_DIM, 2);
2445       radeon_emit(cmd_buffer->cs, ms->info.regs.ms.spi_shader_gs_meshlet_dim);
2446       radeon_emit(cmd_buffer->cs, ms->info.regs.ms.spi_shader_gs_meshlet_exp_alloc);
2447    }
2448 
2449    radv_emit_vgt_gs_out(cmd_buffer, gs_out);
2450 }
2451 
2452 enum radv_ps_in_type {
2453    radv_ps_in_interpolated,
2454    radv_ps_in_flat,
2455    radv_ps_in_explicit,
2456    radv_ps_in_explicit_strict,
2457    radv_ps_in_interpolated_fp16,
2458    radv_ps_in_interpolated_fp16_hi,
2459    radv_ps_in_per_prim_gfx103,
2460    radv_ps_in_per_prim_gfx11,
2461 };
2462 
2463 static uint32_t
offset_to_ps_input(const uint32_t offset,const enum radv_ps_in_type type)2464 offset_to_ps_input(const uint32_t offset, const enum radv_ps_in_type type)
2465 {
2466    if (offset == AC_EXP_PARAM_UNDEFINED) {
2467       /* The input is UNDEFINED, use zero. */
2468       return S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(0);
2469    } else if (offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 && offset <= AC_EXP_PARAM_DEFAULT_VAL_1111) {
2470       /* The input is a DEFAULT_VAL constant. */
2471       return S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(offset - AC_EXP_PARAM_DEFAULT_VAL_0000);
2472    }
2473 
2474    assert(offset <= AC_EXP_PARAM_OFFSET_31);
2475    uint32_t ps_input_cntl = S_028644_OFFSET(offset);
2476 
2477    switch (type) {
2478    case radv_ps_in_explicit_strict:
2479       /* Rotate parameter cache contents to strict vertex order. */
2480       ps_input_cntl |= S_028644_ROTATE_PC_PTR(1);
2481       FALLTHROUGH;
2482    case radv_ps_in_explicit:
2483       /* Force parameter cache to be read in passthrough mode. */
2484       ps_input_cntl |= S_028644_OFFSET(1 << 5);
2485       FALLTHROUGH;
2486    case radv_ps_in_flat:
2487       ps_input_cntl |= S_028644_FLAT_SHADE(1);
2488       break;
2489    case radv_ps_in_interpolated_fp16_hi:
2490       ps_input_cntl |= S_028644_ATTR1_VALID(1);
2491       FALLTHROUGH;
2492    case radv_ps_in_interpolated_fp16:
2493       /* These must be set even if only the high 16 bits are used. */
2494       ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) | S_028644_ATTR0_VALID(1);
2495       break;
2496    case radv_ps_in_per_prim_gfx11:
2497       ps_input_cntl |= S_028644_PRIM_ATTR(1);
2498       break;
2499    case radv_ps_in_interpolated:
2500    case radv_ps_in_per_prim_gfx103:
2501       break;
2502    }
2503 
2504    return ps_input_cntl;
2505 }
2506 
2507 static void
input_mask_to_ps_inputs(const struct radv_vs_output_info * outinfo,const struct radv_shader * ps,uint32_t input_mask,uint32_t * ps_input_cntl,unsigned * ps_offset,const enum radv_ps_in_type default_type)2508 input_mask_to_ps_inputs(const struct radv_vs_output_info *outinfo, const struct radv_shader *ps, uint32_t input_mask,
2509                         uint32_t *ps_input_cntl, unsigned *ps_offset, const enum radv_ps_in_type default_type)
2510 {
2511    u_foreach_bit (i, input_mask) {
2512       const unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i];
2513       enum radv_ps_in_type type = default_type;
2514 
2515       if (ps->info.ps.explicit_shaded_mask & BITFIELD_BIT(*ps_offset))
2516          type = radv_ps_in_explicit;
2517       else if (ps->info.ps.explicit_strict_shaded_mask & BITFIELD_BIT(*ps_offset))
2518          type = radv_ps_in_explicit_strict;
2519       else if (ps->info.ps.float16_hi_shaded_mask & BITFIELD_BIT(*ps_offset))
2520          type = radv_ps_in_interpolated_fp16_hi;
2521       else if (ps->info.ps.float16_shaded_mask & BITFIELD_BIT(*ps_offset))
2522          type = radv_ps_in_interpolated_fp16;
2523       else if (ps->info.ps.float32_shaded_mask & BITFIELD_BIT(*ps_offset))
2524          type = radv_ps_in_interpolated;
2525 
2526       ps_input_cntl[*ps_offset] = offset_to_ps_input(vs_offset, type);
2527       ++(*ps_offset);
2528    }
2529 }
2530 
2531 static void
radv_emit_ps_inputs(struct radv_cmd_buffer * cmd_buffer)2532 radv_emit_ps_inputs(struct radv_cmd_buffer *cmd_buffer)
2533 {
2534    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2535    const struct radv_physical_device *pdev = radv_device_physical(device);
2536    const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
2537    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
2538    const struct radv_vs_output_info *outinfo = &last_vgt_shader->info.outinfo;
2539    const bool gfx11plus = pdev->info.gfx_level >= GFX11;
2540    const enum radv_ps_in_type per_prim = gfx11plus ? radv_ps_in_per_prim_gfx11 : radv_ps_in_per_prim_gfx103;
2541 
2542    unsigned num_per_primitive_params = 0;
2543    uint32_t ps_input_cntl[32];
2544    unsigned ps_offset = 0;
2545 
2546    if (ps->info.ps.has_pcoord)
2547       ps_input_cntl[ps_offset++] = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20);
2548 
2549    if (ps->info.ps.input_clips_culls_mask & 0x0f)
2550       ps_input_cntl[ps_offset++] =
2551          offset_to_ps_input(outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST0], radv_ps_in_interpolated);
2552 
2553    if (ps->info.ps.input_clips_culls_mask & 0xf0)
2554       ps_input_cntl[ps_offset++] =
2555          offset_to_ps_input(outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST1], radv_ps_in_interpolated);
2556 
2557    input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_mask, ps_input_cntl, &ps_offset, radv_ps_in_flat);
2558 
2559    /* Potentially per-primitive PS inputs */
2560    if (ps->info.ps.viewport_index_input) {
2561       num_per_primitive_params += !!outinfo->writes_viewport_index_per_primitive;
2562       const enum radv_ps_in_type t = outinfo->writes_viewport_index_per_primitive ? per_prim : radv_ps_in_flat;
2563       ps_input_cntl[ps_offset++] = offset_to_ps_input(outinfo->vs_output_param_offset[VARYING_SLOT_VIEWPORT], t);
2564    }
2565    if (ps->info.ps.prim_id_input) {
2566       num_per_primitive_params += !!outinfo->export_prim_id_per_primitive;
2567       const enum radv_ps_in_type t = outinfo->export_prim_id_per_primitive ? per_prim : radv_ps_in_flat;
2568       ps_input_cntl[ps_offset++] = offset_to_ps_input(outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID], t);
2569    }
2570 
2571    /* Per-primitive PS inputs: the HW needs these to be last. */
2572    num_per_primitive_params += util_bitcount(ps->info.ps.input_per_primitive_mask);
2573    input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_per_primitive_mask, ps_input_cntl, &ps_offset, per_prim);
2574 
2575    /* Only GFX10.3+ support per-primitive params */
2576    assert(pdev->info.gfx_level >= GFX10_3 || num_per_primitive_params == 0);
2577 
2578    if (pdev->info.gfx_level >= GFX12) {
2579       radeon_opt_set_context_regn(cmd_buffer, R_028664_SPI_PS_INPUT_CNTL_0, ps_input_cntl,
2580                                   cmd_buffer->tracked_regs.spi_ps_input_cntl, ps_offset);
2581    } else {
2582       if (pdev->info.gfx_level == GFX10_3) {
2583          /* NUM_INTERP / NUM_PRIM_INTERP separately contain
2584           * the number of per-vertex and per-primitive PS input attributes.
2585           * These are only exactly known here so couldn't be precomputed.
2586           */
2587          const unsigned num_per_vertex_params = ps->info.ps.num_inputs - num_per_primitive_params;
2588          radeon_opt_set_context_reg(cmd_buffer, R_0286D8_SPI_PS_IN_CONTROL, RADV_TRACKED_SPI_PS_IN_CONTROL,
2589                                     ps->info.regs.ps.spi_ps_in_control | S_0286D8_NUM_INTERP(num_per_vertex_params) |
2590                                        S_0286D8_NUM_PRIM_INTERP(num_per_primitive_params));
2591       }
2592 
2593       radeon_opt_set_context_regn(cmd_buffer, R_028644_SPI_PS_INPUT_CNTL_0, ps_input_cntl,
2594                                   cmd_buffer->tracked_regs.spi_ps_input_cntl, ps_offset);
2595    }
2596 }
2597 
2598 static void
radv_emit_fragment_shader(struct radv_cmd_buffer * cmd_buffer)2599 radv_emit_fragment_shader(struct radv_cmd_buffer *cmd_buffer)
2600 {
2601    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2602    const struct radv_physical_device *pdev = radv_device_physical(device);
2603    const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
2604    const uint64_t va = radv_shader_get_va(ps);
2605 
2606    radeon_set_sh_reg_seq(cmd_buffer->cs, ps->info.regs.pgm_lo, 4);
2607    radeon_emit(cmd_buffer->cs, va >> 8);
2608    radeon_emit(cmd_buffer->cs, S_00B024_MEM_BASE(va >> 40));
2609    radeon_emit(cmd_buffer->cs, ps->config.rsrc1);
2610    radeon_emit(cmd_buffer->cs, ps->config.rsrc2);
2611 
2612    if (pdev->info.gfx_level >= GFX12) {
2613       radeon_opt_set_context_reg2(cmd_buffer, R_02865C_SPI_PS_INPUT_ENA, RADV_TRACKED_SPI_PS_INPUT_ENA,
2614                                   ps->config.spi_ps_input_ena, ps->config.spi_ps_input_addr);
2615 
2616       radeon_opt_set_context_reg(cmd_buffer, R_028640_SPI_PS_IN_CONTROL, RADV_TRACKED_SPI_PS_IN_CONTROL,
2617                                  ps->info.regs.ps.spi_ps_in_control);
2618 
2619       radeon_set_context_reg(cmd_buffer->cs, R_028BBC_PA_SC_HISZ_CONTROL, ps->info.regs.ps.pa_sc_hisz_control);
2620    } else {
2621       radeon_opt_set_context_reg2(cmd_buffer, R_0286CC_SPI_PS_INPUT_ENA, RADV_TRACKED_SPI_PS_INPUT_ENA,
2622                                   ps->config.spi_ps_input_ena, ps->config.spi_ps_input_addr);
2623 
2624       if (pdev->info.gfx_level != GFX10_3) {
2625          radeon_opt_set_context_reg(cmd_buffer, R_0286D8_SPI_PS_IN_CONTROL, RADV_TRACKED_SPI_PS_IN_CONTROL,
2626                                     ps->info.regs.ps.spi_ps_in_control);
2627       }
2628 
2629       if (pdev->info.gfx_level >= GFX9 && pdev->info.gfx_level < GFX11)
2630          radeon_opt_set_context_reg(cmd_buffer, R_028C40_PA_SC_SHADER_CONTROL, RADV_TRACKED_PA_SC_SHADER_CONTROL,
2631                                     ps->info.regs.ps.pa_sc_shader_control);
2632    }
2633 }
2634 
2635 static void
radv_emit_vgt_reuse(struct radv_cmd_buffer * cmd_buffer,const struct radv_vgt_shader_key * key)2636 radv_emit_vgt_reuse(struct radv_cmd_buffer *cmd_buffer, const struct radv_vgt_shader_key *key)
2637 {
2638    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2639    const struct radv_physical_device *pdev = radv_device_physical(device);
2640    const struct radv_shader *tes = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_TESS_EVAL);
2641 
2642    if (pdev->info.gfx_level == GFX10_3) {
2643       /* Legacy Tess+GS should disable reuse to prevent hangs on GFX10.3. */
2644       const bool has_legacy_tess_gs = key->tess && key->gs && !key->ngg;
2645 
2646       radeon_opt_set_context_reg(cmd_buffer, R_028AB4_VGT_REUSE_OFF, RADV_TRACKED_VGT_REUSE_OFF,
2647                                  S_028AB4_REUSE_OFF(has_legacy_tess_gs));
2648    }
2649 
2650    if (pdev->info.family >= CHIP_POLARIS10 && pdev->info.gfx_level < GFX10) {
2651       unsigned vtx_reuse_depth = 30;
2652       if (tes && tes->info.tes.spacing == TESS_SPACING_FRACTIONAL_ODD) {
2653          vtx_reuse_depth = 14;
2654       }
2655       radeon_opt_set_context_reg(cmd_buffer, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
2656                                  RADV_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL, S_028C58_VTX_REUSE_DEPTH(vtx_reuse_depth));
2657    }
2658 }
2659 
2660 static void
radv_emit_vgt_shader_config_gfx12(struct radv_cmd_buffer * cmd_buffer,const struct radv_vgt_shader_key * key)2661 radv_emit_vgt_shader_config_gfx12(struct radv_cmd_buffer *cmd_buffer, const struct radv_vgt_shader_key *key)
2662 {
2663    const bool ngg_wave_id_en = key->ngg_streamout || (key->mesh && key->mesh_scratch_ring);
2664    uint32_t stages = 0;
2665 
2666    stages |= S_028A98_GS_EN(key->gs) | S_028A98_GS_FAST_LAUNCH(key->mesh) | S_028A98_GS_W32_EN(key->gs_wave32) |
2667              S_028A98_NGG_WAVE_ID_EN(ngg_wave_id_en) | S_028A98_PRIMGEN_PASSTHRU_NO_MSG(key->ngg_passthrough);
2668 
2669    if (key->tess)
2670       stages |= S_028A98_HS_EN(1) | S_028A98_HS_W32_EN(key->hs_wave32);
2671 
2672    radeon_opt_set_context_reg(cmd_buffer, R_028A98_VGT_SHADER_STAGES_EN, RADV_TRACKED_VGT_SHADER_STAGES_EN, stages);
2673 }
2674 
2675 static void
radv_emit_vgt_shader_config_gfx6(struct radv_cmd_buffer * cmd_buffer,const struct radv_vgt_shader_key * key)2676 radv_emit_vgt_shader_config_gfx6(struct radv_cmd_buffer *cmd_buffer, const struct radv_vgt_shader_key *key)
2677 {
2678    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2679    const struct radv_physical_device *pdev = radv_device_physical(device);
2680    uint32_t stages = 0;
2681 
2682    if (key->tess) {
2683       stages |=
2684          S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(pdev->info.gfx_level != GFX9);
2685 
2686       if (key->gs)
2687          stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1);
2688       else if (key->ngg)
2689          stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS);
2690       else
2691          stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
2692    } else if (key->gs) {
2693       stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1);
2694    } else if (key->mesh) {
2695       assert(!key->ngg_passthrough);
2696       unsigned gs_fast_launch = pdev->mesh_fast_launch_2 ? 2 : 1;
2697       stages |=
2698          S_028B54_GS_EN(1) | S_028B54_GS_FAST_LAUNCH(gs_fast_launch) | S_028B54_NGG_WAVE_ID_EN(key->mesh_scratch_ring);
2699    } else if (key->ngg) {
2700       stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL);
2701    }
2702 
2703    if (key->ngg) {
2704       stages |= S_028B54_PRIMGEN_EN(1) | S_028B54_NGG_WAVE_ID_EN(key->ngg_streamout) |
2705                 S_028B54_PRIMGEN_PASSTHRU_EN(key->ngg_passthrough) |
2706                 S_028B54_PRIMGEN_PASSTHRU_NO_MSG(key->ngg_passthrough && pdev->info.family >= CHIP_NAVI23);
2707    } else if (key->gs) {
2708       stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
2709    }
2710 
2711    if (pdev->info.gfx_level >= GFX9)
2712       stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
2713 
2714    if (pdev->info.gfx_level >= GFX10) {
2715       stages |= S_028B54_HS_W32_EN(key->hs_wave32) | S_028B54_GS_W32_EN(key->gs_wave32) |
2716                 S_028B54_VS_W32_EN(pdev->info.gfx_level < GFX11 && key->vs_wave32);
2717       /* Legacy GS only supports Wave64. Read it as an implication. */
2718       assert(!(key->gs && !key->ngg) || !key->gs_wave32);
2719    }
2720 
2721    radeon_opt_set_context_reg(cmd_buffer, R_028B54_VGT_SHADER_STAGES_EN, RADV_TRACKED_VGT_SHADER_STAGES_EN, stages);
2722 }
2723 
2724 static void
radv_emit_vgt_shader_config(struct radv_cmd_buffer * cmd_buffer,const struct radv_vgt_shader_key * key)2725 radv_emit_vgt_shader_config(struct radv_cmd_buffer *cmd_buffer, const struct radv_vgt_shader_key *key)
2726 {
2727    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2728    const struct radv_physical_device *pdev = radv_device_physical(device);
2729 
2730    if (pdev->info.gfx_level >= GFX12) {
2731       radv_emit_vgt_shader_config_gfx12(cmd_buffer, key);
2732    } else {
2733       radv_emit_vgt_shader_config_gfx6(cmd_buffer, key);
2734    }
2735 }
2736 
2737 static void
gfx103_emit_vgt_draw_payload_cntl(struct radv_cmd_buffer * cmd_buffer)2738 gfx103_emit_vgt_draw_payload_cntl(struct radv_cmd_buffer *cmd_buffer)
2739 {
2740    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2741    const struct radv_physical_device *pdev = radv_device_physical(device);
2742    const struct radv_shader *mesh_shader = cmd_buffer->state.shaders[MESA_SHADER_MESH];
2743    const bool enable_vrs = cmd_buffer->state.uses_vrs;
2744    bool enable_prim_payload = false;
2745 
2746    /* Enables the second channel of the primitive export instruction.
2747     * This channel contains: VRS rate x, y, viewport and layer.
2748     */
2749    if (mesh_shader) {
2750       const struct radv_vs_output_info *outinfo = &mesh_shader->info.outinfo;
2751 
2752       enable_prim_payload = (outinfo->writes_viewport_index_per_primitive || outinfo->writes_layer_per_primitive ||
2753                              outinfo->writes_primitive_shading_rate_per_primitive);
2754    }
2755 
2756    const uint32_t vgt_draw_payload_cntl =
2757       S_028A98_EN_VRS_RATE(enable_vrs) | S_028A98_EN_PRIM_PAYLOAD(enable_prim_payload);
2758 
2759    if (pdev->info.gfx_level >= GFX12) {
2760       radeon_opt_set_context_reg(cmd_buffer, R_028AA0_VGT_DRAW_PAYLOAD_CNTL, RADV_TRACKED_VGT_DRAW_PAYLOAD_CNTL,
2761                                  vgt_draw_payload_cntl);
2762    } else {
2763       radeon_opt_set_context_reg(cmd_buffer, R_028A98_VGT_DRAW_PAYLOAD_CNTL, RADV_TRACKED_VGT_DRAW_PAYLOAD_CNTL,
2764                                  vgt_draw_payload_cntl);
2765    }
2766 }
2767 
2768 static void
gfx103_emit_vrs_state(struct radv_cmd_buffer * cmd_buffer)2769 gfx103_emit_vrs_state(struct radv_cmd_buffer *cmd_buffer)
2770 {
2771    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2772    const struct radv_physical_device *pdev = radv_device_physical(device);
2773    const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
2774    const bool force_vrs_per_vertex = cmd_buffer->state.last_vgt_shader->info.force_vrs_per_vertex;
2775    const bool enable_vrs_coarse_shading = cmd_buffer->state.uses_vrs_coarse_shading;
2776    uint32_t mode = V_028064_SC_VRS_COMB_MODE_PASSTHRU;
2777    uint8_t rate_x = 0, rate_y = 0;
2778 
2779    if (enable_vrs_coarse_shading) {
2780       /* When per-draw VRS is not enabled at all, try enabling VRS coarse shading 2x2 if the driver
2781        * determined that it's safe to enable.
2782        */
2783       mode = V_028064_SC_VRS_COMB_MODE_OVERRIDE;
2784       rate_x = rate_y = 1;
2785    } else if (force_vrs_per_vertex) {
2786       /* Otherwise, if per-draw VRS is not enabled statically, try forcing per-vertex VRS if
2787        * requested by the user. Note that vkd3d-proton always has to declare VRS as dynamic because
2788        * in DX12 it's fully dynamic.
2789        */
2790       radeon_opt_set_context_reg(cmd_buffer, R_028848_PA_CL_VRS_CNTL, RADV_TRACKED_PA_CL_VRS_CNTL,
2791                                  S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_OVERRIDE) |
2792                                     S_028848_VERTEX_RATE_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_OVERRIDE));
2793 
2794       /* If the shader is using discard, turn off coarse shading because discard at 2x2 pixel
2795        * granularity degrades quality too much. MIN allows sample shading but not coarse shading.
2796        */
2797       mode = ps->info.ps.can_discard ? V_028064_SC_VRS_COMB_MODE_MIN : V_028064_SC_VRS_COMB_MODE_PASSTHRU;
2798    }
2799 
2800    if (pdev->info.gfx_level < GFX11) {
2801       radeon_opt_set_context_reg(cmd_buffer, R_028064_DB_VRS_OVERRIDE_CNTL, RADV_TRACKED_DB_VRS_OVERRIDE_CNTL,
2802                                  S_028064_VRS_OVERRIDE_RATE_COMBINER_MODE(mode) | S_028064_VRS_OVERRIDE_RATE_X(rate_x) |
2803                                     S_028064_VRS_OVERRIDE_RATE_Y(rate_y));
2804    }
2805 }
2806 
2807 static void
radv_emit_graphics_shaders(struct radv_cmd_buffer * cmd_buffer)2808 radv_emit_graphics_shaders(struct radv_cmd_buffer *cmd_buffer)
2809 {
2810    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2811    const struct radv_physical_device *pdev = radv_device_physical(device);
2812 
2813    radv_foreach_stage(s, cmd_buffer->state.active_stages & RADV_GRAPHICS_STAGE_BITS)
2814    {
2815       switch (s) {
2816       case MESA_SHADER_VERTEX:
2817          radv_emit_vertex_shader(cmd_buffer);
2818          break;
2819       case MESA_SHADER_TESS_CTRL:
2820          radv_emit_tess_ctrl_shader(cmd_buffer);
2821          break;
2822       case MESA_SHADER_TESS_EVAL:
2823          radv_emit_tess_eval_shader(cmd_buffer);
2824          break;
2825       case MESA_SHADER_GEOMETRY:
2826          radv_emit_geometry_shader(cmd_buffer);
2827          break;
2828       case MESA_SHADER_FRAGMENT:
2829          radv_emit_fragment_shader(cmd_buffer);
2830          radv_emit_ps_inputs(cmd_buffer);
2831          break;
2832       case MESA_SHADER_MESH:
2833          radv_emit_mesh_shader(cmd_buffer);
2834          break;
2835       case MESA_SHADER_TASK:
2836          radv_emit_compute_shader(pdev, cmd_buffer->gang.cs, cmd_buffer->state.shaders[MESA_SHADER_TASK]);
2837          break;
2838       default:
2839          unreachable("invalid bind stage");
2840       }
2841    }
2842 
2843    if (pdev->info.gfx_level >= GFX12) {
2844       const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
2845       const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
2846       const uint32_t gs_out_config_ps =
2847          last_vgt_shader->info.regs.spi_vs_out_config | (ps ? ps->info.regs.ps.spi_gs_out_config_ps : 0);
2848 
2849       radeon_set_sh_reg(cmd_buffer->cs, R_00B0C4_SPI_SHADER_GS_OUT_CONFIG_PS, gs_out_config_ps);
2850    }
2851 
2852    const struct radv_vgt_shader_key vgt_shader_cfg_key =
2853       radv_get_vgt_shader_key(device, cmd_buffer->state.shaders, cmd_buffer->state.gs_copy_shader);
2854 
2855    radv_emit_vgt_gs_mode(cmd_buffer);
2856    radv_emit_vgt_reuse(cmd_buffer, &vgt_shader_cfg_key);
2857    radv_emit_vgt_shader_config(cmd_buffer, &vgt_shader_cfg_key);
2858 
2859    if (pdev->info.gfx_level >= GFX10_3) {
2860       gfx103_emit_vgt_draw_payload_cntl(cmd_buffer);
2861       gfx103_emit_vrs_state(cmd_buffer);
2862    }
2863 
2864    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_GRAPHICS_SHADERS;
2865 }
2866 
2867 static void
radv_emit_graphics_pipeline(struct radv_cmd_buffer * cmd_buffer)2868 radv_emit_graphics_pipeline(struct radv_cmd_buffer *cmd_buffer)
2869 {
2870    struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
2871    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2872    const struct radv_physical_device *pdev = radv_device_physical(device);
2873 
2874    if (cmd_buffer->state.emitted_graphics_pipeline == pipeline)
2875       return;
2876 
2877    if (cmd_buffer->state.emitted_graphics_pipeline) {
2878       if (radv_rast_prim_is_points_or_lines(cmd_buffer->state.emitted_graphics_pipeline->rast_prim) !=
2879           radv_rast_prim_is_points_or_lines(pipeline->rast_prim))
2880          cmd_buffer->state.dirty |= RADV_CMD_DIRTY_GUARDBAND;
2881 
2882       if (cmd_buffer->state.emitted_graphics_pipeline->rast_prim != pipeline->rast_prim)
2883          cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_RASTERIZATION_SAMPLES;
2884 
2885       if (cmd_buffer->state.emitted_graphics_pipeline->ms.min_sample_shading != pipeline->ms.min_sample_shading ||
2886           cmd_buffer->state.emitted_graphics_pipeline->uses_out_of_order_rast != pipeline->uses_out_of_order_rast ||
2887           cmd_buffer->state.emitted_graphics_pipeline->uses_vrs_attachment != pipeline->uses_vrs_attachment)
2888          cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES;
2889 
2890       if (cmd_buffer->state.emitted_graphics_pipeline->ms.sample_shading_enable != pipeline->ms.sample_shading_enable) {
2891          cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES;
2892          if (pdev->info.gfx_level >= GFX10_3)
2893             cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
2894       }
2895 
2896       if (cmd_buffer->state.emitted_graphics_pipeline->db_render_control != pipeline->db_render_control)
2897          cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER;
2898    }
2899 
2900    radv_emit_graphics_shaders(cmd_buffer);
2901 
2902    if (device->pbb_allowed) {
2903       const struct radv_binning_settings *settings = &pdev->binning_settings;
2904 
2905       if ((!cmd_buffer->state.emitted_graphics_pipeline ||
2906            cmd_buffer->state.emitted_graphics_pipeline->base.shaders[MESA_SHADER_FRAGMENT] !=
2907               cmd_buffer->state.graphics_pipeline->base.shaders[MESA_SHADER_FRAGMENT]) &&
2908           (settings->context_states_per_bin > 1 || settings->persistent_states_per_bin > 1)) {
2909          /* Break the batch on PS changes. */
2910          radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
2911          radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0));
2912       }
2913    }
2914 
2915    if (pipeline->sqtt_shaders_reloc) {
2916       /* Emit shaders relocation because RGP requires them to be contiguous in memory. */
2917       radv_sqtt_emit_relocated_shaders(cmd_buffer, pipeline);
2918 
2919       struct radv_shader *task_shader = cmd_buffer->state.shaders[MESA_SHADER_TASK];
2920       if (task_shader) {
2921          const struct radv_sqtt_shaders_reloc *reloc = pipeline->sqtt_shaders_reloc;
2922          const uint64_t va = reloc->va[MESA_SHADER_TASK];
2923 
2924          radeon_set_sh_reg(cmd_buffer->gang.cs, task_shader->info.regs.pgm_lo, va >> 8);
2925       }
2926    }
2927 
2928    if (radv_device_fault_detection_enabled(device))
2929       radv_save_pipeline(cmd_buffer, &pipeline->base);
2930 
2931    cmd_buffer->state.emitted_graphics_pipeline = pipeline;
2932 
2933    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_PIPELINE;
2934 }
2935 
2936 static bool
radv_get_depth_clip_enable(struct radv_cmd_buffer * cmd_buffer)2937 radv_get_depth_clip_enable(struct radv_cmd_buffer *cmd_buffer)
2938 {
2939    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
2940 
2941    return d->vk.rs.depth_clip_enable == VK_MESA_DEPTH_CLIP_ENABLE_TRUE ||
2942           (d->vk.rs.depth_clip_enable == VK_MESA_DEPTH_CLIP_ENABLE_NOT_CLAMP && !d->vk.rs.depth_clamp_enable);
2943 }
2944 
2945 enum radv_depth_clamp_mode {
2946    RADV_DEPTH_CLAMP_MODE_VIEWPORT = 0,     /* Clamp to the viewport min/max depth bounds */
2947    RADV_DEPTH_CLAMP_MODE_USER_DEFINED = 1, /* Range set using VK_EXT_depth_clamp_control */
2948    RADV_DEPTH_CLAMP_MODE_ZERO_TO_ONE = 2,  /* Clamp between 0.0f and 1.0f */
2949    RADV_DEPTH_CLAMP_MODE_DISABLED = 3,     /* Disable depth clamping */
2950 };
2951 
2952 static enum radv_depth_clamp_mode
radv_get_depth_clamp_mode(struct radv_cmd_buffer * cmd_buffer)2953 radv_get_depth_clamp_mode(struct radv_cmd_buffer *cmd_buffer)
2954 {
2955    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
2956    bool depth_clip_enable = radv_get_depth_clip_enable(cmd_buffer);
2957    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2958    enum radv_depth_clamp_mode mode;
2959 
2960    mode = d->vk.vp.depth_clamp_mode;
2961    if (!d->vk.rs.depth_clamp_enable) {
2962       /* For optimal performance, depth clamping should always be enabled except if the application
2963        * disables clamping explicitly or uses depth values outside of the [0.0, 1.0] range.
2964        */
2965       if (!depth_clip_enable || device->vk.enabled_extensions.EXT_depth_range_unrestricted) {
2966          mode = RADV_DEPTH_CLAMP_MODE_DISABLED;
2967       } else {
2968          mode = RADV_DEPTH_CLAMP_MODE_ZERO_TO_ONE;
2969       }
2970    }
2971 
2972    return mode;
2973 }
2974 
2975 static void
radv_get_viewport_zscale_ztranslate(struct radv_cmd_buffer * cmd_buffer,uint32_t vp_idx,float * zscale,float * ztranslate)2976 radv_get_viewport_zscale_ztranslate(struct radv_cmd_buffer *cmd_buffer, uint32_t vp_idx, float *zscale,
2977                                     float *ztranslate)
2978 {
2979    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
2980 
2981    if (d->vk.vp.depth_clip_negative_one_to_one) {
2982       *zscale = d->hw_vp.xform[vp_idx].scale[2] * 0.5f;
2983       *ztranslate = (d->hw_vp.xform[vp_idx].translate[2] + d->vk.vp.viewports[vp_idx].maxDepth) * 0.5f;
2984    } else {
2985       *zscale = d->hw_vp.xform[vp_idx].scale[2];
2986       *ztranslate = d->hw_vp.xform[vp_idx].translate[2];
2987    }
2988 }
2989 
2990 static void
radv_get_viewport_zmin_zmax(struct radv_cmd_buffer * cmd_buffer,const VkViewport * viewport,float * zmin,float * zmax)2991 radv_get_viewport_zmin_zmax(struct radv_cmd_buffer *cmd_buffer, const VkViewport *viewport, float *zmin, float *zmax)
2992 {
2993    const enum radv_depth_clamp_mode depth_clamp_mode = radv_get_depth_clamp_mode(cmd_buffer);
2994 
2995    if (depth_clamp_mode == RADV_DEPTH_CLAMP_MODE_ZERO_TO_ONE) {
2996       *zmin = 0.0f;
2997       *zmax = 1.0f;
2998    } else if (depth_clamp_mode == RADV_DEPTH_CLAMP_MODE_USER_DEFINED) {
2999       const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3000       *zmin = d->vk.vp.depth_clamp_range.minDepthClamp;
3001       *zmax = d->vk.vp.depth_clamp_range.maxDepthClamp;
3002    } else {
3003       *zmin = MIN2(viewport->minDepth, viewport->maxDepth);
3004       *zmax = MAX2(viewport->minDepth, viewport->maxDepth);
3005    }
3006 }
3007 
3008 static void
radv_emit_viewport(struct radv_cmd_buffer * cmd_buffer)3009 radv_emit_viewport(struct radv_cmd_buffer *cmd_buffer)
3010 {
3011    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3012    const struct radv_physical_device *pdev = radv_device_physical(device);
3013    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3014 
3015    assert(d->vk.vp.viewport_count);
3016 
3017    if (pdev->info.gfx_level >= GFX12) {
3018       radeon_set_context_reg_seq(cmd_buffer->cs, R_02843C_PA_CL_VPORT_XSCALE, d->vk.vp.viewport_count * 8);
3019 
3020       for (unsigned i = 0; i < d->vk.vp.viewport_count; i++) {
3021          float zscale, ztranslate, zmin, zmax;
3022 
3023          radv_get_viewport_zscale_ztranslate(cmd_buffer, i, &zscale, &ztranslate);
3024          radv_get_viewport_zmin_zmax(cmd_buffer, &d->vk.vp.viewports[i], &zmin, &zmax);
3025 
3026          radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].scale[0]));
3027          radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].translate[0]));
3028          radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].scale[1]));
3029          radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].translate[1]));
3030          radeon_emit(cmd_buffer->cs, fui(zscale));
3031          radeon_emit(cmd_buffer->cs, fui(ztranslate));
3032          radeon_emit(cmd_buffer->cs, fui(zmin));
3033          radeon_emit(cmd_buffer->cs, fui(zmax));
3034       }
3035    } else {
3036       radeon_set_context_reg_seq(cmd_buffer->cs, R_02843C_PA_CL_VPORT_XSCALE, d->vk.vp.viewport_count * 6);
3037 
3038       for (unsigned i = 0; i < d->vk.vp.viewport_count; i++) {
3039          float zscale, ztranslate;
3040 
3041          radv_get_viewport_zscale_ztranslate(cmd_buffer, i, &zscale, &ztranslate);
3042 
3043          radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].scale[0]));
3044          radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].translate[0]));
3045          radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].scale[1]));
3046          radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].translate[1]));
3047          radeon_emit(cmd_buffer->cs, fui(zscale));
3048          radeon_emit(cmd_buffer->cs, fui(ztranslate));
3049       }
3050 
3051       radeon_set_context_reg_seq(cmd_buffer->cs, R_0282D0_PA_SC_VPORT_ZMIN_0, d->vk.vp.viewport_count * 2);
3052       for (unsigned i = 0; i < d->vk.vp.viewport_count; i++) {
3053          float zmin, zmax;
3054 
3055          radv_get_viewport_zmin_zmax(cmd_buffer, &d->vk.vp.viewports[i], &zmin, &zmax);
3056 
3057          radeon_emit(cmd_buffer->cs, fui(zmin));
3058          radeon_emit(cmd_buffer->cs, fui(zmax));
3059       }
3060    }
3061 }
3062 
3063 static VkRect2D
radv_scissor_from_viewport(const float scale[3],const float translate[3])3064 radv_scissor_from_viewport(const float scale[3], const float translate[3])
3065 {
3066    VkRect2D rect;
3067 
3068    rect.offset.x = translate[0] - fabsf(scale[0]);
3069    rect.offset.y = translate[1] - fabsf(scale[1]);
3070    rect.extent.width = ceilf(translate[0] + fabsf(scale[0])) - rect.offset.x;
3071    rect.extent.height = ceilf(translate[1] + fabsf(scale[1])) - rect.offset.y;
3072 
3073    return rect;
3074 }
3075 
3076 static VkRect2D
radv_intersect_scissor(const VkRect2D * a,const VkRect2D * b)3077 radv_intersect_scissor(const VkRect2D *a, const VkRect2D *b)
3078 {
3079    VkRect2D ret;
3080    ret.offset.x = MAX2(a->offset.x, b->offset.x);
3081    ret.offset.y = MAX2(a->offset.y, b->offset.y);
3082    ret.extent.width = MIN2(a->offset.x + a->extent.width, b->offset.x + b->extent.width) - ret.offset.x;
3083    ret.extent.height = MIN2(a->offset.y + a->extent.height, b->offset.y + b->extent.height) - ret.offset.y;
3084    return ret;
3085 }
3086 
3087 static void
radv_emit_scissor(struct radv_cmd_buffer * cmd_buffer)3088 radv_emit_scissor(struct radv_cmd_buffer *cmd_buffer)
3089 {
3090    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3091    const struct radv_physical_device *pdev = radv_device_physical(device);
3092    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3093    struct radeon_cmdbuf *cs = cmd_buffer->cs;
3094 
3095    if (!d->vk.vp.scissor_count)
3096       return;
3097 
3098    radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL, d->vk.vp.scissor_count * 2);
3099    for (unsigned i = 0; i < d->vk.vp.scissor_count; i++) {
3100       VkRect2D viewport_scissor = radv_scissor_from_viewport(d->hw_vp.xform[i].scale, d->hw_vp.xform[i].translate);
3101       VkRect2D scissor = radv_intersect_scissor(&d->vk.vp.scissors[i], &viewport_scissor);
3102 
3103       uint32_t minx = scissor.offset.x;
3104       uint32_t miny = scissor.offset.y;
3105       uint32_t maxx = minx + scissor.extent.width;
3106       uint32_t maxy = miny + scissor.extent.height;
3107 
3108       if (pdev->info.gfx_level >= GFX12) {
3109          /* On GFX12, an empty scissor must be done like this because the bottom-right bounds are inclusive. */
3110          if (maxx == 0 || maxy == 0) {
3111             minx = miny = maxx = maxy = 1;
3112          }
3113 
3114          radeon_emit(cs, S_028250_TL_X(minx) | S_028250_TL_Y_GFX12(miny));
3115          radeon_emit(cs, S_028254_BR_X(maxx - 1) | S_028254_BR_Y(maxy - 1));
3116       } else {
3117          radeon_emit(cs, S_028250_TL_X(minx) | S_028250_TL_Y_GFX6(miny) | S_028250_WINDOW_OFFSET_DISABLE(1));
3118          radeon_emit(cs, S_028254_BR_X(maxx) | S_028254_BR_Y(maxy));
3119       }
3120    }
3121 }
3122 
3123 static void
radv_emit_discard_rectangle(struct radv_cmd_buffer * cmd_buffer)3124 radv_emit_discard_rectangle(struct radv_cmd_buffer *cmd_buffer)
3125 {
3126    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3127    const struct radv_physical_device *pdev = radv_device_physical(device);
3128    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3129    uint32_t cliprect_rule = 0;
3130 
3131    if (!d->vk.dr.enable) {
3132       cliprect_rule = 0xffff;
3133    } else {
3134       for (unsigned i = 0; i < (1u << MAX_DISCARD_RECTANGLES); ++i) {
3135          /* Interpret i as a bitmask, and then set the bit in
3136           * the mask if that combination of rectangles in which
3137           * the pixel is contained should pass the cliprect
3138           * test.
3139           */
3140          unsigned relevant_subset = i & ((1u << d->vk.dr.rectangle_count) - 1);
3141 
3142          if (d->vk.dr.mode == VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT && !relevant_subset)
3143             continue;
3144 
3145          if (d->vk.dr.mode == VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT && relevant_subset)
3146             continue;
3147 
3148          cliprect_rule |= 1u << i;
3149       }
3150 
3151       radeon_set_context_reg_seq(cmd_buffer->cs, R_028210_PA_SC_CLIPRECT_0_TL, d->vk.dr.rectangle_count * 2);
3152       for (unsigned i = 0; i < d->vk.dr.rectangle_count; ++i) {
3153          VkRect2D rect = d->vk.dr.rectangles[i];
3154          radeon_emit(cmd_buffer->cs, S_028210_TL_X(rect.offset.x) | S_028210_TL_Y(rect.offset.y));
3155          radeon_emit(cmd_buffer->cs, S_028214_BR_X(rect.offset.x + rect.extent.width) |
3156                                         S_028214_BR_Y(rect.offset.y + rect.extent.height));
3157       }
3158 
3159       if (pdev->info.gfx_level >= GFX12) {
3160          radeon_set_context_reg_seq(cmd_buffer->cs, R_028374_PA_SC_CLIPRECT_0_EXT, d->vk.dr.rectangle_count);
3161          for (unsigned i = 0; i < d->vk.dr.rectangle_count; ++i) {
3162             VkRect2D rect = d->vk.dr.rectangles[i];
3163             radeon_emit(cmd_buffer->cs, S_028374_TL_X_EXT(rect.offset.x >> 15) |
3164                                            S_028374_TL_Y_EXT(rect.offset.y >> 15) |
3165                                            S_028374_BR_X_EXT((rect.offset.x + rect.extent.width) >> 15) |
3166                                            S_028374_BR_Y_EXT((rect.offset.y + rect.extent.height) >> 15));
3167          }
3168       }
3169    }
3170 
3171    radeon_set_context_reg(cmd_buffer->cs, R_02820C_PA_SC_CLIPRECT_RULE, cliprect_rule);
3172 }
3173 
3174 static void
radv_emit_blend_constants(struct radv_cmd_buffer * cmd_buffer)3175 radv_emit_blend_constants(struct radv_cmd_buffer *cmd_buffer)
3176 {
3177    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3178 
3179    radeon_set_context_reg_seq(cmd_buffer->cs, R_028414_CB_BLEND_RED, 4);
3180    radeon_emit_array(cmd_buffer->cs, (uint32_t *)d->vk.cb.blend_constants, 4);
3181 }
3182 
3183 static void
radv_emit_depth_bias(struct radv_cmd_buffer * cmd_buffer)3184 radv_emit_depth_bias(struct radv_cmd_buffer *cmd_buffer)
3185 {
3186    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3187    struct radv_rendering_state *render = &cmd_buffer->state.render;
3188    unsigned slope = fui(d->vk.rs.depth_bias.slope_factor * 16.0f);
3189    unsigned pa_su_poly_offset_db_fmt_cntl = 0;
3190 
3191    if (vk_format_has_depth(render->ds_att.format) &&
3192        d->vk.rs.depth_bias.representation != VK_DEPTH_BIAS_REPRESENTATION_FLOAT_EXT) {
3193       VkFormat format = vk_format_depth_only(render->ds_att.format);
3194 
3195       if (format == VK_FORMAT_D16_UNORM) {
3196          pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16);
3197       } else {
3198          assert(format == VK_FORMAT_D32_SFLOAT);
3199          if (d->vk.rs.depth_bias.representation ==
3200              VK_DEPTH_BIAS_REPRESENTATION_LEAST_REPRESENTABLE_VALUE_FORCE_UNORM_EXT) {
3201             pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-24);
3202          } else {
3203             pa_su_poly_offset_db_fmt_cntl =
3204                S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-23) | S_028B78_POLY_OFFSET_DB_IS_FLOAT_FMT(1);
3205          }
3206       }
3207    }
3208 
3209    radeon_set_context_reg_seq(cmd_buffer->cs, R_028B7C_PA_SU_POLY_OFFSET_CLAMP, 5);
3210    radeon_emit(cmd_buffer->cs, fui(d->vk.rs.depth_bias.clamp));             /* CLAMP */
3211    radeon_emit(cmd_buffer->cs, slope);                                      /* FRONT SCALE */
3212    radeon_emit(cmd_buffer->cs, fui(d->vk.rs.depth_bias.constant_factor));   /* FRONT OFFSET */
3213    radeon_emit(cmd_buffer->cs, slope);                                      /* BACK SCALE */
3214    radeon_emit(cmd_buffer->cs, fui(d->vk.rs.depth_bias.constant_factor));   /* BACK OFFSET */
3215 
3216    radeon_set_context_reg(cmd_buffer->cs, R_028B78_PA_SU_POLY_OFFSET_DB_FMT_CNTL, pa_su_poly_offset_db_fmt_cntl);
3217 }
3218 
3219 static void
radv_emit_primitive_topology(struct radv_cmd_buffer * cmd_buffer)3220 radv_emit_primitive_topology(struct radv_cmd_buffer *cmd_buffer)
3221 {
3222    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3223    const struct radv_physical_device *pdev = radv_device_physical(device);
3224    const uint32_t vgt_gs_out_prim_type = radv_get_rasterization_prim(cmd_buffer);
3225    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3226 
3227    assert(!cmd_buffer->state.mesh_shading);
3228 
3229    if (pdev->info.gfx_level >= GFX7) {
3230       uint32_t vgt_prim = d->vk.ia.primitive_topology;
3231 
3232       if (pdev->info.gfx_level >= GFX12)
3233          vgt_prim |= S_030908_NUM_INPUT_CP(d->vk.ts.patch_control_points);
3234 
3235       radeon_set_uconfig_reg_idx(&pdev->info, cmd_buffer->cs, R_030908_VGT_PRIMITIVE_TYPE, 1, vgt_prim);
3236    } else {
3237       radeon_set_config_reg(cmd_buffer->cs, R_008958_VGT_PRIMITIVE_TYPE, d->vk.ia.primitive_topology);
3238    }
3239 
3240    radv_emit_vgt_gs_out(cmd_buffer, vgt_gs_out_prim_type);
3241 }
3242 
3243 static bool
radv_should_force_vrs1x1(struct radv_cmd_buffer * cmd_buffer)3244 radv_should_force_vrs1x1(struct radv_cmd_buffer *cmd_buffer)
3245 {
3246    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3247    const struct radv_physical_device *pdev = radv_device_physical(device);
3248    const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
3249 
3250    return pdev->info.gfx_level >= GFX10_3 &&
3251           (cmd_buffer->state.ms.sample_shading_enable || (ps && ps->info.ps.force_sample_iter_shading_rate));
3252 }
3253 
3254 static void
radv_emit_fragment_shading_rate(struct radv_cmd_buffer * cmd_buffer)3255 radv_emit_fragment_shading_rate(struct radv_cmd_buffer *cmd_buffer)
3256 {
3257    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3258    const struct radv_physical_device *pdev = radv_device_physical(device);
3259    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3260 
3261    /* When per-vertex VRS is forced and the dynamic fragment shading rate is a no-op, ignore
3262     * it. This is needed for vkd3d-proton because it always declares per-draw VRS as dynamic.
3263     */
3264    if (device->force_vrs != RADV_FORCE_VRS_1x1 && d->vk.fsr.fragment_size.width == 1 &&
3265        d->vk.fsr.fragment_size.height == 1 &&
3266        d->vk.fsr.combiner_ops[0] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR &&
3267        d->vk.fsr.combiner_ops[1] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR)
3268       return;
3269 
3270    uint32_t rate_x = MIN2(2, d->vk.fsr.fragment_size.width) - 1;
3271    uint32_t rate_y = MIN2(2, d->vk.fsr.fragment_size.height) - 1;
3272    uint32_t pipeline_comb_mode = d->vk.fsr.combiner_ops[0];
3273    uint32_t htile_comb_mode = d->vk.fsr.combiner_ops[1];
3274    uint32_t pa_cl_vrs_cntl = 0;
3275 
3276    assert(pdev->info.gfx_level >= GFX10_3);
3277 
3278    if (!cmd_buffer->state.render.vrs_att.iview) {
3279       /* When the current subpass has no VRS attachment, the VRS rates are expected to be 1x1, so we
3280        * can cheat by tweaking the different combiner modes.
3281        */
3282       switch (htile_comb_mode) {
3283       case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MIN_KHR:
3284          /* The result of min(A, 1x1) is always 1x1. */
3285          FALLTHROUGH;
3286       case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_REPLACE_KHR:
3287          /* Force the per-draw VRS rate to 1x1. */
3288          rate_x = rate_y = 0;
3289 
3290          /* As the result of min(A, 1x1) or replace(A, 1x1) are always 1x1, set the vertex rate
3291           * combiner mode as passthrough.
3292           */
3293          pipeline_comb_mode = V_028848_SC_VRS_COMB_MODE_PASSTHRU;
3294          break;
3295       case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MAX_KHR:
3296          /* The result of max(A, 1x1) is always A. */
3297          FALLTHROUGH;
3298       case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR:
3299          /* Nothing to do here because the SAMPLE_ITER combiner mode should already be passthrough. */
3300          break;
3301       default:
3302          break;
3303       }
3304    }
3305 
3306    /* Emit per-draw VRS rate which is the first combiner. */
3307    radeon_set_uconfig_reg(cmd_buffer->cs, R_03098C_GE_VRS_RATE, S_03098C_RATE_X(rate_x) | S_03098C_RATE_Y(rate_y));
3308 
3309    /* Disable VRS and use the rates from PS_ITER_SAMPLES if:
3310     *
3311     * 1) sample shading is enabled or per-sample interpolation is used by the fragment shader
3312     * 2) the fragment shader requires 1x1 shading rate for some other reason
3313     */
3314    if (radv_should_force_vrs1x1(cmd_buffer)) {
3315       pa_cl_vrs_cntl |= S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_OVERRIDE);
3316    }
3317 
3318    /* VERTEX_RATE_COMBINER_MODE controls the combiner mode between the
3319     * draw rate and the vertex rate.
3320     */
3321    if (cmd_buffer->state.mesh_shading) {
3322       pa_cl_vrs_cntl |= S_028848_VERTEX_RATE_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_PASSTHRU) |
3323                         S_028848_PRIMITIVE_RATE_COMBINER_MODE(pipeline_comb_mode);
3324    } else {
3325       pa_cl_vrs_cntl |= S_028848_VERTEX_RATE_COMBINER_MODE(pipeline_comb_mode) |
3326                         S_028848_PRIMITIVE_RATE_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_PASSTHRU);
3327    }
3328 
3329    /* HTILE_RATE_COMBINER_MODE controls the combiner mode between the primitive rate and the HTILE
3330     * rate.
3331     */
3332    pa_cl_vrs_cntl |= S_028848_HTILE_RATE_COMBINER_MODE(htile_comb_mode);
3333 
3334    radeon_set_context_reg(cmd_buffer->cs, R_028848_PA_CL_VRS_CNTL, pa_cl_vrs_cntl);
3335 }
3336 
3337 static uint32_t
radv_get_primitive_reset_index(const struct radv_cmd_buffer * cmd_buffer)3338 radv_get_primitive_reset_index(const struct radv_cmd_buffer *cmd_buffer)
3339 {
3340    const uint32_t index_type = G_028A7C_INDEX_TYPE(cmd_buffer->state.index_type);
3341    switch (index_type) {
3342    case V_028A7C_VGT_INDEX_8:
3343       return 0xffu;
3344    case V_028A7C_VGT_INDEX_16:
3345       return 0xffffu;
3346    case V_028A7C_VGT_INDEX_32:
3347       return 0xffffffffu;
3348    default:
3349       unreachable("invalid index type");
3350    }
3351 }
3352 
3353 static void
radv_emit_primitive_restart_enable(struct radv_cmd_buffer * cmd_buffer)3354 radv_emit_primitive_restart_enable(struct radv_cmd_buffer *cmd_buffer)
3355 {
3356    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3357    const struct radv_physical_device *pdev = radv_device_physical(device);
3358    const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
3359    const struct radv_dynamic_state *const d = &cmd_buffer->state.dynamic;
3360    struct radeon_cmdbuf *cs = cmd_buffer->cs;
3361    const bool en = d->vk.ia.primitive_restart_enable;
3362 
3363    if (gfx_level >= GFX11) {
3364       radeon_set_uconfig_reg(cs, R_03092C_GE_MULTI_PRIM_IB_RESET_EN,
3365                              S_03092C_RESET_EN(en) |
3366                                 /* This disables primitive restart for non-indexed draws.
3367                                  * By keeping this set, we don't have to unset RESET_EN
3368                                  * for non-indexed draws. */
3369                                 S_03092C_DISABLE_FOR_AUTO_INDEX(1));
3370    } else if (gfx_level >= GFX9) {
3371       radeon_set_uconfig_reg(cs, R_03092C_VGT_MULTI_PRIM_IB_RESET_EN, en);
3372    } else {
3373       radeon_set_context_reg(cs, R_028A94_VGT_MULTI_PRIM_IB_RESET_EN, en);
3374 
3375       /* GFX6-7: All 32 bits are compared.
3376        * GFX8: Only index type bits are compared.
3377        * GFX9+: Default is same as GFX8, MATCH_ALL_BITS=1 selects GFX6-7 behavior
3378        */
3379       if (en && gfx_level <= GFX7) {
3380          const uint32_t primitive_reset_index = radv_get_primitive_reset_index(cmd_buffer);
3381 
3382          radeon_opt_set_context_reg(cmd_buffer, R_02840C_VGT_MULTI_PRIM_IB_RESET_INDX,
3383                                     RADV_TRACKED_VGT_MULTI_PRIM_IB_RESET_INDX, primitive_reset_index);
3384       }
3385    }
3386 }
3387 
3388 static void
radv_emit_logic_op(struct radv_cmd_buffer * cmd_buffer)3389 radv_emit_logic_op(struct radv_cmd_buffer *cmd_buffer)
3390 {
3391    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3392    const struct radv_physical_device *pdev = radv_device_physical(device);
3393    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3394    unsigned cb_color_control = 0;
3395 
3396    if (d->vk.cb.logic_op_enable) {
3397       cb_color_control |= S_028808_ROP3(d->vk.cb.logic_op);
3398    } else {
3399       cb_color_control |= S_028808_ROP3(V_028808_ROP3_COPY);
3400    }
3401 
3402    if (pdev->info.has_rbplus) {
3403       /* RB+ doesn't work with dual source blending, logic op and CB_RESOLVE. */
3404       const bool mrt0_is_dual_src = radv_can_enable_dual_src(&d->vk.cb.attachments[0]);
3405 
3406       cb_color_control |= S_028808_DISABLE_DUAL_QUAD(mrt0_is_dual_src || d->vk.cb.logic_op_enable ||
3407                                                      cmd_buffer->state.custom_blend_mode == V_028808_CB_RESOLVE);
3408    }
3409 
3410    if (cmd_buffer->state.custom_blend_mode) {
3411       cb_color_control |= S_028808_MODE(cmd_buffer->state.custom_blend_mode);
3412    } else {
3413       bool color_write_enabled = false;
3414 
3415       for (unsigned i = 0; i < MAX_RTS; i++) {
3416          if (d->vk.cb.attachments[i].write_mask) {
3417             color_write_enabled = true;
3418             break;
3419          }
3420       }
3421 
3422       if (color_write_enabled) {
3423          cb_color_control |= S_028808_MODE(V_028808_CB_NORMAL);
3424       } else {
3425          cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE);
3426       }
3427    }
3428 
3429    if (pdev->info.gfx_level >= GFX12) {
3430       radeon_set_context_reg(cmd_buffer->cs, R_028858_CB_COLOR_CONTROL, cb_color_control);
3431    } else {
3432       radeon_set_context_reg(cmd_buffer->cs, R_028808_CB_COLOR_CONTROL, cb_color_control);
3433    }
3434 }
3435 
3436 static void
radv_emit_color_write(struct radv_cmd_buffer * cmd_buffer)3437 radv_emit_color_write(struct radv_cmd_buffer *cmd_buffer)
3438 {
3439    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3440    const struct radv_physical_device *pdev = radv_device_physical(device);
3441    const struct radv_binning_settings *settings = &pdev->binning_settings;
3442    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3443    uint32_t color_write_enable = 0, color_write_mask = 0;
3444 
3445    u_foreach_bit (i, d->vk.cb.color_write_enables) {
3446       color_write_enable |= 0xfu << (i * 4);
3447    }
3448 
3449    for (unsigned i = 0; i < MAX_RTS; i++) {
3450       color_write_mask |= d->vk.cb.attachments[i].write_mask << (4 * i);
3451    }
3452 
3453    const uint32_t cb_target_mask = color_write_enable & color_write_mask;
3454 
3455    if (device->pbb_allowed && settings->context_states_per_bin > 1 &&
3456        cmd_buffer->state.last_cb_target_mask != cb_target_mask) {
3457       /* Flush DFSM on CB_TARGET_MASK changes. */
3458       radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
3459       radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0));
3460 
3461       cmd_buffer->state.last_cb_target_mask = cb_target_mask;
3462    }
3463 
3464    if (pdev->info.gfx_level >= GFX12) {
3465       radeon_set_context_reg(cmd_buffer->cs, R_028850_CB_TARGET_MASK, cb_target_mask);
3466    } else {
3467       radeon_set_context_reg(cmd_buffer->cs, R_028238_CB_TARGET_MASK, cb_target_mask);
3468    }
3469 }
3470 
3471 static void
radv_emit_patch_control_points(struct radv_cmd_buffer * cmd_buffer)3472 radv_emit_patch_control_points(struct radv_cmd_buffer *cmd_buffer)
3473 {
3474    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3475    const struct radv_physical_device *pdev = radv_device_physical(device);
3476    const struct radv_shader *vs = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX);
3477    const struct radv_shader *tcs = cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL];
3478    const struct radv_shader *tes = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_TESS_EVAL);
3479    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3480    unsigned ls_hs_config;
3481 
3482    /* Compute tessellation info that depends on the number of patch control points when this state
3483     * is dynamic.
3484     */
3485    if (cmd_buffer->state.uses_dynamic_patch_control_points) {
3486       struct shader_info tcs_info;
3487 
3488       /* No other shader_info fields are needed. */
3489       tcs_info.tess.tcs_vertices_out = tcs->info.tcs.tcs_vertices_out;
3490       /* These are only used to determine the LDS layout for TCS outputs. */
3491       tcs_info.outputs_read = tcs->info.tcs.tcs_outputs_read;
3492       tcs_info.outputs_written = tcs->info.tcs.tcs_outputs_written;
3493       tcs_info.patch_outputs_read = tcs->info.tcs.tcs_patch_outputs_read;
3494       tcs_info.patch_outputs_written = tcs->info.tcs.tcs_patch_outputs_written;
3495 
3496       radv_get_tess_wg_info(pdev, &tcs_info, d->vk.ts.patch_control_points,
3497                             /* TODO: This should be only inputs in LDS (not VGPR inputs) to reduce LDS usage */
3498                             vs->info.vs.num_linked_outputs, tcs->info.tcs.num_linked_outputs,
3499                             tcs->info.tcs.num_linked_patch_outputs,
3500                             tcs->info.tcs.info.all_invocations_define_tess_levels, &cmd_buffer->state.tess_num_patches,
3501                             &cmd_buffer->state.tess_lds_size);
3502    }
3503 
3504    ls_hs_config = S_028B58_NUM_PATCHES(cmd_buffer->state.tess_num_patches) |
3505                   /* GFX12 programs patch_vertices in VGT_PRIMITIVE_TYPE.NUM_INPUT_CP. */
3506                   S_028B58_HS_NUM_INPUT_CP(pdev->info.gfx_level < GFX12 ? d->vk.ts.patch_control_points : 0) |
3507                   S_028B58_HS_NUM_OUTPUT_CP(tcs->info.tcs.tcs_vertices_out);
3508 
3509    if (pdev->info.gfx_level >= GFX7) {
3510       radeon_set_context_reg_idx(cmd_buffer->cs, R_028B58_VGT_LS_HS_CONFIG, 2, ls_hs_config);
3511    } else {
3512       radeon_set_context_reg(cmd_buffer->cs, R_028B58_VGT_LS_HS_CONFIG, ls_hs_config);
3513    }
3514 
3515    if (pdev->info.gfx_level >= GFX9) {
3516       unsigned hs_rsrc2;
3517 
3518       if (tcs->info.merged_shader_compiled_separately) {
3519          radv_shader_combine_cfg_vs_tcs(cmd_buffer->state.shaders[MESA_SHADER_VERTEX], tcs, NULL, &hs_rsrc2);
3520       } else {
3521          hs_rsrc2 = tcs->config.rsrc2;
3522       }
3523 
3524       if (pdev->info.gfx_level >= GFX10) {
3525          hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX10(cmd_buffer->state.tess_lds_size);
3526       } else {
3527          hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX9(cmd_buffer->state.tess_lds_size);
3528       }
3529 
3530       radeon_set_sh_reg(cmd_buffer->cs, tcs->info.regs.pgm_rsrc2, hs_rsrc2);
3531    } else {
3532       unsigned ls_rsrc2 = vs->config.rsrc2 | S_00B52C_LDS_SIZE(cmd_buffer->state.tess_lds_size);
3533 
3534       radeon_set_sh_reg(cmd_buffer->cs, vs->info.regs.pgm_rsrc2, ls_rsrc2);
3535    }
3536 
3537    /* Emit user SGPRs for dynamic patch control points. */
3538    uint32_t tcs_offchip_layout_offset = radv_get_user_sgpr_loc(tcs, AC_UD_TCS_OFFCHIP_LAYOUT);
3539    if (!tcs_offchip_layout_offset)
3540       return;
3541 
3542    unsigned tcs_offchip_layout =
3543       SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_PATCH_CONTROL_POINTS, d->vk.ts.patch_control_points - 1) |
3544       SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_OUT_PATCH_CP, tcs->info.tcs.tcs_vertices_out - 1) |
3545       SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_NUM_PATCHES, cmd_buffer->state.tess_num_patches - 1) |
3546       SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_NUM_LS_OUTPUTS, vs->info.vs.num_linked_outputs) |
3547       SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_NUM_HS_OUTPUTS, tcs->info.tcs.num_linked_outputs) |
3548       SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_TES_READS_TF, tes->info.tes.reads_tess_factors) |
3549       SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_PRIMITIVE_MODE, tes->info.tes._primitive_mode);
3550 
3551    radeon_set_sh_reg(cmd_buffer->cs, tcs_offchip_layout_offset, tcs_offchip_layout);
3552 
3553    tcs_offchip_layout_offset = radv_get_user_sgpr_loc(tes, AC_UD_TCS_OFFCHIP_LAYOUT);
3554    assert(tcs_offchip_layout_offset);
3555 
3556    radeon_set_sh_reg(cmd_buffer->cs, tcs_offchip_layout_offset, tcs_offchip_layout);
3557 }
3558 
3559 static void
radv_emit_conservative_rast_mode(struct radv_cmd_buffer * cmd_buffer)3560 radv_emit_conservative_rast_mode(struct radv_cmd_buffer *cmd_buffer)
3561 {
3562    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3563    const struct radv_physical_device *pdev = radv_device_physical(device);
3564    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3565 
3566    if (pdev->info.gfx_level >= GFX9) {
3567       uint32_t pa_sc_conservative_rast;
3568 
3569       if (d->vk.rs.conservative_mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) {
3570          const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
3571          const bool uses_inner_coverage = ps && ps->info.ps.reads_fully_covered;
3572 
3573          pa_sc_conservative_rast =
3574             S_028C4C_PREZ_AA_MASK_ENABLE(1) | S_028C4C_POSTZ_AA_MASK_ENABLE(1) | S_028C4C_CENTROID_SAMPLE_OVERRIDE(1);
3575 
3576          /* Inner coverage requires underestimate conservative rasterization. */
3577          if (d->vk.rs.conservative_mode == VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT &&
3578              !uses_inner_coverage) {
3579             pa_sc_conservative_rast |= S_028C4C_OVER_RAST_ENABLE(1) | S_028C4C_UNDER_RAST_SAMPLE_SELECT(1) |
3580                                        S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(1);
3581          } else {
3582             pa_sc_conservative_rast |= S_028C4C_OVER_RAST_SAMPLE_SELECT(1) | S_028C4C_UNDER_RAST_ENABLE(1);
3583          }
3584       } else {
3585          pa_sc_conservative_rast = S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1);
3586       }
3587 
3588       if (pdev->info.gfx_level >= GFX12) {
3589          radeon_set_context_reg(cmd_buffer->cs, R_028C54_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
3590                                 pa_sc_conservative_rast);
3591       } else {
3592          radeon_set_context_reg(cmd_buffer->cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
3593                                 pa_sc_conservative_rast);
3594       }
3595    }
3596 }
3597 
3598 static void
radv_emit_depth_clamp_enable(struct radv_cmd_buffer * cmd_buffer)3599 radv_emit_depth_clamp_enable(struct radv_cmd_buffer *cmd_buffer)
3600 {
3601    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3602    const struct radv_physical_device *pdev = radv_device_physical(device);
3603 
3604    enum radv_depth_clamp_mode mode = radv_get_depth_clamp_mode(cmd_buffer);
3605 
3606    if (pdev->info.gfx_level >= GFX12) {
3607       radeon_set_context_reg(cmd_buffer->cs, R_028064_DB_VIEWPORT_CONTROL,
3608                              S_028064_DISABLE_VIEWPORT_CLAMP(mode == RADV_DEPTH_CLAMP_MODE_DISABLED));
3609    } else {
3610       radeon_set_context_reg(cmd_buffer->cs, R_02800C_DB_RENDER_OVERRIDE,
3611                              S_02800C_DISABLE_VIEWPORT_CLAMP(mode == RADV_DEPTH_CLAMP_MODE_DISABLED));
3612    }
3613 }
3614 
3615 static void
radv_emit_rasterization_samples(struct radv_cmd_buffer * cmd_buffer)3616 radv_emit_rasterization_samples(struct radv_cmd_buffer *cmd_buffer)
3617 {
3618    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3619    const struct radv_physical_device *pdev = radv_device_physical(device);
3620    unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
3621    unsigned ps_iter_samples = radv_get_ps_iter_samples(cmd_buffer);
3622    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3623    unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(0);
3624    unsigned pa_sc_mode_cntl_1;
3625    bool walk_align8;
3626 
3627    if (pdev->info.gfx_level >= GFX12) {
3628       const struct radv_rendering_state *render = &cmd_buffer->state.render;
3629       bool has_hiz_his = false;
3630 
3631       if (render->ds_att.iview) {
3632          const struct radeon_surf *surf = &render->ds_att.iview->image->planes[0].surface;
3633          has_hiz_his = surf->u.gfx9.zs.hiz.offset || surf->u.gfx9.zs.his.offset;
3634       }
3635 
3636       walk_align8 = !has_hiz_his && !cmd_buffer->state.uses_vrs_attachment;
3637    } else if (pdev->info.gfx_level >= GFX11) {
3638       walk_align8 = !cmd_buffer->state.uses_vrs_attachment;
3639    } else {
3640       walk_align8 = true;
3641    }
3642 
3643    pa_sc_mode_cntl_1 = S_028A4C_WALK_FENCE_ENABLE(1) | // TODO linear dst fixes
3644                        S_028A4C_WALK_FENCE_SIZE(pdev->info.num_tile_pipes == 2 ? 2 : 3) |
3645                        S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(cmd_buffer->state.uses_out_of_order_rast) |
3646                        S_028A4C_OUT_OF_ORDER_WATER_MARK(pdev->info.gfx_level >= GFX12 ? 0 : 0x7) |
3647                        /* always 1: */
3648                        S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) | S_028A4C_TILE_WALK_ORDER_ENABLE(1) |
3649                        S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) | S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) |
3650                        S_028A4C_FORCE_EOV_REZ_ENABLE(1) | S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(walk_align8);
3651 
3652    if (!d->sample_location.count || !d->vk.ms.sample_locations_enable)
3653       radv_emit_default_sample_locations(pdev, cmd_buffer->cs, rasterization_samples);
3654 
3655    if (ps_iter_samples > 1) {
3656       spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
3657       pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(1);
3658    }
3659 
3660    if (radv_should_force_vrs1x1(cmd_buffer)) {
3661       /* Make sure sample shading is enabled even if only MSAA1x is used because the SAMPLE_ITER
3662        * combiner is in passthrough mode if PS_ITER_SAMPLE is 0, and it uses the per-draw rate. The
3663        * default VRS rate when sample shading is enabled is 1x1.
3664        */
3665       if (!G_028A4C_PS_ITER_SAMPLE(pa_sc_mode_cntl_1))
3666          pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(1);
3667    }
3668 
3669    if (pdev->info.gfx_level >= GFX12) {
3670       radeon_set_context_reg(cmd_buffer->cs, R_028658_SPI_BARYC_CNTL, spi_baryc_cntl);
3671    } else {
3672       radeon_set_context_reg(cmd_buffer->cs, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
3673    }
3674 
3675    radeon_set_context_reg(cmd_buffer->cs, R_028A4C_PA_SC_MODE_CNTL_1, pa_sc_mode_cntl_1);
3676 }
3677 
3678 static void
radv_emit_fb_color_state(struct radv_cmd_buffer * cmd_buffer,int index,struct radv_color_buffer_info * cb,struct radv_image_view * iview,VkImageLayout layout)3679 radv_emit_fb_color_state(struct radv_cmd_buffer *cmd_buffer, int index, struct radv_color_buffer_info *cb,
3680                          struct radv_image_view *iview, VkImageLayout layout)
3681 {
3682    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3683    const struct radv_physical_device *pdev = radv_device_physical(device);
3684    bool is_vi = pdev->info.gfx_level >= GFX8;
3685    uint32_t cb_fdcc_control = cb->ac.cb_dcc_control;
3686    uint32_t cb_color_info = cb->ac.cb_color_info;
3687    struct radv_image *image = iview->image;
3688 
3689    if (!radv_layout_dcc_compressed(device, image, iview->vk.base_mip_level, layout,
3690                                    radv_image_queue_family_mask(image, cmd_buffer->qf, cmd_buffer->qf))) {
3691       if (pdev->info.gfx_level >= GFX11) {
3692          cb_fdcc_control &= C_028C78_FDCC_ENABLE;
3693       } else {
3694          cb_color_info &= C_028C70_DCC_ENABLE;
3695       }
3696    }
3697 
3698    const enum radv_fmask_compression fmask_comp = radv_layout_fmask_compression(
3699       device, image, layout, radv_image_queue_family_mask(image, cmd_buffer->qf, cmd_buffer->qf));
3700    if (fmask_comp == RADV_FMASK_COMPRESSION_NONE) {
3701       cb_color_info &= C_028C70_COMPRESSION;
3702    }
3703 
3704    if (pdev->info.gfx_level >= GFX12) {
3705       radeon_set_context_reg(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x24, cb->ac.cb_color_base);
3706       radeon_set_context_reg(cmd_buffer->cs, R_028C64_CB_COLOR0_VIEW + index * 0x24, cb->ac.cb_color_view);
3707       radeon_set_context_reg(cmd_buffer->cs, R_028C68_CB_COLOR0_VIEW2 + index * 0x24, cb->ac.cb_color_view2);
3708       radeon_set_context_reg(cmd_buffer->cs, R_028C6C_CB_COLOR0_ATTRIB + index * 0x24, cb->ac.cb_color_attrib);
3709       radeon_set_context_reg(cmd_buffer->cs, R_028C70_CB_COLOR0_FDCC_CONTROL + index * 0x24, cb_fdcc_control);
3710       radeon_set_context_reg(cmd_buffer->cs, R_028C78_CB_COLOR0_ATTRIB2 + index * 0x24, cb->ac.cb_color_attrib2);
3711       radeon_set_context_reg(cmd_buffer->cs, R_028C7C_CB_COLOR0_ATTRIB3 + index * 0x24, cb->ac.cb_color_attrib3);
3712       radeon_set_context_reg(cmd_buffer->cs, R_028E40_CB_COLOR0_BASE_EXT + index * 4,
3713                              S_028E40_BASE_256B(cb->ac.cb_color_base >> 32));
3714       radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_INFO + index * 4, cb->ac.cb_color_info);
3715    } else if (pdev->info.gfx_level >= GFX11) {
3716       radeon_set_context_reg_seq(cmd_buffer->cs, R_028C6C_CB_COLOR0_VIEW + index * 0x3c, 4);
3717       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_view);    /* CB_COLOR0_VIEW */
3718       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_info);    /* CB_COLOR0_INFO */
3719       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib);  /* CB_COLOR0_ATTRIB */
3720       radeon_emit(cmd_buffer->cs, cb_fdcc_control);     /* CB_COLOR0_FDCC_CONTROL */
3721 
3722       radeon_set_context_reg(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, cb->ac.cb_color_base);
3723       radeon_set_context_reg(cmd_buffer->cs, R_028E40_CB_COLOR0_BASE_EXT + index * 4,
3724                              S_028E40_BASE_256B(cb->ac.cb_color_base >> 32));
3725       radeon_set_context_reg(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, cb->ac.cb_dcc_base);
3726       radeon_set_context_reg(cmd_buffer->cs, R_028EA0_CB_COLOR0_DCC_BASE_EXT + index * 4,
3727                              S_028EA0_BASE_256B(cb->ac.cb_dcc_base >> 32));
3728       radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_ATTRIB2 + index * 4, cb->ac.cb_color_attrib2);
3729       radeon_set_context_reg(cmd_buffer->cs, R_028EE0_CB_COLOR0_ATTRIB3 + index * 4, cb->ac.cb_color_attrib3);
3730    } else if (pdev->info.gfx_level >= GFX10) {
3731       radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 11);
3732       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_base);
3733       radeon_emit(cmd_buffer->cs, 0);
3734       radeon_emit(cmd_buffer->cs, 0);
3735       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_view);
3736       radeon_emit(cmd_buffer->cs, cb_color_info);
3737       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib);
3738       radeon_emit(cmd_buffer->cs, cb->ac.cb_dcc_control);
3739       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_cmask);
3740       radeon_emit(cmd_buffer->cs, 0);
3741       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_fmask);
3742       radeon_emit(cmd_buffer->cs, 0);
3743 
3744       radeon_set_context_reg(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, cb->ac.cb_dcc_base);
3745 
3746       radeon_set_context_reg(cmd_buffer->cs, R_028E40_CB_COLOR0_BASE_EXT + index * 4,
3747                              S_028E40_BASE_256B(cb->ac.cb_color_base >> 32));
3748       radeon_set_context_reg(cmd_buffer->cs, R_028E60_CB_COLOR0_CMASK_BASE_EXT + index * 4,
3749                              S_028E60_BASE_256B(cb->ac.cb_color_cmask >> 32));
3750       radeon_set_context_reg(cmd_buffer->cs, R_028E80_CB_COLOR0_FMASK_BASE_EXT + index * 4,
3751                              S_028E80_BASE_256B(cb->ac.cb_color_fmask >> 32));
3752       radeon_set_context_reg(cmd_buffer->cs, R_028EA0_CB_COLOR0_DCC_BASE_EXT + index * 4,
3753                              S_028EA0_BASE_256B(cb->ac.cb_dcc_base >> 32));
3754       radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_ATTRIB2 + index * 4, cb->ac.cb_color_attrib2);
3755       radeon_set_context_reg(cmd_buffer->cs, R_028EE0_CB_COLOR0_ATTRIB3 + index * 4, cb->ac.cb_color_attrib3);
3756    } else if (pdev->info.gfx_level == GFX9) {
3757       radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 11);
3758       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_base);
3759       radeon_emit(cmd_buffer->cs, S_028C64_BASE_256B(cb->ac.cb_color_base >> 32));
3760       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib2);
3761       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_view);
3762       radeon_emit(cmd_buffer->cs, cb_color_info);
3763       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib);
3764       radeon_emit(cmd_buffer->cs, cb->ac.cb_dcc_control);
3765       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_cmask);
3766       radeon_emit(cmd_buffer->cs, S_028C80_BASE_256B(cb->ac.cb_color_cmask >> 32));
3767       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_fmask);
3768       radeon_emit(cmd_buffer->cs, S_028C88_BASE_256B(cb->ac.cb_color_fmask >> 32));
3769 
3770       radeon_set_context_reg_seq(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, 2);
3771       radeon_emit(cmd_buffer->cs, cb->ac.cb_dcc_base);
3772       radeon_emit(cmd_buffer->cs, S_028C98_BASE_256B(cb->ac.cb_dcc_base >> 32));
3773 
3774       radeon_set_context_reg(cmd_buffer->cs, R_0287A0_CB_MRT0_EPITCH + index * 4, cb->ac.cb_mrt_epitch);
3775    } else {
3776       radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 6);
3777       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_base);
3778       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_pitch);
3779       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_slice);
3780       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_view);
3781       radeon_emit(cmd_buffer->cs, cb_color_info);
3782       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib);
3783 
3784       if (pdev->info.gfx_level == GFX8)
3785          radeon_set_context_reg(cmd_buffer->cs, R_028C78_CB_COLOR0_DCC_CONTROL + index * 0x3c, cb->ac.cb_dcc_control);
3786 
3787       radeon_set_context_reg_seq(cmd_buffer->cs, R_028C7C_CB_COLOR0_CMASK + index * 0x3c, 4);
3788       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_cmask);
3789       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_cmask_slice);
3790       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_fmask);
3791       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_fmask_slice);
3792 
3793       if (is_vi) { /* DCC BASE */
3794          radeon_set_context_reg(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, cb->ac.cb_dcc_base);
3795       }
3796    }
3797 
3798    if (pdev->info.gfx_level >= GFX11 ? G_028C78_FDCC_ENABLE(cb_fdcc_control) : G_028C70_DCC_ENABLE(cb_color_info)) {
3799       /* Drawing with DCC enabled also compresses colorbuffers. */
3800       VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
3801 
3802       radv_update_dcc_metadata(cmd_buffer, image, &range, true);
3803    }
3804 }
3805 
3806 static void
radv_update_zrange_precision(struct radv_cmd_buffer * cmd_buffer,struct radv_ds_buffer_info * ds,const struct radv_image_view * iview,bool requires_cond_exec)3807 radv_update_zrange_precision(struct radv_cmd_buffer *cmd_buffer, struct radv_ds_buffer_info *ds,
3808                              const struct radv_image_view *iview, bool requires_cond_exec)
3809 {
3810    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3811    const struct radv_physical_device *pdev = radv_device_physical(device);
3812    const struct radv_image *image = iview->image;
3813    uint32_t db_z_info = ds->ac.db_z_info;
3814    uint32_t db_z_info_reg;
3815 
3816    if (!pdev->info.has_tc_compat_zrange_bug || !radv_image_is_tc_compat_htile(image))
3817       return;
3818 
3819    db_z_info &= C_028040_ZRANGE_PRECISION;
3820 
3821    if (pdev->info.gfx_level == GFX9) {
3822       db_z_info_reg = R_028038_DB_Z_INFO;
3823    } else {
3824       db_z_info_reg = R_028040_DB_Z_INFO;
3825    }
3826 
3827    /* When we don't know the last fast clear value we need to emit a
3828     * conditional packet that will eventually skip the following
3829     * SET_CONTEXT_REG packet.
3830     */
3831    if (requires_cond_exec) {
3832       uint64_t va = radv_get_tc_compat_zrange_va(image, iview->vk.base_mip_level);
3833 
3834       radv_emit_cond_exec(device, cmd_buffer->cs, va, 3 /* SET_CONTEXT_REG size */);
3835    }
3836 
3837    radeon_set_context_reg(cmd_buffer->cs, db_z_info_reg, db_z_info);
3838 }
3839 
3840 static struct radv_image *
radv_cmd_buffer_get_vrs_image(struct radv_cmd_buffer * cmd_buffer)3841 radv_cmd_buffer_get_vrs_image(struct radv_cmd_buffer *cmd_buffer)
3842 {
3843    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3844 
3845    if (!device->vrs.image) {
3846       VkResult result;
3847 
3848       /* The global VRS state is initialized on-demand to avoid wasting VRAM. */
3849       result = radv_device_init_vrs_state(device);
3850       if (result != VK_SUCCESS) {
3851          vk_command_buffer_set_error(&cmd_buffer->vk, result);
3852          return NULL;
3853       }
3854    }
3855 
3856    return device->vrs.image;
3857 }
3858 
3859 static void
radv_emit_fb_ds_state(struct radv_cmd_buffer * cmd_buffer,struct radv_ds_buffer_info * ds,struct radv_image_view * iview,bool depth_compressed,bool stencil_compressed)3860 radv_emit_fb_ds_state(struct radv_cmd_buffer *cmd_buffer, struct radv_ds_buffer_info *ds, struct radv_image_view *iview,
3861                       bool depth_compressed, bool stencil_compressed)
3862 {
3863    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3864    const struct radv_physical_device *pdev = radv_device_physical(device);
3865    uint64_t db_htile_data_base = ds->ac.u.gfx6.db_htile_data_base;
3866    uint32_t db_htile_surface = ds->ac.u.gfx6.db_htile_surface;
3867    uint32_t db_render_control = ds->db_render_control | cmd_buffer->state.db_render_control;
3868    uint32_t db_z_info = ds->ac.db_z_info;
3869 
3870    if (!depth_compressed)
3871       db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(1);
3872    if (!stencil_compressed)
3873       db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(1);
3874 
3875    if (pdev->info.gfx_level == GFX10_3) {
3876       if (!cmd_buffer->state.render.vrs_att.iview) {
3877          db_htile_surface &= C_028ABC_VRS_HTILE_ENCODING;
3878       } else {
3879          /* On GFX10.3, when a subpass uses VRS attachment but HTILE can't be enabled, we fallback to
3880           * our internal HTILE buffer.
3881           */
3882          if (!radv_htile_enabled(iview->image, iview->vk.base_mip_level) && radv_cmd_buffer_get_vrs_image(cmd_buffer)) {
3883             struct radv_buffer *htile_buffer = device->vrs.buffer;
3884 
3885             assert(!G_028038_TILE_SURFACE_ENABLE(db_z_info) && !db_htile_data_base && !db_htile_surface);
3886             db_z_info |= S_028038_TILE_SURFACE_ENABLE(1);
3887             db_htile_data_base = radv_buffer_get_va(htile_buffer->bo) >> 8;
3888             db_htile_surface = S_028ABC_FULL_CACHE(1) | S_028ABC_PIPE_ALIGNED(1) |
3889                                S_028ABC_VRS_HTILE_ENCODING(V_028ABC_VRS_HTILE_4BIT_ENCODING);
3890          }
3891       }
3892    }
3893 
3894    if (pdev->info.gfx_level < GFX12) {
3895       radeon_set_context_reg(cmd_buffer->cs, R_028000_DB_RENDER_CONTROL, db_render_control);
3896       radeon_set_context_reg(cmd_buffer->cs, R_028008_DB_DEPTH_VIEW, ds->ac.db_depth_view);
3897       radeon_set_context_reg(cmd_buffer->cs, R_028ABC_DB_HTILE_SURFACE, db_htile_surface);
3898    }
3899 
3900    radeon_set_context_reg(cmd_buffer->cs, R_028010_DB_RENDER_OVERRIDE2, ds->db_render_override2);
3901 
3902    if (pdev->info.gfx_level >= GFX12) {
3903       radeon_set_context_reg(cmd_buffer->cs, R_028004_DB_DEPTH_VIEW, ds->ac.db_depth_view);
3904       radeon_set_context_reg(cmd_buffer->cs, R_028008_DB_DEPTH_VIEW1, ds->ac.u.gfx12.db_depth_view1);
3905       radeon_set_context_reg(cmd_buffer->cs, R_028014_DB_DEPTH_SIZE_XY, ds->ac.db_depth_size);
3906       radeon_set_context_reg(cmd_buffer->cs, R_028018_DB_Z_INFO, ds->ac.db_z_info);
3907       radeon_set_context_reg(cmd_buffer->cs, R_02801C_DB_STENCIL_INFO, ds->ac.db_stencil_info);
3908       radeon_set_context_reg(cmd_buffer->cs, R_028020_DB_Z_READ_BASE, ds->ac.db_depth_base);
3909       radeon_set_context_reg(cmd_buffer->cs, R_028024_DB_Z_READ_BASE_HI, S_028024_BASE_HI(ds->ac.db_depth_base >> 32));
3910       radeon_set_context_reg(cmd_buffer->cs, R_028028_DB_Z_WRITE_BASE, ds->ac.db_depth_base);
3911       radeon_set_context_reg(cmd_buffer->cs, R_02802C_DB_Z_WRITE_BASE_HI, S_02802C_BASE_HI(ds->ac.db_depth_base >> 32));
3912       radeon_set_context_reg(cmd_buffer->cs, R_028030_DB_STENCIL_READ_BASE, ds->ac.db_stencil_base);
3913       radeon_set_context_reg(cmd_buffer->cs, R_028034_DB_STENCIL_READ_BASE_HI,
3914                              S_028034_BASE_HI(ds->ac.db_stencil_base >> 32));
3915       radeon_set_context_reg(cmd_buffer->cs, R_028038_DB_STENCIL_WRITE_BASE, ds->ac.db_stencil_base);
3916       radeon_set_context_reg(cmd_buffer->cs, R_02803C_DB_STENCIL_WRITE_BASE_HI,
3917                              S_02803C_BASE_HI(ds->ac.db_stencil_base >> 32));
3918       radeon_set_context_reg(cmd_buffer->cs, R_028B94_PA_SC_HIZ_INFO, ds->ac.u.gfx12.hiz_info);
3919       radeon_set_context_reg(cmd_buffer->cs, R_028B98_PA_SC_HIS_INFO, ds->ac.u.gfx12.his_info);
3920 
3921       if (ds->ac.u.gfx12.hiz_info) {
3922          radeon_set_context_reg(cmd_buffer->cs, R_028B9C_PA_SC_HIZ_BASE, ds->ac.u.gfx12.hiz_base);
3923          radeon_set_context_reg(cmd_buffer->cs, R_028BA0_PA_SC_HIZ_BASE_EXT,
3924                                 S_028BA0_BASE_256B(ds->ac.u.gfx12.hiz_base >> 32));
3925          radeon_set_context_reg(cmd_buffer->cs, R_028BA4_PA_SC_HIZ_SIZE_XY, ds->ac.u.gfx12.hiz_size_xy);
3926       }
3927       if (ds->ac.u.gfx12.his_info) {
3928          radeon_set_context_reg(cmd_buffer->cs, R_028BA8_PA_SC_HIS_BASE, ds->ac.u.gfx12.his_base);
3929          radeon_set_context_reg(cmd_buffer->cs, R_028BAC_PA_SC_HIS_BASE_EXT,
3930                                 S_028BAC_BASE_256B(ds->ac.u.gfx12.his_base >> 32));
3931          radeon_set_context_reg(cmd_buffer->cs, R_028BB0_PA_SC_HIS_SIZE_XY, ds->ac.u.gfx12.his_size_xy);
3932       }
3933    } else if (pdev->info.gfx_level >= GFX10) {
3934       radeon_set_context_reg(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, db_htile_data_base);
3935       radeon_set_context_reg(cmd_buffer->cs, R_02801C_DB_DEPTH_SIZE_XY, ds->ac.db_depth_size);
3936 
3937       if (pdev->info.gfx_level >= GFX11) {
3938          radeon_set_context_reg_seq(cmd_buffer->cs, R_028040_DB_Z_INFO, 6);
3939       } else {
3940          radeon_set_context_reg_seq(cmd_buffer->cs, R_02803C_DB_DEPTH_INFO, 7);
3941          radeon_emit(cmd_buffer->cs, S_02803C_RESOURCE_LEVEL(1));
3942       }
3943       radeon_emit(cmd_buffer->cs, db_z_info);
3944       radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_info);
3945       radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base);
3946       radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base);
3947       radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base);
3948       radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base);
3949 
3950       radeon_set_context_reg_seq(cmd_buffer->cs, R_028068_DB_Z_READ_BASE_HI, 5);
3951       radeon_emit(cmd_buffer->cs, S_028068_BASE_HI(ds->ac.db_depth_base >> 32));
3952       radeon_emit(cmd_buffer->cs, S_02806C_BASE_HI(ds->ac.db_stencil_base >> 32));
3953       radeon_emit(cmd_buffer->cs, S_028070_BASE_HI(ds->ac.db_depth_base >> 32));
3954       radeon_emit(cmd_buffer->cs, S_028074_BASE_HI(ds->ac.db_stencil_base >> 32));
3955       radeon_emit(cmd_buffer->cs, S_028078_BASE_HI(db_htile_data_base >> 32));
3956    } else if (pdev->info.gfx_level == GFX9) {
3957       radeon_set_context_reg_seq(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, 3);
3958       radeon_emit(cmd_buffer->cs, db_htile_data_base);
3959       radeon_emit(cmd_buffer->cs, S_028018_BASE_HI(db_htile_data_base >> 32));
3960       radeon_emit(cmd_buffer->cs, ds->ac.db_depth_size);
3961 
3962       radeon_set_context_reg_seq(cmd_buffer->cs, R_028038_DB_Z_INFO, 10);
3963       radeon_emit(cmd_buffer->cs, db_z_info);                                         /* DB_Z_INFO */
3964       radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_info);                            /* DB_STENCIL_INFO */
3965       radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base);                              /* DB_Z_READ_BASE */
3966       radeon_emit(cmd_buffer->cs, S_028044_BASE_HI(ds->ac.db_depth_base >> 32));      /* DB_Z_READ_BASE_HI */
3967       radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base);                            /* DB_STENCIL_READ_BASE */
3968       radeon_emit(cmd_buffer->cs, S_02804C_BASE_HI(ds->ac.db_stencil_base >> 32));    /* DB_STENCIL_READ_BASE_HI */
3969       radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base);                              /* DB_Z_WRITE_BASE */
3970       radeon_emit(cmd_buffer->cs, S_028054_BASE_HI(ds->ac.db_depth_base >> 32));      /* DB_Z_WRITE_BASE_HI */
3971       radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base);                            /* DB_STENCIL_WRITE_BASE */
3972       radeon_emit(cmd_buffer->cs, S_02805C_BASE_HI(ds->ac.db_stencil_base >> 32));    /* DB_STENCIL_WRITE_BASE_HI */
3973 
3974       radeon_set_context_reg_seq(cmd_buffer->cs, R_028068_DB_Z_INFO2, 2);
3975       radeon_emit(cmd_buffer->cs, ds->ac.u.gfx6.db_z_info2);
3976       radeon_emit(cmd_buffer->cs, ds->ac.u.gfx6.db_stencil_info2);
3977    } else {
3978       radeon_set_context_reg(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, db_htile_data_base);
3979 
3980       radeon_set_context_reg_seq(cmd_buffer->cs, R_02803C_DB_DEPTH_INFO, 9);
3981       radeon_emit(cmd_buffer->cs, ds->ac.u.gfx6.db_depth_info);  /* R_02803C_DB_DEPTH_INFO */
3982       radeon_emit(cmd_buffer->cs, db_z_info);                    /* R_028040_DB_Z_INFO */
3983       radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_info);       /* R_028044_DB_STENCIL_INFO */
3984       radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base);         /* R_028048_DB_Z_READ_BASE */
3985       radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base);       /* R_02804C_DB_STENCIL_READ_BASE */
3986       radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base);         /* R_028050_DB_Z_WRITE_BASE */
3987       radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base);       /* R_028054_DB_STENCIL_WRITE_BASE */
3988       radeon_emit(cmd_buffer->cs, ds->ac.db_depth_size);         /* R_028058_DB_DEPTH_SIZE */
3989       radeon_emit(cmd_buffer->cs, ds->ac.u.gfx6.db_depth_slice); /* R_02805C_DB_DEPTH_SLICE */
3990    }
3991 
3992    /* Update the ZRANGE_PRECISION value for the TC-compat bug. */
3993    radv_update_zrange_precision(cmd_buffer, ds, iview, true);
3994 }
3995 
3996 static void
radv_emit_null_ds_state(struct radv_cmd_buffer * cmd_buffer)3997 radv_emit_null_ds_state(struct radv_cmd_buffer *cmd_buffer)
3998 {
3999    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4000    const struct radv_physical_device *pdev = radv_device_physical(device);
4001    const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
4002 
4003    if (pdev->info.gfx_level >= GFX12) {
4004       radeon_set_context_reg_seq(cmd_buffer->cs, R_028018_DB_Z_INFO, 2);
4005       radeon_emit(cmd_buffer->cs, S_028018_FORMAT(V_028018_Z_INVALID) | S_028018_NUM_SAMPLES(3));
4006       radeon_emit(cmd_buffer->cs, S_02801C_FORMAT(V_02801C_STENCIL_INVALID) | S_02801C_TILE_STENCIL_DISABLE(1));
4007 
4008       radeon_set_context_reg(cmd_buffer->cs, R_028B94_PA_SC_HIZ_INFO, S_028B94_SURFACE_ENABLE(0));
4009       radeon_set_context_reg(cmd_buffer->cs, R_028B98_PA_SC_HIS_INFO, S_028B98_SURFACE_ENABLE(0));
4010    } else {
4011       if (gfx_level == GFX9) {
4012          radeon_set_context_reg_seq(cmd_buffer->cs, R_028038_DB_Z_INFO, 2);
4013       } else {
4014          radeon_set_context_reg_seq(cmd_buffer->cs, R_028040_DB_Z_INFO, 2);
4015       }
4016 
4017       /* On GFX11+, the hw intentionally looks at DB_Z_INFO.NUM_SAMPLES when there is no bound
4018        * depth/stencil buffer and it clamps the number of samples like MIN2(DB_Z_INFO.NUM_SAMPLES,
4019        * PA_SC_AA_CONFIG.MSAA_EXPOSED_SAMPLES). Use 8x for DB_Z_INFO.NUM_SAMPLES to make sure it's not
4020        * the constraining factor. This affects VRS, occlusion queries and POPS.
4021        */
4022       radeon_emit(cmd_buffer->cs,
4023                   S_028040_FORMAT(V_028040_Z_INVALID) | S_028040_NUM_SAMPLES(pdev->info.gfx_level >= GFX11 ? 3 : 0));
4024       radeon_emit(cmd_buffer->cs, S_028044_FORMAT(V_028044_STENCIL_INVALID));
4025       uint32_t db_render_control = 0;
4026 
4027       if (gfx_level == GFX11 || gfx_level == GFX11_5)
4028          radv_gfx11_set_db_render_control(device, 1, &db_render_control);
4029 
4030       radeon_set_context_reg(cmd_buffer->cs, R_028000_DB_RENDER_CONTROL, db_render_control);
4031    }
4032 
4033    radeon_set_context_reg(cmd_buffer->cs, R_028010_DB_RENDER_OVERRIDE2,
4034                           S_028010_CENTROID_COMPUTATION_MODE(gfx_level >= GFX10_3));
4035 }
4036 /**
4037  * Update the fast clear depth/stencil values if the image is bound as a
4038  * depth/stencil buffer.
4039  */
4040 static void
radv_update_bound_fast_clear_ds(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,VkClearDepthStencilValue ds_clear_value,VkImageAspectFlags aspects)4041 radv_update_bound_fast_clear_ds(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
4042                                 VkClearDepthStencilValue ds_clear_value, VkImageAspectFlags aspects)
4043 {
4044    const struct radv_image *image = iview->image;
4045    struct radeon_cmdbuf *cs = cmd_buffer->cs;
4046 
4047    if (cmd_buffer->state.render.ds_att.iview == NULL || cmd_buffer->state.render.ds_att.iview->image != image)
4048       return;
4049 
4050    if (aspects == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
4051       radeon_set_context_reg_seq(cs, R_028028_DB_STENCIL_CLEAR, 2);
4052       radeon_emit(cs, ds_clear_value.stencil);
4053       radeon_emit(cs, fui(ds_clear_value.depth));
4054    } else if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) {
4055       radeon_set_context_reg(cs, R_02802C_DB_DEPTH_CLEAR, fui(ds_clear_value.depth));
4056    } else {
4057       assert(aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
4058       radeon_set_context_reg(cs, R_028028_DB_STENCIL_CLEAR, ds_clear_value.stencil);
4059    }
4060 
4061    /* Update the ZRANGE_PRECISION value for the TC-compat bug. This is
4062     * only needed when clearing Z to 0.0.
4063     */
4064    if ((aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && ds_clear_value.depth == 0.0) {
4065       radv_update_zrange_precision(cmd_buffer, &cmd_buffer->state.render.ds_att.ds, iview, false);
4066    }
4067 
4068    cmd_buffer->state.context_roll_without_scissor_emitted = true;
4069 }
4070 
4071 /**
4072  * Set the clear depth/stencil values to the image's metadata.
4073  */
4074 static void
radv_set_ds_clear_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,VkClearDepthStencilValue ds_clear_value,VkImageAspectFlags aspects)4075 radv_set_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
4076                            const VkImageSubresourceRange *range, VkClearDepthStencilValue ds_clear_value,
4077                            VkImageAspectFlags aspects)
4078 {
4079    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4080    struct radeon_cmdbuf *cs = cmd_buffer->cs;
4081    uint32_t level_count = vk_image_subresource_level_count(&image->vk, range);
4082 
4083    if (aspects == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
4084       uint64_t va = radv_get_ds_clear_value_va(image, range->baseMipLevel);
4085 
4086       /* Use the fastest way when both aspects are used. */
4087       ASSERTED unsigned cdw_end = radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va,
4088                                                           2 * level_count, cmd_buffer->state.predicating);
4089 
4090       for (uint32_t l = 0; l < level_count; l++) {
4091          radeon_emit(cs, ds_clear_value.stencil);
4092          radeon_emit(cs, fui(ds_clear_value.depth));
4093       }
4094 
4095       assert(cmd_buffer->cs->cdw == cdw_end);
4096    } else {
4097       /* Otherwise we need one WRITE_DATA packet per level. */
4098       for (uint32_t l = 0; l < level_count; l++) {
4099          uint64_t va = radv_get_ds_clear_value_va(image, range->baseMipLevel + l);
4100          unsigned value;
4101 
4102          if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) {
4103             value = fui(ds_clear_value.depth);
4104             va += 4;
4105          } else {
4106             assert(aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
4107             value = ds_clear_value.stencil;
4108          }
4109 
4110          radv_write_data(cmd_buffer, V_370_PFP, va, 1, &value, cmd_buffer->state.predicating);
4111       }
4112    }
4113 }
4114 
4115 /**
4116  * Update the TC-compat metadata value for this image.
4117  */
4118 static void
radv_set_tc_compat_zrange_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t value)4119 radv_set_tc_compat_zrange_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
4120                                    const VkImageSubresourceRange *range, uint32_t value)
4121 {
4122    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4123    const struct radv_physical_device *pdev = radv_device_physical(device);
4124    struct radeon_cmdbuf *cs = cmd_buffer->cs;
4125 
4126    if (!pdev->info.has_tc_compat_zrange_bug)
4127       return;
4128 
4129    uint64_t va = radv_get_tc_compat_zrange_va(image, range->baseMipLevel);
4130    uint32_t level_count = vk_image_subresource_level_count(&image->vk, range);
4131 
4132    ASSERTED unsigned cdw_end = radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va,
4133                                                        level_count, cmd_buffer->state.predicating);
4134 
4135    for (uint32_t l = 0; l < level_count; l++)
4136       radeon_emit(cs, value);
4137 
4138    assert(cmd_buffer->cs->cdw == cdw_end);
4139 }
4140 
4141 static void
radv_update_tc_compat_zrange_metadata(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,VkClearDepthStencilValue ds_clear_value)4142 radv_update_tc_compat_zrange_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
4143                                       VkClearDepthStencilValue ds_clear_value)
4144 {
4145    VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
4146    uint32_t cond_val;
4147 
4148    /* Conditionally set DB_Z_INFO.ZRANGE_PRECISION to 0 when the last
4149     * depth clear value is 0.0f.
4150     */
4151    cond_val = ds_clear_value.depth == 0.0f ? UINT_MAX : 0;
4152 
4153    radv_set_tc_compat_zrange_metadata(cmd_buffer, iview->image, &range, cond_val);
4154 }
4155 
4156 /**
4157  * Update the clear depth/stencil values for this image.
4158  */
4159 void
radv_update_ds_clear_metadata(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,VkClearDepthStencilValue ds_clear_value,VkImageAspectFlags aspects)4160 radv_update_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
4161                               VkClearDepthStencilValue ds_clear_value, VkImageAspectFlags aspects)
4162 {
4163    VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
4164    struct radv_image *image = iview->image;
4165 
4166    assert(radv_htile_enabled(image, range.baseMipLevel));
4167 
4168    radv_set_ds_clear_metadata(cmd_buffer, iview->image, &range, ds_clear_value, aspects);
4169 
4170    if (radv_image_is_tc_compat_htile(image) && (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
4171       radv_update_tc_compat_zrange_metadata(cmd_buffer, iview, ds_clear_value);
4172    }
4173 
4174    radv_update_bound_fast_clear_ds(cmd_buffer, iview, ds_clear_value, aspects);
4175 }
4176 
4177 /**
4178  * Load the clear depth/stencil values from the image's metadata.
4179  */
4180 static void
radv_load_ds_clear_metadata(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview)4181 radv_load_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview)
4182 {
4183    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4184    const struct radv_physical_device *pdev = radv_device_physical(device);
4185    struct radeon_cmdbuf *cs = cmd_buffer->cs;
4186    const struct radv_image *image = iview->image;
4187    VkImageAspectFlags aspects = vk_format_aspects(image->vk.format);
4188    uint64_t va = radv_get_ds_clear_value_va(image, iview->vk.base_mip_level);
4189    unsigned reg_offset = 0, reg_count = 0;
4190 
4191    assert(radv_image_has_htile(image));
4192 
4193    if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
4194       ++reg_count;
4195    } else {
4196       ++reg_offset;
4197       va += 4;
4198    }
4199    if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
4200       ++reg_count;
4201 
4202    uint32_t reg = R_028028_DB_STENCIL_CLEAR + 4 * reg_offset;
4203 
4204    if (pdev->info.has_load_ctx_reg_pkt) {
4205       radeon_emit(cs, PKT3(PKT3_LOAD_CONTEXT_REG_INDEX, 3, 0));
4206       radeon_emit(cs, va);
4207       radeon_emit(cs, va >> 32);
4208       radeon_emit(cs, (reg - SI_CONTEXT_REG_OFFSET) >> 2);
4209       radeon_emit(cs, reg_count);
4210    } else {
4211       radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
4212       radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) |
4213                          (reg_count == 2 ? COPY_DATA_COUNT_SEL : 0));
4214       radeon_emit(cs, va);
4215       radeon_emit(cs, va >> 32);
4216       radeon_emit(cs, reg >> 2);
4217       radeon_emit(cs, 0);
4218 
4219       radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
4220       radeon_emit(cs, 0);
4221    }
4222 }
4223 
4224 /*
4225  * With DCC some colors don't require CMASK elimination before being
4226  * used as a texture. This sets a predicate value to determine if the
4227  * cmask eliminate is required.
4228  */
4229 void
radv_update_fce_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,bool value)4230 radv_update_fce_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
4231                          const VkImageSubresourceRange *range, bool value)
4232 {
4233    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4234 
4235    if (!image->fce_pred_offset)
4236       return;
4237 
4238    uint64_t pred_val = value;
4239    uint64_t va = radv_image_get_fce_pred_va(image, range->baseMipLevel);
4240    uint32_t level_count = vk_image_subresource_level_count(&image->vk, range);
4241 
4242    ASSERTED unsigned cdw_end =
4243       radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va, 2 * level_count, false);
4244 
4245    for (uint32_t l = 0; l < level_count; l++) {
4246       radeon_emit(cmd_buffer->cs, pred_val);
4247       radeon_emit(cmd_buffer->cs, pred_val >> 32);
4248    }
4249 
4250    assert(cmd_buffer->cs->cdw == cdw_end);
4251 }
4252 
4253 /**
4254  * Update the DCC predicate to reflect the compression state.
4255  */
4256 void
radv_update_dcc_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,bool value)4257 radv_update_dcc_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
4258                          const VkImageSubresourceRange *range, bool value)
4259 {
4260    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4261 
4262    if (image->dcc_pred_offset == 0)
4263       return;
4264 
4265    uint64_t pred_val = value;
4266    uint64_t va = radv_image_get_dcc_pred_va(image, range->baseMipLevel);
4267    uint32_t level_count = vk_image_subresource_level_count(&image->vk, range);
4268 
4269    assert(radv_dcc_enabled(image, range->baseMipLevel));
4270 
4271    ASSERTED unsigned cdw_end =
4272       radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va, 2 * level_count, false);
4273 
4274    for (uint32_t l = 0; l < level_count; l++) {
4275       radeon_emit(cmd_buffer->cs, pred_val);
4276       radeon_emit(cmd_buffer->cs, pred_val >> 32);
4277    }
4278 
4279    assert(cmd_buffer->cs->cdw == cdw_end);
4280 }
4281 
4282 /**
4283  * Update the fast clear color values if the image is bound as a color buffer.
4284  */
4285 static void
radv_update_bound_fast_clear_color(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,int cb_idx,uint32_t color_values[2])4286 radv_update_bound_fast_clear_color(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, int cb_idx,
4287                                    uint32_t color_values[2])
4288 {
4289    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4290    struct radeon_cmdbuf *cs = cmd_buffer->cs;
4291 
4292    if (cb_idx >= cmd_buffer->state.render.color_att_count || cmd_buffer->state.render.color_att[cb_idx].iview == NULL ||
4293        cmd_buffer->state.render.color_att[cb_idx].iview->image != image)
4294       return;
4295 
4296    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 4);
4297 
4298    radeon_set_context_reg_seq(cs, R_028C8C_CB_COLOR0_CLEAR_WORD0 + cb_idx * 0x3c, 2);
4299    radeon_emit(cs, color_values[0]);
4300    radeon_emit(cs, color_values[1]);
4301 
4302    assert(cmd_buffer->cs->cdw <= cdw_max);
4303 
4304    cmd_buffer->state.context_roll_without_scissor_emitted = true;
4305 }
4306 
4307 /**
4308  * Set the clear color values to the image's metadata.
4309  */
4310 static void
radv_set_color_clear_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t color_values[2])4311 radv_set_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
4312                               const VkImageSubresourceRange *range, uint32_t color_values[2])
4313 {
4314    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4315    struct radeon_cmdbuf *cs = cmd_buffer->cs;
4316    uint32_t level_count = vk_image_subresource_level_count(&image->vk, range);
4317 
4318    assert(radv_image_has_cmask(image) || radv_dcc_enabled(image, range->baseMipLevel));
4319 
4320    if (radv_image_has_clear_value(image)) {
4321       uint64_t va = radv_image_get_fast_clear_va(image, range->baseMipLevel);
4322 
4323       ASSERTED unsigned cdw_end = radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va,
4324                                                           2 * level_count, cmd_buffer->state.predicating);
4325 
4326       for (uint32_t l = 0; l < level_count; l++) {
4327          radeon_emit(cs, color_values[0]);
4328          radeon_emit(cs, color_values[1]);
4329       }
4330 
4331       assert(cmd_buffer->cs->cdw == cdw_end);
4332    } else {
4333       /* Some default value we can set in the update. */
4334       assert(color_values[0] == 0 && color_values[1] == 0);
4335    }
4336 }
4337 
4338 /**
4339  * Update the clear color values for this image.
4340  */
4341 void
radv_update_color_clear_metadata(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,int cb_idx,uint32_t color_values[2])4342 radv_update_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, int cb_idx,
4343                                  uint32_t color_values[2])
4344 {
4345    struct radv_image *image = iview->image;
4346    VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
4347 
4348    assert(radv_image_has_cmask(image) || radv_dcc_enabled(image, iview->vk.base_mip_level));
4349 
4350    /* Do not need to update the clear value for images that are fast cleared with the comp-to-single
4351     * mode because the hardware gets the value from the image directly.
4352     */
4353    if (iview->image->support_comp_to_single)
4354       return;
4355 
4356    radv_set_color_clear_metadata(cmd_buffer, image, &range, color_values);
4357 
4358    radv_update_bound_fast_clear_color(cmd_buffer, image, cb_idx, color_values);
4359 }
4360 
4361 /**
4362  * Load the clear color values from the image's metadata.
4363  */
4364 static void
radv_load_color_clear_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image_view * iview,int cb_idx)4365 radv_load_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *iview, int cb_idx)
4366 {
4367    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4368    const struct radv_physical_device *pdev = radv_device_physical(device);
4369    struct radeon_cmdbuf *cs = cmd_buffer->cs;
4370    struct radv_image *image = iview->image;
4371 
4372    if (!radv_image_has_cmask(image) && !radv_dcc_enabled(image, iview->vk.base_mip_level))
4373       return;
4374 
4375    if (iview->image->support_comp_to_single)
4376       return;
4377 
4378    if (!radv_image_has_clear_value(image)) {
4379       uint32_t color_values[2] = {0, 0};
4380       radv_update_bound_fast_clear_color(cmd_buffer, image, cb_idx, color_values);
4381       return;
4382    }
4383 
4384    uint64_t va = radv_image_get_fast_clear_va(image, iview->vk.base_mip_level);
4385    uint32_t reg = R_028C8C_CB_COLOR0_CLEAR_WORD0 + cb_idx * 0x3c;
4386 
4387    if (pdev->info.has_load_ctx_reg_pkt) {
4388       radeon_emit(cs, PKT3(PKT3_LOAD_CONTEXT_REG_INDEX, 3, cmd_buffer->state.predicating));
4389       radeon_emit(cs, va);
4390       radeon_emit(cs, va >> 32);
4391       radeon_emit(cs, (reg - SI_CONTEXT_REG_OFFSET) >> 2);
4392       radeon_emit(cs, 2);
4393    } else {
4394       radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, cmd_buffer->state.predicating));
4395       radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) | COPY_DATA_COUNT_SEL);
4396       radeon_emit(cs, va);
4397       radeon_emit(cs, va >> 32);
4398       radeon_emit(cs, reg >> 2);
4399       radeon_emit(cs, 0);
4400 
4401       radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
4402       radeon_emit(cs, 0);
4403    }
4404 }
4405 
4406 /* GFX9+ metadata cache flushing workaround. metadata cache coherency is
4407  * broken if the CB caches data of multiple mips of the same image at the
4408  * same time.
4409  *
4410  * Insert some flushes to avoid this.
4411  */
4412 static void
radv_emit_fb_mip_change_flush(struct radv_cmd_buffer * cmd_buffer)4413 radv_emit_fb_mip_change_flush(struct radv_cmd_buffer *cmd_buffer)
4414 {
4415    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4416    const struct radv_physical_device *pdev = radv_device_physical(device);
4417    struct radv_rendering_state *render = &cmd_buffer->state.render;
4418    bool color_mip_changed = false;
4419 
4420    /* Entire workaround is not applicable before GFX9 */
4421    if (pdev->info.gfx_level < GFX9)
4422       return;
4423 
4424    for (int i = 0; i < render->color_att_count; ++i) {
4425       struct radv_image_view *iview = render->color_att[i].iview;
4426       if (!iview)
4427          continue;
4428 
4429       if ((radv_image_has_cmask(iview->image) || radv_dcc_enabled(iview->image, iview->vk.base_mip_level) ||
4430            radv_dcc_enabled(iview->image, cmd_buffer->state.cb_mip[i])) &&
4431           cmd_buffer->state.cb_mip[i] != iview->vk.base_mip_level)
4432          color_mip_changed = true;
4433 
4434       cmd_buffer->state.cb_mip[i] = iview->vk.base_mip_level;
4435    }
4436 
4437    if (color_mip_changed) {
4438       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
4439    }
4440 
4441    const struct radv_image_view *iview = render->ds_att.iview;
4442    if (iview) {
4443       if ((radv_htile_enabled(iview->image, iview->vk.base_mip_level) ||
4444            radv_htile_enabled(iview->image, cmd_buffer->state.ds_mip)) &&
4445           cmd_buffer->state.ds_mip != iview->vk.base_mip_level) {
4446          cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
4447       }
4448 
4449       cmd_buffer->state.ds_mip = iview->vk.base_mip_level;
4450    }
4451 }
4452 
4453 /* This function does the flushes for mip changes if the levels are not zero for
4454  * all render targets. This way we can assume at the start of the next cmd_buffer
4455  * that rendering to mip 0 doesn't need any flushes. As that is the most common
4456  * case that saves some flushes. */
4457 static void
radv_emit_mip_change_flush_default(struct radv_cmd_buffer * cmd_buffer)4458 radv_emit_mip_change_flush_default(struct radv_cmd_buffer *cmd_buffer)
4459 {
4460    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4461    const struct radv_physical_device *pdev = radv_device_physical(device);
4462 
4463    /* Entire workaround is not applicable before GFX9 */
4464    if (pdev->info.gfx_level < GFX9)
4465       return;
4466 
4467    bool need_color_mip_flush = false;
4468    for (unsigned i = 0; i < 8; ++i) {
4469       if (cmd_buffer->state.cb_mip[i]) {
4470          need_color_mip_flush = true;
4471          break;
4472       }
4473    }
4474 
4475    if (need_color_mip_flush) {
4476       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
4477    }
4478 
4479    if (cmd_buffer->state.ds_mip) {
4480       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
4481    }
4482 
4483    memset(cmd_buffer->state.cb_mip, 0, sizeof(cmd_buffer->state.cb_mip));
4484    cmd_buffer->state.ds_mip = 0;
4485 }
4486 
4487 static void
radv_emit_framebuffer_state(struct radv_cmd_buffer * cmd_buffer)4488 radv_emit_framebuffer_state(struct radv_cmd_buffer *cmd_buffer)
4489 {
4490    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4491    const struct radv_physical_device *pdev = radv_device_physical(device);
4492    struct radv_rendering_state *render = &cmd_buffer->state.render;
4493    int i;
4494    bool disable_constant_encode_ac01 = false;
4495    unsigned color_invalid = pdev->info.gfx_level >= GFX12   ? S_028EC0_FORMAT(V_028EC0_COLOR_INVALID)
4496                             : pdev->info.gfx_level >= GFX11 ? S_028C70_FORMAT_GFX11(V_028C70_COLOR_INVALID)
4497                                                             : S_028C70_FORMAT_GFX6(V_028C70_COLOR_INVALID);
4498    VkExtent2D extent = {MAX_FRAMEBUFFER_WIDTH, MAX_FRAMEBUFFER_HEIGHT};
4499 
4500    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 51 + MAX_RTS * 70);
4501 
4502    for (i = 0; i < render->color_att_count; ++i) {
4503       struct radv_image_view *iview = render->color_att[i].iview;
4504       if (!iview) {
4505          if (pdev->info.gfx_level >= GFX12) {
4506             radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_INFO + i * 4, color_invalid);
4507          } else {
4508             radeon_set_context_reg(cmd_buffer->cs, R_028C70_CB_COLOR0_INFO + i * 0x3C, color_invalid);
4509          }
4510          continue;
4511       }
4512 
4513       VkImageLayout layout = render->color_att[i].layout;
4514 
4515       radv_cs_add_buffer(device->ws, cmd_buffer->cs, iview->image->bindings[0].bo);
4516 
4517       assert(iview->vk.aspects & (VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_PLANE_0_BIT |
4518                                   VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT));
4519 
4520       if (iview->image->disjoint && iview->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
4521          for (uint32_t plane_id = 0; plane_id < iview->image->plane_count; plane_id++) {
4522             radv_cs_add_buffer(device->ws, cmd_buffer->cs, iview->image->bindings[plane_id].bo);
4523          }
4524       } else {
4525          uint32_t plane_id = iview->image->disjoint ? iview->plane_id : 0;
4526          radv_cs_add_buffer(device->ws, cmd_buffer->cs, iview->image->bindings[plane_id].bo);
4527       }
4528 
4529       radv_emit_fb_color_state(cmd_buffer, i, &render->color_att[i].cb, iview, layout);
4530 
4531       radv_load_color_clear_metadata(cmd_buffer, iview, i);
4532 
4533       if (pdev->info.gfx_level >= GFX9 && iview->image->dcc_sign_reinterpret) {
4534          /* Disable constant encoding with the clear value of "1" with different DCC signedness
4535           * because the hardware will fill "1" instead of the clear value.
4536           */
4537          disable_constant_encode_ac01 = true;
4538       }
4539 
4540       extent.width = MIN2(extent.width, iview->vk.extent.width);
4541       extent.height = MIN2(extent.height, iview->vk.extent.height);
4542    }
4543    for (; i < cmd_buffer->state.last_subpass_color_count; i++) {
4544       if (pdev->info.gfx_level >= GFX12) {
4545          radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_INFO + i * 4, color_invalid);
4546       } else {
4547          radeon_set_context_reg(cmd_buffer->cs, R_028C70_CB_COLOR0_INFO + i * 0x3C, color_invalid);
4548       }
4549    }
4550    cmd_buffer->state.last_subpass_color_count = render->color_att_count;
4551 
4552    if (render->ds_att.iview) {
4553       struct radv_image_view *iview = render->ds_att.iview;
4554       const struct radv_image *image = iview->image;
4555       radv_cs_add_buffer(device->ws, cmd_buffer->cs, image->bindings[0].bo);
4556 
4557       uint32_t qf_mask = radv_image_queue_family_mask(image, cmd_buffer->qf, cmd_buffer->qf);
4558       bool depth_compressed = radv_layout_is_htile_compressed(device, image, render->ds_att.layout, qf_mask);
4559       bool stencil_compressed = radv_layout_is_htile_compressed(device, image, render->ds_att.stencil_layout, qf_mask);
4560 
4561       radv_emit_fb_ds_state(cmd_buffer, &render->ds_att.ds, iview, depth_compressed, stencil_compressed);
4562 
4563       if (depth_compressed || stencil_compressed) {
4564          /* Only load the depth/stencil fast clear values when
4565           * compressed rendering is enabled.
4566           */
4567          radv_load_ds_clear_metadata(cmd_buffer, iview);
4568       }
4569 
4570       extent.width = MIN2(extent.width, iview->vk.extent.width);
4571       extent.height = MIN2(extent.height, iview->vk.extent.height);
4572    } else if (pdev->info.gfx_level == GFX10_3 && render->vrs_att.iview && radv_cmd_buffer_get_vrs_image(cmd_buffer)) {
4573       /* When a subpass uses a VRS attachment without binding a depth/stencil attachment, we have to
4574        * bind our internal depth buffer that contains the VRS data as part of HTILE.
4575        */
4576       VkImageLayout layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
4577       struct radv_buffer *htile_buffer = device->vrs.buffer;
4578       struct radv_image *image = device->vrs.image;
4579       struct radv_ds_buffer_info ds;
4580       struct radv_image_view iview;
4581 
4582       radv_image_view_init(&iview, device,
4583                            &(VkImageViewCreateInfo){
4584                               .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
4585                               .image = radv_image_to_handle(image),
4586                               .viewType = radv_meta_get_view_type(image),
4587                               .format = image->vk.format,
4588                               .subresourceRange =
4589                                  {
4590                                     .aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
4591                                     .baseMipLevel = 0,
4592                                     .levelCount = 1,
4593                                     .baseArrayLayer = 0,
4594                                     .layerCount = 1,
4595                                  },
4596                            },
4597                            NULL);
4598 
4599       radv_initialise_vrs_surface(image, htile_buffer, &ds);
4600 
4601       radv_cs_add_buffer(device->ws, cmd_buffer->cs, htile_buffer->bo);
4602 
4603       bool depth_compressed = radv_layout_is_htile_compressed(
4604          device, image, layout, radv_image_queue_family_mask(image, cmd_buffer->qf, cmd_buffer->qf));
4605       radv_emit_fb_ds_state(cmd_buffer, &ds, &iview, depth_compressed, false);
4606 
4607       radv_image_view_finish(&iview);
4608    } else {
4609       radv_emit_null_ds_state(cmd_buffer);
4610    }
4611 
4612    if (pdev->info.gfx_level >= GFX11) {
4613       bool vrs_surface_enable = render->vrs_att.iview != NULL;
4614       unsigned xmax = 0, ymax = 0;
4615       uint64_t va = 0;
4616 
4617       if (vrs_surface_enable) {
4618          const struct radv_image_view *vrs_iview = render->vrs_att.iview;
4619          struct radv_image *vrs_image = vrs_iview->image;
4620 
4621          radv_cs_add_buffer(device->ws, cmd_buffer->cs, vrs_image->bindings[0].bo);
4622 
4623          va = radv_image_get_va(vrs_image, 0);
4624          va |= vrs_image->planes[0].surface.tile_swizzle << 8;
4625 
4626          xmax = vrs_iview->vk.extent.width - 1;
4627          ymax = vrs_iview->vk.extent.height - 1;
4628 
4629          if (pdev->info.gfx_level >= GFX12) {
4630             radeon_set_context_reg(cmd_buffer->cs, R_0283E0_PA_SC_VRS_INFO,
4631                                    S_0283E0_RATE_SW_MODE(vrs_image->planes[0].surface.u.gfx9.swizzle_mode));
4632          }
4633       }
4634 
4635       radeon_set_context_reg_seq(cmd_buffer->cs, R_0283F0_PA_SC_VRS_RATE_BASE, 3);
4636       radeon_emit(cmd_buffer->cs, va >> 8);
4637       radeon_emit(cmd_buffer->cs, S_0283F4_BASE_256B(va >> 40));
4638       radeon_emit(cmd_buffer->cs, S_0283F8_X_MAX(xmax) | S_0283F8_Y_MAX(ymax));
4639 
4640       radeon_set_context_reg(cmd_buffer->cs, R_0283D0_PA_SC_VRS_OVERRIDE_CNTL,
4641                              S_0283D0_VRS_SURFACE_ENABLE(vrs_surface_enable));
4642    }
4643 
4644    if (pdev->info.gfx_level >= GFX8 && pdev->info.gfx_level < GFX12) {
4645       bool disable_constant_encode = pdev->info.has_dcc_constant_encode;
4646       enum amd_gfx_level gfx_level = pdev->info.gfx_level;
4647 
4648       if (pdev->info.gfx_level >= GFX11) {
4649          const bool has_dedicated_vram = pdev->info.has_dedicated_vram;
4650 
4651          radeon_set_context_reg(cmd_buffer->cs, R_028424_CB_FDCC_CONTROL,
4652                                 S_028424_SAMPLE_MASK_TRACKER_WATERMARK(has_dedicated_vram ? 0 : 15));
4653       } else {
4654          uint8_t watermark = gfx_level >= GFX10 ? 6 : 4;
4655 
4656          radeon_set_context_reg(cmd_buffer->cs, R_028424_CB_DCC_CONTROL,
4657                                 S_028424_OVERWRITE_COMBINER_MRT_SHARING_DISABLE(gfx_level <= GFX9) |
4658                                    S_028424_OVERWRITE_COMBINER_WATERMARK(watermark) |
4659                                    S_028424_DISABLE_CONSTANT_ENCODE_AC01(disable_constant_encode_ac01) |
4660                                    S_028424_DISABLE_CONSTANT_ENCODE_REG(disable_constant_encode));
4661       }
4662    }
4663 
4664    if (pdev->info.gfx_level >= GFX12) {
4665       radeon_set_context_reg(cmd_buffer->cs, R_028184_PA_SC_SCREEN_SCISSOR_BR,
4666                              S_028034_BR_X(extent.width) | S_028034_BR_Y(extent.height));
4667    } else {
4668       radeon_set_context_reg(cmd_buffer->cs, R_028034_PA_SC_SCREEN_SCISSOR_BR,
4669                              S_028034_BR_X(extent.width) | S_028034_BR_Y(extent.height));
4670    }
4671 
4672    assert(cmd_buffer->cs->cdw <= cdw_max);
4673 
4674    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_FRAMEBUFFER;
4675 }
4676 
4677 static void
radv_emit_guardband_state(struct radv_cmd_buffer * cmd_buffer)4678 radv_emit_guardband_state(struct radv_cmd_buffer *cmd_buffer)
4679 {
4680    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4681    const struct radv_physical_device *pdev = radv_device_physical(device);
4682    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
4683    unsigned rast_prim = radv_get_rasterization_prim(cmd_buffer);
4684    const bool draw_points = radv_rast_prim_is_point(rast_prim) || radv_polygon_mode_is_point(d->vk.rs.polygon_mode);
4685    const bool draw_lines = radv_rast_prim_is_line(rast_prim) || radv_polygon_mode_is_line(d->vk.rs.polygon_mode);
4686    struct radeon_cmdbuf *cs = cmd_buffer->cs;
4687    int i;
4688    float guardband_x = INFINITY, guardband_y = INFINITY;
4689    float discard_x = 1.0f, discard_y = 1.0f;
4690    const float max_range = 32767.0f;
4691 
4692    if (!d->vk.vp.viewport_count)
4693       return;
4694 
4695    for (i = 0; i < d->vk.vp.viewport_count; i++) {
4696       float scale_x = fabsf(d->hw_vp.xform[i].scale[0]);
4697       float scale_y = fabsf(d->hw_vp.xform[i].scale[1]);
4698       const float translate_x = fabsf(d->hw_vp.xform[i].translate[0]);
4699       const float translate_y = fabsf(d->hw_vp.xform[i].translate[1]);
4700 
4701       if (scale_x < 0.5)
4702          scale_x = 0.5;
4703       if (scale_y < 0.5)
4704          scale_y = 0.5;
4705 
4706       guardband_x = MIN2(guardband_x, (max_range - translate_x) / scale_x);
4707       guardband_y = MIN2(guardband_y, (max_range - translate_y) / scale_y);
4708 
4709       if (draw_points || draw_lines) {
4710          /* When rendering wide points or lines, we need to be more conservative about when to
4711           * discard them entirely. */
4712          float pixels;
4713 
4714          if (draw_points) {
4715             pixels = 8191.875f;
4716          } else {
4717             pixels = d->vk.rs.line.width;
4718          }
4719 
4720          /* Add half the point size / line width. */
4721          discard_x += pixels / (2.0 * scale_x);
4722          discard_y += pixels / (2.0 * scale_y);
4723 
4724          /* Discard primitives that would lie entirely outside the clip region. */
4725          discard_x = MIN2(discard_x, guardband_x);
4726          discard_y = MIN2(discard_y, guardband_y);
4727       }
4728    }
4729 
4730    if (pdev->info.gfx_level >= GFX12) {
4731       radeon_set_context_reg_seq(cs, R_02842C_PA_CL_GB_VERT_CLIP_ADJ, 4);
4732    } else {
4733       radeon_set_context_reg_seq(cs, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, 4);
4734    }
4735    radeon_emit(cs, fui(guardband_y));
4736    radeon_emit(cs, fui(discard_y));
4737    radeon_emit(cs, fui(guardband_x));
4738    radeon_emit(cs, fui(discard_x));
4739 
4740    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_GUARDBAND;
4741 }
4742 
4743 /* Bind an internal index buffer for GPUs that hang with 0-sized index buffers to handle robustness2
4744  * which requires 0 for out-of-bounds access.
4745  */
4746 static void
radv_handle_zero_index_buffer_bug(struct radv_cmd_buffer * cmd_buffer,uint64_t * index_va,uint32_t * remaining_indexes)4747 radv_handle_zero_index_buffer_bug(struct radv_cmd_buffer *cmd_buffer, uint64_t *index_va, uint32_t *remaining_indexes)
4748 {
4749    const uint32_t zero = 0;
4750    uint32_t offset;
4751 
4752    if (!radv_cmd_buffer_upload_data(cmd_buffer, sizeof(uint32_t), &zero, &offset)) {
4753       vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
4754       return;
4755    }
4756 
4757    *index_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset;
4758    *remaining_indexes = 1;
4759 }
4760 
4761 static void
radv_emit_index_buffer(struct radv_cmd_buffer * cmd_buffer)4762 radv_emit_index_buffer(struct radv_cmd_buffer *cmd_buffer)
4763 {
4764    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4765    const struct radv_physical_device *pdev = radv_device_physical(device);
4766    struct radeon_cmdbuf *cs = cmd_buffer->cs;
4767    struct radv_cmd_state *state = &cmd_buffer->state;
4768    uint32_t max_index_count = state->max_index_count;
4769    uint64_t index_va = state->index_va;
4770 
4771    /* With indirect generated commands the index buffer bind may be part of the
4772     * indirect command buffer, in which case the app may not have bound any yet. */
4773    if (state->index_type < 0)
4774       return;
4775 
4776    /* Handle indirect draw calls with NULL index buffer if the GPU doesn't support them. */
4777    if (!max_index_count && pdev->info.has_zero_index_buffer_bug) {
4778       radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &max_index_count);
4779    }
4780 
4781    radeon_emit(cs, PKT3(PKT3_INDEX_BASE, 1, 0));
4782    radeon_emit(cs, index_va);
4783    radeon_emit(cs, index_va >> 32);
4784 
4785    radeon_emit(cs, PKT3(PKT3_INDEX_BUFFER_SIZE, 0, 0));
4786    radeon_emit(cs, max_index_count);
4787 
4788    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_INDEX_BUFFER;
4789 }
4790 
4791 static void
radv_flush_occlusion_query_state(struct radv_cmd_buffer * cmd_buffer)4792 radv_flush_occlusion_query_state(struct radv_cmd_buffer *cmd_buffer)
4793 {
4794    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4795    const struct radv_physical_device *pdev = radv_device_physical(device);
4796    const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
4797    const bool enable_occlusion_queries =
4798       cmd_buffer->state.active_occlusion_queries || cmd_buffer->state.inherited_occlusion_queries;
4799    uint32_t db_count_control;
4800 
4801    if (!enable_occlusion_queries) {
4802       db_count_control = S_028004_ZPASS_INCREMENT_DISABLE(gfx_level < GFX11);
4803    } else {
4804       bool gfx10_perfect =
4805          gfx_level >= GFX10 && (cmd_buffer->state.perfect_occlusion_queries_enabled ||
4806                                 cmd_buffer->state.inherited_query_control_flags & VK_QUERY_CONTROL_PRECISE_BIT);
4807 
4808       if (gfx_level >= GFX7) {
4809          /* Always enable PERFECT_ZPASS_COUNTS due to issues with partially
4810           * covered tiles, discards, and early depth testing. For more details,
4811           * see https://gitlab.freedesktop.org/mesa/mesa/-/issues/3218 */
4812          db_count_control = S_028004_PERFECT_ZPASS_COUNTS(1) |
4813                             S_028004_DISABLE_CONSERVATIVE_ZPASS_COUNTS(gfx10_perfect) | S_028004_ZPASS_ENABLE(1) |
4814                             S_028004_SLICE_EVEN_ENABLE(1) | S_028004_SLICE_ODD_ENABLE(1);
4815       } else {
4816          db_count_control = S_028004_PERFECT_ZPASS_COUNTS(1);
4817       }
4818 
4819       if (gfx_level < GFX12) {
4820          const uint32_t rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
4821          const uint32_t sample_rate = util_logbase2(rasterization_samples);
4822 
4823          db_count_control |= S_028004_SAMPLE_RATE(sample_rate);
4824       }
4825    }
4826 
4827    if (pdev->info.gfx_level >= GFX12) {
4828       radeon_opt_set_context_reg(cmd_buffer, R_028060_DB_COUNT_CONTROL, RADV_TRACKED_DB_COUNT_CONTROL,
4829                                  db_count_control);
4830    } else {
4831       radeon_opt_set_context_reg(cmd_buffer, R_028004_DB_COUNT_CONTROL, RADV_TRACKED_DB_COUNT_CONTROL,
4832                                  db_count_control);
4833    }
4834 
4835    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_OCCLUSION_QUERY;
4836 }
4837 
4838 unsigned
radv_instance_rate_prolog_index(unsigned num_attributes,uint32_t instance_rate_inputs)4839 radv_instance_rate_prolog_index(unsigned num_attributes, uint32_t instance_rate_inputs)
4840 {
4841    /* instance_rate_vs_prologs is a flattened array of array of arrays of different sizes, or a
4842     * single array sorted in ascending order using:
4843     * - total number of attributes
4844     * - number of instanced attributes
4845     * - index of first instanced attribute
4846     */
4847 
4848    /* From total number of attributes to offset. */
4849    static const uint16_t total_to_offset[16] = {0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680};
4850    unsigned start_index = total_to_offset[num_attributes - 1];
4851 
4852    /* From number of instanced attributes to offset. This would require a different LUT depending on
4853     * the total number of attributes, but we can exploit a pattern to use just the LUT for 16 total
4854     * attributes.
4855     */
4856    static const uint8_t count_to_offset_total16[16] = {0,   16,  31,  45,  58,  70,  81,  91,
4857                                                        100, 108, 115, 121, 126, 130, 133, 135};
4858    unsigned count = util_bitcount(instance_rate_inputs);
4859    unsigned offset_from_start_index = count_to_offset_total16[count - 1] - ((16 - num_attributes) * (count - 1));
4860 
4861    unsigned first = ffs(instance_rate_inputs) - 1;
4862    return start_index + offset_from_start_index + first;
4863 }
4864 
4865 static struct radv_shader_part *
lookup_vs_prolog(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * vs_shader,uint32_t * nontrivial_divisors)4866 lookup_vs_prolog(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs_shader, uint32_t *nontrivial_divisors)
4867 {
4868    assert(vs_shader->info.vs.dynamic_inputs);
4869 
4870    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4871    const struct radv_physical_device *pdev = radv_device_physical(device);
4872    const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input;
4873 
4874    unsigned num_attributes = util_last_bit(vs_shader->info.vs.vb_desc_usage_mask);
4875    uint32_t attribute_mask = BITFIELD_MASK(num_attributes);
4876 
4877    uint32_t instance_rate_inputs = vi_state->instance_rate_inputs & attribute_mask;
4878    uint32_t zero_divisors = vi_state->zero_divisors & attribute_mask;
4879    *nontrivial_divisors = vi_state->nontrivial_divisors & attribute_mask;
4880    uint32_t misaligned_mask = cmd_buffer->state.vbo_misaligned_mask;
4881    uint32_t unaligned_mask = cmd_buffer->state.vbo_unaligned_mask;
4882    if (cmd_buffer->state.vbo_misaligned_mask_invalid) {
4883       bool misalignment_possible = pdev->info.gfx_level == GFX6 || pdev->info.gfx_level >= GFX10;
4884       u_foreach_bit (index, cmd_buffer->state.vbo_misaligned_mask_invalid & attribute_mask) {
4885          uint8_t binding = vi_state->bindings[index];
4886          if (!(cmd_buffer->state.vbo_bound_mask & BITFIELD_BIT(binding)))
4887             continue;
4888 
4889          uint8_t format_req = vi_state->format_align_req_minus_1[index];
4890          uint8_t component_req = vi_state->component_align_req_minus_1[index];
4891          uint64_t vb_offset = cmd_buffer->vertex_bindings[binding].offset;
4892          uint64_t vb_stride = cmd_buffer->vertex_bindings[binding].stride;
4893 
4894          VkDeviceSize offset = vb_offset + vi_state->offsets[index];
4895 
4896          if (misalignment_possible && ((offset | vb_stride) & format_req))
4897             misaligned_mask |= BITFIELD_BIT(index);
4898          if ((offset | vb_stride) & component_req)
4899             unaligned_mask |= BITFIELD_BIT(index);
4900       }
4901       cmd_buffer->state.vbo_misaligned_mask = misaligned_mask;
4902       cmd_buffer->state.vbo_unaligned_mask = unaligned_mask;
4903       cmd_buffer->state.vbo_misaligned_mask_invalid &= ~attribute_mask;
4904    }
4905    misaligned_mask |= vi_state->nontrivial_formats | unaligned_mask;
4906    misaligned_mask &= attribute_mask;
4907    unaligned_mask &= attribute_mask;
4908 
4909    const bool can_use_simple_input =
4910       cmd_buffer->state.shaders[MESA_SHADER_VERTEX] &&
4911       !cmd_buffer->state.shaders[MESA_SHADER_VERTEX]->info.merged_shader_compiled_separately &&
4912       cmd_buffer->state.shaders[MESA_SHADER_VERTEX]->info.is_ngg == pdev->use_ngg &&
4913       cmd_buffer->state.shaders[MESA_SHADER_VERTEX]->info.wave_size == pdev->ge_wave_size;
4914 
4915    /* The instance ID input VGPR is placed differently when as_ls=true. as_ls is also needed to
4916     * workaround the LS VGPR initialization bug.
4917     */
4918    bool as_ls = vs_shader->info.vs.as_ls && (instance_rate_inputs || pdev->info.has_ls_vgpr_init_bug);
4919 
4920    /* try to use a pre-compiled prolog first */
4921    struct radv_shader_part *prolog = NULL;
4922    if (can_use_simple_input && !as_ls && !misaligned_mask && !vi_state->alpha_adjust_lo && !vi_state->alpha_adjust_hi) {
4923       if (!instance_rate_inputs) {
4924          prolog = device->simple_vs_prologs[num_attributes - 1];
4925       } else if (num_attributes <= 16 && !*nontrivial_divisors && !zero_divisors &&
4926                  util_bitcount(instance_rate_inputs) ==
4927                     (util_last_bit(instance_rate_inputs) - ffs(instance_rate_inputs) + 1)) {
4928          unsigned index = radv_instance_rate_prolog_index(num_attributes, instance_rate_inputs);
4929          prolog = device->instance_rate_vs_prologs[index];
4930       }
4931    }
4932    if (prolog)
4933       return prolog;
4934 
4935    struct radv_vs_prolog_key key;
4936    memset(&key, 0, sizeof(key));
4937    key.instance_rate_inputs = instance_rate_inputs;
4938    key.nontrivial_divisors = *nontrivial_divisors;
4939    key.zero_divisors = zero_divisors;
4940    /* If the attribute is aligned, post shuffle is implemented using DST_SEL instead. */
4941    key.post_shuffle = vi_state->post_shuffle & misaligned_mask;
4942    key.alpha_adjust_hi = vi_state->alpha_adjust_hi & attribute_mask & ~unaligned_mask;
4943    key.alpha_adjust_lo = vi_state->alpha_adjust_lo & attribute_mask & ~unaligned_mask;
4944    u_foreach_bit (index, misaligned_mask)
4945       key.formats[index] = vi_state->formats[index];
4946    key.num_attributes = num_attributes;
4947    key.misaligned_mask = misaligned_mask;
4948    key.unaligned_mask = unaligned_mask;
4949    key.as_ls = as_ls;
4950    key.is_ngg = vs_shader->info.is_ngg;
4951    key.wave32 = vs_shader->info.wave_size == 32;
4952 
4953    if (vs_shader->info.merged_shader_compiled_separately) {
4954       assert(vs_shader->info.next_stage == MESA_SHADER_TESS_CTRL || vs_shader->info.next_stage == MESA_SHADER_GEOMETRY);
4955       key.next_stage = vs_shader->info.next_stage;
4956    } else {
4957       key.next_stage = vs_shader->info.stage;
4958    }
4959 
4960    return radv_shader_part_cache_get(device, &device->vs_prologs, &cmd_buffer->vs_prologs, &key);
4961 }
4962 
4963 static void
emit_prolog_regs(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * vs_shader,const struct radv_shader_part * prolog)4964 emit_prolog_regs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs_shader,
4965                  const struct radv_shader_part *prolog)
4966 {
4967    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4968    const struct radv_physical_device *pdev = radv_device_physical(device);
4969    uint32_t rsrc1, rsrc2;
4970 
4971    /* no need to re-emit anything in this case */
4972    if (cmd_buffer->state.emitted_vs_prolog == prolog)
4973       return;
4974 
4975    enum amd_gfx_level chip = pdev->info.gfx_level;
4976 
4977    assert(cmd_buffer->state.emitted_graphics_pipeline == cmd_buffer->state.graphics_pipeline);
4978 
4979    if (vs_shader->info.merged_shader_compiled_separately) {
4980       if (vs_shader->info.next_stage == MESA_SHADER_GEOMETRY) {
4981          radv_shader_combine_cfg_vs_gs(vs_shader, cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY], &rsrc1, &rsrc2);
4982       } else {
4983          assert(vs_shader->info.next_stage == MESA_SHADER_TESS_CTRL);
4984 
4985          radv_shader_combine_cfg_vs_tcs(vs_shader, cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL], &rsrc1, &rsrc2);
4986       }
4987    } else {
4988       rsrc1 = vs_shader->config.rsrc1;
4989    }
4990 
4991    if (chip < GFX10 && G_00B228_SGPRS(prolog->rsrc1) > G_00B228_SGPRS(rsrc1))
4992       rsrc1 = (rsrc1 & C_00B228_SGPRS) | (prolog->rsrc1 & ~C_00B228_SGPRS);
4993 
4994    if (G_00B848_VGPRS(prolog->rsrc1) > G_00B848_VGPRS(rsrc1))
4995       rsrc1 = (rsrc1 & C_00B848_VGPRS) | (prolog->rsrc1 & ~C_00B848_VGPRS);
4996 
4997    radeon_set_sh_reg(cmd_buffer->cs, vs_shader->info.regs.pgm_lo, prolog->va >> 8);
4998    radeon_set_sh_reg(cmd_buffer->cs, vs_shader->info.regs.pgm_rsrc1, rsrc1);
4999 
5000    if (vs_shader->info.merged_shader_compiled_separately) {
5001       if (vs_shader->info.next_stage == MESA_SHADER_GEOMETRY) {
5002          const struct radv_shader *gs = cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY];
5003          unsigned lds_size;
5004 
5005          if (gs->info.is_ngg) {
5006             lds_size = DIV_ROUND_UP(gs->info.ngg_info.lds_size, pdev->info.lds_encode_granularity);
5007          } else {
5008             lds_size = gs->info.gs_ring_info.lds_size;
5009          }
5010 
5011          radeon_set_sh_reg(cmd_buffer->cs, vs_shader->info.regs.pgm_rsrc2, rsrc2 | S_00B22C_LDS_SIZE(lds_size));
5012       } else {
5013          radeon_set_sh_reg(cmd_buffer->cs, vs_shader->info.regs.pgm_rsrc2, rsrc2);
5014       }
5015    }
5016 
5017    radv_cs_add_buffer(device->ws, cmd_buffer->cs, prolog->bo);
5018 }
5019 
5020 static void
emit_prolog_inputs(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * vs_shader,uint32_t nontrivial_divisors)5021 emit_prolog_inputs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs_shader,
5022                    uint32_t nontrivial_divisors)
5023 {
5024    /* no need to re-emit anything in this case */
5025    if (!nontrivial_divisors && cmd_buffer->state.emitted_vs_prolog &&
5026        !cmd_buffer->state.emitted_vs_prolog->nontrivial_divisors)
5027       return;
5028 
5029    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5030    const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input;
5031    uint64_t input_va = radv_shader_get_va(vs_shader);
5032 
5033    if (nontrivial_divisors) {
5034       unsigned inputs_offset;
5035       uint32_t *inputs;
5036       unsigned size = 8 + util_bitcount(nontrivial_divisors) * 8;
5037       if (!radv_cmd_buffer_upload_alloc(cmd_buffer, size, &inputs_offset, (void **)&inputs))
5038          return;
5039 
5040       *(inputs++) = input_va;
5041       *(inputs++) = input_va >> 32;
5042 
5043       u_foreach_bit (index, nontrivial_divisors) {
5044          uint32_t div = vi_state->divisors[index];
5045          if (div == 0) {
5046             *(inputs++) = 0;
5047             *(inputs++) = 1;
5048          } else if (util_is_power_of_two_or_zero(div)) {
5049             *(inputs++) = util_logbase2(div) | (1 << 8);
5050             *(inputs++) = 0xffffffffu;
5051          } else {
5052             struct util_fast_udiv_info info = util_compute_fast_udiv_info(div, 32, 32);
5053             *(inputs++) = info.pre_shift | (info.increment << 8) | (info.post_shift << 16);
5054             *(inputs++) = info.multiplier;
5055          }
5056       }
5057 
5058       input_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + inputs_offset;
5059    }
5060 
5061    const uint32_t vs_prolog_inputs_offset = radv_get_user_sgpr_loc(vs_shader, AC_UD_VS_PROLOG_INPUTS);
5062    radv_emit_shader_pointer(device, cmd_buffer->cs, vs_prolog_inputs_offset, input_va, true);
5063 }
5064 
5065 static void
radv_emit_vertex_input(struct radv_cmd_buffer * cmd_buffer)5066 radv_emit_vertex_input(struct radv_cmd_buffer *cmd_buffer)
5067 {
5068    const struct radv_shader *vs_shader = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX);
5069    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5070 
5071    assert(!cmd_buffer->state.mesh_shading);
5072 
5073    if (!vs_shader->info.vs.has_prolog)
5074       return;
5075 
5076    uint32_t nontrivial_divisors;
5077    struct radv_shader_part *prolog = lookup_vs_prolog(cmd_buffer, vs_shader, &nontrivial_divisors);
5078    if (!prolog) {
5079       vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
5080       return;
5081    }
5082    emit_prolog_regs(cmd_buffer, vs_shader, prolog);
5083    emit_prolog_inputs(cmd_buffer, vs_shader, nontrivial_divisors);
5084 
5085    cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, prolog->upload_seq);
5086 
5087    cmd_buffer->state.emitted_vs_prolog = prolog;
5088 
5089    if (radv_device_fault_detection_enabled(device))
5090       radv_save_vs_prolog(cmd_buffer, prolog);
5091 }
5092 
5093 static void
radv_emit_tess_domain_origin(struct radv_cmd_buffer * cmd_buffer)5094 radv_emit_tess_domain_origin(struct radv_cmd_buffer *cmd_buffer)
5095 {
5096    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5097    const struct radv_physical_device *pdev = radv_device_physical(device);
5098    const struct radv_shader *tes = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_TESS_EVAL);
5099    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
5100    unsigned type = 0, partitioning = 0;
5101    unsigned topology;
5102 
5103    switch (tes->info.tes._primitive_mode) {
5104    case TESS_PRIMITIVE_TRIANGLES:
5105       type = V_028B6C_TESS_TRIANGLE;
5106       break;
5107    case TESS_PRIMITIVE_QUADS:
5108       type = V_028B6C_TESS_QUAD;
5109       break;
5110    case TESS_PRIMITIVE_ISOLINES:
5111       type = V_028B6C_TESS_ISOLINE;
5112       break;
5113    default:
5114       unreachable("Invalid tess primitive type");
5115    }
5116 
5117    switch (tes->info.tes.spacing) {
5118    case TESS_SPACING_EQUAL:
5119       partitioning = V_028B6C_PART_INTEGER;
5120       break;
5121    case TESS_SPACING_FRACTIONAL_ODD:
5122       partitioning = V_028B6C_PART_FRAC_ODD;
5123       break;
5124    case TESS_SPACING_FRACTIONAL_EVEN:
5125       partitioning = V_028B6C_PART_FRAC_EVEN;
5126       break;
5127    default:
5128       unreachable("Invalid tess spacing type");
5129    }
5130 
5131    if (tes->info.tes.point_mode) {
5132       topology = V_028B6C_OUTPUT_POINT;
5133    } else if (tes->info.tes._primitive_mode == TESS_PRIMITIVE_ISOLINES) {
5134       topology = V_028B6C_OUTPUT_LINE;
5135    } else {
5136       bool ccw = tes->info.tes.ccw;
5137 
5138       if (d->vk.ts.domain_origin != VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT) {
5139          ccw = !ccw;
5140       }
5141 
5142       topology = ccw ? V_028B6C_OUTPUT_TRIANGLE_CCW : V_028B6C_OUTPUT_TRIANGLE_CW;
5143    }
5144 
5145    uint32_t vgt_tf_param = S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) | S_028B6C_TOPOLOGY(topology) |
5146                            S_028B6C_DISTRIBUTION_MODE(pdev->tess_distribution_mode);
5147 
5148    if (pdev->info.gfx_level >= GFX12) {
5149       vgt_tf_param |= S_028AA4_TEMPORAL(gfx12_load_last_use_discard);
5150 
5151       radeon_set_context_reg(cmd_buffer->cs, R_028AA4_VGT_TF_PARAM, vgt_tf_param);
5152    } else {
5153       radeon_set_context_reg(cmd_buffer->cs, R_028B6C_VGT_TF_PARAM, vgt_tf_param);
5154    }
5155 }
5156 
5157 static void
radv_emit_alpha_to_coverage_enable(struct radv_cmd_buffer * cmd_buffer)5158 radv_emit_alpha_to_coverage_enable(struct radv_cmd_buffer *cmd_buffer)
5159 {
5160    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5161    const struct radv_physical_device *pdev = radv_device_physical(device);
5162    const struct radv_instance *instance = radv_physical_device_instance(pdev);
5163    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
5164    unsigned db_alpha_to_mask = 0;
5165 
5166    if (instance->debug_flags & RADV_DEBUG_NO_ATOC_DITHERING) {
5167       db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(2) | S_028B70_ALPHA_TO_MASK_OFFSET1(2) |
5168                          S_028B70_ALPHA_TO_MASK_OFFSET2(2) | S_028B70_ALPHA_TO_MASK_OFFSET3(2) |
5169                          S_028B70_OFFSET_ROUND(0);
5170    } else {
5171       db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(3) | S_028B70_ALPHA_TO_MASK_OFFSET1(1) |
5172                          S_028B70_ALPHA_TO_MASK_OFFSET2(0) | S_028B70_ALPHA_TO_MASK_OFFSET3(2) |
5173                          S_028B70_OFFSET_ROUND(1);
5174    }
5175 
5176    db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(d->vk.ms.alpha_to_coverage_enable);
5177 
5178    if (pdev->info.gfx_level >= GFX12) {
5179       radeon_set_context_reg(cmd_buffer->cs, R_02807C_DB_ALPHA_TO_MASK, db_alpha_to_mask);
5180    } else {
5181       radeon_set_context_reg(cmd_buffer->cs, R_028B70_DB_ALPHA_TO_MASK, db_alpha_to_mask);
5182    }
5183 }
5184 
5185 static void
radv_emit_sample_mask(struct radv_cmd_buffer * cmd_buffer)5186 radv_emit_sample_mask(struct radv_cmd_buffer *cmd_buffer)
5187 {
5188    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
5189 
5190    radeon_set_context_reg_seq(cmd_buffer->cs, R_028C38_PA_SC_AA_MASK_X0Y0_X1Y0, 2);
5191    radeon_emit(cmd_buffer->cs, d->vk.ms.sample_mask | ((uint32_t)d->vk.ms.sample_mask << 16));
5192    radeon_emit(cmd_buffer->cs, d->vk.ms.sample_mask | ((uint32_t)d->vk.ms.sample_mask << 16));
5193 }
5194 
5195 static void
radv_emit_color_blend(struct radv_cmd_buffer * cmd_buffer)5196 radv_emit_color_blend(struct radv_cmd_buffer *cmd_buffer)
5197 {
5198    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5199    const struct radv_physical_device *pdev = radv_device_physical(device);
5200    const struct radv_rendering_state *render = &cmd_buffer->state.render;
5201    const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
5202    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
5203    unsigned cb_blend_control[MAX_RTS], sx_mrt_blend_opt[MAX_RTS];
5204    const bool mrt0_is_dual_src = radv_can_enable_dual_src(&d->vk.cb.attachments[0]);
5205 
5206    for (unsigned i = 0; i < MAX_RTS; i++) {
5207       VkBlendOp eqRGB = d->vk.cb.attachments[i].color_blend_op;
5208       VkBlendFactor srcRGB = d->vk.cb.attachments[i].src_color_blend_factor;
5209       VkBlendFactor dstRGB = d->vk.cb.attachments[i].dst_color_blend_factor;
5210       VkBlendOp eqA = d->vk.cb.attachments[i].alpha_blend_op;
5211       VkBlendFactor srcA = d->vk.cb.attachments[i].src_alpha_blend_factor;
5212       VkBlendFactor dstA = d->vk.cb.attachments[i].dst_alpha_blend_factor;
5213       unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt;
5214       unsigned blend_cntl = 0;
5215 
5216       cb_blend_control[i] = sx_mrt_blend_opt[i] = 0;
5217 
5218       /* Ignore other blend targets if dual-source blending is enabled to prevent wrong behaviour.
5219        */
5220       if (i > 0 && mrt0_is_dual_src)
5221          continue;
5222 
5223       /* Disable logic op for float/srgb formats because it shouldn't be applied. */
5224       if (d->vk.cb.logic_op_enable &&
5225           (vk_format_is_float(render->color_att[i].format) || vk_format_is_srgb(render->color_att[i].format))) {
5226          cb_blend_control[i] |= S_028780_DISABLE_ROP3(1);
5227          continue;
5228       }
5229 
5230       if (!d->vk.cb.attachments[i].blend_enable) {
5231          sx_mrt_blend_opt[i] |= S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) |
5232                                 S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
5233          continue;
5234       }
5235 
5236       radv_normalize_blend_factor(eqRGB, &srcRGB, &dstRGB);
5237       radv_normalize_blend_factor(eqA, &srcA, &dstA);
5238 
5239       /* Blending optimizations for RB+.
5240        * These transformations don't change the behavior.
5241        *
5242        * First, get rid of DST in the blend factors:
5243        *    func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
5244        */
5245       radv_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB, VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_SRC_COLOR);
5246 
5247       radv_blend_remove_dst(&eqA, &srcA, &dstA, VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_SRC_COLOR);
5248 
5249       radv_blend_remove_dst(&eqA, &srcA, &dstA, VK_BLEND_FACTOR_DST_ALPHA, VK_BLEND_FACTOR_SRC_ALPHA);
5250 
5251       /* Look up the ideal settings from tables. */
5252       srcRGB_opt = radv_translate_blend_opt_factor(srcRGB, false);
5253       dstRGB_opt = radv_translate_blend_opt_factor(dstRGB, false);
5254       srcA_opt = radv_translate_blend_opt_factor(srcA, true);
5255       dstA_opt = radv_translate_blend_opt_factor(dstA, true);
5256 
5257       /* Handle interdependencies. */
5258       if (radv_blend_factor_uses_dst(srcRGB))
5259          dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
5260       if (radv_blend_factor_uses_dst(srcA))
5261          dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
5262 
5263       if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE &&
5264           (dstRGB == VK_BLEND_FACTOR_ZERO || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
5265            dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE))
5266          dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
5267 
5268       /* Set the final value. */
5269       sx_mrt_blend_opt[i] = S_028760_COLOR_SRC_OPT(srcRGB_opt) | S_028760_COLOR_DST_OPT(dstRGB_opt) |
5270                             S_028760_COLOR_COMB_FCN(radv_translate_blend_opt_function(eqRGB)) |
5271                             S_028760_ALPHA_SRC_OPT(srcA_opt) | S_028760_ALPHA_DST_OPT(dstA_opt) |
5272                             S_028760_ALPHA_COMB_FCN(radv_translate_blend_opt_function(eqA));
5273 
5274       blend_cntl |= S_028780_ENABLE(1);
5275       blend_cntl |= S_028780_COLOR_COMB_FCN(radv_translate_blend_function(eqRGB));
5276       blend_cntl |= S_028780_COLOR_SRCBLEND(radv_translate_blend_factor(gfx_level, srcRGB));
5277       blend_cntl |= S_028780_COLOR_DESTBLEND(radv_translate_blend_factor(gfx_level, dstRGB));
5278       if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
5279          blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1);
5280          blend_cntl |= S_028780_ALPHA_COMB_FCN(radv_translate_blend_function(eqA));
5281          blend_cntl |= S_028780_ALPHA_SRCBLEND(radv_translate_blend_factor(gfx_level, srcA));
5282          blend_cntl |= S_028780_ALPHA_DESTBLEND(radv_translate_blend_factor(gfx_level, dstA));
5283       }
5284       cb_blend_control[i] = blend_cntl;
5285    }
5286 
5287    if (pdev->info.has_rbplus) {
5288       /* Disable RB+ blend optimizations for dual source blending. */
5289       if (mrt0_is_dual_src) {
5290          for (unsigned i = 0; i < MAX_RTS; i++) {
5291             sx_mrt_blend_opt[i] =
5292                S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE);
5293          }
5294       }
5295 
5296       /* Disable RB+ blend optimizations on GFX11 when alpha-to-coverage is enabled. */
5297       if (gfx_level >= GFX11 && d->vk.ms.alpha_to_coverage_enable) {
5298          sx_mrt_blend_opt[0] =
5299             S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE);
5300       }
5301    }
5302 
5303    radeon_set_context_reg_seq(cmd_buffer->cs, R_028780_CB_BLEND0_CONTROL, MAX_RTS);
5304    radeon_emit_array(cmd_buffer->cs, cb_blend_control, MAX_RTS);
5305 
5306    if (pdev->info.has_rbplus) {
5307       radeon_set_context_reg_seq(cmd_buffer->cs, R_028760_SX_MRT0_BLEND_OPT, MAX_RTS);
5308       radeon_emit_array(cmd_buffer->cs, sx_mrt_blend_opt, MAX_RTS);
5309    }
5310 }
5311 
5312 static struct radv_shader_part *
lookup_ps_epilog(struct radv_cmd_buffer * cmd_buffer)5313 lookup_ps_epilog(struct radv_cmd_buffer *cmd_buffer)
5314 {
5315    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5316    const struct radv_physical_device *pdev = radv_device_physical(device);
5317    const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
5318    const struct radv_rendering_state *render = &cmd_buffer->state.render;
5319    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
5320    struct radv_ps_epilog_state state = {0};
5321    uint8_t color_remap[MAX_RTS];
5322 
5323    memset(color_remap, MESA_VK_ATTACHMENT_UNUSED, sizeof(color_remap));
5324 
5325    state.color_attachment_count = render->color_att_count;
5326    for (unsigned i = 0; i < render->color_att_count; ++i) {
5327       state.color_attachment_formats[i] = render->color_att[i].format;
5328    }
5329 
5330    for (unsigned i = 0; i < MAX_RTS; i++) {
5331       VkBlendOp eqRGB = d->vk.cb.attachments[i].color_blend_op;
5332       VkBlendFactor srcRGB = d->vk.cb.attachments[i].src_color_blend_factor;
5333       VkBlendFactor dstRGB = d->vk.cb.attachments[i].dst_color_blend_factor;
5334 
5335       state.color_write_mask |= d->vk.cb.attachments[i].write_mask << (4 * i);
5336       state.color_blend_enable |= d->vk.cb.attachments[i].blend_enable << (4 * i);
5337 
5338       radv_normalize_blend_factor(eqRGB, &srcRGB, &dstRGB);
5339 
5340       if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
5341           srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
5342           srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA)
5343          state.need_src_alpha |= 1 << i;
5344 
5345       state.color_attachment_mappings[i] = d->vk.cal.color_map[i];
5346       if (state.color_attachment_mappings[i] != MESA_VK_ATTACHMENT_UNUSED)
5347          color_remap[state.color_attachment_mappings[i]] = i;
5348    }
5349 
5350    state.mrt0_is_dual_src = radv_can_enable_dual_src(&d->vk.cb.attachments[0]);
5351 
5352    if (d->vk.ms.alpha_to_coverage_enable) {
5353       /* Select a color export format with alpha when alpha to coverage is enabled. */
5354       state.need_src_alpha |= 0x1;
5355    }
5356 
5357    state.alpha_to_one = d->vk.ms.alpha_to_one_enable;
5358 
5359    if (ps) {
5360       state.colors_written = ps->info.ps.colors_written;
5361 
5362       if (ps->info.ps.exports_mrtz_via_epilog) {
5363          const bool export_z_stencil_samplemask =
5364             ps->info.ps.writes_z || ps->info.ps.writes_stencil || ps->info.ps.writes_sample_mask;
5365 
5366          state.export_depth = ps->info.ps.writes_z;
5367          state.export_stencil = ps->info.ps.writes_stencil;
5368          state.export_sample_mask = ps->info.ps.writes_sample_mask;
5369 
5370          if (d->vk.ms.alpha_to_coverage_enable) {
5371             /* We need coverage-to-mask when alpha-to-one is also enabled. On GFX11, it's always
5372              * enabled if there's a mrtz export.
5373              */
5374             const bool coverage_to_mask =
5375                d->vk.ms.alpha_to_one_enable || (pdev->info.gfx_level >= GFX11 && export_z_stencil_samplemask);
5376             state.alpha_to_coverage_via_mrtz = coverage_to_mask;
5377          }
5378       }
5379    }
5380 
5381    struct radv_ps_epilog_key key = radv_generate_ps_epilog_key(device, &state);
5382 
5383    /* Determine the actual colors written if outputs are remapped. */
5384    uint32_t colors_written = 0;
5385    for (uint32_t i = 0; i < MAX_RTS; i++) {
5386       if (!((ps->info.ps.colors_written >> (i * 4)) & 0xf))
5387          continue;
5388 
5389       if (color_remap[i] == MESA_VK_ATTACHMENT_UNUSED)
5390          continue;
5391 
5392       colors_written |= 0xfu << (4 * color_remap[i]);
5393    }
5394 
5395    /* Clear color attachments that aren't exported by the FS to match IO shader arguments. */
5396    key.spi_shader_col_format &= colors_written;
5397 
5398    return radv_shader_part_cache_get(device, &device->ps_epilogs, &cmd_buffer->ps_epilogs, &key);
5399 }
5400 
5401 static void
radv_emit_msaa_state(struct radv_cmd_buffer * cmd_buffer)5402 radv_emit_msaa_state(struct radv_cmd_buffer *cmd_buffer)
5403 {
5404    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5405    const struct radv_physical_device *pdev = radv_device_physical(device);
5406    const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
5407    unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
5408    const struct radv_rendering_state *render = &cmd_buffer->state.render;
5409    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
5410    unsigned log_samples = util_logbase2(rasterization_samples);
5411    unsigned pa_sc_aa_config = 0;
5412    unsigned max_sample_dist = 0;
5413    unsigned db_eqaa;
5414 
5415    db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) | S_028804_INCOHERENT_EQAA_READS(pdev->info.gfx_level < GFX12) |
5416              S_028804_STATIC_ANCHOR_ASSOCIATIONS(1);
5417 
5418    if (pdev->info.gfx_level >= GFX9 && d->vk.rs.conservative_mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) {
5419       /* Adjust MSAA state if conservative rasterization is enabled. */
5420       db_eqaa |= S_028804_OVERRASTERIZATION_AMOUNT(4);
5421       pa_sc_aa_config |= S_028BE0_AA_MASK_CENTROID_DTMN(1);
5422    }
5423 
5424    if (!d->sample_location.count || !d->vk.ms.sample_locations_enable) {
5425       max_sample_dist = radv_get_default_max_sample_dist(log_samples);
5426    } else {
5427       uint32_t num_samples = (uint32_t)d->sample_location.per_pixel;
5428       VkOffset2D sample_locs[4][8]; /* 8 is the max. sample count supported */
5429 
5430       /* Convert the user sample locations to hardware sample locations. */
5431       radv_convert_user_sample_locs(&d->sample_location, 0, 0, sample_locs[0]);
5432       radv_convert_user_sample_locs(&d->sample_location, 1, 0, sample_locs[1]);
5433       radv_convert_user_sample_locs(&d->sample_location, 0, 1, sample_locs[2]);
5434       radv_convert_user_sample_locs(&d->sample_location, 1, 1, sample_locs[3]);
5435 
5436       /* Compute the maximum sample distance from the specified locations. */
5437       for (unsigned i = 0; i < 4; ++i) {
5438          for (uint32_t j = 0; j < num_samples; j++) {
5439             VkOffset2D offset = sample_locs[i][j];
5440             max_sample_dist = MAX2(max_sample_dist, MAX2(abs(offset.x), abs(offset.y)));
5441          }
5442       }
5443    }
5444 
5445    if (rasterization_samples > 1) {
5446       unsigned z_samples = MAX2(render->ds_samples, rasterization_samples);
5447       unsigned ps_iter_samples = radv_get_ps_iter_samples(cmd_buffer);
5448       unsigned log_z_samples = util_logbase2(z_samples);
5449       unsigned log_ps_iter_samples = util_logbase2(ps_iter_samples);
5450       bool uses_underestimate = d->vk.rs.conservative_mode == VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT;
5451 
5452       pa_sc_aa_config |=
5453          S_028BE0_MSAA_NUM_SAMPLES(uses_underestimate ? 0 : log_samples) | S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples);
5454 
5455       if (pdev->info.gfx_level >= GFX12) {
5456          pa_sc_aa_config |= S_028BE0_PS_ITER_SAMPLES(log_ps_iter_samples);
5457 
5458          db_eqaa |= S_028078_MASK_EXPORT_NUM_SAMPLES(log_samples) | S_028078_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
5459       } else {
5460          pa_sc_aa_config |= S_028BE0_MAX_SAMPLE_DIST(max_sample_dist) |
5461                             S_028BE0_COVERED_CENTROID_IS_CENTER(pdev->info.gfx_level >= GFX10_3);
5462 
5463          db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_z_samples) | S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) |
5464                     S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) | S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
5465       }
5466 
5467       if (radv_get_line_mode(cmd_buffer) == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH)
5468          db_eqaa |= S_028804_OVERRASTERIZATION_AMOUNT(log_samples);
5469    }
5470 
5471    /* GFX12 programs it in SPI_PS_INPUT_ENA.COVERAGE_TO_SHADER_SELECT */
5472    pa_sc_aa_config |=
5473       S_028BE0_COVERAGE_TO_SHADER_SELECT(pdev->info.gfx_level < GFX12 && ps && ps->info.ps.reads_fully_covered);
5474 
5475    if (pdev->info.gfx_level >= GFX12) {
5476       radeon_set_context_reg(cmd_buffer->cs, R_028C5C_PA_SC_SAMPLE_PROPERTIES,
5477                              S_028C5C_MAX_SAMPLE_DIST(max_sample_dist));
5478 
5479       radeon_set_context_reg(cmd_buffer->cs, R_028078_DB_EQAA, db_eqaa);
5480    } else {
5481       radeon_set_context_reg(cmd_buffer->cs, R_028804_DB_EQAA, db_eqaa);
5482    }
5483 
5484    radeon_set_context_reg(cmd_buffer->cs, R_028BE0_PA_SC_AA_CONFIG, pa_sc_aa_config);
5485    radeon_set_context_reg(
5486       cmd_buffer->cs, R_028A48_PA_SC_MODE_CNTL_0,
5487       S_028A48_ALTERNATE_RBS_PER_TILE(pdev->info.gfx_level >= GFX9) | S_028A48_VPORT_SCISSOR_ENABLE(1) |
5488          S_028A48_LINE_STIPPLE_ENABLE(d->vk.rs.line.stipple.enable) | S_028A48_MSAA_ENABLE(rasterization_samples > 1));
5489 }
5490 
5491 static void
radv_cmd_buffer_flush_dynamic_state(struct radv_cmd_buffer * cmd_buffer,const uint64_t states)5492 radv_cmd_buffer_flush_dynamic_state(struct radv_cmd_buffer *cmd_buffer, const uint64_t states)
5493 {
5494    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5495    const struct radv_physical_device *pdev = radv_device_physical(device);
5496 
5497    if (states & (RADV_DYNAMIC_VIEWPORT | RADV_DYNAMIC_DEPTH_CLIP_ENABLE | RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE |
5498                  RADV_DYNAMIC_DEPTH_CLAMP_ENABLE | RADV_DYNAMIC_DEPTH_CLAMP_RANGE))
5499       radv_emit_viewport(cmd_buffer);
5500 
5501    if (states & (RADV_DYNAMIC_SCISSOR | RADV_DYNAMIC_VIEWPORT) && !pdev->info.has_gfx9_scissor_bug)
5502       radv_emit_scissor(cmd_buffer);
5503 
5504    if (states & RADV_DYNAMIC_BLEND_CONSTANTS)
5505       radv_emit_blend_constants(cmd_buffer);
5506 
5507    if (states & RADV_DYNAMIC_DEPTH_BIAS)
5508       radv_emit_depth_bias(cmd_buffer);
5509 
5510    if (states &
5511        (RADV_DYNAMIC_DISCARD_RECTANGLE | RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE | RADV_DYNAMIC_DISCARD_RECTANGLE_MODE))
5512       radv_emit_discard_rectangle(cmd_buffer);
5513 
5514    if (states & RADV_DYNAMIC_CONSERVATIVE_RAST_MODE)
5515       radv_emit_conservative_rast_mode(cmd_buffer);
5516 
5517    if (states & (RADV_DYNAMIC_SAMPLE_LOCATIONS | RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE))
5518       radv_emit_sample_locations(cmd_buffer);
5519 
5520    if ((states & RADV_DYNAMIC_PRIMITIVE_TOPOLOGY) ||
5521        (pdev->info.gfx_level >= GFX12 && states & RADV_DYNAMIC_PATCH_CONTROL_POINTS))
5522       radv_emit_primitive_topology(cmd_buffer);
5523 
5524    if (states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE)
5525       radv_emit_fragment_shading_rate(cmd_buffer);
5526 
5527    if (states & RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE)
5528       radv_emit_primitive_restart_enable(cmd_buffer);
5529 
5530    if (states & (RADV_DYNAMIC_LOGIC_OP | RADV_DYNAMIC_LOGIC_OP_ENABLE | RADV_DYNAMIC_COLOR_WRITE_MASK |
5531                  RADV_DYNAMIC_COLOR_BLEND_EQUATION))
5532       radv_emit_logic_op(cmd_buffer);
5533 
5534    if (states & (RADV_DYNAMIC_COLOR_WRITE_ENABLE | RADV_DYNAMIC_COLOR_WRITE_MASK))
5535       radv_emit_color_write(cmd_buffer);
5536 
5537    if (states & RADV_DYNAMIC_VERTEX_INPUT)
5538       radv_emit_vertex_input(cmd_buffer);
5539 
5540    if (states & RADV_DYNAMIC_PATCH_CONTROL_POINTS)
5541       radv_emit_patch_control_points(cmd_buffer);
5542 
5543    if (states & RADV_DYNAMIC_TESS_DOMAIN_ORIGIN)
5544       radv_emit_tess_domain_origin(cmd_buffer);
5545 
5546    if (states & RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE)
5547       radv_emit_alpha_to_coverage_enable(cmd_buffer);
5548 
5549    if (states & RADV_DYNAMIC_SAMPLE_MASK)
5550       radv_emit_sample_mask(cmd_buffer);
5551 
5552    if (states & (RADV_DYNAMIC_DEPTH_CLAMP_ENABLE | RADV_DYNAMIC_DEPTH_CLIP_ENABLE))
5553       radv_emit_depth_clamp_enable(cmd_buffer);
5554 
5555    if (states & (RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_COLOR_BLEND_EQUATION |
5556                  RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE | RADV_DYNAMIC_LOGIC_OP_ENABLE))
5557       radv_emit_color_blend(cmd_buffer);
5558 
5559    if (states & (RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_LINE_RASTERIZATION_MODE |
5560                  RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE | RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE))
5561       radv_emit_rasterization_samples(cmd_buffer);
5562 
5563    if (states &
5564        (RADV_DYNAMIC_LINE_STIPPLE_ENABLE | RADV_DYNAMIC_CONSERVATIVE_RAST_MODE | RADV_DYNAMIC_SAMPLE_LOCATIONS |
5565         RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE | RADV_DYNAMIC_RASTERIZATION_SAMPLES |
5566         RADV_DYNAMIC_LINE_RASTERIZATION_MODE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE))
5567       radv_emit_msaa_state(cmd_buffer);
5568 
5569    /* RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE is handled by radv_emit_db_shader_control. */
5570 
5571    cmd_buffer->state.dirty_dynamic &= ~states;
5572 }
5573 
5574 static void
radv_flush_push_descriptors(struct radv_cmd_buffer * cmd_buffer,struct radv_descriptor_state * descriptors_state)5575 radv_flush_push_descriptors(struct radv_cmd_buffer *cmd_buffer, struct radv_descriptor_state *descriptors_state)
5576 {
5577    struct radv_descriptor_set *set = (struct radv_descriptor_set *)&descriptors_state->push_set.set;
5578    unsigned bo_offset;
5579 
5580    if (!radv_cmd_buffer_upload_data(cmd_buffer, set->header.size, set->header.mapped_ptr, &bo_offset))
5581       return;
5582 
5583    set->header.va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
5584    set->header.va += bo_offset;
5585 }
5586 
5587 void
radv_upload_indirect_descriptor_sets(struct radv_cmd_buffer * cmd_buffer,struct radv_descriptor_state * descriptors_state)5588 radv_upload_indirect_descriptor_sets(struct radv_cmd_buffer *cmd_buffer,
5589                                      struct radv_descriptor_state *descriptors_state)
5590 {
5591    uint32_t size = MAX_SETS * 4;
5592    uint32_t offset;
5593    void *ptr;
5594 
5595    if (!radv_cmd_buffer_upload_alloc(cmd_buffer, size, &offset, &ptr))
5596       return;
5597 
5598    descriptors_state->indirect_descriptor_sets_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset;
5599 
5600    for (unsigned i = 0; i < MAX_SETS; i++) {
5601       uint32_t *uptr = ((uint32_t *)ptr) + i;
5602       uint64_t set_va = 0;
5603       if (descriptors_state->valid & (1u << i))
5604          set_va = radv_descriptor_get_va(descriptors_state, i);
5605 
5606       uptr[0] = set_va & 0xffffffff;
5607    }
5608 }
5609 
5610 ALWAYS_INLINE static void
radv_flush_descriptors(struct radv_cmd_buffer * cmd_buffer,VkShaderStageFlags stages,VkPipelineBindPoint bind_point)5611 radv_flush_descriptors(struct radv_cmd_buffer *cmd_buffer, VkShaderStageFlags stages, VkPipelineBindPoint bind_point)
5612 {
5613    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
5614    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5615    struct radeon_cmdbuf *cs = cmd_buffer->cs;
5616    bool flush_indirect_descriptors;
5617 
5618    if (!descriptors_state->dirty)
5619       return;
5620 
5621    flush_indirect_descriptors = descriptors_state->need_indirect_descriptor_sets;
5622 
5623    if (flush_indirect_descriptors)
5624       radv_upload_indirect_descriptor_sets(cmd_buffer, descriptors_state);
5625 
5626    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cs, MAX_SETS * MESA_VULKAN_SHADER_STAGES * 4);
5627 
5628    if (stages & VK_SHADER_STAGE_COMPUTE_BIT) {
5629       struct radv_shader *compute_shader = bind_point == VK_PIPELINE_BIND_POINT_COMPUTE
5630                                               ? cmd_buffer->state.shaders[MESA_SHADER_COMPUTE]
5631                                               : cmd_buffer->state.rt_prolog;
5632 
5633       radv_emit_descriptors_per_stage(device, cs, compute_shader, descriptors_state);
5634    } else {
5635       radv_foreach_stage(stage, stages & ~VK_SHADER_STAGE_TASK_BIT_EXT)
5636       {
5637          if (!cmd_buffer->state.shaders[stage])
5638             continue;
5639 
5640          radv_emit_descriptors_per_stage(device, cs, cmd_buffer->state.shaders[stage], descriptors_state);
5641       }
5642 
5643       if (stages & VK_SHADER_STAGE_TASK_BIT_EXT) {
5644          radv_emit_descriptors_per_stage(device, cmd_buffer->gang.cs, cmd_buffer->state.shaders[MESA_SHADER_TASK],
5645                                          descriptors_state);
5646       }
5647    }
5648 
5649    descriptors_state->dirty = 0;
5650 
5651    assert(cmd_buffer->cs->cdw <= cdw_max);
5652 
5653    if (radv_device_fault_detection_enabled(device))
5654       radv_save_descriptors(cmd_buffer, bind_point);
5655 }
5656 
5657 static void
radv_emit_all_inline_push_consts(const struct radv_device * device,struct radeon_cmdbuf * cs,const struct radv_shader * shader,const uint32_t * values,bool * need_push_constants)5658 radv_emit_all_inline_push_consts(const struct radv_device *device, struct radeon_cmdbuf *cs,
5659                                  const struct radv_shader *shader, const uint32_t *values, bool *need_push_constants)
5660 {
5661    if (radv_get_user_sgpr_info(shader, AC_UD_PUSH_CONSTANTS)->sgpr_idx != -1)
5662       *need_push_constants |= true;
5663 
5664    const uint64_t mask = shader->info.inline_push_constant_mask;
5665    if (!mask)
5666       return;
5667 
5668    const uint8_t base = ffs(mask) - 1;
5669    if (mask == u_bit_consecutive64(base, util_last_bit64(mask) - base)) {
5670       /* consecutive inline push constants */
5671       radv_emit_inline_push_consts(device, cs, shader, AC_UD_INLINE_PUSH_CONSTANTS, values + base);
5672    } else {
5673       /* sparse inline push constants */
5674       uint32_t consts[AC_MAX_INLINE_PUSH_CONSTS];
5675       unsigned num_consts = 0;
5676       u_foreach_bit64 (idx, mask)
5677          consts[num_consts++] = values[idx];
5678       radv_emit_inline_push_consts(device, cs, shader, AC_UD_INLINE_PUSH_CONSTANTS, consts);
5679    }
5680 }
5681 
5682 ALWAYS_INLINE static VkShaderStageFlags
radv_must_flush_constants(const struct radv_cmd_buffer * cmd_buffer,VkShaderStageFlags stages,VkPipelineBindPoint bind_point)5683 radv_must_flush_constants(const struct radv_cmd_buffer *cmd_buffer, VkShaderStageFlags stages,
5684                           VkPipelineBindPoint bind_point)
5685 {
5686    const struct radv_push_constant_state *push_constants = radv_get_push_constants_state(cmd_buffer, bind_point);
5687 
5688    if (push_constants->size || push_constants->dynamic_offset_count)
5689       return stages & cmd_buffer->push_constant_stages;
5690 
5691    return 0;
5692 }
5693 
5694 static void
radv_flush_constants(struct radv_cmd_buffer * cmd_buffer,VkShaderStageFlags stages,VkPipelineBindPoint bind_point)5695 radv_flush_constants(struct radv_cmd_buffer *cmd_buffer, VkShaderStageFlags stages, VkPipelineBindPoint bind_point)
5696 {
5697    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5698    struct radeon_cmdbuf *cs = cmd_buffer->cs;
5699    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
5700    const struct radv_push_constant_state *push_constants = radv_get_push_constants_state(cmd_buffer, bind_point);
5701    struct radv_shader *shader, *prev_shader;
5702    bool need_push_constants = false;
5703    unsigned offset;
5704    void *ptr;
5705    uint64_t va;
5706    uint32_t internal_stages = stages;
5707    uint32_t dirty_stages = 0;
5708 
5709    switch (bind_point) {
5710    case VK_PIPELINE_BIND_POINT_GRAPHICS:
5711       break;
5712    case VK_PIPELINE_BIND_POINT_COMPUTE:
5713       dirty_stages = RADV_RT_STAGE_BITS;
5714       break;
5715    case VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR:
5716       internal_stages = VK_SHADER_STAGE_COMPUTE_BIT;
5717       dirty_stages = VK_SHADER_STAGE_COMPUTE_BIT;
5718       break;
5719    default:
5720       unreachable("Unhandled bind point");
5721    }
5722 
5723    if (internal_stages & VK_SHADER_STAGE_COMPUTE_BIT) {
5724       struct radv_shader *compute_shader = bind_point == VK_PIPELINE_BIND_POINT_COMPUTE
5725                                               ? cmd_buffer->state.shaders[MESA_SHADER_COMPUTE]
5726                                               : cmd_buffer->state.rt_prolog;
5727 
5728       radv_emit_all_inline_push_consts(device, cs, compute_shader, (uint32_t *)cmd_buffer->push_constants,
5729                                        &need_push_constants);
5730    } else {
5731       radv_foreach_stage(stage, internal_stages & ~VK_SHADER_STAGE_TASK_BIT_EXT)
5732       {
5733          shader = radv_get_shader(cmd_buffer->state.shaders, stage);
5734 
5735          if (!shader)
5736             continue;
5737 
5738          radv_emit_all_inline_push_consts(device, cs, shader, (uint32_t *)cmd_buffer->push_constants,
5739                                           &need_push_constants);
5740       }
5741 
5742       if (internal_stages & VK_SHADER_STAGE_TASK_BIT_EXT) {
5743          radv_emit_all_inline_push_consts(device, cmd_buffer->gang.cs, cmd_buffer->state.shaders[MESA_SHADER_TASK],
5744                                           (uint32_t *)cmd_buffer->push_constants, &need_push_constants);
5745       }
5746    }
5747 
5748    if (need_push_constants) {
5749       if (!radv_cmd_buffer_upload_alloc(cmd_buffer, push_constants->size + 16 * push_constants->dynamic_offset_count,
5750                                         &offset, &ptr))
5751          return;
5752 
5753       memcpy(ptr, cmd_buffer->push_constants, push_constants->size);
5754       memcpy((char *)ptr + push_constants->size, descriptors_state->dynamic_buffers,
5755              16 * push_constants->dynamic_offset_count);
5756 
5757       va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
5758       va += offset;
5759 
5760       ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, MESA_VULKAN_SHADER_STAGES * 4);
5761 
5762       if (internal_stages & VK_SHADER_STAGE_COMPUTE_BIT) {
5763          struct radv_shader *compute_shader = bind_point == VK_PIPELINE_BIND_POINT_COMPUTE
5764                                                  ? cmd_buffer->state.shaders[MESA_SHADER_COMPUTE]
5765                                                  : cmd_buffer->state.rt_prolog;
5766 
5767          radv_emit_userdata_address(device, cs, compute_shader, AC_UD_PUSH_CONSTANTS, va);
5768       } else {
5769          prev_shader = NULL;
5770          radv_foreach_stage(stage, internal_stages & ~VK_SHADER_STAGE_TASK_BIT_EXT)
5771          {
5772             shader = radv_get_shader(cmd_buffer->state.shaders, stage);
5773 
5774             /* Avoid redundantly emitting the address for merged stages. */
5775             if (shader && shader != prev_shader) {
5776                radv_emit_userdata_address(device, cs, shader, AC_UD_PUSH_CONSTANTS, va);
5777 
5778                prev_shader = shader;
5779             }
5780          }
5781 
5782          if (internal_stages & VK_SHADER_STAGE_TASK_BIT_EXT) {
5783             radv_emit_userdata_address(device, cmd_buffer->gang.cs, cmd_buffer->state.shaders[MESA_SHADER_TASK],
5784                                        AC_UD_PUSH_CONSTANTS, va);
5785          }
5786       }
5787 
5788       assert(cmd_buffer->cs->cdw <= cdw_max);
5789    }
5790 
5791    cmd_buffer->push_constant_stages &= ~stages;
5792    cmd_buffer->push_constant_stages |= dirty_stages;
5793 }
5794 
5795 void
radv_get_vbo_info(const struct radv_cmd_buffer * cmd_buffer,uint32_t idx,struct radv_vbo_info * vbo_info)5796 radv_get_vbo_info(const struct radv_cmd_buffer *cmd_buffer, uint32_t idx, struct radv_vbo_info *vbo_info)
5797 {
5798    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5799    const struct radv_physical_device *pdev = radv_device_physical(device);
5800    const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input;
5801    const uint32_t binding = vi_state->bindings[idx];
5802 
5803    memset(vbo_info, 0, sizeof(*vbo_info));
5804 
5805    vbo_info->binding = binding;
5806    vbo_info->stride = cmd_buffer->vertex_bindings[binding].stride;
5807 
5808    vbo_info->attrib_offset = vi_state->offsets[idx];
5809    vbo_info->attrib_index_offset = vi_state->attrib_index_offset[idx];
5810    vbo_info->attrib_format_size = vi_state->format_sizes[idx];
5811 
5812    if (!(vi_state->nontrivial_formats & BITFIELD_BIT(idx))) {
5813       const struct ac_vtx_format_info *vtx_info_table =
5814          ac_get_vtx_format_info_table(pdev->info.gfx_level, pdev->info.family);
5815       const struct ac_vtx_format_info *vtx_info = &vtx_info_table[vi_state->formats[idx]];
5816       const uint32_t hw_format = vtx_info->hw_format[vtx_info->num_channels - 1];
5817 
5818       if (pdev->info.gfx_level >= GFX10) {
5819          vbo_info->non_trivial_format |= vtx_info->dst_sel | S_008F0C_FORMAT_GFX10(hw_format);
5820       } else {
5821          vbo_info->non_trivial_format |=
5822             vtx_info->dst_sel | S_008F0C_NUM_FORMAT((hw_format >> 4) & 0x7) | S_008F0C_DATA_FORMAT(hw_format & 0xf);
5823       }
5824    }
5825 
5826    const struct radv_buffer *buffer = cmd_buffer->vertex_binding_buffers[binding];
5827 
5828    if (!buffer)
5829       return;
5830 
5831    const uint32_t offset = cmd_buffer->vertex_bindings[binding].offset;
5832 
5833    vbo_info->va = radv_buffer_get_va(buffer->bo) + buffer->offset + offset;
5834 
5835    if (cmd_buffer->vertex_bindings[binding].size) {
5836       vbo_info->size = cmd_buffer->vertex_bindings[binding].size;
5837    } else {
5838       vbo_info->size = vk_buffer_range(&buffer->vk, offset, VK_WHOLE_SIZE);
5839    }
5840 }
5841 
5842 static void
radv_write_vertex_descriptors(const struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * vs,void * vb_ptr)5843 radv_write_vertex_descriptors(const struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs, void *vb_ptr)
5844 {
5845    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5846    const struct radv_physical_device *pdev = radv_device_physical(device);
5847    enum amd_gfx_level chip = pdev->info.gfx_level;
5848    unsigned desc_index = 0;
5849    uint32_t mask = vs->info.vs.vb_desc_usage_mask;
5850    const bool uses_dynamic_inputs = vs->info.vs.dynamic_inputs;
5851    const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input;
5852 
5853    while (mask) {
5854       unsigned i = u_bit_scan(&mask);
5855       uint32_t *desc = &((uint32_t *)vb_ptr)[desc_index++ * 4];
5856 
5857       if (uses_dynamic_inputs && !(vi_state->attribute_mask & BITFIELD_BIT(i))) {
5858          /* No vertex attribute description given: assume that the shader doesn't use this
5859           * location (vb_desc_usage_mask can be larger than attribute usage) and use a null
5860           * descriptor to avoid hangs (prologs load all attributes, even if there are holes).
5861           */
5862          memset(desc, 0, 4 * 4);
5863          continue;
5864       }
5865 
5866       struct radv_vbo_info vbo_info;
5867       radv_get_vbo_info(cmd_buffer, i, &vbo_info);
5868 
5869       uint32_t rsrc_word3;
5870 
5871       if (uses_dynamic_inputs && vbo_info.non_trivial_format) {
5872          rsrc_word3 = vbo_info.non_trivial_format;
5873       } else {
5874          rsrc_word3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5875                       S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5876 
5877          if (pdev->info.gfx_level >= GFX10) {
5878             rsrc_word3 |= S_008F0C_FORMAT_GFX10(V_008F0C_GFX10_FORMAT_32_UINT);
5879          } else {
5880             rsrc_word3 |=
5881                S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_UINT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5882          }
5883       }
5884 
5885       if (!vbo_info.va) {
5886          if (uses_dynamic_inputs) {
5887             /* Stride needs to be non-zero on GFX9, or else bounds checking is disabled. We need
5888              * to include the format/word3 so that the alpha channel is 1 for formats without an
5889              * alpha channel.
5890              */
5891             desc[0] = 0;
5892             desc[1] = S_008F04_STRIDE(16);
5893             desc[2] = 0;
5894             desc[3] = rsrc_word3;
5895          } else {
5896             memset(desc, 0, 4 * 4);
5897          }
5898 
5899          continue;
5900       }
5901 
5902       const unsigned stride = vbo_info.stride;
5903       uint32_t num_records = vbo_info.size;
5904 
5905       if (vs->info.vs.use_per_attribute_vb_descs) {
5906          const uint32_t attrib_end = vbo_info.attrib_offset + vbo_info.attrib_format_size;
5907 
5908          if (num_records < attrib_end) {
5909             num_records = 0; /* not enough space for one vertex */
5910          } else if (stride == 0) {
5911             num_records = 1; /* only one vertex */
5912          } else {
5913             num_records = (num_records - attrib_end) / stride + 1;
5914             /* If attrib_offset>stride, then the compiler will increase the vertex index by
5915              * attrib_offset/stride and decrease the offset by attrib_offset%stride. This is
5916              * only allowed with static strides.
5917              */
5918             num_records += vbo_info.attrib_index_offset;
5919          }
5920 
5921          /* GFX10 uses OOB_SELECT_RAW if stride==0, so convert num_records from elements into
5922           * into bytes in that case. GFX8 always uses bytes.
5923           */
5924          if (num_records && (chip == GFX8 || (chip != GFX9 && !stride))) {
5925             num_records = (num_records - 1) * stride + attrib_end;
5926          } else if (!num_records) {
5927             /* On GFX9, it seems bounds checking is disabled if both
5928              * num_records and stride are zero. This doesn't seem necessary on GFX8, GFX10 and
5929              * GFX10.3 but it doesn't hurt.
5930              */
5931             if (uses_dynamic_inputs) {
5932                desc[0] = 0;
5933                desc[1] = S_008F04_STRIDE(16);
5934                desc[2] = 0;
5935                desc[3] = rsrc_word3;
5936             } else {
5937                memset(desc, 0, 16);
5938             }
5939 
5940             continue;
5941          }
5942       } else {
5943          if (chip != GFX8 && stride)
5944             num_records = DIV_ROUND_UP(num_records, stride);
5945       }
5946 
5947       if (chip >= GFX10) {
5948          /* OOB_SELECT chooses the out-of-bounds check:
5949           * - 1: index >= NUM_RECORDS (Structured)
5950           * - 3: offset >= NUM_RECORDS (Raw)
5951           */
5952          int oob_select = stride ? V_008F0C_OOB_SELECT_STRUCTURED : V_008F0C_OOB_SELECT_RAW;
5953          rsrc_word3 |= S_008F0C_OOB_SELECT(oob_select) | S_008F0C_RESOURCE_LEVEL(chip < GFX11);
5954       }
5955 
5956       uint64_t va = vbo_info.va;
5957       if (uses_dynamic_inputs)
5958          va += vbo_info.attrib_offset;
5959 
5960       desc[0] = va;
5961       desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(stride);
5962       desc[2] = num_records;
5963       desc[3] = rsrc_word3;
5964    }
5965 }
5966 
5967 static void
radv_flush_vertex_descriptors(struct radv_cmd_buffer * cmd_buffer)5968 radv_flush_vertex_descriptors(struct radv_cmd_buffer *cmd_buffer)
5969 {
5970    struct radv_shader *vs = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX);
5971    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5972 
5973    if (!vs->info.vs.vb_desc_usage_mask)
5974       return;
5975 
5976    /* Mesh shaders don't have vertex descriptors. */
5977    assert(!cmd_buffer->state.mesh_shading);
5978 
5979    unsigned vb_desc_alloc_size = util_bitcount(vs->info.vs.vb_desc_usage_mask) * 16;
5980    unsigned vb_offset;
5981    void *vb_ptr;
5982    uint64_t va;
5983 
5984    /* allocate some descriptor state for vertex buffers */
5985    if (!radv_cmd_buffer_upload_alloc(cmd_buffer, vb_desc_alloc_size, &vb_offset, &vb_ptr))
5986       return;
5987 
5988    radv_write_vertex_descriptors(cmd_buffer, vs, vb_ptr);
5989 
5990    va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
5991    va += vb_offset;
5992 
5993    radv_emit_userdata_address(device, cmd_buffer->cs, vs, AC_UD_VS_VERTEX_BUFFERS, va);
5994 
5995    cmd_buffer->state.vb_va = va;
5996    cmd_buffer->state.vb_size = vb_desc_alloc_size;
5997    cmd_buffer->state.prefetch_L2_mask |= RADV_PREFETCH_VBO_DESCRIPTORS;
5998 
5999    if (radv_device_fault_detection_enabled(device))
6000       radv_save_vertex_descriptors(cmd_buffer, (uintptr_t)vb_ptr);
6001 
6002    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_VERTEX_BUFFER;
6003 }
6004 
6005 static void
radv_emit_streamout_buffers(struct radv_cmd_buffer * cmd_buffer,uint64_t va)6006 radv_emit_streamout_buffers(struct radv_cmd_buffer *cmd_buffer, uint64_t va)
6007 {
6008    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
6009    uint32_t streamout_buffers_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_STREAMOUT_BUFFERS);
6010    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6011 
6012    if (!streamout_buffers_offset)
6013       return;
6014 
6015    radv_emit_shader_pointer(device, cmd_buffer->cs, streamout_buffers_offset, va, false);
6016 
6017    if (cmd_buffer->state.gs_copy_shader) {
6018       streamout_buffers_offset = radv_get_user_sgpr_loc(cmd_buffer->state.gs_copy_shader, AC_UD_STREAMOUT_BUFFERS);
6019       if (streamout_buffers_offset)
6020          radv_emit_shader_pointer(device, cmd_buffer->cs, streamout_buffers_offset, va, false);
6021    }
6022 }
6023 
6024 static void
radv_emit_streamout_state(struct radv_cmd_buffer * cmd_buffer)6025 radv_emit_streamout_state(struct radv_cmd_buffer *cmd_buffer)
6026 {
6027    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6028    const struct radv_physical_device *pdev = radv_device_physical(device);
6029    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
6030    const uint32_t streamout_state_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_STREAMOUT_STATE);
6031    struct radv_streamout_state *so = &cmd_buffer->state.streamout;
6032 
6033    assert(pdev->info.gfx_level >= GFX12);
6034 
6035    if (!streamout_state_offset)
6036       return;
6037 
6038    radv_emit_shader_pointer(device, cmd_buffer->cs, streamout_state_offset, so->state_va, false);
6039 }
6040 
6041 static void
radv_flush_streamout_descriptors(struct radv_cmd_buffer * cmd_buffer)6042 radv_flush_streamout_descriptors(struct radv_cmd_buffer *cmd_buffer)
6043 {
6044    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6045    const struct radv_physical_device *pdev = radv_device_physical(device);
6046 
6047    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_STREAMOUT_BUFFER) {
6048       struct radv_streamout_binding *sb = cmd_buffer->streamout_bindings;
6049       struct radv_streamout_state *so = &cmd_buffer->state.streamout;
6050       unsigned so_offset;
6051       uint64_t desc_va;
6052       void *so_ptr;
6053 
6054       /* Allocate some descriptor state for streamout buffers. */
6055       if (!radv_cmd_buffer_upload_alloc(cmd_buffer, MAX_SO_BUFFERS * 16, &so_offset, &so_ptr))
6056          return;
6057 
6058       for (uint32_t i = 0; i < MAX_SO_BUFFERS; i++) {
6059          struct radv_buffer *buffer = sb[i].buffer;
6060          uint32_t *desc = &((uint32_t *)so_ptr)[i * 4];
6061          uint32_t size = 0;
6062          uint64_t va = 0;
6063 
6064          if (so->enabled_mask & (1 << i)) {
6065             va = radv_buffer_get_va(buffer->bo) + buffer->offset;
6066 
6067             va += sb[i].offset;
6068 
6069             /* Set the descriptor.
6070              *
6071              * On GFX8, the format must be non-INVALID, otherwise
6072              * the buffer will be considered not bound and store
6073              * instructions will be no-ops.
6074              */
6075             size = 0xffffffff;
6076 
6077             if (pdev->use_ngg_streamout) {
6078                /* With NGG streamout, the buffer size is used to determine the max emit per buffer
6079                 * and also acts as a disable bit when it's 0.
6080                 */
6081                size = radv_is_streamout_enabled(cmd_buffer) ? sb[i].size : 0;
6082             }
6083          }
6084 
6085          ac_build_raw_buffer_descriptor(pdev->info.gfx_level, va, size, desc);
6086       }
6087 
6088       desc_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
6089       desc_va += so_offset;
6090 
6091       radv_emit_streamout_buffers(cmd_buffer, desc_va);
6092 
6093       if (pdev->info.gfx_level >= GFX12)
6094          radv_emit_streamout_state(cmd_buffer);
6095    }
6096 
6097    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_STREAMOUT_BUFFER;
6098 }
6099 
6100 static void
radv_flush_force_vrs_state(struct radv_cmd_buffer * cmd_buffer)6101 radv_flush_force_vrs_state(struct radv_cmd_buffer *cmd_buffer)
6102 {
6103    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6104    const struct radv_physical_device *pdev = radv_device_physical(device);
6105    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
6106    uint32_t force_vrs_rates_offset;
6107 
6108    if (!last_vgt_shader->info.force_vrs_per_vertex) {
6109       /* Un-set the SGPR index so we know to re-emit it later. */
6110       cmd_buffer->state.last_force_vrs_rates_offset = -1;
6111       return;
6112    }
6113 
6114    if (cmd_buffer->state.gs_copy_shader) {
6115       force_vrs_rates_offset = radv_get_user_sgpr_loc(cmd_buffer->state.gs_copy_shader, AC_UD_FORCE_VRS_RATES);
6116    } else {
6117       force_vrs_rates_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_FORCE_VRS_RATES);
6118    }
6119 
6120    enum amd_gfx_level gfx_level = pdev->info.gfx_level;
6121    uint32_t vrs_rates = 0;
6122 
6123    switch (device->force_vrs) {
6124    case RADV_FORCE_VRS_2x2:
6125       vrs_rates = gfx_level >= GFX11 ? V_0283D0_VRS_SHADING_RATE_2X2 : (1u << 2) | (1u << 4);
6126       break;
6127    case RADV_FORCE_VRS_2x1:
6128       vrs_rates = gfx_level >= GFX11 ? V_0283D0_VRS_SHADING_RATE_2X1 : (1u << 2) | (0u << 4);
6129       break;
6130    case RADV_FORCE_VRS_1x2:
6131       vrs_rates = gfx_level >= GFX11 ? V_0283D0_VRS_SHADING_RATE_1X2 : (0u << 2) | (1u << 4);
6132       break;
6133    default:
6134       break;
6135    }
6136 
6137    if (cmd_buffer->state.last_vrs_rates != vrs_rates ||
6138        cmd_buffer->state.last_force_vrs_rates_offset != force_vrs_rates_offset) {
6139       radeon_set_sh_reg(cmd_buffer->cs, force_vrs_rates_offset, vrs_rates);
6140    }
6141 
6142    cmd_buffer->state.last_vrs_rates = vrs_rates;
6143    cmd_buffer->state.last_force_vrs_rates_offset = force_vrs_rates_offset;
6144 }
6145 
6146 static void
radv_upload_graphics_shader_descriptors(struct radv_cmd_buffer * cmd_buffer)6147 radv_upload_graphics_shader_descriptors(struct radv_cmd_buffer *cmd_buffer)
6148 {
6149    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_VERTEX_BUFFER)
6150       radv_flush_vertex_descriptors(cmd_buffer);
6151 
6152    radv_flush_streamout_descriptors(cmd_buffer);
6153 
6154    VkShaderStageFlags stages = VK_SHADER_STAGE_ALL_GRAPHICS;
6155    radv_flush_descriptors(cmd_buffer, stages, VK_PIPELINE_BIND_POINT_GRAPHICS);
6156 
6157    const VkShaderStageFlags pc_stages = radv_must_flush_constants(cmd_buffer, stages, VK_PIPELINE_BIND_POINT_GRAPHICS);
6158    if (pc_stages)
6159       radv_flush_constants(cmd_buffer, pc_stages, VK_PIPELINE_BIND_POINT_GRAPHICS);
6160 
6161    radv_flush_force_vrs_state(cmd_buffer);
6162 }
6163 
6164 struct radv_draw_info {
6165    /**
6166     * Number of vertices.
6167     */
6168    uint32_t count;
6169 
6170    /**
6171     * First instance id.
6172     */
6173    uint32_t first_instance;
6174 
6175    /**
6176     * Number of instances.
6177     */
6178    uint32_t instance_count;
6179 
6180    /**
6181     * Whether it's an indexed draw.
6182     */
6183    bool indexed;
6184 
6185    /**
6186     * Indirect draw parameters resource.
6187     */
6188    struct radv_buffer *indirect;
6189    uint64_t indirect_offset;
6190    uint32_t stride;
6191 
6192    /**
6193     * Draw count parameters resource.
6194     */
6195    struct radv_buffer *count_buffer;
6196    uint64_t count_buffer_offset;
6197 
6198    /**
6199     * Stream output parameters resource.
6200     */
6201    struct radv_buffer *strmout_buffer;
6202    uint64_t strmout_buffer_offset;
6203 };
6204 
6205 struct radv_prim_vertex_count {
6206    uint8_t min;
6207    uint8_t incr;
6208 };
6209 
6210 static inline unsigned
radv_prims_for_vertices(struct radv_prim_vertex_count * info,unsigned num)6211 radv_prims_for_vertices(struct radv_prim_vertex_count *info, unsigned num)
6212 {
6213    if (num == 0)
6214       return 0;
6215 
6216    if (info->incr == 0)
6217       return 0;
6218 
6219    if (num < info->min)
6220       return 0;
6221 
6222    return 1 + ((num - info->min) / info->incr);
6223 }
6224 
6225 static const struct radv_prim_vertex_count prim_size_table[] = {
6226    [V_008958_DI_PT_NONE] = {0, 0},          [V_008958_DI_PT_POINTLIST] = {1, 1},
6227    [V_008958_DI_PT_LINELIST] = {2, 2},      [V_008958_DI_PT_LINESTRIP] = {2, 1},
6228    [V_008958_DI_PT_TRILIST] = {3, 3},       [V_008958_DI_PT_TRIFAN] = {3, 1},
6229    [V_008958_DI_PT_TRISTRIP] = {3, 1},      [V_008958_DI_PT_LINELIST_ADJ] = {4, 4},
6230    [V_008958_DI_PT_LINESTRIP_ADJ] = {4, 1}, [V_008958_DI_PT_TRILIST_ADJ] = {6, 6},
6231    [V_008958_DI_PT_TRISTRIP_ADJ] = {6, 2},  [V_008958_DI_PT_RECTLIST] = {3, 3},
6232    [V_008958_DI_PT_LINELOOP] = {2, 1},      [V_008958_DI_PT_POLYGON] = {3, 1},
6233    [V_008958_DI_PT_2D_TRI_STRIP] = {0, 0},
6234 };
6235 
6236 static uint32_t
radv_get_ia_multi_vgt_param(struct radv_cmd_buffer * cmd_buffer,bool instanced_draw,bool indirect_draw,bool count_from_stream_output,uint32_t draw_vertex_count,unsigned topology,bool prim_restart_enable,unsigned patch_control_points,unsigned num_tess_patches)6237 radv_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer, bool instanced_draw, bool indirect_draw,
6238                             bool count_from_stream_output, uint32_t draw_vertex_count, unsigned topology,
6239                             bool prim_restart_enable, unsigned patch_control_points, unsigned num_tess_patches)
6240 {
6241    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6242    const struct radv_physical_device *pdev = radv_device_physical(device);
6243    const struct radeon_info *gpu_info = &pdev->info;
6244    const unsigned max_primgroup_in_wave = 2;
6245    /* SWITCH_ON_EOP(0) is always preferable. */
6246    bool wd_switch_on_eop = false;
6247    bool ia_switch_on_eop = false;
6248    bool ia_switch_on_eoi = false;
6249    bool partial_vs_wave = false;
6250    bool partial_es_wave = cmd_buffer->state.ia_multi_vgt_param.partial_es_wave;
6251    bool multi_instances_smaller_than_primgroup;
6252    struct radv_prim_vertex_count prim_vertex_count = prim_size_table[topology];
6253    unsigned primgroup_size;
6254 
6255    if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TESS_CTRL)) {
6256       primgroup_size = num_tess_patches;
6257    } else if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY)) {
6258       primgroup_size = 64;
6259    } else {
6260       primgroup_size = 128; /* recommended without a GS */
6261    }
6262 
6263    /* GS requirement. */
6264    if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY) && gpu_info->gfx_level <= GFX8) {
6265       unsigned gs_table_depth = pdev->gs_table_depth;
6266       if (SI_GS_PER_ES / primgroup_size >= gs_table_depth - 3)
6267          partial_es_wave = true;
6268    }
6269 
6270    if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TESS_CTRL)) {
6271       if (topology == V_008958_DI_PT_PATCH) {
6272          prim_vertex_count.min = patch_control_points;
6273          prim_vertex_count.incr = 1;
6274       }
6275    }
6276 
6277    multi_instances_smaller_than_primgroup = indirect_draw;
6278    if (!multi_instances_smaller_than_primgroup && instanced_draw) {
6279       uint32_t num_prims = radv_prims_for_vertices(&prim_vertex_count, draw_vertex_count);
6280       if (num_prims < primgroup_size)
6281          multi_instances_smaller_than_primgroup = true;
6282    }
6283 
6284    ia_switch_on_eoi = cmd_buffer->state.ia_multi_vgt_param.ia_switch_on_eoi;
6285    partial_vs_wave = cmd_buffer->state.ia_multi_vgt_param.partial_vs_wave;
6286 
6287    if (gpu_info->gfx_level >= GFX7) {
6288       /* WD_SWITCH_ON_EOP has no effect on GPUs with less than
6289        * 4 shader engines. Set 1 to pass the assertion below.
6290        * The other cases are hardware requirements. */
6291       if (gpu_info->max_se < 4 || topology == V_008958_DI_PT_POLYGON || topology == V_008958_DI_PT_LINELOOP ||
6292           topology == V_008958_DI_PT_TRIFAN || topology == V_008958_DI_PT_TRISTRIP_ADJ ||
6293           (prim_restart_enable && (gpu_info->family < CHIP_POLARIS10 ||
6294                                    (topology != V_008958_DI_PT_POINTLIST && topology != V_008958_DI_PT_LINESTRIP))))
6295          wd_switch_on_eop = true;
6296 
6297       /* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
6298        * We don't know that for indirect drawing, so treat it as
6299        * always problematic. */
6300       if (gpu_info->family == CHIP_HAWAII && (instanced_draw || indirect_draw))
6301          wd_switch_on_eop = true;
6302 
6303       /* Performance recommendation for 4 SE Gfx7-8 parts if
6304        * instances are smaller than a primgroup.
6305        * Assume indirect draws always use small instances.
6306        * This is needed for good VS wave utilization.
6307        */
6308       if (gpu_info->gfx_level <= GFX8 && gpu_info->max_se == 4 && multi_instances_smaller_than_primgroup)
6309          wd_switch_on_eop = true;
6310 
6311       /* Hardware requirement when drawing primitives from a stream
6312        * output buffer.
6313        */
6314       if (count_from_stream_output)
6315          wd_switch_on_eop = true;
6316 
6317       /* Required on GFX7 and later. */
6318       if (gpu_info->max_se > 2 && !wd_switch_on_eop)
6319          ia_switch_on_eoi = true;
6320 
6321       /* Required by Hawaii and, for some special cases, by GFX8. */
6322       if (ia_switch_on_eoi &&
6323           (gpu_info->family == CHIP_HAWAII ||
6324            (gpu_info->gfx_level == GFX8 &&
6325             /* max primgroup in wave is always 2 - leave this for documentation */
6326             (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY) || max_primgroup_in_wave != 2))))
6327          partial_vs_wave = true;
6328 
6329       /* Instancing bug on Bonaire. */
6330       if (gpu_info->family == CHIP_BONAIRE && ia_switch_on_eoi && (instanced_draw || indirect_draw))
6331          partial_vs_wave = true;
6332 
6333       /* If the WD switch is false, the IA switch must be false too. */
6334       assert(wd_switch_on_eop || !ia_switch_on_eop);
6335    }
6336    /* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
6337    if (gpu_info->gfx_level <= GFX8 && ia_switch_on_eoi)
6338       partial_es_wave = true;
6339 
6340    if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY)) {
6341       /* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
6342        * The hw doc says all multi-SE chips are affected, but amdgpu-pro Vulkan
6343        * only applies it to Hawaii. Do what amdgpu-pro Vulkan does.
6344        */
6345       if (gpu_info->family == CHIP_HAWAII && ia_switch_on_eoi) {
6346          bool set_vgt_flush = indirect_draw;
6347          if (!set_vgt_flush && instanced_draw) {
6348             uint32_t num_prims = radv_prims_for_vertices(&prim_vertex_count, draw_vertex_count);
6349             if (num_prims <= 1)
6350                set_vgt_flush = true;
6351          }
6352          if (set_vgt_flush)
6353             cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
6354       }
6355    }
6356 
6357    /* Workaround for a VGT hang when strip primitive types are used with
6358     * primitive restart.
6359     */
6360    if (prim_restart_enable && (topology == V_008958_DI_PT_LINESTRIP || topology == V_008958_DI_PT_TRISTRIP ||
6361                                topology == V_008958_DI_PT_LINESTRIP_ADJ || topology == V_008958_DI_PT_TRISTRIP_ADJ)) {
6362       partial_vs_wave = true;
6363    }
6364 
6365    return cmd_buffer->state.ia_multi_vgt_param.base | S_028AA8_PRIMGROUP_SIZE(primgroup_size - 1) |
6366           S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) | S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
6367           S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) | S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
6368           S_028AA8_WD_SWITCH_ON_EOP(gpu_info->gfx_level >= GFX7 ? wd_switch_on_eop : 0);
6369 }
6370 
6371 static void
radv_emit_ia_multi_vgt_param(struct radv_cmd_buffer * cmd_buffer,bool instanced_draw,bool indirect_draw,bool count_from_stream_output,uint32_t draw_vertex_count)6372 radv_emit_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer, bool instanced_draw, bool indirect_draw,
6373                              bool count_from_stream_output, uint32_t draw_vertex_count)
6374 {
6375    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6376    const struct radv_physical_device *pdev = radv_device_physical(device);
6377    const struct radeon_info *gpu_info = &pdev->info;
6378    struct radv_cmd_state *state = &cmd_buffer->state;
6379    const unsigned patch_control_points = state->dynamic.vk.ts.patch_control_points;
6380    const unsigned topology = state->dynamic.vk.ia.primitive_topology;
6381    const bool prim_restart_enable = state->dynamic.vk.ia.primitive_restart_enable;
6382    struct radeon_cmdbuf *cs = cmd_buffer->cs;
6383    unsigned ia_multi_vgt_param;
6384 
6385    ia_multi_vgt_param = radv_get_ia_multi_vgt_param(cmd_buffer, instanced_draw, indirect_draw, count_from_stream_output,
6386                                                     draw_vertex_count, topology, prim_restart_enable,
6387                                                     patch_control_points, state->tess_num_patches);
6388 
6389    if (state->last_ia_multi_vgt_param != ia_multi_vgt_param) {
6390       if (gpu_info->gfx_level == GFX9) {
6391          radeon_set_uconfig_reg_idx(&pdev->info, cs, R_030960_IA_MULTI_VGT_PARAM, 4, ia_multi_vgt_param);
6392       } else if (gpu_info->gfx_level >= GFX7) {
6393          radeon_set_context_reg_idx(cs, R_028AA8_IA_MULTI_VGT_PARAM, 1, ia_multi_vgt_param);
6394       } else {
6395          radeon_set_context_reg(cs, R_028AA8_IA_MULTI_VGT_PARAM, ia_multi_vgt_param);
6396       }
6397       state->last_ia_multi_vgt_param = ia_multi_vgt_param;
6398    }
6399 }
6400 
6401 static void
gfx10_emit_ge_cntl(struct radv_cmd_buffer * cmd_buffer)6402 gfx10_emit_ge_cntl(struct radv_cmd_buffer *cmd_buffer)
6403 {
6404    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
6405    struct radv_cmd_state *state = &cmd_buffer->state;
6406    bool break_wave_at_eoi = false;
6407    unsigned primgroup_size;
6408    unsigned ge_cntl;
6409 
6410    if (last_vgt_shader->info.is_ngg)
6411       return;
6412 
6413    if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TESS_CTRL)) {
6414       const struct radv_shader *tes = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_TESS_EVAL);
6415 
6416       primgroup_size = state->tess_num_patches;
6417 
6418       if (cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id || tes->info.uses_prim_id ||
6419           (tes->info.merged_shader_compiled_separately &&
6420            cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id)) {
6421          break_wave_at_eoi = true;
6422       }
6423    } else if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY)) {
6424       const struct radv_legacy_gs_info *gs_state = &cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]->info.gs_ring_info;
6425       primgroup_size = gs_state->gs_prims_per_subgroup;
6426    } else {
6427       primgroup_size = 128; /* recommended without a GS and tess */
6428    }
6429 
6430    ge_cntl = S_03096C_PRIM_GRP_SIZE_GFX10(primgroup_size) | S_03096C_VERT_GRP_SIZE(256) | /* disable vertex grouping */
6431              S_03096C_PACKET_TO_ONE_PA(0) /* this should only be set if LINE_STIPPLE_TEX_ENA == 1 */ |
6432              S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
6433 
6434    if (state->last_ge_cntl != ge_cntl) {
6435       radeon_set_uconfig_reg(cmd_buffer->cs, R_03096C_GE_CNTL, ge_cntl);
6436       state->last_ge_cntl = ge_cntl;
6437    }
6438 }
6439 
6440 static void
radv_emit_draw_registers(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * draw_info)6441 radv_emit_draw_registers(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *draw_info)
6442 {
6443    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6444    const struct radv_physical_device *pdev = radv_device_physical(device);
6445    const struct radeon_info *gpu_info = &pdev->info;
6446    struct radv_cmd_state *state = &cmd_buffer->state;
6447    struct radeon_cmdbuf *cs = cmd_buffer->cs;
6448    uint32_t topology = state->dynamic.vk.ia.primitive_topology;
6449    bool disable_instance_packing = false;
6450 
6451    /* Draw state. */
6452    if (gpu_info->gfx_level >= GFX10) {
6453       gfx10_emit_ge_cntl(cmd_buffer);
6454    } else {
6455       radv_emit_ia_multi_vgt_param(cmd_buffer, draw_info->instance_count > 1, draw_info->indirect,
6456                                    !!draw_info->strmout_buffer, draw_info->indirect ? 0 : draw_info->count);
6457    }
6458 
6459    /* RDNA2 is affected by a hardware bug when instance packing is enabled for adjacent primitive
6460     * topologies and instance_count > 1, pipeline stats generated by GE are incorrect. It needs to
6461     * be applied for indexed and non-indexed draws.
6462     */
6463    if (gpu_info->gfx_level == GFX10_3 && state->active_pipeline_queries > 0 &&
6464        (draw_info->instance_count > 1 || draw_info->indirect) &&
6465        (topology == V_008958_DI_PT_LINELIST_ADJ || topology == V_008958_DI_PT_LINESTRIP_ADJ ||
6466         topology == V_008958_DI_PT_TRILIST_ADJ || topology == V_008958_DI_PT_TRISTRIP_ADJ)) {
6467       disable_instance_packing = true;
6468    }
6469 
6470    if ((draw_info->indexed && state->index_type != state->last_index_type) ||
6471        (gpu_info->gfx_level == GFX10_3 &&
6472         (state->last_index_type == -1 ||
6473          disable_instance_packing != G_028A7C_DISABLE_INSTANCE_PACKING(state->last_index_type)))) {
6474       uint32_t index_type = state->index_type | S_028A7C_DISABLE_INSTANCE_PACKING(disable_instance_packing);
6475 
6476       if (pdev->info.gfx_level >= GFX9) {
6477          radeon_set_uconfig_reg_idx(&pdev->info, cs, R_03090C_VGT_INDEX_TYPE, 2, index_type);
6478       } else {
6479          radeon_emit(cs, PKT3(PKT3_INDEX_TYPE, 0, 0));
6480          radeon_emit(cs, index_type);
6481       }
6482 
6483       state->last_index_type = index_type;
6484    }
6485 }
6486 
6487 static void
radv_stage_flush(struct radv_cmd_buffer * cmd_buffer,VkPipelineStageFlags2 src_stage_mask)6488 radv_stage_flush(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 src_stage_mask)
6489 {
6490    /* For simplicity, if the barrier wants to wait for the task shader,
6491     * just make it wait for the mesh shader too.
6492     */
6493    if (src_stage_mask & VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT)
6494       src_stage_mask |= VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT;
6495 
6496    if (src_stage_mask & (VK_PIPELINE_STAGE_2_COPY_BIT | VK_PIPELINE_STAGE_2_RESOLVE_BIT | VK_PIPELINE_STAGE_2_BLIT_BIT |
6497                          VK_PIPELINE_STAGE_2_CLEAR_BIT)) {
6498       /* Be conservative for now. */
6499       src_stage_mask |= VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT;
6500    }
6501 
6502    if (src_stage_mask &
6503        (VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT | VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT |
6504         VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR |
6505         VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR | VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR |
6506         VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_EXT | VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT |
6507         VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)) {
6508       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
6509    }
6510 
6511    if (src_stage_mask & (VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
6512                          VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT |
6513                          VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT | VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT |
6514                          VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)) {
6515       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH;
6516    } else if (src_stage_mask &
6517               (VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT | VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT |
6518                VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT |
6519                VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT | VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT |
6520                VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT | VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT |
6521                VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT)) {
6522       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VS_PARTIAL_FLUSH;
6523    }
6524 }
6525 
6526 static bool
can_skip_buffer_l2_flushes(struct radv_device * device)6527 can_skip_buffer_l2_flushes(struct radv_device *device)
6528 {
6529    const struct radv_physical_device *pdev = radv_device_physical(device);
6530    return pdev->info.gfx_level == GFX9 || (pdev->info.gfx_level >= GFX10 && !pdev->info.tcc_rb_non_coherent);
6531 }
6532 
6533 /*
6534  * In vulkan barriers have two kinds of operations:
6535  *
6536  * - visibility (implemented with radv_src_access_flush)
6537  * - availability (implemented with radv_dst_access_flush)
6538  *
6539  * for a memory operation to observe the result of a previous memory operation
6540  * one needs to do a visibility operation from the source memory and then an
6541  * availability operation to the target memory.
6542  *
6543  * The complication is the availability and visibility operations do not need to
6544  * be in the same barrier.
6545  *
6546  * The cleanest way to implement this is to define the visibility operation to
6547  * bring the caches to a "state of rest", which none of the caches below that
6548  * level dirty.
6549  *
6550  * For GFX8 and earlier this would be VRAM/GTT with none of the caches dirty.
6551  *
6552  * For GFX9+ we can define the state at rest to be L2 instead of VRAM for all
6553  * buffers and for images marked as coherent, and VRAM/GTT for non-coherent
6554  * images. However, given the existence of memory barriers which do not specify
6555  * the image/buffer it often devolves to just VRAM/GTT anyway.
6556  *
6557  * To help reducing the invalidations for GPUs that have L2 coherency between the
6558  * RB and the shader caches, we always invalidate L2 on the src side, as we can
6559  * use our knowledge of past usage to optimize flushes away.
6560  */
6561 
6562 enum radv_cmd_flush_bits
radv_src_access_flush(struct radv_cmd_buffer * cmd_buffer,VkPipelineStageFlags2 src_stages,VkAccessFlags2 src_flags,VkAccessFlags3KHR src3_flags,const struct radv_image * image,const VkImageSubresourceRange * range)6563 radv_src_access_flush(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 src_stages, VkAccessFlags2 src_flags,
6564                       VkAccessFlags3KHR src3_flags, const struct radv_image *image,
6565                       const VkImageSubresourceRange *range)
6566 {
6567    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6568 
6569    src_flags = vk_expand_src_access_flags2(src_stages, src_flags);
6570 
6571    bool has_CB_meta = true, has_DB_meta = true;
6572    bool image_is_coherent = image ? radv_image_is_l2_coherent(device, image, range) : false;
6573    enum radv_cmd_flush_bits flush_bits = 0;
6574 
6575    if (image) {
6576       if (!radv_image_has_CB_metadata(image))
6577          has_CB_meta = false;
6578       if (!radv_image_has_htile(image))
6579          has_DB_meta = false;
6580    }
6581 
6582    if (src_flags & VK_ACCESS_2_COMMAND_PREPROCESS_WRITE_BIT_EXT)
6583       flush_bits |= RADV_CMD_FLAG_INV_L2;
6584 
6585    if (src_flags & (VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT | VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR)) {
6586       /* since the STORAGE bit isn't set we know that this is a meta operation.
6587        * on the dst flush side we skip CB/DB flushes without the STORAGE bit, so
6588        * set it here. */
6589       if (image && !(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT)) {
6590          if (vk_format_is_depth_or_stencil(image->vk.format)) {
6591             flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB;
6592          } else {
6593             flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
6594          }
6595       }
6596 
6597       if (!image_is_coherent)
6598          flush_bits |= RADV_CMD_FLAG_INV_L2;
6599    }
6600 
6601    if (src_flags &
6602        (VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT)) {
6603       if (!image_is_coherent)
6604          flush_bits |= RADV_CMD_FLAG_WB_L2;
6605    }
6606 
6607    if (src_flags & VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT) {
6608       flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
6609       if (has_CB_meta)
6610          flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
6611    }
6612 
6613    if (src_flags & VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT) {
6614       flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB;
6615       if (has_DB_meta)
6616          flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
6617    }
6618 
6619    if (src_flags & VK_ACCESS_2_TRANSFER_WRITE_BIT) {
6620       flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB;
6621 
6622       if (!image_is_coherent)
6623          flush_bits |= RADV_CMD_FLAG_INV_L2;
6624       if (has_CB_meta)
6625          flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
6626       if (has_DB_meta)
6627          flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
6628    }
6629 
6630    return flush_bits;
6631 }
6632 
6633 enum radv_cmd_flush_bits
radv_dst_access_flush(struct radv_cmd_buffer * cmd_buffer,VkPipelineStageFlags2 dst_stages,VkAccessFlags2 dst_flags,VkAccessFlags3KHR dst3_flags,const struct radv_image * image,const VkImageSubresourceRange * range)6634 radv_dst_access_flush(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 dst_stages, VkAccessFlags2 dst_flags,
6635                       VkAccessFlags3KHR dst3_flags, const struct radv_image *image,
6636                       const VkImageSubresourceRange *range)
6637 {
6638    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6639    const struct radv_physical_device *pdev = radv_device_physical(device);
6640    bool has_CB_meta = true, has_DB_meta = true;
6641    enum radv_cmd_flush_bits flush_bits = 0;
6642    bool flush_CB = true, flush_DB = true;
6643    bool image_is_coherent = image ? radv_image_is_l2_coherent(device, image, range) : false;
6644    bool flush_L2_metadata = false;
6645 
6646    dst_flags = vk_expand_dst_access_flags2(dst_stages, dst_flags);
6647 
6648    if (image) {
6649       if (!(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT)) {
6650          flush_CB = false;
6651          flush_DB = false;
6652       }
6653 
6654       if (!radv_image_has_CB_metadata(image))
6655          has_CB_meta = false;
6656       if (!radv_image_has_htile(image))
6657          has_DB_meta = false;
6658    }
6659 
6660    flush_L2_metadata = (has_CB_meta || has_DB_meta) && pdev->info.gfx_level < GFX12;
6661 
6662    /* All the L2 invalidations below are not the CB/DB. So if there are no incoherent images
6663     * in the L2 cache in CB/DB mode then they are already usable from all the other L2 clients. */
6664    image_is_coherent |= can_skip_buffer_l2_flushes(device) && !cmd_buffer->state.rb_noncoherent_dirty;
6665 
6666    if (dst_flags & VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT) {
6667       /* SMEM loads are used to read compute dispatch size in shaders */
6668       if (!device->load_grid_size_from_user_sgpr)
6669          flush_bits |= RADV_CMD_FLAG_INV_SCACHE;
6670 
6671       /* Ensure the DGC meta shader can read the commands. */
6672       if (device->vk.enabled_features.deviceGeneratedCommands) {
6673          flush_bits |= RADV_CMD_FLAG_INV_SCACHE | RADV_CMD_FLAG_INV_VCACHE;
6674          if (pdev->info.gfx_level < GFX9)
6675             flush_bits |= RADV_CMD_FLAG_INV_L2;
6676       }
6677    }
6678 
6679    if (dst_flags & VK_ACCESS_2_UNIFORM_READ_BIT)
6680       flush_bits |= RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_SCACHE;
6681 
6682    if (dst_flags & (VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT | VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT |
6683                     VK_ACCESS_2_TRANSFER_READ_BIT)) {
6684       flush_bits |= RADV_CMD_FLAG_INV_VCACHE;
6685 
6686       if (flush_L2_metadata)
6687          flush_bits |= RADV_CMD_FLAG_INV_L2_METADATA;
6688       if (!image_is_coherent)
6689          flush_bits |= RADV_CMD_FLAG_INV_L2;
6690    }
6691 
6692    if (dst_flags & VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT)
6693       flush_bits |= RADV_CMD_FLAG_INV_SCACHE;
6694 
6695    if (dst_flags & (VK_ACCESS_2_SHADER_STORAGE_READ_BIT | VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR |
6696                     VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR | VK_ACCESS_2_SHADER_SAMPLED_READ_BIT)) {
6697       if (dst_flags & (VK_ACCESS_2_SHADER_STORAGE_READ_BIT | VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR |
6698                        VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR)) {
6699          /* Unlike LLVM, ACO uses SMEM for SSBOs and we have to
6700           * invalidate the scalar cache. */
6701          if (!pdev->use_llvm && !image)
6702             flush_bits |= RADV_CMD_FLAG_INV_SCACHE;
6703       }
6704 
6705       flush_bits |= RADV_CMD_FLAG_INV_VCACHE;
6706       if (flush_L2_metadata)
6707          flush_bits |= RADV_CMD_FLAG_INV_L2_METADATA;
6708       if (!image_is_coherent)
6709          flush_bits |= RADV_CMD_FLAG_INV_L2;
6710    }
6711 
6712    if (dst_flags & VK_ACCESS_2_COMMAND_PREPROCESS_READ_BIT_EXT) {
6713       flush_bits |= RADV_CMD_FLAG_INV_VCACHE;
6714       if (pdev->info.gfx_level < GFX9)
6715          flush_bits |= RADV_CMD_FLAG_INV_L2;
6716    }
6717 
6718    if (dst_flags & VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT) {
6719       if (flush_CB)
6720          flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
6721       if (has_CB_meta)
6722          flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
6723    }
6724 
6725    if (dst_flags & VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT) {
6726       if (flush_DB)
6727          flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB;
6728       if (has_DB_meta)
6729          flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
6730    }
6731 
6732    return flush_bits;
6733 }
6734 
6735 void
radv_emit_resolve_barrier(struct radv_cmd_buffer * cmd_buffer,const struct radv_resolve_barrier * barrier)6736 radv_emit_resolve_barrier(struct radv_cmd_buffer *cmd_buffer, const struct radv_resolve_barrier *barrier)
6737 {
6738    struct radv_rendering_state *render = &cmd_buffer->state.render;
6739 
6740    for (uint32_t i = 0; i < render->color_att_count; i++) {
6741       struct radv_image_view *iview = render->color_att[i].iview;
6742       if (!iview)
6743          continue;
6744 
6745       const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
6746 
6747       cmd_buffer->state.flush_bits |=
6748          radv_src_access_flush(cmd_buffer, barrier->src_stage_mask, barrier->src_access_mask, 0, iview->image, &range);
6749    }
6750    if (render->ds_att.iview) {
6751       struct radv_image_view *iview = render->ds_att.iview;
6752 
6753       const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
6754 
6755       cmd_buffer->state.flush_bits |= radv_src_access_flush(
6756          cmd_buffer, barrier->src_stage_mask, barrier->src_access_mask, 0, render->ds_att.iview->image, &range);
6757    }
6758 
6759    radv_stage_flush(cmd_buffer, barrier->src_stage_mask);
6760 
6761    for (uint32_t i = 0; i < render->color_att_count; i++) {
6762       struct radv_image_view *iview = render->color_att[i].iview;
6763       if (!iview)
6764          continue;
6765 
6766       const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
6767 
6768       cmd_buffer->state.flush_bits |=
6769          radv_dst_access_flush(cmd_buffer, barrier->dst_stage_mask, barrier->dst_access_mask, 0, iview->image, &range);
6770    }
6771    if (render->ds_att.iview) {
6772       struct radv_image_view *iview = render->ds_att.iview;
6773 
6774       const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
6775 
6776       cmd_buffer->state.flush_bits |=
6777          radv_dst_access_flush(cmd_buffer, barrier->dst_stage_mask, barrier->dst_access_mask, 0, iview->image, &range);
6778    }
6779 
6780    radv_gang_barrier(cmd_buffer, barrier->src_stage_mask, barrier->dst_stage_mask);
6781 }
6782 
6783 static void
radv_handle_image_transition_separate(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout src_layout,VkImageLayout dst_layout,VkImageLayout src_stencil_layout,VkImageLayout dst_stencil_layout,uint32_t src_family_index,uint32_t dst_family_index,const VkImageSubresourceRange * range,struct radv_sample_locations_state * sample_locs)6784 radv_handle_image_transition_separate(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
6785                                       VkImageLayout src_layout, VkImageLayout dst_layout,
6786                                       VkImageLayout src_stencil_layout, VkImageLayout dst_stencil_layout,
6787                                       uint32_t src_family_index, uint32_t dst_family_index,
6788                                       const VkImageSubresourceRange *range,
6789                                       struct radv_sample_locations_state *sample_locs)
6790 {
6791    /* If we have a stencil layout that's different from depth, we need to
6792     * perform the stencil transition separately.
6793     */
6794    if ((range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) &&
6795        (src_layout != src_stencil_layout || dst_layout != dst_stencil_layout)) {
6796       VkImageSubresourceRange aspect_range = *range;
6797       /* Depth-only transitions. */
6798       if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
6799          aspect_range.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
6800          radv_handle_image_transition(cmd_buffer, image, src_layout, dst_layout, src_family_index, dst_family_index,
6801                                       &aspect_range, sample_locs);
6802       }
6803 
6804       /* Stencil-only transitions. */
6805       aspect_range.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
6806       radv_handle_image_transition(cmd_buffer, image, src_stencil_layout, dst_stencil_layout, src_family_index,
6807                                    dst_family_index, &aspect_range, sample_locs);
6808    } else {
6809       radv_handle_image_transition(cmd_buffer, image, src_layout, dst_layout, src_family_index, dst_family_index, range,
6810                                    sample_locs);
6811    }
6812 }
6813 
6814 static void
radv_handle_rendering_image_transition(struct radv_cmd_buffer * cmd_buffer,struct radv_image_view * view,uint32_t layer_count,uint32_t view_mask,VkImageLayout initial_layout,VkImageLayout initial_stencil_layout,VkImageLayout final_layout,VkImageLayout final_stencil_layout,struct radv_sample_locations_state * sample_locs)6815 radv_handle_rendering_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *view,
6816                                        uint32_t layer_count, uint32_t view_mask, VkImageLayout initial_layout,
6817                                        VkImageLayout initial_stencil_layout, VkImageLayout final_layout,
6818                                        VkImageLayout final_stencil_layout,
6819                                        struct radv_sample_locations_state *sample_locs)
6820 {
6821    VkImageSubresourceRange range;
6822    range.aspectMask = view->image->vk.aspects;
6823    range.baseMipLevel = view->vk.base_mip_level;
6824    range.levelCount = 1;
6825 
6826    if (view_mask) {
6827       while (view_mask) {
6828          int start, count;
6829          u_bit_scan_consecutive_range(&view_mask, &start, &count);
6830 
6831          range.baseArrayLayer = view->vk.base_array_layer + start;
6832          range.layerCount = count;
6833 
6834          radv_handle_image_transition_separate(cmd_buffer, view->image, initial_layout, final_layout,
6835                                                initial_stencil_layout, final_stencil_layout, 0, 0, &range, sample_locs);
6836       }
6837    } else {
6838       range.baseArrayLayer = view->vk.base_array_layer;
6839       range.layerCount = layer_count;
6840       radv_handle_image_transition_separate(cmd_buffer, view->image, initial_layout, final_layout,
6841                                             initial_stencil_layout, final_stencil_layout, 0, 0, &range, sample_locs);
6842    }
6843 }
6844 
6845 VKAPI_ATTR VkResult VKAPI_CALL
radv_BeginCommandBuffer(VkCommandBuffer commandBuffer,const VkCommandBufferBeginInfo * pBeginInfo)6846 radv_BeginCommandBuffer(VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo *pBeginInfo)
6847 {
6848    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
6849    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6850    const struct radv_physical_device *pdev = radv_device_physical(device);
6851    VkResult result = VK_SUCCESS;
6852 
6853    vk_command_buffer_begin(&cmd_buffer->vk, pBeginInfo);
6854 
6855    if (cmd_buffer->qf == RADV_QUEUE_SPARSE)
6856       return result;
6857 
6858    memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
6859    cmd_buffer->state.last_index_type = -1;
6860    cmd_buffer->state.last_num_instances = -1;
6861    cmd_buffer->state.last_vertex_offset_valid = false;
6862    cmd_buffer->state.last_first_instance = -1;
6863    cmd_buffer->state.last_drawid = -1;
6864    cmd_buffer->state.last_subpass_color_count = MAX_RTS;
6865    cmd_buffer->state.predication_type = -1;
6866    cmd_buffer->state.mesh_shading = false;
6867    cmd_buffer->state.last_vrs_rates = -1;
6868    cmd_buffer->state.last_force_vrs_rates_offset = -1;
6869 
6870    radv_reset_tracked_regs(cmd_buffer);
6871 
6872    cmd_buffer->usage_flags = pBeginInfo->flags;
6873 
6874    cmd_buffer->state.dirty |= RADV_CMD_DIRTY_GUARDBAND | RADV_CMD_DIRTY_OCCLUSION_QUERY |
6875                               RADV_CMD_DIRTY_DB_SHADER_CONTROL | RADV_CMD_DIRTY_FRAGMENT_OUTPUT;
6876    if (pdev->info.rbplus_allowed)
6877       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RBPLUS;
6878 
6879    cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_ALL;
6880 
6881    if (cmd_buffer->qf == RADV_QUEUE_GENERAL)
6882       vk_dynamic_graphics_state_init(&cmd_buffer->state.dynamic.vk);
6883 
6884    if (cmd_buffer->qf == RADV_QUEUE_COMPUTE || device->vk.enabled_features.taskShader) {
6885       uint32_t pred_value = 0;
6886       uint32_t pred_offset;
6887       if (!radv_cmd_buffer_upload_data(cmd_buffer, 4, &pred_value, &pred_offset))
6888          vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
6889 
6890       cmd_buffer->state.mec_inv_pred_emitted = false;
6891       cmd_buffer->state.mec_inv_pred_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + pred_offset;
6892    }
6893 
6894    if (pdev->info.gfx_level >= GFX9 && cmd_buffer->qf == RADV_QUEUE_GENERAL) {
6895       unsigned num_db = pdev->info.max_render_backends;
6896       unsigned fence_offset, eop_bug_offset;
6897       void *fence_ptr;
6898 
6899       radv_cmd_buffer_upload_alloc(cmd_buffer, 8, &fence_offset, &fence_ptr);
6900       memset(fence_ptr, 0, 8);
6901 
6902       cmd_buffer->gfx9_fence_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
6903       cmd_buffer->gfx9_fence_va += fence_offset;
6904 
6905       radv_emit_clear_data(cmd_buffer, V_370_PFP, cmd_buffer->gfx9_fence_va, 8);
6906 
6907       if (pdev->info.gfx_level == GFX9) {
6908          /* Allocate a buffer for the EOP bug on GFX9. */
6909          radv_cmd_buffer_upload_alloc(cmd_buffer, 16 * num_db, &eop_bug_offset, &fence_ptr);
6910          memset(fence_ptr, 0, 16 * num_db);
6911          cmd_buffer->gfx9_eop_bug_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
6912          cmd_buffer->gfx9_eop_bug_va += eop_bug_offset;
6913 
6914          radv_emit_clear_data(cmd_buffer, V_370_PFP, cmd_buffer->gfx9_eop_bug_va, 16 * num_db);
6915       }
6916    }
6917 
6918    if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY &&
6919        (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT)) {
6920 
6921       char gcbiar_data[VK_GCBIARR_DATA_SIZE(MAX_RTS)];
6922       const VkRenderingInfo *resume_info =
6923          vk_get_command_buffer_inheritance_as_rendering_resume(cmd_buffer->vk.level, pBeginInfo, gcbiar_data);
6924       if (resume_info) {
6925          radv_CmdBeginRendering(commandBuffer, resume_info);
6926       } else {
6927          const VkCommandBufferInheritanceRenderingInfo *inheritance_info =
6928             vk_get_command_buffer_inheritance_rendering_info(cmd_buffer->vk.level, pBeginInfo);
6929 
6930          radv_cmd_buffer_reset_rendering(cmd_buffer);
6931          struct radv_rendering_state *render = &cmd_buffer->state.render;
6932          render->active = true;
6933          render->view_mask = inheritance_info->viewMask;
6934          render->max_samples = inheritance_info->rasterizationSamples;
6935          render->color_att_count = inheritance_info->colorAttachmentCount;
6936          for (uint32_t i = 0; i < render->color_att_count; i++) {
6937             render->color_att[i] = (struct radv_attachment){
6938                .format = inheritance_info->pColorAttachmentFormats[i],
6939             };
6940          }
6941          assert(inheritance_info->depthAttachmentFormat == VK_FORMAT_UNDEFINED ||
6942                 inheritance_info->stencilAttachmentFormat == VK_FORMAT_UNDEFINED ||
6943                 inheritance_info->depthAttachmentFormat == inheritance_info->stencilAttachmentFormat);
6944          render->ds_att = (struct radv_attachment){.iview = NULL};
6945          if (inheritance_info->depthAttachmentFormat != VK_FORMAT_UNDEFINED)
6946             render->ds_att.format = inheritance_info->depthAttachmentFormat;
6947          if (inheritance_info->stencilAttachmentFormat != VK_FORMAT_UNDEFINED)
6948             render->ds_att.format = inheritance_info->stencilAttachmentFormat;
6949 
6950          if (vk_format_has_depth(render->ds_att.format))
6951             render->ds_att_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
6952          if (vk_format_has_stencil(render->ds_att.format))
6953             render->ds_att_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
6954       }
6955 
6956       cmd_buffer->state.inherited_pipeline_statistics = pBeginInfo->pInheritanceInfo->pipelineStatistics;
6957 
6958       if (cmd_buffer->state.inherited_pipeline_statistics & VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT)
6959          cmd_buffer->state.dirty |= RADV_CMD_DIRTY_SHADER_QUERY;
6960 
6961       cmd_buffer->state.inherited_occlusion_queries = pBeginInfo->pInheritanceInfo->occlusionQueryEnable;
6962       cmd_buffer->state.inherited_query_control_flags = pBeginInfo->pInheritanceInfo->queryFlags;
6963       if (cmd_buffer->state.inherited_occlusion_queries)
6964          cmd_buffer->state.dirty |= RADV_CMD_DIRTY_OCCLUSION_QUERY;
6965    }
6966 
6967    if (radv_device_fault_detection_enabled(device))
6968       radv_cmd_buffer_trace_emit(cmd_buffer);
6969 
6970    radv_describe_begin_cmd_buffer(cmd_buffer);
6971 
6972    return result;
6973 }
6974 
6975 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindVertexBuffers2(VkCommandBuffer commandBuffer,uint32_t firstBinding,uint32_t bindingCount,const VkBuffer * pBuffers,const VkDeviceSize * pOffsets,const VkDeviceSize * pSizes,const VkDeviceSize * pStrides)6976 radv_CmdBindVertexBuffers2(VkCommandBuffer commandBuffer, uint32_t firstBinding, uint32_t bindingCount,
6977                            const VkBuffer *pBuffers, const VkDeviceSize *pOffsets, const VkDeviceSize *pSizes,
6978                            const VkDeviceSize *pStrides)
6979 {
6980    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
6981    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6982    struct radv_vertex_binding *vb = cmd_buffer->vertex_bindings;
6983    const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input;
6984 
6985    /* We have to defer setting up vertex buffer since we need the buffer
6986     * stride from the pipeline. */
6987 
6988    assert(firstBinding + bindingCount <= MAX_VBS);
6989 
6990    if (firstBinding + bindingCount > cmd_buffer->used_vertex_bindings)
6991       cmd_buffer->used_vertex_bindings = firstBinding + bindingCount;
6992 
6993    uint32_t misaligned_mask_invalid = 0;
6994 
6995    for (uint32_t i = 0; i < bindingCount; i++) {
6996       VK_FROM_HANDLE(radv_buffer, buffer, pBuffers[i]);
6997       uint32_t idx = firstBinding + i;
6998       VkDeviceSize size = pSizes ? pSizes[i] : 0;
6999       /* if pStrides=NULL, it shouldn't overwrite the strides specified by CmdSetVertexInputEXT */
7000       VkDeviceSize stride = pStrides ? pStrides[i] : vb[idx].stride;
7001 
7002       if (!!cmd_buffer->vertex_binding_buffers[idx] != !!buffer ||
7003           (buffer && ((vb[idx].offset & 0x3) != (pOffsets[i] & 0x3) || (vb[idx].stride & 0x3) != (stride & 0x3)))) {
7004          misaligned_mask_invalid |= vi_state->bindings_match_attrib ? BITFIELD_BIT(idx) : 0xffffffff;
7005       }
7006 
7007       cmd_buffer->vertex_binding_buffers[idx] = buffer;
7008       vb[idx].offset = pOffsets[i];
7009       vb[idx].size = buffer ? vk_buffer_range(&buffer->vk, pOffsets[i], size) : size;
7010       vb[idx].stride = stride;
7011 
7012       uint32_t bit = BITFIELD_BIT(idx);
7013       if (buffer) {
7014          radv_cs_add_buffer(device->ws, cmd_buffer->cs, cmd_buffer->vertex_binding_buffers[idx]->bo);
7015          cmd_buffer->state.vbo_bound_mask |= bit;
7016       } else {
7017          cmd_buffer->state.vbo_bound_mask &= ~bit;
7018       }
7019    }
7020 
7021    if (misaligned_mask_invalid) {
7022       cmd_buffer->state.vbo_misaligned_mask_invalid = misaligned_mask_invalid;
7023       cmd_buffer->state.vbo_misaligned_mask &= ~misaligned_mask_invalid;
7024       cmd_buffer->state.vbo_unaligned_mask &= ~misaligned_mask_invalid;
7025    }
7026 
7027    cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER;
7028    cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT;
7029 }
7030 
7031 static uint32_t
vk_to_index_type(VkIndexType type)7032 vk_to_index_type(VkIndexType type)
7033 {
7034    switch (type) {
7035    case VK_INDEX_TYPE_UINT8:
7036       return V_028A7C_VGT_INDEX_8;
7037    case VK_INDEX_TYPE_UINT16:
7038       return V_028A7C_VGT_INDEX_16;
7039    case VK_INDEX_TYPE_UINT32:
7040       return V_028A7C_VGT_INDEX_32;
7041    default:
7042       unreachable("invalid index type");
7043    }
7044 }
7045 
7046 static uint32_t
radv_get_vgt_index_size(uint32_t type)7047 radv_get_vgt_index_size(uint32_t type)
7048 {
7049    uint32_t index_type = G_028A7C_INDEX_TYPE(type);
7050    switch (index_type) {
7051    case V_028A7C_VGT_INDEX_8:
7052       return 1;
7053    case V_028A7C_VGT_INDEX_16:
7054       return 2;
7055    case V_028A7C_VGT_INDEX_32:
7056       return 4;
7057    default:
7058       unreachable("invalid index type");
7059    }
7060 }
7061 
7062 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindIndexBuffer2(VkCommandBuffer commandBuffer,VkBuffer buffer,VkDeviceSize offset,VkDeviceSize size,VkIndexType indexType)7063 radv_CmdBindIndexBuffer2(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, VkDeviceSize size,
7064                          VkIndexType indexType)
7065 {
7066    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7067    VK_FROM_HANDLE(radv_buffer, index_buffer, buffer);
7068    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7069    const struct radv_physical_device *pdev = radv_device_physical(device);
7070 
7071    cmd_buffer->state.index_type = vk_to_index_type(indexType);
7072 
7073    if (index_buffer) {
7074       cmd_buffer->state.index_va = radv_buffer_get_va(index_buffer->bo);
7075       cmd_buffer->state.index_va += index_buffer->offset + offset;
7076 
7077       int index_size = radv_get_vgt_index_size(vk_to_index_type(indexType));
7078       cmd_buffer->state.max_index_count = (vk_buffer_range(&index_buffer->vk, offset, size)) / index_size;
7079       radv_cs_add_buffer(device->ws, cmd_buffer->cs, index_buffer->bo);
7080    } else {
7081       cmd_buffer->state.index_va = 0;
7082       cmd_buffer->state.max_index_count = 0;
7083 
7084       if (pdev->info.has_null_index_buffer_clamping_bug)
7085          cmd_buffer->state.index_va = 0x2;
7086    }
7087 
7088    cmd_buffer->state.dirty |= RADV_CMD_DIRTY_INDEX_BUFFER;
7089 
7090    /* Primitive restart state depends on the index type. */
7091    if (cmd_buffer->state.dynamic.vk.ia.primitive_restart_enable)
7092       cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE;
7093 }
7094 
7095 static void
radv_bind_descriptor_set(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint bind_point,struct radv_descriptor_set * set,unsigned idx)7096 radv_bind_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point,
7097                          struct radv_descriptor_set *set, unsigned idx)
7098 {
7099    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7100    struct radeon_winsys *ws = device->ws;
7101 
7102    radv_set_descriptor_set(cmd_buffer, bind_point, set, idx);
7103 
7104    assert(set);
7105    assert(!(set->header.layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT));
7106 
7107    if (!device->use_global_bo_list) {
7108       for (unsigned j = 0; j < set->header.buffer_count; ++j)
7109          if (set->descriptors[j])
7110             radv_cs_add_buffer(ws, cmd_buffer->cs, set->descriptors[j]);
7111    }
7112 
7113    if (set->header.bo)
7114       radv_cs_add_buffer(ws, cmd_buffer->cs, set->header.bo);
7115 }
7116 
7117 static void
radv_bind_descriptor_sets(struct radv_cmd_buffer * cmd_buffer,const VkBindDescriptorSetsInfo * pBindDescriptorSetsInfo,VkPipelineBindPoint bind_point)7118 radv_bind_descriptor_sets(struct radv_cmd_buffer *cmd_buffer, const VkBindDescriptorSetsInfo *pBindDescriptorSetsInfo,
7119                           VkPipelineBindPoint bind_point)
7120 {
7121    VK_FROM_HANDLE(radv_pipeline_layout, layout, pBindDescriptorSetsInfo->layout);
7122    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7123    const struct radv_physical_device *pdev = radv_device_physical(device);
7124    const struct radv_instance *instance = radv_physical_device_instance(pdev);
7125    const bool no_dynamic_bounds = instance->debug_flags & RADV_DEBUG_NO_DYNAMIC_BOUNDS;
7126    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
7127    unsigned dyn_idx = 0;
7128 
7129    for (unsigned i = 0; i < pBindDescriptorSetsInfo->descriptorSetCount; ++i) {
7130       unsigned set_idx = i + pBindDescriptorSetsInfo->firstSet;
7131       VK_FROM_HANDLE(radv_descriptor_set, set, pBindDescriptorSetsInfo->pDescriptorSets[i]);
7132 
7133       if (!set)
7134          continue;
7135 
7136       /* If the set is already bound we only need to update the
7137        * (potentially changed) dynamic offsets. */
7138       if (descriptors_state->sets[set_idx] != set || !(descriptors_state->valid & (1u << set_idx))) {
7139          radv_bind_descriptor_set(cmd_buffer, bind_point, set, set_idx);
7140       }
7141 
7142       for (unsigned j = 0; j < set->header.layout->dynamic_offset_count; ++j, ++dyn_idx) {
7143          unsigned idx = j + layout->set[i + pBindDescriptorSetsInfo->firstSet].dynamic_offset_start;
7144          uint32_t *dst = descriptors_state->dynamic_buffers + idx * 4;
7145          assert(dyn_idx < pBindDescriptorSetsInfo->dynamicOffsetCount);
7146 
7147          struct radv_descriptor_range *range = set->header.dynamic_descriptors + j;
7148 
7149          if (!range->va) {
7150             memset(dst, 0, 4 * 4);
7151          } else {
7152             uint64_t va = range->va + pBindDescriptorSetsInfo->pDynamicOffsets[dyn_idx];
7153             const uint32_t size = no_dynamic_bounds ? 0xffffffffu : range->size;
7154 
7155             ac_build_raw_buffer_descriptor(pdev->info.gfx_level, va, size, dst);
7156          }
7157 
7158          cmd_buffer->push_constant_stages |= set->header.layout->dynamic_shader_stages;
7159       }
7160    }
7161 }
7162 
7163 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindDescriptorSets2(VkCommandBuffer commandBuffer,const VkBindDescriptorSetsInfo * pBindDescriptorSetsInfo)7164 radv_CmdBindDescriptorSets2(VkCommandBuffer commandBuffer, const VkBindDescriptorSetsInfo *pBindDescriptorSetsInfo)
7165 {
7166    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7167 
7168    if (pBindDescriptorSetsInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) {
7169       radv_bind_descriptor_sets(cmd_buffer, pBindDescriptorSetsInfo, VK_PIPELINE_BIND_POINT_COMPUTE);
7170    }
7171 
7172    if (pBindDescriptorSetsInfo->stageFlags & RADV_GRAPHICS_STAGE_BITS) {
7173       radv_bind_descriptor_sets(cmd_buffer, pBindDescriptorSetsInfo, VK_PIPELINE_BIND_POINT_GRAPHICS);
7174    }
7175 
7176    if (pBindDescriptorSetsInfo->stageFlags & RADV_RT_STAGE_BITS) {
7177       radv_bind_descriptor_sets(cmd_buffer, pBindDescriptorSetsInfo, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
7178    }
7179 }
7180 
7181 static bool
radv_init_push_descriptor_set(struct radv_cmd_buffer * cmd_buffer,struct radv_descriptor_set * set,struct radv_descriptor_set_layout * layout,VkPipelineBindPoint bind_point)7182 radv_init_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer, struct radv_descriptor_set *set,
7183                               struct radv_descriptor_set_layout *layout, VkPipelineBindPoint bind_point)
7184 {
7185    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
7186    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7187    set->header.size = layout->size;
7188 
7189    if (set->header.layout != layout) {
7190       if (set->header.layout)
7191          vk_descriptor_set_layout_unref(&device->vk, &set->header.layout->vk);
7192       vk_descriptor_set_layout_ref(&layout->vk);
7193       set->header.layout = layout;
7194    }
7195 
7196    if (descriptors_state->push_set.capacity < set->header.size) {
7197       size_t new_size = MAX2(set->header.size, 1024);
7198       new_size = MAX2(new_size, 2 * descriptors_state->push_set.capacity);
7199       new_size = MIN2(new_size, 96 * MAX_PUSH_DESCRIPTORS);
7200 
7201       free(set->header.mapped_ptr);
7202       set->header.mapped_ptr = malloc(new_size);
7203 
7204       if (!set->header.mapped_ptr) {
7205          descriptors_state->push_set.capacity = 0;
7206          vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
7207          return false;
7208       }
7209 
7210       descriptors_state->push_set.capacity = new_size;
7211    }
7212 
7213    return true;
7214 }
7215 
7216 void
radv_meta_push_descriptor_set(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint pipelineBindPoint,VkPipelineLayout _layout,uint32_t set,uint32_t descriptorWriteCount,const VkWriteDescriptorSet * pDescriptorWrites)7217 radv_meta_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint pipelineBindPoint,
7218                               VkPipelineLayout _layout, uint32_t set, uint32_t descriptorWriteCount,
7219                               const VkWriteDescriptorSet *pDescriptorWrites)
7220 {
7221    VK_FROM_HANDLE(radv_pipeline_layout, layout, _layout);
7222    struct radv_descriptor_set *push_set = (struct radv_descriptor_set *)&cmd_buffer->meta_push_descriptors;
7223    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7224    unsigned bo_offset;
7225 
7226    assert(set == 0);
7227    assert(layout->set[set].layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT);
7228 
7229    push_set->header.size = layout->set[set].layout->size;
7230    push_set->header.layout = layout->set[set].layout;
7231 
7232    if (!radv_cmd_buffer_upload_alloc(cmd_buffer, push_set->header.size, &bo_offset,
7233                                      (void **)&push_set->header.mapped_ptr))
7234       return;
7235 
7236    push_set->header.va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
7237    push_set->header.va += bo_offset;
7238 
7239    radv_cmd_update_descriptor_sets(device, cmd_buffer, radv_descriptor_set_to_handle(push_set), descriptorWriteCount,
7240                                    pDescriptorWrites, 0, NULL);
7241 
7242    radv_set_descriptor_set(cmd_buffer, pipelineBindPoint, push_set, set);
7243 }
7244 
7245 static void
radv_push_descriptor_set(struct radv_cmd_buffer * cmd_buffer,const VkPushDescriptorSetInfoKHR * pPushDescriptorSetInfo,VkPipelineBindPoint bind_point)7246 radv_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer, const VkPushDescriptorSetInfoKHR *pPushDescriptorSetInfo,
7247                          VkPipelineBindPoint bind_point)
7248 {
7249    VK_FROM_HANDLE(radv_pipeline_layout, layout, pPushDescriptorSetInfo->layout);
7250    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
7251    struct radv_descriptor_set *push_set = (struct radv_descriptor_set *)&descriptors_state->push_set.set;
7252    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7253 
7254    assert(layout->set[pPushDescriptorSetInfo->set].layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT);
7255 
7256    if (!radv_init_push_descriptor_set(cmd_buffer, push_set, layout->set[pPushDescriptorSetInfo->set].layout,
7257                                       bind_point))
7258       return;
7259 
7260    /* Check that there are no inline uniform block updates when calling vkCmdPushDescriptorSet()
7261     * because it is invalid, according to Vulkan spec.
7262     */
7263    for (int i = 0; i < pPushDescriptorSetInfo->descriptorWriteCount; i++) {
7264       ASSERTED const VkWriteDescriptorSet *writeset = &pPushDescriptorSetInfo->pDescriptorWrites[i];
7265       assert(writeset->descriptorType != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK);
7266    }
7267 
7268    radv_cmd_update_descriptor_sets(device, cmd_buffer, radv_descriptor_set_to_handle(push_set),
7269                                    pPushDescriptorSetInfo->descriptorWriteCount,
7270                                    pPushDescriptorSetInfo->pDescriptorWrites, 0, NULL);
7271 
7272    radv_set_descriptor_set(cmd_buffer, bind_point, push_set, pPushDescriptorSetInfo->set);
7273 
7274    radv_flush_push_descriptors(cmd_buffer, descriptors_state);
7275 }
7276 
7277 VKAPI_ATTR void VKAPI_CALL
radv_CmdPushDescriptorSet2KHR(VkCommandBuffer commandBuffer,const VkPushDescriptorSetInfoKHR * pPushDescriptorSetInfo)7278 radv_CmdPushDescriptorSet2KHR(VkCommandBuffer commandBuffer, const VkPushDescriptorSetInfoKHR *pPushDescriptorSetInfo)
7279 {
7280    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7281 
7282    if (pPushDescriptorSetInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) {
7283       radv_push_descriptor_set(cmd_buffer, pPushDescriptorSetInfo, VK_PIPELINE_BIND_POINT_COMPUTE);
7284    }
7285 
7286    if (pPushDescriptorSetInfo->stageFlags & RADV_GRAPHICS_STAGE_BITS) {
7287       radv_push_descriptor_set(cmd_buffer, pPushDescriptorSetInfo, VK_PIPELINE_BIND_POINT_GRAPHICS);
7288    }
7289 
7290    if (pPushDescriptorSetInfo->stageFlags & RADV_RT_STAGE_BITS) {
7291       radv_push_descriptor_set(cmd_buffer, pPushDescriptorSetInfo, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
7292    }
7293 }
7294 
7295 VKAPI_ATTR void VKAPI_CALL
radv_CmdPushDescriptorSetWithTemplate2KHR(VkCommandBuffer commandBuffer,const VkPushDescriptorSetWithTemplateInfoKHR * pPushDescriptorSetWithTemplateInfo)7296 radv_CmdPushDescriptorSetWithTemplate2KHR(
7297    VkCommandBuffer commandBuffer, const VkPushDescriptorSetWithTemplateInfoKHR *pPushDescriptorSetWithTemplateInfo)
7298 {
7299    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7300    VK_FROM_HANDLE(radv_pipeline_layout, layout, pPushDescriptorSetWithTemplateInfo->layout);
7301    VK_FROM_HANDLE(radv_descriptor_update_template, templ, pPushDescriptorSetWithTemplateInfo->descriptorUpdateTemplate);
7302    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, templ->bind_point);
7303    struct radv_descriptor_set *push_set = (struct radv_descriptor_set *)&descriptors_state->push_set.set;
7304    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7305 
7306    assert(layout->set[pPushDescriptorSetWithTemplateInfo->set].layout->flags &
7307           VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT);
7308 
7309    if (!radv_init_push_descriptor_set(cmd_buffer, push_set, layout->set[pPushDescriptorSetWithTemplateInfo->set].layout,
7310                                       templ->bind_point))
7311       return;
7312 
7313    radv_cmd_update_descriptor_set_with_template(device, cmd_buffer, push_set,
7314                                                 pPushDescriptorSetWithTemplateInfo->descriptorUpdateTemplate,
7315                                                 pPushDescriptorSetWithTemplateInfo->pData);
7316 
7317    radv_set_descriptor_set(cmd_buffer, templ->bind_point, push_set, pPushDescriptorSetWithTemplateInfo->set);
7318 
7319    radv_flush_push_descriptors(cmd_buffer, descriptors_state);
7320 }
7321 
7322 VKAPI_ATTR void VKAPI_CALL
radv_CmdPushConstants2(VkCommandBuffer commandBuffer,const VkPushConstantsInfo * pPushConstantsInfo)7323 radv_CmdPushConstants2(VkCommandBuffer commandBuffer, const VkPushConstantsInfo *pPushConstantsInfo)
7324 {
7325    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7326    memcpy(cmd_buffer->push_constants + pPushConstantsInfo->offset, pPushConstantsInfo->pValues,
7327           pPushConstantsInfo->size);
7328    cmd_buffer->push_constant_stages |= pPushConstantsInfo->stageFlags;
7329 }
7330 
7331 VKAPI_ATTR VkResult VKAPI_CALL
radv_EndCommandBuffer(VkCommandBuffer commandBuffer)7332 radv_EndCommandBuffer(VkCommandBuffer commandBuffer)
7333 {
7334    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7335    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7336 
7337    if (cmd_buffer->qf == RADV_QUEUE_SPARSE)
7338       return vk_command_buffer_end(&cmd_buffer->vk);
7339 
7340    radv_emit_mip_change_flush_default(cmd_buffer);
7341 
7342    const bool is_gfx_or_ace = cmd_buffer->qf == RADV_QUEUE_GENERAL || cmd_buffer->qf == RADV_QUEUE_COMPUTE;
7343 
7344    if (is_gfx_or_ace) {
7345       /* Make sure to sync all pending active queries at the end of
7346        * command buffer.
7347        */
7348       cmd_buffer->state.flush_bits |= cmd_buffer->active_query_flush_bits;
7349 
7350       /* Flush noncoherent images when needed so we can assume they're clean on the start of a
7351        * command buffer.
7352        */
7353       if (cmd_buffer->state.rb_noncoherent_dirty && !can_skip_buffer_l2_flushes(device))
7354          cmd_buffer->state.flush_bits |= radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
7355                                                                VK_ACCESS_2_TRANSFER_WRITE_BIT, 0, NULL, NULL);
7356 
7357       /* Since NGG streamout uses GDS, we need to make GDS idle when
7358        * we leave the IB, otherwise another process might overwrite
7359        * it while our shaders are busy.
7360        */
7361       if (cmd_buffer->gds_needed)
7362          cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH;
7363    }
7364 
7365    /* Finalize the internal compute command stream, if it exists. */
7366    if (cmd_buffer->gang.cs) {
7367       VkResult result = radv_gang_finalize(cmd_buffer);
7368       if (result != VK_SUCCESS)
7369          return vk_error(cmd_buffer, result);
7370    }
7371 
7372    if (is_gfx_or_ace) {
7373       radv_emit_cache_flush(cmd_buffer);
7374 
7375       /* Make sure CP DMA is idle at the end of IBs because the kernel
7376        * doesn't wait for it.
7377        */
7378       radv_cp_dma_wait_for_idle(cmd_buffer);
7379    }
7380 
7381    radv_describe_end_cmd_buffer(cmd_buffer);
7382 
7383    VkResult result = device->ws->cs_finalize(cmd_buffer->cs);
7384    if (result != VK_SUCCESS)
7385       return vk_error(cmd_buffer, result);
7386 
7387    return vk_command_buffer_end(&cmd_buffer->vk);
7388 }
7389 
7390 static void
radv_emit_compute_pipeline(struct radv_cmd_buffer * cmd_buffer,struct radv_compute_pipeline * pipeline)7391 radv_emit_compute_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_compute_pipeline *pipeline)
7392 {
7393    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7394    const struct radv_physical_device *pdev = radv_device_physical(device);
7395 
7396    if (pipeline == cmd_buffer->state.emitted_compute_pipeline)
7397       return;
7398 
7399    radeon_check_space(device->ws, cmd_buffer->cs, pdev->info.gfx_level >= GFX10 ? 25 : 22);
7400 
7401    if (pipeline->base.type == RADV_PIPELINE_COMPUTE) {
7402       radv_emit_compute_shader(pdev, cmd_buffer->cs, cmd_buffer->state.shaders[MESA_SHADER_COMPUTE]);
7403    } else {
7404       const struct radv_shader *rt_prolog = cmd_buffer->state.rt_prolog;
7405 
7406       radv_emit_compute_shader(pdev, cmd_buffer->cs, rt_prolog);
7407 
7408       const uint32_t ray_dynamic_callback_stack_base_offset =
7409          radv_get_user_sgpr_loc(rt_prolog, AC_UD_CS_RAY_DYNAMIC_CALLABLE_STACK_BASE);
7410       if (ray_dynamic_callback_stack_base_offset) {
7411          const struct radv_shader_info *cs_info = &rt_prolog->info;
7412          radeon_set_sh_reg(cmd_buffer->cs, ray_dynamic_callback_stack_base_offset,
7413                            rt_prolog->config.scratch_bytes_per_wave / cs_info->wave_size);
7414       }
7415 
7416       const uint32_t traversal_shader_addr_offset = radv_get_user_sgpr_loc(rt_prolog, AC_UD_CS_TRAVERSAL_SHADER_ADDR);
7417       struct radv_shader *traversal_shader = cmd_buffer->state.shaders[MESA_SHADER_INTERSECTION];
7418       if (traversal_shader_addr_offset && traversal_shader) {
7419          uint64_t traversal_va = traversal_shader->va | radv_rt_priority_traversal;
7420          radv_emit_shader_pointer(device, cmd_buffer->cs, traversal_shader_addr_offset, traversal_va, true);
7421       }
7422    }
7423 
7424    cmd_buffer->state.emitted_compute_pipeline = pipeline;
7425 
7426    if (radv_device_fault_detection_enabled(device))
7427       radv_save_pipeline(cmd_buffer, &pipeline->base);
7428 }
7429 
7430 static void
radv_mark_descriptor_sets_dirty(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint bind_point)7431 radv_mark_descriptor_sets_dirty(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
7432 {
7433    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
7434 
7435    descriptors_state->dirty |= descriptors_state->valid;
7436 }
7437 
7438 static void
radv_bind_vs_input_state(struct radv_cmd_buffer * cmd_buffer,const struct radv_graphics_pipeline * pipeline)7439 radv_bind_vs_input_state(struct radv_cmd_buffer *cmd_buffer, const struct radv_graphics_pipeline *pipeline)
7440 {
7441    const struct radv_shader *vs_shader = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX);
7442    const struct radv_vertex_input_state *src = &pipeline->vertex_input;
7443 
7444    /* Bind the vertex input state from the pipeline when it's static. */
7445    if (!vs_shader || !vs_shader->info.vs.vb_desc_usage_mask || (pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT))
7446       return;
7447 
7448    cmd_buffer->state.vertex_input = *src;
7449 
7450    if (!(pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE)) {
7451       for (uint32_t i = 0; i < MAX_VBS; i++)
7452          cmd_buffer->vertex_bindings[i].stride = pipeline->binding_stride[i];
7453    }
7454 
7455    /* When the vertex input state is static but the VS has been compiled without it (GPL), the
7456     * driver needs to compile a VS prolog.
7457     */
7458    if (!vs_shader->info.vs.has_prolog)
7459       return;
7460 
7461    cmd_buffer->state.vbo_misaligned_mask = 0;
7462    cmd_buffer->state.vbo_unaligned_mask = 0;
7463    cmd_buffer->state.vbo_misaligned_mask_invalid = src->attribute_mask;
7464 
7465    cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT;
7466 }
7467 
7468 static void
radv_bind_multisample_state(struct radv_cmd_buffer * cmd_buffer,const struct radv_multisample_state * ms)7469 radv_bind_multisample_state(struct radv_cmd_buffer *cmd_buffer, const struct radv_multisample_state *ms)
7470 {
7471    if (ms->sample_shading_enable) {
7472       cmd_buffer->state.ms.sample_shading_enable = true;
7473       cmd_buffer->state.ms.min_sample_shading = ms->min_sample_shading;
7474    }
7475 }
7476 
7477 static void
radv_bind_custom_blend_mode(struct radv_cmd_buffer * cmd_buffer,unsigned custom_blend_mode)7478 radv_bind_custom_blend_mode(struct radv_cmd_buffer *cmd_buffer, unsigned custom_blend_mode)
7479 {
7480    /* Re-emit CB_COLOR_CONTROL when the custom blending mode changes. */
7481    if (cmd_buffer->state.custom_blend_mode != custom_blend_mode)
7482       cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_LOGIC_OP | RADV_DYNAMIC_LOGIC_OP_ENABLE;
7483 
7484    cmd_buffer->state.custom_blend_mode = custom_blend_mode;
7485 }
7486 
7487 static void
radv_bind_pre_rast_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * shader)7488 radv_bind_pre_rast_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader)
7489 {
7490    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7491    const struct radv_physical_device *pdev = radv_device_physical(device);
7492    bool mesh_shading = shader->info.stage == MESA_SHADER_MESH;
7493    const struct radv_userdata_info *loc;
7494 
7495    assert(shader->info.stage == MESA_SHADER_VERTEX || shader->info.stage == MESA_SHADER_TESS_CTRL ||
7496           shader->info.stage == MESA_SHADER_TESS_EVAL || shader->info.stage == MESA_SHADER_GEOMETRY ||
7497           shader->info.stage == MESA_SHADER_MESH);
7498 
7499    if (radv_get_user_sgpr_info(shader, AC_UD_NGG_STATE)->sgpr_idx != -1 ||
7500        radv_get_user_sgpr_info(shader, AC_UD_NGG_QUERY_BUF_VA)->sgpr_idx != -1)
7501       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_NGG_STATE;
7502 
7503    if (radv_get_user_sgpr_info(shader, AC_UD_STREAMOUT_BUFFERS)->sgpr_idx != -1 ||
7504        radv_get_user_sgpr_info(shader, AC_UD_STREAMOUT_STATE)->sgpr_idx != -1) {
7505       /* Re-emit the streamout buffers because the SGPR idx can be different and with NGG streamout
7506        * they always need to be emitted because a buffer size of 0 is used to disable streamout.
7507        */
7508       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_STREAMOUT_BUFFER;
7509 
7510       if (pdev->use_ngg_streamout && pdev->info.gfx_level < GFX12) {
7511          /* GFX11 needs GDS OA for streamout. */
7512          cmd_buffer->gds_oa_needed = true;
7513       }
7514    }
7515 
7516    const bool needs_vtx_sgpr =
7517       shader->info.stage == MESA_SHADER_VERTEX || shader->info.stage == MESA_SHADER_MESH ||
7518       (shader->info.stage == MESA_SHADER_GEOMETRY && !shader->info.merged_shader_compiled_separately) ||
7519       (shader->info.stage == MESA_SHADER_TESS_CTRL && !shader->info.merged_shader_compiled_separately);
7520 
7521    loc = radv_get_user_sgpr_info(shader, AC_UD_VS_BASE_VERTEX_START_INSTANCE);
7522    if (needs_vtx_sgpr && loc->sgpr_idx != -1) {
7523       cmd_buffer->state.vtx_base_sgpr = shader->info.user_data_0 + loc->sgpr_idx * 4;
7524       cmd_buffer->state.vtx_emit_num = loc->num_sgprs;
7525       cmd_buffer->state.uses_drawid = shader->info.vs.needs_draw_id;
7526       cmd_buffer->state.uses_baseinstance = shader->info.vs.needs_base_instance;
7527 
7528       if (shader->info.merged_shader_compiled_separately) {
7529          /* Merged shaders compiled separately (eg. VS+TCS) always declare these user SGPRS
7530           * because the input arguments must match.
7531           */
7532          cmd_buffer->state.uses_drawid = true;
7533          cmd_buffer->state.uses_baseinstance = true;
7534       }
7535 
7536       /* Re-emit some vertex states because the SGPR idx can be different. */
7537       cmd_buffer->state.last_first_instance = -1;
7538       cmd_buffer->state.last_vertex_offset_valid = false;
7539       cmd_buffer->state.last_drawid = -1;
7540    }
7541 
7542    if (mesh_shading != cmd_buffer->state.mesh_shading) {
7543       /* Re-emit VRS state because the combiner is different (vertex vs primitive). Re-emit
7544        * primitive topology because the mesh shading pipeline clobbered it.
7545        */
7546       cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_FRAGMENT_SHADING_RATE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY;
7547    }
7548 
7549    cmd_buffer->state.mesh_shading = mesh_shading;
7550 }
7551 
7552 static void
radv_bind_vertex_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * vs)7553 radv_bind_vertex_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs)
7554 {
7555    radv_bind_pre_rast_shader(cmd_buffer, vs);
7556 
7557    /* Re-emit states that need to be updated when the vertex shader is compiled separately
7558     * because shader configs are combined.
7559     */
7560    if (vs->info.merged_shader_compiled_separately && vs->info.next_stage == MESA_SHADER_TESS_CTRL) {
7561       cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_PATCH_CONTROL_POINTS;
7562    }
7563 
7564    /* Can't put anything else here due to merged shaders */
7565 }
7566 
7567 static void
radv_bind_tess_ctrl_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * tcs)7568 radv_bind_tess_ctrl_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *tcs)
7569 {
7570    radv_bind_pre_rast_shader(cmd_buffer, tcs);
7571 
7572    cmd_buffer->tess_rings_needed = true;
7573 
7574    /* Always re-emit patch control points/domain origin when a new pipeline with tessellation is
7575     * bound because a bunch of parameters (user SGPRs, TCS vertices out, ccw, etc) can be different.
7576     */
7577    cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN;
7578 
7579    /* Re-emit the VS prolog when the tessellation control shader is compiled separately because
7580     * shader configs are combined and need to be updated.
7581     */
7582    if (tcs->info.merged_shader_compiled_separately)
7583       cmd_buffer->state.emitted_vs_prolog = NULL;
7584 }
7585 
7586 static void
radv_bind_tess_eval_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * tes)7587 radv_bind_tess_eval_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *tes)
7588 {
7589    radv_bind_pre_rast_shader(cmd_buffer, tes);
7590 
7591    /* Can't put anything else here due to merged shaders */
7592 }
7593 
7594 static void
radv_bind_geometry_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * gs)7595 radv_bind_geometry_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *gs)
7596 {
7597    radv_bind_pre_rast_shader(cmd_buffer, gs);
7598 
7599    cmd_buffer->esgs_ring_size_needed = MAX2(cmd_buffer->esgs_ring_size_needed, gs->info.gs_ring_info.esgs_ring_size);
7600    cmd_buffer->gsvs_ring_size_needed = MAX2(cmd_buffer->gsvs_ring_size_needed, gs->info.gs_ring_info.gsvs_ring_size);
7601 
7602    /* Re-emit the VS prolog when the geometry shader is compiled separately because shader configs
7603     * are combined and need to be updated.
7604     */
7605    if (gs->info.merged_shader_compiled_separately)
7606       cmd_buffer->state.emitted_vs_prolog = NULL;
7607 }
7608 
7609 static void
radv_bind_gs_copy_shader(struct radv_cmd_buffer * cmd_buffer,struct radv_shader * gs_copy_shader)7610 radv_bind_gs_copy_shader(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *gs_copy_shader)
7611 {
7612    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7613 
7614    cmd_buffer->state.gs_copy_shader = gs_copy_shader;
7615 
7616    if (gs_copy_shader) {
7617       cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, gs_copy_shader->upload_seq);
7618 
7619       radv_cs_add_buffer(device->ws, cmd_buffer->cs, gs_copy_shader->bo);
7620    }
7621 }
7622 
7623 static void
radv_bind_mesh_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * ms)7624 radv_bind_mesh_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *ms)
7625 {
7626    radv_bind_pre_rast_shader(cmd_buffer, ms);
7627 
7628    cmd_buffer->mesh_scratch_ring_needed |= ms->info.ms.needs_ms_scratch_ring;
7629 }
7630 
7631 static void
radv_bind_fragment_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * ps)7632 radv_bind_fragment_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *ps)
7633 {
7634    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7635    const struct radv_physical_device *pdev = radv_device_physical(device);
7636    const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
7637    const struct radv_shader *previous_ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
7638    const float min_sample_shading = 1.0f;
7639 
7640    if (ps->info.ps.needs_sample_positions) {
7641       cmd_buffer->sample_positions_needed = true;
7642    }
7643 
7644    if (radv_get_user_sgpr_info(ps, AC_UD_PS_STATE)->sgpr_idx != -1)
7645       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FS_STATE;
7646 
7647    /* Re-emit the conservative rasterization mode because inner coverage is different. */
7648    if (!previous_ps || previous_ps->info.ps.reads_fully_covered != ps->info.ps.reads_fully_covered)
7649       cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_CONSERVATIVE_RAST_MODE;
7650 
7651    if (gfx_level >= GFX10_3 && (!previous_ps || previous_ps->info.ps.force_sample_iter_shading_rate !=
7652                                                    ps->info.ps.force_sample_iter_shading_rate))
7653       cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
7654 
7655    if (cmd_buffer->state.ms.sample_shading_enable != ps->info.ps.uses_sample_shading) {
7656       cmd_buffer->state.ms.sample_shading_enable = ps->info.ps.uses_sample_shading;
7657       cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES;
7658 
7659       if (gfx_level >= GFX10_3)
7660          cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
7661    }
7662 
7663    if (cmd_buffer->state.ms.min_sample_shading != min_sample_shading) {
7664       cmd_buffer->state.ms.min_sample_shading = min_sample_shading;
7665       cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES;
7666    }
7667 
7668    if (!previous_ps || previous_ps->info.regs.ps.db_shader_control != ps->info.regs.ps.db_shader_control ||
7669        previous_ps->info.ps.pops_is_per_sample != ps->info.ps.pops_is_per_sample)
7670       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DB_SHADER_CONTROL;
7671 
7672    if (!previous_ps || cmd_buffer->state.uses_fbfetch_output != ps->info.ps.uses_fbfetch_output) {
7673       cmd_buffer->state.uses_fbfetch_output = ps->info.ps.uses_fbfetch_output;
7674       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FBFETCH_OUTPUT;
7675    }
7676 
7677    /* Re-emit the PS epilog when a new fragment shader is bound. */
7678    if (ps->info.ps.has_epilog)
7679       cmd_buffer->state.emitted_ps_epilog = NULL;
7680 }
7681 
7682 static void
radv_bind_task_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * ts)7683 radv_bind_task_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *ts)
7684 {
7685    if (!radv_gang_init(cmd_buffer))
7686       return;
7687 
7688    if (radv_get_user_sgpr_info(ts, AC_UD_TASK_STATE)->sgpr_idx != -1)
7689       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_TASK_STATE;
7690 
7691    cmd_buffer->task_rings_needed = true;
7692 }
7693 
7694 static void
radv_bind_rt_prolog(struct radv_cmd_buffer * cmd_buffer,struct radv_shader * rt_prolog)7695 radv_bind_rt_prolog(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *rt_prolog)
7696 {
7697    cmd_buffer->state.rt_prolog = rt_prolog;
7698 
7699    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7700    const unsigned max_scratch_waves = radv_get_max_scratch_waves(device, rt_prolog);
7701    cmd_buffer->compute_scratch_waves_wanted = MAX2(cmd_buffer->compute_scratch_waves_wanted, max_scratch_waves);
7702 
7703    cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, rt_prolog->upload_seq);
7704 
7705    radv_cs_add_buffer(device->ws, cmd_buffer->cs, rt_prolog->bo);
7706 }
7707 
7708 /* This function binds/unbinds a shader to the cmdbuffer state. */
7709 static void
radv_bind_shader(struct radv_cmd_buffer * cmd_buffer,struct radv_shader * shader,gl_shader_stage stage)7710 radv_bind_shader(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *shader, gl_shader_stage stage)
7711 {
7712    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7713 
7714    if (!shader) {
7715       cmd_buffer->state.shaders[stage] = NULL;
7716       cmd_buffer->state.active_stages &= ~mesa_to_vk_shader_stage(stage);
7717 
7718       /* Reset some dynamic states when a shader stage is unbound. */
7719       switch (stage) {
7720       case MESA_SHADER_FRAGMENT:
7721          cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DB_SHADER_CONTROL;
7722          cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_CONSERVATIVE_RAST_MODE | RADV_DYNAMIC_RASTERIZATION_SAMPLES |
7723                                             RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
7724          break;
7725       default:
7726          break;
7727       }
7728       return;
7729    }
7730 
7731    switch (stage) {
7732    case MESA_SHADER_VERTEX:
7733       radv_bind_vertex_shader(cmd_buffer, shader);
7734       break;
7735    case MESA_SHADER_TESS_CTRL:
7736       radv_bind_tess_ctrl_shader(cmd_buffer, shader);
7737       break;
7738    case MESA_SHADER_TESS_EVAL:
7739       radv_bind_tess_eval_shader(cmd_buffer, shader);
7740       break;
7741    case MESA_SHADER_GEOMETRY:
7742       radv_bind_geometry_shader(cmd_buffer, shader);
7743       break;
7744    case MESA_SHADER_FRAGMENT:
7745       radv_bind_fragment_shader(cmd_buffer, shader);
7746       break;
7747    case MESA_SHADER_MESH:
7748       radv_bind_mesh_shader(cmd_buffer, shader);
7749       break;
7750    case MESA_SHADER_TASK:
7751       radv_bind_task_shader(cmd_buffer, shader);
7752       break;
7753    case MESA_SHADER_COMPUTE: {
7754       cmd_buffer->compute_scratch_size_per_wave_needed =
7755          MAX2(cmd_buffer->compute_scratch_size_per_wave_needed, shader->config.scratch_bytes_per_wave);
7756 
7757       const unsigned max_stage_waves = radv_get_max_scratch_waves(device, shader);
7758       cmd_buffer->compute_scratch_waves_wanted = MAX2(cmd_buffer->compute_scratch_waves_wanted, max_stage_waves);
7759       break;
7760    }
7761    case MESA_SHADER_INTERSECTION:
7762       /* no-op */
7763       break;
7764    default:
7765       unreachable("invalid shader stage");
7766    }
7767 
7768    cmd_buffer->state.shaders[stage] = shader;
7769    cmd_buffer->state.active_stages |= mesa_to_vk_shader_stage(stage);
7770 
7771    if (mesa_to_vk_shader_stage(stage) & RADV_GRAPHICS_STAGE_BITS) {
7772       cmd_buffer->scratch_size_per_wave_needed =
7773          MAX2(cmd_buffer->scratch_size_per_wave_needed, shader->config.scratch_bytes_per_wave);
7774 
7775       const unsigned max_stage_waves = radv_get_max_scratch_waves(device, shader);
7776       cmd_buffer->scratch_waves_wanted = MAX2(cmd_buffer->scratch_waves_wanted, max_stage_waves);
7777    }
7778 
7779    cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, shader->upload_seq);
7780 
7781    radv_cs_add_buffer(device->ws, cmd_buffer->cs, shader->bo);
7782 }
7783 
7784 static void
radv_bind_fragment_output_state(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * ps,const struct radv_shader_part * ps_epilog,uint32_t custom_blend_mode)7785 radv_bind_fragment_output_state(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *ps,
7786                                 const struct radv_shader_part *ps_epilog, uint32_t custom_blend_mode)
7787 {
7788    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7789    const struct radv_physical_device *pdev = radv_device_physical(device);
7790    uint32_t col_format = 0, z_format = 0, cb_shader_mask = 0;
7791 
7792    if (ps) {
7793       col_format = ps_epilog ? ps_epilog->spi_shader_col_format : ps->info.ps.spi_shader_col_format;
7794       z_format = ps_epilog && ps->info.ps.exports_mrtz_via_epilog ? ps_epilog->spi_shader_z_format
7795                                                                   : ps->info.regs.ps.spi_shader_z_format;
7796       cb_shader_mask = ps_epilog ? ps_epilog->cb_shader_mask : ps->info.ps.cb_shader_mask;
7797    }
7798 
7799    if (custom_blend_mode) {
7800       /* According to the CB spec states, CB_SHADER_MASK should be set to enable writes to all four
7801        * channels of MRT0.
7802        */
7803       cb_shader_mask = 0xf;
7804    }
7805 
7806    if (radv_needs_null_export_workaround(device, ps, custom_blend_mode) && !col_format)
7807       col_format = V_028714_SPI_SHADER_32_R;
7808 
7809    if (cmd_buffer->state.spi_shader_col_format != col_format) {
7810       cmd_buffer->state.spi_shader_col_format = col_format;
7811       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAGMENT_OUTPUT;
7812       if (pdev->info.rbplus_allowed)
7813          cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RBPLUS;
7814    }
7815 
7816    if (cmd_buffer->state.cb_shader_mask != cb_shader_mask || cmd_buffer->state.spi_shader_z_format != z_format) {
7817       cmd_buffer->state.cb_shader_mask = cb_shader_mask;
7818       cmd_buffer->state.spi_shader_z_format = z_format;
7819       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAGMENT_OUTPUT;
7820    }
7821 }
7822 
7823 static void
radv_reset_shader_object_state(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint pipelineBindPoint)7824 radv_reset_shader_object_state(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint pipelineBindPoint)
7825 {
7826    switch (pipelineBindPoint) {
7827    case VK_PIPELINE_BIND_POINT_COMPUTE:
7828       if (cmd_buffer->state.shader_objs[MESA_SHADER_COMPUTE]) {
7829          radv_bind_shader(cmd_buffer, NULL, MESA_SHADER_COMPUTE);
7830          cmd_buffer->state.shader_objs[MESA_SHADER_COMPUTE] = NULL;
7831       }
7832       break;
7833    case VK_PIPELINE_BIND_POINT_GRAPHICS:
7834       radv_foreach_stage(s, RADV_GRAPHICS_STAGE_BITS)
7835       {
7836          if (cmd_buffer->state.shader_objs[s]) {
7837             radv_bind_shader(cmd_buffer, NULL, s);
7838             cmd_buffer->state.shader_objs[s] = NULL;
7839          }
7840       }
7841       break;
7842    default:
7843       break;
7844    }
7845 
7846    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_GRAPHICS_SHADERS;
7847 }
7848 
7849 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindPipeline(VkCommandBuffer commandBuffer,VkPipelineBindPoint pipelineBindPoint,VkPipeline _pipeline)7850 radv_CmdBindPipeline(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipeline _pipeline)
7851 {
7852    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7853    VK_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
7854    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7855    const struct radv_physical_device *pdev = radv_device_physical(device);
7856 
7857    radv_reset_shader_object_state(cmd_buffer, pipelineBindPoint);
7858 
7859    switch (pipelineBindPoint) {
7860    case VK_PIPELINE_BIND_POINT_COMPUTE: {
7861       struct radv_compute_pipeline *compute_pipeline = radv_pipeline_to_compute(pipeline);
7862 
7863       if (cmd_buffer->state.compute_pipeline == compute_pipeline)
7864          return;
7865       radv_mark_descriptor_sets_dirty(cmd_buffer, pipelineBindPoint);
7866 
7867       radv_bind_shader(cmd_buffer, compute_pipeline->base.shaders[MESA_SHADER_COMPUTE], MESA_SHADER_COMPUTE);
7868 
7869       cmd_buffer->state.compute_pipeline = compute_pipeline;
7870       cmd_buffer->push_constant_stages |= VK_SHADER_STAGE_COMPUTE_BIT;
7871       break;
7872    }
7873    case VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR: {
7874       struct radv_ray_tracing_pipeline *rt_pipeline = radv_pipeline_to_ray_tracing(pipeline);
7875 
7876       if (cmd_buffer->state.rt_pipeline == rt_pipeline)
7877          return;
7878       radv_mark_descriptor_sets_dirty(cmd_buffer, pipelineBindPoint);
7879 
7880       radv_bind_shader(cmd_buffer, rt_pipeline->base.base.shaders[MESA_SHADER_INTERSECTION], MESA_SHADER_INTERSECTION);
7881       radv_bind_rt_prolog(cmd_buffer, rt_pipeline->prolog);
7882 
7883       for (unsigned i = 0; i < rt_pipeline->stage_count; ++i) {
7884          struct radv_shader *shader = rt_pipeline->stages[i].shader;
7885          if (shader)
7886             radv_cs_add_buffer(device->ws, cmd_buffer->cs, shader->bo);
7887       }
7888 
7889       cmd_buffer->state.rt_pipeline = rt_pipeline;
7890       cmd_buffer->push_constant_stages |= RADV_RT_STAGE_BITS;
7891 
7892       /* Bind the stack size when it's not dynamic. */
7893       if (rt_pipeline->stack_size != -1u)
7894          cmd_buffer->state.rt_stack_size = rt_pipeline->stack_size;
7895 
7896       break;
7897    }
7898    case VK_PIPELINE_BIND_POINT_GRAPHICS: {
7899       struct radv_graphics_pipeline *graphics_pipeline = radv_pipeline_to_graphics(pipeline);
7900 
7901       /* Bind the non-dynamic graphics state from the pipeline unconditionally because some PSO
7902        * might have been overwritten between two binds of the same pipeline.
7903        */
7904       radv_bind_dynamic_state(cmd_buffer, &graphics_pipeline->dynamic_state);
7905 
7906       if (cmd_buffer->state.graphics_pipeline == graphics_pipeline)
7907          return;
7908       radv_mark_descriptor_sets_dirty(cmd_buffer, pipelineBindPoint);
7909 
7910       radv_foreach_stage(
7911          stage, (cmd_buffer->state.active_stages | graphics_pipeline->active_stages) & RADV_GRAPHICS_STAGE_BITS)
7912       {
7913          radv_bind_shader(cmd_buffer, graphics_pipeline->base.shaders[stage], stage);
7914       }
7915 
7916       radv_bind_gs_copy_shader(cmd_buffer, graphics_pipeline->base.gs_copy_shader);
7917 
7918       cmd_buffer->state.last_vgt_shader = graphics_pipeline->base.shaders[graphics_pipeline->last_vgt_api_stage];
7919 
7920       cmd_buffer->state.graphics_pipeline = graphics_pipeline;
7921 
7922       cmd_buffer->state.has_nggc = graphics_pipeline->has_ngg_culling;
7923       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_PIPELINE;
7924       cmd_buffer->push_constant_stages |= graphics_pipeline->active_stages;
7925 
7926       /* Prefetch all pipeline shaders at first draw time. */
7927       cmd_buffer->state.prefetch_L2_mask |= RADV_PREFETCH_SHADERS;
7928 
7929       if (pdev->info.has_vgt_flush_ngg_legacy_bug &&
7930           (!cmd_buffer->state.emitted_graphics_pipeline ||
7931            (cmd_buffer->state.emitted_graphics_pipeline->is_ngg && !cmd_buffer->state.graphics_pipeline->is_ngg))) {
7932          /* Transitioning from NGG to legacy GS requires
7933           * VGT_FLUSH on GFX10 and Navi21. VGT_FLUSH
7934           * is also emitted at the beginning of IBs when legacy
7935           * GS ring pointers are set.
7936           */
7937          cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
7938       }
7939 
7940       cmd_buffer->state.uses_dynamic_patch_control_points =
7941          !!(graphics_pipeline->dynamic_states & RADV_DYNAMIC_PATCH_CONTROL_POINTS);
7942 
7943       if (graphics_pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
7944          if (!cmd_buffer->state.uses_dynamic_patch_control_points) {
7945             /* Bind the tessellation state from the pipeline when it's not dynamic. */
7946             struct radv_shader *tcs = cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL];
7947 
7948             cmd_buffer->state.tess_num_patches = tcs->info.num_tess_patches;
7949             cmd_buffer->state.tess_lds_size = tcs->info.tcs.num_lds_blocks;
7950          }
7951       }
7952 
7953       const struct radv_shader *vs = radv_get_shader(graphics_pipeline->base.shaders, MESA_SHADER_VERTEX);
7954       if (vs) {
7955          /* Re-emit the VS prolog when a new vertex shader is bound. */
7956          if (vs->info.vs.has_prolog) {
7957             cmd_buffer->state.emitted_vs_prolog = NULL;
7958             cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT;
7959          }
7960 
7961          /* Re-emit the vertex buffer descriptors because they are really tied to the pipeline. */
7962          if (vs->info.vs.vb_desc_usage_mask) {
7963             cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER;
7964          }
7965       }
7966 
7967       const struct radv_shader *ps = radv_get_shader(graphics_pipeline->base.shaders, MESA_SHADER_FRAGMENT);
7968 
7969       radv_bind_fragment_output_state(cmd_buffer, ps, NULL, graphics_pipeline->custom_blend_mode);
7970 
7971       radv_bind_vs_input_state(cmd_buffer, graphics_pipeline);
7972 
7973       radv_bind_multisample_state(cmd_buffer, &graphics_pipeline->ms);
7974 
7975       radv_bind_custom_blend_mode(cmd_buffer, graphics_pipeline->custom_blend_mode);
7976 
7977       cmd_buffer->state.db_render_control = graphics_pipeline->db_render_control;
7978 
7979       cmd_buffer->state.rast_prim = graphics_pipeline->rast_prim;
7980 
7981       cmd_buffer->state.ia_multi_vgt_param = graphics_pipeline->ia_multi_vgt_param;
7982 
7983       cmd_buffer->state.uses_out_of_order_rast = graphics_pipeline->uses_out_of_order_rast;
7984       cmd_buffer->state.uses_vrs = graphics_pipeline->uses_vrs;
7985       cmd_buffer->state.uses_vrs_attachment = graphics_pipeline->uses_vrs_attachment;
7986       cmd_buffer->state.uses_vrs_coarse_shading = graphics_pipeline->uses_vrs_coarse_shading;
7987       break;
7988    }
7989    default:
7990       assert(!"invalid bind point");
7991       break;
7992    }
7993 
7994    cmd_buffer->push_constant_state[vk_to_bind_point(pipelineBindPoint)].size = pipeline->push_constant_size;
7995    cmd_buffer->push_constant_state[vk_to_bind_point(pipelineBindPoint)].dynamic_offset_count =
7996       pipeline->dynamic_offset_count;
7997    cmd_buffer->descriptors[vk_to_bind_point(pipelineBindPoint)].need_indirect_descriptor_sets =
7998       pipeline->need_indirect_descriptor_sets;
7999 }
8000 
8001 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetViewport(VkCommandBuffer commandBuffer,uint32_t firstViewport,uint32_t viewportCount,const VkViewport * pViewports)8002 radv_CmdSetViewport(VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount,
8003                     const VkViewport *pViewports)
8004 {
8005    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8006    struct radv_cmd_state *state = &cmd_buffer->state;
8007    ASSERTED const uint32_t total_count = firstViewport + viewportCount;
8008 
8009    assert(firstViewport < MAX_VIEWPORTS);
8010    assert(total_count >= 1 && total_count <= MAX_VIEWPORTS);
8011 
8012    if (state->dynamic.vk.vp.viewport_count < total_count)
8013       state->dynamic.vk.vp.viewport_count = total_count;
8014 
8015    memcpy(state->dynamic.vk.vp.viewports + firstViewport, pViewports, viewportCount * sizeof(*pViewports));
8016    for (unsigned i = 0; i < viewportCount; i++) {
8017       radv_get_viewport_xform(&pViewports[i], state->dynamic.hw_vp.xform[i + firstViewport].scale,
8018                               state->dynamic.hw_vp.xform[i + firstViewport].translate);
8019    }
8020 
8021    state->dirty_dynamic |= RADV_DYNAMIC_VIEWPORT;
8022    state->dirty |= RADV_CMD_DIRTY_GUARDBAND;
8023 }
8024 
8025 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetScissor(VkCommandBuffer commandBuffer,uint32_t firstScissor,uint32_t scissorCount,const VkRect2D * pScissors)8026 radv_CmdSetScissor(VkCommandBuffer commandBuffer, uint32_t firstScissor, uint32_t scissorCount,
8027                    const VkRect2D *pScissors)
8028 {
8029    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8030    struct radv_cmd_state *state = &cmd_buffer->state;
8031    ASSERTED const uint32_t total_count = firstScissor + scissorCount;
8032 
8033    assert(firstScissor < MAX_SCISSORS);
8034    assert(total_count >= 1 && total_count <= MAX_SCISSORS);
8035 
8036    if (state->dynamic.vk.vp.scissor_count < total_count)
8037       state->dynamic.vk.vp.scissor_count = total_count;
8038 
8039    memcpy(state->dynamic.vk.vp.scissors + firstScissor, pScissors, scissorCount * sizeof(*pScissors));
8040 
8041    state->dirty_dynamic |= RADV_DYNAMIC_SCISSOR;
8042 }
8043 
8044 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLineWidth(VkCommandBuffer commandBuffer,float lineWidth)8045 radv_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
8046 {
8047    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8048    struct radv_cmd_state *state = &cmd_buffer->state;
8049 
8050    state->dynamic.vk.rs.line.width = lineWidth;
8051 
8052    state->dirty_dynamic |= RADV_DYNAMIC_LINE_WIDTH;
8053    state->dirty |= RADV_CMD_DIRTY_GUARDBAND;
8054 }
8055 
8056 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetBlendConstants(VkCommandBuffer commandBuffer,const float blendConstants[4])8057 radv_CmdSetBlendConstants(VkCommandBuffer commandBuffer, const float blendConstants[4])
8058 {
8059    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8060    struct radv_cmd_state *state = &cmd_buffer->state;
8061 
8062    memcpy(state->dynamic.vk.cb.blend_constants, blendConstants, sizeof(float) * 4);
8063 
8064    state->dirty_dynamic |= RADV_DYNAMIC_BLEND_CONSTANTS;
8065 }
8066 
8067 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthBounds(VkCommandBuffer commandBuffer,float minDepthBounds,float maxDepthBounds)8068 radv_CmdSetDepthBounds(VkCommandBuffer commandBuffer, float minDepthBounds, float maxDepthBounds)
8069 {
8070    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8071    struct radv_cmd_state *state = &cmd_buffer->state;
8072 
8073    state->dynamic.vk.ds.depth.bounds_test.min = minDepthBounds;
8074    state->dynamic.vk.ds.depth.bounds_test.max = maxDepthBounds;
8075 
8076    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_BOUNDS;
8077 }
8078 
8079 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,VkStencilFaceFlags faceMask,uint32_t compareMask)8080 radv_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t compareMask)
8081 {
8082    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8083    struct radv_cmd_state *state = &cmd_buffer->state;
8084 
8085    if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
8086       state->dynamic.vk.ds.stencil.front.compare_mask = compareMask;
8087    if (faceMask & VK_STENCIL_FACE_BACK_BIT)
8088       state->dynamic.vk.ds.stencil.back.compare_mask = compareMask;
8089 
8090    state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_COMPARE_MASK;
8091 }
8092 
8093 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,VkStencilFaceFlags faceMask,uint32_t writeMask)8094 radv_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t writeMask)
8095 {
8096    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8097    struct radv_cmd_state *state = &cmd_buffer->state;
8098 
8099    if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
8100       state->dynamic.vk.ds.stencil.front.write_mask = writeMask;
8101    if (faceMask & VK_STENCIL_FACE_BACK_BIT)
8102       state->dynamic.vk.ds.stencil.back.write_mask = writeMask;
8103 
8104    state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_WRITE_MASK;
8105 }
8106 
8107 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilReference(VkCommandBuffer commandBuffer,VkStencilFaceFlags faceMask,uint32_t reference)8108 radv_CmdSetStencilReference(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t reference)
8109 {
8110    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8111    struct radv_cmd_state *state = &cmd_buffer->state;
8112 
8113    if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
8114       state->dynamic.vk.ds.stencil.front.reference = reference;
8115    if (faceMask & VK_STENCIL_FACE_BACK_BIT)
8116       state->dynamic.vk.ds.stencil.back.reference = reference;
8117 
8118    state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_REFERENCE;
8119 }
8120 
8121 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDiscardRectangleEXT(VkCommandBuffer commandBuffer,uint32_t firstDiscardRectangle,uint32_t discardRectangleCount,const VkRect2D * pDiscardRectangles)8122 radv_CmdSetDiscardRectangleEXT(VkCommandBuffer commandBuffer, uint32_t firstDiscardRectangle,
8123                                uint32_t discardRectangleCount, const VkRect2D *pDiscardRectangles)
8124 {
8125    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8126    struct radv_cmd_state *state = &cmd_buffer->state;
8127    ASSERTED const uint32_t total_count = firstDiscardRectangle + discardRectangleCount;
8128 
8129    assert(firstDiscardRectangle < MAX_DISCARD_RECTANGLES);
8130    assert(total_count >= 1 && total_count <= MAX_DISCARD_RECTANGLES);
8131 
8132    typed_memcpy(&state->dynamic.vk.dr.rectangles[firstDiscardRectangle], pDiscardRectangles, discardRectangleCount);
8133 
8134    state->dirty_dynamic |= RADV_DYNAMIC_DISCARD_RECTANGLE;
8135 }
8136 
8137 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,const VkSampleLocationsInfoEXT * pSampleLocationsInfo)8138 radv_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer, const VkSampleLocationsInfoEXT *pSampleLocationsInfo)
8139 {
8140    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8141    struct radv_cmd_state *state = &cmd_buffer->state;
8142 
8143    assert(pSampleLocationsInfo->sampleLocationsCount <= MAX_SAMPLE_LOCATIONS);
8144 
8145    state->dynamic.sample_location.per_pixel = pSampleLocationsInfo->sampleLocationsPerPixel;
8146    state->dynamic.sample_location.grid_size = pSampleLocationsInfo->sampleLocationGridSize;
8147    state->dynamic.sample_location.count = pSampleLocationsInfo->sampleLocationsCount;
8148    typed_memcpy(&state->dynamic.sample_location.locations[0], pSampleLocationsInfo->pSampleLocations,
8149                 pSampleLocationsInfo->sampleLocationsCount);
8150 
8151    state->dirty_dynamic |= RADV_DYNAMIC_SAMPLE_LOCATIONS;
8152 }
8153 
8154 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLineStipple(VkCommandBuffer commandBuffer,uint32_t lineStippleFactor,uint16_t lineStipplePattern)8155 radv_CmdSetLineStipple(VkCommandBuffer commandBuffer, uint32_t lineStippleFactor, uint16_t lineStipplePattern)
8156 {
8157    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8158    struct radv_cmd_state *state = &cmd_buffer->state;
8159 
8160    state->dynamic.vk.rs.line.stipple.factor = lineStippleFactor;
8161    state->dynamic.vk.rs.line.stipple.pattern = lineStipplePattern;
8162 
8163    state->dirty_dynamic |= RADV_DYNAMIC_LINE_STIPPLE;
8164 }
8165 
8166 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCullMode(VkCommandBuffer commandBuffer,VkCullModeFlags cullMode)8167 radv_CmdSetCullMode(VkCommandBuffer commandBuffer, VkCullModeFlags cullMode)
8168 {
8169    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8170    struct radv_cmd_state *state = &cmd_buffer->state;
8171 
8172    state->dynamic.vk.rs.cull_mode = cullMode;
8173 
8174    state->dirty_dynamic |= RADV_DYNAMIC_CULL_MODE;
8175 }
8176 
8177 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetFrontFace(VkCommandBuffer commandBuffer,VkFrontFace frontFace)8178 radv_CmdSetFrontFace(VkCommandBuffer commandBuffer, VkFrontFace frontFace)
8179 {
8180    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8181    struct radv_cmd_state *state = &cmd_buffer->state;
8182 
8183    state->dynamic.vk.rs.front_face = frontFace;
8184 
8185    state->dirty_dynamic |= RADV_DYNAMIC_FRONT_FACE;
8186 }
8187 
8188 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetPrimitiveTopology(VkCommandBuffer commandBuffer,VkPrimitiveTopology primitiveTopology)8189 radv_CmdSetPrimitiveTopology(VkCommandBuffer commandBuffer, VkPrimitiveTopology primitiveTopology)
8190 {
8191    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8192    struct radv_cmd_state *state = &cmd_buffer->state;
8193    unsigned primitive_topology = radv_translate_prim(primitiveTopology);
8194 
8195    if (radv_primitive_topology_is_line_list(state->dynamic.vk.ia.primitive_topology) !=
8196        radv_primitive_topology_is_line_list(primitive_topology))
8197       state->dirty_dynamic |= RADV_DYNAMIC_LINE_STIPPLE;
8198 
8199    if (radv_prim_is_points_or_lines(state->dynamic.vk.ia.primitive_topology) !=
8200        radv_prim_is_points_or_lines(primitive_topology))
8201       state->dirty |= RADV_CMD_DIRTY_GUARDBAND;
8202 
8203    state->dynamic.vk.ia.primitive_topology = primitive_topology;
8204 
8205    state->dirty_dynamic |= RADV_DYNAMIC_PRIMITIVE_TOPOLOGY;
8206 }
8207 
8208 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetViewportWithCount(VkCommandBuffer commandBuffer,uint32_t viewportCount,const VkViewport * pViewports)8209 radv_CmdSetViewportWithCount(VkCommandBuffer commandBuffer, uint32_t viewportCount, const VkViewport *pViewports)
8210 {
8211    radv_CmdSetViewport(commandBuffer, 0, viewportCount, pViewports);
8212 }
8213 
8214 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetScissorWithCount(VkCommandBuffer commandBuffer,uint32_t scissorCount,const VkRect2D * pScissors)8215 radv_CmdSetScissorWithCount(VkCommandBuffer commandBuffer, uint32_t scissorCount, const VkRect2D *pScissors)
8216 {
8217    radv_CmdSetScissor(commandBuffer, 0, scissorCount, pScissors);
8218 }
8219 
8220 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthTestEnable(VkCommandBuffer commandBuffer,VkBool32 depthTestEnable)8221 radv_CmdSetDepthTestEnable(VkCommandBuffer commandBuffer, VkBool32 depthTestEnable)
8222 
8223 {
8224    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8225    struct radv_cmd_state *state = &cmd_buffer->state;
8226 
8227    state->dynamic.vk.ds.depth.test_enable = depthTestEnable;
8228 
8229    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_TEST_ENABLE;
8230 }
8231 
8232 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthWriteEnable(VkCommandBuffer commandBuffer,VkBool32 depthWriteEnable)8233 radv_CmdSetDepthWriteEnable(VkCommandBuffer commandBuffer, VkBool32 depthWriteEnable)
8234 {
8235    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8236    struct radv_cmd_state *state = &cmd_buffer->state;
8237 
8238    state->dynamic.vk.ds.depth.write_enable = depthWriteEnable;
8239 
8240    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_WRITE_ENABLE;
8241 }
8242 
8243 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthCompareOp(VkCommandBuffer commandBuffer,VkCompareOp depthCompareOp)8244 radv_CmdSetDepthCompareOp(VkCommandBuffer commandBuffer, VkCompareOp depthCompareOp)
8245 {
8246    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8247    struct radv_cmd_state *state = &cmd_buffer->state;
8248 
8249    state->dynamic.vk.ds.depth.compare_op = depthCompareOp;
8250 
8251    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_COMPARE_OP;
8252 }
8253 
8254 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthBoundsTestEnable(VkCommandBuffer commandBuffer,VkBool32 depthBoundsTestEnable)8255 radv_CmdSetDepthBoundsTestEnable(VkCommandBuffer commandBuffer, VkBool32 depthBoundsTestEnable)
8256 {
8257    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8258    struct radv_cmd_state *state = &cmd_buffer->state;
8259 
8260    state->dynamic.vk.ds.depth.bounds_test.enable = depthBoundsTestEnable;
8261 
8262    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE;
8263 }
8264 
8265 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilTestEnable(VkCommandBuffer commandBuffer,VkBool32 stencilTestEnable)8266 radv_CmdSetStencilTestEnable(VkCommandBuffer commandBuffer, VkBool32 stencilTestEnable)
8267 {
8268    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8269    struct radv_cmd_state *state = &cmd_buffer->state;
8270 
8271    state->dynamic.vk.ds.stencil.test_enable = stencilTestEnable;
8272 
8273    state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_TEST_ENABLE;
8274 }
8275 
8276 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilOp(VkCommandBuffer commandBuffer,VkStencilFaceFlags faceMask,VkStencilOp failOp,VkStencilOp passOp,VkStencilOp depthFailOp,VkCompareOp compareOp)8277 radv_CmdSetStencilOp(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, VkStencilOp failOp, VkStencilOp passOp,
8278                      VkStencilOp depthFailOp, VkCompareOp compareOp)
8279 {
8280    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8281    struct radv_cmd_state *state = &cmd_buffer->state;
8282 
8283    if (faceMask & VK_STENCIL_FACE_FRONT_BIT) {
8284       state->dynamic.vk.ds.stencil.front.op.fail = failOp;
8285       state->dynamic.vk.ds.stencil.front.op.pass = passOp;
8286       state->dynamic.vk.ds.stencil.front.op.depth_fail = depthFailOp;
8287       state->dynamic.vk.ds.stencil.front.op.compare = compareOp;
8288    }
8289 
8290    if (faceMask & VK_STENCIL_FACE_BACK_BIT) {
8291       state->dynamic.vk.ds.stencil.back.op.fail = failOp;
8292       state->dynamic.vk.ds.stencil.back.op.pass = passOp;
8293       state->dynamic.vk.ds.stencil.back.op.depth_fail = depthFailOp;
8294       state->dynamic.vk.ds.stencil.back.op.compare = compareOp;
8295    }
8296 
8297    state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_OP;
8298 }
8299 
8300 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetFragmentShadingRateKHR(VkCommandBuffer commandBuffer,const VkExtent2D * pFragmentSize,const VkFragmentShadingRateCombinerOpKHR combinerOps[2])8301 radv_CmdSetFragmentShadingRateKHR(VkCommandBuffer commandBuffer, const VkExtent2D *pFragmentSize,
8302                                   const VkFragmentShadingRateCombinerOpKHR combinerOps[2])
8303 {
8304    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8305    struct radv_cmd_state *state = &cmd_buffer->state;
8306 
8307    state->dynamic.vk.fsr.fragment_size = *pFragmentSize;
8308    for (unsigned i = 0; i < 2; i++)
8309       state->dynamic.vk.fsr.combiner_ops[i] = combinerOps[i];
8310 
8311    state->dirty_dynamic |= RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
8312 }
8313 
8314 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthBiasEnable(VkCommandBuffer commandBuffer,VkBool32 depthBiasEnable)8315 radv_CmdSetDepthBiasEnable(VkCommandBuffer commandBuffer, VkBool32 depthBiasEnable)
8316 {
8317    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8318    struct radv_cmd_state *state = &cmd_buffer->state;
8319 
8320    state->dynamic.vk.rs.depth_bias.enable = depthBiasEnable;
8321 
8322    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_BIAS_ENABLE;
8323 }
8324 
8325 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetPrimitiveRestartEnable(VkCommandBuffer commandBuffer,VkBool32 primitiveRestartEnable)8326 radv_CmdSetPrimitiveRestartEnable(VkCommandBuffer commandBuffer, VkBool32 primitiveRestartEnable)
8327 {
8328    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8329    struct radv_cmd_state *state = &cmd_buffer->state;
8330 
8331    state->dynamic.vk.ia.primitive_restart_enable = primitiveRestartEnable;
8332 
8333    state->dirty_dynamic |= RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE;
8334 }
8335 
8336 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRasterizerDiscardEnable(VkCommandBuffer commandBuffer,VkBool32 rasterizerDiscardEnable)8337 radv_CmdSetRasterizerDiscardEnable(VkCommandBuffer commandBuffer, VkBool32 rasterizerDiscardEnable)
8338 {
8339    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8340    struct radv_cmd_state *state = &cmd_buffer->state;
8341 
8342    state->dynamic.vk.rs.rasterizer_discard_enable = rasterizerDiscardEnable;
8343 
8344    state->dirty_dynamic |= RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE;
8345 }
8346 
8347 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetPatchControlPointsEXT(VkCommandBuffer commandBuffer,uint32_t patchControlPoints)8348 radv_CmdSetPatchControlPointsEXT(VkCommandBuffer commandBuffer, uint32_t patchControlPoints)
8349 {
8350    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8351    struct radv_cmd_state *state = &cmd_buffer->state;
8352 
8353    state->dynamic.vk.ts.patch_control_points = patchControlPoints;
8354 
8355    state->dirty_dynamic |= RADV_DYNAMIC_PATCH_CONTROL_POINTS;
8356 }
8357 
8358 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLogicOpEXT(VkCommandBuffer commandBuffer,VkLogicOp logicOp)8359 radv_CmdSetLogicOpEXT(VkCommandBuffer commandBuffer, VkLogicOp logicOp)
8360 {
8361    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8362    struct radv_cmd_state *state = &cmd_buffer->state;
8363    unsigned logic_op = radv_translate_blend_logic_op(logicOp);
8364 
8365    state->dynamic.vk.cb.logic_op = logic_op;
8366 
8367    state->dirty_dynamic |= RADV_DYNAMIC_LOGIC_OP;
8368 }
8369 
8370 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetColorWriteEnableEXT(VkCommandBuffer commandBuffer,uint32_t attachmentCount,const VkBool32 * pColorWriteEnables)8371 radv_CmdSetColorWriteEnableEXT(VkCommandBuffer commandBuffer, uint32_t attachmentCount,
8372                                const VkBool32 *pColorWriteEnables)
8373 {
8374    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8375    struct radv_cmd_state *state = &cmd_buffer->state;
8376    uint8_t color_write_enable = 0;
8377 
8378    assert(attachmentCount <= MAX_RTS);
8379 
8380    for (uint32_t i = 0; i < attachmentCount; i++) {
8381       if (pColorWriteEnables[i]) {
8382          color_write_enable |= BITFIELD_BIT(i);
8383       }
8384    }
8385 
8386    state->dynamic.vk.cb.color_write_enables = color_write_enable;
8387 
8388    state->dirty_dynamic |= RADV_DYNAMIC_COLOR_WRITE_ENABLE;
8389 }
8390 
8391 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetVertexInputEXT(VkCommandBuffer commandBuffer,uint32_t vertexBindingDescriptionCount,const VkVertexInputBindingDescription2EXT * pVertexBindingDescriptions,uint32_t vertexAttributeDescriptionCount,const VkVertexInputAttributeDescription2EXT * pVertexAttributeDescriptions)8392 radv_CmdSetVertexInputEXT(VkCommandBuffer commandBuffer, uint32_t vertexBindingDescriptionCount,
8393                           const VkVertexInputBindingDescription2EXT *pVertexBindingDescriptions,
8394                           uint32_t vertexAttributeDescriptionCount,
8395                           const VkVertexInputAttributeDescription2EXT *pVertexAttributeDescriptions)
8396 {
8397    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8398    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
8399    const struct radv_physical_device *pdev = radv_device_physical(device);
8400    struct radv_cmd_state *state = &cmd_buffer->state;
8401    struct radv_vertex_input_state *vi_state = &state->vertex_input;
8402 
8403    const VkVertexInputBindingDescription2EXT *bindings[MAX_VBS];
8404    for (unsigned i = 0; i < vertexBindingDescriptionCount; i++)
8405       bindings[pVertexBindingDescriptions[i].binding] = &pVertexBindingDescriptions[i];
8406 
8407    state->vbo_misaligned_mask = 0;
8408    state->vbo_unaligned_mask = 0;
8409    state->vbo_misaligned_mask_invalid = 0;
8410 
8411    vi_state->attribute_mask = 0;
8412    vi_state->instance_rate_inputs = 0;
8413    vi_state->nontrivial_divisors = 0;
8414    vi_state->zero_divisors = 0;
8415    vi_state->post_shuffle = 0;
8416    vi_state->alpha_adjust_lo = 0;
8417    vi_state->alpha_adjust_hi = 0;
8418    vi_state->nontrivial_formats = 0;
8419    vi_state->bindings_match_attrib = true;
8420 
8421    enum amd_gfx_level chip = pdev->info.gfx_level;
8422    enum radeon_family family = pdev->info.family;
8423    const struct ac_vtx_format_info *vtx_info_table = ac_get_vtx_format_info_table(chip, family);
8424 
8425    for (unsigned i = 0; i < vertexAttributeDescriptionCount; i++) {
8426       const VkVertexInputAttributeDescription2EXT *attrib = &pVertexAttributeDescriptions[i];
8427       const VkVertexInputBindingDescription2EXT *binding = bindings[attrib->binding];
8428       unsigned loc = attrib->location;
8429 
8430       vi_state->attribute_mask |= 1u << loc;
8431       vi_state->bindings[loc] = attrib->binding;
8432       if (attrib->binding != loc)
8433          vi_state->bindings_match_attrib = false;
8434       if (binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE) {
8435          vi_state->instance_rate_inputs |= 1u << loc;
8436          vi_state->divisors[loc] = binding->divisor;
8437          if (binding->divisor == 0) {
8438             vi_state->zero_divisors |= 1u << loc;
8439          } else if (binding->divisor > 1) {
8440             vi_state->nontrivial_divisors |= 1u << loc;
8441          }
8442       }
8443       cmd_buffer->vertex_bindings[attrib->binding].stride = binding->stride;
8444       vi_state->offsets[loc] = attrib->offset;
8445 
8446       enum pipe_format format = vk_format_map[attrib->format];
8447       const struct ac_vtx_format_info *vtx_info = &vtx_info_table[format];
8448 
8449       vi_state->formats[loc] = format;
8450       uint8_t format_align_req_minus_1 = vtx_info->chan_byte_size >= 4 ? 3 : (vtx_info->element_size - 1);
8451       vi_state->format_align_req_minus_1[loc] = format_align_req_minus_1;
8452       uint8_t component_align_req_minus_1 =
8453          MIN2(vtx_info->chan_byte_size ? vtx_info->chan_byte_size : vtx_info->element_size, 4) - 1;
8454       vi_state->component_align_req_minus_1[loc] = component_align_req_minus_1;
8455       vi_state->format_sizes[loc] = vtx_info->element_size;
8456       vi_state->alpha_adjust_lo |= (vtx_info->alpha_adjust & 0x1) << loc;
8457       vi_state->alpha_adjust_hi |= (vtx_info->alpha_adjust >> 1) << loc;
8458       if (G_008F0C_DST_SEL_X(vtx_info->dst_sel) == V_008F0C_SQ_SEL_Z)
8459          vi_state->post_shuffle |= BITFIELD_BIT(loc);
8460 
8461       if (!(vtx_info->has_hw_format & BITFIELD_BIT(vtx_info->num_channels - 1)))
8462          vi_state->nontrivial_formats |= BITFIELD_BIT(loc);
8463 
8464       if (state->vbo_bound_mask & BITFIELD_BIT(attrib->binding)) {
8465          uint32_t stride = binding->stride;
8466          uint64_t offset = cmd_buffer->vertex_bindings[attrib->binding].offset + vi_state->offsets[loc];
8467          if ((chip == GFX6 || chip >= GFX10) && ((stride | offset) & format_align_req_minus_1))
8468             state->vbo_misaligned_mask |= BITFIELD_BIT(loc);
8469          if ((stride | offset) & component_align_req_minus_1)
8470             state->vbo_unaligned_mask |= BITFIELD_BIT(loc);
8471       }
8472    }
8473 
8474    state->dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT;
8475    state->dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER;
8476 }
8477 
8478 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetPolygonModeEXT(VkCommandBuffer commandBuffer,VkPolygonMode polygonMode)8479 radv_CmdSetPolygonModeEXT(VkCommandBuffer commandBuffer, VkPolygonMode polygonMode)
8480 {
8481    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8482    struct radv_cmd_state *state = &cmd_buffer->state;
8483    unsigned polygon_mode = radv_translate_fill(polygonMode);
8484 
8485    if (radv_polygon_mode_is_points_or_lines(state->dynamic.vk.rs.polygon_mode) !=
8486        radv_polygon_mode_is_points_or_lines(polygon_mode))
8487       state->dirty |= RADV_CMD_DIRTY_GUARDBAND;
8488 
8489    state->dynamic.vk.rs.polygon_mode = polygon_mode;
8490 
8491    state->dirty_dynamic |= RADV_DYNAMIC_POLYGON_MODE;
8492 }
8493 
8494 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetTessellationDomainOriginEXT(VkCommandBuffer commandBuffer,VkTessellationDomainOrigin domainOrigin)8495 radv_CmdSetTessellationDomainOriginEXT(VkCommandBuffer commandBuffer, VkTessellationDomainOrigin domainOrigin)
8496 {
8497    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8498    struct radv_cmd_state *state = &cmd_buffer->state;
8499 
8500    state->dynamic.vk.ts.domain_origin = domainOrigin;
8501 
8502    state->dirty_dynamic |= RADV_DYNAMIC_TESS_DOMAIN_ORIGIN;
8503 }
8504 
8505 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLogicOpEnableEXT(VkCommandBuffer commandBuffer,VkBool32 logicOpEnable)8506 radv_CmdSetLogicOpEnableEXT(VkCommandBuffer commandBuffer, VkBool32 logicOpEnable)
8507 {
8508    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8509    struct radv_cmd_state *state = &cmd_buffer->state;
8510 
8511    state->dynamic.vk.cb.logic_op_enable = logicOpEnable;
8512 
8513    state->dirty_dynamic |= RADV_DYNAMIC_LOGIC_OP_ENABLE;
8514 }
8515 
8516 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLineStippleEnableEXT(VkCommandBuffer commandBuffer,VkBool32 stippledLineEnable)8517 radv_CmdSetLineStippleEnableEXT(VkCommandBuffer commandBuffer, VkBool32 stippledLineEnable)
8518 {
8519    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8520    struct radv_cmd_state *state = &cmd_buffer->state;
8521 
8522    state->dynamic.vk.rs.line.stipple.enable = stippledLineEnable;
8523 
8524    state->dirty_dynamic |= RADV_DYNAMIC_LINE_STIPPLE_ENABLE;
8525 }
8526 
8527 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetAlphaToCoverageEnableEXT(VkCommandBuffer commandBuffer,VkBool32 alphaToCoverageEnable)8528 radv_CmdSetAlphaToCoverageEnableEXT(VkCommandBuffer commandBuffer, VkBool32 alphaToCoverageEnable)
8529 {
8530    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8531    struct radv_cmd_state *state = &cmd_buffer->state;
8532 
8533    state->dynamic.vk.ms.alpha_to_coverage_enable = alphaToCoverageEnable;
8534 
8535    state->dirty_dynamic |= RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE;
8536 }
8537 
8538 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetAlphaToOneEnableEXT(VkCommandBuffer commandBuffer,VkBool32 alphaToOneEnable)8539 radv_CmdSetAlphaToOneEnableEXT(VkCommandBuffer commandBuffer, VkBool32 alphaToOneEnable)
8540 {
8541    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8542    struct radv_cmd_state *state = &cmd_buffer->state;
8543 
8544    state->dynamic.vk.ms.alpha_to_one_enable = alphaToOneEnable;
8545 
8546    state->dirty_dynamic |= RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE;
8547 }
8548 
8549 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetSampleMaskEXT(VkCommandBuffer commandBuffer,VkSampleCountFlagBits samples,const VkSampleMask * pSampleMask)8550 radv_CmdSetSampleMaskEXT(VkCommandBuffer commandBuffer, VkSampleCountFlagBits samples, const VkSampleMask *pSampleMask)
8551 {
8552    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8553    struct radv_cmd_state *state = &cmd_buffer->state;
8554 
8555    state->dynamic.vk.ms.sample_mask = pSampleMask[0] & 0xffff;
8556 
8557    state->dirty_dynamic |= RADV_DYNAMIC_SAMPLE_MASK;
8558 }
8559 
8560 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthClipEnableEXT(VkCommandBuffer commandBuffer,VkBool32 depthClipEnable)8561 radv_CmdSetDepthClipEnableEXT(VkCommandBuffer commandBuffer, VkBool32 depthClipEnable)
8562 {
8563    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8564    struct radv_cmd_state *state = &cmd_buffer->state;
8565 
8566    state->dynamic.vk.rs.depth_clip_enable = depthClipEnable;
8567 
8568    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_CLIP_ENABLE;
8569 }
8570 
8571 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetConservativeRasterizationModeEXT(VkCommandBuffer commandBuffer,VkConservativeRasterizationModeEXT conservativeRasterizationMode)8572 radv_CmdSetConservativeRasterizationModeEXT(VkCommandBuffer commandBuffer,
8573                                             VkConservativeRasterizationModeEXT conservativeRasterizationMode)
8574 {
8575    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8576    struct radv_cmd_state *state = &cmd_buffer->state;
8577 
8578    state->dynamic.vk.rs.conservative_mode = conservativeRasterizationMode;
8579 
8580    state->dirty_dynamic |= RADV_DYNAMIC_CONSERVATIVE_RAST_MODE;
8581 }
8582 
8583 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthClipNegativeOneToOneEXT(VkCommandBuffer commandBuffer,VkBool32 negativeOneToOne)8584 radv_CmdSetDepthClipNegativeOneToOneEXT(VkCommandBuffer commandBuffer, VkBool32 negativeOneToOne)
8585 {
8586    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8587    struct radv_cmd_state *state = &cmd_buffer->state;
8588 
8589    state->dynamic.vk.vp.depth_clip_negative_one_to_one = negativeOneToOne;
8590 
8591    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE;
8592 }
8593 
8594 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetProvokingVertexModeEXT(VkCommandBuffer commandBuffer,VkProvokingVertexModeEXT provokingVertexMode)8595 radv_CmdSetProvokingVertexModeEXT(VkCommandBuffer commandBuffer, VkProvokingVertexModeEXT provokingVertexMode)
8596 {
8597    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8598    struct radv_cmd_state *state = &cmd_buffer->state;
8599 
8600    state->dynamic.vk.rs.provoking_vertex = provokingVertexMode;
8601 
8602    state->dirty_dynamic |= RADV_DYNAMIC_PROVOKING_VERTEX_MODE;
8603 }
8604 
8605 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthClampEnableEXT(VkCommandBuffer commandBuffer,VkBool32 depthClampEnable)8606 radv_CmdSetDepthClampEnableEXT(VkCommandBuffer commandBuffer, VkBool32 depthClampEnable)
8607 {
8608    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8609    struct radv_cmd_state *state = &cmd_buffer->state;
8610 
8611    state->dynamic.vk.rs.depth_clamp_enable = depthClampEnable;
8612 
8613    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_CLAMP_ENABLE;
8614 }
8615 
8616 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetColorWriteMaskEXT(VkCommandBuffer commandBuffer,uint32_t firstAttachment,uint32_t attachmentCount,const VkColorComponentFlags * pColorWriteMasks)8617 radv_CmdSetColorWriteMaskEXT(VkCommandBuffer commandBuffer, uint32_t firstAttachment, uint32_t attachmentCount,
8618                              const VkColorComponentFlags *pColorWriteMasks)
8619 {
8620    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8621    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
8622    const struct radv_physical_device *pdev = radv_device_physical(device);
8623    struct radv_cmd_state *state = &cmd_buffer->state;
8624 
8625    assert(firstAttachment + attachmentCount <= MAX_RTS);
8626 
8627    for (uint32_t i = 0; i < attachmentCount; i++) {
8628       uint32_t idx = firstAttachment + i;
8629 
8630       state->dynamic.vk.cb.attachments[idx].write_mask = pColorWriteMasks[i];
8631    }
8632 
8633    state->dirty_dynamic |= RADV_DYNAMIC_COLOR_WRITE_MASK;
8634 
8635    if (pdev->info.rbplus_allowed)
8636       state->dirty |= RADV_CMD_DIRTY_RBPLUS;
8637 }
8638 
8639 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetColorBlendEnableEXT(VkCommandBuffer commandBuffer,uint32_t firstAttachment,uint32_t attachmentCount,const VkBool32 * pColorBlendEnables)8640 radv_CmdSetColorBlendEnableEXT(VkCommandBuffer commandBuffer, uint32_t firstAttachment, uint32_t attachmentCount,
8641                                const VkBool32 *pColorBlendEnables)
8642 {
8643    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8644    struct radv_cmd_state *state = &cmd_buffer->state;
8645 
8646    assert(firstAttachment + attachmentCount <= MAX_RTS);
8647 
8648    for (uint32_t i = 0; i < attachmentCount; i++) {
8649       uint32_t idx = firstAttachment + i;
8650 
8651       state->dynamic.vk.cb.attachments[idx].blend_enable = pColorBlendEnables[i];
8652    }
8653 
8654    state->dirty_dynamic |= RADV_DYNAMIC_COLOR_BLEND_ENABLE;
8655 }
8656 
8657 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRasterizationSamplesEXT(VkCommandBuffer commandBuffer,VkSampleCountFlagBits rasterizationSamples)8658 radv_CmdSetRasterizationSamplesEXT(VkCommandBuffer commandBuffer, VkSampleCountFlagBits rasterizationSamples)
8659 {
8660    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8661    struct radv_cmd_state *state = &cmd_buffer->state;
8662 
8663    state->dynamic.vk.ms.rasterization_samples = rasterizationSamples;
8664 
8665    state->dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES;
8666 }
8667 
8668 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLineRasterizationModeEXT(VkCommandBuffer commandBuffer,VkLineRasterizationMode lineRasterizationMode)8669 radv_CmdSetLineRasterizationModeEXT(VkCommandBuffer commandBuffer, VkLineRasterizationMode lineRasterizationMode)
8670 {
8671    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8672    struct radv_cmd_state *state = &cmd_buffer->state;
8673 
8674    state->dynamic.vk.rs.line.mode = lineRasterizationMode;
8675 
8676    state->dirty_dynamic |= RADV_DYNAMIC_LINE_RASTERIZATION_MODE;
8677 }
8678 
8679 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetColorBlendEquationEXT(VkCommandBuffer commandBuffer,uint32_t firstAttachment,uint32_t attachmentCount,const VkColorBlendEquationEXT * pColorBlendEquations)8680 radv_CmdSetColorBlendEquationEXT(VkCommandBuffer commandBuffer, uint32_t firstAttachment, uint32_t attachmentCount,
8681                                  const VkColorBlendEquationEXT *pColorBlendEquations)
8682 {
8683    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8684    struct radv_cmd_state *state = &cmd_buffer->state;
8685 
8686    assert(firstAttachment + attachmentCount <= MAX_RTS);
8687    for (uint32_t i = 0; i < attachmentCount; i++) {
8688       unsigned idx = firstAttachment + i;
8689 
8690       state->dynamic.vk.cb.attachments[idx].src_color_blend_factor = pColorBlendEquations[i].srcColorBlendFactor;
8691       state->dynamic.vk.cb.attachments[idx].dst_color_blend_factor = pColorBlendEquations[i].dstColorBlendFactor;
8692       state->dynamic.vk.cb.attachments[idx].color_blend_op = pColorBlendEquations[i].colorBlendOp;
8693       state->dynamic.vk.cb.attachments[idx].src_alpha_blend_factor = pColorBlendEquations[i].srcAlphaBlendFactor;
8694       state->dynamic.vk.cb.attachments[idx].dst_alpha_blend_factor = pColorBlendEquations[i].dstAlphaBlendFactor;
8695       state->dynamic.vk.cb.attachments[idx].alpha_blend_op = pColorBlendEquations[i].alphaBlendOp;
8696    }
8697 
8698    state->dirty_dynamic |= RADV_DYNAMIC_COLOR_BLEND_EQUATION;
8699 }
8700 
8701 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetSampleLocationsEnableEXT(VkCommandBuffer commandBuffer,VkBool32 sampleLocationsEnable)8702 radv_CmdSetSampleLocationsEnableEXT(VkCommandBuffer commandBuffer, VkBool32 sampleLocationsEnable)
8703 {
8704    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8705    struct radv_cmd_state *state = &cmd_buffer->state;
8706 
8707    state->dynamic.vk.ms.sample_locations_enable = sampleLocationsEnable;
8708 
8709    state->dirty_dynamic |= RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE;
8710 }
8711 
8712 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDiscardRectangleEnableEXT(VkCommandBuffer commandBuffer,VkBool32 discardRectangleEnable)8713 radv_CmdSetDiscardRectangleEnableEXT(VkCommandBuffer commandBuffer, VkBool32 discardRectangleEnable)
8714 {
8715    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8716    struct radv_cmd_state *state = &cmd_buffer->state;
8717 
8718    state->dynamic.vk.dr.enable = discardRectangleEnable;
8719    state->dynamic.vk.dr.rectangle_count = discardRectangleEnable ? MAX_DISCARD_RECTANGLES : 0;
8720 
8721    state->dirty_dynamic |= RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE;
8722 }
8723 
8724 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDiscardRectangleModeEXT(VkCommandBuffer commandBuffer,VkDiscardRectangleModeEXT discardRectangleMode)8725 radv_CmdSetDiscardRectangleModeEXT(VkCommandBuffer commandBuffer, VkDiscardRectangleModeEXT discardRectangleMode)
8726 {
8727    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8728    struct radv_cmd_state *state = &cmd_buffer->state;
8729 
8730    state->dynamic.vk.dr.mode = discardRectangleMode;
8731 
8732    state->dirty_dynamic |= RADV_DYNAMIC_DISCARD_RECTANGLE_MODE;
8733 }
8734 
8735 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetAttachmentFeedbackLoopEnableEXT(VkCommandBuffer commandBuffer,VkImageAspectFlags aspectMask)8736 radv_CmdSetAttachmentFeedbackLoopEnableEXT(VkCommandBuffer commandBuffer, VkImageAspectFlags aspectMask)
8737 {
8738    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8739    struct radv_cmd_state *state = &cmd_buffer->state;
8740 
8741    state->dynamic.feedback_loop_aspects = aspectMask;
8742 
8743    state->dirty_dynamic |= RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE;
8744 }
8745 
8746 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthBias2EXT(VkCommandBuffer commandBuffer,const VkDepthBiasInfoEXT * pDepthBiasInfo)8747 radv_CmdSetDepthBias2EXT(VkCommandBuffer commandBuffer, const VkDepthBiasInfoEXT *pDepthBiasInfo)
8748 {
8749    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8750    struct radv_cmd_state *state = &cmd_buffer->state;
8751 
8752    const VkDepthBiasRepresentationInfoEXT *dbr_info =
8753       vk_find_struct_const(pDepthBiasInfo->pNext, DEPTH_BIAS_REPRESENTATION_INFO_EXT);
8754 
8755    state->dynamic.vk.rs.depth_bias.constant_factor = pDepthBiasInfo->depthBiasConstantFactor;
8756    state->dynamic.vk.rs.depth_bias.clamp = pDepthBiasInfo->depthBiasClamp;
8757    state->dynamic.vk.rs.depth_bias.slope_factor = pDepthBiasInfo->depthBiasSlopeFactor;
8758    state->dynamic.vk.rs.depth_bias.representation =
8759       dbr_info ? dbr_info->depthBiasRepresentation : VK_DEPTH_BIAS_REPRESENTATION_LEAST_REPRESENTABLE_VALUE_FORMAT_EXT;
8760 
8761    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_BIAS;
8762 }
8763 
8764 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRenderingAttachmentLocations(VkCommandBuffer commandBuffer,const VkRenderingAttachmentLocationInfo * pLocationInfo)8765 radv_CmdSetRenderingAttachmentLocations(VkCommandBuffer commandBuffer,
8766                                         const VkRenderingAttachmentLocationInfo *pLocationInfo)
8767 {
8768    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8769    struct radv_cmd_state *state = &cmd_buffer->state;
8770 
8771    assume(pLocationInfo->colorAttachmentCount <= MESA_VK_MAX_COLOR_ATTACHMENTS);
8772    for (uint32_t i = 0; i < pLocationInfo->colorAttachmentCount; i++) {
8773       state->dynamic.vk.cal.color_map[i] = pLocationInfo->pColorAttachmentLocations[i] == VK_ATTACHMENT_UNUSED
8774                                               ? MESA_VK_ATTACHMENT_UNUSED
8775                                               : pLocationInfo->pColorAttachmentLocations[i];
8776    }
8777 
8778    state->dirty_dynamic |= RADV_DYNAMIC_COLOR_ATTACHMENT_MAP;
8779    state->dirty |= RADV_CMD_DIRTY_FBFETCH_OUTPUT;
8780 }
8781 
8782 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRenderingInputAttachmentIndices(VkCommandBuffer commandBuffer,const VkRenderingInputAttachmentIndexInfo * pLocationInfo)8783 radv_CmdSetRenderingInputAttachmentIndices(VkCommandBuffer commandBuffer,
8784                                            const VkRenderingInputAttachmentIndexInfo *pLocationInfo)
8785 {
8786    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8787    struct radv_cmd_state *state = &cmd_buffer->state;
8788 
8789    assume(pLocationInfo->colorAttachmentCount <= MESA_VK_MAX_COLOR_ATTACHMENTS);
8790    for (uint32_t i = 0; i < pLocationInfo->colorAttachmentCount; i++) {
8791       uint8_t val;
8792 
8793       if (!pLocationInfo->pColorAttachmentInputIndices) {
8794          val = i;
8795       } else if (pLocationInfo->pColorAttachmentInputIndices[i] == VK_ATTACHMENT_UNUSED) {
8796          val = MESA_VK_ATTACHMENT_UNUSED;
8797       } else {
8798          val = pLocationInfo->pColorAttachmentInputIndices[i];
8799       }
8800 
8801       state->dynamic.vk.ial.color_map[i] = val;
8802    }
8803 
8804    state->dynamic.vk.ial.depth_att = (pLocationInfo->pDepthInputAttachmentIndex == NULL ||
8805                                       *pLocationInfo->pDepthInputAttachmentIndex == VK_ATTACHMENT_UNUSED)
8806                                         ? MESA_VK_ATTACHMENT_UNUSED
8807                                         : *pLocationInfo->pDepthInputAttachmentIndex;
8808    state->dynamic.vk.ial.stencil_att = (pLocationInfo->pStencilInputAttachmentIndex == NULL ||
8809                                         *pLocationInfo->pStencilInputAttachmentIndex == VK_ATTACHMENT_UNUSED)
8810                                           ? MESA_VK_ATTACHMENT_UNUSED
8811                                           : *pLocationInfo->pStencilInputAttachmentIndex;
8812 
8813    state->dirty_dynamic |= RADV_DYNAMIC_INPUT_ATTACHMENT_MAP;
8814    state->dirty |= RADV_CMD_DIRTY_FBFETCH_OUTPUT;
8815 }
8816 
8817 static void
radv_handle_color_fbfetch_output(struct radv_cmd_buffer * cmd_buffer,uint32_t index)8818 radv_handle_color_fbfetch_output(struct radv_cmd_buffer *cmd_buffer, uint32_t index)
8819 {
8820    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
8821    struct radv_rendering_state *render = &cmd_buffer->state.render;
8822    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
8823    struct radv_attachment *att = &render->color_att[index];
8824 
8825    if (!att->iview)
8826       return;
8827 
8828    const struct radv_image *image = att->iview->image;
8829    if (!(image->vk.usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
8830       return;
8831 
8832    if (!radv_layout_dcc_compressed(device, image, att->iview->vk.base_mip_level, att->layout,
8833                                    radv_image_queue_family_mask(att->iview->image, cmd_buffer->qf, cmd_buffer->qf)))
8834       return;
8835 
8836    const uint32_t color_att_idx = d->vk.cal.color_map[index];
8837    if (color_att_idx == MESA_VK_ATTACHMENT_UNUSED)
8838       return;
8839 
8840    if (d->vk.ial.color_map[color_att_idx] != color_att_idx)
8841       return;
8842 
8843    const VkImageSubresourceRange range = vk_image_view_subresource_range(&att->iview->vk);
8844 
8845    /* Consider previous rendering work for WAW hazards. */
8846    cmd_buffer->state.flush_bits |=
8847       radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, 0,
8848                             att->iview->image, &range);
8849 
8850    radv_describe_barrier_start(cmd_buffer, RGP_BARRIER_UNKNOWN_REASON);
8851 
8852    /* Force a transition to FEEDBACK_LOOP_OPTIMAL to decompress DCC. */
8853    radv_handle_image_transition(cmd_buffer, att->iview->image, att->layout,
8854                                 VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT, RADV_QUEUE_GENERAL,
8855                                 RADV_QUEUE_GENERAL, &range, NULL);
8856 
8857    radv_describe_barrier_end(cmd_buffer);
8858 
8859    att->layout = VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT;
8860 
8861    cmd_buffer->state.flush_bits |= radv_dst_access_flush(
8862       cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
8863       VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT, 0, att->iview->image, &range);
8864 
8865    cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER;
8866 }
8867 
8868 static void
radv_handle_depth_fbfetch_output(struct radv_cmd_buffer * cmd_buffer)8869 radv_handle_depth_fbfetch_output(struct radv_cmd_buffer *cmd_buffer)
8870 {
8871    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
8872    struct radv_rendering_state *render = &cmd_buffer->state.render;
8873    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
8874    struct radv_attachment *att = &render->ds_att;
8875 
8876    if (!att->iview)
8877       return;
8878 
8879    const struct radv_image *image = att->iview->image;
8880    if (!(image->vk.usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
8881       return;
8882 
8883    if (!radv_layout_is_htile_compressed(
8884           device, att->iview->image, att->layout,
8885           radv_image_queue_family_mask(att->iview->image, cmd_buffer->qf, cmd_buffer->qf)))
8886       return;
8887 
8888    if (d->vk.ial.depth_att == MESA_VK_ATTACHMENT_UNUSED && d->vk.ial.stencil_att == MESA_VK_ATTACHMENT_UNUSED)
8889       return;
8890 
8891    const VkImageSubresourceRange range = vk_image_view_subresource_range(&att->iview->vk);
8892 
8893    /* Consider previous rendering work for WAW hazards. */
8894    cmd_buffer->state.flush_bits |=
8895       radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
8896                             VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, 0, att->iview->image, &range);
8897 
8898    radv_describe_barrier_start(cmd_buffer, RGP_BARRIER_UNKNOWN_REASON);
8899 
8900    /* Force a transition to FEEDBACK_LOOP_OPTIMAL to decompress HTILE. */
8901    radv_handle_image_transition(cmd_buffer, att->iview->image, att->layout,
8902                                 VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT, RADV_QUEUE_GENERAL,
8903                                 RADV_QUEUE_GENERAL, &range, NULL);
8904 
8905    radv_describe_barrier_end(cmd_buffer);
8906 
8907    att->layout = VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT;
8908    att->stencil_layout = VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT;
8909 
8910    cmd_buffer->state.flush_bits |=
8911       radv_dst_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
8912                             VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT, 0,
8913                             att->iview->image, &range);
8914 
8915    cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER;
8916 }
8917 
8918 static void
radv_handle_fbfetch_output(struct radv_cmd_buffer * cmd_buffer)8919 radv_handle_fbfetch_output(struct radv_cmd_buffer *cmd_buffer)
8920 {
8921    const struct radv_rendering_state *render = &cmd_buffer->state.render;
8922 
8923    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_FBFETCH_OUTPUT;
8924 
8925    /* Nothing to do when dynamic rendering doesn't use concurrent input attachment writes. */
8926    if (render->has_input_attachment_no_concurrent_writes)
8927       return;
8928 
8929    /* Nothing to do when the bound fragment shader doesn't use subpass input attachments. */
8930    if (!cmd_buffer->state.uses_fbfetch_output)
8931       return;
8932 
8933    /* Check if any color attachments are compressed and also used as input attachments. */
8934    for (uint32_t i = 0; i < render->color_att_count; i++) {
8935       radv_handle_color_fbfetch_output(cmd_buffer, i);
8936    }
8937 
8938    /* Check if the depth/stencil attachment is compressed and also used as input attachment. */
8939    radv_handle_depth_fbfetch_output(cmd_buffer);
8940 }
8941 
8942 VKAPI_ATTR void VKAPI_CALL
radv_CmdExecuteCommands(VkCommandBuffer commandBuffer,uint32_t commandBufferCount,const VkCommandBuffer * pCmdBuffers)8943 radv_CmdExecuteCommands(VkCommandBuffer commandBuffer, uint32_t commandBufferCount, const VkCommandBuffer *pCmdBuffers)
8944 {
8945    VK_FROM_HANDLE(radv_cmd_buffer, primary, commandBuffer);
8946    struct radv_device *device = radv_cmd_buffer_device(primary);
8947    const struct radv_physical_device *pdev = radv_device_physical(device);
8948 
8949    assert(commandBufferCount > 0);
8950 
8951    radv_emit_mip_change_flush_default(primary);
8952 
8953    /* Emit pending flushes on primary prior to executing secondary */
8954    radv_emit_cache_flush(primary);
8955 
8956    /* Make sure CP DMA is idle on primary prior to executing secondary. */
8957    radv_cp_dma_wait_for_idle(primary);
8958 
8959    for (uint32_t i = 0; i < commandBufferCount; i++) {
8960       VK_FROM_HANDLE(radv_cmd_buffer, secondary, pCmdBuffers[i]);
8961 
8962       /* Do not launch an IB2 for secondary command buffers that contain
8963        * DRAW_{INDEX}_INDIRECT_{MULTI} on GFX6-7 because it's illegal and hangs the GPU.
8964        */
8965       const bool allow_ib2 = !secondary->state.uses_draw_indirect || pdev->info.gfx_level >= GFX8;
8966 
8967       primary->scratch_size_per_wave_needed =
8968          MAX2(primary->scratch_size_per_wave_needed, secondary->scratch_size_per_wave_needed);
8969       primary->scratch_waves_wanted = MAX2(primary->scratch_waves_wanted, secondary->scratch_waves_wanted);
8970       primary->compute_scratch_size_per_wave_needed =
8971          MAX2(primary->compute_scratch_size_per_wave_needed, secondary->compute_scratch_size_per_wave_needed);
8972       primary->compute_scratch_waves_wanted =
8973          MAX2(primary->compute_scratch_waves_wanted, secondary->compute_scratch_waves_wanted);
8974 
8975       if (secondary->esgs_ring_size_needed > primary->esgs_ring_size_needed)
8976          primary->esgs_ring_size_needed = secondary->esgs_ring_size_needed;
8977       if (secondary->gsvs_ring_size_needed > primary->gsvs_ring_size_needed)
8978          primary->gsvs_ring_size_needed = secondary->gsvs_ring_size_needed;
8979       if (secondary->tess_rings_needed)
8980          primary->tess_rings_needed = true;
8981       if (secondary->task_rings_needed)
8982          primary->task_rings_needed = true;
8983       if (secondary->mesh_scratch_ring_needed)
8984          primary->mesh_scratch_ring_needed = true;
8985       if (secondary->sample_positions_needed)
8986          primary->sample_positions_needed = true;
8987       if (secondary->gds_needed)
8988          primary->gds_needed = true;
8989       if (secondary->gds_oa_needed)
8990          primary->gds_oa_needed = true;
8991 
8992       primary->shader_upload_seq = MAX2(primary->shader_upload_seq, secondary->shader_upload_seq);
8993 
8994       primary->state.uses_fbfetch_output |= secondary->state.uses_fbfetch_output;
8995 
8996       if (!secondary->state.render.has_image_views) {
8997          if (primary->state.dirty & RADV_CMD_DIRTY_FBFETCH_OUTPUT)
8998             radv_handle_fbfetch_output(primary);
8999 
9000          if (primary->state.render.active && (primary->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER)) {
9001             /* Emit the framebuffer state from primary if secondary
9002              * has been recorded without a framebuffer, otherwise
9003              * fast color/depth clears can't work.
9004              */
9005             radv_emit_framebuffer_state(primary);
9006          }
9007       }
9008 
9009       if (secondary->gang.cs) {
9010          if (!radv_gang_init(primary))
9011             return;
9012 
9013          struct radeon_cmdbuf *ace_primary = primary->gang.cs;
9014          struct radeon_cmdbuf *ace_secondary = secondary->gang.cs;
9015 
9016          /* Emit pending flushes on primary prior to executing secondary. */
9017          radv_gang_cache_flush(primary);
9018 
9019          /* Wait for gang semaphores, if necessary. */
9020          if (radv_flush_gang_leader_semaphore(primary))
9021             radv_wait_gang_leader(primary);
9022          if (radv_flush_gang_follower_semaphore(primary))
9023             radv_wait_gang_follower(primary);
9024 
9025          /* Execute the secondary compute cmdbuf.
9026           * Don't use IB2 packets because they are not supported on compute queues.
9027           */
9028          device->ws->cs_execute_secondary(ace_primary, ace_secondary, false);
9029       }
9030 
9031       /* Update pending ACE internal flush bits from the secondary cmdbuf */
9032       primary->gang.flush_bits |= secondary->gang.flush_bits;
9033 
9034       /* Increment gang semaphores if secondary was dirty.
9035        * This happens when the secondary cmdbuf has a barrier which
9036        * isn't consumed by a draw call.
9037        */
9038       if (radv_gang_leader_sem_dirty(secondary))
9039          primary->gang.sem.leader_value++;
9040       if (radv_gang_follower_sem_dirty(secondary))
9041          primary->gang.sem.follower_value++;
9042 
9043       device->ws->cs_execute_secondary(primary->cs, secondary->cs, allow_ib2);
9044 
9045       /* When the secondary command buffer is compute only we don't
9046        * need to re-emit the current graphics pipeline.
9047        */
9048       if (secondary->state.emitted_graphics_pipeline) {
9049          primary->state.emitted_graphics_pipeline = secondary->state.emitted_graphics_pipeline;
9050       }
9051 
9052       /* When the secondary command buffer is graphics only we don't
9053        * need to re-emit the current compute pipeline.
9054        */
9055       if (secondary->state.emitted_compute_pipeline) {
9056          primary->state.emitted_compute_pipeline = secondary->state.emitted_compute_pipeline;
9057       }
9058 
9059       if (secondary->state.last_ia_multi_vgt_param) {
9060          primary->state.last_ia_multi_vgt_param = secondary->state.last_ia_multi_vgt_param;
9061       }
9062 
9063       if (secondary->state.last_ge_cntl) {
9064          primary->state.last_ge_cntl = secondary->state.last_ge_cntl;
9065       }
9066 
9067       primary->state.last_num_instances = secondary->state.last_num_instances;
9068       primary->state.last_subpass_color_count = secondary->state.last_subpass_color_count;
9069 
9070       if (secondary->state.last_index_type != -1) {
9071          primary->state.last_index_type = secondary->state.last_index_type;
9072       }
9073 
9074       primary->state.last_vrs_rates = secondary->state.last_vrs_rates;
9075       primary->state.last_force_vrs_rates_offset = secondary->state.last_force_vrs_rates_offset;
9076 
9077       primary->state.rb_noncoherent_dirty |= secondary->state.rb_noncoherent_dirty;
9078 
9079       primary->state.uses_draw_indirect |= secondary->state.uses_draw_indirect;
9080 
9081       for (uint32_t reg = 0; reg < RADV_NUM_ALL_TRACKED_REGS; reg++) {
9082          if (!BITSET_TEST(secondary->tracked_regs.reg_saved_mask, reg))
9083             continue;
9084 
9085          BITSET_SET(primary->tracked_regs.reg_saved_mask, reg);
9086          primary->tracked_regs.reg_value[reg] = secondary->tracked_regs.reg_value[reg];
9087       }
9088 
9089       memcpy(primary->tracked_regs.spi_ps_input_cntl, secondary->tracked_regs.spi_ps_input_cntl,
9090              sizeof(primary->tracked_regs.spi_ps_input_cntl));
9091    }
9092 
9093    /* After executing commands from secondary buffers we have to dirty
9094     * some states.
9095     */
9096    primary->state.dirty_dynamic |= RADV_DYNAMIC_ALL;
9097    primary->state.dirty |= RADV_CMD_DIRTY_PIPELINE | RADV_CMD_DIRTY_INDEX_BUFFER | RADV_CMD_DIRTY_GUARDBAND |
9098                            RADV_CMD_DIRTY_SHADER_QUERY | RADV_CMD_DIRTY_OCCLUSION_QUERY |
9099                            RADV_CMD_DIRTY_DB_SHADER_CONTROL | RADV_CMD_DIRTY_FRAGMENT_OUTPUT;
9100    radv_mark_descriptor_sets_dirty(primary, VK_PIPELINE_BIND_POINT_GRAPHICS);
9101    radv_mark_descriptor_sets_dirty(primary, VK_PIPELINE_BIND_POINT_COMPUTE);
9102 
9103    primary->state.last_first_instance = -1;
9104    primary->state.last_drawid = -1;
9105    primary->state.last_vertex_offset_valid = false;
9106 }
9107 
9108 static void
radv_mark_noncoherent_rb(struct radv_cmd_buffer * cmd_buffer)9109 radv_mark_noncoherent_rb(struct radv_cmd_buffer *cmd_buffer)
9110 {
9111    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
9112    struct radv_rendering_state *render = &cmd_buffer->state.render;
9113 
9114    /* Have to be conservative in cmdbuffers with inherited attachments. */
9115    if (!render->has_image_views) {
9116       cmd_buffer->state.rb_noncoherent_dirty = true;
9117       return;
9118    }
9119 
9120    for (uint32_t i = 0; i < render->color_att_count; i++) {
9121       const struct radv_image_view *iview = render->color_att[i].iview;
9122 
9123       if (!iview)
9124          continue;
9125 
9126       const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
9127 
9128       if (!radv_image_is_l2_coherent(device, iview->image, &range)) {
9129          cmd_buffer->state.rb_noncoherent_dirty = true;
9130          return;
9131       }
9132    }
9133 
9134    const struct radv_image_view *iview = render->ds_att.iview;
9135 
9136    if (iview) {
9137       const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
9138 
9139       if (!radv_image_is_l2_coherent(device, iview->image, &range))
9140          cmd_buffer->state.rb_noncoherent_dirty = true;
9141    }
9142 }
9143 
9144 static VkImageLayout
attachment_initial_layout(const VkRenderingAttachmentInfo * att)9145 attachment_initial_layout(const VkRenderingAttachmentInfo *att)
9146 {
9147    const VkRenderingAttachmentInitialLayoutInfoMESA *layout_info =
9148       vk_find_struct_const(att->pNext, RENDERING_ATTACHMENT_INITIAL_LAYOUT_INFO_MESA);
9149    if (layout_info != NULL)
9150       return layout_info->initialLayout;
9151 
9152    return att->imageLayout;
9153 }
9154 
9155 VKAPI_ATTR void VKAPI_CALL
radv_CmdBeginRendering(VkCommandBuffer commandBuffer,const VkRenderingInfo * pRenderingInfo)9156 radv_CmdBeginRendering(VkCommandBuffer commandBuffer, const VkRenderingInfo *pRenderingInfo)
9157 {
9158    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
9159    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
9160    const struct radv_physical_device *pdev = radv_device_physical(device);
9161 
9162    const struct VkSampleLocationsInfoEXT *sample_locs_info =
9163       vk_find_struct_const(pRenderingInfo->pNext, SAMPLE_LOCATIONS_INFO_EXT);
9164 
9165    struct radv_sample_locations_state sample_locations = {
9166       .count = 0,
9167    };
9168    if (sample_locs_info) {
9169       sample_locations = (struct radv_sample_locations_state){
9170          .per_pixel = sample_locs_info->sampleLocationsPerPixel,
9171          .grid_size = sample_locs_info->sampleLocationGridSize,
9172          .count = sample_locs_info->sampleLocationsCount,
9173       };
9174       typed_memcpy(sample_locations.locations, sample_locs_info->pSampleLocations,
9175                    sample_locs_info->sampleLocationsCount);
9176    }
9177 
9178    /* Dynamic rendering does not have implicit transitions, so limit the marker to
9179     * when a render pass is used.
9180     * Additionally, some internal meta operations called inside a barrier may issue
9181     * render calls (with dynamic rendering), so this makes sure those case don't
9182     * create a nested barrier scope.
9183     */
9184    if (cmd_buffer->vk.render_pass)
9185       radv_describe_barrier_start(cmd_buffer, RGP_BARRIER_EXTERNAL_RENDER_PASS_SYNC);
9186    uint32_t color_samples = 0, ds_samples = 0;
9187    struct radv_attachment color_att[MAX_RTS];
9188    for (uint32_t i = 0; i < pRenderingInfo->colorAttachmentCount; i++) {
9189       const VkRenderingAttachmentInfo *att_info = &pRenderingInfo->pColorAttachments[i];
9190 
9191       color_att[i] = (struct radv_attachment){.iview = NULL};
9192       if (att_info->imageView == VK_NULL_HANDLE)
9193          continue;
9194 
9195       VK_FROM_HANDLE(radv_image_view, iview, att_info->imageView);
9196       color_att[i].format = iview->vk.format;
9197       color_att[i].iview = iview;
9198       color_att[i].layout = att_info->imageLayout;
9199       radv_initialise_color_surface(device, &color_att[i].cb, iview);
9200 
9201       if (att_info->resolveMode != VK_RESOLVE_MODE_NONE && att_info->resolveImageView != VK_NULL_HANDLE) {
9202          color_att[i].resolve_mode = att_info->resolveMode;
9203          color_att[i].resolve_iview = radv_image_view_from_handle(att_info->resolveImageView);
9204          color_att[i].resolve_layout = att_info->resolveImageLayout;
9205       }
9206 
9207       color_samples = MAX2(color_samples, color_att[i].iview->vk.image->samples);
9208 
9209       VkImageLayout initial_layout = attachment_initial_layout(att_info);
9210       if (initial_layout != color_att[i].layout) {
9211          assert(!(pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT));
9212          radv_handle_rendering_image_transition(cmd_buffer, color_att[i].iview, pRenderingInfo->layerCount,
9213                                                 pRenderingInfo->viewMask, initial_layout, VK_IMAGE_LAYOUT_UNDEFINED,
9214                                                 color_att[i].layout, VK_IMAGE_LAYOUT_UNDEFINED, &sample_locations);
9215       }
9216    }
9217 
9218    struct radv_attachment ds_att = {.iview = NULL};
9219    VkImageAspectFlags ds_att_aspects = 0;
9220    const VkRenderingAttachmentInfo *d_att_info = pRenderingInfo->pDepthAttachment;
9221    const VkRenderingAttachmentInfo *s_att_info = pRenderingInfo->pStencilAttachment;
9222    if ((d_att_info != NULL && d_att_info->imageView != VK_NULL_HANDLE) ||
9223        (s_att_info != NULL && s_att_info->imageView != VK_NULL_HANDLE)) {
9224       struct radv_image_view *d_iview = NULL, *s_iview = NULL;
9225       struct radv_image_view *d_res_iview = NULL, *s_res_iview = NULL;
9226       VkImageLayout initial_depth_layout = VK_IMAGE_LAYOUT_UNDEFINED;
9227       VkImageLayout initial_stencil_layout = VK_IMAGE_LAYOUT_UNDEFINED;
9228 
9229       if (d_att_info != NULL && d_att_info->imageView != VK_NULL_HANDLE) {
9230          d_iview = radv_image_view_from_handle(d_att_info->imageView);
9231          initial_depth_layout = attachment_initial_layout(d_att_info);
9232          ds_att.layout = d_att_info->imageLayout;
9233 
9234          if (d_att_info->resolveMode != VK_RESOLVE_MODE_NONE && d_att_info->resolveImageView != VK_NULL_HANDLE) {
9235             d_res_iview = radv_image_view_from_handle(d_att_info->resolveImageView);
9236             ds_att.resolve_mode = d_att_info->resolveMode;
9237             ds_att.resolve_layout = d_att_info->resolveImageLayout;
9238          }
9239       }
9240 
9241       if (s_att_info != NULL && s_att_info->imageView != VK_NULL_HANDLE) {
9242          s_iview = radv_image_view_from_handle(s_att_info->imageView);
9243          initial_stencil_layout = attachment_initial_layout(s_att_info);
9244          ds_att.stencil_layout = s_att_info->imageLayout;
9245 
9246          if (s_att_info->resolveMode != VK_RESOLVE_MODE_NONE && s_att_info->resolveImageView != VK_NULL_HANDLE) {
9247             s_res_iview = radv_image_view_from_handle(s_att_info->resolveImageView);
9248             ds_att.stencil_resolve_mode = s_att_info->resolveMode;
9249             ds_att.stencil_resolve_layout = s_att_info->resolveImageLayout;
9250          }
9251       }
9252 
9253       assert(d_iview == NULL || s_iview == NULL || d_iview == s_iview);
9254       ds_att.iview = d_iview ? d_iview : s_iview, ds_att.format = ds_att.iview->vk.format;
9255 
9256       if (d_iview && s_iview) {
9257          ds_att_aspects = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
9258       } else if (d_iview) {
9259          ds_att_aspects = VK_IMAGE_ASPECT_DEPTH_BIT;
9260       } else {
9261          ds_att_aspects = VK_IMAGE_ASPECT_STENCIL_BIT;
9262       }
9263 
9264       radv_initialise_ds_surface(device, &ds_att.ds, ds_att.iview, ds_att_aspects);
9265 
9266       assert(d_res_iview == NULL || s_res_iview == NULL || d_res_iview == s_res_iview);
9267       ds_att.resolve_iview = d_res_iview ? d_res_iview : s_res_iview;
9268 
9269       ds_samples = ds_att.iview->vk.image->samples;
9270 
9271       if (initial_depth_layout != ds_att.layout || initial_stencil_layout != ds_att.stencil_layout) {
9272          assert(!(pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT));
9273          radv_handle_rendering_image_transition(cmd_buffer, ds_att.iview, pRenderingInfo->layerCount,
9274                                                 pRenderingInfo->viewMask, initial_depth_layout, initial_stencil_layout,
9275                                                 ds_att.layout, ds_att.stencil_layout, &sample_locations);
9276       }
9277    }
9278    if (cmd_buffer->vk.render_pass)
9279       radv_describe_barrier_end(cmd_buffer);
9280 
9281    const VkRenderingFragmentShadingRateAttachmentInfoKHR *fsr_info =
9282       vk_find_struct_const(pRenderingInfo->pNext, RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR);
9283    struct radv_attachment vrs_att = {.iview = NULL};
9284    VkExtent2D vrs_texel_size = {.width = 0};
9285    if (fsr_info && fsr_info->imageView) {
9286       VK_FROM_HANDLE(radv_image_view, iview, fsr_info->imageView);
9287       vrs_att = (struct radv_attachment){
9288          .format = iview->vk.format,
9289          .iview = iview,
9290          .layout = fsr_info->imageLayout,
9291       };
9292       vrs_texel_size = fsr_info->shadingRateAttachmentTexelSize;
9293    }
9294 
9295    /* Now that we've done any layout transitions which may invoke meta, we can
9296     * fill out the actual rendering info and set up for the client's render pass.
9297     */
9298    radv_cmd_buffer_reset_rendering(cmd_buffer);
9299 
9300    struct radv_rendering_state *render = &cmd_buffer->state.render;
9301    render->active = true;
9302    render->has_image_views = true;
9303    render->has_input_attachment_no_concurrent_writes =
9304       !!(pRenderingInfo->flags & VK_RENDERING_INPUT_ATTACHMENT_NO_CONCURRENT_WRITES_BIT_MESA);
9305    render->area = pRenderingInfo->renderArea;
9306    render->view_mask = pRenderingInfo->viewMask;
9307    render->layer_count = pRenderingInfo->layerCount;
9308    render->color_samples = color_samples;
9309    render->ds_samples = ds_samples;
9310    render->max_samples = MAX2(color_samples, ds_samples);
9311    render->sample_locations = sample_locations;
9312    render->color_att_count = pRenderingInfo->colorAttachmentCount;
9313    typed_memcpy(render->color_att, color_att, render->color_att_count);
9314    render->ds_att = ds_att;
9315    render->ds_att_aspects = ds_att_aspects;
9316    render->vrs_att = vrs_att;
9317    render->vrs_texel_size = vrs_texel_size;
9318    cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER | RADV_CMD_DIRTY_FBFETCH_OUTPUT;
9319 
9320    if (pdev->info.rbplus_allowed)
9321       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RBPLUS;
9322 
9323    cmd_buffer->state.dirty_dynamic |=
9324       RADV_DYNAMIC_DEPTH_BIAS | RADV_DYNAMIC_STENCIL_TEST_ENABLE | RADV_DYNAMIC_COLOR_BLEND_ENABLE;
9325    if (pdev->info.gfx_level >= GFX12)
9326       cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES;
9327 
9328    if (render->vrs_att.iview && pdev->info.gfx_level == GFX10_3) {
9329       if (render->ds_att.iview &&
9330           radv_htile_enabled(render->ds_att.iview->image, render->ds_att.iview->vk.base_mip_level)) {
9331          /* When we have a VRS attachment and a depth/stencil attachment, we just need to copy the
9332           * VRS rates to the HTILE buffer of the attachment.
9333           */
9334          struct radv_image_view *ds_iview = render->ds_att.iview;
9335          struct radv_image *ds_image = ds_iview->image;
9336          uint32_t level = ds_iview->vk.base_mip_level;
9337 
9338          /* HTILE buffer */
9339          uint64_t htile_offset = ds_image->bindings[0].offset + ds_image->planes[0].surface.meta_offset +
9340                                  ds_image->planes[0].surface.u.gfx9.meta_levels[level].offset;
9341          uint64_t htile_size = ds_image->planes[0].surface.u.gfx9.meta_levels[level].size;
9342          struct radv_buffer htile_buffer;
9343 
9344          radv_buffer_init(&htile_buffer, device, ds_image->bindings[0].bo, htile_size, htile_offset);
9345 
9346          assert(render->area.offset.x + render->area.extent.width <= ds_image->vk.extent.width &&
9347                 render->area.offset.x + render->area.extent.height <= ds_image->vk.extent.height);
9348 
9349          /* Copy the VRS rates to the HTILE buffer. */
9350          radv_copy_vrs_htile(cmd_buffer, render->vrs_att.iview, &render->area, ds_image, &htile_buffer, true);
9351 
9352          radv_buffer_finish(&htile_buffer);
9353       } else {
9354          /* When a subpass uses a VRS attachment without binding a depth/stencil attachment, or when
9355           * HTILE isn't enabled, we use a fallback that copies the VRS rates to our internal HTILE buffer.
9356           */
9357          struct radv_image *ds_image = radv_cmd_buffer_get_vrs_image(cmd_buffer);
9358 
9359          if (ds_image && render->area.offset.x < ds_image->vk.extent.width &&
9360              render->area.offset.y < ds_image->vk.extent.height) {
9361             /* HTILE buffer */
9362             struct radv_buffer *htile_buffer = device->vrs.buffer;
9363 
9364             VkRect2D area = render->area;
9365             area.extent.width = MIN2(area.extent.width, ds_image->vk.extent.width - area.offset.x);
9366             area.extent.height = MIN2(area.extent.height, ds_image->vk.extent.height - area.offset.y);
9367 
9368             /* Copy the VRS rates to the HTILE buffer. */
9369             radv_copy_vrs_htile(cmd_buffer, render->vrs_att.iview, &area, ds_image, htile_buffer, false);
9370          }
9371       }
9372    }
9373 
9374    const uint32_t minx = render->area.offset.x;
9375    const uint32_t miny = render->area.offset.y;
9376    const uint32_t maxx = minx + render->area.extent.width;
9377    const uint32_t maxy = miny + render->area.extent.height;
9378 
9379    radeon_check_space(device->ws, cmd_buffer->cs, 6);
9380 
9381    if (pdev->info.gfx_level >= GFX12) {
9382       radeon_set_context_reg(cmd_buffer->cs, R_028204_PA_SC_WINDOW_SCISSOR_TL,
9383                              S_028204_TL_X(minx) | S_028204_TL_Y_GFX12(miny));
9384       radeon_set_context_reg(cmd_buffer->cs, R_028208_PA_SC_WINDOW_SCISSOR_BR,
9385                              S_028208_BR_X(maxx - 1) | S_028208_BR_Y(maxy - 1)); /* inclusive */
9386    } else {
9387       radeon_set_context_reg(cmd_buffer->cs, R_028204_PA_SC_WINDOW_SCISSOR_TL,
9388                              S_028204_TL_X(minx) | S_028204_TL_Y_GFX6(miny));
9389       radeon_set_context_reg(cmd_buffer->cs, R_028208_PA_SC_WINDOW_SCISSOR_BR,
9390                              S_028208_BR_X(maxx) | S_028208_BR_Y(maxy));
9391    }
9392 
9393    radv_emit_fb_mip_change_flush(cmd_buffer);
9394 
9395    if (!(pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT))
9396       radv_cmd_buffer_clear_rendering(cmd_buffer, pRenderingInfo);
9397 }
9398 
9399 VKAPI_ATTR void VKAPI_CALL
radv_CmdEndRendering(VkCommandBuffer commandBuffer)9400 radv_CmdEndRendering(VkCommandBuffer commandBuffer)
9401 {
9402    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
9403 
9404    radv_mark_noncoherent_rb(cmd_buffer);
9405    radv_cmd_buffer_resolve_rendering(cmd_buffer);
9406    radv_cmd_buffer_reset_rendering(cmd_buffer);
9407 }
9408 
9409 static void
radv_emit_view_index_per_stage(struct radeon_cmdbuf * cs,const struct radv_shader * shader,uint32_t base_reg,unsigned index)9410 radv_emit_view_index_per_stage(struct radeon_cmdbuf *cs, const struct radv_shader *shader, uint32_t base_reg,
9411                                unsigned index)
9412 {
9413    const uint32_t view_index_offset = radv_get_user_sgpr_loc(shader, AC_UD_VIEW_INDEX);
9414 
9415    if (!view_index_offset)
9416       return;
9417 
9418    radeon_set_sh_reg(cs, view_index_offset, index);
9419 }
9420 
9421 static void
radv_emit_view_index(const struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * cs,unsigned index)9422 radv_emit_view_index(const struct radv_cmd_state *cmd_state, struct radeon_cmdbuf *cs, unsigned index)
9423 {
9424    radv_foreach_stage(stage, cmd_state->active_stages & ~VK_SHADER_STAGE_TASK_BIT_EXT)
9425    {
9426       const struct radv_shader *shader = radv_get_shader(cmd_state->shaders, stage);
9427 
9428       radv_emit_view_index_per_stage(cs, shader, shader->info.user_data_0, index);
9429    }
9430 
9431    if (cmd_state->gs_copy_shader) {
9432       radv_emit_view_index_per_stage(cs, cmd_state->gs_copy_shader, R_00B130_SPI_SHADER_USER_DATA_VS_0, index);
9433    }
9434 }
9435 
9436 /**
9437  * Emulates predication for MEC using COND_EXEC.
9438  * When the current command buffer is predicating, emit a COND_EXEC packet
9439  * so that the MEC skips the next few dwords worth of packets.
9440  *
9441  * To make it work with inverted conditional rendering, we allocate
9442  * space in the upload BO and emit some packets to invert the condition.
9443  */
9444 static void
radv_cs_emit_compute_predication(const struct radv_device * device,struct radv_cmd_state * state,struct radeon_cmdbuf * cs,uint64_t inv_va,bool * inv_emitted,unsigned dwords)9445 radv_cs_emit_compute_predication(const struct radv_device *device, struct radv_cmd_state *state,
9446                                  struct radeon_cmdbuf *cs, uint64_t inv_va, bool *inv_emitted, unsigned dwords)
9447 {
9448    const struct radv_physical_device *pdev = radv_device_physical(device);
9449 
9450    if (!state->predicating)
9451       return;
9452 
9453    uint64_t va = state->predication_va;
9454 
9455    if (!state->predication_type) {
9456       /* Invert the condition the first time it is needed. */
9457       if (!*inv_emitted) {
9458          const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
9459 
9460          *inv_emitted = true;
9461 
9462          /* Write 1 to the inverted predication VA. */
9463          radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
9464          radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
9465                             COPY_DATA_WR_CONFIRM | (gfx_level == GFX6 ? COPY_DATA_ENGINE_PFP : 0));
9466          radeon_emit(cs, 1);
9467          radeon_emit(cs, 0);
9468          radeon_emit(cs, inv_va);
9469          radeon_emit(cs, inv_va >> 32);
9470 
9471          /* If the API predication VA == 0, skip next command. */
9472          radv_emit_cond_exec(device, cs, va, 6 /* 1x COPY_DATA size */);
9473 
9474          /* Write 0 to the new predication VA (when the API condition != 0) */
9475          radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
9476          radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
9477                             COPY_DATA_WR_CONFIRM | (gfx_level == GFX6 ? COPY_DATA_ENGINE_PFP : 0));
9478          radeon_emit(cs, 0);
9479          radeon_emit(cs, 0);
9480          radeon_emit(cs, inv_va);
9481          radeon_emit(cs, inv_va >> 32);
9482       }
9483 
9484       va = inv_va;
9485    }
9486 
9487    radv_emit_cond_exec(device, cs, va, dwords);
9488 }
9489 
9490 static void
radv_cs_emit_draw_packet(struct radv_cmd_buffer * cmd_buffer,uint32_t vertex_count,uint32_t use_opaque)9491 radv_cs_emit_draw_packet(struct radv_cmd_buffer *cmd_buffer, uint32_t vertex_count, uint32_t use_opaque)
9492 {
9493    radeon_emit(cmd_buffer->cs, PKT3(PKT3_DRAW_INDEX_AUTO, 1, cmd_buffer->state.predicating));
9494    radeon_emit(cmd_buffer->cs, vertex_count);
9495    radeon_emit(cmd_buffer->cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX | use_opaque);
9496 }
9497 
9498 /**
9499  * Emit a PKT3_DRAW_INDEX_2 packet to render "index_count` vertices.
9500  *
9501  * The starting address "index_va" may point anywhere within the index buffer. The number of
9502  * indexes allocated in the index buffer *past that point* is specified by "max_index_count".
9503  * Hardware uses this information to return 0 for out-of-bounds reads.
9504  */
9505 static void
radv_cs_emit_draw_indexed_packet(struct radv_cmd_buffer * cmd_buffer,uint64_t index_va,uint32_t max_index_count,uint32_t index_count,bool not_eop)9506 radv_cs_emit_draw_indexed_packet(struct radv_cmd_buffer *cmd_buffer, uint64_t index_va, uint32_t max_index_count,
9507                                  uint32_t index_count, bool not_eop)
9508 {
9509    radeon_emit(cmd_buffer->cs, PKT3(PKT3_DRAW_INDEX_2, 4, cmd_buffer->state.predicating));
9510    radeon_emit(cmd_buffer->cs, max_index_count);
9511    radeon_emit(cmd_buffer->cs, index_va);
9512    radeon_emit(cmd_buffer->cs, index_va >> 32);
9513    radeon_emit(cmd_buffer->cs, index_count);
9514    /* NOT_EOP allows merging multiple draws into 1 wave, but only user VGPRs
9515     * can be changed between draws and GS fast launch must be disabled.
9516     * NOT_EOP doesn't work on gfx6-gfx9 and gfx12.
9517     */
9518    radeon_emit(cmd_buffer->cs, V_0287F0_DI_SRC_SEL_DMA | S_0287F0_NOT_EOP(not_eop));
9519 }
9520 
9521 /* MUST inline this function to avoid massive perf loss in drawoverhead */
9522 ALWAYS_INLINE static void
radv_cs_emit_indirect_draw_packet(struct radv_cmd_buffer * cmd_buffer,bool indexed,uint32_t draw_count,uint64_t count_va,uint32_t stride)9523 radv_cs_emit_indirect_draw_packet(struct radv_cmd_buffer *cmd_buffer, bool indexed, uint32_t draw_count,
9524                                   uint64_t count_va, uint32_t stride)
9525 {
9526    struct radeon_cmdbuf *cs = cmd_buffer->cs;
9527    const unsigned di_src_sel = indexed ? V_0287F0_DI_SRC_SEL_DMA : V_0287F0_DI_SRC_SEL_AUTO_INDEX;
9528    bool draw_id_enable = cmd_buffer->state.uses_drawid;
9529    uint32_t base_reg = cmd_buffer->state.vtx_base_sgpr;
9530    uint32_t vertex_offset_reg, start_instance_reg = 0, draw_id_reg = 0;
9531    bool predicating = cmd_buffer->state.predicating;
9532    assert(base_reg);
9533 
9534    /* just reset draw state for vertex data */
9535    cmd_buffer->state.last_first_instance = -1;
9536    cmd_buffer->state.last_num_instances = -1;
9537    cmd_buffer->state.last_drawid = -1;
9538    cmd_buffer->state.last_vertex_offset_valid = false;
9539 
9540    vertex_offset_reg = (base_reg - SI_SH_REG_OFFSET) >> 2;
9541    if (cmd_buffer->state.uses_baseinstance)
9542       start_instance_reg = ((base_reg + (draw_id_enable ? 8 : 4)) - SI_SH_REG_OFFSET) >> 2;
9543    if (draw_id_enable)
9544       draw_id_reg = ((base_reg + 4) - SI_SH_REG_OFFSET) >> 2;
9545 
9546    if (draw_count == 1 && !count_va && !draw_id_enable) {
9547       radeon_emit(cs, PKT3(indexed ? PKT3_DRAW_INDEX_INDIRECT : PKT3_DRAW_INDIRECT, 3, predicating));
9548       radeon_emit(cs, 0);
9549       radeon_emit(cs, vertex_offset_reg);
9550       radeon_emit(cs, start_instance_reg);
9551       radeon_emit(cs, di_src_sel);
9552    } else {
9553       radeon_emit(cs, PKT3(indexed ? PKT3_DRAW_INDEX_INDIRECT_MULTI : PKT3_DRAW_INDIRECT_MULTI, 8, predicating));
9554       radeon_emit(cs, 0);
9555       radeon_emit(cs, vertex_offset_reg);
9556       radeon_emit(cs, start_instance_reg);
9557       radeon_emit(cs, draw_id_reg | S_2C3_DRAW_INDEX_ENABLE(draw_id_enable) | S_2C3_COUNT_INDIRECT_ENABLE(!!count_va));
9558       radeon_emit(cs, draw_count); /* count */
9559       radeon_emit(cs, count_va);   /* count_addr */
9560       radeon_emit(cs, count_va >> 32);
9561       radeon_emit(cs, stride); /* stride */
9562       radeon_emit(cs, di_src_sel);
9563    }
9564 
9565    cmd_buffer->state.uses_draw_indirect = true;
9566 }
9567 
9568 ALWAYS_INLINE static void
radv_cs_emit_indirect_mesh_draw_packet(struct radv_cmd_buffer * cmd_buffer,uint32_t draw_count,uint64_t count_va,uint32_t stride)9569 radv_cs_emit_indirect_mesh_draw_packet(struct radv_cmd_buffer *cmd_buffer, uint32_t draw_count, uint64_t count_va,
9570                                        uint32_t stride)
9571 {
9572    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
9573    const struct radv_physical_device *pdev = radv_device_physical(device);
9574    const struct radv_shader *mesh_shader = cmd_buffer->state.shaders[MESA_SHADER_MESH];
9575    struct radeon_cmdbuf *cs = cmd_buffer->cs;
9576    uint32_t base_reg = cmd_buffer->state.vtx_base_sgpr;
9577    bool predicating = cmd_buffer->state.predicating;
9578    assert(base_reg || (!cmd_buffer->state.uses_drawid && !mesh_shader->info.cs.uses_grid_size));
9579 
9580    /* Reset draw state. */
9581    cmd_buffer->state.last_first_instance = -1;
9582    cmd_buffer->state.last_num_instances = -1;
9583    cmd_buffer->state.last_drawid = -1;
9584    cmd_buffer->state.last_vertex_offset_valid = false;
9585 
9586    uint32_t xyz_dim_enable = mesh_shader->info.cs.uses_grid_size;
9587    uint32_t xyz_dim_reg = !xyz_dim_enable ? 0 : (base_reg - SI_SH_REG_OFFSET) >> 2;
9588    uint32_t draw_id_enable = !!cmd_buffer->state.uses_drawid;
9589    uint32_t draw_id_reg = !draw_id_enable ? 0 : (base_reg + (xyz_dim_enable ? 12 : 0) - SI_SH_REG_OFFSET) >> 2;
9590 
9591    uint32_t mode1_enable = !pdev->mesh_fast_launch_2;
9592 
9593    radeon_emit(cs, PKT3(PKT3_DISPATCH_MESH_INDIRECT_MULTI, 7, predicating) | PKT3_RESET_FILTER_CAM_S(1));
9594    radeon_emit(cs, 0); /* data_offset */
9595    radeon_emit(cs, S_4C1_XYZ_DIM_REG(xyz_dim_reg) | S_4C1_DRAW_INDEX_REG(draw_id_reg));
9596    if (pdev->info.gfx_level >= GFX11)
9597       radeon_emit(cs, S_4C2_DRAW_INDEX_ENABLE(draw_id_enable) | S_4C2_COUNT_INDIRECT_ENABLE(!!count_va) |
9598                          S_4C2_XYZ_DIM_ENABLE(xyz_dim_enable) | S_4C2_MODE1_ENABLE(mode1_enable));
9599    else
9600       radeon_emit(cs, S_4C2_DRAW_INDEX_ENABLE(draw_id_enable) | S_4C2_COUNT_INDIRECT_ENABLE(!!count_va));
9601    radeon_emit(cs, draw_count);
9602    radeon_emit(cs, count_va);
9603    radeon_emit(cs, count_va >> 32);
9604    radeon_emit(cs, stride);
9605    radeon_emit(cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX);
9606 }
9607 
9608 ALWAYS_INLINE static void
radv_cs_emit_dispatch_taskmesh_direct_ace_packet(const struct radv_device * device,const struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * ace_cs,const uint32_t x,const uint32_t y,const uint32_t z)9609 radv_cs_emit_dispatch_taskmesh_direct_ace_packet(const struct radv_device *device,
9610                                                  const struct radv_cmd_state *cmd_state, struct radeon_cmdbuf *ace_cs,
9611                                                  const uint32_t x, const uint32_t y, const uint32_t z)
9612 {
9613    const struct radv_shader *task_shader = cmd_state->shaders[MESA_SHADER_TASK];
9614    const bool predicating = cmd_state->predicating;
9615    const uint32_t dispatch_initiator =
9616       device->dispatch_initiator_task | S_00B800_CS_W32_EN(task_shader->info.wave_size == 32);
9617    const uint32_t ring_entry_reg = radv_get_user_sgpr(task_shader, AC_UD_TASK_RING_ENTRY);
9618 
9619    radeon_emit(ace_cs, PKT3(PKT3_DISPATCH_TASKMESH_DIRECT_ACE, 4, predicating) | PKT3_SHADER_TYPE_S(1));
9620    radeon_emit(ace_cs, x);
9621    radeon_emit(ace_cs, y);
9622    radeon_emit(ace_cs, z);
9623    radeon_emit(ace_cs, dispatch_initiator);
9624    radeon_emit(ace_cs, ring_entry_reg & 0xFFFF);
9625 }
9626 
9627 ALWAYS_INLINE static void
radv_cs_emit_dispatch_taskmesh_indirect_multi_ace_packet(const struct radv_device * device,const struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * ace_cs,uint64_t data_va,uint32_t draw_count,uint64_t count_va,uint32_t stride)9628 radv_cs_emit_dispatch_taskmesh_indirect_multi_ace_packet(const struct radv_device *device,
9629                                                          const struct radv_cmd_state *cmd_state,
9630                                                          struct radeon_cmdbuf *ace_cs, uint64_t data_va,
9631                                                          uint32_t draw_count, uint64_t count_va, uint32_t stride)
9632 {
9633    assert((data_va & 0x03) == 0);
9634    assert((count_va & 0x03) == 0);
9635 
9636    const struct radv_shader *task_shader = cmd_state->shaders[MESA_SHADER_TASK];
9637 
9638    const uint32_t dispatch_initiator =
9639       device->dispatch_initiator_task | S_00B800_CS_W32_EN(task_shader->info.wave_size == 32);
9640    const uint32_t ring_entry_reg = radv_get_user_sgpr(task_shader, AC_UD_TASK_RING_ENTRY);
9641    const uint32_t xyz_dim_reg = radv_get_user_sgpr(task_shader, AC_UD_CS_GRID_SIZE);
9642    const uint32_t draw_id_reg = radv_get_user_sgpr(task_shader, AC_UD_CS_TASK_DRAW_ID);
9643 
9644    radeon_emit(ace_cs, PKT3(PKT3_DISPATCH_TASKMESH_INDIRECT_MULTI_ACE, 9, 0) | PKT3_SHADER_TYPE_S(1));
9645    radeon_emit(ace_cs, data_va);
9646    radeon_emit(ace_cs, data_va >> 32);
9647    radeon_emit(ace_cs, S_AD2_RING_ENTRY_REG(ring_entry_reg));
9648    radeon_emit(ace_cs, S_AD3_COUNT_INDIRECT_ENABLE(!!count_va) | S_AD3_DRAW_INDEX_ENABLE(!!draw_id_reg) |
9649                           S_AD3_XYZ_DIM_ENABLE(!!xyz_dim_reg) | S_AD3_DRAW_INDEX_REG(draw_id_reg));
9650    radeon_emit(ace_cs, S_AD4_XYZ_DIM_REG(xyz_dim_reg));
9651    radeon_emit(ace_cs, draw_count);
9652    radeon_emit(ace_cs, count_va);
9653    radeon_emit(ace_cs, count_va >> 32);
9654    radeon_emit(ace_cs, stride);
9655    radeon_emit(ace_cs, dispatch_initiator);
9656 }
9657 
9658 ALWAYS_INLINE static void
radv_cs_emit_dispatch_taskmesh_gfx_packet(const struct radv_device * device,const struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * cs)9659 radv_cs_emit_dispatch_taskmesh_gfx_packet(const struct radv_device *device, const struct radv_cmd_state *cmd_state,
9660                                           struct radeon_cmdbuf *cs)
9661 {
9662    const struct radv_physical_device *pdev = radv_device_physical(device);
9663    const struct radv_shader *mesh_shader = cmd_state->shaders[MESA_SHADER_MESH];
9664    const bool predicating = cmd_state->predicating;
9665 
9666    const uint32_t ring_entry_reg = radv_get_user_sgpr(mesh_shader, AC_UD_TASK_RING_ENTRY);
9667 
9668    uint32_t xyz_dim_en = mesh_shader->info.cs.uses_grid_size;
9669    uint32_t xyz_dim_reg = !xyz_dim_en ? 0 : (cmd_state->vtx_base_sgpr - SI_SH_REG_OFFSET) >> 2;
9670    uint32_t mode1_en = !pdev->mesh_fast_launch_2;
9671    uint32_t linear_dispatch_en = cmd_state->shaders[MESA_SHADER_TASK]->info.cs.linear_taskmesh_dispatch;
9672    const bool sqtt_en = !!device->sqtt.bo;
9673 
9674    radeon_emit(cs, PKT3(PKT3_DISPATCH_TASKMESH_GFX, 2, predicating) | PKT3_RESET_FILTER_CAM_S(1));
9675    radeon_emit(cs, S_4D0_RING_ENTRY_REG(ring_entry_reg) | S_4D0_XYZ_DIM_REG(xyz_dim_reg));
9676    if (pdev->info.gfx_level >= GFX11)
9677       radeon_emit(cs, S_4D1_XYZ_DIM_ENABLE(xyz_dim_en) | S_4D1_MODE1_ENABLE(mode1_en) |
9678                          S_4D1_LINEAR_DISPATCH_ENABLE(linear_dispatch_en) | S_4D1_THREAD_TRACE_MARKER_ENABLE(sqtt_en));
9679    else
9680       radeon_emit(cs, S_4D1_THREAD_TRACE_MARKER_ENABLE(sqtt_en));
9681    radeon_emit(cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX);
9682 }
9683 
9684 ALWAYS_INLINE static void
radv_emit_userdata_vertex_internal(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info,const uint32_t vertex_offset)9685 radv_emit_userdata_vertex_internal(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info,
9686                                    const uint32_t vertex_offset)
9687 {
9688    struct radv_cmd_state *state = &cmd_buffer->state;
9689    struct radeon_cmdbuf *cs = cmd_buffer->cs;
9690    const bool uses_baseinstance = state->uses_baseinstance;
9691    const bool uses_drawid = state->uses_drawid;
9692 
9693    radeon_set_sh_reg_seq(cs, state->vtx_base_sgpr, state->vtx_emit_num);
9694 
9695    radeon_emit(cs, vertex_offset);
9696    state->last_vertex_offset_valid = true;
9697    state->last_vertex_offset = vertex_offset;
9698    if (uses_drawid) {
9699       radeon_emit(cs, 0);
9700       state->last_drawid = 0;
9701    }
9702    if (uses_baseinstance) {
9703       radeon_emit(cs, info->first_instance);
9704       state->last_first_instance = info->first_instance;
9705    }
9706 }
9707 
9708 ALWAYS_INLINE static void
radv_emit_userdata_vertex(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info,const uint32_t vertex_offset)9709 radv_emit_userdata_vertex(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info,
9710                           const uint32_t vertex_offset)
9711 {
9712    const struct radv_cmd_state *state = &cmd_buffer->state;
9713    const bool uses_baseinstance = state->uses_baseinstance;
9714    const bool uses_drawid = state->uses_drawid;
9715 
9716    if (!state->last_vertex_offset_valid || vertex_offset != state->last_vertex_offset ||
9717        (uses_drawid && 0 != state->last_drawid) ||
9718        (uses_baseinstance && info->first_instance != state->last_first_instance))
9719       radv_emit_userdata_vertex_internal(cmd_buffer, info, vertex_offset);
9720 }
9721 
9722 ALWAYS_INLINE static void
radv_emit_userdata_vertex_drawid(struct radv_cmd_buffer * cmd_buffer,uint32_t vertex_offset,uint32_t drawid)9723 radv_emit_userdata_vertex_drawid(struct radv_cmd_buffer *cmd_buffer, uint32_t vertex_offset, uint32_t drawid)
9724 {
9725    struct radv_cmd_state *state = &cmd_buffer->state;
9726    struct radeon_cmdbuf *cs = cmd_buffer->cs;
9727    radeon_set_sh_reg_seq(cs, state->vtx_base_sgpr, 1 + !!drawid);
9728    radeon_emit(cs, vertex_offset);
9729    state->last_vertex_offset_valid = true;
9730    state->last_vertex_offset = vertex_offset;
9731    if (drawid)
9732       radeon_emit(cs, drawid);
9733 }
9734 
9735 ALWAYS_INLINE static void
radv_emit_userdata_mesh(struct radv_cmd_buffer * cmd_buffer,const uint32_t x,const uint32_t y,const uint32_t z)9736 radv_emit_userdata_mesh(struct radv_cmd_buffer *cmd_buffer, const uint32_t x, const uint32_t y, const uint32_t z)
9737 {
9738    struct radv_cmd_state *state = &cmd_buffer->state;
9739    const struct radv_shader *mesh_shader = state->shaders[MESA_SHADER_MESH];
9740    struct radeon_cmdbuf *cs = cmd_buffer->cs;
9741    const bool uses_drawid = state->uses_drawid;
9742    const bool uses_grid_size = mesh_shader->info.cs.uses_grid_size;
9743 
9744    if (!uses_drawid && !uses_grid_size)
9745       return;
9746 
9747    radeon_set_sh_reg_seq(cs, state->vtx_base_sgpr, state->vtx_emit_num);
9748    if (uses_grid_size) {
9749       radeon_emit(cs, x);
9750       radeon_emit(cs, y);
9751       radeon_emit(cs, z);
9752    }
9753    if (uses_drawid) {
9754       radeon_emit(cs, 0);
9755       state->last_drawid = 0;
9756    }
9757 }
9758 
9759 ALWAYS_INLINE static void
radv_emit_userdata_task(const struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * ace_cs,uint32_t x,uint32_t y,uint32_t z)9760 radv_emit_userdata_task(const struct radv_cmd_state *cmd_state, struct radeon_cmdbuf *ace_cs, uint32_t x, uint32_t y,
9761                         uint32_t z)
9762 {
9763    const struct radv_shader *task_shader = cmd_state->shaders[MESA_SHADER_TASK];
9764 
9765    const uint32_t xyz_offset = radv_get_user_sgpr_loc(task_shader, AC_UD_CS_GRID_SIZE);
9766    const uint32_t draw_id_offset = radv_get_user_sgpr_loc(task_shader, AC_UD_CS_TASK_DRAW_ID);
9767 
9768    if (xyz_offset) {
9769       radeon_set_sh_reg_seq(ace_cs, xyz_offset, 3);
9770       radeon_emit(ace_cs, x);
9771       radeon_emit(ace_cs, y);
9772       radeon_emit(ace_cs, z);
9773    }
9774 
9775    if (draw_id_offset) {
9776       radeon_set_sh_reg_seq(ace_cs, draw_id_offset, 1);
9777       radeon_emit(ace_cs, 0);
9778    }
9779 }
9780 
9781 ALWAYS_INLINE static void
radv_emit_draw_packets_indexed(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info,uint32_t drawCount,const VkMultiDrawIndexedInfoEXT * minfo,uint32_t stride,const int32_t * vertexOffset)9782 radv_emit_draw_packets_indexed(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info,
9783                                uint32_t drawCount, const VkMultiDrawIndexedInfoEXT *minfo, uint32_t stride,
9784                                const int32_t *vertexOffset)
9785 
9786 {
9787    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
9788    const struct radv_physical_device *pdev = radv_device_physical(device);
9789    struct radv_cmd_state *state = &cmd_buffer->state;
9790    struct radeon_cmdbuf *cs = cmd_buffer->cs;
9791    const int index_size = radv_get_vgt_index_size(state->index_type);
9792    unsigned i = 0;
9793    const bool uses_drawid = state->uses_drawid;
9794    const bool can_eop = !uses_drawid && pdev->info.gfx_level >= GFX10 && pdev->info.gfx_level < GFX12;
9795 
9796    if (uses_drawid) {
9797       if (vertexOffset) {
9798          radv_emit_userdata_vertex(cmd_buffer, info, *vertexOffset);
9799          vk_foreach_multi_draw_indexed (draw, i, minfo, drawCount, stride) {
9800             uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex;
9801             uint64_t index_va = state->index_va + draw->firstIndex * index_size;
9802 
9803             /* Handle draw calls with 0-sized index buffers if the GPU can't support them. */
9804             if (!remaining_indexes && pdev->info.has_zero_index_buffer_bug)
9805                radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &remaining_indexes);
9806 
9807             if (i > 0)
9808                radeon_set_sh_reg(cs, state->vtx_base_sgpr + sizeof(uint32_t), i);
9809 
9810             if (!state->render.view_mask) {
9811                radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
9812             } else {
9813                u_foreach_bit (view, state->render.view_mask) {
9814                   radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9815 
9816                   radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
9817                }
9818             }
9819          }
9820       } else {
9821          vk_foreach_multi_draw_indexed (draw, i, minfo, drawCount, stride) {
9822             uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex;
9823             uint64_t index_va = state->index_va + draw->firstIndex * index_size;
9824 
9825             /* Handle draw calls with 0-sized index buffers if the GPU can't support them. */
9826             if (!remaining_indexes && pdev->info.has_zero_index_buffer_bug)
9827                radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &remaining_indexes);
9828 
9829             if (i > 0) {
9830                assert(state->last_vertex_offset_valid);
9831                if (state->last_vertex_offset != draw->vertexOffset)
9832                   radv_emit_userdata_vertex_drawid(cmd_buffer, draw->vertexOffset, i);
9833                else
9834                   radeon_set_sh_reg(cs, state->vtx_base_sgpr + sizeof(uint32_t), i);
9835             } else
9836                radv_emit_userdata_vertex(cmd_buffer, info, draw->vertexOffset);
9837 
9838             if (!state->render.view_mask) {
9839                radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
9840             } else {
9841                u_foreach_bit (view, state->render.view_mask) {
9842                   radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9843 
9844                   radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
9845                }
9846             }
9847          }
9848       }
9849       if (drawCount > 1) {
9850          state->last_drawid = drawCount - 1;
9851       }
9852    } else {
9853       if (vertexOffset) {
9854          if (pdev->info.gfx_level == GFX10) {
9855             /* GFX10 has a bug that consecutive draw packets with NOT_EOP must not have
9856              * count == 0 for the last draw that doesn't have NOT_EOP.
9857              */
9858             while (drawCount > 1) {
9859                const VkMultiDrawIndexedInfoEXT *last =
9860                   (const VkMultiDrawIndexedInfoEXT *)(((const uint8_t *)minfo) + (drawCount - 1) * stride);
9861                if (last->indexCount)
9862                   break;
9863                drawCount--;
9864             }
9865          }
9866 
9867          radv_emit_userdata_vertex(cmd_buffer, info, *vertexOffset);
9868          vk_foreach_multi_draw_indexed (draw, i, minfo, drawCount, stride) {
9869             uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex;
9870             uint64_t index_va = state->index_va + draw->firstIndex * index_size;
9871 
9872             /* Handle draw calls with 0-sized index buffers if the GPU can't support them. */
9873             if (!remaining_indexes && pdev->info.has_zero_index_buffer_bug)
9874                radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &remaining_indexes);
9875 
9876             if (!state->render.view_mask) {
9877                radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount,
9878                                                 can_eop && i < drawCount - 1);
9879             } else {
9880                u_foreach_bit (view, state->render.view_mask) {
9881                   radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9882 
9883                   radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
9884                }
9885             }
9886          }
9887       } else {
9888          vk_foreach_multi_draw_indexed (draw, i, minfo, drawCount, stride) {
9889             uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex;
9890             uint64_t index_va = state->index_va + draw->firstIndex * index_size;
9891 
9892             /* Handle draw calls with 0-sized index buffers if the GPU can't support them. */
9893             if (!remaining_indexes && pdev->info.has_zero_index_buffer_bug)
9894                radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &remaining_indexes);
9895 
9896             const VkMultiDrawIndexedInfoEXT *next =
9897                (const VkMultiDrawIndexedInfoEXT *)(i < drawCount - 1 ? ((uint8_t *)draw + stride) : NULL);
9898             const bool offset_changes = next && next->vertexOffset != draw->vertexOffset;
9899             radv_emit_userdata_vertex(cmd_buffer, info, draw->vertexOffset);
9900 
9901             if (!state->render.view_mask) {
9902                radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount,
9903                                                 can_eop && !offset_changes && i < drawCount - 1);
9904             } else {
9905                u_foreach_bit (view, state->render.view_mask) {
9906                   radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9907 
9908                   radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
9909                }
9910             }
9911          }
9912       }
9913       if (drawCount > 1) {
9914          state->last_drawid = drawCount - 1;
9915       }
9916    }
9917 }
9918 
9919 ALWAYS_INLINE static void
radv_emit_direct_draw_packets(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info,uint32_t drawCount,const VkMultiDrawInfoEXT * minfo,uint32_t use_opaque,uint32_t stride)9920 radv_emit_direct_draw_packets(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info, uint32_t drawCount,
9921                               const VkMultiDrawInfoEXT *minfo, uint32_t use_opaque, uint32_t stride)
9922 {
9923    unsigned i = 0;
9924    const uint32_t view_mask = cmd_buffer->state.render.view_mask;
9925    const bool uses_drawid = cmd_buffer->state.uses_drawid;
9926    uint32_t last_start = 0;
9927 
9928    vk_foreach_multi_draw (draw, i, minfo, drawCount, stride) {
9929       if (!i)
9930          radv_emit_userdata_vertex(cmd_buffer, info, draw->firstVertex);
9931       else
9932          radv_emit_userdata_vertex_drawid(cmd_buffer, draw->firstVertex, uses_drawid ? i : 0);
9933 
9934       if (!view_mask) {
9935          radv_cs_emit_draw_packet(cmd_buffer, draw->vertexCount, use_opaque);
9936       } else {
9937          u_foreach_bit (view, view_mask) {
9938             radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9939             radv_cs_emit_draw_packet(cmd_buffer, draw->vertexCount, use_opaque);
9940          }
9941       }
9942       last_start = draw->firstVertex;
9943    }
9944    if (drawCount > 1) {
9945       struct radv_cmd_state *state = &cmd_buffer->state;
9946       assert(state->last_vertex_offset_valid);
9947       state->last_vertex_offset = last_start;
9948       if (uses_drawid)
9949          state->last_drawid = drawCount - 1;
9950    }
9951 }
9952 
9953 static void
radv_cs_emit_mesh_dispatch_packet(struct radv_cmd_buffer * cmd_buffer,uint32_t x,uint32_t y,uint32_t z)9954 radv_cs_emit_mesh_dispatch_packet(struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y, uint32_t z)
9955 {
9956    radeon_emit(cmd_buffer->cs, PKT3(PKT3_DISPATCH_MESH_DIRECT, 3, cmd_buffer->state.predicating));
9957    radeon_emit(cmd_buffer->cs, x);
9958    radeon_emit(cmd_buffer->cs, y);
9959    radeon_emit(cmd_buffer->cs, z);
9960    radeon_emit(cmd_buffer->cs, S_0287F0_SOURCE_SELECT(V_0287F0_DI_SRC_SEL_AUTO_INDEX));
9961 }
9962 
9963 ALWAYS_INLINE static void
radv_emit_direct_mesh_draw_packet(struct radv_cmd_buffer * cmd_buffer,uint32_t x,uint32_t y,uint32_t z)9964 radv_emit_direct_mesh_draw_packet(struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y, uint32_t z)
9965 {
9966    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
9967    const struct radv_physical_device *pdev = radv_device_physical(device);
9968    const uint32_t view_mask = cmd_buffer->state.render.view_mask;
9969 
9970    radv_emit_userdata_mesh(cmd_buffer, x, y, z);
9971 
9972    if (pdev->mesh_fast_launch_2) {
9973       if (!view_mask) {
9974          radv_cs_emit_mesh_dispatch_packet(cmd_buffer, x, y, z);
9975       } else {
9976          u_foreach_bit (view, view_mask) {
9977             radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9978             radv_cs_emit_mesh_dispatch_packet(cmd_buffer, x, y, z);
9979          }
9980       }
9981    } else {
9982       const uint32_t count = x * y * z;
9983       if (!view_mask) {
9984          radv_cs_emit_draw_packet(cmd_buffer, count, 0);
9985       } else {
9986          u_foreach_bit (view, view_mask) {
9987             radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9988             radv_cs_emit_draw_packet(cmd_buffer, count, 0);
9989          }
9990       }
9991    }
9992 }
9993 
9994 ALWAYS_INLINE static void
radv_emit_indirect_mesh_draw_packets(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info)9995 radv_emit_indirect_mesh_draw_packets(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info)
9996 {
9997    const struct radv_cmd_state *state = &cmd_buffer->state;
9998    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
9999    struct radeon_winsys *ws = device->ws;
10000    struct radeon_cmdbuf *cs = cmd_buffer->cs;
10001    const uint64_t va = radv_buffer_get_va(info->indirect->bo) + info->indirect->offset + info->indirect_offset;
10002    const uint64_t count_va = !info->count_buffer ? 0
10003                                                  : radv_buffer_get_va(info->count_buffer->bo) +
10004                                                       info->count_buffer->offset + info->count_buffer_offset;
10005 
10006    radv_cs_add_buffer(ws, cs, info->indirect->bo);
10007 
10008    if (info->count_buffer) {
10009       radv_cs_add_buffer(ws, cs, info->count_buffer->bo);
10010    }
10011 
10012    radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0));
10013    radeon_emit(cs, 1);
10014    radeon_emit(cs, va);
10015    radeon_emit(cs, va >> 32);
10016 
10017    if (state->uses_drawid) {
10018       const struct radv_shader *mesh_shader = state->shaders[MESA_SHADER_MESH];
10019       unsigned reg = state->vtx_base_sgpr + (mesh_shader->info.cs.uses_grid_size ? 12 : 0);
10020       radeon_set_sh_reg_seq(cs, reg, 1);
10021       radeon_emit(cs, 0);
10022    }
10023 
10024    if (!state->render.view_mask) {
10025       radv_cs_emit_indirect_mesh_draw_packet(cmd_buffer, info->count, count_va, info->stride);
10026    } else {
10027       u_foreach_bit (i, state->render.view_mask) {
10028          radv_emit_view_index(&cmd_buffer->state, cs, i);
10029          radv_cs_emit_indirect_mesh_draw_packet(cmd_buffer, info->count, count_va, info->stride);
10030       }
10031    }
10032 }
10033 
10034 ALWAYS_INLINE static void
radv_emit_direct_taskmesh_draw_packets(const struct radv_device * device,struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * cs,struct radeon_cmdbuf * ace_cs,uint32_t x,uint32_t y,uint32_t z)10035 radv_emit_direct_taskmesh_draw_packets(const struct radv_device *device, struct radv_cmd_state *cmd_state,
10036                                        struct radeon_cmdbuf *cs, struct radeon_cmdbuf *ace_cs, uint32_t x, uint32_t y,
10037                                        uint32_t z)
10038 {
10039    const uint32_t view_mask = cmd_state->render.view_mask;
10040    const unsigned num_views = MAX2(1, util_bitcount(view_mask));
10041    const unsigned ace_predication_size = num_views * 6; /* DISPATCH_TASKMESH_DIRECT_ACE size */
10042 
10043    radv_emit_userdata_task(cmd_state, ace_cs, x, y, z);
10044    radv_cs_emit_compute_predication(device, cmd_state, ace_cs, cmd_state->mec_inv_pred_va,
10045                                     &cmd_state->mec_inv_pred_emitted, ace_predication_size);
10046 
10047    if (!view_mask) {
10048       radv_cs_emit_dispatch_taskmesh_direct_ace_packet(device, cmd_state, ace_cs, x, y, z);
10049       radv_cs_emit_dispatch_taskmesh_gfx_packet(device, cmd_state, cs);
10050    } else {
10051       u_foreach_bit (view, view_mask) {
10052          radv_emit_view_index(cmd_state, cs, view);
10053 
10054          radv_cs_emit_dispatch_taskmesh_direct_ace_packet(device, cmd_state, ace_cs, x, y, z);
10055          radv_cs_emit_dispatch_taskmesh_gfx_packet(device, cmd_state, cs);
10056       }
10057    }
10058 }
10059 
10060 static void
radv_emit_indirect_taskmesh_draw_packets(const struct radv_device * device,struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * cs,struct radeon_cmdbuf * ace_cs,const struct radv_draw_info * info,uint64_t workaround_cond_va)10061 radv_emit_indirect_taskmesh_draw_packets(const struct radv_device *device, struct radv_cmd_state *cmd_state,
10062                                          struct radeon_cmdbuf *cs, struct radeon_cmdbuf *ace_cs,
10063                                          const struct radv_draw_info *info, uint64_t workaround_cond_va)
10064 {
10065    const struct radv_physical_device *pdev = radv_device_physical(device);
10066    const uint32_t view_mask = cmd_state->render.view_mask;
10067    struct radeon_winsys *ws = device->ws;
10068    const unsigned num_views = MAX2(1, util_bitcount(view_mask));
10069    unsigned ace_predication_size = num_views * 11; /* DISPATCH_TASKMESH_INDIRECT_MULTI_ACE size */
10070 
10071    const uint64_t va = radv_buffer_get_va(info->indirect->bo) + info->indirect->offset + info->indirect_offset;
10072    const uint64_t count_va = !info->count_buffer ? 0
10073                                                  : radv_buffer_get_va(info->count_buffer->bo) +
10074                                                       info->count_buffer->offset + info->count_buffer_offset;
10075 
10076    if (count_va)
10077       radv_cs_add_buffer(ws, ace_cs, info->count_buffer->bo);
10078 
10079    if (pdev->info.has_taskmesh_indirect0_bug && count_va) {
10080       /* MEC firmware bug workaround.
10081        * When the count buffer contains zero, DISPATCH_TASKMESH_INDIRECT_MULTI_ACE hangs.
10082        * - We must ensure that DISPATCH_TASKMESH_INDIRECT_MULTI_ACE
10083        *   is only executed when the count buffer contains non-zero.
10084        * - Furthermore, we must also ensure that each DISPATCH_TASKMESH_GFX packet
10085        *   has a matching ACE packet.
10086        *
10087        * As a workaround:
10088        * - Reserve a dword in the upload buffer and initialize it to 1 for the workaround
10089        * - When count != 0, write 0 to the workaround BO and execute the indirect dispatch
10090        * - When workaround BO != 0 (count was 0), execute an empty direct dispatch
10091        */
10092       radeon_emit(ace_cs, PKT3(PKT3_COPY_DATA, 4, 0));
10093       radeon_emit(ace_cs,
10094                   COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
10095       radeon_emit(ace_cs, 1);
10096       radeon_emit(ace_cs, 0);
10097       radeon_emit(ace_cs, workaround_cond_va);
10098       radeon_emit(ace_cs, workaround_cond_va >> 32);
10099 
10100       /* 2x COND_EXEC + 1x COPY_DATA + Nx DISPATCH_TASKMESH_DIRECT_ACE */
10101       ace_predication_size += 2 * 5 + 6 + 6 * num_views;
10102    }
10103 
10104    radv_cs_add_buffer(ws, ace_cs, info->indirect->bo);
10105    radv_cs_emit_compute_predication(device, cmd_state, ace_cs, cmd_state->mec_inv_pred_va,
10106                                     &cmd_state->mec_inv_pred_emitted, ace_predication_size);
10107 
10108    if (workaround_cond_va) {
10109       radv_emit_cond_exec(device, ace_cs, count_va,
10110                           6 + 11 * num_views /* 1x COPY_DATA + Nx DISPATCH_TASKMESH_INDIRECT_MULTI_ACE */);
10111 
10112       radeon_emit(ace_cs, PKT3(PKT3_COPY_DATA, 4, 0));
10113       radeon_emit(ace_cs,
10114                   COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
10115       radeon_emit(ace_cs, 0);
10116       radeon_emit(ace_cs, 0);
10117       radeon_emit(ace_cs, workaround_cond_va);
10118       radeon_emit(ace_cs, workaround_cond_va >> 32);
10119    }
10120 
10121    if (!view_mask) {
10122       radv_cs_emit_dispatch_taskmesh_indirect_multi_ace_packet(device, cmd_state, ace_cs, va, info->count, count_va,
10123                                                                info->stride);
10124       radv_cs_emit_dispatch_taskmesh_gfx_packet(device, cmd_state, cs);
10125    } else {
10126       u_foreach_bit (view, view_mask) {
10127          radv_emit_view_index(cmd_state, cs, view);
10128 
10129          radv_cs_emit_dispatch_taskmesh_indirect_multi_ace_packet(device, cmd_state, ace_cs, va, info->count, count_va,
10130                                                                   info->stride);
10131          radv_cs_emit_dispatch_taskmesh_gfx_packet(device, cmd_state, cs);
10132       }
10133    }
10134 
10135    if (workaround_cond_va) {
10136       radv_emit_cond_exec(device, ace_cs, workaround_cond_va, 6 * num_views /* Nx DISPATCH_TASKMESH_DIRECT_ACE */);
10137 
10138       for (unsigned v = 0; v < num_views; ++v) {
10139          radv_cs_emit_dispatch_taskmesh_direct_ace_packet(device, cmd_state, ace_cs, 0, 0, 0);
10140       }
10141    }
10142 }
10143 
10144 static void
radv_emit_indirect_draw_packets(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info)10145 radv_emit_indirect_draw_packets(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info)
10146 {
10147    const struct radv_cmd_state *state = &cmd_buffer->state;
10148    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10149    struct radeon_winsys *ws = device->ws;
10150    struct radeon_cmdbuf *cs = cmd_buffer->cs;
10151    const uint64_t va = radv_buffer_get_va(info->indirect->bo) + info->indirect->offset + info->indirect_offset;
10152    const uint64_t count_va = info->count_buffer ? radv_buffer_get_va(info->count_buffer->bo) +
10153                                                      info->count_buffer->offset + info->count_buffer_offset
10154                                                 : 0;
10155 
10156    radv_cs_add_buffer(ws, cs, info->indirect->bo);
10157 
10158    radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0));
10159    radeon_emit(cs, 1);
10160    radeon_emit(cs, va);
10161    radeon_emit(cs, va >> 32);
10162 
10163    if (info->count_buffer) {
10164       radv_cs_add_buffer(ws, cs, info->count_buffer->bo);
10165    }
10166 
10167    if (!state->render.view_mask) {
10168       radv_cs_emit_indirect_draw_packet(cmd_buffer, info->indexed, info->count, count_va, info->stride);
10169    } else {
10170       u_foreach_bit (i, state->render.view_mask) {
10171          radv_emit_view_index(&cmd_buffer->state, cs, i);
10172 
10173          radv_cs_emit_indirect_draw_packet(cmd_buffer, info->indexed, info->count, count_va, info->stride);
10174       }
10175    }
10176 }
10177 
10178 static uint64_t
radv_get_needed_dynamic_states(struct radv_cmd_buffer * cmd_buffer)10179 radv_get_needed_dynamic_states(struct radv_cmd_buffer *cmd_buffer)
10180 {
10181    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10182    const struct radv_physical_device *pdev = radv_device_physical(device);
10183    uint64_t dynamic_states = RADV_DYNAMIC_ALL;
10184 
10185    if (cmd_buffer->state.graphics_pipeline)
10186       return cmd_buffer->state.graphics_pipeline->needed_dynamic_state;
10187 
10188    /* Clear unnecessary dynamic states for shader objects. */
10189    if (!cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL])
10190       dynamic_states &= ~(RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN);
10191 
10192    if (pdev->info.gfx_level >= GFX10_3) {
10193       if (cmd_buffer->state.shaders[MESA_SHADER_MESH])
10194          dynamic_states &= ~(RADV_DYNAMIC_VERTEX_INPUT | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE |
10195                              RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY);
10196    } else {
10197       dynamic_states &= ~RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
10198    }
10199 
10200    return dynamic_states;
10201 }
10202 
10203 /*
10204  * Vega and raven have a bug which triggers if there are multiple context
10205  * register contexts active at the same time with different scissor values.
10206  *
10207  * There are two possible workarounds:
10208  * 1) Wait for PS_PARTIAL_FLUSH every time the scissor is changed. That way
10209  *    there is only ever 1 active set of scissor values at the same time.
10210  *
10211  * 2) Whenever the hardware switches contexts we have to set the scissor
10212  *    registers again even if it is a noop. That way the new context gets
10213  *    the correct scissor values.
10214  *
10215  * This implements option 2. radv_need_late_scissor_emission needs to
10216  * return true on affected HW if radv_emit_all_graphics_states sets
10217  * any context registers.
10218  */
10219 static bool
radv_need_late_scissor_emission(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info)10220 radv_need_late_scissor_emission(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info)
10221 {
10222    if (cmd_buffer->state.context_roll_without_scissor_emitted || info->strmout_buffer)
10223       return true;
10224 
10225    uint64_t used_dynamic_states = radv_get_needed_dynamic_states(cmd_buffer);
10226 
10227    used_dynamic_states &= ~RADV_DYNAMIC_VERTEX_INPUT;
10228 
10229    if (cmd_buffer->state.dirty_dynamic & used_dynamic_states)
10230       return true;
10231 
10232    /* Index, vertex and streamout buffers don't change context regs.
10233     * We assume that any other dirty flag causes context rolls.
10234     */
10235    uint64_t used_states = RADV_CMD_DIRTY_ALL;
10236    used_states &= ~(RADV_CMD_DIRTY_INDEX_BUFFER | RADV_CMD_DIRTY_VERTEX_BUFFER | RADV_CMD_DIRTY_STREAMOUT_BUFFER);
10237 
10238    return cmd_buffer->state.dirty & used_states;
10239 }
10240 
10241 ALWAYS_INLINE static uint32_t
radv_get_ngg_culling_settings(struct radv_cmd_buffer * cmd_buffer,bool vp_y_inverted)10242 radv_get_ngg_culling_settings(struct radv_cmd_buffer *cmd_buffer, bool vp_y_inverted)
10243 {
10244    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
10245 
10246    /* Disable shader culling entirely when conservative overestimate is used.
10247     * The face culling algorithm can delete very tiny triangles (even if unintended).
10248     */
10249    if (d->vk.rs.conservative_mode == VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT)
10250       return radv_nggc_none;
10251 
10252    /* With graphics pipeline library, NGG culling is unconditionally compiled into shaders
10253     * because we don't know the primitive topology at compile time, so we should
10254     * disable it dynamically for points or lines.
10255     */
10256    const unsigned num_vertices_per_prim = radv_conv_prim_to_gs_out(d->vk.ia.primitive_topology, true) + 1;
10257    if (num_vertices_per_prim != 3)
10258       return radv_nggc_none;
10259 
10260    /* Cull every triangle when rasterizer discard is enabled. */
10261    if (d->vk.rs.rasterizer_discard_enable)
10262       return radv_nggc_front_face | radv_nggc_back_face;
10263 
10264    uint32_t nggc_settings = radv_nggc_none;
10265 
10266    /* The culling code needs to know whether face is CW or CCW. */
10267    bool ccw = d->vk.rs.front_face == VK_FRONT_FACE_COUNTER_CLOCKWISE;
10268 
10269    /* Take inverted viewport into account. */
10270    ccw ^= vp_y_inverted;
10271 
10272    if (ccw)
10273       nggc_settings |= radv_nggc_face_is_ccw;
10274 
10275    /* Face culling settings. */
10276    if (d->vk.rs.cull_mode & VK_CULL_MODE_FRONT_BIT)
10277       nggc_settings |= radv_nggc_front_face;
10278    if (d->vk.rs.cull_mode & VK_CULL_MODE_BACK_BIT)
10279       nggc_settings |= radv_nggc_back_face;
10280 
10281    /* Small primitive culling assumes a sample position at (0.5, 0.5)
10282     * so don't enable it with user sample locations.
10283     */
10284    if (!d->vk.ms.sample_locations_enable) {
10285       nggc_settings |= radv_nggc_small_primitives;
10286 
10287       /* small_prim_precision = num_samples / 2^subpixel_bits
10288        * num_samples is also always a power of two, so the small prim precision can only be
10289        * a power of two between 2^-2 and 2^-6, therefore it's enough to remember the exponent.
10290        */
10291       unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
10292       unsigned subpixel_bits = 256;
10293       int32_t small_prim_precision_log2 = util_logbase2(rasterization_samples) - util_logbase2(subpixel_bits);
10294       nggc_settings |= ((uint32_t)small_prim_precision_log2 << 24u);
10295    }
10296 
10297    return nggc_settings;
10298 }
10299 
10300 static void
radv_emit_ngg_culling_state(struct radv_cmd_buffer * cmd_buffer)10301 radv_emit_ngg_culling_state(struct radv_cmd_buffer *cmd_buffer)
10302 {
10303    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
10304 
10305    /* Get viewport transform. */
10306    float vp_scale[2], vp_translate[2];
10307    memcpy(vp_scale, cmd_buffer->state.dynamic.hw_vp.xform[0].scale, 2 * sizeof(float));
10308    memcpy(vp_translate, cmd_buffer->state.dynamic.hw_vp.xform[0].translate, 2 * sizeof(float));
10309    bool vp_y_inverted = (-vp_scale[1] + vp_translate[1]) > (vp_scale[1] + vp_translate[1]);
10310 
10311    /* Get current culling settings. */
10312    uint32_t nggc_settings = radv_get_ngg_culling_settings(cmd_buffer, vp_y_inverted);
10313 
10314    if ((cmd_buffer->state.dirty & RADV_CMD_DIRTY_PIPELINE) ||
10315        (cmd_buffer->state.dirty_dynamic & (RADV_DYNAMIC_VIEWPORT | RADV_DYNAMIC_RASTERIZATION_SAMPLES))) {
10316       /* Correction for inverted Y */
10317       if (vp_y_inverted) {
10318          vp_scale[1] = -vp_scale[1];
10319          vp_translate[1] = -vp_translate[1];
10320       }
10321 
10322       /* Correction for number of samples per pixel. */
10323       for (unsigned i = 0; i < 2; ++i) {
10324          vp_scale[i] *= (float)cmd_buffer->state.dynamic.vk.ms.rasterization_samples;
10325          vp_translate[i] *= (float)cmd_buffer->state.dynamic.vk.ms.rasterization_samples;
10326       }
10327 
10328       uint32_t vp_reg_values[4] = {fui(vp_scale[0]), fui(vp_scale[1]), fui(vp_translate[0]), fui(vp_translate[1])};
10329       const uint32_t ngg_viewport_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_NGG_VIEWPORT);
10330       radeon_set_sh_reg_seq(cmd_buffer->cs, ngg_viewport_offset, 4);
10331       radeon_emit_array(cmd_buffer->cs, vp_reg_values, 4);
10332    }
10333 
10334    const uint32_t ngg_culling_settings_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_NGG_CULLING_SETTINGS);
10335 
10336    radeon_set_sh_reg(cmd_buffer->cs, ngg_culling_settings_offset, nggc_settings);
10337 }
10338 
10339 static void
radv_emit_fs_state(struct radv_cmd_buffer * cmd_buffer)10340 radv_emit_fs_state(struct radv_cmd_buffer *cmd_buffer)
10341 {
10342    const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
10343 
10344    if (!ps)
10345       return;
10346 
10347    const uint32_t ps_state_offset = radv_get_user_sgpr_loc(ps, AC_UD_PS_STATE);
10348    if (!ps_state_offset)
10349       return;
10350 
10351    const unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
10352    const unsigned ps_iter_samples = radv_get_ps_iter_samples(cmd_buffer);
10353    const uint16_t ps_iter_mask = ac_get_ps_iter_mask(ps_iter_samples);
10354    const unsigned rast_prim = radv_get_rasterization_prim(cmd_buffer);
10355    const unsigned ps_state = SET_SGPR_FIELD(PS_STATE_NUM_SAMPLES, rasterization_samples) |
10356                              SET_SGPR_FIELD(PS_STATE_PS_ITER_MASK, ps_iter_mask) |
10357                              SET_SGPR_FIELD(PS_STATE_LINE_RAST_MODE, radv_get_line_mode(cmd_buffer)) |
10358                              SET_SGPR_FIELD(PS_STATE_RAST_PRIM, rast_prim);
10359 
10360    radeon_set_sh_reg(cmd_buffer->cs, ps_state_offset, ps_state);
10361 }
10362 
10363 static uint32_t
radv_get_ngg_state_num_verts_per_prim(struct radv_cmd_buffer * cmd_buffer)10364 radv_get_ngg_state_num_verts_per_prim(struct radv_cmd_buffer *cmd_buffer)
10365 {
10366    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
10367    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
10368    uint32_t num_verts_per_prim = 0;
10369 
10370    if (last_vgt_shader->info.stage == MESA_SHADER_VERTEX)
10371       num_verts_per_prim = radv_conv_prim_to_gs_out(d->vk.ia.primitive_topology, last_vgt_shader->info.is_ngg) + 1;
10372 
10373    return num_verts_per_prim;
10374 }
10375 
10376 static uint32_t
radv_get_ngg_state_provoking_vtx(struct radv_cmd_buffer * cmd_buffer)10377 radv_get_ngg_state_provoking_vtx(struct radv_cmd_buffer *cmd_buffer)
10378 {
10379    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
10380    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
10381    const unsigned stage = last_vgt_shader->info.stage;
10382    unsigned provoking_vtx = 0;
10383 
10384    if (d->vk.rs.provoking_vertex == VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT) {
10385       if (stage == MESA_SHADER_VERTEX) {
10386          provoking_vtx = radv_conv_prim_to_gs_out(d->vk.ia.primitive_topology, last_vgt_shader->info.is_ngg);
10387       } else if (stage == MESA_SHADER_GEOMETRY) {
10388          provoking_vtx = last_vgt_shader->info.gs.vertices_in - 1;
10389       }
10390    }
10391 
10392    return provoking_vtx;
10393 }
10394 
10395 static uint32_t
radv_get_ngg_state_query(struct radv_cmd_buffer * cmd_buffer)10396 radv_get_ngg_state_query(struct radv_cmd_buffer *cmd_buffer)
10397 {
10398    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10399    const struct radv_physical_device *pdev = radv_device_physical(device);
10400    enum radv_shader_query_state shader_query_state = radv_shader_query_none;
10401 
10402    /* By default shader queries are disabled but they are enabled if the command buffer has active GDS
10403     * queries or if it's a secondary command buffer that inherits the number of generated
10404     * primitives.
10405     */
10406    if (cmd_buffer->state.active_emulated_pipeline_queries ||
10407        (cmd_buffer->state.inherited_pipeline_statistics & VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT) ||
10408        (pdev->emulate_mesh_shader_queries && (cmd_buffer->state.inherited_pipeline_statistics &
10409                                               VK_QUERY_PIPELINE_STATISTIC_MESH_SHADER_INVOCATIONS_BIT_EXT)))
10410       shader_query_state |= radv_shader_query_pipeline_stat;
10411 
10412    if (cmd_buffer->state.active_emulated_prims_gen_queries)
10413       shader_query_state |= radv_shader_query_prim_gen;
10414 
10415    if (cmd_buffer->state.active_emulated_prims_xfb_queries && radv_is_streamout_enabled(cmd_buffer))
10416       shader_query_state |= radv_shader_query_prim_xfb | radv_shader_query_prim_gen;
10417 
10418    return shader_query_state;
10419 }
10420 
10421 static void
radv_emit_ngg_state(struct radv_cmd_buffer * cmd_buffer)10422 radv_emit_ngg_state(struct radv_cmd_buffer *cmd_buffer)
10423 {
10424    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10425    const struct radv_physical_device *pdev = radv_device_physical(device);
10426    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
10427 
10428    const uint32_t ngg_state_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_NGG_STATE);
10429    if (!ngg_state_offset)
10430       return;
10431 
10432    const uint32_t ngg_state =
10433       SET_SGPR_FIELD(NGG_STATE_NUM_VERTS_PER_PRIM, radv_get_ngg_state_num_verts_per_prim(cmd_buffer)) |
10434       SET_SGPR_FIELD(NGG_STATE_PROVOKING_VTX, radv_get_ngg_state_provoking_vtx(cmd_buffer)) |
10435       SET_SGPR_FIELD(NGG_STATE_QUERY, radv_get_ngg_state_query(cmd_buffer));
10436 
10437    radeon_set_sh_reg(cmd_buffer->cs, ngg_state_offset, ngg_state);
10438 
10439    if (pdev->info.gfx_level >= GFX12) {
10440       const uint32_t ngg_query_buf_va_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_NGG_QUERY_BUF_VA);
10441       if (!ngg_query_buf_va_offset)
10442          return;
10443 
10444       radeon_set_sh_reg(cmd_buffer->cs, ngg_query_buf_va_offset, cmd_buffer->state.shader_query_buf_va);
10445    }
10446 }
10447 
10448 static void
radv_emit_task_state(struct radv_cmd_buffer * cmd_buffer)10449 radv_emit_task_state(struct radv_cmd_buffer *cmd_buffer)
10450 {
10451    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10452    const struct radv_physical_device *pdev = radv_device_physical(device);
10453    const struct radv_shader *task_shader = cmd_buffer->state.shaders[MESA_SHADER_TASK];
10454 
10455    if (!task_shader || !pdev->emulate_mesh_shader_queries)
10456       return;
10457 
10458    const uint32_t task_state_offset = radv_get_user_sgpr_loc(task_shader, AC_UD_TASK_STATE);
10459    enum radv_shader_query_state shader_query_state = radv_shader_query_none;
10460 
10461    if (!task_state_offset)
10462       return;
10463 
10464    /* By default shader queries are disabled but they are enabled if the command buffer has active ACE
10465     * queries or if it's a secondary command buffer that inherits the number of task shader
10466     * invocations query.
10467     */
10468    if (cmd_buffer->state.active_pipeline_ace_queries ||
10469        (cmd_buffer->state.inherited_pipeline_statistics & VK_QUERY_PIPELINE_STATISTIC_TASK_SHADER_INVOCATIONS_BIT_EXT))
10470       shader_query_state |= radv_shader_query_pipeline_stat;
10471 
10472    radeon_set_sh_reg(cmd_buffer->gang.cs, task_state_offset, shader_query_state);
10473 }
10474 
10475 static void
radv_emit_shaders_state(struct radv_cmd_buffer * cmd_buffer)10476 radv_emit_shaders_state(struct radv_cmd_buffer *cmd_buffer)
10477 {
10478    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FS_STATE) {
10479       radv_emit_fs_state(cmd_buffer);
10480       cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_FS_STATE;
10481    }
10482 
10483    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_NGG_STATE) {
10484       radv_emit_ngg_state(cmd_buffer);
10485       cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_NGG_STATE;
10486    }
10487 
10488    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_TASK_STATE) {
10489       radv_emit_task_state(cmd_buffer);
10490       cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_TASK_STATE;
10491    }
10492 }
10493 
10494 static void
radv_emit_db_shader_control(struct radv_cmd_buffer * cmd_buffer)10495 radv_emit_db_shader_control(struct radv_cmd_buffer *cmd_buffer)
10496 {
10497    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10498    const struct radv_physical_device *pdev = radv_device_physical(device);
10499    const struct radeon_info *gpu_info = &pdev->info;
10500    const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
10501    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
10502    const bool uses_ds_feedback_loop =
10503       !!(d->feedback_loop_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT));
10504    const unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
10505 
10506    uint32_t db_shader_control;
10507 
10508    if (ps) {
10509       db_shader_control = ps->info.regs.ps.db_shader_control;
10510    } else {
10511       db_shader_control = S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_ANY_Z) |
10512                           S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
10513                           S_02880C_DUAL_QUAD_DISABLE(gpu_info->has_rbplus && !gpu_info->rbplus_allowed);
10514    }
10515 
10516    /* When a depth/stencil attachment is used inside feedback loops, use LATE_Z to make sure shader invocations read the
10517     * correct value.
10518     * Also apply the bug workaround for smoothing (overrasterization) on GFX6.
10519     */
10520    if (uses_ds_feedback_loop ||
10521        (gpu_info->gfx_level == GFX6 && radv_get_line_mode(cmd_buffer) == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH))
10522       db_shader_control = (db_shader_control & C_02880C_Z_ORDER) | S_02880C_Z_ORDER(V_02880C_LATE_Z);
10523 
10524    if (ps && ps->info.ps.pops) {
10525       /* POPS_OVERLAP_NUM_SAMPLES (OVERRIDE_INTRINSIC_RATE on GFX11, must always be enabled for POPS) controls the
10526        * interlock granularity.
10527        * PixelInterlock: 1x.
10528        * SampleInterlock: MSAA_EXPOSED_SAMPLES (much faster at common edges of adjacent primitives with MSAA).
10529        */
10530       if (gpu_info->gfx_level >= GFX11) {
10531          db_shader_control |= S_02880C_OVERRIDE_INTRINSIC_RATE_ENABLE(1);
10532          if (ps->info.ps.pops_is_per_sample)
10533             db_shader_control |= S_02880C_OVERRIDE_INTRINSIC_RATE(util_logbase2(rasterization_samples));
10534       } else {
10535          if (ps->info.ps.pops_is_per_sample)
10536             db_shader_control |= S_02880C_POPS_OVERLAP_NUM_SAMPLES(util_logbase2(rasterization_samples));
10537 
10538          if (gpu_info->has_pops_missed_overlap_bug) {
10539             radeon_set_context_reg(cmd_buffer->cs, R_028060_DB_DFSM_CONTROL,
10540                                    S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF) |
10541                                       S_028060_POPS_DRAIN_PS_ON_OVERLAP(rasterization_samples >= 8));
10542          }
10543       }
10544    } else if (gpu_info->has_export_conflict_bug && rasterization_samples == 1) {
10545       for (uint32_t i = 0; i < MAX_RTS; i++) {
10546          if (d->vk.cb.attachments[i].write_mask && d->vk.cb.attachments[i].blend_enable) {
10547             db_shader_control |= S_02880C_OVERRIDE_INTRINSIC_RATE_ENABLE(1) | S_02880C_OVERRIDE_INTRINSIC_RATE(2);
10548             break;
10549          }
10550       }
10551    }
10552 
10553    if (pdev->info.gfx_level >= GFX12) {
10554       radeon_opt_set_context_reg(cmd_buffer, R_02806C_DB_SHADER_CONTROL, RADV_TRACKED_DB_SHADER_CONTROL,
10555                                  db_shader_control);
10556    } else {
10557       /* Use the alpha value from MRTZ.a for alpha-to-coverage when alpha-to-one is also enabled.
10558        * GFX11+ selects MRTZ.a by default if present.
10559        */
10560       db_shader_control |= S_02880C_COVERAGE_TO_MASK_ENABLE(
10561          pdev->info.gfx_level < GFX11 && d->vk.ms.alpha_to_coverage_enable && d->vk.ms.alpha_to_one_enable);
10562 
10563       radeon_opt_set_context_reg(cmd_buffer, R_02880C_DB_SHADER_CONTROL, RADV_TRACKED_DB_SHADER_CONTROL,
10564                                  db_shader_control);
10565    }
10566 
10567    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_DB_SHADER_CONTROL;
10568 }
10569 
10570 static void
radv_emit_streamout_enable_state(struct radv_cmd_buffer * cmd_buffer)10571 radv_emit_streamout_enable_state(struct radv_cmd_buffer *cmd_buffer)
10572 {
10573    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10574    const struct radv_physical_device *pdev = radv_device_physical(device);
10575    const struct radv_streamout_state *so = &cmd_buffer->state.streamout;
10576    const bool streamout_enabled = radv_is_streamout_enabled(cmd_buffer);
10577    uint32_t enabled_stream_buffers_mask = 0;
10578 
10579    assert(!pdev->use_ngg_streamout);
10580 
10581    if (streamout_enabled && cmd_buffer->state.last_vgt_shader) {
10582       const struct radv_shader_info *info = &cmd_buffer->state.last_vgt_shader->info;
10583 
10584       enabled_stream_buffers_mask = info->so.enabled_stream_buffers_mask;
10585 
10586       u_foreach_bit (i, so->enabled_mask) {
10587          radeon_set_context_reg(cmd_buffer->cs, R_028AD4_VGT_STRMOUT_VTX_STRIDE_0 + 16 * i, info->so.strides[i]);
10588       }
10589    }
10590 
10591    radeon_set_context_reg_seq(cmd_buffer->cs, R_028B94_VGT_STRMOUT_CONFIG, 2);
10592    radeon_emit(cmd_buffer->cs, S_028B94_STREAMOUT_0_EN(streamout_enabled) | S_028B94_RAST_STREAM(0) |
10593                                   S_028B94_STREAMOUT_1_EN(streamout_enabled) |
10594                                   S_028B94_STREAMOUT_2_EN(streamout_enabled) |
10595                                   S_028B94_STREAMOUT_3_EN(streamout_enabled));
10596    radeon_emit(cmd_buffer->cs, so->hw_enabled_mask & enabled_stream_buffers_mask);
10597 
10598    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_STREAMOUT_ENABLE;
10599 }
10600 
10601 static gl_shader_stage
radv_cmdbuf_get_last_vgt_api_stage(const struct radv_cmd_buffer * cmd_buffer)10602 radv_cmdbuf_get_last_vgt_api_stage(const struct radv_cmd_buffer *cmd_buffer)
10603 {
10604    if (cmd_buffer->state.active_stages & VK_SHADER_STAGE_MESH_BIT_EXT)
10605       return MESA_SHADER_MESH;
10606 
10607    return util_last_bit(cmd_buffer->state.active_stages & BITFIELD_MASK(MESA_SHADER_FRAGMENT)) - 1;
10608 }
10609 
10610 static unsigned
radv_compact_spi_shader_col_format(uint32_t spi_shader_col_format)10611 radv_compact_spi_shader_col_format(uint32_t spi_shader_col_format)
10612 {
10613    unsigned value = 0, num_mrts = 0;
10614    unsigned i, num_targets;
10615 
10616    /* Compute the number of MRTs. */
10617    num_targets = DIV_ROUND_UP(util_last_bit(spi_shader_col_format), 4);
10618 
10619    /* Remove holes in spi_shader_col_format. */
10620    for (i = 0; i < num_targets; i++) {
10621       unsigned spi_format = (spi_shader_col_format >> (i * 4)) & 0xf;
10622 
10623       if (spi_format) {
10624          value |= spi_format << (num_mrts * 4);
10625          num_mrts++;
10626       }
10627    }
10628 
10629    return value;
10630 }
10631 
10632 static void
radv_emit_fragment_output_state(struct radv_cmd_buffer * cmd_buffer)10633 radv_emit_fragment_output_state(struct radv_cmd_buffer *cmd_buffer)
10634 {
10635    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10636    const struct radv_physical_device *pdev = radv_device_physical(device);
10637 
10638    uint32_t col_format_compacted = radv_compact_spi_shader_col_format(cmd_buffer->state.spi_shader_col_format);
10639 
10640    if (pdev->info.gfx_level >= GFX12) {
10641       radeon_set_context_reg(cmd_buffer->cs, R_028854_CB_SHADER_MASK, cmd_buffer->state.cb_shader_mask);
10642       radeon_set_context_reg_seq(cmd_buffer->cs, R_028650_SPI_SHADER_Z_FORMAT, 2);
10643       radeon_emit(cmd_buffer->cs, cmd_buffer->state.spi_shader_z_format);
10644       radeon_emit(cmd_buffer->cs, col_format_compacted); /* SPI_SHADER_COL_FORMAT */
10645    } else {
10646       radeon_set_context_reg(cmd_buffer->cs, R_02823C_CB_SHADER_MASK, cmd_buffer->state.cb_shader_mask);
10647       radeon_set_context_reg_seq(cmd_buffer->cs, R_028710_SPI_SHADER_Z_FORMAT, 2);
10648       radeon_emit(cmd_buffer->cs, cmd_buffer->state.spi_shader_z_format);
10649       radeon_emit(cmd_buffer->cs, col_format_compacted); /* SPI_SHADER_COL_FORMAT */
10650    }
10651 
10652    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_FRAGMENT_OUTPUT;
10653 }
10654 
10655 static void
radv_emit_depth_stencil_state(struct radv_cmd_buffer * cmd_buffer)10656 radv_emit_depth_stencil_state(struct radv_cmd_buffer *cmd_buffer)
10657 {
10658    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10659    const struct radv_physical_device *pdev = radv_device_physical(device);
10660    const struct radv_rendering_state *render = &cmd_buffer->state.render;
10661    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
10662 
10663    const bool stencil_test_enable =
10664       d->vk.ds.stencil.test_enable && (render->ds_att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
10665 
10666    const uint32_t db_depth_control =
10667       S_028800_Z_ENABLE(d->vk.ds.depth.test_enable ? 1 : 0) |
10668       S_028800_Z_WRITE_ENABLE(d->vk.ds.depth.write_enable ? 1 : 0) | S_028800_ZFUNC(d->vk.ds.depth.compare_op) |
10669       S_028800_DEPTH_BOUNDS_ENABLE(d->vk.ds.depth.bounds_test.enable ? 1 : 0) |
10670       S_028800_STENCIL_ENABLE(stencil_test_enable) | S_028800_BACKFACE_ENABLE(stencil_test_enable) |
10671       S_028800_STENCILFUNC(d->vk.ds.stencil.front.op.compare) |
10672       S_028800_STENCILFUNC_BF(d->vk.ds.stencil.back.op.compare);
10673 
10674    const uint32_t db_stencil_control =
10675       S_02842C_STENCILFAIL(radv_translate_stencil_op(d->vk.ds.stencil.front.op.fail)) |
10676       S_02842C_STENCILZPASS(radv_translate_stencil_op(d->vk.ds.stencil.front.op.pass)) |
10677       S_02842C_STENCILZFAIL(radv_translate_stencil_op(d->vk.ds.stencil.front.op.depth_fail)) |
10678       S_02842C_STENCILFAIL_BF(radv_translate_stencil_op(d->vk.ds.stencil.back.op.fail)) |
10679       S_02842C_STENCILZPASS_BF(radv_translate_stencil_op(d->vk.ds.stencil.back.op.pass)) |
10680       S_02842C_STENCILZFAIL_BF(radv_translate_stencil_op(d->vk.ds.stencil.back.op.depth_fail));
10681 
10682    const uint32_t depth_bounds_min = fui(d->vk.ds.depth.bounds_test.min);
10683    const uint32_t depth_bounds_max = fui(d->vk.ds.depth.bounds_test.max);
10684 
10685    if (pdev->info.gfx_level >= GFX12) {
10686       const bool force_s_valid =
10687          stencil_test_enable && ((d->vk.ds.stencil.front.op.pass != d->vk.ds.stencil.front.op.depth_fail) ||
10688                                  (d->vk.ds.stencil.back.op.pass != d->vk.ds.stencil.back.op.depth_fail));
10689 
10690       radeon_set_context_reg(cmd_buffer->cs, R_02800C_DB_RENDER_OVERRIDE,
10691                              S_02800C_FORCE_STENCIL_READ(1) | S_02800C_FORCE_STENCIL_VALID(force_s_valid));
10692 
10693       radeon_opt_set_context_reg(cmd_buffer, R_028070_DB_DEPTH_CONTROL, RADV_TRACKED_DB_DEPTH_CONTROL,
10694                                  db_depth_control);
10695 
10696       if (stencil_test_enable) {
10697          radeon_opt_set_context_reg(cmd_buffer, R_028074_DB_STENCIL_CONTROL, RADV_TRACKED_DB_STENCIL_CONTROL,
10698                                     db_stencil_control);
10699 
10700          radeon_opt_set_context_reg(
10701             cmd_buffer, R_028088_DB_STENCIL_REF, RADV_TRACKED_DB_STENCIL_REF,
10702             S_028088_TESTVAL(d->vk.ds.stencil.front.reference) | S_028088_TESTVAL_BF(d->vk.ds.stencil.back.reference));
10703 
10704          radeon_opt_set_context_reg2(cmd_buffer, R_028090_DB_STENCIL_READ_MASK, RADV_TRACKED_DB_STENCIL_READ_MASK,
10705                                      S_028090_TESTMASK(d->vk.ds.stencil.front.compare_mask) |
10706                                         S_028090_TESTMASK_BF(d->vk.ds.stencil.back.compare_mask),
10707                                      S_028094_WRITEMASK(d->vk.ds.stencil.front.write_mask) |
10708                                         S_028094_WRITEMASK_BF(d->vk.ds.stencil.back.write_mask));
10709       }
10710 
10711       if (d->vk.ds.depth.bounds_test.enable) {
10712          radeon_opt_set_context_reg2(cmd_buffer, R_028050_DB_DEPTH_BOUNDS_MIN, RADV_TRACKED_DB_DEPTH_BOUNDS_MIN,
10713                                      depth_bounds_min, depth_bounds_max);
10714       }
10715    } else {
10716       radeon_opt_set_context_reg(cmd_buffer, R_028800_DB_DEPTH_CONTROL, RADV_TRACKED_DB_DEPTH_CONTROL,
10717                                  db_depth_control);
10718 
10719       if (stencil_test_enable) {
10720          radeon_opt_set_context_reg(cmd_buffer, R_02842C_DB_STENCIL_CONTROL, RADV_TRACKED_DB_STENCIL_CONTROL,
10721                                     db_stencil_control);
10722 
10723          radeon_opt_set_context_reg2(
10724             cmd_buffer, R_028430_DB_STENCILREFMASK, RADV_TRACKED_DB_STENCILREFMASK,
10725             S_028430_STENCILTESTVAL(d->vk.ds.stencil.front.reference) |
10726                S_028430_STENCILMASK(d->vk.ds.stencil.front.compare_mask) |
10727                S_028430_STENCILWRITEMASK(d->vk.ds.stencil.front.write_mask) | S_028430_STENCILOPVAL(1),
10728             S_028434_STENCILTESTVAL_BF(d->vk.ds.stencil.back.reference) |
10729                S_028434_STENCILMASK_BF(d->vk.ds.stencil.back.compare_mask) |
10730                S_028434_STENCILWRITEMASK_BF(d->vk.ds.stencil.back.write_mask) | S_028434_STENCILOPVAL_BF(1));
10731       }
10732 
10733       if (d->vk.ds.depth.bounds_test.enable) {
10734          radeon_opt_set_context_reg2(cmd_buffer, R_028020_DB_DEPTH_BOUNDS_MIN, RADV_TRACKED_DB_DEPTH_BOUNDS_MIN,
10735                                      depth_bounds_min, depth_bounds_max);
10736       }
10737    }
10738 
10739    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_DEPTH_STENCIL_STATE;
10740 }
10741 
10742 static void
radv_emit_raster_state(struct radv_cmd_buffer * cmd_buffer)10743 radv_emit_raster_state(struct radv_cmd_buffer *cmd_buffer)
10744 {
10745    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10746    const struct radv_physical_device *pdev = radv_device_physical(device);
10747    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
10748 
10749    radeon_opt_set_context_reg(cmd_buffer, R_028A08_PA_SU_LINE_CNTL, RADV_TRACKED_PA_SU_LINE_CNTL,
10750                               S_028A08_WIDTH(CLAMP(d->vk.rs.line.width * 8, 0, 0xFFFF)));
10751 
10752    /* GFX9 chips fail linestrip CTS tests unless this is set to 0 = no reset */
10753    uint32_t auto_reset_cntl = (pdev->info.gfx_level == GFX9) ? 0 : 2;
10754 
10755    if (radv_primitive_topology_is_line_list(d->vk.ia.primitive_topology))
10756       auto_reset_cntl = 1;
10757 
10758    radeon_opt_set_context_reg(cmd_buffer, R_028A0C_PA_SC_LINE_STIPPLE, RADV_TRACKED_PA_SC_LINE_STIPPLE,
10759                               S_028A0C_LINE_PATTERN(d->vk.rs.line.stipple.pattern) |
10760                                  S_028A0C_REPEAT_COUNT(d->vk.rs.line.stipple.factor - 1) |
10761                                  S_028A0C_AUTO_RESET_CNTL(pdev->info.gfx_level < GFX12 ? auto_reset_cntl : 0));
10762 
10763    /* The DX10 diamond test is unnecessary with Vulkan and it decreases line rasterization
10764     * performance.
10765     */
10766    radeon_opt_set_context_reg(
10767       cmd_buffer, R_028BDC_PA_SC_LINE_CNTL, RADV_TRACKED_PA_SC_LINE_CNTL,
10768       S_028BDC_PERPENDICULAR_ENDCAP_ENA(radv_get_line_mode(cmd_buffer) == VK_LINE_RASTERIZATION_MODE_RECTANGULAR));
10769 
10770    const bool depth_clip_enable = radv_get_depth_clip_enable(cmd_buffer);
10771 
10772    radeon_opt_set_context_reg(
10773       cmd_buffer, R_028810_PA_CL_CLIP_CNTL, RADV_TRACKED_PA_CL_CLIP_CNTL,
10774       S_028810_DX_RASTERIZATION_KILL(d->vk.rs.rasterizer_discard_enable) |
10775          S_028810_ZCLIP_NEAR_DISABLE(!depth_clip_enable) | S_028810_ZCLIP_FAR_DISABLE(!depth_clip_enable) |
10776          S_028810_DX_CLIP_SPACE_DEF(!d->vk.vp.depth_clip_negative_one_to_one) | S_028810_DX_LINEAR_ATTR_CLIP_ENA(1));
10777 
10778    unsigned pa_su_sc_mode_cntl =
10779       S_028814_CULL_FRONT(!!(d->vk.rs.cull_mode & VK_CULL_MODE_FRONT_BIT)) |
10780       S_028814_CULL_BACK(!!(d->vk.rs.cull_mode & VK_CULL_MODE_BACK_BIT)) | S_028814_FACE(d->vk.rs.front_face) |
10781       S_028814_POLY_OFFSET_FRONT_ENABLE(d->vk.rs.depth_bias.enable) |
10782       S_028814_POLY_OFFSET_BACK_ENABLE(d->vk.rs.depth_bias.enable) |
10783       S_028814_POLY_OFFSET_PARA_ENABLE(d->vk.rs.depth_bias.enable) |
10784       S_028814_POLY_MODE(d->vk.rs.polygon_mode != V_028814_X_DRAW_TRIANGLES) |
10785       S_028814_POLYMODE_FRONT_PTYPE(d->vk.rs.polygon_mode) | S_028814_POLYMODE_BACK_PTYPE(d->vk.rs.polygon_mode) |
10786       S_028814_PROVOKING_VTX_LAST(d->vk.rs.provoking_vertex == VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT);
10787 
10788    if (pdev->info.gfx_level >= GFX10 && pdev->info.gfx_level < GFX12) {
10789       /* Ensure that SC processes the primitive group in the same order as PA produced them.  Needed
10790        * when either POLY_MODE or PERPENDICULAR_ENDCAP_ENA is set.
10791        */
10792       pa_su_sc_mode_cntl |=
10793          S_028814_KEEP_TOGETHER_ENABLE(d->vk.rs.polygon_mode != V_028814_X_DRAW_TRIANGLES ||
10794                                        radv_get_line_mode(cmd_buffer) == VK_LINE_RASTERIZATION_MODE_RECTANGULAR);
10795    }
10796 
10797    if (pdev->info.gfx_level >= GFX12) {
10798       radeon_opt_set_context_reg(cmd_buffer, R_028A44_PA_SC_LINE_STIPPLE_RESET, RADV_TRACKED_PA_SC_LINE_STIPPLE_RESET,
10799                                  S_028A44_AUTO_RESET_CNTL(auto_reset_cntl));
10800 
10801       radeon_opt_set_context_reg(cmd_buffer, R_02881C_PA_SU_SC_MODE_CNTL, RADV_TRACKED_PA_SU_SC_MODE_CNTL,
10802                                  pa_su_sc_mode_cntl);
10803    } else {
10804       radeon_opt_set_context_reg(cmd_buffer, R_028814_PA_SU_SC_MODE_CNTL, RADV_TRACKED_PA_SU_SC_MODE_CNTL,
10805                                  pa_su_sc_mode_cntl);
10806    }
10807 
10808    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_RASTER_STATE;
10809 }
10810 
10811 static void
radv_validate_dynamic_states(struct radv_cmd_buffer * cmd_buffer,uint64_t dynamic_states)10812 radv_validate_dynamic_states(struct radv_cmd_buffer *cmd_buffer, uint64_t dynamic_states)
10813 {
10814    if (dynamic_states & (RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_LINE_RASTERIZATION_MODE |
10815                          RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE))
10816       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FS_STATE;
10817 
10818    if (dynamic_states & (RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_PROVOKING_VERTEX_MODE))
10819       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_NGG_STATE;
10820 
10821    if (dynamic_states &
10822        (RADV_DYNAMIC_DEPTH_TEST_ENABLE | RADV_DYNAMIC_DEPTH_WRITE_ENABLE | RADV_DYNAMIC_DEPTH_COMPARE_OP |
10823         RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE | RADV_DYNAMIC_STENCIL_TEST_ENABLE | RADV_DYNAMIC_STENCIL_OP |
10824         RADV_DYNAMIC_DEPTH_BOUNDS | RADV_DYNAMIC_STENCIL_REFERENCE | RADV_DYNAMIC_STENCIL_WRITE_MASK |
10825         RADV_DYNAMIC_STENCIL_COMPARE_MASK))
10826       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DEPTH_STENCIL_STATE;
10827 
10828    if (dynamic_states &
10829        (RADV_DYNAMIC_LINE_WIDTH | RADV_DYNAMIC_LINE_STIPPLE | RADV_DYNAMIC_CULL_MODE | RADV_DYNAMIC_FRONT_FACE |
10830         RADV_DYNAMIC_DEPTH_BIAS_ENABLE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE |
10831         RADV_DYNAMIC_PROVOKING_VERTEX_MODE | RADV_DYNAMIC_LINE_RASTERIZATION_MODE |
10832         RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE | RADV_DYNAMIC_DEPTH_CLIP_ENABLE |
10833         RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE | RADV_DYNAMIC_DEPTH_CLAMP_ENABLE))
10834       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RASTER_STATE;
10835 }
10836 
10837 static void
radv_emit_all_graphics_states(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info)10838 radv_emit_all_graphics_states(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info)
10839 {
10840    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10841    const struct radv_physical_device *pdev = radv_device_physical(device);
10842    struct radv_shader_part *ps_epilog = NULL;
10843 
10844    if (cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT] &&
10845        cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]->info.ps.has_epilog) {
10846       if ((cmd_buffer->state.emitted_graphics_pipeline != cmd_buffer->state.graphics_pipeline ||
10847            ((cmd_buffer->state.dirty & (RADV_CMD_DIRTY_GRAPHICS_SHADERS | RADV_CMD_DIRTY_FRAMEBUFFER)) ||
10848             (cmd_buffer->state.dirty_dynamic &
10849              (RADV_DYNAMIC_COLOR_WRITE_MASK | RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE |
10850               RADV_DYNAMIC_COLOR_BLEND_EQUATION | RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE |
10851               RADV_DYNAMIC_COLOR_ATTACHMENT_MAP))))) {
10852          ps_epilog = lookup_ps_epilog(cmd_buffer);
10853          if (!ps_epilog) {
10854             vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
10855             return;
10856          }
10857 
10858          assert(cmd_buffer->state.custom_blend_mode == 0);
10859 
10860          radv_bind_fragment_output_state(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT], ps_epilog, 0);
10861       }
10862    }
10863 
10864    /* Determine whether GFX9 late scissor workaround should be applied based on:
10865     * 1. radv_need_late_scissor_emission
10866     * 2. any dirty dynamic flags that may cause context rolls
10867     */
10868    const bool late_scissor_emission =
10869       pdev->info.has_gfx9_scissor_bug ? radv_need_late_scissor_emission(cmd_buffer, info) : false;
10870 
10871    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_RBPLUS)
10872       radv_emit_rbplus_state(cmd_buffer);
10873 
10874    if ((cmd_buffer->state.dirty & RADV_CMD_DIRTY_OCCLUSION_QUERY) ||
10875        (cmd_buffer->state.dirty_dynamic & (RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY)))
10876       radv_flush_occlusion_query_state(cmd_buffer);
10877 
10878    if (((cmd_buffer->state.dirty & (RADV_CMD_DIRTY_PIPELINE | RADV_CMD_DIRTY_GRAPHICS_SHADERS)) ||
10879         (cmd_buffer->state.dirty_dynamic &
10880          (RADV_DYNAMIC_CULL_MODE | RADV_DYNAMIC_FRONT_FACE | RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE |
10881           RADV_DYNAMIC_VIEWPORT | RADV_DYNAMIC_CONSERVATIVE_RAST_MODE | RADV_DYNAMIC_RASTERIZATION_SAMPLES |
10882           RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE))) &&
10883        cmd_buffer->state.has_nggc)
10884       radv_emit_ngg_culling_state(cmd_buffer);
10885 
10886    if ((cmd_buffer->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER) ||
10887        (cmd_buffer->state.dirty_dynamic &
10888         (RADV_DYNAMIC_COLOR_WRITE_MASK | RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_LINE_RASTERIZATION_MODE |
10889          RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE)))
10890       radv_emit_binning_state(cmd_buffer);
10891 
10892    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_PIPELINE) {
10893       radv_emit_graphics_pipeline(cmd_buffer);
10894    } else if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_GRAPHICS_SHADERS) {
10895       radv_emit_graphics_shaders(cmd_buffer);
10896    }
10897 
10898    if (ps_epilog)
10899       radv_emit_ps_epilog_state(cmd_buffer, ps_epilog);
10900 
10901    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FRAGMENT_OUTPUT)
10902       radv_emit_fragment_output_state(cmd_buffer);
10903 
10904    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER)
10905       radv_emit_framebuffer_state(cmd_buffer);
10906 
10907    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_GUARDBAND)
10908       radv_emit_guardband_state(cmd_buffer);
10909 
10910    if ((cmd_buffer->state.dirty & RADV_CMD_DIRTY_DB_SHADER_CONTROL) ||
10911        (cmd_buffer->state.dirty_dynamic &
10912         (RADV_DYNAMIC_COLOR_WRITE_MASK | RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_RASTERIZATION_SAMPLES |
10913          RADV_DYNAMIC_LINE_RASTERIZATION_MODE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE |
10914          RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE | RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE |
10915          RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE)))
10916       radv_emit_db_shader_control(cmd_buffer);
10917 
10918    if (info->indexed && info->indirect && cmd_buffer->state.dirty & RADV_CMD_DIRTY_INDEX_BUFFER)
10919       radv_emit_index_buffer(cmd_buffer);
10920 
10921    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_STREAMOUT_ENABLE)
10922       radv_emit_streamout_enable_state(cmd_buffer);
10923 
10924    const uint64_t dynamic_states = cmd_buffer->state.dirty_dynamic & radv_get_needed_dynamic_states(cmd_buffer);
10925 
10926    if (dynamic_states) {
10927       radv_cmd_buffer_flush_dynamic_state(cmd_buffer, dynamic_states);
10928 
10929       radv_validate_dynamic_states(cmd_buffer, dynamic_states);
10930    }
10931 
10932    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_RASTER_STATE)
10933       radv_emit_raster_state(cmd_buffer);
10934 
10935    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_DEPTH_STENCIL_STATE)
10936       radv_emit_depth_stencil_state(cmd_buffer);
10937 
10938    radv_emit_shaders_state(cmd_buffer);
10939 
10940    radv_emit_draw_registers(cmd_buffer, info);
10941 
10942    if (late_scissor_emission) {
10943       radv_emit_scissor(cmd_buffer);
10944       cmd_buffer->state.context_roll_without_scissor_emitted = false;
10945    }
10946 }
10947 
10948 static void
radv_bind_graphics_shaders(struct radv_cmd_buffer * cmd_buffer)10949 radv_bind_graphics_shaders(struct radv_cmd_buffer *cmd_buffer)
10950 {
10951    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10952    const struct radv_physical_device *pdev = radv_device_physical(device);
10953    uint32_t push_constant_size = 0, dynamic_offset_count = 0;
10954    bool need_indirect_descriptor_sets = false;
10955 
10956    for (unsigned s = 0; s <= MESA_SHADER_MESH; s++) {
10957       const struct radv_shader_object *shader_obj = cmd_buffer->state.shader_objs[s];
10958       struct radv_shader *shader = NULL;
10959 
10960       if (s == MESA_SHADER_COMPUTE)
10961          continue;
10962 
10963       if (!shader_obj) {
10964          radv_bind_shader(cmd_buffer, NULL, s);
10965          continue;
10966       }
10967 
10968       /* Select shader variants. */
10969       if (s == MESA_SHADER_VERTEX && (cmd_buffer->state.shader_objs[MESA_SHADER_TESS_CTRL] ||
10970                                       cmd_buffer->state.shader_objs[MESA_SHADER_GEOMETRY])) {
10971          if (cmd_buffer->state.shader_objs[MESA_SHADER_TESS_CTRL]) {
10972             shader = shader_obj->as_ls.shader;
10973          } else {
10974             shader = shader_obj->as_es.shader;
10975          }
10976       } else if (s == MESA_SHADER_TESS_EVAL && cmd_buffer->state.shader_objs[MESA_SHADER_GEOMETRY]) {
10977          shader = shader_obj->as_es.shader;
10978       } else {
10979          shader = shader_obj->shader;
10980       }
10981 
10982       radv_bind_shader(cmd_buffer, shader, s);
10983       if (!shader)
10984          continue;
10985 
10986       /* Compute push constants/indirect descriptors state. */
10987       need_indirect_descriptor_sets |= radv_get_user_sgpr_info(shader, AC_UD_INDIRECT_DESCRIPTOR_SETS)->sgpr_idx != -1;
10988       push_constant_size += shader_obj->push_constant_size;
10989       dynamic_offset_count += shader_obj->dynamic_offset_count;
10990    }
10991 
10992    /* Determine the last VGT shader. */
10993    const gl_shader_stage last_vgt_api_stage = radv_cmdbuf_get_last_vgt_api_stage(cmd_buffer);
10994 
10995    assume(last_vgt_api_stage != MESA_SHADER_NONE);
10996    if (pdev->info.has_vgt_flush_ngg_legacy_bug &&
10997        (!cmd_buffer->state.last_vgt_shader || (cmd_buffer->state.last_vgt_shader->info.is_ngg &&
10998                                                !cmd_buffer->state.shaders[last_vgt_api_stage]->info.is_ngg))) {
10999       /* Transitioning from NGG to legacy GS requires VGT_FLUSH on GFX10 and Navi21. VGT_FLUSH is
11000        * also emitted at the beginning of IBs when legacy GS ring pointers are set.
11001        */
11002       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
11003    }
11004 
11005    cmd_buffer->state.last_vgt_shader = cmd_buffer->state.shaders[last_vgt_api_stage];
11006 
11007    cmd_buffer->state.has_nggc = cmd_buffer->state.last_vgt_shader->info.has_ngg_culling;
11008 
11009    struct radv_shader *gs_copy_shader = cmd_buffer->state.shader_objs[MESA_SHADER_GEOMETRY]
11010                                            ? cmd_buffer->state.shader_objs[MESA_SHADER_GEOMETRY]->gs.copy_shader
11011                                            : NULL;
11012 
11013    radv_bind_gs_copy_shader(cmd_buffer, gs_copy_shader);
11014 
11015    /* Determine NGG GS info. */
11016    if (cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY] &&
11017        cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]->info.is_ngg &&
11018        cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]->info.merged_shader_compiled_separately) {
11019       struct radv_shader *es = cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL]
11020                                   ? cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL]
11021                                   : cmd_buffer->state.shaders[MESA_SHADER_VERTEX];
11022       struct radv_shader *gs = cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY];
11023 
11024       gfx10_get_ngg_info(device, &es->info, &gs->info, &gs->info.ngg_info);
11025       radv_precompute_registers_hw_ngg(device, &gs->config, &gs->info);
11026    }
11027 
11028    /* Determine the rasterized primitive. */
11029    if (cmd_buffer->state.active_stages &
11030        (VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT |
11031         VK_SHADER_STAGE_GEOMETRY_BIT | VK_SHADER_STAGE_MESH_BIT_EXT)) {
11032       cmd_buffer->state.rast_prim = radv_get_vgt_gs_out(cmd_buffer->state.shaders, 0, false);
11033    }
11034 
11035    const struct radv_shader *vs = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX);
11036    if (vs) {
11037       /* Re-emit the VS prolog when a new vertex shader is bound. */
11038       if (vs->info.vs.has_prolog) {
11039          cmd_buffer->state.emitted_vs_prolog = NULL;
11040          cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT;
11041       }
11042 
11043       /* Re-emit the vertex buffer descriptors because they are really tied to the pipeline. */
11044       if (vs->info.vs.vb_desc_usage_mask) {
11045          cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER;
11046       }
11047    }
11048 
11049    const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
11050    if (ps && !ps->info.ps.has_epilog) {
11051       radv_bind_fragment_output_state(cmd_buffer, ps, NULL, 0);
11052    }
11053 
11054    /* Update push constants/indirect descriptors state. */
11055    struct radv_descriptor_state *descriptors_state =
11056       radv_get_descriptors_state(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
11057    struct radv_push_constant_state *pc_state = &cmd_buffer->push_constant_state[VK_PIPELINE_BIND_POINT_GRAPHICS];
11058 
11059    descriptors_state->need_indirect_descriptor_sets = need_indirect_descriptor_sets;
11060    pc_state->size = push_constant_size;
11061    pc_state->dynamic_offset_count = dynamic_offset_count;
11062 
11063    if (pdev->info.gfx_level <= GFX9) {
11064       cmd_buffer->state.ia_multi_vgt_param = radv_compute_ia_multi_vgt_param(device, cmd_buffer->state.shaders);
11065    }
11066 
11067    if (cmd_buffer->state.active_stages &
11068        (VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)) {
11069       cmd_buffer->state.uses_dynamic_patch_control_points = true;
11070    }
11071 }
11072 
11073 /* MUST inline this function to avoid massive perf loss in drawoverhead */
11074 ALWAYS_INLINE static bool
radv_before_draw(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info,uint32_t drawCount,bool dgc)11075 radv_before_draw(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info, uint32_t drawCount, bool dgc)
11076 {
11077    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11078    const struct radv_physical_device *pdev = radv_device_physical(device);
11079    const bool has_prefetch = pdev->info.gfx_level >= GFX7;
11080 
11081    ASSERTED const unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 4096 + 128 * (drawCount - 1));
11082 
11083    if (likely(!info->indirect)) {
11084       /* GFX6-GFX7 treat instance_count==0 as instance_count==1. There is
11085        * no workaround for indirect draws, but we can at least skip
11086        * direct draws.
11087        */
11088       if (unlikely(!info->instance_count))
11089          return false;
11090 
11091       /* Handle count == 0. */
11092       if (unlikely(!info->count && !info->strmout_buffer))
11093          return false;
11094    }
11095 
11096    if (!info->indexed && pdev->info.gfx_level >= GFX7) {
11097       /* On GFX7 and later, non-indexed draws overwrite VGT_INDEX_TYPE,
11098        * so the state must be re-emitted before the next indexed
11099        * draw.
11100        */
11101       cmd_buffer->state.last_index_type = -1;
11102    }
11103 
11104    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FBFETCH_OUTPUT)
11105       radv_handle_fbfetch_output(cmd_buffer);
11106 
11107    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_GRAPHICS_SHADERS) {
11108       radv_bind_graphics_shaders(cmd_buffer);
11109    }
11110 
11111    /* Use optimal packet order based on whether we need to sync the
11112     * pipeline.
11113     */
11114    if (cmd_buffer->state.flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB |
11115                                        RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH)) {
11116       /* If we have to wait for idle, set all states first, so that
11117        * all SET packets are processed in parallel with previous draw
11118        * calls. Then upload descriptors, set shader pointers, and
11119        * draw, and prefetch at the end. This ensures that the time
11120        * the CUs are idle is very short. (there are only SET_SH
11121        * packets between the wait and the draw)
11122        */
11123       radv_emit_all_graphics_states(cmd_buffer, info);
11124       radv_emit_cache_flush(cmd_buffer);
11125       /* <-- CUs are idle here --> */
11126 
11127       radv_upload_graphics_shader_descriptors(cmd_buffer);
11128    } else {
11129       const bool need_prefetch = has_prefetch && cmd_buffer->state.prefetch_L2_mask;
11130 
11131       /* If we don't wait for idle, start prefetches first, then set
11132        * states, and draw at the end.
11133        */
11134       radv_emit_cache_flush(cmd_buffer);
11135 
11136       if (need_prefetch) {
11137          /* Only prefetch the vertex shader and VBO descriptors
11138           * in order to start the draw as soon as possible.
11139           */
11140          radv_emit_prefetch_L2(cmd_buffer, true);
11141       }
11142 
11143       radv_upload_graphics_shader_descriptors(cmd_buffer);
11144 
11145       radv_emit_all_graphics_states(cmd_buffer, info);
11146    }
11147 
11148    if (!dgc)
11149       radv_describe_draw(cmd_buffer);
11150    if (likely(!info->indirect)) {
11151       struct radv_cmd_state *state = &cmd_buffer->state;
11152       struct radeon_cmdbuf *cs = cmd_buffer->cs;
11153       assert(state->vtx_base_sgpr);
11154       if (state->last_num_instances != info->instance_count) {
11155          radeon_emit(cs, PKT3(PKT3_NUM_INSTANCES, 0, false));
11156          radeon_emit(cs, info->instance_count);
11157          state->last_num_instances = info->instance_count;
11158       }
11159    }
11160    assert(cmd_buffer->cs->cdw <= cdw_max);
11161 
11162    return true;
11163 }
11164 
11165 ALWAYS_INLINE static bool
radv_before_taskmesh_draw(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info,uint32_t drawCount,bool dgc)11166 radv_before_taskmesh_draw(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info, uint32_t drawCount,
11167                           bool dgc)
11168 {
11169    /* For direct draws, this makes sure we don't draw anything.
11170     * For indirect draws, this is necessary to prevent a GPU hang (on MEC version < 100).
11171     */
11172    if (unlikely(!info->count))
11173       return false;
11174 
11175    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_GRAPHICS_SHADERS) {
11176       radv_bind_graphics_shaders(cmd_buffer);
11177    }
11178 
11179    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11180    struct radeon_cmdbuf *ace_cs = cmd_buffer->gang.cs;
11181    struct radv_shader *task_shader = cmd_buffer->state.shaders[MESA_SHADER_TASK];
11182 
11183    assert(!task_shader || ace_cs);
11184 
11185    const VkShaderStageFlags stages =
11186       VK_SHADER_STAGE_MESH_BIT_EXT | VK_SHADER_STAGE_FRAGMENT_BIT | (task_shader ? VK_SHADER_STAGE_TASK_BIT_EXT : 0);
11187    const bool need_task_semaphore = task_shader && radv_flush_gang_leader_semaphore(cmd_buffer);
11188 
11189    ASSERTED const unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 4096 + 128 * (drawCount - 1));
11190    ASSERTED const unsigned ace_cdw_max =
11191       !ace_cs ? 0 : radeon_check_space(device->ws, ace_cs, 4096 + 128 * (drawCount - 1));
11192 
11193    radv_emit_all_graphics_states(cmd_buffer, info);
11194 
11195    radv_emit_cache_flush(cmd_buffer);
11196 
11197    if (task_shader) {
11198       radv_gang_cache_flush(cmd_buffer);
11199 
11200       if (need_task_semaphore) {
11201          radv_wait_gang_leader(cmd_buffer);
11202       }
11203    }
11204 
11205    radv_flush_descriptors(cmd_buffer, stages, VK_PIPELINE_BIND_POINT_GRAPHICS);
11206 
11207    const VkShaderStageFlags pc_stages = radv_must_flush_constants(cmd_buffer, stages, VK_PIPELINE_BIND_POINT_GRAPHICS);
11208    if (pc_stages)
11209       radv_flush_constants(cmd_buffer, pc_stages, VK_PIPELINE_BIND_POINT_GRAPHICS);
11210 
11211    if (!dgc)
11212       radv_describe_draw(cmd_buffer);
11213    if (likely(!info->indirect)) {
11214       struct radv_cmd_state *state = &cmd_buffer->state;
11215       if (unlikely(state->last_num_instances != 1)) {
11216          struct radeon_cmdbuf *cs = cmd_buffer->cs;
11217          radeon_emit(cs, PKT3(PKT3_NUM_INSTANCES, 0, false));
11218          radeon_emit(cs, 1);
11219          state->last_num_instances = 1;
11220       }
11221    }
11222 
11223    assert(cmd_buffer->cs->cdw <= cdw_max);
11224    assert(!ace_cs || ace_cs->cdw <= ace_cdw_max);
11225 
11226    cmd_buffer->state.last_index_type = -1;
11227 
11228    return true;
11229 }
11230 
11231 ALWAYS_INLINE static void
radv_after_draw(struct radv_cmd_buffer * cmd_buffer,bool dgc)11232 radv_after_draw(struct radv_cmd_buffer *cmd_buffer, bool dgc)
11233 {
11234    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11235    const struct radv_physical_device *pdev = radv_device_physical(device);
11236    const struct radeon_info *gpu_info = &pdev->info;
11237    bool has_prefetch = pdev->info.gfx_level >= GFX7;
11238    /* Start prefetches after the draw has been started. Both will
11239     * run in parallel, but starting the draw first is more
11240     * important.
11241     */
11242    if (has_prefetch && cmd_buffer->state.prefetch_L2_mask) {
11243       radv_emit_prefetch_L2(cmd_buffer, false);
11244    }
11245 
11246    /* Workaround for a VGT hang when streamout is enabled.
11247     * It must be done after drawing.
11248     */
11249    if (radv_is_streamout_enabled(cmd_buffer) &&
11250        (gpu_info->family == CHIP_HAWAII || gpu_info->family == CHIP_TONGA || gpu_info->family == CHIP_FIJI)) {
11251       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_STREAMOUT_SYNC;
11252    }
11253 
11254    radv_cmd_buffer_after_draw(cmd_buffer, RADV_CMD_FLAG_PS_PARTIAL_FLUSH, dgc);
11255 }
11256 
11257 VKAPI_ATTR void VKAPI_CALL
radv_CmdDraw(VkCommandBuffer commandBuffer,uint32_t vertexCount,uint32_t instanceCount,uint32_t firstVertex,uint32_t firstInstance)11258 radv_CmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex,
11259              uint32_t firstInstance)
11260 {
11261    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11262    struct radv_draw_info info;
11263 
11264    info.count = vertexCount;
11265    info.instance_count = instanceCount;
11266    info.first_instance = firstInstance;
11267    info.strmout_buffer = NULL;
11268    info.indirect = NULL;
11269    info.indexed = false;
11270 
11271    if (!radv_before_draw(cmd_buffer, &info, 1, false))
11272       return;
11273    const VkMultiDrawInfoEXT minfo = {firstVertex, vertexCount};
11274    radv_emit_direct_draw_packets(cmd_buffer, &info, 1, &minfo, 0, 0);
11275    radv_after_draw(cmd_buffer, false);
11276 }
11277 
11278 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMultiEXT(VkCommandBuffer commandBuffer,uint32_t drawCount,const VkMultiDrawInfoEXT * pVertexInfo,uint32_t instanceCount,uint32_t firstInstance,uint32_t stride)11279 radv_CmdDrawMultiEXT(VkCommandBuffer commandBuffer, uint32_t drawCount, const VkMultiDrawInfoEXT *pVertexInfo,
11280                      uint32_t instanceCount, uint32_t firstInstance, uint32_t stride)
11281 {
11282    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11283    struct radv_draw_info info;
11284 
11285    if (!drawCount)
11286       return;
11287 
11288    info.count = pVertexInfo->vertexCount;
11289    info.instance_count = instanceCount;
11290    info.first_instance = firstInstance;
11291    info.strmout_buffer = NULL;
11292    info.indirect = NULL;
11293    info.indexed = false;
11294 
11295    if (!radv_before_draw(cmd_buffer, &info, drawCount, false))
11296       return;
11297    radv_emit_direct_draw_packets(cmd_buffer, &info, drawCount, pVertexInfo, 0, stride);
11298    radv_after_draw(cmd_buffer, false);
11299 }
11300 
11301 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndexed(VkCommandBuffer commandBuffer,uint32_t indexCount,uint32_t instanceCount,uint32_t firstIndex,int32_t vertexOffset,uint32_t firstInstance)11302 radv_CmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex,
11303                     int32_t vertexOffset, uint32_t firstInstance)
11304 {
11305    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11306    struct radv_draw_info info;
11307 
11308    info.indexed = true;
11309    info.count = indexCount;
11310    info.instance_count = instanceCount;
11311    info.first_instance = firstInstance;
11312    info.strmout_buffer = NULL;
11313    info.indirect = NULL;
11314 
11315    if (!radv_before_draw(cmd_buffer, &info, 1, false))
11316       return;
11317    const VkMultiDrawIndexedInfoEXT minfo = {firstIndex, indexCount, vertexOffset};
11318    radv_emit_draw_packets_indexed(cmd_buffer, &info, 1, &minfo, 0, NULL);
11319    radv_after_draw(cmd_buffer, false);
11320 }
11321 
11322 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer,uint32_t drawCount,const VkMultiDrawIndexedInfoEXT * pIndexInfo,uint32_t instanceCount,uint32_t firstInstance,uint32_t stride,const int32_t * pVertexOffset)11323 radv_CmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer, uint32_t drawCount,
11324                             const VkMultiDrawIndexedInfoEXT *pIndexInfo, uint32_t instanceCount, uint32_t firstInstance,
11325                             uint32_t stride, const int32_t *pVertexOffset)
11326 {
11327    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11328    struct radv_draw_info info;
11329 
11330    if (!drawCount)
11331       return;
11332 
11333    const VkMultiDrawIndexedInfoEXT *minfo = pIndexInfo;
11334    info.indexed = true;
11335    info.count = minfo->indexCount;
11336    info.instance_count = instanceCount;
11337    info.first_instance = firstInstance;
11338    info.strmout_buffer = NULL;
11339    info.indirect = NULL;
11340 
11341    if (!radv_before_draw(cmd_buffer, &info, drawCount, false))
11342       return;
11343    radv_emit_draw_packets_indexed(cmd_buffer, &info, drawCount, pIndexInfo, stride, pVertexOffset);
11344    radv_after_draw(cmd_buffer, false);
11345 }
11346 
11347 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,uint32_t drawCount,uint32_t stride)11348 radv_CmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, uint32_t drawCount,
11349                      uint32_t stride)
11350 {
11351    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11352    VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
11353    struct radv_draw_info info;
11354 
11355    info.count = drawCount;
11356    info.indirect = buffer;
11357    info.indirect_offset = offset;
11358    info.stride = stride;
11359    info.strmout_buffer = NULL;
11360    info.count_buffer = NULL;
11361    info.indexed = false;
11362    info.instance_count = 0;
11363 
11364    if (!radv_before_draw(cmd_buffer, &info, 1, false))
11365       return;
11366    radv_emit_indirect_draw_packets(cmd_buffer, &info);
11367    radv_after_draw(cmd_buffer, false);
11368 }
11369 
11370 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,uint32_t drawCount,uint32_t stride)11371 radv_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, uint32_t drawCount,
11372                             uint32_t stride)
11373 {
11374    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11375    VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
11376    struct radv_draw_info info;
11377 
11378    info.indexed = true;
11379    info.count = drawCount;
11380    info.indirect = buffer;
11381    info.indirect_offset = offset;
11382    info.stride = stride;
11383    info.count_buffer = NULL;
11384    info.strmout_buffer = NULL;
11385    info.instance_count = 0;
11386 
11387    if (!radv_before_draw(cmd_buffer, &info, 1, false))
11388       return;
11389    radv_emit_indirect_draw_packets(cmd_buffer, &info);
11390    radv_after_draw(cmd_buffer, false);
11391 }
11392 
11393 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndirectCount(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,VkBuffer _countBuffer,VkDeviceSize countBufferOffset,uint32_t maxDrawCount,uint32_t stride)11394 radv_CmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, VkBuffer _countBuffer,
11395                           VkDeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride)
11396 {
11397    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11398    VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
11399    VK_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer);
11400    struct radv_draw_info info;
11401 
11402    info.count = maxDrawCount;
11403    info.indirect = buffer;
11404    info.indirect_offset = offset;
11405    info.count_buffer = count_buffer;
11406    info.count_buffer_offset = countBufferOffset;
11407    info.stride = stride;
11408    info.strmout_buffer = NULL;
11409    info.indexed = false;
11410    info.instance_count = 0;
11411 
11412    if (!radv_before_draw(cmd_buffer, &info, 1, false))
11413       return;
11414    radv_emit_indirect_draw_packets(cmd_buffer, &info);
11415    radv_after_draw(cmd_buffer, false);
11416 }
11417 
11418 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,VkBuffer _countBuffer,VkDeviceSize countBufferOffset,uint32_t maxDrawCount,uint32_t stride)11419 radv_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset,
11420                                  VkBuffer _countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
11421                                  uint32_t stride)
11422 {
11423    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11424    VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
11425    VK_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer);
11426    struct radv_draw_info info;
11427 
11428    info.indexed = true;
11429    info.count = maxDrawCount;
11430    info.indirect = buffer;
11431    info.indirect_offset = offset;
11432    info.count_buffer = count_buffer;
11433    info.count_buffer_offset = countBufferOffset;
11434    info.stride = stride;
11435    info.strmout_buffer = NULL;
11436    info.instance_count = 0;
11437 
11438    if (!radv_before_draw(cmd_buffer, &info, 1, false))
11439       return;
11440    radv_emit_indirect_draw_packets(cmd_buffer, &info);
11441    radv_after_draw(cmd_buffer, false);
11442 }
11443 
11444 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMeshTasksEXT(VkCommandBuffer commandBuffer,uint32_t x,uint32_t y,uint32_t z)11445 radv_CmdDrawMeshTasksEXT(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z)
11446 {
11447    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11448    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11449    struct radv_draw_info info;
11450 
11451    info.count = x * y * z;
11452    info.instance_count = 1;
11453    info.first_instance = 0;
11454    info.stride = 0;
11455    info.indexed = false;
11456    info.strmout_buffer = NULL;
11457    info.count_buffer = NULL;
11458    info.indirect = NULL;
11459 
11460    if (!radv_before_taskmesh_draw(cmd_buffer, &info, 1, false))
11461       return;
11462 
11463    if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TASK)) {
11464       radv_emit_direct_taskmesh_draw_packets(device, &cmd_buffer->state, cmd_buffer->cs, cmd_buffer->gang.cs, x, y, z);
11465    } else {
11466       radv_emit_direct_mesh_draw_packet(cmd_buffer, x, y, z);
11467    }
11468 
11469    radv_after_draw(cmd_buffer, false);
11470 }
11471 
11472 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMeshTasksIndirectEXT(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,uint32_t drawCount,uint32_t stride)11473 radv_CmdDrawMeshTasksIndirectEXT(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset,
11474                                  uint32_t drawCount, uint32_t stride)
11475 {
11476    if (!drawCount)
11477       return;
11478 
11479    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11480    VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
11481    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11482    struct radv_draw_info info;
11483 
11484    info.indirect = buffer;
11485    info.indirect_offset = offset;
11486    info.stride = stride;
11487    info.count = drawCount;
11488    info.strmout_buffer = NULL;
11489    info.count_buffer = NULL;
11490    info.indexed = false;
11491    info.instance_count = 0;
11492 
11493    if (!radv_before_taskmesh_draw(cmd_buffer, &info, drawCount, false))
11494       return;
11495 
11496    if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TASK)) {
11497       radv_emit_indirect_taskmesh_draw_packets(device, &cmd_buffer->state, cmd_buffer->cs, cmd_buffer->gang.cs, &info,
11498                                                0);
11499    } else {
11500       radv_emit_indirect_mesh_draw_packets(cmd_buffer, &info);
11501    }
11502 
11503    radv_after_draw(cmd_buffer, false);
11504 }
11505 
11506 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMeshTasksIndirectCountEXT(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,VkBuffer _countBuffer,VkDeviceSize countBufferOffset,uint32_t maxDrawCount,uint32_t stride)11507 radv_CmdDrawMeshTasksIndirectCountEXT(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset,
11508                                       VkBuffer _countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
11509                                       uint32_t stride)
11510 {
11511 
11512    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11513    VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
11514    VK_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer);
11515    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11516    const struct radv_physical_device *pdev = radv_device_physical(device);
11517    struct radv_draw_info info;
11518 
11519    info.indirect = buffer;
11520    info.indirect_offset = offset;
11521    info.stride = stride;
11522    info.count = maxDrawCount;
11523    info.strmout_buffer = NULL;
11524    info.count_buffer = count_buffer;
11525    info.count_buffer_offset = countBufferOffset;
11526    info.indexed = false;
11527    info.instance_count = 0;
11528 
11529    if (!radv_before_taskmesh_draw(cmd_buffer, &info, maxDrawCount, false))
11530       return;
11531 
11532    if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TASK)) {
11533       uint64_t workaround_cond_va = 0;
11534 
11535       if (pdev->info.has_taskmesh_indirect0_bug && info.count_buffer) {
11536          /* Allocate a 32-bit value for the MEC firmware bug workaround. */
11537          uint32_t workaround_cond_init = 0;
11538          uint32_t workaround_cond_off;
11539 
11540          if (!radv_cmd_buffer_upload_data(cmd_buffer, 4, &workaround_cond_init, &workaround_cond_off))
11541             vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
11542 
11543          workaround_cond_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + workaround_cond_off;
11544       }
11545 
11546       radv_emit_indirect_taskmesh_draw_packets(device, &cmd_buffer->state, cmd_buffer->cs, cmd_buffer->gang.cs, &info,
11547                                                workaround_cond_va);
11548    } else {
11549       radv_emit_indirect_mesh_draw_packets(cmd_buffer, &info);
11550    }
11551 
11552    radv_after_draw(cmd_buffer, false);
11553 }
11554 
11555 /* TODO: Use these functions with the normal dispatch path. */
11556 static void radv_dgc_before_dispatch(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point);
11557 static void radv_dgc_after_dispatch(struct radv_cmd_buffer *cmd_buffer);
11558 
11559 /* VK_EXT_device_generated_commands */
11560 static void
radv_dgc_execute_ib(struct radv_cmd_buffer * cmd_buffer,const VkGeneratedCommandsInfoEXT * pGeneratedCommandsInfo)11561 radv_dgc_execute_ib(struct radv_cmd_buffer *cmd_buffer, const VkGeneratedCommandsInfoEXT *pGeneratedCommandsInfo)
11562 {
11563    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11564    const VkGeneratedCommandsPipelineInfoEXT *pipeline_info =
11565       vk_find_struct_const(pGeneratedCommandsInfo->pNext, GENERATED_COMMANDS_PIPELINE_INFO_EXT);
11566    const VkGeneratedCommandsShaderInfoEXT *eso_info =
11567       vk_find_struct_const(pGeneratedCommandsInfo->pNext, GENERATED_COMMANDS_SHADER_INFO_EXT);
11568    const struct radv_shader *task_shader = radv_dgc_get_shader(pipeline_info, eso_info, MESA_SHADER_TASK);
11569    const uint32_t cmdbuf_size = radv_get_indirect_main_cmdbuf_size(pGeneratedCommandsInfo);
11570    const uint64_t ib_va = pGeneratedCommandsInfo->preprocessAddress;
11571    const uint64_t main_ib_va = ib_va + radv_get_indirect_main_cmdbuf_offset(pGeneratedCommandsInfo);
11572    const uint64_t main_trailer_va = ib_va + radv_get_indirect_main_trailer_offset(pGeneratedCommandsInfo);
11573 
11574    device->ws->cs_chain_dgc_ib(cmd_buffer->cs, main_ib_va, cmdbuf_size >> 2, main_trailer_va,
11575                                cmd_buffer->state.predicating);
11576 
11577    if (task_shader) {
11578       const uint32_t ace_cmdbuf_size = radv_get_indirect_ace_cmdbuf_size(pGeneratedCommandsInfo);
11579       const uint64_t ace_ib_va = ib_va + radv_get_indirect_ace_cmdbuf_offset(pGeneratedCommandsInfo);
11580       const uint64_t ace_trailer_va = ib_va + radv_get_indirect_ace_trailer_offset(pGeneratedCommandsInfo);
11581 
11582       assert(cmd_buffer->gang.cs);
11583       device->ws->cs_chain_dgc_ib(cmd_buffer->gang.cs, ace_ib_va, ace_cmdbuf_size >> 2, ace_trailer_va,
11584                                   cmd_buffer->state.predicating);
11585    }
11586 }
11587 
11588 VKAPI_ATTR void VKAPI_CALL
radv_CmdExecuteGeneratedCommandsEXT(VkCommandBuffer commandBuffer,VkBool32 isPreprocessed,const VkGeneratedCommandsInfoEXT * pGeneratedCommandsInfo)11589 radv_CmdExecuteGeneratedCommandsEXT(VkCommandBuffer commandBuffer, VkBool32 isPreprocessed,
11590                                     const VkGeneratedCommandsInfoEXT *pGeneratedCommandsInfo)
11591 {
11592    VK_FROM_HANDLE(radv_indirect_command_layout, layout, pGeneratedCommandsInfo->indirectCommandsLayout);
11593    VK_FROM_HANDLE(radv_indirect_execution_set, ies, pGeneratedCommandsInfo->indirectExecutionSet);
11594    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11595    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11596    const bool use_predication = radv_use_dgc_predication(cmd_buffer, pGeneratedCommandsInfo);
11597    const bool compute = !!(layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_DISPATCH));
11598    const bool rt = !!(layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_RT));
11599    const VkGeneratedCommandsPipelineInfoEXT *pipeline_info =
11600       vk_find_struct_const(pGeneratedCommandsInfo->pNext, GENERATED_COMMANDS_PIPELINE_INFO_EXT);
11601    const VkGeneratedCommandsShaderInfoEXT *eso_info =
11602       vk_find_struct_const(pGeneratedCommandsInfo->pNext, GENERATED_COMMANDS_SHADER_INFO_EXT);
11603 
11604    if (ies) {
11605       radv_cs_add_buffer(device->ws, cmd_buffer->cs, ies->bo);
11606 
11607       cmd_buffer->compute_scratch_size_per_wave_needed =
11608          MAX2(cmd_buffer->compute_scratch_size_per_wave_needed, ies->compute_scratch_size_per_wave);
11609       cmd_buffer->compute_scratch_waves_wanted =
11610          MAX2(cmd_buffer->compute_scratch_waves_wanted, ies->compute_scratch_waves);
11611    }
11612 
11613    /* Secondary command buffers are banned. */
11614    assert(cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
11615 
11616    if (use_predication) {
11617       const uint64_t va = pGeneratedCommandsInfo->sequenceCountAddress;
11618       radv_begin_conditional_rendering(cmd_buffer, va, true);
11619    }
11620 
11621    if (!(layout->vk.usage & VK_INDIRECT_COMMANDS_LAYOUT_USAGE_EXPLICIT_PREPROCESS_BIT_EXT)) {
11622       /* Suspend conditional rendering when the DGC execute is called on the compute queue to
11623        * generate a cmdbuf which will skips dispatches when necessary. This is because the compute
11624        * queue is missing IB2 which means it's not possible to skip the cmdbuf entirely. This
11625        * should also be suspended when task shaders are used because the DGC ACE IB would be
11626        * uninitialized otherwise.
11627        */
11628       const bool suspend_conditional_rendering =
11629          (cmd_buffer->qf == RADV_QUEUE_COMPUTE || radv_dgc_get_shader(pipeline_info, eso_info, MESA_SHADER_TASK));
11630       const bool old_predicating = cmd_buffer->state.predicating;
11631 
11632       if (suspend_conditional_rendering && cmd_buffer->state.predicating) {
11633          cmd_buffer->state.predicating = false;
11634       }
11635 
11636       radv_prepare_dgc(cmd_buffer, pGeneratedCommandsInfo, cmd_buffer, old_predicating);
11637 
11638       if (suspend_conditional_rendering) {
11639          cmd_buffer->state.predicating = old_predicating;
11640       }
11641 
11642       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_L2;
11643 
11644       /* Make sure the DGC ACE IB will wait for the DGC prepare shader before the execution
11645        * starts.
11646        */
11647       if (radv_dgc_get_shader(pipeline_info, eso_info, MESA_SHADER_TASK)) {
11648          radv_gang_barrier(cmd_buffer, VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV,
11649                            VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT);
11650       }
11651    }
11652 
11653    if (rt) {
11654       radv_dgc_before_dispatch(cmd_buffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
11655    } else if (compute) {
11656       radv_dgc_before_dispatch(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE);
11657    } else {
11658       struct radv_draw_info info = {
11659          .count = pGeneratedCommandsInfo->maxSequenceCount,
11660          .indirect = (void *)&info,
11661          .indexed = !!(layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_DRAW_INDEXED)),
11662       };
11663 
11664       if (layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_DRAW_MESH)) {
11665          if (!radv_before_taskmesh_draw(cmd_buffer, &info, 1, true))
11666             return;
11667       } else {
11668          if (!radv_before_draw(cmd_buffer, &info, 1, true))
11669             return;
11670       }
11671    }
11672 
11673    if (!radv_cmd_buffer_uses_mec(cmd_buffer)) {
11674       radeon_emit(cmd_buffer->cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
11675       radeon_emit(cmd_buffer->cs, 0);
11676    }
11677 
11678    const uint32_t view_mask = cmd_buffer->state.render.view_mask;
11679    if (rt || compute || !view_mask) {
11680       radv_dgc_execute_ib(cmd_buffer, pGeneratedCommandsInfo);
11681    } else {
11682       u_foreach_bit (view, view_mask) {
11683          radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
11684          radv_dgc_execute_ib(cmd_buffer, pGeneratedCommandsInfo);
11685       }
11686    }
11687 
11688    if (rt) {
11689       cmd_buffer->push_constant_stages |= RADV_RT_STAGE_BITS;
11690 
11691       radv_dgc_after_dispatch(cmd_buffer);
11692    } else if (compute) {
11693       cmd_buffer->push_constant_stages |= VK_SHADER_STAGE_COMPUTE_BIT;
11694 
11695       if (ies)
11696          radv_mark_descriptor_sets_dirty(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE);
11697 
11698       radv_dgc_after_dispatch(cmd_buffer);
11699    } else {
11700       if (layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_IB)) {
11701          cmd_buffer->state.last_index_type = -1;
11702          cmd_buffer->state.dirty |= RADV_CMD_DIRTY_INDEX_BUFFER;
11703       }
11704 
11705       if (layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_VB))
11706          cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER;
11707 
11708       if (pipeline_info) {
11709          VK_FROM_HANDLE(radv_pipeline, pipeline, pipeline_info->pipeline);
11710          struct radv_graphics_pipeline *graphics_pipeline = radv_pipeline_to_graphics(pipeline);
11711 
11712          cmd_buffer->push_constant_stages |= graphics_pipeline->active_stages;
11713       } else {
11714          assert(eso_info);
11715 
11716          for (unsigned i = 0; i < eso_info->shaderCount; ++i) {
11717             VK_FROM_HANDLE(radv_shader_object, shader_object, eso_info->pShaders[i]);
11718 
11719             cmd_buffer->push_constant_stages |= mesa_to_vk_shader_stage(shader_object->stage);
11720          }
11721       }
11722 
11723       if (!(layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_DRAW_INDEXED))) {
11724          /* Non-indexed draws overwrite VGT_INDEX_TYPE, so the state must be
11725           * re-emitted before the next indexed draw.
11726           */
11727          cmd_buffer->state.last_index_type = -1;
11728       }
11729 
11730       cmd_buffer->state.last_num_instances = -1;
11731       cmd_buffer->state.last_vertex_offset_valid = false;
11732       cmd_buffer->state.last_first_instance = -1;
11733       cmd_buffer->state.last_drawid = -1;
11734 
11735       radv_after_draw(cmd_buffer, true);
11736    }
11737 
11738    if (use_predication) {
11739       radv_end_conditional_rendering(cmd_buffer);
11740    }
11741 }
11742 
11743 static void
radv_save_dispatch_size(struct radv_cmd_buffer * cmd_buffer,uint64_t indirect_va)11744 radv_save_dispatch_size(struct radv_cmd_buffer *cmd_buffer, uint64_t indirect_va)
11745 {
11746    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11747 
11748    struct radeon_cmdbuf *cs = cmd_buffer->cs;
11749    radeon_check_space(device->ws, cs, 18);
11750 
11751    uint64_t va = radv_buffer_get_va(device->trace_bo) + offsetof(struct radv_trace_data, indirect_dispatch);
11752 
11753    for (uint32_t i = 0; i < 3; i++) {
11754       radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
11755       radeon_emit(cs,
11756                   COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
11757       radeon_emit(cs, indirect_va);
11758       radeon_emit(cs, indirect_va >> 32);
11759       radeon_emit(cs, va);
11760       radeon_emit(cs, va >> 32);
11761 
11762       indirect_va += 4;
11763       va += 4;
11764    }
11765 }
11766 
11767 static void
radv_emit_dispatch_packets(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * compute_shader,const struct radv_dispatch_info * info)11768 radv_emit_dispatch_packets(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *compute_shader,
11769                            const struct radv_dispatch_info *info)
11770 {
11771    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11772    const struct radv_physical_device *pdev = radv_device_physical(device);
11773    unsigned dispatch_initiator = device->dispatch_initiator;
11774    struct radeon_winsys *ws = device->ws;
11775    bool predicating = cmd_buffer->state.predicating;
11776    struct radeon_cmdbuf *cs = cmd_buffer->cs;
11777    const uint32_t grid_size_offset = radv_get_user_sgpr_loc(compute_shader, AC_UD_CS_GRID_SIZE);
11778 
11779    radv_describe_dispatch(cmd_buffer, info);
11780 
11781    ASSERTED unsigned cdw_max = radeon_check_space(ws, cs, 30);
11782 
11783    if (compute_shader->info.wave_size == 32) {
11784       assert(pdev->info.gfx_level >= GFX10);
11785       dispatch_initiator |= S_00B800_CS_W32_EN(1);
11786    }
11787 
11788    if (info->ordered)
11789       dispatch_initiator &= ~S_00B800_ORDER_MODE(1);
11790 
11791    if (info->va) {
11792       if (radv_device_fault_detection_enabled(device))
11793          radv_save_dispatch_size(cmd_buffer, info->va);
11794 
11795       if (info->indirect)
11796          radv_cs_add_buffer(ws, cs, info->indirect);
11797 
11798       if (info->unaligned) {
11799          radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
11800          if (pdev->info.gfx_level >= GFX12) {
11801             radeon_emit(cs, S_00B81C_NUM_THREAD_FULL_GFX12(compute_shader->info.cs.block_size[0]));
11802             radeon_emit(cs, S_00B820_NUM_THREAD_FULL_GFX12(compute_shader->info.cs.block_size[1]));
11803          } else {
11804             radeon_emit(cs, S_00B81C_NUM_THREAD_FULL_GFX6(compute_shader->info.cs.block_size[0]));
11805             radeon_emit(cs, S_00B820_NUM_THREAD_FULL_GFX6(compute_shader->info.cs.block_size[1]));
11806          }
11807          radeon_emit(cs, S_00B824_NUM_THREAD_FULL(compute_shader->info.cs.block_size[2]));
11808 
11809          dispatch_initiator |= S_00B800_USE_THREAD_DIMENSIONS(1);
11810       }
11811 
11812       /* Indirect CS does not support offsets in the API. Must program this in case there have been
11813        * preceding 1D RT dispatch or vkCmdDispatchBase. */
11814       dispatch_initiator |= S_00B800_FORCE_START_AT_000(1);
11815 
11816       if (grid_size_offset) {
11817          if (device->load_grid_size_from_user_sgpr) {
11818             assert(pdev->info.gfx_level >= GFX10_3);
11819             radeon_emit(cs, PKT3(PKT3_LOAD_SH_REG_INDEX, 3, 0));
11820             radeon_emit(cs, info->va);
11821             radeon_emit(cs, info->va >> 32);
11822             radeon_emit(cs, (grid_size_offset - SI_SH_REG_OFFSET) >> 2);
11823             radeon_emit(cs, 3);
11824          } else {
11825             radv_emit_shader_pointer(device, cmd_buffer->cs, grid_size_offset, info->va, true);
11826          }
11827       }
11828 
11829       if (radv_cmd_buffer_uses_mec(cmd_buffer)) {
11830          uint64_t indirect_va = info->va;
11831          const bool needs_align32_workaround = pdev->info.has_async_compute_align32_bug &&
11832                                                cmd_buffer->qf == RADV_QUEUE_COMPUTE &&
11833                                                !util_is_aligned(indirect_va, 32);
11834          const unsigned ace_predication_size =
11835             4 /* DISPATCH_INDIRECT */ + (needs_align32_workaround ? 6 * 3 /* 3x COPY_DATA */ : 0);
11836 
11837          radv_cs_emit_compute_predication(device, &cmd_buffer->state, cs, cmd_buffer->state.mec_inv_pred_va,
11838                                           &cmd_buffer->state.mec_inv_pred_emitted, ace_predication_size);
11839 
11840          if (needs_align32_workaround) {
11841             const uint64_t unaligned_va = indirect_va;
11842             UNUSED void *ptr;
11843             uint32_t offset;
11844 
11845             if (!radv_cmd_buffer_upload_alloc_aligned(cmd_buffer, sizeof(VkDispatchIndirectCommand), 32, &offset, &ptr))
11846                return;
11847 
11848             indirect_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset;
11849 
11850             for (uint32_t i = 0; i < 3; i++) {
11851                const uint64_t src_va = unaligned_va + i * 4;
11852                const uint64_t dst_va = indirect_va + i * 4;
11853 
11854                radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
11855                radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
11856                                   COPY_DATA_WR_CONFIRM);
11857                radeon_emit(cs, src_va);
11858                radeon_emit(cs, src_va >> 32);
11859                radeon_emit(cs, dst_va);
11860                radeon_emit(cs, dst_va >> 32);
11861             }
11862          }
11863 
11864          radeon_emit(cs, PKT3(PKT3_DISPATCH_INDIRECT, 2, 0) | PKT3_SHADER_TYPE_S(1));
11865          radeon_emit(cs, indirect_va);
11866          radeon_emit(cs, indirect_va >> 32);
11867          radeon_emit(cs, dispatch_initiator);
11868       } else {
11869          radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0) | PKT3_SHADER_TYPE_S(1));
11870          radeon_emit(cs, 1);
11871          radeon_emit(cs, info->va);
11872          radeon_emit(cs, info->va >> 32);
11873 
11874          if (cmd_buffer->qf == RADV_QUEUE_COMPUTE) {
11875             radv_cs_emit_compute_predication(device, &cmd_buffer->state, cs, cmd_buffer->state.mec_inv_pred_va,
11876                                              &cmd_buffer->state.mec_inv_pred_emitted, 3 /* PKT3_DISPATCH_INDIRECT */);
11877             predicating = false;
11878          }
11879 
11880          radeon_emit(cs, PKT3(PKT3_DISPATCH_INDIRECT, 1, predicating) | PKT3_SHADER_TYPE_S(1));
11881          radeon_emit(cs, 0);
11882          radeon_emit(cs, dispatch_initiator);
11883       }
11884    } else {
11885       const unsigned *cs_block_size = compute_shader->info.cs.block_size;
11886       unsigned blocks[3] = {info->blocks[0], info->blocks[1], info->blocks[2]};
11887       unsigned offsets[3] = {info->offsets[0], info->offsets[1], info->offsets[2]};
11888 
11889       if (info->unaligned) {
11890          unsigned remainder[3];
11891 
11892          /* If aligned, these should be an entire block size,
11893           * not 0.
11894           */
11895          remainder[0] = blocks[0] + cs_block_size[0] - ALIGN_NPOT(blocks[0], cs_block_size[0]);
11896          remainder[1] = blocks[1] + cs_block_size[1] - ALIGN_NPOT(blocks[1], cs_block_size[1]);
11897          remainder[2] = blocks[2] + cs_block_size[2] - ALIGN_NPOT(blocks[2], cs_block_size[2]);
11898 
11899          blocks[0] = DIV_ROUND_UP(blocks[0], cs_block_size[0]);
11900          blocks[1] = DIV_ROUND_UP(blocks[1], cs_block_size[1]);
11901          blocks[2] = DIV_ROUND_UP(blocks[2], cs_block_size[2]);
11902 
11903          for (unsigned i = 0; i < 3; ++i) {
11904             assert(offsets[i] % cs_block_size[i] == 0);
11905             offsets[i] /= cs_block_size[i];
11906          }
11907 
11908          radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
11909          if (pdev->info.gfx_level >= GFX12) {
11910             radeon_emit(cs,
11911                         S_00B81C_NUM_THREAD_FULL_GFX12(cs_block_size[0]) | S_00B81C_NUM_THREAD_PARTIAL(remainder[0]));
11912             radeon_emit(cs,
11913                         S_00B820_NUM_THREAD_FULL_GFX12(cs_block_size[1]) | S_00B820_NUM_THREAD_PARTIAL(remainder[1]));
11914          } else {
11915             radeon_emit(cs,
11916                         S_00B81C_NUM_THREAD_FULL_GFX6(cs_block_size[0]) | S_00B81C_NUM_THREAD_PARTIAL(remainder[0]));
11917             radeon_emit(cs,
11918                         S_00B820_NUM_THREAD_FULL_GFX6(cs_block_size[1]) | S_00B820_NUM_THREAD_PARTIAL(remainder[1]));
11919          }
11920          radeon_emit(cs, S_00B824_NUM_THREAD_FULL(cs_block_size[2]) | S_00B824_NUM_THREAD_PARTIAL(remainder[2]));
11921 
11922          dispatch_initiator |= S_00B800_PARTIAL_TG_EN(1);
11923       }
11924 
11925       if (grid_size_offset) {
11926          if (device->load_grid_size_from_user_sgpr) {
11927             radeon_set_sh_reg_seq(cs, grid_size_offset, 3);
11928             radeon_emit(cs, blocks[0]);
11929             radeon_emit(cs, blocks[1]);
11930             radeon_emit(cs, blocks[2]);
11931          } else {
11932             uint32_t offset;
11933             if (!radv_cmd_buffer_upload_data(cmd_buffer, 12, blocks, &offset))
11934                return;
11935 
11936             uint64_t va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset;
11937             radv_emit_shader_pointer(device, cmd_buffer->cs, grid_size_offset, va, true);
11938          }
11939       }
11940 
11941       if (offsets[0] || offsets[1] || offsets[2]) {
11942          radeon_set_sh_reg_seq(cs, R_00B810_COMPUTE_START_X, 3);
11943          radeon_emit(cs, offsets[0]);
11944          radeon_emit(cs, offsets[1]);
11945          radeon_emit(cs, offsets[2]);
11946 
11947          /* The blocks in the packet are not counts but end values. */
11948          for (unsigned i = 0; i < 3; ++i)
11949             blocks[i] += offsets[i];
11950       } else {
11951          dispatch_initiator |= S_00B800_FORCE_START_AT_000(1);
11952       }
11953 
11954       if (cmd_buffer->qf == RADV_QUEUE_COMPUTE) {
11955          radv_cs_emit_compute_predication(device, &cmd_buffer->state, cs, cmd_buffer->state.mec_inv_pred_va,
11956                                           &cmd_buffer->state.mec_inv_pred_emitted, 5 /* DISPATCH_DIRECT size */);
11957          predicating = false;
11958       }
11959 
11960       if (pdev->info.has_async_compute_threadgroup_bug && cmd_buffer->qf == RADV_QUEUE_COMPUTE) {
11961          for (unsigned i = 0; i < 3; i++) {
11962             if (info->unaligned) {
11963                /* info->blocks is already in thread dimensions for unaligned dispatches. */
11964                blocks[i] = info->blocks[i];
11965             } else {
11966                /* Force the async compute dispatch to be in "thread" dim mode to workaround a hw bug. */
11967                blocks[i] *= cs_block_size[i];
11968             }
11969 
11970             dispatch_initiator |= S_00B800_USE_THREAD_DIMENSIONS(1);
11971          }
11972       }
11973 
11974       radeon_emit(cs, PKT3(PKT3_DISPATCH_DIRECT, 3, predicating) | PKT3_SHADER_TYPE_S(1));
11975       radeon_emit(cs, blocks[0]);
11976       radeon_emit(cs, blocks[1]);
11977       radeon_emit(cs, blocks[2]);
11978       radeon_emit(cs, dispatch_initiator);
11979    }
11980 
11981    assert(cmd_buffer->cs->cdw <= cdw_max);
11982 }
11983 
11984 static void
radv_upload_compute_shader_descriptors(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint bind_point)11985 radv_upload_compute_shader_descriptors(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
11986 {
11987    radv_flush_descriptors(cmd_buffer, VK_SHADER_STAGE_COMPUTE_BIT, bind_point);
11988    const VkShaderStageFlags stages =
11989       bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR ? RADV_RT_STAGE_BITS : VK_SHADER_STAGE_COMPUTE_BIT;
11990    const VkShaderStageFlags pc_stages = radv_must_flush_constants(cmd_buffer, stages, bind_point);
11991    if (pc_stages)
11992       radv_flush_constants(cmd_buffer, pc_stages, bind_point);
11993 }
11994 
11995 static void
radv_emit_rt_stack_size(struct radv_cmd_buffer * cmd_buffer)11996 radv_emit_rt_stack_size(struct radv_cmd_buffer *cmd_buffer)
11997 {
11998    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11999    const struct radv_physical_device *pdev = radv_device_physical(device);
12000    const struct radv_shader *rt_prolog = cmd_buffer->state.rt_prolog;
12001    unsigned rsrc2 = rt_prolog->config.rsrc2;
12002 
12003    /* Reserve scratch for stacks manually since it is not handled by the compute path. */
12004    uint32_t scratch_bytes_per_wave = rt_prolog->config.scratch_bytes_per_wave;
12005    const uint32_t wave_size = rt_prolog->info.wave_size;
12006 
12007    /* The hardware register is specified as a multiple of 64 or 256 DWORDS. */
12008    const unsigned scratch_alloc_granule = pdev->info.gfx_level >= GFX11 ? 256 : 1024;
12009 
12010    scratch_bytes_per_wave += align(cmd_buffer->state.rt_stack_size * wave_size, scratch_alloc_granule);
12011 
12012    cmd_buffer->compute_scratch_size_per_wave_needed =
12013       MAX2(cmd_buffer->compute_scratch_size_per_wave_needed, scratch_bytes_per_wave);
12014 
12015    if (cmd_buffer->state.rt_stack_size)
12016       rsrc2 |= S_00B12C_SCRATCH_EN(1);
12017 
12018    radeon_check_space(device->ws, cmd_buffer->cs, 3);
12019    radeon_set_sh_reg(cmd_buffer->cs, rt_prolog->info.regs.pgm_rsrc2, rsrc2);
12020 }
12021 
12022 static void
radv_dispatch(struct radv_cmd_buffer * cmd_buffer,const struct radv_dispatch_info * info,struct radv_compute_pipeline * pipeline,struct radv_shader * compute_shader,VkPipelineBindPoint bind_point)12023 radv_dispatch(struct radv_cmd_buffer *cmd_buffer, const struct radv_dispatch_info *info,
12024               struct radv_compute_pipeline *pipeline, struct radv_shader *compute_shader,
12025               VkPipelineBindPoint bind_point)
12026 {
12027    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12028    const struct radv_physical_device *pdev = radv_device_physical(device);
12029    bool has_prefetch = pdev->info.gfx_level >= GFX7;
12030    bool pipeline_is_dirty = pipeline != cmd_buffer->state.emitted_compute_pipeline;
12031 
12032    if (compute_shader->info.cs.regalloc_hang_bug)
12033       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
12034 
12035    if (cmd_buffer->state.flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB |
12036                                        RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH)) {
12037       /* If we have to wait for idle, set all states first, so that
12038        * all SET packets are processed in parallel with previous draw
12039        * calls. Then upload descriptors, set shader pointers, and
12040        * dispatch, and prefetch at the end. This ensures that the
12041        * time the CUs are idle is very short. (there are only SET_SH
12042        * packets between the wait and the draw)
12043        */
12044       radv_emit_compute_pipeline(cmd_buffer, pipeline);
12045       if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR)
12046          radv_emit_rt_stack_size(cmd_buffer);
12047       radv_emit_cache_flush(cmd_buffer);
12048       /* <-- CUs are idle here --> */
12049 
12050       radv_upload_compute_shader_descriptors(cmd_buffer, bind_point);
12051 
12052       radv_emit_dispatch_packets(cmd_buffer, compute_shader, info);
12053       /* <-- CUs are busy here --> */
12054 
12055       /* Start prefetches after the dispatch has been started. Both
12056        * will run in parallel, but starting the dispatch first is
12057        * more important.
12058        */
12059       if (has_prefetch && pipeline_is_dirty) {
12060          radv_emit_shader_prefetch(cmd_buffer, compute_shader);
12061       }
12062    } else {
12063       /* If we don't wait for idle, start prefetches first, then set
12064        * states, and dispatch at the end.
12065        */
12066       radv_emit_cache_flush(cmd_buffer);
12067 
12068       if (has_prefetch && pipeline_is_dirty) {
12069          radv_emit_shader_prefetch(cmd_buffer, compute_shader);
12070       }
12071 
12072       radv_upload_compute_shader_descriptors(cmd_buffer, bind_point);
12073 
12074       radv_emit_compute_pipeline(cmd_buffer, pipeline);
12075       if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR)
12076          radv_emit_rt_stack_size(cmd_buffer);
12077       radv_emit_dispatch_packets(cmd_buffer, compute_shader, info);
12078    }
12079 
12080    if (pipeline_is_dirty) {
12081       /* Raytracing uses compute shaders but has separate bind points and pipelines.
12082        * So if we set compute userdata & shader registers we should dirty the raytracing
12083        * ones and the other way around.
12084        *
12085        * We only need to do this when the pipeline is dirty because when we switch between
12086        * the two we always need to switch pipelines.
12087        */
12088       radv_mark_descriptor_sets_dirty(cmd_buffer, bind_point == VK_PIPELINE_BIND_POINT_COMPUTE
12089                                                      ? VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR
12090                                                      : VK_PIPELINE_BIND_POINT_COMPUTE);
12091    }
12092 
12093    if (compute_shader->info.cs.regalloc_hang_bug)
12094       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
12095 
12096    radv_cmd_buffer_after_draw(cmd_buffer, RADV_CMD_FLAG_CS_PARTIAL_FLUSH, false);
12097 }
12098 
12099 static void
radv_dgc_before_dispatch(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint bind_point)12100 radv_dgc_before_dispatch(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
12101 {
12102    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12103    const struct radv_physical_device *pdev = radv_device_physical(device);
12104    struct radv_compute_pipeline *pipeline = bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR
12105                                                ? &cmd_buffer->state.rt_pipeline->base
12106                                                : cmd_buffer->state.compute_pipeline;
12107    struct radv_shader *compute_shader = bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR
12108                                            ? cmd_buffer->state.rt_pipeline->prolog
12109                                            : cmd_buffer->state.shaders[MESA_SHADER_COMPUTE];
12110    bool pipeline_is_dirty = pipeline != cmd_buffer->state.emitted_compute_pipeline;
12111 
12112    /* We will have run the DGC patch shaders before, so we can assume that there is something to
12113     * flush. Otherwise, we just split radv_dispatch in two. One pre-dispatch and another one
12114     * post-dispatch. */
12115 
12116    if (compute_shader->info.cs.regalloc_hang_bug)
12117       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
12118 
12119    if (pipeline)
12120       radv_emit_compute_pipeline(cmd_buffer, pipeline);
12121    if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR)
12122       radv_emit_rt_stack_size(cmd_buffer);
12123    radv_emit_cache_flush(cmd_buffer);
12124 
12125    radv_upload_compute_shader_descriptors(cmd_buffer, bind_point);
12126 
12127    if (pipeline_is_dirty) {
12128       const bool has_prefetch = pdev->info.gfx_level >= GFX7;
12129 
12130       if (has_prefetch)
12131          radv_emit_shader_prefetch(cmd_buffer, compute_shader);
12132 
12133       /* Raytracing uses compute shaders but has separate bind points and pipelines.
12134        * So if we set compute userdata & shader registers we should dirty the raytracing
12135        * ones and the other way around.
12136        *
12137        * We only need to do this when the pipeline is dirty because when we switch between
12138        * the two we always need to switch pipelines.
12139        */
12140       radv_mark_descriptor_sets_dirty(cmd_buffer, bind_point == VK_PIPELINE_BIND_POINT_COMPUTE
12141                                                      ? VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR
12142                                                      : VK_PIPELINE_BIND_POINT_COMPUTE);
12143    }
12144 }
12145 
12146 static void
radv_dgc_after_dispatch(struct radv_cmd_buffer * cmd_buffer)12147 radv_dgc_after_dispatch(struct radv_cmd_buffer *cmd_buffer)
12148 {
12149    struct radv_shader *compute_shader = cmd_buffer->state.shaders[MESA_SHADER_COMPUTE];
12150 
12151    if (compute_shader->info.cs.regalloc_hang_bug)
12152       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
12153 
12154    radv_cmd_buffer_after_draw(cmd_buffer, RADV_CMD_FLAG_CS_PARTIAL_FLUSH, true);
12155 }
12156 
12157 void
radv_compute_dispatch(struct radv_cmd_buffer * cmd_buffer,const struct radv_dispatch_info * info)12158 radv_compute_dispatch(struct radv_cmd_buffer *cmd_buffer, const struct radv_dispatch_info *info)
12159 {
12160    radv_dispatch(cmd_buffer, info, cmd_buffer->state.compute_pipeline, cmd_buffer->state.shaders[MESA_SHADER_COMPUTE],
12161                  VK_PIPELINE_BIND_POINT_COMPUTE);
12162 }
12163 
12164 VKAPI_ATTR void VKAPI_CALL
radv_CmdDispatchBase(VkCommandBuffer commandBuffer,uint32_t base_x,uint32_t base_y,uint32_t base_z,uint32_t x,uint32_t y,uint32_t z)12165 radv_CmdDispatchBase(VkCommandBuffer commandBuffer, uint32_t base_x, uint32_t base_y, uint32_t base_z, uint32_t x,
12166                      uint32_t y, uint32_t z)
12167 {
12168    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12169    struct radv_dispatch_info info = {0};
12170 
12171    info.blocks[0] = x;
12172    info.blocks[1] = y;
12173    info.blocks[2] = z;
12174 
12175    info.offsets[0] = base_x;
12176    info.offsets[1] = base_y;
12177    info.offsets[2] = base_z;
12178    radv_compute_dispatch(cmd_buffer, &info);
12179 }
12180 
12181 VKAPI_ATTR void VKAPI_CALL
radv_CmdDispatchIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset)12182 radv_CmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset)
12183 {
12184    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12185    VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
12186    struct radv_dispatch_info info = {0};
12187 
12188    info.indirect = buffer->bo;
12189    info.va = radv_buffer_get_va(buffer->bo) + buffer->offset + offset;
12190 
12191    radv_compute_dispatch(cmd_buffer, &info);
12192 }
12193 
12194 void
radv_unaligned_dispatch(struct radv_cmd_buffer * cmd_buffer,uint32_t x,uint32_t y,uint32_t z)12195 radv_unaligned_dispatch(struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y, uint32_t z)
12196 {
12197    struct radv_dispatch_info info = {0};
12198 
12199    info.blocks[0] = x;
12200    info.blocks[1] = y;
12201    info.blocks[2] = z;
12202    info.unaligned = 1;
12203 
12204    radv_compute_dispatch(cmd_buffer, &info);
12205 }
12206 
12207 void
radv_indirect_dispatch(struct radv_cmd_buffer * cmd_buffer,struct radeon_winsys_bo * bo,uint64_t va)12208 radv_indirect_dispatch(struct radv_cmd_buffer *cmd_buffer, struct radeon_winsys_bo *bo, uint64_t va)
12209 {
12210    struct radv_dispatch_info info = {0};
12211 
12212    info.indirect = bo;
12213    info.va = va;
12214 
12215    radv_compute_dispatch(cmd_buffer, &info);
12216 }
12217 
12218 static void
radv_trace_trace_rays(struct radv_cmd_buffer * cmd_buffer,const VkTraceRaysIndirectCommand2KHR * cmd,uint64_t indirect_va)12219 radv_trace_trace_rays(struct radv_cmd_buffer *cmd_buffer, const VkTraceRaysIndirectCommand2KHR *cmd,
12220                       uint64_t indirect_va)
12221 {
12222    if (!cmd || indirect_va)
12223       return;
12224 
12225    struct radv_rra_ray_history_data *data = malloc(sizeof(struct radv_rra_ray_history_data));
12226    if (!data)
12227       return;
12228 
12229    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12230    uint32_t width = DIV_ROUND_UP(cmd->width, device->rra_trace.ray_history_resolution_scale);
12231    uint32_t height = DIV_ROUND_UP(cmd->height, device->rra_trace.ray_history_resolution_scale);
12232    uint32_t depth = DIV_ROUND_UP(cmd->depth, device->rra_trace.ray_history_resolution_scale);
12233 
12234    struct radv_rra_ray_history_counter counter = {
12235       .dispatch_size = {width, height, depth},
12236       .hit_shader_count = cmd->hitShaderBindingTableSize / cmd->hitShaderBindingTableStride,
12237       .miss_shader_count = cmd->missShaderBindingTableSize / cmd->missShaderBindingTableStride,
12238       .shader_count = cmd_buffer->state.rt_pipeline->stage_count,
12239       .pipeline_api_hash = cmd_buffer->state.rt_pipeline->base.base.pipeline_hash,
12240       .mode = 1,
12241       .stride = sizeof(uint32_t),
12242       .data_size = 0,
12243       .ray_id_begin = 0,
12244       .ray_id_end = 0xFFFFFFFF,
12245       .pipeline_type = RADV_RRA_PIPELINE_RAY_TRACING,
12246    };
12247 
12248    struct radv_rra_ray_history_dispatch_size dispatch_size = {
12249       .size = {width, height, depth},
12250    };
12251 
12252    struct radv_rra_ray_history_traversal_flags traversal_flags = {0};
12253 
12254    data->metadata = (struct radv_rra_ray_history_metadata){
12255       .counter_info.type = RADV_RRA_COUNTER_INFO,
12256       .counter_info.size = sizeof(struct radv_rra_ray_history_counter),
12257       .counter = counter,
12258 
12259       .dispatch_size_info.type = RADV_RRA_DISPATCH_SIZE,
12260       .dispatch_size_info.size = sizeof(struct radv_rra_ray_history_dispatch_size),
12261       .dispatch_size = dispatch_size,
12262 
12263       .traversal_flags_info.type = RADV_RRA_TRAVERSAL_FLAGS,
12264       .traversal_flags_info.size = sizeof(struct radv_rra_ray_history_traversal_flags),
12265       .traversal_flags = traversal_flags,
12266    };
12267 
12268    uint32_t dispatch_index = util_dynarray_num_elements(&cmd_buffer->ray_history, struct radv_rra_ray_history_data *)
12269                              << 16;
12270 
12271    util_dynarray_append(&cmd_buffer->ray_history, struct radv_rra_ray_history_data *, data);
12272 
12273    cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_INV_SCACHE | RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
12274                                    radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
12275                                                          VK_ACCESS_2_SHADER_WRITE_BIT, 0, NULL, NULL) |
12276                                    radv_dst_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
12277                                                          VK_ACCESS_2_SHADER_READ_BIT, 0, NULL, NULL);
12278 
12279    radv_update_buffer_cp(cmd_buffer,
12280                          device->rra_trace.ray_history_addr + offsetof(struct radv_ray_history_header, dispatch_index),
12281                          &dispatch_index, sizeof(dispatch_index));
12282 }
12283 
12284 enum radv_rt_mode {
12285    radv_rt_mode_direct,
12286    radv_rt_mode_indirect,
12287    radv_rt_mode_indirect2,
12288 };
12289 
12290 static void
radv_upload_trace_rays_params(struct radv_cmd_buffer * cmd_buffer,VkTraceRaysIndirectCommand2KHR * tables,enum radv_rt_mode mode,uint64_t * launch_size_va,uint64_t * sbt_va)12291 radv_upload_trace_rays_params(struct radv_cmd_buffer *cmd_buffer, VkTraceRaysIndirectCommand2KHR *tables,
12292                               enum radv_rt_mode mode, uint64_t *launch_size_va, uint64_t *sbt_va)
12293 {
12294    uint32_t upload_size = mode == radv_rt_mode_direct ? sizeof(VkTraceRaysIndirectCommand2KHR)
12295                                                       : offsetof(VkTraceRaysIndirectCommand2KHR, width);
12296 
12297    uint32_t offset;
12298    if (!radv_cmd_buffer_upload_data(cmd_buffer, upload_size, tables, &offset))
12299       return;
12300 
12301    uint64_t upload_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset;
12302 
12303    if (mode == radv_rt_mode_direct)
12304       *launch_size_va = upload_va + offsetof(VkTraceRaysIndirectCommand2KHR, width);
12305    if (sbt_va)
12306       *sbt_va = upload_va;
12307 }
12308 
12309 static void
radv_trace_rays(struct radv_cmd_buffer * cmd_buffer,VkTraceRaysIndirectCommand2KHR * tables,uint64_t indirect_va,enum radv_rt_mode mode)12310 radv_trace_rays(struct radv_cmd_buffer *cmd_buffer, VkTraceRaysIndirectCommand2KHR *tables, uint64_t indirect_va,
12311                 enum radv_rt_mode mode)
12312 {
12313    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12314    const struct radv_physical_device *pdev = radv_device_physical(device);
12315    const struct radv_instance *instance = radv_physical_device_instance(pdev);
12316 
12317    if (instance->debug_flags & RADV_DEBUG_NO_RT)
12318       return;
12319 
12320    if (unlikely(device->rra_trace.ray_history_buffer))
12321       radv_trace_trace_rays(cmd_buffer, tables, indirect_va);
12322 
12323    struct radv_compute_pipeline *pipeline = &cmd_buffer->state.rt_pipeline->base;
12324    struct radv_shader *rt_prolog = cmd_buffer->state.rt_prolog;
12325 
12326    /* Since the workgroup size is 8x4 (or 8x8), 1D dispatches can only fill 8 threads per wave at most. To increase
12327     * occupancy, it's beneficial to convert to a 2D dispatch in these cases. */
12328    if (tables && tables->height == 1 && tables->width >= cmd_buffer->state.rt_prolog->info.cs.block_size[0])
12329       tables->height = ACO_RT_CONVERTED_2D_LAUNCH_SIZE;
12330 
12331    struct radv_dispatch_info info = {0};
12332    info.unaligned = true;
12333 
12334    uint64_t launch_size_va = 0;
12335    uint64_t sbt_va = 0;
12336 
12337    if (mode != radv_rt_mode_indirect2) {
12338       launch_size_va = indirect_va;
12339       radv_upload_trace_rays_params(cmd_buffer, tables, mode, &launch_size_va, &sbt_va);
12340    } else {
12341       launch_size_va = indirect_va + offsetof(VkTraceRaysIndirectCommand2KHR, width);
12342       sbt_va = indirect_va;
12343    }
12344 
12345    uint32_t remaining_ray_count = 0;
12346 
12347    if (mode == radv_rt_mode_direct) {
12348       info.blocks[0] = tables->width;
12349       info.blocks[1] = tables->height;
12350       info.blocks[2] = tables->depth;
12351 
12352       if (tables->height == ACO_RT_CONVERTED_2D_LAUNCH_SIZE) {
12353          /* We need the ray count for the 2D dispatch to be a multiple of the y block size for the division to work, and
12354           * a multiple of the x block size because the invocation offset must be a multiple of the block size when
12355           * dispatching the remaining rays. Fortunately, the x block size is itself a multiple of the y block size, so
12356           * we only need to ensure that the ray count is a multiple of the x block size. */
12357          remaining_ray_count = tables->width % rt_prolog->info.cs.block_size[0];
12358 
12359          uint32_t ray_count = tables->width - remaining_ray_count;
12360          info.blocks[0] = ray_count / rt_prolog->info.cs.block_size[1];
12361          info.blocks[1] = rt_prolog->info.cs.block_size[1];
12362       }
12363    } else
12364       info.va = launch_size_va;
12365 
12366    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 15);
12367 
12368    const uint32_t sbt_descriptors_offset = radv_get_user_sgpr_loc(rt_prolog, AC_UD_CS_SBT_DESCRIPTORS);
12369    if (sbt_descriptors_offset) {
12370       radv_emit_shader_pointer(device, cmd_buffer->cs, sbt_descriptors_offset, sbt_va, true);
12371    }
12372 
12373    const uint32_t ray_launch_size_addr_offset = radv_get_user_sgpr_loc(rt_prolog, AC_UD_CS_RAY_LAUNCH_SIZE_ADDR);
12374    if (ray_launch_size_addr_offset) {
12375       radv_emit_shader_pointer(device, cmd_buffer->cs, ray_launch_size_addr_offset, launch_size_va, true);
12376    }
12377 
12378    assert(cmd_buffer->cs->cdw <= cdw_max);
12379 
12380    radv_dispatch(cmd_buffer, &info, pipeline, rt_prolog, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
12381 
12382    if (remaining_ray_count) {
12383       info.blocks[0] = remaining_ray_count;
12384       info.blocks[1] = 1;
12385       info.offsets[0] = tables->width - remaining_ray_count;
12386 
12387       /* Reset the ray launch size so the prolog doesn't think this is a converted dispatch */
12388       tables->height = 1;
12389       radv_upload_trace_rays_params(cmd_buffer, tables, mode, &launch_size_va, NULL);
12390       if (ray_launch_size_addr_offset) {
12391          radv_emit_shader_pointer(device, cmd_buffer->cs, ray_launch_size_addr_offset, launch_size_va, true);
12392       }
12393 
12394       radv_dispatch(cmd_buffer, &info, pipeline, rt_prolog, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
12395    }
12396 }
12397 
12398 VKAPI_ATTR void VKAPI_CALL
radv_CmdTraceRaysKHR(VkCommandBuffer commandBuffer,const VkStridedDeviceAddressRegionKHR * pRaygenShaderBindingTable,const VkStridedDeviceAddressRegionKHR * pMissShaderBindingTable,const VkStridedDeviceAddressRegionKHR * pHitShaderBindingTable,const VkStridedDeviceAddressRegionKHR * pCallableShaderBindingTable,uint32_t width,uint32_t height,uint32_t depth)12399 radv_CmdTraceRaysKHR(VkCommandBuffer commandBuffer, const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable,
12400                      const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable,
12401                      const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable,
12402                      const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable, uint32_t width,
12403                      uint32_t height, uint32_t depth)
12404 {
12405    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12406 
12407    VkTraceRaysIndirectCommand2KHR tables = {
12408       .raygenShaderRecordAddress = pRaygenShaderBindingTable->deviceAddress,
12409       .raygenShaderRecordSize = pRaygenShaderBindingTable->size,
12410       .missShaderBindingTableAddress = pMissShaderBindingTable->deviceAddress,
12411       .missShaderBindingTableSize = pMissShaderBindingTable->size,
12412       .missShaderBindingTableStride = pMissShaderBindingTable->stride,
12413       .hitShaderBindingTableAddress = pHitShaderBindingTable->deviceAddress,
12414       .hitShaderBindingTableSize = pHitShaderBindingTable->size,
12415       .hitShaderBindingTableStride = pHitShaderBindingTable->stride,
12416       .callableShaderBindingTableAddress = pCallableShaderBindingTable->deviceAddress,
12417       .callableShaderBindingTableSize = pCallableShaderBindingTable->size,
12418       .callableShaderBindingTableStride = pCallableShaderBindingTable->stride,
12419       .width = width,
12420       .height = height,
12421       .depth = depth,
12422    };
12423 
12424    radv_trace_rays(cmd_buffer, &tables, 0, radv_rt_mode_direct);
12425 }
12426 
12427 VKAPI_ATTR void VKAPI_CALL
radv_CmdTraceRaysIndirectKHR(VkCommandBuffer commandBuffer,const VkStridedDeviceAddressRegionKHR * pRaygenShaderBindingTable,const VkStridedDeviceAddressRegionKHR * pMissShaderBindingTable,const VkStridedDeviceAddressRegionKHR * pHitShaderBindingTable,const VkStridedDeviceAddressRegionKHR * pCallableShaderBindingTable,VkDeviceAddress indirectDeviceAddress)12428 radv_CmdTraceRaysIndirectKHR(VkCommandBuffer commandBuffer,
12429                              const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable,
12430                              const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable,
12431                              const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable,
12432                              const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable,
12433                              VkDeviceAddress indirectDeviceAddress)
12434 {
12435    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12436    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12437 
12438    assert(device->use_global_bo_list);
12439 
12440    VkTraceRaysIndirectCommand2KHR tables = {
12441       .raygenShaderRecordAddress = pRaygenShaderBindingTable->deviceAddress,
12442       .raygenShaderRecordSize = pRaygenShaderBindingTable->size,
12443       .missShaderBindingTableAddress = pMissShaderBindingTable->deviceAddress,
12444       .missShaderBindingTableSize = pMissShaderBindingTable->size,
12445       .missShaderBindingTableStride = pMissShaderBindingTable->stride,
12446       .hitShaderBindingTableAddress = pHitShaderBindingTable->deviceAddress,
12447       .hitShaderBindingTableSize = pHitShaderBindingTable->size,
12448       .hitShaderBindingTableStride = pHitShaderBindingTable->stride,
12449       .callableShaderBindingTableAddress = pCallableShaderBindingTable->deviceAddress,
12450       .callableShaderBindingTableSize = pCallableShaderBindingTable->size,
12451       .callableShaderBindingTableStride = pCallableShaderBindingTable->stride,
12452    };
12453 
12454    radv_trace_rays(cmd_buffer, &tables, indirectDeviceAddress, radv_rt_mode_indirect);
12455 }
12456 
12457 VKAPI_ATTR void VKAPI_CALL
radv_CmdTraceRaysIndirect2KHR(VkCommandBuffer commandBuffer,VkDeviceAddress indirectDeviceAddress)12458 radv_CmdTraceRaysIndirect2KHR(VkCommandBuffer commandBuffer, VkDeviceAddress indirectDeviceAddress)
12459 {
12460    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12461    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12462 
12463    assert(device->use_global_bo_list);
12464 
12465    radv_trace_rays(cmd_buffer, NULL, indirectDeviceAddress, radv_rt_mode_indirect2);
12466 }
12467 
12468 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRayTracingPipelineStackSizeKHR(VkCommandBuffer commandBuffer,uint32_t size)12469 radv_CmdSetRayTracingPipelineStackSizeKHR(VkCommandBuffer commandBuffer, uint32_t size)
12470 {
12471    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12472    cmd_buffer->state.rt_stack_size = size;
12473 }
12474 
12475 /*
12476  * For HTILE we have the following interesting clear words:
12477  *   0xfffff30f: Uncompressed, full depth range, for depth+stencil HTILE
12478  *   0xfffc000f: Uncompressed, full depth range, for depth only HTILE.
12479  *   0xfffffff0: Clear depth to 1.0
12480  *   0x00000000: Clear depth to 0.0
12481  */
12482 static void
radv_initialize_htile(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range)12483 radv_initialize_htile(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
12484                       const VkImageSubresourceRange *range)
12485 {
12486    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12487    struct radv_cmd_state *state = &cmd_buffer->state;
12488    uint32_t htile_value = radv_get_htile_initial_value(device, image);
12489    VkClearDepthStencilValue value = {0};
12490    struct radv_barrier_data barrier = {0};
12491 
12492    barrier.layout_transitions.init_mask_ram = 1;
12493    radv_describe_layout_transition(cmd_buffer, &barrier);
12494 
12495    /* Transitioning from LAYOUT_UNDEFINED layout not everyone is consistent
12496     * in considering previous rendering work for WAW hazards. */
12497    state->flush_bits |= radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
12498                                               VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, 0, image, range);
12499 
12500    if (image->planes[0].surface.has_stencil &&
12501        !(range->aspectMask == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT))) {
12502       /* Flush caches before performing a separate aspect initialization because it's a
12503        * read-modify-write operation.
12504        */
12505       state->flush_bits |= radv_dst_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
12506                                                  VK_ACCESS_2_SHADER_READ_BIT, 0, image, range);
12507    }
12508 
12509    state->flush_bits |= radv_clear_htile(cmd_buffer, image, range, htile_value, false);
12510 
12511    radv_set_ds_clear_metadata(cmd_buffer, image, range, value, range->aspectMask);
12512 
12513    if (radv_image_is_tc_compat_htile(image) && (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT)) {
12514       /* Initialize the TC-compat metada value to 0 because by
12515        * default DB_Z_INFO.RANGE_PRECISION is set to 1, and we only
12516        * need have to conditionally update its value when performing
12517        * a fast depth clear.
12518        */
12519       radv_set_tc_compat_zrange_metadata(cmd_buffer, image, range, 0);
12520    }
12521 }
12522 
12523 static void
radv_handle_depth_image_transition(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout src_layout,VkImageLayout dst_layout,unsigned src_queue_mask,unsigned dst_queue_mask,const VkImageSubresourceRange * range,struct radv_sample_locations_state * sample_locs)12524 radv_handle_depth_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
12525                                    VkImageLayout src_layout, VkImageLayout dst_layout, unsigned src_queue_mask,
12526                                    unsigned dst_queue_mask, const VkImageSubresourceRange *range,
12527                                    struct radv_sample_locations_state *sample_locs)
12528 {
12529    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12530 
12531    if (!radv_htile_enabled(image, range->baseMipLevel))
12532       return;
12533 
12534    if (src_layout == VK_IMAGE_LAYOUT_UNDEFINED) {
12535       radv_initialize_htile(cmd_buffer, image, range);
12536    } else if (radv_layout_is_htile_compressed(device, image, src_layout, src_queue_mask) &&
12537               !radv_layout_is_htile_compressed(device, image, dst_layout, dst_queue_mask)) {
12538       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
12539 
12540       radv_expand_depth_stencil(cmd_buffer, image, range, sample_locs);
12541 
12542       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
12543    }
12544 }
12545 
12546 static uint32_t
radv_init_cmask(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t value)12547 radv_init_cmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range,
12548                 uint32_t value)
12549 {
12550    struct radv_barrier_data barrier = {0};
12551 
12552    barrier.layout_transitions.init_mask_ram = 1;
12553    radv_describe_layout_transition(cmd_buffer, &barrier);
12554 
12555    return radv_clear_cmask(cmd_buffer, image, range, value);
12556 }
12557 
12558 uint32_t
radv_init_fmask(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range)12559 radv_init_fmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range)
12560 {
12561    static const uint32_t fmask_clear_values[4] = {0x00000000, 0x02020202, 0xE4E4E4E4, 0x76543210};
12562    uint32_t log2_samples = util_logbase2(image->vk.samples);
12563    uint32_t value = fmask_clear_values[log2_samples];
12564    struct radv_barrier_data barrier = {0};
12565 
12566    barrier.layout_transitions.init_mask_ram = 1;
12567    radv_describe_layout_transition(cmd_buffer, &barrier);
12568 
12569    return radv_clear_fmask(cmd_buffer, image, range, value);
12570 }
12571 
12572 uint32_t
radv_init_dcc(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t value)12573 radv_init_dcc(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range,
12574               uint32_t value)
12575 {
12576    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12577    const struct radv_physical_device *pdev = radv_device_physical(device);
12578    struct radv_barrier_data barrier = {0};
12579    uint32_t flush_bits = 0;
12580    unsigned size = 0;
12581 
12582    barrier.layout_transitions.init_mask_ram = 1;
12583    radv_describe_layout_transition(cmd_buffer, &barrier);
12584 
12585    flush_bits |= radv_clear_dcc(cmd_buffer, image, range, value);
12586 
12587    if (pdev->info.gfx_level == GFX8) {
12588       /* When DCC is enabled with mipmaps, some levels might not
12589        * support fast clears and we have to initialize them as "fully
12590        * expanded".
12591        */
12592       /* Compute the size of all fast clearable DCC levels. */
12593       for (unsigned i = 0; i < image->planes[0].surface.num_meta_levels; i++) {
12594          struct legacy_surf_dcc_level *dcc_level = &image->planes[0].surface.u.legacy.color.dcc_level[i];
12595          unsigned dcc_fast_clear_size = dcc_level->dcc_slice_fast_clear_size * image->vk.array_layers;
12596 
12597          if (!dcc_fast_clear_size)
12598             break;
12599 
12600          size = dcc_level->dcc_offset + dcc_fast_clear_size;
12601       }
12602 
12603       /* Initialize the mipmap levels without DCC. */
12604       if (size != image->planes[0].surface.meta_size) {
12605          flush_bits |= radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo,
12606                                         radv_image_get_va(image, 0) + image->planes[0].surface.meta_offset + size,
12607                                         image->planes[0].surface.meta_size - size, 0xffffffff);
12608       }
12609    }
12610 
12611    return flush_bits;
12612 }
12613 
12614 /**
12615  * Initialize DCC/FMASK/CMASK metadata for a color image.
12616  */
12617 static void
radv_init_color_image_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout src_layout,VkImageLayout dst_layout,unsigned src_queue_mask,unsigned dst_queue_mask,const VkImageSubresourceRange * range)12618 radv_init_color_image_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageLayout src_layout,
12619                                VkImageLayout dst_layout, unsigned src_queue_mask, unsigned dst_queue_mask,
12620                                const VkImageSubresourceRange *range)
12621 {
12622    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12623    uint32_t flush_bits = 0;
12624 
12625    /* Transitioning from LAYOUT_UNDEFINED layout not everyone is
12626     * consistent in considering previous rendering work for WAW hazards.
12627     */
12628    cmd_buffer->state.flush_bits |= radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
12629                                                          VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, 0, image, range);
12630 
12631    if (radv_image_has_cmask(image)) {
12632       static const uint32_t cmask_clear_values[4] = {0xffffffff, 0xdddddddd, 0xeeeeeeee, 0xffffffff};
12633       uint32_t log2_samples = util_logbase2(image->vk.samples);
12634 
12635       flush_bits |= radv_init_cmask(cmd_buffer, image, range, cmask_clear_values[log2_samples]);
12636    }
12637 
12638    if (radv_image_has_fmask(image)) {
12639       flush_bits |= radv_init_fmask(cmd_buffer, image, range);
12640    }
12641 
12642    if (radv_dcc_enabled(image, range->baseMipLevel)) {
12643       uint32_t value = 0xffffffffu; /* Fully expanded mode. */
12644 
12645       if (radv_layout_dcc_compressed(device, image, range->baseMipLevel, dst_layout, dst_queue_mask)) {
12646          value = 0u;
12647       }
12648 
12649       flush_bits |= radv_init_dcc(cmd_buffer, image, range, value);
12650    }
12651 
12652    if (radv_image_has_cmask(image) || radv_dcc_enabled(image, range->baseMipLevel)) {
12653       radv_update_fce_metadata(cmd_buffer, image, range, false);
12654 
12655       uint32_t color_values[2] = {0};
12656       radv_set_color_clear_metadata(cmd_buffer, image, range, color_values);
12657    }
12658 
12659    cmd_buffer->state.flush_bits |= flush_bits;
12660 }
12661 
12662 static void
radv_retile_transition(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout src_layout,VkImageLayout dst_layout,unsigned dst_queue_mask)12663 radv_retile_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageLayout src_layout,
12664                        VkImageLayout dst_layout, unsigned dst_queue_mask)
12665 {
12666    /* If the image is read-only, we don't have to retile DCC because it can't change. */
12667    if (!(image->vk.usage & RADV_IMAGE_USAGE_WRITE_BITS))
12668       return;
12669 
12670    if (src_layout != VK_IMAGE_LAYOUT_PRESENT_SRC_KHR &&
12671        (dst_layout == VK_IMAGE_LAYOUT_PRESENT_SRC_KHR || (dst_queue_mask & (1u << RADV_QUEUE_FOREIGN))))
12672       radv_retile_dcc(cmd_buffer, image);
12673 }
12674 
12675 static bool
radv_image_need_retile(const struct radv_cmd_buffer * cmd_buffer,const struct radv_image * image)12676 radv_image_need_retile(const struct radv_cmd_buffer *cmd_buffer, const struct radv_image *image)
12677 {
12678    return cmd_buffer->qf != RADV_QUEUE_TRANSFER && image->planes[0].surface.display_dcc_offset &&
12679           image->planes[0].surface.display_dcc_offset != image->planes[0].surface.meta_offset;
12680 }
12681 
12682 /**
12683  * Handle color image transitions for DCC/FMASK/CMASK.
12684  */
12685 static void
radv_handle_color_image_transition(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout src_layout,VkImageLayout dst_layout,unsigned src_queue_mask,unsigned dst_queue_mask,const VkImageSubresourceRange * range)12686 radv_handle_color_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
12687                                    VkImageLayout src_layout, VkImageLayout dst_layout, unsigned src_queue_mask,
12688                                    unsigned dst_queue_mask, const VkImageSubresourceRange *range)
12689 {
12690    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12691    bool dcc_decompressed = false, fast_clear_flushed = false;
12692 
12693    if (!radv_image_has_cmask(image) && !radv_image_has_fmask(image) && !radv_dcc_enabled(image, range->baseMipLevel))
12694       return;
12695 
12696    if (src_layout == VK_IMAGE_LAYOUT_UNDEFINED) {
12697       radv_init_color_image_metadata(cmd_buffer, image, src_layout, dst_layout, src_queue_mask, dst_queue_mask, range);
12698 
12699       if (radv_image_need_retile(cmd_buffer, image))
12700          radv_retile_transition(cmd_buffer, image, src_layout, dst_layout, dst_queue_mask);
12701       return;
12702    }
12703 
12704    if (radv_dcc_enabled(image, range->baseMipLevel)) {
12705       if (src_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
12706          cmd_buffer->state.flush_bits |= radv_init_dcc(cmd_buffer, image, range, 0xffffffffu);
12707       } else if (radv_layout_dcc_compressed(device, image, range->baseMipLevel, src_layout, src_queue_mask) &&
12708                  !radv_layout_dcc_compressed(device, image, range->baseMipLevel, dst_layout, dst_queue_mask)) {
12709          radv_decompress_dcc(cmd_buffer, image, range);
12710          dcc_decompressed = true;
12711       } else if (radv_layout_can_fast_clear(device, image, range->baseMipLevel, src_layout, src_queue_mask) &&
12712                  !radv_layout_can_fast_clear(device, image, range->baseMipLevel, dst_layout, dst_queue_mask)) {
12713          radv_fast_clear_flush_image_inplace(cmd_buffer, image, range);
12714          fast_clear_flushed = true;
12715       }
12716 
12717       if (radv_image_need_retile(cmd_buffer, image))
12718          radv_retile_transition(cmd_buffer, image, src_layout, dst_layout, dst_queue_mask);
12719    } else if (radv_image_has_cmask(image) || radv_image_has_fmask(image)) {
12720       if (radv_layout_can_fast_clear(device, image, range->baseMipLevel, src_layout, src_queue_mask) &&
12721           !radv_layout_can_fast_clear(device, image, range->baseMipLevel, dst_layout, dst_queue_mask)) {
12722          radv_fast_clear_flush_image_inplace(cmd_buffer, image, range);
12723          fast_clear_flushed = true;
12724       }
12725    }
12726 
12727    /* MSAA color decompress. */
12728    const enum radv_fmask_compression src_fmask_comp =
12729       radv_layout_fmask_compression(device, image, src_layout, src_queue_mask);
12730    const enum radv_fmask_compression dst_fmask_comp =
12731       radv_layout_fmask_compression(device, image, dst_layout, dst_queue_mask);
12732    if (src_fmask_comp <= dst_fmask_comp)
12733       return;
12734 
12735    if (src_fmask_comp == RADV_FMASK_COMPRESSION_FULL) {
12736       if (radv_dcc_enabled(image, range->baseMipLevel) && !radv_image_use_dcc_image_stores(device, image) &&
12737           !dcc_decompressed) {
12738          /* A DCC decompress is required before expanding FMASK
12739           * when DCC stores aren't supported to avoid being in
12740           * a state where DCC is compressed and the main
12741           * surface is uncompressed.
12742           */
12743          radv_decompress_dcc(cmd_buffer, image, range);
12744       } else if (!fast_clear_flushed) {
12745          /* A FMASK decompress is required before expanding
12746           * FMASK.
12747           */
12748          radv_fast_clear_flush_image_inplace(cmd_buffer, image, range);
12749       }
12750    }
12751 
12752    if (dst_fmask_comp == RADV_FMASK_COMPRESSION_NONE) {
12753       struct radv_barrier_data barrier = {0};
12754       barrier.layout_transitions.fmask_color_expand = 1;
12755       radv_describe_layout_transition(cmd_buffer, &barrier);
12756 
12757       radv_expand_fmask_image_inplace(cmd_buffer, image, range);
12758    }
12759 }
12760 
12761 static void
radv_handle_image_transition(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout src_layout,VkImageLayout dst_layout,uint32_t src_family_index,uint32_t dst_family_index,const VkImageSubresourceRange * range,struct radv_sample_locations_state * sample_locs)12762 radv_handle_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageLayout src_layout,
12763                              VkImageLayout dst_layout, uint32_t src_family_index, uint32_t dst_family_index,
12764                              const VkImageSubresourceRange *range, struct radv_sample_locations_state *sample_locs)
12765 {
12766    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12767    const struct radv_physical_device *pdev = radv_device_physical(device);
12768    enum radv_queue_family src_qf = vk_queue_to_radv(pdev, src_family_index);
12769    enum radv_queue_family dst_qf = vk_queue_to_radv(pdev, dst_family_index);
12770    if (image->exclusive && src_family_index != dst_family_index) {
12771       /* This is an acquire or a release operation and there will be
12772        * a corresponding release/acquire. Do the transition in the
12773        * most flexible queue. */
12774 
12775       assert(src_qf == cmd_buffer->qf || dst_qf == cmd_buffer->qf);
12776 
12777       if (src_family_index == VK_QUEUE_FAMILY_EXTERNAL || src_family_index == VK_QUEUE_FAMILY_FOREIGN_EXT)
12778          return;
12779 
12780       if (cmd_buffer->qf == RADV_QUEUE_TRANSFER)
12781          return;
12782 
12783       if (cmd_buffer->qf == RADV_QUEUE_COMPUTE && (src_qf == RADV_QUEUE_GENERAL || dst_qf == RADV_QUEUE_GENERAL))
12784          return;
12785    }
12786 
12787    unsigned src_queue_mask = radv_image_queue_family_mask(image, src_qf, cmd_buffer->qf);
12788    unsigned dst_queue_mask = radv_image_queue_family_mask(image, dst_qf, cmd_buffer->qf);
12789 
12790    if (src_layout == dst_layout && src_queue_mask == dst_queue_mask)
12791       return;
12792 
12793    if (image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
12794       radv_handle_depth_image_transition(cmd_buffer, image, src_layout, dst_layout, src_queue_mask, dst_queue_mask,
12795                                          range, sample_locs);
12796    } else {
12797       radv_handle_color_image_transition(cmd_buffer, image, src_layout, dst_layout, src_queue_mask, dst_queue_mask,
12798                                          range);
12799    }
12800 }
12801 
12802 static void
radv_cp_dma_wait_for_stages(struct radv_cmd_buffer * cmd_buffer,VkPipelineStageFlags2 stage_mask)12803 radv_cp_dma_wait_for_stages(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 stage_mask)
12804 {
12805    /* Make sure CP DMA is idle because the driver might have performed a DMA operation for copying a
12806     * buffer (or a MSAA image using FMASK). Note that updating a buffer is considered a clear
12807     * operation but it might also use a CP DMA copy in some rare situations. Other operations using
12808     * a CP DMA clear are implicitly synchronized (see CP_DMA_SYNC).
12809     */
12810    if (stage_mask &
12811        (VK_PIPELINE_STAGE_2_COPY_BIT | VK_PIPELINE_STAGE_2_CLEAR_BIT | VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT |
12812         VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT))
12813       radv_cp_dma_wait_for_idle(cmd_buffer);
12814 }
12815 
12816 void
radv_emit_cache_flush(struct radv_cmd_buffer * cmd_buffer)12817 radv_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer)
12818 {
12819    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12820    const struct radv_physical_device *pdev = radv_device_physical(device);
12821    bool is_compute = cmd_buffer->qf == RADV_QUEUE_COMPUTE;
12822 
12823    if (is_compute)
12824       cmd_buffer->state.flush_bits &=
12825          ~(RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META | RADV_CMD_FLAG_FLUSH_AND_INV_DB |
12826            RADV_CMD_FLAG_FLUSH_AND_INV_DB_META | RADV_CMD_FLAG_INV_L2_METADATA | RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
12827            RADV_CMD_FLAG_VS_PARTIAL_FLUSH | RADV_CMD_FLAG_VGT_FLUSH | RADV_CMD_FLAG_START_PIPELINE_STATS |
12828            RADV_CMD_FLAG_STOP_PIPELINE_STATS);
12829 
12830    if (!cmd_buffer->state.flush_bits) {
12831       radv_describe_barrier_end_delayed(cmd_buffer);
12832       return;
12833    }
12834 
12835    radv_cs_emit_cache_flush(device->ws, cmd_buffer->cs, pdev->info.gfx_level, &cmd_buffer->gfx9_fence_idx,
12836                             cmd_buffer->gfx9_fence_va, radv_cmd_buffer_uses_mec(cmd_buffer),
12837                             cmd_buffer->state.flush_bits, &cmd_buffer->state.sqtt_flush_bits,
12838                             cmd_buffer->gfx9_eop_bug_va);
12839 
12840    if (radv_device_fault_detection_enabled(device))
12841       radv_cmd_buffer_trace_emit(cmd_buffer);
12842 
12843    if (cmd_buffer->state.flush_bits & RADV_CMD_FLAG_INV_L2)
12844       cmd_buffer->state.rb_noncoherent_dirty = false;
12845 
12846    /* Clear the caches that have been flushed to avoid syncing too much
12847     * when there is some pending active queries.
12848     */
12849    cmd_buffer->active_query_flush_bits &= ~cmd_buffer->state.flush_bits;
12850 
12851    cmd_buffer->state.flush_bits = 0;
12852 
12853    /* If the driver used a compute shader for resetting a query pool, it
12854     * should be finished at this point.
12855     */
12856    cmd_buffer->pending_reset_query = false;
12857 
12858    radv_describe_barrier_end_delayed(cmd_buffer);
12859 }
12860 
12861 static enum radv_cmd_flush_bits
radv_get_src_access_flush(struct radv_cmd_buffer * cmd_buffer,VkPipelineStageFlags2 src_stage_mask,VkAccessFlags2 src_access_mask,const struct radv_image * image,const VkImageSubresourceRange * range,const void * pNext)12862 radv_get_src_access_flush(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 src_stage_mask,
12863                           VkAccessFlags2 src_access_mask, const struct radv_image *image,
12864                           const VkImageSubresourceRange *range, const void *pNext)
12865 {
12866    const VkMemoryBarrierAccessFlags3KHR *barrier3 = vk_find_struct_const(pNext, MEMORY_BARRIER_ACCESS_FLAGS_3_KHR);
12867    const VkAccessFlags3KHR src3_flags = barrier3 ? barrier3->srcAccessMask3 : 0;
12868 
12869    return radv_src_access_flush(cmd_buffer, src_stage_mask, src_access_mask, src3_flags, image, range);
12870 }
12871 
12872 static enum radv_cmd_flush_bits
radv_get_dst_access_flush(struct radv_cmd_buffer * cmd_buffer,VkPipelineStageFlags2 dst_stage_mask,VkAccessFlags2 dst_access_mask,const struct radv_image * image,const VkImageSubresourceRange * range,const void * pNext)12873 radv_get_dst_access_flush(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 dst_stage_mask,
12874                           VkAccessFlags2 dst_access_mask, const struct radv_image *image,
12875                           const VkImageSubresourceRange *range, const void *pNext)
12876 {
12877    const VkMemoryBarrierAccessFlags3KHR *barrier3 = vk_find_struct_const(pNext, MEMORY_BARRIER_ACCESS_FLAGS_3_KHR);
12878    const VkAccessFlags3KHR dst3_flags = barrier3 ? barrier3->dstAccessMask3 : 0;
12879 
12880    return radv_dst_access_flush(cmd_buffer, dst_stage_mask, dst_access_mask, dst3_flags, image, range);
12881 }
12882 
12883 static void
radv_barrier(struct radv_cmd_buffer * cmd_buffer,uint32_t dep_count,const VkDependencyInfo * dep_infos,enum rgp_barrier_reason reason)12884 radv_barrier(struct radv_cmd_buffer *cmd_buffer, uint32_t dep_count, const VkDependencyInfo *dep_infos,
12885              enum rgp_barrier_reason reason)
12886 {
12887    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12888    enum radv_cmd_flush_bits src_flush_bits = 0;
12889    enum radv_cmd_flush_bits dst_flush_bits = 0;
12890    VkPipelineStageFlags2 src_stage_mask = 0;
12891    VkPipelineStageFlags2 dst_stage_mask = 0;
12892    bool has_image_transitions = false;
12893 
12894    if (cmd_buffer->state.render.active)
12895       radv_mark_noncoherent_rb(cmd_buffer);
12896 
12897    radv_describe_barrier_start(cmd_buffer, reason);
12898 
12899    for (uint32_t dep_idx = 0; dep_idx < dep_count; dep_idx++) {
12900       const VkDependencyInfo *dep_info = &dep_infos[dep_idx];
12901 
12902       for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) {
12903          const VkMemoryBarrier2 *barrier = &dep_info->pMemoryBarriers[i];
12904          src_stage_mask |= barrier->srcStageMask;
12905          src_flush_bits |= radv_get_src_access_flush(cmd_buffer, barrier->srcStageMask, barrier->srcAccessMask, NULL,
12906                                                      NULL, barrier->pNext);
12907          dst_stage_mask |= barrier->dstStageMask;
12908          dst_flush_bits |= radv_get_dst_access_flush(cmd_buffer, barrier->dstStageMask, barrier->dstAccessMask, NULL,
12909                                                      NULL, barrier->pNext);
12910       }
12911 
12912       for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) {
12913          const VkBufferMemoryBarrier2 *barrier = &dep_info->pBufferMemoryBarriers[i];
12914          src_stage_mask |= barrier->srcStageMask;
12915          src_flush_bits |= radv_get_src_access_flush(cmd_buffer, barrier->srcStageMask, barrier->srcAccessMask, NULL,
12916                                                      NULL, barrier->pNext);
12917          dst_stage_mask |= barrier->dstStageMask;
12918          dst_flush_bits |= radv_get_dst_access_flush(cmd_buffer, barrier->dstStageMask, barrier->dstAccessMask, NULL,
12919                                                      NULL, barrier->pNext);
12920       }
12921 
12922       for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
12923          const VkImageMemoryBarrier2 *barrier = &dep_info->pImageMemoryBarriers[i];
12924          VK_FROM_HANDLE(radv_image, image, barrier->image);
12925 
12926          src_stage_mask |= barrier->srcStageMask;
12927          src_flush_bits |= radv_get_src_access_flush(cmd_buffer, barrier->srcStageMask, barrier->srcAccessMask, image,
12928                                                      &barrier->subresourceRange, barrier->pNext);
12929          dst_stage_mask |= barrier->dstStageMask;
12930          dst_flush_bits |= radv_get_dst_access_flush(cmd_buffer, barrier->dstStageMask, barrier->dstAccessMask, image,
12931                                                      &barrier->subresourceRange, barrier->pNext);
12932       }
12933 
12934       has_image_transitions |= dep_info->imageMemoryBarrierCount > 0;
12935    }
12936 
12937    /* Only optimize BOTTOM_OF_PIPE/NONE as dst when there is no image layout transitions because it might
12938     * need to synchronize.
12939     */
12940    if (has_image_transitions ||
12941        (dst_stage_mask != VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT && dst_stage_mask != VK_PIPELINE_STAGE_2_NONE))
12942       radv_stage_flush(cmd_buffer, src_stage_mask);
12943    cmd_buffer->state.flush_bits |= src_flush_bits;
12944 
12945    radv_gang_barrier(cmd_buffer, src_stage_mask, 0);
12946 
12947    for (uint32_t dep_idx = 0; dep_idx < dep_count; dep_idx++) {
12948       const VkDependencyInfo *dep_info = &dep_infos[dep_idx];
12949 
12950       for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
12951          VK_FROM_HANDLE(radv_image, image, dep_info->pImageMemoryBarriers[i].image);
12952 
12953          const struct VkSampleLocationsInfoEXT *sample_locs_info =
12954             vk_find_struct_const(dep_info->pImageMemoryBarriers[i].pNext, SAMPLE_LOCATIONS_INFO_EXT);
12955          struct radv_sample_locations_state sample_locations;
12956 
12957          if (sample_locs_info) {
12958             assert(image->vk.create_flags & VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT);
12959             sample_locations.per_pixel = sample_locs_info->sampleLocationsPerPixel;
12960             sample_locations.grid_size = sample_locs_info->sampleLocationGridSize;
12961             sample_locations.count = sample_locs_info->sampleLocationsCount;
12962             typed_memcpy(&sample_locations.locations[0], sample_locs_info->pSampleLocations,
12963                          sample_locs_info->sampleLocationsCount);
12964          }
12965 
12966          radv_handle_image_transition(
12967             cmd_buffer, image, dep_info->pImageMemoryBarriers[i].oldLayout, dep_info->pImageMemoryBarriers[i].newLayout,
12968             dep_info->pImageMemoryBarriers[i].srcQueueFamilyIndex,
12969             dep_info->pImageMemoryBarriers[i].dstQueueFamilyIndex, &dep_info->pImageMemoryBarriers[i].subresourceRange,
12970             sample_locs_info ? &sample_locations : NULL);
12971       }
12972    }
12973 
12974    radv_gang_barrier(cmd_buffer, 0, dst_stage_mask);
12975 
12976    if (cmd_buffer->qf == RADV_QUEUE_TRANSFER) {
12977       /* SDMA NOP packet waits for all pending SDMA operations to complete.
12978        * Note that GFX9+ is supposed to have RAW dependency tracking, but it's buggy
12979        * so we can't rely on it fow now.
12980        */
12981       radeon_check_space(device->ws, cmd_buffer->cs, 1);
12982       radeon_emit(cmd_buffer->cs, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0));
12983    } else {
12984       const bool is_gfx_or_ace = cmd_buffer->qf == RADV_QUEUE_GENERAL || cmd_buffer->qf == RADV_QUEUE_COMPUTE;
12985       if (is_gfx_or_ace)
12986          radv_cp_dma_wait_for_stages(cmd_buffer, src_stage_mask);
12987    }
12988 
12989    cmd_buffer->state.flush_bits |= dst_flush_bits;
12990 
12991    radv_describe_barrier_end(cmd_buffer);
12992 }
12993 
12994 VKAPI_ATTR void VKAPI_CALL
radv_CmdPipelineBarrier2(VkCommandBuffer commandBuffer,const VkDependencyInfo * pDependencyInfo)12995 radv_CmdPipelineBarrier2(VkCommandBuffer commandBuffer, const VkDependencyInfo *pDependencyInfo)
12996 {
12997    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12998    enum rgp_barrier_reason barrier_reason;
12999 
13000    if (cmd_buffer->vk.runtime_rp_barrier) {
13001       barrier_reason = RGP_BARRIER_EXTERNAL_RENDER_PASS_SYNC;
13002    } else {
13003       barrier_reason = RGP_BARRIER_EXTERNAL_CMD_PIPELINE_BARRIER;
13004    }
13005 
13006    radv_barrier(cmd_buffer, 1, pDependencyInfo, barrier_reason);
13007 }
13008 
13009 static void
write_event(struct radv_cmd_buffer * cmd_buffer,struct radv_event * event,VkPipelineStageFlags2 stageMask,unsigned value)13010 write_event(struct radv_cmd_buffer *cmd_buffer, struct radv_event *event, VkPipelineStageFlags2 stageMask,
13011             unsigned value)
13012 {
13013    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13014    const struct radv_physical_device *pdev = radv_device_physical(device);
13015    struct radeon_cmdbuf *cs = cmd_buffer->cs;
13016    uint64_t va = radv_buffer_get_va(event->bo);
13017 
13018    if (cmd_buffer->qf == RADV_QUEUE_VIDEO_DEC || cmd_buffer->qf == RADV_QUEUE_VIDEO_ENC) {
13019       radv_vcn_write_event(cmd_buffer, event, value);
13020       return;
13021    }
13022 
13023    radv_emit_cache_flush(cmd_buffer);
13024 
13025    radv_cs_add_buffer(device->ws, cs, event->bo);
13026 
13027    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cs, 28);
13028 
13029    if (stageMask & (VK_PIPELINE_STAGE_2_COPY_BIT | VK_PIPELINE_STAGE_2_RESOLVE_BIT | VK_PIPELINE_STAGE_2_BLIT_BIT |
13030                     VK_PIPELINE_STAGE_2_CLEAR_BIT)) {
13031       /* Be conservative for now. */
13032       stageMask |= VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT;
13033    }
13034 
13035    /* Flags that only require a top-of-pipe event. */
13036    VkPipelineStageFlags2 top_of_pipe_flags = VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT;
13037 
13038    /* Flags that only require a post-index-fetch event. */
13039    VkPipelineStageFlags2 post_index_fetch_flags =
13040       top_of_pipe_flags | VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT | VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT;
13041 
13042    /* Flags that only require signaling post PS. */
13043    VkPipelineStageFlags2 post_ps_flags =
13044       post_index_fetch_flags | VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT |
13045       VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT | VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT |
13046       VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT | VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT |
13047       VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT | VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT |
13048       VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR | VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
13049       VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT;
13050 
13051    /* Flags that only require signaling post CS. */
13052    VkPipelineStageFlags2 post_cs_flags = VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT;
13053 
13054    radv_cp_dma_wait_for_stages(cmd_buffer, stageMask);
13055 
13056    if (!(stageMask & ~top_of_pipe_flags)) {
13057       /* Just need to sync the PFP engine. */
13058       radv_write_data(cmd_buffer, V_370_PFP, va, 1, &value, false);
13059    } else if (!(stageMask & ~post_index_fetch_flags)) {
13060       /* Sync ME because PFP reads index and indirect buffers. */
13061       radv_write_data(cmd_buffer, V_370_ME, va, 1, &value, false);
13062    } else {
13063       unsigned event_type;
13064 
13065       if (!(stageMask & ~post_ps_flags)) {
13066          /* Sync previous fragment shaders. */
13067          event_type = V_028A90_PS_DONE;
13068       } else if (!(stageMask & ~post_cs_flags)) {
13069          /* Sync previous compute shaders. */
13070          event_type = V_028A90_CS_DONE;
13071       } else {
13072          /* Otherwise, sync all prior GPU work. */
13073          event_type = V_028A90_BOTTOM_OF_PIPE_TS;
13074       }
13075 
13076       radv_cs_emit_write_event_eop(cs, pdev->info.gfx_level, cmd_buffer->qf, event_type, 0, EOP_DST_SEL_MEM,
13077                                    EOP_DATA_SEL_VALUE_32BIT, va, value, cmd_buffer->gfx9_eop_bug_va);
13078    }
13079 
13080    assert(cmd_buffer->cs->cdw <= cdw_max);
13081 }
13082 
13083 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetEvent2(VkCommandBuffer commandBuffer,VkEvent _event,const VkDependencyInfo * pDependencyInfo)13084 radv_CmdSetEvent2(VkCommandBuffer commandBuffer, VkEvent _event, const VkDependencyInfo *pDependencyInfo)
13085 {
13086    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13087    VK_FROM_HANDLE(radv_event, event, _event);
13088    VkPipelineStageFlags2 src_stage_mask = 0;
13089 
13090    for (uint32_t i = 0; i < pDependencyInfo->memoryBarrierCount; i++)
13091       src_stage_mask |= pDependencyInfo->pMemoryBarriers[i].srcStageMask;
13092    for (uint32_t i = 0; i < pDependencyInfo->bufferMemoryBarrierCount; i++)
13093       src_stage_mask |= pDependencyInfo->pBufferMemoryBarriers[i].srcStageMask;
13094    for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; i++)
13095       src_stage_mask |= pDependencyInfo->pImageMemoryBarriers[i].srcStageMask;
13096 
13097    write_event(cmd_buffer, event, src_stage_mask, 1);
13098 }
13099 
13100 VKAPI_ATTR void VKAPI_CALL
radv_CmdResetEvent2(VkCommandBuffer commandBuffer,VkEvent _event,VkPipelineStageFlags2 stageMask)13101 radv_CmdResetEvent2(VkCommandBuffer commandBuffer, VkEvent _event, VkPipelineStageFlags2 stageMask)
13102 {
13103    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13104    VK_FROM_HANDLE(radv_event, event, _event);
13105 
13106    write_event(cmd_buffer, event, stageMask, 0);
13107 }
13108 
13109 VKAPI_ATTR void VKAPI_CALL
radv_CmdWaitEvents2(VkCommandBuffer commandBuffer,uint32_t eventCount,const VkEvent * pEvents,const VkDependencyInfo * pDependencyInfos)13110 radv_CmdWaitEvents2(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
13111                     const VkDependencyInfo *pDependencyInfos)
13112 {
13113    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13114    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13115    struct radeon_cmdbuf *cs = cmd_buffer->cs;
13116 
13117    if (cmd_buffer->qf == RADV_QUEUE_VIDEO_DEC || cmd_buffer->qf == RADV_QUEUE_VIDEO_ENC)
13118       return;
13119 
13120    for (unsigned i = 0; i < eventCount; ++i) {
13121       VK_FROM_HANDLE(radv_event, event, pEvents[i]);
13122       uint64_t va = radv_buffer_get_va(event->bo);
13123 
13124       radv_cs_add_buffer(device->ws, cs, event->bo);
13125 
13126       ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cs, 7);
13127 
13128       radv_cp_wait_mem(cs, cmd_buffer->qf, WAIT_REG_MEM_EQUAL, va, 1, 0xffffffff);
13129       assert(cmd_buffer->cs->cdw <= cdw_max);
13130    }
13131 
13132    radv_barrier(cmd_buffer, eventCount, pDependencyInfos, RGP_BARRIER_EXTERNAL_CMD_WAIT_EVENTS);
13133 }
13134 
13135 void
radv_emit_set_predication_state(struct radv_cmd_buffer * cmd_buffer,bool draw_visible,unsigned pred_op,uint64_t va)13136 radv_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer, bool draw_visible, unsigned pred_op, uint64_t va)
13137 {
13138    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13139    const struct radv_physical_device *pdev = radv_device_physical(device);
13140    uint32_t op = 0;
13141 
13142    radeon_check_space(device->ws, cmd_buffer->cs, 4);
13143 
13144    if (va) {
13145       assert(pred_op == PREDICATION_OP_BOOL32 || pred_op == PREDICATION_OP_BOOL64);
13146 
13147       op = PRED_OP(pred_op);
13148 
13149       /* PREDICATION_DRAW_VISIBLE means that if the 32-bit value is
13150        * zero, all rendering commands are discarded. Otherwise, they
13151        * are discarded if the value is non zero.
13152        */
13153       op |= draw_visible ? PREDICATION_DRAW_VISIBLE : PREDICATION_DRAW_NOT_VISIBLE;
13154    }
13155    if (pdev->info.gfx_level >= GFX9) {
13156       radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 2, 0));
13157       radeon_emit(cmd_buffer->cs, op);
13158       radeon_emit(cmd_buffer->cs, va);
13159       radeon_emit(cmd_buffer->cs, va >> 32);
13160    } else {
13161       radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 1, 0));
13162       radeon_emit(cmd_buffer->cs, va);
13163       radeon_emit(cmd_buffer->cs, op | ((va >> 32) & 0xFF));
13164    }
13165 }
13166 
13167 void
radv_begin_conditional_rendering(struct radv_cmd_buffer * cmd_buffer,uint64_t va,bool draw_visible)13168 radv_begin_conditional_rendering(struct radv_cmd_buffer *cmd_buffer, uint64_t va, bool draw_visible)
13169 {
13170    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13171    const struct radv_physical_device *pdev = radv_device_physical(device);
13172    struct radeon_cmdbuf *cs = cmd_buffer->cs;
13173    unsigned pred_op = PREDICATION_OP_BOOL32;
13174 
13175    radv_emit_cache_flush(cmd_buffer);
13176 
13177    if (cmd_buffer->qf == RADV_QUEUE_GENERAL) {
13178       if (!pdev->info.has_32bit_predication) {
13179          uint64_t pred_value = 0, pred_va;
13180          unsigned pred_offset;
13181 
13182          /* From the Vulkan spec 1.1.107:
13183           *
13184           * "If the 32-bit value at offset in buffer memory is zero,
13185           *  then the rendering commands are discarded, otherwise they
13186           *  are executed as normal. If the value of the predicate in
13187           *  buffer memory changes while conditional rendering is
13188           *  active, the rendering commands may be discarded in an
13189           *  implementation-dependent way. Some implementations may
13190           *  latch the value of the predicate upon beginning conditional
13191           *  rendering while others may read it before every rendering
13192           *  command."
13193           *
13194           * But, the AMD hardware treats the predicate as a 64-bit
13195           * value which means we need a workaround in the driver.
13196           * Luckily, it's not required to support if the value changes
13197           * when predication is active.
13198           *
13199           * The workaround is as follows:
13200           * 1) allocate a 64-value in the upload BO and initialize it
13201           *    to 0
13202           * 2) copy the 32-bit predicate value to the upload BO
13203           * 3) use the new allocated VA address for predication
13204           *
13205           * Based on the conditionalrender demo, it's faster to do the
13206           * COPY_DATA in ME  (+ sync PFP) instead of PFP.
13207           */
13208          radv_cmd_buffer_upload_data(cmd_buffer, 8, &pred_value, &pred_offset);
13209 
13210          pred_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + pred_offset;
13211 
13212          radeon_check_space(device->ws, cmd_buffer->cs, 8);
13213 
13214          radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
13215          radeon_emit(
13216             cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
13217          radeon_emit(cs, va);
13218          radeon_emit(cs, va >> 32);
13219          radeon_emit(cs, pred_va);
13220          radeon_emit(cs, pred_va >> 32);
13221 
13222          radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
13223          radeon_emit(cs, 0);
13224 
13225          va = pred_va;
13226          pred_op = PREDICATION_OP_BOOL64;
13227       }
13228 
13229       radv_emit_set_predication_state(cmd_buffer, draw_visible, pred_op, va);
13230    } else {
13231       /* Compute queue doesn't support predication and it's emulated elsewhere. */
13232    }
13233 
13234    /* Store conditional rendering user info. */
13235    cmd_buffer->state.predicating = true;
13236    cmd_buffer->state.predication_type = draw_visible;
13237    cmd_buffer->state.predication_op = pred_op;
13238    cmd_buffer->state.predication_va = va;
13239    cmd_buffer->state.mec_inv_pred_emitted = false;
13240 }
13241 
13242 void
radv_end_conditional_rendering(struct radv_cmd_buffer * cmd_buffer)13243 radv_end_conditional_rendering(struct radv_cmd_buffer *cmd_buffer)
13244 {
13245    if (cmd_buffer->qf == RADV_QUEUE_GENERAL) {
13246       radv_emit_set_predication_state(cmd_buffer, false, 0, 0);
13247    } else {
13248       /* Compute queue doesn't support predication, no need to emit anything here. */
13249    }
13250 
13251    /* Reset conditional rendering user info. */
13252    cmd_buffer->state.predicating = false;
13253    cmd_buffer->state.predication_type = -1;
13254    cmd_buffer->state.predication_op = 0;
13255    cmd_buffer->state.predication_va = 0;
13256    cmd_buffer->state.mec_inv_pred_emitted = false;
13257 }
13258 
13259 /* VK_EXT_conditional_rendering */
13260 VKAPI_ATTR void VKAPI_CALL
radv_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer,const VkConditionalRenderingBeginInfoEXT * pConditionalRenderingBegin)13261 radv_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer,
13262                                      const VkConditionalRenderingBeginInfoEXT *pConditionalRenderingBegin)
13263 {
13264    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13265    VK_FROM_HANDLE(radv_buffer, buffer, pConditionalRenderingBegin->buffer);
13266    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13267    bool draw_visible = true;
13268    uint64_t va;
13269 
13270    va = radv_buffer_get_va(buffer->bo) + buffer->offset + pConditionalRenderingBegin->offset;
13271 
13272    radv_cs_add_buffer(device->ws, cmd_buffer->cs, buffer->bo);
13273 
13274    /* By default, if the 32-bit value at offset in buffer memory is zero,
13275     * then the rendering commands are discarded, otherwise they are
13276     * executed as normal. If the inverted flag is set, all commands are
13277     * discarded if the value is non zero.
13278     */
13279    if (pConditionalRenderingBegin->flags & VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT) {
13280       draw_visible = false;
13281    }
13282 
13283    radv_begin_conditional_rendering(cmd_buffer, va, draw_visible);
13284 }
13285 
13286 VKAPI_ATTR void VKAPI_CALL
radv_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)13287 radv_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)
13288 {
13289    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13290 
13291    radv_end_conditional_rendering(cmd_buffer);
13292 }
13293 
13294 /* VK_EXT_transform_feedback */
13295 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,uint32_t firstBinding,uint32_t bindingCount,const VkBuffer * pBuffers,const VkDeviceSize * pOffsets,const VkDeviceSize * pSizes)13296 radv_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer, uint32_t firstBinding, uint32_t bindingCount,
13297                                         const VkBuffer *pBuffers, const VkDeviceSize *pOffsets,
13298                                         const VkDeviceSize *pSizes)
13299 {
13300    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13301    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13302    struct radv_streamout_binding *sb = cmd_buffer->streamout_bindings;
13303    uint8_t enabled_mask = 0;
13304 
13305    assert(firstBinding + bindingCount <= MAX_SO_BUFFERS);
13306    for (uint32_t i = 0; i < bindingCount; i++) {
13307       uint32_t idx = firstBinding + i;
13308 
13309       sb[idx].buffer = radv_buffer_from_handle(pBuffers[i]);
13310       sb[idx].offset = pOffsets[i];
13311 
13312       if (!pSizes || pSizes[i] == VK_WHOLE_SIZE) {
13313          sb[idx].size = sb[idx].buffer->vk.size - sb[idx].offset;
13314       } else {
13315          sb[idx].size = pSizes[i];
13316       }
13317 
13318       radv_cs_add_buffer(device->ws, cmd_buffer->cs, sb[idx].buffer->bo);
13319 
13320       enabled_mask |= 1 << idx;
13321    }
13322 
13323    cmd_buffer->state.streamout.enabled_mask |= enabled_mask;
13324 
13325    cmd_buffer->state.dirty |= RADV_CMD_DIRTY_STREAMOUT_BUFFER;
13326 }
13327 
13328 static void
radv_set_streamout_enable(struct radv_cmd_buffer * cmd_buffer,bool enable)13329 radv_set_streamout_enable(struct radv_cmd_buffer *cmd_buffer, bool enable)
13330 {
13331    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13332    const struct radv_physical_device *pdev = radv_device_physical(device);
13333    struct radv_streamout_state *so = &cmd_buffer->state.streamout;
13334    bool old_streamout_enabled = radv_is_streamout_enabled(cmd_buffer);
13335    uint32_t old_hw_enabled_mask = so->hw_enabled_mask;
13336 
13337    so->streamout_enabled = enable;
13338 
13339    so->hw_enabled_mask =
13340       so->enabled_mask | (so->enabled_mask << 4) | (so->enabled_mask << 8) | (so->enabled_mask << 12);
13341 
13342    if (!pdev->use_ngg_streamout && ((old_streamout_enabled != radv_is_streamout_enabled(cmd_buffer)) ||
13343                                     (old_hw_enabled_mask != so->hw_enabled_mask)))
13344       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_STREAMOUT_ENABLE;
13345 
13346    if (pdev->use_ngg_streamout) {
13347       /* Re-emit streamout desciptors because with NGG streamout, a buffer size of 0 acts like a
13348        * disable bit and this is needed when streamout needs to be ignored in shaders.
13349        */
13350       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_SHADER_QUERY | RADV_CMD_DIRTY_STREAMOUT_BUFFER;
13351    }
13352 }
13353 
13354 static void
radv_flush_vgt_streamout(struct radv_cmd_buffer * cmd_buffer)13355 radv_flush_vgt_streamout(struct radv_cmd_buffer *cmd_buffer)
13356 {
13357    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13358    const struct radv_physical_device *pdev = radv_device_physical(device);
13359    struct radeon_cmdbuf *cs = cmd_buffer->cs;
13360    unsigned reg_strmout_cntl;
13361 
13362    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 14);
13363 
13364    /* The register is at different places on different ASICs. */
13365    if (pdev->info.gfx_level >= GFX9) {
13366       reg_strmout_cntl = R_0300FC_CP_STRMOUT_CNTL;
13367       radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0));
13368       radeon_emit(cs, S_370_DST_SEL(V_370_MEM_MAPPED_REGISTER) | S_370_ENGINE_SEL(V_370_ME));
13369       radeon_emit(cs, R_0300FC_CP_STRMOUT_CNTL >> 2);
13370       radeon_emit(cs, 0);
13371       radeon_emit(cs, 0);
13372    } else if (pdev->info.gfx_level >= GFX7) {
13373       reg_strmout_cntl = R_0300FC_CP_STRMOUT_CNTL;
13374       radeon_set_uconfig_reg(cs, reg_strmout_cntl, 0);
13375    } else {
13376       reg_strmout_cntl = R_0084FC_CP_STRMOUT_CNTL;
13377       radeon_set_config_reg(cs, reg_strmout_cntl, 0);
13378    }
13379 
13380    radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
13381    radeon_emit(cs, EVENT_TYPE(V_028A90_SO_VGTSTREAMOUT_FLUSH) | EVENT_INDEX(0));
13382 
13383    radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
13384    radeon_emit(cs, WAIT_REG_MEM_EQUAL);    /* wait until the register is equal to the reference value */
13385    radeon_emit(cs, reg_strmout_cntl >> 2); /* register */
13386    radeon_emit(cs, 0);
13387    radeon_emit(cs, S_0084FC_OFFSET_UPDATE_DONE(1)); /* reference value */
13388    radeon_emit(cs, S_0084FC_OFFSET_UPDATE_DONE(1)); /* mask */
13389    radeon_emit(cs, 4);                              /* poll interval */
13390 
13391    assert(cs->cdw <= cdw_max);
13392 }
13393 
13394 static void
radv_init_streamout_state(struct radv_cmd_buffer * cmd_buffer)13395 radv_init_streamout_state(struct radv_cmd_buffer *cmd_buffer)
13396 {
13397    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13398    const struct radv_physical_device *pdev = radv_device_physical(device);
13399    struct radv_streamout_state *so = &cmd_buffer->state.streamout;
13400    unsigned offset;
13401    void *ptr;
13402 
13403    assert(pdev->info.gfx_level >= GFX12);
13404 
13405    /* The layout is:
13406     *    struct {
13407     *       struct {
13408     *          uint32_t ordered_id; // equal for all buffers
13409     *          uint32_t dwords_written;
13410     *       } buffer[4];
13411     *    };
13412     *
13413     * The buffer must be initialized to 0 and the address must be aligned to 64
13414     * because it's faster when the atomic doesn't straddle a 64B block boundary.
13415     */
13416    if (!radv_cmd_buffer_upload_alloc_aligned(cmd_buffer, MAX_SO_BUFFERS * 8, 64, &offset, &ptr))
13417       return;
13418 
13419    memset(ptr, 0, MAX_SO_BUFFERS * 8);
13420 
13421    so->state_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
13422    so->state_va += offset;
13423 
13424    /* GE must be idle when GE_GS_ORDERED_ID is written. */
13425    cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VS_PARTIAL_FLUSH;
13426    radv_emit_cache_flush(cmd_buffer);
13427 
13428    /* Reset the ordered ID for the next GS workgroup to 0 because it must be
13429     * equal to the 4 ordered IDs in the layout.
13430     */
13431    radeon_set_uconfig_reg(cmd_buffer->cs, R_0309B0_GE_GS_ORDERED_ID_BASE, 0);
13432 }
13433 
13434 VKAPI_ATTR void VKAPI_CALL
radv_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,uint32_t firstCounterBuffer,uint32_t counterBufferCount,const VkBuffer * pCounterBuffers,const VkDeviceSize * pCounterBufferOffsets)13435 radv_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer, uint32_t firstCounterBuffer,
13436                                   uint32_t counterBufferCount, const VkBuffer *pCounterBuffers,
13437                                   const VkDeviceSize *pCounterBufferOffsets)
13438 {
13439    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13440    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13441    const struct radv_physical_device *pdev = radv_device_physical(device);
13442    struct radv_streamout_binding *sb = cmd_buffer->streamout_bindings;
13443    struct radv_streamout_state *so = &cmd_buffer->state.streamout;
13444    struct radeon_cmdbuf *cs = cmd_buffer->cs;
13445 
13446    assert(firstCounterBuffer + counterBufferCount <= MAX_SO_BUFFERS);
13447 
13448    if (pdev->info.gfx_level >= GFX12)
13449       radv_init_streamout_state(cmd_buffer);
13450    else if (!pdev->use_ngg_streamout)
13451       radv_flush_vgt_streamout(cmd_buffer);
13452 
13453    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, MAX_SO_BUFFERS * 10);
13454 
13455    u_foreach_bit (i, so->enabled_mask) {
13456       int32_t counter_buffer_idx = i - firstCounterBuffer;
13457       if (counter_buffer_idx >= 0 && counter_buffer_idx >= counterBufferCount)
13458          counter_buffer_idx = -1;
13459 
13460       bool append = counter_buffer_idx >= 0 && pCounterBuffers && pCounterBuffers[counter_buffer_idx];
13461       uint64_t va = 0;
13462 
13463       if (append) {
13464          VK_FROM_HANDLE(radv_buffer, buffer, pCounterBuffers[counter_buffer_idx]);
13465          uint64_t counter_buffer_offset = 0;
13466 
13467          if (pCounterBufferOffsets)
13468             counter_buffer_offset = pCounterBufferOffsets[counter_buffer_idx];
13469 
13470          va += radv_buffer_get_va(buffer->bo);
13471          va += buffer->offset + counter_buffer_offset;
13472 
13473          radv_cs_add_buffer(device->ws, cs, buffer->bo);
13474       }
13475 
13476       if (pdev->info.gfx_level >= GFX12) {
13477          if (append) {
13478             radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
13479             radeon_emit(
13480                cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
13481             radeon_emit(cs, va);
13482             radeon_emit(cs, va >> 32);
13483             radeon_emit(cs, (so->state_va + i * 8 + 4));
13484             radeon_emit(cs, (so->state_va + i * 8 + 4) >> 32);
13485          }
13486       } else if (pdev->use_ngg_streamout) {
13487          if (append) {
13488             radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
13489             radeon_emit(cs,
13490                         COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) | COPY_DATA_WR_CONFIRM);
13491             radeon_emit(cs, va);
13492             radeon_emit(cs, va >> 32);
13493             radeon_emit(cs, (R_031088_GDS_STRMOUT_DWORDS_WRITTEN_0 >> 2) + i);
13494             radeon_emit(cs, 0);
13495          } else {
13496             /* The PKT3 CAM bit workaround seems needed for initializing this GDS register to zero. */
13497             radeon_set_uconfig_perfctr_reg(pdev->info.gfx_level, cmd_buffer->qf, cs,
13498                                            R_031088_GDS_STRMOUT_DWORDS_WRITTEN_0 + i * 4, 0);
13499          }
13500       } else {
13501          /* AMD GCN binds streamout buffers as shader resources.
13502           * VGT only counts primitives and tells the shader through
13503           * SGPRs what to do.
13504           */
13505          radeon_set_context_reg(cs, R_028AD0_VGT_STRMOUT_BUFFER_SIZE_0 + 16 * i, sb[i].size >> 2);
13506 
13507          cmd_buffer->state.context_roll_without_scissor_emitted = true;
13508 
13509          if (append) {
13510             radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0));
13511             radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_DATA_TYPE(1) |   /* offset in bytes */
13512                                STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_FROM_MEM)); /* control */
13513             radeon_emit(cs, 0);                                                 /* unused */
13514             radeon_emit(cs, 0);                                                 /* unused */
13515             radeon_emit(cs, va);                                                /* src address lo */
13516             radeon_emit(cs, va >> 32);                                          /* src address hi */
13517          } else {
13518             /* Start from the beginning. */
13519             radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0));
13520             radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_DATA_TYPE(1) |      /* offset in bytes */
13521                                STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_FROM_PACKET)); /* control */
13522             radeon_emit(cs, 0);                                                    /* unused */
13523             radeon_emit(cs, 0);                                                    /* unused */
13524             radeon_emit(cs, 0);                                                    /* unused */
13525             radeon_emit(cs, 0);                                                    /* unused */
13526          }
13527       }
13528    }
13529 
13530    assert(cs->cdw <= cdw_max);
13531 
13532    radv_set_streamout_enable(cmd_buffer, true);
13533 
13534    if (!pdev->use_ngg_streamout)
13535       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_STREAMOUT_ENABLE;
13536 }
13537 
13538 VKAPI_ATTR void VKAPI_CALL
radv_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,uint32_t firstCounterBuffer,uint32_t counterBufferCount,const VkBuffer * pCounterBuffers,const VkDeviceSize * pCounterBufferOffsets)13539 radv_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer, uint32_t firstCounterBuffer, uint32_t counterBufferCount,
13540                                 const VkBuffer *pCounterBuffers, const VkDeviceSize *pCounterBufferOffsets)
13541 {
13542    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13543    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13544    const struct radv_physical_device *pdev = radv_device_physical(device);
13545    struct radv_streamout_state *so = &cmd_buffer->state.streamout;
13546    struct radeon_cmdbuf *cs = cmd_buffer->cs;
13547 
13548    assert(firstCounterBuffer + counterBufferCount <= MAX_SO_BUFFERS);
13549 
13550    if (pdev->use_ngg_streamout) {
13551       /* Wait for streamout to finish before copying back the number of bytes
13552        * written.
13553        */
13554       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VS_PARTIAL_FLUSH;
13555       if (pdev->info.cp_sdma_ge_use_system_memory_scope)
13556          cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_INV_L2;
13557 
13558       radv_emit_cache_flush(cmd_buffer);
13559    } else {
13560       radv_flush_vgt_streamout(cmd_buffer);
13561    }
13562 
13563    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, MAX_SO_BUFFERS * 12);
13564 
13565    u_foreach_bit (i, so->enabled_mask) {
13566       int32_t counter_buffer_idx = i - firstCounterBuffer;
13567       if (counter_buffer_idx >= 0 && counter_buffer_idx >= counterBufferCount)
13568          counter_buffer_idx = -1;
13569 
13570       bool append = counter_buffer_idx >= 0 && pCounterBuffers && pCounterBuffers[counter_buffer_idx];
13571       uint64_t va = 0;
13572 
13573       if (append) {
13574          VK_FROM_HANDLE(radv_buffer, buffer, pCounterBuffers[counter_buffer_idx]);
13575          uint64_t counter_buffer_offset = 0;
13576 
13577          if (pCounterBufferOffsets)
13578             counter_buffer_offset = pCounterBufferOffsets[counter_buffer_idx];
13579 
13580          va += radv_buffer_get_va(buffer->bo);
13581          va += buffer->offset + counter_buffer_offset;
13582 
13583          radv_cs_add_buffer(device->ws, cs, buffer->bo);
13584       }
13585 
13586       if (pdev->info.gfx_level >= GFX12) {
13587          if (append) {
13588             radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
13589             radeon_emit(
13590                cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
13591             radeon_emit(cs, (so->state_va + i * 8 + 4));
13592             radeon_emit(cs, (so->state_va + i * 8 + 4) >> 32);
13593             radeon_emit(cs, va);
13594             radeon_emit(cs, va >> 32);
13595          }
13596       } else if (pdev->use_ngg_streamout) {
13597          if (append) {
13598             radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
13599             radeon_emit(cs,
13600                         COPY_DATA_SRC_SEL(COPY_DATA_REG) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
13601             radeon_emit(cs, (R_031088_GDS_STRMOUT_DWORDS_WRITTEN_0 >> 2) + i);
13602             radeon_emit(cs, 0);
13603             radeon_emit(cs, va);
13604             radeon_emit(cs, va >> 32);
13605          }
13606       } else {
13607          if (append) {
13608             radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0));
13609             radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_DATA_TYPE(1) | /* offset in bytes */
13610                                STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_NONE) |
13611                                STRMOUT_STORE_BUFFER_FILLED_SIZE); /* control */
13612             radeon_emit(cs, va);                                  /* dst address lo */
13613             radeon_emit(cs, va >> 32);                            /* dst address hi */
13614             radeon_emit(cs, 0);                                   /* unused */
13615             radeon_emit(cs, 0);                                   /* unused */
13616          }
13617 
13618          /* Deactivate transform feedback by zeroing the buffer size.
13619           * The counters (primitives generated, primitives emitted) may
13620           * be enabled even if there is not buffer bound. This ensures
13621           * that the primitives-emitted query won't increment.
13622           */
13623          radeon_set_context_reg(cs, R_028AD0_VGT_STRMOUT_BUFFER_SIZE_0 + 16 * i, 0);
13624 
13625          cmd_buffer->state.context_roll_without_scissor_emitted = true;
13626       }
13627    }
13628 
13629    assert(cmd_buffer->cs->cdw <= cdw_max);
13630 
13631    radv_set_streamout_enable(cmd_buffer, false);
13632 }
13633 
13634 static void
radv_emit_strmout_buffer(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * draw_info,uint32_t counter_offset)13635 radv_emit_strmout_buffer(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *draw_info,
13636                          uint32_t counter_offset)
13637 {
13638    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13639    const struct radv_physical_device *pdev = radv_device_physical(device);
13640    const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
13641    uint64_t va = radv_buffer_get_va(draw_info->strmout_buffer->bo);
13642    struct radeon_cmdbuf *cs = cmd_buffer->cs;
13643 
13644    va += draw_info->strmout_buffer->offset + draw_info->strmout_buffer_offset;
13645 
13646    radeon_set_context_reg(cs, R_028B30_VGT_STRMOUT_DRAW_OPAQUE_VERTEX_STRIDE, draw_info->stride);
13647 
13648    if (gfx_level >= GFX10) {
13649       /* Emitting a COPY_DATA packet should be enough because RADV doesn't support preemption
13650        * (shadow memory) but for unknown reasons, it can lead to GPU hangs on GFX10+.
13651        */
13652       radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
13653       radeon_emit(cs, 0);
13654 
13655       radeon_emit(cs, PKT3(PKT3_LOAD_CONTEXT_REG_INDEX, 3, 0));
13656       radeon_emit(cs, va);
13657       radeon_emit(cs, va >> 32);
13658       radeon_emit(cs, (R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE - SI_CONTEXT_REG_OFFSET) >> 2);
13659       radeon_emit(cs, 1); /* 1 DWORD */
13660    } else {
13661       radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
13662       radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) | COPY_DATA_WR_CONFIRM);
13663       radeon_emit(cs, va);
13664       radeon_emit(cs, va >> 32);
13665       radeon_emit(cs, R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE >> 2);
13666       radeon_emit(cs, 0); /* unused */
13667    }
13668 
13669    radeon_set_context_reg(cs, R_028B28_VGT_STRMOUT_DRAW_OPAQUE_OFFSET, counter_offset);
13670 
13671    radv_cs_add_buffer(device->ws, cs, draw_info->strmout_buffer->bo);
13672 }
13673 
13674 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,uint32_t instanceCount,uint32_t firstInstance,VkBuffer _counterBuffer,VkDeviceSize counterBufferOffset,uint32_t counterOffset,uint32_t vertexStride)13675 radv_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer, uint32_t instanceCount, uint32_t firstInstance,
13676                                  VkBuffer _counterBuffer, VkDeviceSize counterBufferOffset, uint32_t counterOffset,
13677                                  uint32_t vertexStride)
13678 {
13679    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13680    VK_FROM_HANDLE(radv_buffer, counterBuffer, _counterBuffer);
13681    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13682    const struct radv_physical_device *pdev = radv_device_physical(device);
13683    struct radv_draw_info info;
13684 
13685    info.count = 0;
13686    info.instance_count = instanceCount;
13687    info.first_instance = firstInstance;
13688    info.strmout_buffer = counterBuffer;
13689    info.strmout_buffer_offset = counterBufferOffset;
13690    info.stride = vertexStride;
13691    info.indexed = false;
13692    info.indirect = NULL;
13693 
13694    if (!radv_before_draw(cmd_buffer, &info, 1, false))
13695       return;
13696    struct VkMultiDrawInfoEXT minfo = {0, 0};
13697    radv_emit_strmout_buffer(cmd_buffer, &info, counterOffset);
13698    radv_emit_direct_draw_packets(cmd_buffer, &info, 1, &minfo, S_0287F0_USE_OPAQUE(1), 0);
13699 
13700    if (pdev->info.gfx_level == GFX12) {
13701       /* DrawTransformFeedback requires 3 SQ_NON_EVENTs after the packet. */
13702       for (unsigned i = 0; i < 3; i++) {
13703          radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
13704          radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_SQ_NON_EVENT) | EVENT_INDEX(0));
13705       }
13706    }
13707 
13708    radv_after_draw(cmd_buffer, false);
13709 }
13710 
13711 /* VK_AMD_buffer_marker */
13712 VKAPI_ATTR void VKAPI_CALL
radv_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer,VkPipelineStageFlags2 stage,VkBuffer dstBuffer,VkDeviceSize dstOffset,uint32_t marker)13713 radv_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer, VkPipelineStageFlags2 stage, VkBuffer dstBuffer,
13714                               VkDeviceSize dstOffset, uint32_t marker)
13715 {
13716    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13717    VK_FROM_HANDLE(radv_buffer, buffer, dstBuffer);
13718    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13719    const struct radv_physical_device *pdev = radv_device_physical(device);
13720    struct radeon_cmdbuf *cs = cmd_buffer->cs;
13721    const uint64_t va = radv_buffer_get_va(buffer->bo) + buffer->offset + dstOffset;
13722 
13723    radv_cs_add_buffer(device->ws, cs, buffer->bo);
13724 
13725    if (cmd_buffer->qf == RADV_QUEUE_TRANSFER) {
13726       radeon_check_space(device->ws, cmd_buffer->cs, 4);
13727       radeon_emit(cmd_buffer->cs, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, SDMA_FENCE_MTYPE_UC));
13728       radeon_emit(cs, va);
13729       radeon_emit(cs, va >> 32);
13730       radeon_emit(cs, marker);
13731       return;
13732    }
13733 
13734    radv_emit_cache_flush(cmd_buffer);
13735 
13736    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 12);
13737 
13738    if (!(stage & ~VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT)) {
13739       radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
13740       radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
13741       radeon_emit(cs, marker);
13742       radeon_emit(cs, 0);
13743       radeon_emit(cs, va);
13744       radeon_emit(cs, va >> 32);
13745    } else {
13746       radv_cs_emit_write_event_eop(cs, pdev->info.gfx_level, cmd_buffer->qf, V_028A90_BOTTOM_OF_PIPE_TS, 0,
13747                                    EOP_DST_SEL_MEM, EOP_DATA_SEL_VALUE_32BIT, va, marker, cmd_buffer->gfx9_eop_bug_va);
13748    }
13749 
13750    assert(cmd_buffer->cs->cdw <= cdw_max);
13751 }
13752 
13753 /* VK_EXT_descriptor_buffer */
13754 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindDescriptorBuffersEXT(VkCommandBuffer commandBuffer,uint32_t bufferCount,const VkDescriptorBufferBindingInfoEXT * pBindingInfos)13755 radv_CmdBindDescriptorBuffersEXT(VkCommandBuffer commandBuffer, uint32_t bufferCount,
13756                                  const VkDescriptorBufferBindingInfoEXT *pBindingInfos)
13757 {
13758    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13759 
13760    for (uint32_t i = 0; i < bufferCount; i++) {
13761       cmd_buffer->descriptor_buffers[i] = pBindingInfos[i].address;
13762    }
13763 }
13764 
13765 static void
radv_set_descriptor_buffer_offsets(struct radv_cmd_buffer * cmd_buffer,const VkSetDescriptorBufferOffsetsInfoEXT * pSetDescriptorBufferOffsetsInfo,VkPipelineBindPoint bind_point)13766 radv_set_descriptor_buffer_offsets(struct radv_cmd_buffer *cmd_buffer,
13767                                    const VkSetDescriptorBufferOffsetsInfoEXT *pSetDescriptorBufferOffsetsInfo,
13768                                    VkPipelineBindPoint bind_point)
13769 {
13770    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
13771 
13772    for (unsigned i = 0; i < pSetDescriptorBufferOffsetsInfo->setCount; i++) {
13773       const uint32_t buffer_idx = pSetDescriptorBufferOffsetsInfo->pBufferIndices[i];
13774       const uint64_t offset = pSetDescriptorBufferOffsetsInfo->pOffsets[i];
13775       unsigned idx = i + pSetDescriptorBufferOffsetsInfo->firstSet;
13776 
13777       descriptors_state->descriptor_buffers[idx] = cmd_buffer->descriptor_buffers[buffer_idx] + offset;
13778 
13779       radv_set_descriptor_set(cmd_buffer, bind_point, NULL, idx);
13780    }
13781 }
13782 
13783 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDescriptorBufferOffsets2EXT(VkCommandBuffer commandBuffer,const VkSetDescriptorBufferOffsetsInfoEXT * pSetDescriptorBufferOffsetsInfo)13784 radv_CmdSetDescriptorBufferOffsets2EXT(VkCommandBuffer commandBuffer,
13785                                        const VkSetDescriptorBufferOffsetsInfoEXT *pSetDescriptorBufferOffsetsInfo)
13786 {
13787    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13788 
13789    if (pSetDescriptorBufferOffsetsInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) {
13790       radv_set_descriptor_buffer_offsets(cmd_buffer, pSetDescriptorBufferOffsetsInfo, VK_PIPELINE_BIND_POINT_COMPUTE);
13791    }
13792 
13793    if (pSetDescriptorBufferOffsetsInfo->stageFlags & RADV_GRAPHICS_STAGE_BITS) {
13794       radv_set_descriptor_buffer_offsets(cmd_buffer, pSetDescriptorBufferOffsetsInfo, VK_PIPELINE_BIND_POINT_GRAPHICS);
13795    }
13796 
13797    if (pSetDescriptorBufferOffsetsInfo->stageFlags & RADV_RT_STAGE_BITS) {
13798       radv_set_descriptor_buffer_offsets(cmd_buffer, pSetDescriptorBufferOffsetsInfo,
13799                                          VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
13800    }
13801 }
13802 
13803 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindDescriptorBufferEmbeddedSamplers2EXT(VkCommandBuffer commandBuffer,const VkBindDescriptorBufferEmbeddedSamplersInfoEXT * pBindDescriptorBufferEmbeddedSamplersInfo)13804 radv_CmdBindDescriptorBufferEmbeddedSamplers2EXT(
13805    VkCommandBuffer commandBuffer,
13806    const VkBindDescriptorBufferEmbeddedSamplersInfoEXT *pBindDescriptorBufferEmbeddedSamplersInfo)
13807 {
13808    /* This is a no-op because embedded samplers are inlined at compile time. */
13809 }
13810 
13811 /* VK_EXT_shader_object */
13812 static void
radv_reset_pipeline_state(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint pipelineBindPoint)13813 radv_reset_pipeline_state(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint pipelineBindPoint)
13814 {
13815    switch (pipelineBindPoint) {
13816    case VK_PIPELINE_BIND_POINT_COMPUTE:
13817       if (cmd_buffer->state.compute_pipeline) {
13818          radv_bind_shader(cmd_buffer, NULL, MESA_SHADER_COMPUTE);
13819          cmd_buffer->state.compute_pipeline = NULL;
13820       }
13821       if (cmd_buffer->state.emitted_compute_pipeline) {
13822          cmd_buffer->state.emitted_compute_pipeline = NULL;
13823       }
13824       break;
13825    case VK_PIPELINE_BIND_POINT_GRAPHICS:
13826       if (cmd_buffer->state.graphics_pipeline) {
13827          radv_foreach_stage(s, cmd_buffer->state.graphics_pipeline->active_stages)
13828          {
13829             radv_bind_shader(cmd_buffer, NULL, s);
13830          }
13831          cmd_buffer->state.graphics_pipeline = NULL;
13832 
13833          cmd_buffer->state.gs_copy_shader = NULL;
13834          cmd_buffer->state.last_vgt_shader = NULL;
13835          cmd_buffer->state.emitted_vs_prolog = NULL;
13836          cmd_buffer->state.ms.sample_shading_enable = false;
13837          cmd_buffer->state.ms.min_sample_shading = 1.0f;
13838          cmd_buffer->state.rast_prim = 0;
13839          cmd_buffer->state.uses_out_of_order_rast = false;
13840          cmd_buffer->state.uses_vrs_attachment = false;
13841       }
13842       if (cmd_buffer->state.emitted_graphics_pipeline) {
13843          radv_bind_custom_blend_mode(cmd_buffer, 0);
13844 
13845          if (cmd_buffer->state.db_render_control) {
13846             cmd_buffer->state.db_render_control = 0;
13847             cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER;
13848          }
13849 
13850          if (cmd_buffer->state.spi_shader_col_format || cmd_buffer->state.spi_shader_z_format ||
13851              cmd_buffer->state.cb_shader_mask) {
13852             cmd_buffer->state.spi_shader_col_format = 0;
13853             cmd_buffer->state.spi_shader_z_format = 0;
13854             cmd_buffer->state.cb_shader_mask = 0;
13855             cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAGMENT_OUTPUT;
13856          }
13857 
13858          cmd_buffer->state.uses_vrs = false;
13859          cmd_buffer->state.uses_vrs_coarse_shading = false;
13860 
13861          cmd_buffer->state.emitted_graphics_pipeline = NULL;
13862       }
13863       break;
13864    default:
13865       break;
13866    }
13867 
13868    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_PIPELINE;
13869 }
13870 
13871 static void
radv_bind_compute_shader(struct radv_cmd_buffer * cmd_buffer,struct radv_shader_object * shader_obj)13872 radv_bind_compute_shader(struct radv_cmd_buffer *cmd_buffer, struct radv_shader_object *shader_obj)
13873 {
13874    struct radv_shader *shader = shader_obj ? shader_obj->shader : NULL;
13875    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13876    const struct radv_physical_device *pdev = radv_device_physical(device);
13877    struct radeon_cmdbuf *cs = cmd_buffer->cs;
13878 
13879    radv_bind_shader(cmd_buffer, shader, MESA_SHADER_COMPUTE);
13880 
13881    if (!shader_obj)
13882       return;
13883 
13884    ASSERTED const unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 128);
13885 
13886    radv_emit_compute_shader(pdev, cs, shader);
13887 
13888    /* Update push constants/indirect descriptors state. */
13889    struct radv_descriptor_state *descriptors_state =
13890       radv_get_descriptors_state(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE);
13891    struct radv_push_constant_state *pc_state = &cmd_buffer->push_constant_state[VK_PIPELINE_BIND_POINT_COMPUTE];
13892 
13893    descriptors_state->need_indirect_descriptor_sets =
13894       radv_get_user_sgpr_info(shader, AC_UD_INDIRECT_DESCRIPTOR_SETS)->sgpr_idx != -1;
13895    pc_state->size = shader_obj->push_constant_size;
13896    pc_state->dynamic_offset_count = shader_obj->dynamic_offset_count;
13897 
13898    assert(cmd_buffer->cs->cdw <= cdw_max);
13899 }
13900 
13901 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindShadersEXT(VkCommandBuffer commandBuffer,uint32_t stageCount,const VkShaderStageFlagBits * pStages,const VkShaderEXT * pShaders)13902 radv_CmdBindShadersEXT(VkCommandBuffer commandBuffer, uint32_t stageCount, const VkShaderStageFlagBits *pStages,
13903                        const VkShaderEXT *pShaders)
13904 {
13905    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13906    VkShaderStageFlagBits bound_stages = 0;
13907 
13908    for (uint32_t i = 0; i < stageCount; i++) {
13909       const gl_shader_stage stage = vk_to_mesa_shader_stage(pStages[i]);
13910 
13911       if (!pShaders) {
13912          cmd_buffer->state.shader_objs[stage] = NULL;
13913          continue;
13914       }
13915 
13916       VK_FROM_HANDLE(radv_shader_object, shader_obj, pShaders[i]);
13917 
13918       cmd_buffer->state.shader_objs[stage] = shader_obj;
13919 
13920       bound_stages |= pStages[i];
13921    }
13922 
13923    if (bound_stages & VK_SHADER_STAGE_COMPUTE_BIT) {
13924       radv_reset_pipeline_state(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE);
13925       radv_mark_descriptor_sets_dirty(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE);
13926 
13927       radv_bind_compute_shader(cmd_buffer, cmd_buffer->state.shader_objs[MESA_SHADER_COMPUTE]);
13928    }
13929 
13930    if (bound_stages & RADV_GRAPHICS_STAGE_BITS) {
13931       radv_reset_pipeline_state(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
13932       radv_mark_descriptor_sets_dirty(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
13933 
13934       /* Graphics shaders are handled at draw time because of shader variants. */
13935    }
13936 
13937    cmd_buffer->state.dirty |= RADV_CMD_DIRTY_GRAPHICS_SHADERS;
13938 }
13939 
13940 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCoverageModulationModeNV(VkCommandBuffer commandBuffer,VkCoverageModulationModeNV coverageModulationMode)13941 radv_CmdSetCoverageModulationModeNV(VkCommandBuffer commandBuffer, VkCoverageModulationModeNV coverageModulationMode)
13942 {
13943    unreachable("Not supported by RADV.");
13944 }
13945 
13946 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCoverageModulationTableEnableNV(VkCommandBuffer commandBuffer,VkBool32 coverageModulationTableEnable)13947 radv_CmdSetCoverageModulationTableEnableNV(VkCommandBuffer commandBuffer, VkBool32 coverageModulationTableEnable)
13948 {
13949    unreachable("Not supported by RADV.");
13950 }
13951 
13952 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCoverageModulationTableNV(VkCommandBuffer commandBuffer,uint32_t coverageModulationTableCount,const float * pCoverageModulationTable)13953 radv_CmdSetCoverageModulationTableNV(VkCommandBuffer commandBuffer, uint32_t coverageModulationTableCount,
13954                                      const float *pCoverageModulationTable)
13955 {
13956    unreachable("Not supported by RADV.");
13957 }
13958 
13959 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCoverageReductionModeNV(VkCommandBuffer commandBuffer,VkCoverageReductionModeNV coverageReductionMode)13960 radv_CmdSetCoverageReductionModeNV(VkCommandBuffer commandBuffer, VkCoverageReductionModeNV coverageReductionMode)
13961 {
13962    unreachable("Not supported by RADV.");
13963 }
13964 
13965 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCoverageToColorEnableNV(VkCommandBuffer commandBuffer,VkBool32 coverageToColorEnable)13966 radv_CmdSetCoverageToColorEnableNV(VkCommandBuffer commandBuffer, VkBool32 coverageToColorEnable)
13967 {
13968    unreachable("Not supported by RADV.");
13969 }
13970 
13971 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCoverageToColorLocationNV(VkCommandBuffer commandBuffer,uint32_t coverageToColorLocation)13972 radv_CmdSetCoverageToColorLocationNV(VkCommandBuffer commandBuffer, uint32_t coverageToColorLocation)
13973 {
13974    unreachable("Not supported by RADV.");
13975 }
13976 
13977 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRepresentativeFragmentTestEnableNV(VkCommandBuffer commandBuffer,VkBool32 representativeFragmentTestEnable)13978 radv_CmdSetRepresentativeFragmentTestEnableNV(VkCommandBuffer commandBuffer, VkBool32 representativeFragmentTestEnable)
13979 {
13980    unreachable("Not supported by RADV.");
13981 }
13982 
13983 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetShadingRateImageEnableNV(VkCommandBuffer commandBuffer,VkBool32 shadingRateImageEnable)13984 radv_CmdSetShadingRateImageEnableNV(VkCommandBuffer commandBuffer, VkBool32 shadingRateImageEnable)
13985 {
13986    unreachable("Not supported by RADV.");
13987 }
13988 
13989 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetViewportSwizzleNV(VkCommandBuffer commandBuffer,uint32_t firstViewport,uint32_t viewportCount,const VkViewportSwizzleNV * pViewportSwizzles)13990 radv_CmdSetViewportSwizzleNV(VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount,
13991                              const VkViewportSwizzleNV *pViewportSwizzles)
13992 {
13993    unreachable("Not supported by RADV.");
13994 }
13995 
13996 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetViewportWScalingEnableNV(VkCommandBuffer commandBuffer,VkBool32 viewportWScalingEnable)13997 radv_CmdSetViewportWScalingEnableNV(VkCommandBuffer commandBuffer, VkBool32 viewportWScalingEnable)
13998 {
13999    unreachable("Not supported by RADV.");
14000 }
14001 
14002 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthClampRangeEXT(VkCommandBuffer commandBuffer,VkDepthClampModeEXT depthClampMode,const VkDepthClampRangeEXT * pDepthClampRange)14003 radv_CmdSetDepthClampRangeEXT(VkCommandBuffer commandBuffer, VkDepthClampModeEXT depthClampMode,
14004                               const VkDepthClampRangeEXT *pDepthClampRange)
14005 {
14006    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
14007    struct radv_cmd_state *state = &cmd_buffer->state;
14008 
14009    state->dynamic.vk.vp.depth_clamp_mode = depthClampMode;
14010    if (depthClampMode == VK_DEPTH_CLAMP_MODE_USER_DEFINED_RANGE_EXT) {
14011       state->dynamic.vk.vp.depth_clamp_range = *pDepthClampRange;
14012    }
14013 
14014    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_CLAMP_RANGE;
14015 }
14016