• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! Finds crate binaries and loads their metadata
2 //!
3 //! Might I be the first to welcome you to a world of platform differences,
4 //! version requirements, dependency graphs, conflicting desires, and fun! This
5 //! is the major guts (along with metadata::creader) of the compiler for loading
6 //! crates and resolving dependencies. Let's take a tour!
7 //!
8 //! # The problem
9 //!
10 //! Each invocation of the compiler is immediately concerned with one primary
11 //! problem, to connect a set of crates to resolved crates on the filesystem.
12 //! Concretely speaking, the compiler follows roughly these steps to get here:
13 //!
14 //! 1. Discover a set of `extern crate` statements.
15 //! 2. Transform these directives into crate names. If the directive does not
16 //!    have an explicit name, then the identifier is the name.
17 //! 3. For each of these crate names, find a corresponding crate on the
18 //!    filesystem.
19 //!
20 //! Sounds easy, right? Let's walk into some of the nuances.
21 //!
22 //! ## Transitive Dependencies
23 //!
24 //! Let's say we've got three crates: A, B, and C. A depends on B, and B depends
25 //! on C. When we're compiling A, we primarily need to find and locate B, but we
26 //! also end up needing to find and locate C as well.
27 //!
28 //! The reason for this is that any of B's types could be composed of C's types,
29 //! any function in B could return a type from C, etc. To be able to guarantee
30 //! that we can always type-check/translate any function, we have to have
31 //! complete knowledge of the whole ecosystem, not just our immediate
32 //! dependencies.
33 //!
34 //! So now as part of the "find a corresponding crate on the filesystem" step
35 //! above, this involves also finding all crates for *all upstream
36 //! dependencies*. This includes all dependencies transitively.
37 //!
38 //! ## Rlibs and Dylibs
39 //!
40 //! The compiler has two forms of intermediate dependencies. These are dubbed
41 //! rlibs and dylibs for the static and dynamic variants, respectively. An rlib
42 //! is a rustc-defined file format (currently just an ar archive) while a dylib
43 //! is a platform-defined dynamic library. Each library has a metadata somewhere
44 //! inside of it.
45 //!
46 //! A third kind of dependency is an rmeta file. These are metadata files and do
47 //! not contain any code, etc. To a first approximation, these are treated in the
48 //! same way as rlibs. Where there is both an rlib and an rmeta file, the rlib
49 //! gets priority (even if the rmeta file is newer). An rmeta file is only
50 //! useful for checking a downstream crate, attempting to link one will cause an
51 //! error.
52 //!
53 //! When translating a crate name to a crate on the filesystem, we all of a
54 //! sudden need to take into account both rlibs and dylibs! Linkage later on may
55 //! use either one of these files, as each has their pros/cons. The job of crate
56 //! loading is to discover what's possible by finding all candidates.
57 //!
58 //! Most parts of this loading systems keep the dylib/rlib as just separate
59 //! variables.
60 //!
61 //! ## Where to look?
62 //!
63 //! We can't exactly scan your whole hard drive when looking for dependencies,
64 //! so we need to places to look. Currently the compiler will implicitly add the
65 //! target lib search path ($prefix/lib/rustlib/$target/lib) to any compilation,
66 //! and otherwise all -L flags are added to the search paths.
67 //!
68 //! ## What criterion to select on?
69 //!
70 //! This is a pretty tricky area of loading crates. Given a file, how do we know
71 //! whether it's the right crate? Currently, the rules look along these lines:
72 //!
73 //! 1. Does the filename match an rlib/dylib pattern? That is to say, does the
74 //!    filename have the right prefix/suffix?
75 //! 2. Does the filename have the right prefix for the crate name being queried?
76 //!    This is filtering for files like `libfoo*.rlib` and such. If the crate
77 //!    we're looking for was originally compiled with -C extra-filename, the
78 //!    extra filename will be included in this prefix to reduce reading
79 //!    metadata from crates that would otherwise share our prefix.
80 //! 3. Is the file an actual rust library? This is done by loading the metadata
81 //!    from the library and making sure it's actually there.
82 //! 4. Does the name in the metadata agree with the name of the library?
83 //! 5. Does the target in the metadata agree with the current target?
84 //! 6. Does the SVH match? (more on this later)
85 //!
86 //! If the file answers `yes` to all these questions, then the file is
87 //! considered as being *candidate* for being accepted. It is illegal to have
88 //! more than two candidates as the compiler has no method by which to resolve
89 //! this conflict. Additionally, rlib/dylib candidates are considered
90 //! separately.
91 //!
92 //! After all this has happened, we have 1 or two files as candidates. These
93 //! represent the rlib/dylib file found for a library, and they're returned as
94 //! being found.
95 //!
96 //! ### What about versions?
97 //!
98 //! A lot of effort has been put forth to remove versioning from the compiler.
99 //! There have been forays in the past to have versioning baked in, but it was
100 //! largely always deemed insufficient to the point that it was recognized that
101 //! it's probably something the compiler shouldn't do anyway due to its
102 //! complicated nature and the state of the half-baked solutions.
103 //!
104 //! With a departure from versioning, the primary criterion for loading crates
105 //! is just the name of a crate. If we stopped here, it would imply that you
106 //! could never link two crates of the same name from different sources
107 //! together, which is clearly a bad state to be in.
108 //!
109 //! To resolve this problem, we come to the next section!
110 //!
111 //! # Expert Mode
112 //!
113 //! A number of flags have been added to the compiler to solve the "version
114 //! problem" in the previous section, as well as generally enabling more
115 //! powerful usage of the crate loading system of the compiler. The goal of
116 //! these flags and options are to enable third-party tools to drive the
117 //! compiler with prior knowledge about how the world should look.
118 //!
119 //! ## The `--extern` flag
120 //!
121 //! The compiler accepts a flag of this form a number of times:
122 //!
123 //! ```text
124 //! --extern crate-name=path/to/the/crate.rlib
125 //! ```
126 //!
127 //! This flag is basically the following letter to the compiler:
128 //!
129 //! > Dear rustc,
130 //! >
131 //! > When you are attempting to load the immediate dependency `crate-name`, I
132 //! > would like you to assume that the library is located at
133 //! > `path/to/the/crate.rlib`, and look nowhere else. Also, please do not
134 //! > assume that the path I specified has the name `crate-name`.
135 //!
136 //! This flag basically overrides most matching logic except for validating that
137 //! the file is indeed a rust library. The same `crate-name` can be specified
138 //! twice to specify the rlib/dylib pair.
139 //!
140 //! ## Enabling "multiple versions"
141 //!
142 //! This basically boils down to the ability to specify arbitrary packages to
143 //! the compiler. For example, if crate A wanted to use Bv1 and Bv2, then it
144 //! would look something like:
145 //!
146 //! ```compile_fail,E0463
147 //! extern crate b1;
148 //! extern crate b2;
149 //!
150 //! fn main() {}
151 //! ```
152 //!
153 //! and the compiler would be invoked as:
154 //!
155 //! ```text
156 //! rustc a.rs --extern b1=path/to/libb1.rlib --extern b2=path/to/libb2.rlib
157 //! ```
158 //!
159 //! In this scenario there are two crates named `b` and the compiler must be
160 //! manually driven to be informed where each crate is.
161 //!
162 //! ## Frobbing symbols
163 //!
164 //! One of the immediate problems with linking the same library together twice
165 //! in the same problem is dealing with duplicate symbols. The primary way to
166 //! deal with this in rustc is to add hashes to the end of each symbol.
167 //!
168 //! In order to force hashes to change between versions of a library, if
169 //! desired, the compiler exposes an option `-C metadata=foo`, which is used to
170 //! initially seed each symbol hash. The string `foo` is prepended to each
171 //! string-to-hash to ensure that symbols change over time.
172 //!
173 //! ## Loading transitive dependencies
174 //!
175 //! Dealing with same-named-but-distinct crates is not just a local problem, but
176 //! one that also needs to be dealt with for transitive dependencies. Note that
177 //! in the letter above `--extern` flags only apply to the *local* set of
178 //! dependencies, not the upstream transitive dependencies. Consider this
179 //! dependency graph:
180 //!
181 //! ```text
182 //! A.1   A.2
183 //! |     |
184 //! |     |
185 //! B     C
186 //!  \   /
187 //!   \ /
188 //!    D
189 //! ```
190 //!
191 //! In this scenario, when we compile `D`, we need to be able to distinctly
192 //! resolve `A.1` and `A.2`, but an `--extern` flag cannot apply to these
193 //! transitive dependencies.
194 //!
195 //! Note that the key idea here is that `B` and `C` are both *already compiled*.
196 //! That is, they have already resolved their dependencies. Due to unrelated
197 //! technical reasons, when a library is compiled, it is only compatible with
198 //! the *exact same* version of the upstream libraries it was compiled against.
199 //! We use the "Strict Version Hash" to identify the exact copy of an upstream
200 //! library.
201 //!
202 //! With this knowledge, we know that `B` and `C` will depend on `A` with
203 //! different SVH values, so we crawl the normal `-L` paths looking for
204 //! `liba*.rlib` and filter based on the contained SVH.
205 //!
206 //! In the end, this ends up not needing `--extern` to specify upstream
207 //! transitive dependencies.
208 //!
209 //! # Wrapping up
210 //!
211 //! That's the general overview of loading crates in the compiler, but it's by
212 //! no means all of the necessary details. Take a look at the rest of
213 //! metadata::locator or metadata::creader for all the juicy details!
214 
215 use crate::creader::Library;
216 use crate::errors;
217 use crate::rmeta::{rustc_version, MetadataBlob, METADATA_HEADER};
218 
219 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
220 use rustc_data_structures::memmap::Mmap;
221 use rustc_data_structures::owned_slice::slice_owned;
222 use rustc_data_structures::svh::Svh;
223 use rustc_errors::{DiagnosticArgValue, FatalError, IntoDiagnosticArg};
224 use rustc_fs_util::try_canonicalize;
225 use rustc_session::config::{self, CrateType};
226 use rustc_session::cstore::{CrateSource, MetadataLoader};
227 use rustc_session::filesearch::FileSearch;
228 use rustc_session::search_paths::PathKind;
229 use rustc_session::utils::CanonicalizedPath;
230 use rustc_session::Session;
231 use rustc_span::symbol::Symbol;
232 use rustc_span::Span;
233 use rustc_target::spec::{Target, TargetTriple};
234 
235 use snap::read::FrameDecoder;
236 use std::borrow::Cow;
237 use std::io::{Read, Result as IoResult, Write};
238 use std::ops::Deref;
239 use std::path::{Path, PathBuf};
240 use std::{cmp, fmt};
241 
242 #[derive(Clone)]
243 pub(crate) struct CrateLocator<'a> {
244     // Immutable per-session configuration.
245     only_needs_metadata: bool,
246     sysroot: &'a Path,
247     metadata_loader: &'a dyn MetadataLoader,
248     cfg_version: &'static str,
249 
250     // Immutable per-search configuration.
251     crate_name: Symbol,
252     exact_paths: Vec<CanonicalizedPath>,
253     pub hash: Option<Svh>,
254     extra_filename: Option<&'a str>,
255     pub target: &'a Target,
256     pub triple: TargetTriple,
257     pub filesearch: FileSearch<'a>,
258     pub is_proc_macro: bool,
259 
260     // Mutable in-progress state or output.
261     crate_rejections: CrateRejections,
262 }
263 
264 #[derive(Clone)]
265 pub(crate) struct CratePaths {
266     name: Symbol,
267     source: CrateSource,
268 }
269 
270 impl CratePaths {
new(name: Symbol, source: CrateSource) -> CratePaths271     pub(crate) fn new(name: Symbol, source: CrateSource) -> CratePaths {
272         CratePaths { name, source }
273     }
274 }
275 
276 #[derive(Copy, Clone, PartialEq)]
277 pub(crate) enum CrateFlavor {
278     Rlib,
279     Rmeta,
280     Dylib,
281 }
282 
283 impl fmt::Display for CrateFlavor {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result284     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
285         f.write_str(match *self {
286             CrateFlavor::Rlib => "rlib",
287             CrateFlavor::Rmeta => "rmeta",
288             CrateFlavor::Dylib => "dylib",
289         })
290     }
291 }
292 
293 impl IntoDiagnosticArg for CrateFlavor {
into_diagnostic_arg(self) -> rustc_errors::DiagnosticArgValue<'static>294     fn into_diagnostic_arg(self) -> rustc_errors::DiagnosticArgValue<'static> {
295         match self {
296             CrateFlavor::Rlib => DiagnosticArgValue::Str(Cow::Borrowed("rlib")),
297             CrateFlavor::Rmeta => DiagnosticArgValue::Str(Cow::Borrowed("rmeta")),
298             CrateFlavor::Dylib => DiagnosticArgValue::Str(Cow::Borrowed("dylib")),
299         }
300     }
301 }
302 
303 impl<'a> CrateLocator<'a> {
new( sess: &'a Session, metadata_loader: &'a dyn MetadataLoader, crate_name: Symbol, hash: Option<Svh>, extra_filename: Option<&'a str>, is_host: bool, path_kind: PathKind, ) -> CrateLocator<'a>304     pub(crate) fn new(
305         sess: &'a Session,
306         metadata_loader: &'a dyn MetadataLoader,
307         crate_name: Symbol,
308         hash: Option<Svh>,
309         extra_filename: Option<&'a str>,
310         is_host: bool,
311         path_kind: PathKind,
312     ) -> CrateLocator<'a> {
313         // The all loop is because `--crate-type=rlib --crate-type=rlib` is
314         // legal and produces both inside this type.
315         let is_rlib = sess.crate_types().iter().all(|c| *c == CrateType::Rlib);
316         let needs_object_code = sess.opts.output_types.should_codegen();
317         // If we're producing an rlib, then we don't need object code.
318         // Or, if we're not producing object code, then we don't need it either
319         // (e.g., if we're a cdylib but emitting just metadata).
320         let only_needs_metadata = is_rlib || !needs_object_code;
321 
322         CrateLocator {
323             only_needs_metadata,
324             sysroot: &sess.sysroot,
325             metadata_loader,
326             cfg_version: sess.cfg_version,
327             crate_name,
328             exact_paths: if hash.is_none() {
329                 sess.opts
330                     .externs
331                     .get(crate_name.as_str())
332                     .into_iter()
333                     .filter_map(|entry| entry.files())
334                     .flatten()
335                     .cloned()
336                     .collect()
337             } else {
338                 // SVH being specified means this is a transitive dependency,
339                 // so `--extern` options do not apply.
340                 Vec::new()
341             },
342             hash,
343             extra_filename,
344             target: if is_host { &sess.host } else { &sess.target },
345             triple: if is_host {
346                 TargetTriple::from_triple(config::host_triple())
347             } else {
348                 sess.opts.target_triple.clone()
349             },
350             filesearch: if is_host {
351                 sess.host_filesearch(path_kind)
352             } else {
353                 sess.target_filesearch(path_kind)
354             },
355             is_proc_macro: false,
356             crate_rejections: CrateRejections::default(),
357         }
358     }
359 
reset(&mut self)360     pub(crate) fn reset(&mut self) {
361         self.crate_rejections.via_hash.clear();
362         self.crate_rejections.via_triple.clear();
363         self.crate_rejections.via_kind.clear();
364         self.crate_rejections.via_version.clear();
365         self.crate_rejections.via_filename.clear();
366         self.crate_rejections.via_invalid.clear();
367     }
368 
maybe_load_library_crate(&mut self) -> Result<Option<Library>, CrateError>369     pub(crate) fn maybe_load_library_crate(&mut self) -> Result<Option<Library>, CrateError> {
370         if !self.exact_paths.is_empty() {
371             return self.find_commandline_library();
372         }
373         let mut seen_paths = FxHashSet::default();
374         if let Some(extra_filename) = self.extra_filename {
375             if let library @ Some(_) = self.find_library_crate(extra_filename, &mut seen_paths)? {
376                 return Ok(library);
377             }
378         }
379         self.find_library_crate("", &mut seen_paths)
380     }
381 
find_library_crate( &mut self, extra_prefix: &str, seen_paths: &mut FxHashSet<PathBuf>, ) -> Result<Option<Library>, CrateError>382     fn find_library_crate(
383         &mut self,
384         extra_prefix: &str,
385         seen_paths: &mut FxHashSet<PathBuf>,
386     ) -> Result<Option<Library>, CrateError> {
387         let rmeta_prefix = &format!("lib{}{}", self.crate_name, extra_prefix);
388         let rlib_prefix = rmeta_prefix;
389         let dylib_prefix =
390             &format!("{}{}{}", self.target.dll_prefix, self.crate_name, extra_prefix);
391         let staticlib_prefix =
392             &format!("{}{}{}", self.target.staticlib_prefix, self.crate_name, extra_prefix);
393 
394         let rmeta_suffix = ".rmeta";
395         let rlib_suffix = ".rlib";
396         let dylib_suffix = &self.target.dll_suffix;
397         let staticlib_suffix = &self.target.staticlib_suffix;
398 
399         let mut candidates: FxHashMap<_, (FxHashMap<_, _>, FxHashMap<_, _>, FxHashMap<_, _>)> =
400             Default::default();
401 
402         // First, find all possible candidate rlibs and dylibs purely based on
403         // the name of the files themselves. We're trying to match against an
404         // exact crate name and a possibly an exact hash.
405         //
406         // During this step, we can filter all found libraries based on the
407         // name and id found in the crate id (we ignore the path portion for
408         // filename matching), as well as the exact hash (if specified). If we
409         // end up having many candidates, we must look at the metadata to
410         // perform exact matches against hashes/crate ids. Note that opening up
411         // the metadata is where we do an exact match against the full contents
412         // of the crate id (path/name/id).
413         //
414         // The goal of this step is to look at as little metadata as possible.
415         // Unfortunately, the prefix-based matching sometimes is over-eager.
416         // E.g. if `rlib_suffix` is `libstd` it'll match the file
417         // `libstd_detect-8d6701fb958915ad.rlib` (incorrect) as well as
418         // `libstd-f3ab5b1dea981f17.rlib` (correct). But this is hard to avoid
419         // given that `extra_filename` comes from the `-C extra-filename`
420         // option and thus can be anything, and the incorrect match will be
421         // handled safely in `extract_one`.
422         for search_path in self.filesearch.search_paths() {
423             debug!("searching {}", search_path.dir.display());
424             for spf in search_path.files.iter() {
425                 debug!("testing {}", spf.path.display());
426 
427                 let f = &spf.file_name_str;
428                 let (hash, kind) = if f.starts_with(rlib_prefix) && f.ends_with(rlib_suffix) {
429                     (&f[rlib_prefix.len()..(f.len() - rlib_suffix.len())], CrateFlavor::Rlib)
430                 } else if f.starts_with(rmeta_prefix) && f.ends_with(rmeta_suffix) {
431                     (&f[rmeta_prefix.len()..(f.len() - rmeta_suffix.len())], CrateFlavor::Rmeta)
432                 } else if f.starts_with(dylib_prefix) && f.ends_with(dylib_suffix.as_ref()) {
433                     (&f[dylib_prefix.len()..(f.len() - dylib_suffix.len())], CrateFlavor::Dylib)
434                 } else {
435                     if f.starts_with(staticlib_prefix) && f.ends_with(staticlib_suffix.as_ref()) {
436                         self.crate_rejections.via_kind.push(CrateMismatch {
437                             path: spf.path.clone(),
438                             got: "static".to_string(),
439                         });
440                     }
441                     continue;
442                 };
443 
444                 info!("lib candidate: {}", spf.path.display());
445 
446                 let (rlibs, rmetas, dylibs) = candidates.entry(hash.to_string()).or_default();
447                 let path = try_canonicalize(&spf.path).unwrap_or_else(|_| spf.path.clone());
448                 if seen_paths.contains(&path) {
449                     continue;
450                 };
451                 seen_paths.insert(path.clone());
452                 match kind {
453                     CrateFlavor::Rlib => rlibs.insert(path, search_path.kind),
454                     CrateFlavor::Rmeta => rmetas.insert(path, search_path.kind),
455                     CrateFlavor::Dylib => dylibs.insert(path, search_path.kind),
456                 };
457             }
458         }
459 
460         // We have now collected all known libraries into a set of candidates
461         // keyed of the filename hash listed. For each filename, we also have a
462         // list of rlibs/dylibs that apply. Here, we map each of these lists
463         // (per hash), to a Library candidate for returning.
464         //
465         // A Library candidate is created if the metadata for the set of
466         // libraries corresponds to the crate id and hash criteria that this
467         // search is being performed for.
468         let mut libraries = FxHashMap::default();
469         for (_hash, (rlibs, rmetas, dylibs)) in candidates {
470             if let Some((svh, lib)) = self.extract_lib(rlibs, rmetas, dylibs)? {
471                 libraries.insert(svh, lib);
472             }
473         }
474 
475         // Having now translated all relevant found hashes into libraries, see
476         // what we've got and figure out if we found multiple candidates for
477         // libraries or not.
478         match libraries.len() {
479             0 => Ok(None),
480             1 => Ok(Some(libraries.into_iter().next().unwrap().1)),
481             _ => {
482                 let mut libraries: Vec<_> = libraries.into_values().collect();
483 
484                 libraries.sort_by_cached_key(|lib| lib.source.paths().next().unwrap().clone());
485                 let candidates = libraries
486                     .iter()
487                     .map(|lib| lib.source.paths().next().unwrap().clone())
488                     .collect::<Vec<_>>();
489 
490                 Err(CrateError::MultipleCandidates(
491                     self.crate_name,
492                     // these are the same for all candidates
493                     get_flavor_from_path(candidates.first().unwrap()),
494                     candidates,
495                 ))
496             }
497         }
498     }
499 
extract_lib( &mut self, rlibs: FxHashMap<PathBuf, PathKind>, rmetas: FxHashMap<PathBuf, PathKind>, dylibs: FxHashMap<PathBuf, PathKind>, ) -> Result<Option<(Svh, Library)>, CrateError>500     fn extract_lib(
501         &mut self,
502         rlibs: FxHashMap<PathBuf, PathKind>,
503         rmetas: FxHashMap<PathBuf, PathKind>,
504         dylibs: FxHashMap<PathBuf, PathKind>,
505     ) -> Result<Option<(Svh, Library)>, CrateError> {
506         let mut slot = None;
507         // Order here matters, rmeta should come first. See comment in
508         // `extract_one` below.
509         let source = CrateSource {
510             rmeta: self.extract_one(rmetas, CrateFlavor::Rmeta, &mut slot)?,
511             rlib: self.extract_one(rlibs, CrateFlavor::Rlib, &mut slot)?,
512             dylib: self.extract_one(dylibs, CrateFlavor::Dylib, &mut slot)?,
513         };
514         Ok(slot.map(|(svh, metadata)| (svh, Library { source, metadata })))
515     }
516 
needs_crate_flavor(&self, flavor: CrateFlavor) -> bool517     fn needs_crate_flavor(&self, flavor: CrateFlavor) -> bool {
518         if flavor == CrateFlavor::Dylib && self.is_proc_macro {
519             return true;
520         }
521 
522         if self.only_needs_metadata {
523             flavor == CrateFlavor::Rmeta
524         } else {
525             // we need all flavors (perhaps not true, but what we do for now)
526             true
527         }
528     }
529 
530     // Attempts to extract *one* library from the set `m`. If the set has no
531     // elements, `None` is returned. If the set has more than one element, then
532     // the errors and notes are emitted about the set of libraries.
533     //
534     // With only one library in the set, this function will extract it, and then
535     // read the metadata from it if `*slot` is `None`. If the metadata couldn't
536     // be read, it is assumed that the file isn't a valid rust library (no
537     // errors are emitted).
extract_one( &mut self, m: FxHashMap<PathBuf, PathKind>, flavor: CrateFlavor, slot: &mut Option<(Svh, MetadataBlob)>, ) -> Result<Option<(PathBuf, PathKind)>, CrateError>538     fn extract_one(
539         &mut self,
540         m: FxHashMap<PathBuf, PathKind>,
541         flavor: CrateFlavor,
542         slot: &mut Option<(Svh, MetadataBlob)>,
543     ) -> Result<Option<(PathBuf, PathKind)>, CrateError> {
544         // If we are producing an rlib, and we've already loaded metadata, then
545         // we should not attempt to discover further crate sources (unless we're
546         // locating a proc macro; exact logic is in needs_crate_flavor). This means
547         // that under -Zbinary-dep-depinfo we will not emit a dependency edge on
548         // the *unused* rlib, and by returning `None` here immediately we
549         // guarantee that we do indeed not use it.
550         //
551         // See also #68149 which provides more detail on why emitting the
552         // dependency on the rlib is a bad thing.
553         //
554         // We currently do not verify that these other sources are even in sync,
555         // and this is arguably a bug (see #10786), but because reading metadata
556         // is quite slow (especially from dylibs) we currently do not read it
557         // from the other crate sources.
558         if slot.is_some() {
559             if m.is_empty() || !self.needs_crate_flavor(flavor) {
560                 return Ok(None);
561             } else if m.len() == 1 {
562                 return Ok(Some(m.into_iter().next().unwrap()));
563             }
564         }
565 
566         let mut ret: Option<(PathBuf, PathKind)> = None;
567         let mut err_data: Option<Vec<PathBuf>> = None;
568         for (lib, kind) in m {
569             info!("{} reading metadata from: {}", flavor, lib.display());
570             if flavor == CrateFlavor::Rmeta && lib.metadata().is_ok_and(|m| m.len() == 0) {
571                 // Empty files will cause get_metadata_section to fail. Rmeta
572                 // files can be empty, for example with binaries (which can
573                 // often appear with `cargo check` when checking a library as
574                 // a unittest). We don't want to emit a user-visible warning
575                 // in this case as it is not a real problem.
576                 debug!("skipping empty file");
577                 continue;
578             }
579             let (hash, metadata) =
580                 match get_metadata_section(self.target, flavor, &lib, self.metadata_loader) {
581                     Ok(blob) => {
582                         if let Some(h) = self.crate_matches(&blob, &lib) {
583                             (h, blob)
584                         } else {
585                             info!("metadata mismatch");
586                             continue;
587                         }
588                     }
589                     Err(MetadataError::LoadFailure(err)) => {
590                         info!("no metadata found: {}", err);
591                         // The file was present and created by the same compiler version, but we
592                         // couldn't load it for some reason. Give a hard error instead of silently
593                         // ignoring it, but only if we would have given an error anyway.
594                         self.crate_rejections
595                             .via_invalid
596                             .push(CrateMismatch { path: lib, got: err });
597                         continue;
598                     }
599                     Err(err @ MetadataError::NotPresent(_)) => {
600                         info!("no metadata found: {}", err);
601                         continue;
602                     }
603                 };
604             // If we see multiple hashes, emit an error about duplicate candidates.
605             if slot.as_ref().is_some_and(|s| s.0 != hash) {
606                 if let Some(candidates) = err_data {
607                     return Err(CrateError::MultipleCandidates(
608                         self.crate_name,
609                         flavor,
610                         candidates,
611                     ));
612                 }
613                 err_data = Some(vec![ret.as_ref().unwrap().0.clone()]);
614                 *slot = None;
615             }
616             if let Some(candidates) = &mut err_data {
617                 candidates.push(lib);
618                 continue;
619             }
620 
621             // Ok so at this point we've determined that `(lib, kind)` above is
622             // a candidate crate to load, and that `slot` is either none (this
623             // is the first crate of its kind) or if some the previous path has
624             // the exact same hash (e.g., it's the exact same crate).
625             //
626             // In principle these two candidate crates are exactly the same so
627             // we can choose either of them to link. As a stupidly gross hack,
628             // however, we favor crate in the sysroot.
629             //
630             // You can find more info in rust-lang/rust#39518 and various linked
631             // issues, but the general gist is that during testing libstd the
632             // compilers has two candidates to choose from: one in the sysroot
633             // and one in the deps folder. These two crates are the exact same
634             // crate but if the compiler chooses the one in the deps folder
635             // it'll cause spurious errors on Windows.
636             //
637             // As a result, we favor the sysroot crate here. Note that the
638             // candidates are all canonicalized, so we canonicalize the sysroot
639             // as well.
640             if let Some((prev, _)) = &ret {
641                 let sysroot = self.sysroot;
642                 let sysroot = try_canonicalize(sysroot).unwrap_or_else(|_| sysroot.to_path_buf());
643                 if prev.starts_with(&sysroot) {
644                     continue;
645                 }
646             }
647             *slot = Some((hash, metadata));
648             ret = Some((lib, kind));
649         }
650 
651         if let Some(candidates) = err_data {
652             Err(CrateError::MultipleCandidates(self.crate_name, flavor, candidates))
653         } else {
654             Ok(ret)
655         }
656     }
657 
crate_matches(&mut self, metadata: &MetadataBlob, libpath: &Path) -> Option<Svh>658     fn crate_matches(&mut self, metadata: &MetadataBlob, libpath: &Path) -> Option<Svh> {
659         let rustc_version = rustc_version(self.cfg_version);
660         let found_version = metadata.get_rustc_version();
661         if found_version != rustc_version {
662             info!("Rejecting via version: expected {} got {}", rustc_version, found_version);
663             self.crate_rejections
664                 .via_version
665                 .push(CrateMismatch { path: libpath.to_path_buf(), got: found_version });
666             return None;
667         }
668 
669         let header = metadata.get_header();
670         if header.is_proc_macro_crate != self.is_proc_macro {
671             info!(
672                 "Rejecting via proc macro: expected {} got {}",
673                 self.is_proc_macro, header.is_proc_macro_crate,
674             );
675             return None;
676         }
677 
678         if self.exact_paths.is_empty() && self.crate_name != header.name {
679             info!("Rejecting via crate name");
680             return None;
681         }
682 
683         if header.triple != self.triple {
684             info!("Rejecting via crate triple: expected {} got {}", self.triple, header.triple);
685             self.crate_rejections.via_triple.push(CrateMismatch {
686                 path: libpath.to_path_buf(),
687                 got: header.triple.to_string(),
688             });
689             return None;
690         }
691 
692         let hash = header.hash;
693         if let Some(expected_hash) = self.hash {
694             if hash != expected_hash {
695                 info!("Rejecting via hash: expected {} got {}", expected_hash, hash);
696                 self.crate_rejections
697                     .via_hash
698                     .push(CrateMismatch { path: libpath.to_path_buf(), got: hash.to_string() });
699                 return None;
700             }
701         }
702 
703         Some(hash)
704     }
705 
find_commandline_library(&mut self) -> Result<Option<Library>, CrateError>706     fn find_commandline_library(&mut self) -> Result<Option<Library>, CrateError> {
707         // First, filter out all libraries that look suspicious. We only accept
708         // files which actually exist that have the correct naming scheme for
709         // rlibs/dylibs.
710         let mut rlibs = FxHashMap::default();
711         let mut rmetas = FxHashMap::default();
712         let mut dylibs = FxHashMap::default();
713         for loc in &self.exact_paths {
714             if !loc.canonicalized().exists() {
715                 return Err(CrateError::ExternLocationNotExist(
716                     self.crate_name,
717                     loc.original().clone(),
718                 ));
719             }
720             if !loc.original().is_file() {
721                 return Err(CrateError::ExternLocationNotFile(
722                     self.crate_name,
723                     loc.original().clone(),
724                 ));
725             }
726             let Some(file) = loc.original().file_name().and_then(|s| s.to_str()) else {
727                 return Err(CrateError::ExternLocationNotFile(
728                     self.crate_name,
729                     loc.original().clone(),
730                 ));
731             };
732 
733             if file.starts_with("lib") && (file.ends_with(".rlib") || file.ends_with(".rmeta"))
734                 || file.starts_with(self.target.dll_prefix.as_ref())
735                     && file.ends_with(self.target.dll_suffix.as_ref())
736             {
737                 // Make sure there's at most one rlib and at most one dylib.
738                 // Note to take care and match against the non-canonicalized name:
739                 // some systems save build artifacts into content-addressed stores
740                 // that do not preserve extensions, and then link to them using
741                 // e.g. symbolic links. If we canonicalize too early, we resolve
742                 // the symlink, the file type is lost and we might treat rlibs and
743                 // rmetas as dylibs.
744                 let loc_canon = loc.canonicalized().clone();
745                 let loc = loc.original();
746                 if loc.file_name().unwrap().to_str().unwrap().ends_with(".rlib") {
747                     rlibs.insert(loc_canon, PathKind::ExternFlag);
748                 } else if loc.file_name().unwrap().to_str().unwrap().ends_with(".rmeta") {
749                     rmetas.insert(loc_canon, PathKind::ExternFlag);
750                 } else {
751                     dylibs.insert(loc_canon, PathKind::ExternFlag);
752                 }
753             } else {
754                 self.crate_rejections
755                     .via_filename
756                     .push(CrateMismatch { path: loc.original().clone(), got: String::new() });
757             }
758         }
759 
760         // Extract the dylib/rlib/rmeta triple.
761         Ok(self.extract_lib(rlibs, rmetas, dylibs)?.map(|(_, lib)| lib))
762     }
763 
into_error(self, root: Option<CratePaths>) -> CrateError764     pub(crate) fn into_error(self, root: Option<CratePaths>) -> CrateError {
765         CrateError::LocatorCombined(Box::new(CombinedLocatorError {
766             crate_name: self.crate_name,
767             root,
768             triple: self.triple,
769             dll_prefix: self.target.dll_prefix.to_string(),
770             dll_suffix: self.target.dll_suffix.to_string(),
771             crate_rejections: self.crate_rejections,
772         }))
773     }
774 }
775 
get_metadata_section<'p>( target: &Target, flavor: CrateFlavor, filename: &'p Path, loader: &dyn MetadataLoader, ) -> Result<MetadataBlob, MetadataError<'p>>776 fn get_metadata_section<'p>(
777     target: &Target,
778     flavor: CrateFlavor,
779     filename: &'p Path,
780     loader: &dyn MetadataLoader,
781 ) -> Result<MetadataBlob, MetadataError<'p>> {
782     if !filename.exists() {
783         return Err(MetadataError::NotPresent(filename));
784     }
785     let raw_bytes = match flavor {
786         CrateFlavor::Rlib => {
787             loader.get_rlib_metadata(target, filename).map_err(MetadataError::LoadFailure)?
788         }
789         CrateFlavor::Dylib => {
790             let buf =
791                 loader.get_dylib_metadata(target, filename).map_err(MetadataError::LoadFailure)?;
792             // The header is uncompressed
793             let header_len = METADATA_HEADER.len();
794             // header + u32 length of data
795             let data_start = header_len + 4;
796 
797             debug!("checking {} bytes of metadata-version stamp", header_len);
798             let header = &buf[..cmp::min(header_len, buf.len())];
799             if header != METADATA_HEADER {
800                 return Err(MetadataError::LoadFailure(format!(
801                     "invalid metadata version found: {}",
802                     filename.display()
803                 )));
804             }
805 
806             // Length of the compressed stream - this allows linkers to pad the section if they want
807             let Ok(len_bytes) = <[u8; 4]>::try_from(&buf[header_len..cmp::min(data_start, buf.len())]) else {
808                 return Err(MetadataError::LoadFailure("invalid metadata length found".to_string()));
809             };
810             let compressed_len = u32::from_be_bytes(len_bytes) as usize;
811 
812             // Header is okay -> inflate the actual metadata
813             let compressed_bytes = &buf[data_start..(data_start + compressed_len)];
814             debug!("inflating {} bytes of compressed metadata", compressed_bytes.len());
815             // Assume the decompressed data will be at least the size of the compressed data, so we
816             // don't have to grow the buffer as much.
817             let mut inflated = Vec::with_capacity(compressed_bytes.len());
818             FrameDecoder::new(compressed_bytes).read_to_end(&mut inflated).map_err(|_| {
819                 MetadataError::LoadFailure(format!(
820                     "failed to decompress metadata: {}",
821                     filename.display()
822                 ))
823             })?;
824 
825             slice_owned(inflated, Deref::deref)
826         }
827         CrateFlavor::Rmeta => {
828             // mmap the file, because only a small fraction of it is read.
829             let file = std::fs::File::open(filename).map_err(|_| {
830                 MetadataError::LoadFailure(format!(
831                     "failed to open rmeta metadata: '{}'",
832                     filename.display()
833                 ))
834             })?;
835             let mmap = unsafe { Mmap::map(file) };
836             let mmap = mmap.map_err(|_| {
837                 MetadataError::LoadFailure(format!(
838                     "failed to mmap rmeta metadata: '{}'",
839                     filename.display()
840                 ))
841             })?;
842 
843             slice_owned(mmap, Deref::deref)
844         }
845     };
846     let blob = MetadataBlob(raw_bytes);
847     if blob.is_compatible() {
848         Ok(blob)
849     } else {
850         Err(MetadataError::LoadFailure(format!(
851             "invalid metadata version found: {}",
852             filename.display()
853         )))
854     }
855 }
856 
857 /// Look for a plugin registrar. Returns its library path and crate disambiguator.
find_plugin_registrar( sess: &Session, metadata_loader: &dyn MetadataLoader, span: Span, name: Symbol, ) -> PathBuf858 pub fn find_plugin_registrar(
859     sess: &Session,
860     metadata_loader: &dyn MetadataLoader,
861     span: Span,
862     name: Symbol,
863 ) -> PathBuf {
864     find_plugin_registrar_impl(sess, metadata_loader, name).unwrap_or_else(|err| {
865         // `core` is always available if we got as far as loading plugins.
866         err.report(sess, span, false);
867         FatalError.raise()
868     })
869 }
870 
find_plugin_registrar_impl<'a>( sess: &'a Session, metadata_loader: &dyn MetadataLoader, name: Symbol, ) -> Result<PathBuf, CrateError>871 fn find_plugin_registrar_impl<'a>(
872     sess: &'a Session,
873     metadata_loader: &dyn MetadataLoader,
874     name: Symbol,
875 ) -> Result<PathBuf, CrateError> {
876     info!("find plugin registrar `{}`", name);
877     let mut locator = CrateLocator::new(
878         sess,
879         metadata_loader,
880         name,
881         None, // hash
882         None, // extra_filename
883         true, // is_host
884         PathKind::Crate,
885     );
886 
887     match locator.maybe_load_library_crate()? {
888         Some(library) => match library.source.dylib {
889             Some(dylib) => Ok(dylib.0),
890             None => Err(CrateError::NonDylibPlugin(name)),
891         },
892         None => Err(locator.into_error(None)),
893     }
894 }
895 
896 /// A diagnostic function for dumping crate metadata to an output stream.
list_file_metadata( target: &Target, path: &Path, metadata_loader: &dyn MetadataLoader, out: &mut dyn Write, ) -> IoResult<()>897 pub fn list_file_metadata(
898     target: &Target,
899     path: &Path,
900     metadata_loader: &dyn MetadataLoader,
901     out: &mut dyn Write,
902 ) -> IoResult<()> {
903     let flavor = get_flavor_from_path(path);
904     match get_metadata_section(target, flavor, path, metadata_loader) {
905         Ok(metadata) => metadata.list_crate_metadata(out),
906         Err(msg) => write!(out, "{}\n", msg),
907     }
908 }
909 
get_flavor_from_path(path: &Path) -> CrateFlavor910 fn get_flavor_from_path(path: &Path) -> CrateFlavor {
911     let filename = path.file_name().unwrap().to_str().unwrap();
912 
913     if filename.ends_with(".rlib") {
914         CrateFlavor::Rlib
915     } else if filename.ends_with(".rmeta") {
916         CrateFlavor::Rmeta
917     } else {
918         CrateFlavor::Dylib
919     }
920 }
921 
922 // ------------------------------------------ Error reporting -------------------------------------
923 
924 #[derive(Clone)]
925 struct CrateMismatch {
926     path: PathBuf,
927     got: String,
928 }
929 
930 #[derive(Clone, Default)]
931 struct CrateRejections {
932     via_hash: Vec<CrateMismatch>,
933     via_triple: Vec<CrateMismatch>,
934     via_kind: Vec<CrateMismatch>,
935     via_version: Vec<CrateMismatch>,
936     via_filename: Vec<CrateMismatch>,
937     via_invalid: Vec<CrateMismatch>,
938 }
939 
940 /// Candidate rejection reasons collected during crate search.
941 /// If no candidate is accepted, then these reasons are presented to the user,
942 /// otherwise they are ignored.
943 pub(crate) struct CombinedLocatorError {
944     crate_name: Symbol,
945     root: Option<CratePaths>,
946     triple: TargetTriple,
947     dll_prefix: String,
948     dll_suffix: String,
949     crate_rejections: CrateRejections,
950 }
951 
952 pub(crate) enum CrateError {
953     NonAsciiName(Symbol),
954     ExternLocationNotExist(Symbol, PathBuf),
955     ExternLocationNotFile(Symbol, PathBuf),
956     MultipleCandidates(Symbol, CrateFlavor, Vec<PathBuf>),
957     SymbolConflictsCurrent(Symbol),
958     StableCrateIdCollision(Symbol, Symbol),
959     DlOpen(String),
960     DlSym(String),
961     LocatorCombined(Box<CombinedLocatorError>),
962     NonDylibPlugin(Symbol),
963     NotFound(Symbol),
964 }
965 
966 enum MetadataError<'a> {
967     /// The file was missing.
968     NotPresent(&'a Path),
969     /// The file was present and invalid.
970     LoadFailure(String),
971 }
972 
973 impl fmt::Display for MetadataError<'_> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result974     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
975         match self {
976             MetadataError::NotPresent(filename) => {
977                 f.write_str(&format!("no such file: '{}'", filename.display()))
978             }
979             MetadataError::LoadFailure(msg) => f.write_str(msg),
980         }
981     }
982 }
983 
984 impl CrateError {
report(self, sess: &Session, span: Span, missing_core: bool)985     pub(crate) fn report(self, sess: &Session, span: Span, missing_core: bool) {
986         match self {
987             CrateError::NonAsciiName(crate_name) => {
988                 sess.emit_err(errors::NonAsciiName { span, crate_name });
989             }
990             CrateError::ExternLocationNotExist(crate_name, loc) => {
991                 sess.emit_err(errors::ExternLocationNotExist { span, crate_name, location: &loc });
992             }
993             CrateError::ExternLocationNotFile(crate_name, loc) => {
994                 sess.emit_err(errors::ExternLocationNotFile { span, crate_name, location: &loc });
995             }
996             CrateError::MultipleCandidates(crate_name, flavor, candidates) => {
997                 sess.emit_err(errors::MultipleCandidates { span, crate_name, flavor, candidates });
998             }
999             CrateError::SymbolConflictsCurrent(root_name) => {
1000                 sess.emit_err(errors::SymbolConflictsCurrent { span, crate_name: root_name });
1001             }
1002             CrateError::StableCrateIdCollision(crate_name0, crate_name1) => {
1003                 sess.emit_err(errors::StableCrateIdCollision { span, crate_name0, crate_name1 });
1004             }
1005             CrateError::DlOpen(s) | CrateError::DlSym(s) => {
1006                 sess.emit_err(errors::DlError { span, err: s });
1007             }
1008             CrateError::LocatorCombined(locator) => {
1009                 let crate_name = locator.crate_name;
1010                 let add_info = match &locator.root {
1011                     None => String::new(),
1012                     Some(r) => format!(" which `{}` depends on", r.name),
1013                 };
1014                 if !locator.crate_rejections.via_filename.is_empty() {
1015                     let mismatches = locator.crate_rejections.via_filename.iter();
1016                     for CrateMismatch { path, .. } in mismatches {
1017                         sess.emit_err(errors::CrateLocationUnknownType {
1018                             span,
1019                             path: &path,
1020                             crate_name,
1021                         });
1022                         sess.emit_err(errors::LibFilenameForm {
1023                             span,
1024                             dll_prefix: &locator.dll_prefix,
1025                             dll_suffix: &locator.dll_suffix,
1026                         });
1027                     }
1028                 }
1029                 let mut found_crates = String::new();
1030                 if !locator.crate_rejections.via_hash.is_empty() {
1031                     let mismatches = locator.crate_rejections.via_hash.iter();
1032                     for CrateMismatch { path, .. } in mismatches {
1033                         found_crates.push_str(&format!(
1034                             "\ncrate `{}`: {}",
1035                             crate_name,
1036                             path.display()
1037                         ));
1038                     }
1039                     if let Some(r) = locator.root {
1040                         for path in r.source.paths() {
1041                             found_crates.push_str(&format!(
1042                                 "\ncrate `{}`: {}",
1043                                 r.name,
1044                                 path.display()
1045                             ));
1046                         }
1047                     }
1048                     sess.emit_err(errors::NewerCrateVersion {
1049                         span,
1050                         crate_name: crate_name,
1051                         add_info,
1052                         found_crates,
1053                     });
1054                 } else if !locator.crate_rejections.via_triple.is_empty() {
1055                     let mismatches = locator.crate_rejections.via_triple.iter();
1056                     for CrateMismatch { path, got } in mismatches {
1057                         found_crates.push_str(&format!(
1058                             "\ncrate `{}`, target triple {}: {}",
1059                             crate_name,
1060                             got,
1061                             path.display(),
1062                         ));
1063                     }
1064                     sess.emit_err(errors::NoCrateWithTriple {
1065                         span,
1066                         crate_name,
1067                         locator_triple: locator.triple.triple(),
1068                         add_info,
1069                         found_crates,
1070                     });
1071                 } else if !locator.crate_rejections.via_kind.is_empty() {
1072                     let mismatches = locator.crate_rejections.via_kind.iter();
1073                     for CrateMismatch { path, .. } in mismatches {
1074                         found_crates.push_str(&format!(
1075                             "\ncrate `{}`: {}",
1076                             crate_name,
1077                             path.display()
1078                         ));
1079                     }
1080                     sess.emit_err(errors::FoundStaticlib {
1081                         span,
1082                         crate_name,
1083                         add_info,
1084                         found_crates,
1085                     });
1086                 } else if !locator.crate_rejections.via_version.is_empty() {
1087                     let mismatches = locator.crate_rejections.via_version.iter();
1088                     for CrateMismatch { path, got } in mismatches {
1089                         found_crates.push_str(&format!(
1090                             "\ncrate `{}` compiled by {}: {}",
1091                             crate_name,
1092                             got,
1093                             path.display(),
1094                         ));
1095                     }
1096                     sess.emit_err(errors::IncompatibleRustc {
1097                         span,
1098                         crate_name,
1099                         add_info,
1100                         found_crates,
1101                         rustc_version: rustc_version(sess.cfg_version),
1102                     });
1103                 } else if !locator.crate_rejections.via_invalid.is_empty() {
1104                     let mut crate_rejections = Vec::new();
1105                     for CrateMismatch { path: _, got } in locator.crate_rejections.via_invalid {
1106                         crate_rejections.push(got);
1107                     }
1108                     sess.emit_err(errors::InvalidMetadataFiles {
1109                         span,
1110                         crate_name,
1111                         add_info,
1112                         crate_rejections,
1113                     });
1114                 } else {
1115                     sess.emit_err(errors::CannotFindCrate {
1116                         span,
1117                         crate_name,
1118                         add_info,
1119                         missing_core,
1120                         current_crate: sess
1121                             .opts
1122                             .crate_name
1123                             .clone()
1124                             .unwrap_or("<unknown>".to_string()),
1125                         is_nightly_build: sess.is_nightly_build(),
1126                         profiler_runtime: Symbol::intern(&sess.opts.unstable_opts.profiler_runtime),
1127                         locator_triple: locator.triple,
1128                     });
1129                 }
1130             }
1131             CrateError::NonDylibPlugin(crate_name) => {
1132                 sess.emit_err(errors::NoDylibPlugin { span, crate_name });
1133             }
1134             CrateError::NotFound(crate_name) => {
1135                 sess.emit_err(errors::CannotFindCrate {
1136                     span,
1137                     crate_name,
1138                     add_info: String::new(),
1139                     missing_core,
1140                     current_crate: sess.opts.crate_name.clone().unwrap_or("<unknown>".to_string()),
1141                     is_nightly_build: sess.is_nightly_build(),
1142                     profiler_runtime: Symbol::intern(&sess.opts.unstable_opts.profiler_runtime),
1143                     locator_triple: sess.opts.target_triple.clone(),
1144                 });
1145             }
1146         }
1147     }
1148 }
1149