1 //! Finds crate binaries and loads their metadata
2 //!
3 //! Might I be the first to welcome you to a world of platform differences,
4 //! version requirements, dependency graphs, conflicting desires, and fun! This
5 //! is the major guts (along with metadata::creader) of the compiler for loading
6 //! crates and resolving dependencies. Let's take a tour!
7 //!
8 //! # The problem
9 //!
10 //! Each invocation of the compiler is immediately concerned with one primary
11 //! problem, to connect a set of crates to resolved crates on the filesystem.
12 //! Concretely speaking, the compiler follows roughly these steps to get here:
13 //!
14 //! 1. Discover a set of `extern crate` statements.
15 //! 2. Transform these directives into crate names. If the directive does not
16 //! have an explicit name, then the identifier is the name.
17 //! 3. For each of these crate names, find a corresponding crate on the
18 //! filesystem.
19 //!
20 //! Sounds easy, right? Let's walk into some of the nuances.
21 //!
22 //! ## Transitive Dependencies
23 //!
24 //! Let's say we've got three crates: A, B, and C. A depends on B, and B depends
25 //! on C. When we're compiling A, we primarily need to find and locate B, but we
26 //! also end up needing to find and locate C as well.
27 //!
28 //! The reason for this is that any of B's types could be composed of C's types,
29 //! any function in B could return a type from C, etc. To be able to guarantee
30 //! that we can always type-check/translate any function, we have to have
31 //! complete knowledge of the whole ecosystem, not just our immediate
32 //! dependencies.
33 //!
34 //! So now as part of the "find a corresponding crate on the filesystem" step
35 //! above, this involves also finding all crates for *all upstream
36 //! dependencies*. This includes all dependencies transitively.
37 //!
38 //! ## Rlibs and Dylibs
39 //!
40 //! The compiler has two forms of intermediate dependencies. These are dubbed
41 //! rlibs and dylibs for the static and dynamic variants, respectively. An rlib
42 //! is a rustc-defined file format (currently just an ar archive) while a dylib
43 //! is a platform-defined dynamic library. Each library has a metadata somewhere
44 //! inside of it.
45 //!
46 //! A third kind of dependency is an rmeta file. These are metadata files and do
47 //! not contain any code, etc. To a first approximation, these are treated in the
48 //! same way as rlibs. Where there is both an rlib and an rmeta file, the rlib
49 //! gets priority (even if the rmeta file is newer). An rmeta file is only
50 //! useful for checking a downstream crate, attempting to link one will cause an
51 //! error.
52 //!
53 //! When translating a crate name to a crate on the filesystem, we all of a
54 //! sudden need to take into account both rlibs and dylibs! Linkage later on may
55 //! use either one of these files, as each has their pros/cons. The job of crate
56 //! loading is to discover what's possible by finding all candidates.
57 //!
58 //! Most parts of this loading systems keep the dylib/rlib as just separate
59 //! variables.
60 //!
61 //! ## Where to look?
62 //!
63 //! We can't exactly scan your whole hard drive when looking for dependencies,
64 //! so we need to places to look. Currently the compiler will implicitly add the
65 //! target lib search path ($prefix/lib/rustlib/$target/lib) to any compilation,
66 //! and otherwise all -L flags are added to the search paths.
67 //!
68 //! ## What criterion to select on?
69 //!
70 //! This is a pretty tricky area of loading crates. Given a file, how do we know
71 //! whether it's the right crate? Currently, the rules look along these lines:
72 //!
73 //! 1. Does the filename match an rlib/dylib pattern? That is to say, does the
74 //! filename have the right prefix/suffix?
75 //! 2. Does the filename have the right prefix for the crate name being queried?
76 //! This is filtering for files like `libfoo*.rlib` and such. If the crate
77 //! we're looking for was originally compiled with -C extra-filename, the
78 //! extra filename will be included in this prefix to reduce reading
79 //! metadata from crates that would otherwise share our prefix.
80 //! 3. Is the file an actual rust library? This is done by loading the metadata
81 //! from the library and making sure it's actually there.
82 //! 4. Does the name in the metadata agree with the name of the library?
83 //! 5. Does the target in the metadata agree with the current target?
84 //! 6. Does the SVH match? (more on this later)
85 //!
86 //! If the file answers `yes` to all these questions, then the file is
87 //! considered as being *candidate* for being accepted. It is illegal to have
88 //! more than two candidates as the compiler has no method by which to resolve
89 //! this conflict. Additionally, rlib/dylib candidates are considered
90 //! separately.
91 //!
92 //! After all this has happened, we have 1 or two files as candidates. These
93 //! represent the rlib/dylib file found for a library, and they're returned as
94 //! being found.
95 //!
96 //! ### What about versions?
97 //!
98 //! A lot of effort has been put forth to remove versioning from the compiler.
99 //! There have been forays in the past to have versioning baked in, but it was
100 //! largely always deemed insufficient to the point that it was recognized that
101 //! it's probably something the compiler shouldn't do anyway due to its
102 //! complicated nature and the state of the half-baked solutions.
103 //!
104 //! With a departure from versioning, the primary criterion for loading crates
105 //! is just the name of a crate. If we stopped here, it would imply that you
106 //! could never link two crates of the same name from different sources
107 //! together, which is clearly a bad state to be in.
108 //!
109 //! To resolve this problem, we come to the next section!
110 //!
111 //! # Expert Mode
112 //!
113 //! A number of flags have been added to the compiler to solve the "version
114 //! problem" in the previous section, as well as generally enabling more
115 //! powerful usage of the crate loading system of the compiler. The goal of
116 //! these flags and options are to enable third-party tools to drive the
117 //! compiler with prior knowledge about how the world should look.
118 //!
119 //! ## The `--extern` flag
120 //!
121 //! The compiler accepts a flag of this form a number of times:
122 //!
123 //! ```text
124 //! --extern crate-name=path/to/the/crate.rlib
125 //! ```
126 //!
127 //! This flag is basically the following letter to the compiler:
128 //!
129 //! > Dear rustc,
130 //! >
131 //! > When you are attempting to load the immediate dependency `crate-name`, I
132 //! > would like you to assume that the library is located at
133 //! > `path/to/the/crate.rlib`, and look nowhere else. Also, please do not
134 //! > assume that the path I specified has the name `crate-name`.
135 //!
136 //! This flag basically overrides most matching logic except for validating that
137 //! the file is indeed a rust library. The same `crate-name` can be specified
138 //! twice to specify the rlib/dylib pair.
139 //!
140 //! ## Enabling "multiple versions"
141 //!
142 //! This basically boils down to the ability to specify arbitrary packages to
143 //! the compiler. For example, if crate A wanted to use Bv1 and Bv2, then it
144 //! would look something like:
145 //!
146 //! ```compile_fail,E0463
147 //! extern crate b1;
148 //! extern crate b2;
149 //!
150 //! fn main() {}
151 //! ```
152 //!
153 //! and the compiler would be invoked as:
154 //!
155 //! ```text
156 //! rustc a.rs --extern b1=path/to/libb1.rlib --extern b2=path/to/libb2.rlib
157 //! ```
158 //!
159 //! In this scenario there are two crates named `b` and the compiler must be
160 //! manually driven to be informed where each crate is.
161 //!
162 //! ## Frobbing symbols
163 //!
164 //! One of the immediate problems with linking the same library together twice
165 //! in the same problem is dealing with duplicate symbols. The primary way to
166 //! deal with this in rustc is to add hashes to the end of each symbol.
167 //!
168 //! In order to force hashes to change between versions of a library, if
169 //! desired, the compiler exposes an option `-C metadata=foo`, which is used to
170 //! initially seed each symbol hash. The string `foo` is prepended to each
171 //! string-to-hash to ensure that symbols change over time.
172 //!
173 //! ## Loading transitive dependencies
174 //!
175 //! Dealing with same-named-but-distinct crates is not just a local problem, but
176 //! one that also needs to be dealt with for transitive dependencies. Note that
177 //! in the letter above `--extern` flags only apply to the *local* set of
178 //! dependencies, not the upstream transitive dependencies. Consider this
179 //! dependency graph:
180 //!
181 //! ```text
182 //! A.1 A.2
183 //! | |
184 //! | |
185 //! B C
186 //! \ /
187 //! \ /
188 //! D
189 //! ```
190 //!
191 //! In this scenario, when we compile `D`, we need to be able to distinctly
192 //! resolve `A.1` and `A.2`, but an `--extern` flag cannot apply to these
193 //! transitive dependencies.
194 //!
195 //! Note that the key idea here is that `B` and `C` are both *already compiled*.
196 //! That is, they have already resolved their dependencies. Due to unrelated
197 //! technical reasons, when a library is compiled, it is only compatible with
198 //! the *exact same* version of the upstream libraries it was compiled against.
199 //! We use the "Strict Version Hash" to identify the exact copy of an upstream
200 //! library.
201 //!
202 //! With this knowledge, we know that `B` and `C` will depend on `A` with
203 //! different SVH values, so we crawl the normal `-L` paths looking for
204 //! `liba*.rlib` and filter based on the contained SVH.
205 //!
206 //! In the end, this ends up not needing `--extern` to specify upstream
207 //! transitive dependencies.
208 //!
209 //! # Wrapping up
210 //!
211 //! That's the general overview of loading crates in the compiler, but it's by
212 //! no means all of the necessary details. Take a look at the rest of
213 //! metadata::locator or metadata::creader for all the juicy details!
214
215 use crate::creader::Library;
216 use crate::errors;
217 use crate::rmeta::{rustc_version, MetadataBlob, METADATA_HEADER};
218
219 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
220 use rustc_data_structures::memmap::Mmap;
221 use rustc_data_structures::owned_slice::slice_owned;
222 use rustc_data_structures::svh::Svh;
223 use rustc_errors::{DiagnosticArgValue, FatalError, IntoDiagnosticArg};
224 use rustc_fs_util::try_canonicalize;
225 use rustc_session::config::{self, CrateType};
226 use rustc_session::cstore::{CrateSource, MetadataLoader};
227 use rustc_session::filesearch::FileSearch;
228 use rustc_session::search_paths::PathKind;
229 use rustc_session::utils::CanonicalizedPath;
230 use rustc_session::Session;
231 use rustc_span::symbol::Symbol;
232 use rustc_span::Span;
233 use rustc_target::spec::{Target, TargetTriple};
234
235 use snap::read::FrameDecoder;
236 use std::borrow::Cow;
237 use std::io::{Read, Result as IoResult, Write};
238 use std::ops::Deref;
239 use std::path::{Path, PathBuf};
240 use std::{cmp, fmt};
241
242 #[derive(Clone)]
243 pub(crate) struct CrateLocator<'a> {
244 // Immutable per-session configuration.
245 only_needs_metadata: bool,
246 sysroot: &'a Path,
247 metadata_loader: &'a dyn MetadataLoader,
248 cfg_version: &'static str,
249
250 // Immutable per-search configuration.
251 crate_name: Symbol,
252 exact_paths: Vec<CanonicalizedPath>,
253 pub hash: Option<Svh>,
254 extra_filename: Option<&'a str>,
255 pub target: &'a Target,
256 pub triple: TargetTriple,
257 pub filesearch: FileSearch<'a>,
258 pub is_proc_macro: bool,
259
260 // Mutable in-progress state or output.
261 crate_rejections: CrateRejections,
262 }
263
264 #[derive(Clone)]
265 pub(crate) struct CratePaths {
266 name: Symbol,
267 source: CrateSource,
268 }
269
270 impl CratePaths {
new(name: Symbol, source: CrateSource) -> CratePaths271 pub(crate) fn new(name: Symbol, source: CrateSource) -> CratePaths {
272 CratePaths { name, source }
273 }
274 }
275
276 #[derive(Copy, Clone, PartialEq)]
277 pub(crate) enum CrateFlavor {
278 Rlib,
279 Rmeta,
280 Dylib,
281 }
282
283 impl fmt::Display for CrateFlavor {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result284 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
285 f.write_str(match *self {
286 CrateFlavor::Rlib => "rlib",
287 CrateFlavor::Rmeta => "rmeta",
288 CrateFlavor::Dylib => "dylib",
289 })
290 }
291 }
292
293 impl IntoDiagnosticArg for CrateFlavor {
into_diagnostic_arg(self) -> rustc_errors::DiagnosticArgValue<'static>294 fn into_diagnostic_arg(self) -> rustc_errors::DiagnosticArgValue<'static> {
295 match self {
296 CrateFlavor::Rlib => DiagnosticArgValue::Str(Cow::Borrowed("rlib")),
297 CrateFlavor::Rmeta => DiagnosticArgValue::Str(Cow::Borrowed("rmeta")),
298 CrateFlavor::Dylib => DiagnosticArgValue::Str(Cow::Borrowed("dylib")),
299 }
300 }
301 }
302
303 impl<'a> CrateLocator<'a> {
new( sess: &'a Session, metadata_loader: &'a dyn MetadataLoader, crate_name: Symbol, hash: Option<Svh>, extra_filename: Option<&'a str>, is_host: bool, path_kind: PathKind, ) -> CrateLocator<'a>304 pub(crate) fn new(
305 sess: &'a Session,
306 metadata_loader: &'a dyn MetadataLoader,
307 crate_name: Symbol,
308 hash: Option<Svh>,
309 extra_filename: Option<&'a str>,
310 is_host: bool,
311 path_kind: PathKind,
312 ) -> CrateLocator<'a> {
313 // The all loop is because `--crate-type=rlib --crate-type=rlib` is
314 // legal and produces both inside this type.
315 let is_rlib = sess.crate_types().iter().all(|c| *c == CrateType::Rlib);
316 let needs_object_code = sess.opts.output_types.should_codegen();
317 // If we're producing an rlib, then we don't need object code.
318 // Or, if we're not producing object code, then we don't need it either
319 // (e.g., if we're a cdylib but emitting just metadata).
320 let only_needs_metadata = is_rlib || !needs_object_code;
321
322 CrateLocator {
323 only_needs_metadata,
324 sysroot: &sess.sysroot,
325 metadata_loader,
326 cfg_version: sess.cfg_version,
327 crate_name,
328 exact_paths: if hash.is_none() {
329 sess.opts
330 .externs
331 .get(crate_name.as_str())
332 .into_iter()
333 .filter_map(|entry| entry.files())
334 .flatten()
335 .cloned()
336 .collect()
337 } else {
338 // SVH being specified means this is a transitive dependency,
339 // so `--extern` options do not apply.
340 Vec::new()
341 },
342 hash,
343 extra_filename,
344 target: if is_host { &sess.host } else { &sess.target },
345 triple: if is_host {
346 TargetTriple::from_triple(config::host_triple())
347 } else {
348 sess.opts.target_triple.clone()
349 },
350 filesearch: if is_host {
351 sess.host_filesearch(path_kind)
352 } else {
353 sess.target_filesearch(path_kind)
354 },
355 is_proc_macro: false,
356 crate_rejections: CrateRejections::default(),
357 }
358 }
359
reset(&mut self)360 pub(crate) fn reset(&mut self) {
361 self.crate_rejections.via_hash.clear();
362 self.crate_rejections.via_triple.clear();
363 self.crate_rejections.via_kind.clear();
364 self.crate_rejections.via_version.clear();
365 self.crate_rejections.via_filename.clear();
366 self.crate_rejections.via_invalid.clear();
367 }
368
maybe_load_library_crate(&mut self) -> Result<Option<Library>, CrateError>369 pub(crate) fn maybe_load_library_crate(&mut self) -> Result<Option<Library>, CrateError> {
370 if !self.exact_paths.is_empty() {
371 return self.find_commandline_library();
372 }
373 let mut seen_paths = FxHashSet::default();
374 if let Some(extra_filename) = self.extra_filename {
375 if let library @ Some(_) = self.find_library_crate(extra_filename, &mut seen_paths)? {
376 return Ok(library);
377 }
378 }
379 self.find_library_crate("", &mut seen_paths)
380 }
381
find_library_crate( &mut self, extra_prefix: &str, seen_paths: &mut FxHashSet<PathBuf>, ) -> Result<Option<Library>, CrateError>382 fn find_library_crate(
383 &mut self,
384 extra_prefix: &str,
385 seen_paths: &mut FxHashSet<PathBuf>,
386 ) -> Result<Option<Library>, CrateError> {
387 let rmeta_prefix = &format!("lib{}{}", self.crate_name, extra_prefix);
388 let rlib_prefix = rmeta_prefix;
389 let dylib_prefix =
390 &format!("{}{}{}", self.target.dll_prefix, self.crate_name, extra_prefix);
391 let staticlib_prefix =
392 &format!("{}{}{}", self.target.staticlib_prefix, self.crate_name, extra_prefix);
393
394 let rmeta_suffix = ".rmeta";
395 let rlib_suffix = ".rlib";
396 let dylib_suffix = &self.target.dll_suffix;
397 let staticlib_suffix = &self.target.staticlib_suffix;
398
399 let mut candidates: FxHashMap<_, (FxHashMap<_, _>, FxHashMap<_, _>, FxHashMap<_, _>)> =
400 Default::default();
401
402 // First, find all possible candidate rlibs and dylibs purely based on
403 // the name of the files themselves. We're trying to match against an
404 // exact crate name and a possibly an exact hash.
405 //
406 // During this step, we can filter all found libraries based on the
407 // name and id found in the crate id (we ignore the path portion for
408 // filename matching), as well as the exact hash (if specified). If we
409 // end up having many candidates, we must look at the metadata to
410 // perform exact matches against hashes/crate ids. Note that opening up
411 // the metadata is where we do an exact match against the full contents
412 // of the crate id (path/name/id).
413 //
414 // The goal of this step is to look at as little metadata as possible.
415 // Unfortunately, the prefix-based matching sometimes is over-eager.
416 // E.g. if `rlib_suffix` is `libstd` it'll match the file
417 // `libstd_detect-8d6701fb958915ad.rlib` (incorrect) as well as
418 // `libstd-f3ab5b1dea981f17.rlib` (correct). But this is hard to avoid
419 // given that `extra_filename` comes from the `-C extra-filename`
420 // option and thus can be anything, and the incorrect match will be
421 // handled safely in `extract_one`.
422 for search_path in self.filesearch.search_paths() {
423 debug!("searching {}", search_path.dir.display());
424 for spf in search_path.files.iter() {
425 debug!("testing {}", spf.path.display());
426
427 let f = &spf.file_name_str;
428 let (hash, kind) = if f.starts_with(rlib_prefix) && f.ends_with(rlib_suffix) {
429 (&f[rlib_prefix.len()..(f.len() - rlib_suffix.len())], CrateFlavor::Rlib)
430 } else if f.starts_with(rmeta_prefix) && f.ends_with(rmeta_suffix) {
431 (&f[rmeta_prefix.len()..(f.len() - rmeta_suffix.len())], CrateFlavor::Rmeta)
432 } else if f.starts_with(dylib_prefix) && f.ends_with(dylib_suffix.as_ref()) {
433 (&f[dylib_prefix.len()..(f.len() - dylib_suffix.len())], CrateFlavor::Dylib)
434 } else {
435 if f.starts_with(staticlib_prefix) && f.ends_with(staticlib_suffix.as_ref()) {
436 self.crate_rejections.via_kind.push(CrateMismatch {
437 path: spf.path.clone(),
438 got: "static".to_string(),
439 });
440 }
441 continue;
442 };
443
444 info!("lib candidate: {}", spf.path.display());
445
446 let (rlibs, rmetas, dylibs) = candidates.entry(hash.to_string()).or_default();
447 let path = try_canonicalize(&spf.path).unwrap_or_else(|_| spf.path.clone());
448 if seen_paths.contains(&path) {
449 continue;
450 };
451 seen_paths.insert(path.clone());
452 match kind {
453 CrateFlavor::Rlib => rlibs.insert(path, search_path.kind),
454 CrateFlavor::Rmeta => rmetas.insert(path, search_path.kind),
455 CrateFlavor::Dylib => dylibs.insert(path, search_path.kind),
456 };
457 }
458 }
459
460 // We have now collected all known libraries into a set of candidates
461 // keyed of the filename hash listed. For each filename, we also have a
462 // list of rlibs/dylibs that apply. Here, we map each of these lists
463 // (per hash), to a Library candidate for returning.
464 //
465 // A Library candidate is created if the metadata for the set of
466 // libraries corresponds to the crate id and hash criteria that this
467 // search is being performed for.
468 let mut libraries = FxHashMap::default();
469 for (_hash, (rlibs, rmetas, dylibs)) in candidates {
470 if let Some((svh, lib)) = self.extract_lib(rlibs, rmetas, dylibs)? {
471 libraries.insert(svh, lib);
472 }
473 }
474
475 // Having now translated all relevant found hashes into libraries, see
476 // what we've got and figure out if we found multiple candidates for
477 // libraries or not.
478 match libraries.len() {
479 0 => Ok(None),
480 1 => Ok(Some(libraries.into_iter().next().unwrap().1)),
481 _ => {
482 let mut libraries: Vec<_> = libraries.into_values().collect();
483
484 libraries.sort_by_cached_key(|lib| lib.source.paths().next().unwrap().clone());
485 let candidates = libraries
486 .iter()
487 .map(|lib| lib.source.paths().next().unwrap().clone())
488 .collect::<Vec<_>>();
489
490 Err(CrateError::MultipleCandidates(
491 self.crate_name,
492 // these are the same for all candidates
493 get_flavor_from_path(candidates.first().unwrap()),
494 candidates,
495 ))
496 }
497 }
498 }
499
extract_lib( &mut self, rlibs: FxHashMap<PathBuf, PathKind>, rmetas: FxHashMap<PathBuf, PathKind>, dylibs: FxHashMap<PathBuf, PathKind>, ) -> Result<Option<(Svh, Library)>, CrateError>500 fn extract_lib(
501 &mut self,
502 rlibs: FxHashMap<PathBuf, PathKind>,
503 rmetas: FxHashMap<PathBuf, PathKind>,
504 dylibs: FxHashMap<PathBuf, PathKind>,
505 ) -> Result<Option<(Svh, Library)>, CrateError> {
506 let mut slot = None;
507 // Order here matters, rmeta should come first. See comment in
508 // `extract_one` below.
509 let source = CrateSource {
510 rmeta: self.extract_one(rmetas, CrateFlavor::Rmeta, &mut slot)?,
511 rlib: self.extract_one(rlibs, CrateFlavor::Rlib, &mut slot)?,
512 dylib: self.extract_one(dylibs, CrateFlavor::Dylib, &mut slot)?,
513 };
514 Ok(slot.map(|(svh, metadata)| (svh, Library { source, metadata })))
515 }
516
needs_crate_flavor(&self, flavor: CrateFlavor) -> bool517 fn needs_crate_flavor(&self, flavor: CrateFlavor) -> bool {
518 if flavor == CrateFlavor::Dylib && self.is_proc_macro {
519 return true;
520 }
521
522 if self.only_needs_metadata {
523 flavor == CrateFlavor::Rmeta
524 } else {
525 // we need all flavors (perhaps not true, but what we do for now)
526 true
527 }
528 }
529
530 // Attempts to extract *one* library from the set `m`. If the set has no
531 // elements, `None` is returned. If the set has more than one element, then
532 // the errors and notes are emitted about the set of libraries.
533 //
534 // With only one library in the set, this function will extract it, and then
535 // read the metadata from it if `*slot` is `None`. If the metadata couldn't
536 // be read, it is assumed that the file isn't a valid rust library (no
537 // errors are emitted).
extract_one( &mut self, m: FxHashMap<PathBuf, PathKind>, flavor: CrateFlavor, slot: &mut Option<(Svh, MetadataBlob)>, ) -> Result<Option<(PathBuf, PathKind)>, CrateError>538 fn extract_one(
539 &mut self,
540 m: FxHashMap<PathBuf, PathKind>,
541 flavor: CrateFlavor,
542 slot: &mut Option<(Svh, MetadataBlob)>,
543 ) -> Result<Option<(PathBuf, PathKind)>, CrateError> {
544 // If we are producing an rlib, and we've already loaded metadata, then
545 // we should not attempt to discover further crate sources (unless we're
546 // locating a proc macro; exact logic is in needs_crate_flavor). This means
547 // that under -Zbinary-dep-depinfo we will not emit a dependency edge on
548 // the *unused* rlib, and by returning `None` here immediately we
549 // guarantee that we do indeed not use it.
550 //
551 // See also #68149 which provides more detail on why emitting the
552 // dependency on the rlib is a bad thing.
553 //
554 // We currently do not verify that these other sources are even in sync,
555 // and this is arguably a bug (see #10786), but because reading metadata
556 // is quite slow (especially from dylibs) we currently do not read it
557 // from the other crate sources.
558 if slot.is_some() {
559 if m.is_empty() || !self.needs_crate_flavor(flavor) {
560 return Ok(None);
561 } else if m.len() == 1 {
562 return Ok(Some(m.into_iter().next().unwrap()));
563 }
564 }
565
566 let mut ret: Option<(PathBuf, PathKind)> = None;
567 let mut err_data: Option<Vec<PathBuf>> = None;
568 for (lib, kind) in m {
569 info!("{} reading metadata from: {}", flavor, lib.display());
570 if flavor == CrateFlavor::Rmeta && lib.metadata().is_ok_and(|m| m.len() == 0) {
571 // Empty files will cause get_metadata_section to fail. Rmeta
572 // files can be empty, for example with binaries (which can
573 // often appear with `cargo check` when checking a library as
574 // a unittest). We don't want to emit a user-visible warning
575 // in this case as it is not a real problem.
576 debug!("skipping empty file");
577 continue;
578 }
579 let (hash, metadata) =
580 match get_metadata_section(self.target, flavor, &lib, self.metadata_loader) {
581 Ok(blob) => {
582 if let Some(h) = self.crate_matches(&blob, &lib) {
583 (h, blob)
584 } else {
585 info!("metadata mismatch");
586 continue;
587 }
588 }
589 Err(MetadataError::LoadFailure(err)) => {
590 info!("no metadata found: {}", err);
591 // The file was present and created by the same compiler version, but we
592 // couldn't load it for some reason. Give a hard error instead of silently
593 // ignoring it, but only if we would have given an error anyway.
594 self.crate_rejections
595 .via_invalid
596 .push(CrateMismatch { path: lib, got: err });
597 continue;
598 }
599 Err(err @ MetadataError::NotPresent(_)) => {
600 info!("no metadata found: {}", err);
601 continue;
602 }
603 };
604 // If we see multiple hashes, emit an error about duplicate candidates.
605 if slot.as_ref().is_some_and(|s| s.0 != hash) {
606 if let Some(candidates) = err_data {
607 return Err(CrateError::MultipleCandidates(
608 self.crate_name,
609 flavor,
610 candidates,
611 ));
612 }
613 err_data = Some(vec![ret.as_ref().unwrap().0.clone()]);
614 *slot = None;
615 }
616 if let Some(candidates) = &mut err_data {
617 candidates.push(lib);
618 continue;
619 }
620
621 // Ok so at this point we've determined that `(lib, kind)` above is
622 // a candidate crate to load, and that `slot` is either none (this
623 // is the first crate of its kind) or if some the previous path has
624 // the exact same hash (e.g., it's the exact same crate).
625 //
626 // In principle these two candidate crates are exactly the same so
627 // we can choose either of them to link. As a stupidly gross hack,
628 // however, we favor crate in the sysroot.
629 //
630 // You can find more info in rust-lang/rust#39518 and various linked
631 // issues, but the general gist is that during testing libstd the
632 // compilers has two candidates to choose from: one in the sysroot
633 // and one in the deps folder. These two crates are the exact same
634 // crate but if the compiler chooses the one in the deps folder
635 // it'll cause spurious errors on Windows.
636 //
637 // As a result, we favor the sysroot crate here. Note that the
638 // candidates are all canonicalized, so we canonicalize the sysroot
639 // as well.
640 if let Some((prev, _)) = &ret {
641 let sysroot = self.sysroot;
642 let sysroot = try_canonicalize(sysroot).unwrap_or_else(|_| sysroot.to_path_buf());
643 if prev.starts_with(&sysroot) {
644 continue;
645 }
646 }
647 *slot = Some((hash, metadata));
648 ret = Some((lib, kind));
649 }
650
651 if let Some(candidates) = err_data {
652 Err(CrateError::MultipleCandidates(self.crate_name, flavor, candidates))
653 } else {
654 Ok(ret)
655 }
656 }
657
crate_matches(&mut self, metadata: &MetadataBlob, libpath: &Path) -> Option<Svh>658 fn crate_matches(&mut self, metadata: &MetadataBlob, libpath: &Path) -> Option<Svh> {
659 let rustc_version = rustc_version(self.cfg_version);
660 let found_version = metadata.get_rustc_version();
661 if found_version != rustc_version {
662 info!("Rejecting via version: expected {} got {}", rustc_version, found_version);
663 self.crate_rejections
664 .via_version
665 .push(CrateMismatch { path: libpath.to_path_buf(), got: found_version });
666 return None;
667 }
668
669 let header = metadata.get_header();
670 if header.is_proc_macro_crate != self.is_proc_macro {
671 info!(
672 "Rejecting via proc macro: expected {} got {}",
673 self.is_proc_macro, header.is_proc_macro_crate,
674 );
675 return None;
676 }
677
678 if self.exact_paths.is_empty() && self.crate_name != header.name {
679 info!("Rejecting via crate name");
680 return None;
681 }
682
683 if header.triple != self.triple {
684 info!("Rejecting via crate triple: expected {} got {}", self.triple, header.triple);
685 self.crate_rejections.via_triple.push(CrateMismatch {
686 path: libpath.to_path_buf(),
687 got: header.triple.to_string(),
688 });
689 return None;
690 }
691
692 let hash = header.hash;
693 if let Some(expected_hash) = self.hash {
694 if hash != expected_hash {
695 info!("Rejecting via hash: expected {} got {}", expected_hash, hash);
696 self.crate_rejections
697 .via_hash
698 .push(CrateMismatch { path: libpath.to_path_buf(), got: hash.to_string() });
699 return None;
700 }
701 }
702
703 Some(hash)
704 }
705
find_commandline_library(&mut self) -> Result<Option<Library>, CrateError>706 fn find_commandline_library(&mut self) -> Result<Option<Library>, CrateError> {
707 // First, filter out all libraries that look suspicious. We only accept
708 // files which actually exist that have the correct naming scheme for
709 // rlibs/dylibs.
710 let mut rlibs = FxHashMap::default();
711 let mut rmetas = FxHashMap::default();
712 let mut dylibs = FxHashMap::default();
713 for loc in &self.exact_paths {
714 if !loc.canonicalized().exists() {
715 return Err(CrateError::ExternLocationNotExist(
716 self.crate_name,
717 loc.original().clone(),
718 ));
719 }
720 if !loc.original().is_file() {
721 return Err(CrateError::ExternLocationNotFile(
722 self.crate_name,
723 loc.original().clone(),
724 ));
725 }
726 let Some(file) = loc.original().file_name().and_then(|s| s.to_str()) else {
727 return Err(CrateError::ExternLocationNotFile(
728 self.crate_name,
729 loc.original().clone(),
730 ));
731 };
732
733 if file.starts_with("lib") && (file.ends_with(".rlib") || file.ends_with(".rmeta"))
734 || file.starts_with(self.target.dll_prefix.as_ref())
735 && file.ends_with(self.target.dll_suffix.as_ref())
736 {
737 // Make sure there's at most one rlib and at most one dylib.
738 // Note to take care and match against the non-canonicalized name:
739 // some systems save build artifacts into content-addressed stores
740 // that do not preserve extensions, and then link to them using
741 // e.g. symbolic links. If we canonicalize too early, we resolve
742 // the symlink, the file type is lost and we might treat rlibs and
743 // rmetas as dylibs.
744 let loc_canon = loc.canonicalized().clone();
745 let loc = loc.original();
746 if loc.file_name().unwrap().to_str().unwrap().ends_with(".rlib") {
747 rlibs.insert(loc_canon, PathKind::ExternFlag);
748 } else if loc.file_name().unwrap().to_str().unwrap().ends_with(".rmeta") {
749 rmetas.insert(loc_canon, PathKind::ExternFlag);
750 } else {
751 dylibs.insert(loc_canon, PathKind::ExternFlag);
752 }
753 } else {
754 self.crate_rejections
755 .via_filename
756 .push(CrateMismatch { path: loc.original().clone(), got: String::new() });
757 }
758 }
759
760 // Extract the dylib/rlib/rmeta triple.
761 Ok(self.extract_lib(rlibs, rmetas, dylibs)?.map(|(_, lib)| lib))
762 }
763
into_error(self, root: Option<CratePaths>) -> CrateError764 pub(crate) fn into_error(self, root: Option<CratePaths>) -> CrateError {
765 CrateError::LocatorCombined(Box::new(CombinedLocatorError {
766 crate_name: self.crate_name,
767 root,
768 triple: self.triple,
769 dll_prefix: self.target.dll_prefix.to_string(),
770 dll_suffix: self.target.dll_suffix.to_string(),
771 crate_rejections: self.crate_rejections,
772 }))
773 }
774 }
775
get_metadata_section<'p>( target: &Target, flavor: CrateFlavor, filename: &'p Path, loader: &dyn MetadataLoader, ) -> Result<MetadataBlob, MetadataError<'p>>776 fn get_metadata_section<'p>(
777 target: &Target,
778 flavor: CrateFlavor,
779 filename: &'p Path,
780 loader: &dyn MetadataLoader,
781 ) -> Result<MetadataBlob, MetadataError<'p>> {
782 if !filename.exists() {
783 return Err(MetadataError::NotPresent(filename));
784 }
785 let raw_bytes = match flavor {
786 CrateFlavor::Rlib => {
787 loader.get_rlib_metadata(target, filename).map_err(MetadataError::LoadFailure)?
788 }
789 CrateFlavor::Dylib => {
790 let buf =
791 loader.get_dylib_metadata(target, filename).map_err(MetadataError::LoadFailure)?;
792 // The header is uncompressed
793 let header_len = METADATA_HEADER.len();
794 // header + u32 length of data
795 let data_start = header_len + 4;
796
797 debug!("checking {} bytes of metadata-version stamp", header_len);
798 let header = &buf[..cmp::min(header_len, buf.len())];
799 if header != METADATA_HEADER {
800 return Err(MetadataError::LoadFailure(format!(
801 "invalid metadata version found: {}",
802 filename.display()
803 )));
804 }
805
806 // Length of the compressed stream - this allows linkers to pad the section if they want
807 let Ok(len_bytes) = <[u8; 4]>::try_from(&buf[header_len..cmp::min(data_start, buf.len())]) else {
808 return Err(MetadataError::LoadFailure("invalid metadata length found".to_string()));
809 };
810 let compressed_len = u32::from_be_bytes(len_bytes) as usize;
811
812 // Header is okay -> inflate the actual metadata
813 let compressed_bytes = &buf[data_start..(data_start + compressed_len)];
814 debug!("inflating {} bytes of compressed metadata", compressed_bytes.len());
815 // Assume the decompressed data will be at least the size of the compressed data, so we
816 // don't have to grow the buffer as much.
817 let mut inflated = Vec::with_capacity(compressed_bytes.len());
818 FrameDecoder::new(compressed_bytes).read_to_end(&mut inflated).map_err(|_| {
819 MetadataError::LoadFailure(format!(
820 "failed to decompress metadata: {}",
821 filename.display()
822 ))
823 })?;
824
825 slice_owned(inflated, Deref::deref)
826 }
827 CrateFlavor::Rmeta => {
828 // mmap the file, because only a small fraction of it is read.
829 let file = std::fs::File::open(filename).map_err(|_| {
830 MetadataError::LoadFailure(format!(
831 "failed to open rmeta metadata: '{}'",
832 filename.display()
833 ))
834 })?;
835 let mmap = unsafe { Mmap::map(file) };
836 let mmap = mmap.map_err(|_| {
837 MetadataError::LoadFailure(format!(
838 "failed to mmap rmeta metadata: '{}'",
839 filename.display()
840 ))
841 })?;
842
843 slice_owned(mmap, Deref::deref)
844 }
845 };
846 let blob = MetadataBlob(raw_bytes);
847 if blob.is_compatible() {
848 Ok(blob)
849 } else {
850 Err(MetadataError::LoadFailure(format!(
851 "invalid metadata version found: {}",
852 filename.display()
853 )))
854 }
855 }
856
857 /// Look for a plugin registrar. Returns its library path and crate disambiguator.
find_plugin_registrar( sess: &Session, metadata_loader: &dyn MetadataLoader, span: Span, name: Symbol, ) -> PathBuf858 pub fn find_plugin_registrar(
859 sess: &Session,
860 metadata_loader: &dyn MetadataLoader,
861 span: Span,
862 name: Symbol,
863 ) -> PathBuf {
864 find_plugin_registrar_impl(sess, metadata_loader, name).unwrap_or_else(|err| {
865 // `core` is always available if we got as far as loading plugins.
866 err.report(sess, span, false);
867 FatalError.raise()
868 })
869 }
870
find_plugin_registrar_impl<'a>( sess: &'a Session, metadata_loader: &dyn MetadataLoader, name: Symbol, ) -> Result<PathBuf, CrateError>871 fn find_plugin_registrar_impl<'a>(
872 sess: &'a Session,
873 metadata_loader: &dyn MetadataLoader,
874 name: Symbol,
875 ) -> Result<PathBuf, CrateError> {
876 info!("find plugin registrar `{}`", name);
877 let mut locator = CrateLocator::new(
878 sess,
879 metadata_loader,
880 name,
881 None, // hash
882 None, // extra_filename
883 true, // is_host
884 PathKind::Crate,
885 );
886
887 match locator.maybe_load_library_crate()? {
888 Some(library) => match library.source.dylib {
889 Some(dylib) => Ok(dylib.0),
890 None => Err(CrateError::NonDylibPlugin(name)),
891 },
892 None => Err(locator.into_error(None)),
893 }
894 }
895
896 /// A diagnostic function for dumping crate metadata to an output stream.
list_file_metadata( target: &Target, path: &Path, metadata_loader: &dyn MetadataLoader, out: &mut dyn Write, ) -> IoResult<()>897 pub fn list_file_metadata(
898 target: &Target,
899 path: &Path,
900 metadata_loader: &dyn MetadataLoader,
901 out: &mut dyn Write,
902 ) -> IoResult<()> {
903 let flavor = get_flavor_from_path(path);
904 match get_metadata_section(target, flavor, path, metadata_loader) {
905 Ok(metadata) => metadata.list_crate_metadata(out),
906 Err(msg) => write!(out, "{}\n", msg),
907 }
908 }
909
get_flavor_from_path(path: &Path) -> CrateFlavor910 fn get_flavor_from_path(path: &Path) -> CrateFlavor {
911 let filename = path.file_name().unwrap().to_str().unwrap();
912
913 if filename.ends_with(".rlib") {
914 CrateFlavor::Rlib
915 } else if filename.ends_with(".rmeta") {
916 CrateFlavor::Rmeta
917 } else {
918 CrateFlavor::Dylib
919 }
920 }
921
922 // ------------------------------------------ Error reporting -------------------------------------
923
924 #[derive(Clone)]
925 struct CrateMismatch {
926 path: PathBuf,
927 got: String,
928 }
929
930 #[derive(Clone, Default)]
931 struct CrateRejections {
932 via_hash: Vec<CrateMismatch>,
933 via_triple: Vec<CrateMismatch>,
934 via_kind: Vec<CrateMismatch>,
935 via_version: Vec<CrateMismatch>,
936 via_filename: Vec<CrateMismatch>,
937 via_invalid: Vec<CrateMismatch>,
938 }
939
940 /// Candidate rejection reasons collected during crate search.
941 /// If no candidate is accepted, then these reasons are presented to the user,
942 /// otherwise they are ignored.
943 pub(crate) struct CombinedLocatorError {
944 crate_name: Symbol,
945 root: Option<CratePaths>,
946 triple: TargetTriple,
947 dll_prefix: String,
948 dll_suffix: String,
949 crate_rejections: CrateRejections,
950 }
951
952 pub(crate) enum CrateError {
953 NonAsciiName(Symbol),
954 ExternLocationNotExist(Symbol, PathBuf),
955 ExternLocationNotFile(Symbol, PathBuf),
956 MultipleCandidates(Symbol, CrateFlavor, Vec<PathBuf>),
957 SymbolConflictsCurrent(Symbol),
958 StableCrateIdCollision(Symbol, Symbol),
959 DlOpen(String),
960 DlSym(String),
961 LocatorCombined(Box<CombinedLocatorError>),
962 NonDylibPlugin(Symbol),
963 NotFound(Symbol),
964 }
965
966 enum MetadataError<'a> {
967 /// The file was missing.
968 NotPresent(&'a Path),
969 /// The file was present and invalid.
970 LoadFailure(String),
971 }
972
973 impl fmt::Display for MetadataError<'_> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result974 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
975 match self {
976 MetadataError::NotPresent(filename) => {
977 f.write_str(&format!("no such file: '{}'", filename.display()))
978 }
979 MetadataError::LoadFailure(msg) => f.write_str(msg),
980 }
981 }
982 }
983
984 impl CrateError {
report(self, sess: &Session, span: Span, missing_core: bool)985 pub(crate) fn report(self, sess: &Session, span: Span, missing_core: bool) {
986 match self {
987 CrateError::NonAsciiName(crate_name) => {
988 sess.emit_err(errors::NonAsciiName { span, crate_name });
989 }
990 CrateError::ExternLocationNotExist(crate_name, loc) => {
991 sess.emit_err(errors::ExternLocationNotExist { span, crate_name, location: &loc });
992 }
993 CrateError::ExternLocationNotFile(crate_name, loc) => {
994 sess.emit_err(errors::ExternLocationNotFile { span, crate_name, location: &loc });
995 }
996 CrateError::MultipleCandidates(crate_name, flavor, candidates) => {
997 sess.emit_err(errors::MultipleCandidates { span, crate_name, flavor, candidates });
998 }
999 CrateError::SymbolConflictsCurrent(root_name) => {
1000 sess.emit_err(errors::SymbolConflictsCurrent { span, crate_name: root_name });
1001 }
1002 CrateError::StableCrateIdCollision(crate_name0, crate_name1) => {
1003 sess.emit_err(errors::StableCrateIdCollision { span, crate_name0, crate_name1 });
1004 }
1005 CrateError::DlOpen(s) | CrateError::DlSym(s) => {
1006 sess.emit_err(errors::DlError { span, err: s });
1007 }
1008 CrateError::LocatorCombined(locator) => {
1009 let crate_name = locator.crate_name;
1010 let add_info = match &locator.root {
1011 None => String::new(),
1012 Some(r) => format!(" which `{}` depends on", r.name),
1013 };
1014 if !locator.crate_rejections.via_filename.is_empty() {
1015 let mismatches = locator.crate_rejections.via_filename.iter();
1016 for CrateMismatch { path, .. } in mismatches {
1017 sess.emit_err(errors::CrateLocationUnknownType {
1018 span,
1019 path: &path,
1020 crate_name,
1021 });
1022 sess.emit_err(errors::LibFilenameForm {
1023 span,
1024 dll_prefix: &locator.dll_prefix,
1025 dll_suffix: &locator.dll_suffix,
1026 });
1027 }
1028 }
1029 let mut found_crates = String::new();
1030 if !locator.crate_rejections.via_hash.is_empty() {
1031 let mismatches = locator.crate_rejections.via_hash.iter();
1032 for CrateMismatch { path, .. } in mismatches {
1033 found_crates.push_str(&format!(
1034 "\ncrate `{}`: {}",
1035 crate_name,
1036 path.display()
1037 ));
1038 }
1039 if let Some(r) = locator.root {
1040 for path in r.source.paths() {
1041 found_crates.push_str(&format!(
1042 "\ncrate `{}`: {}",
1043 r.name,
1044 path.display()
1045 ));
1046 }
1047 }
1048 sess.emit_err(errors::NewerCrateVersion {
1049 span,
1050 crate_name: crate_name,
1051 add_info,
1052 found_crates,
1053 });
1054 } else if !locator.crate_rejections.via_triple.is_empty() {
1055 let mismatches = locator.crate_rejections.via_triple.iter();
1056 for CrateMismatch { path, got } in mismatches {
1057 found_crates.push_str(&format!(
1058 "\ncrate `{}`, target triple {}: {}",
1059 crate_name,
1060 got,
1061 path.display(),
1062 ));
1063 }
1064 sess.emit_err(errors::NoCrateWithTriple {
1065 span,
1066 crate_name,
1067 locator_triple: locator.triple.triple(),
1068 add_info,
1069 found_crates,
1070 });
1071 } else if !locator.crate_rejections.via_kind.is_empty() {
1072 let mismatches = locator.crate_rejections.via_kind.iter();
1073 for CrateMismatch { path, .. } in mismatches {
1074 found_crates.push_str(&format!(
1075 "\ncrate `{}`: {}",
1076 crate_name,
1077 path.display()
1078 ));
1079 }
1080 sess.emit_err(errors::FoundStaticlib {
1081 span,
1082 crate_name,
1083 add_info,
1084 found_crates,
1085 });
1086 } else if !locator.crate_rejections.via_version.is_empty() {
1087 let mismatches = locator.crate_rejections.via_version.iter();
1088 for CrateMismatch { path, got } in mismatches {
1089 found_crates.push_str(&format!(
1090 "\ncrate `{}` compiled by {}: {}",
1091 crate_name,
1092 got,
1093 path.display(),
1094 ));
1095 }
1096 sess.emit_err(errors::IncompatibleRustc {
1097 span,
1098 crate_name,
1099 add_info,
1100 found_crates,
1101 rustc_version: rustc_version(sess.cfg_version),
1102 });
1103 } else if !locator.crate_rejections.via_invalid.is_empty() {
1104 let mut crate_rejections = Vec::new();
1105 for CrateMismatch { path: _, got } in locator.crate_rejections.via_invalid {
1106 crate_rejections.push(got);
1107 }
1108 sess.emit_err(errors::InvalidMetadataFiles {
1109 span,
1110 crate_name,
1111 add_info,
1112 crate_rejections,
1113 });
1114 } else {
1115 sess.emit_err(errors::CannotFindCrate {
1116 span,
1117 crate_name,
1118 add_info,
1119 missing_core,
1120 current_crate: sess
1121 .opts
1122 .crate_name
1123 .clone()
1124 .unwrap_or("<unknown>".to_string()),
1125 is_nightly_build: sess.is_nightly_build(),
1126 profiler_runtime: Symbol::intern(&sess.opts.unstable_opts.profiler_runtime),
1127 locator_triple: locator.triple,
1128 });
1129 }
1130 }
1131 CrateError::NonDylibPlugin(crate_name) => {
1132 sess.emit_err(errors::NoDylibPlugin { span, crate_name });
1133 }
1134 CrateError::NotFound(crate_name) => {
1135 sess.emit_err(errors::CannotFindCrate {
1136 span,
1137 crate_name,
1138 add_info: String::new(),
1139 missing_core,
1140 current_crate: sess.opts.crate_name.clone().unwrap_or("<unknown>".to_string()),
1141 is_nightly_build: sess.is_nightly_build(),
1142 profiler_runtime: Symbol::intern(&sess.opts.unstable_opts.profiler_runtime),
1143 locator_triple: sess.opts.target_triple.clone(),
1144 });
1145 }
1146 }
1147 }
1148 }
1149