1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4 *
5 * started by Ingo Molnar and Thomas Gleixner.
6 *
7 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10 * Copyright (C) 2006 Esben Nielsen
11 *
12 * See Documentation/locking/rt-mutex-design.rst for details.
13 */
14 #include <linux/spinlock.h>
15 #include <linux/export.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/rt.h>
18 #include <linux/sched/deadline.h>
19 #include <linux/sched/wake_q.h>
20 #include <linux/sched/debug.h>
21 #include <linux/timer.h>
22
23 #include "rtmutex_common.h"
24
25 /*
26 * lock->owner state tracking:
27 *
28 * lock->owner holds the task_struct pointer of the owner. Bit 0
29 * is used to keep track of the "lock has waiters" state.
30 *
31 * owner bit0
32 * NULL 0 lock is free (fast acquire possible)
33 * NULL 1 lock is free and has waiters and the top waiter
34 * is going to take the lock*
35 * taskpointer 0 lock is held (fast release possible)
36 * taskpointer 1 lock is held and has waiters**
37 *
38 * The fast atomic compare exchange based acquire and release is only
39 * possible when bit 0 of lock->owner is 0.
40 *
41 * (*) It also can be a transitional state when grabbing the lock
42 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
43 * we need to set the bit0 before looking at the lock, and the owner may be
44 * NULL in this small time, hence this can be a transitional state.
45 *
46 * (**) There is a small time when bit 0 is set but there are no
47 * waiters. This can happen when grabbing the lock in the slow path.
48 * To prevent a cmpxchg of the owner releasing the lock, we need to
49 * set this bit before looking at the lock.
50 */
51
52 static void
rt_mutex_set_owner(struct rt_mutex * lock,struct task_struct * owner)53 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
54 {
55 unsigned long val = (unsigned long)owner;
56
57 if (rt_mutex_has_waiters(lock))
58 val |= RT_MUTEX_HAS_WAITERS;
59
60 WRITE_ONCE(lock->owner, (struct task_struct *)val);
61 }
62
clear_rt_mutex_waiters(struct rt_mutex * lock)63 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
64 {
65 lock->owner = (struct task_struct *)
66 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
67 }
68
fixup_rt_mutex_waiters(struct rt_mutex * lock)69 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
70 {
71 unsigned long owner, *p = (unsigned long *) &lock->owner;
72
73 if (rt_mutex_has_waiters(lock))
74 return;
75
76 /*
77 * The rbtree has no waiters enqueued, now make sure that the
78 * lock->owner still has the waiters bit set, otherwise the
79 * following can happen:
80 *
81 * CPU 0 CPU 1 CPU2
82 * l->owner=T1
83 * rt_mutex_lock(l)
84 * lock(l->lock)
85 * l->owner = T1 | HAS_WAITERS;
86 * enqueue(T2)
87 * boost()
88 * unlock(l->lock)
89 * block()
90 *
91 * rt_mutex_lock(l)
92 * lock(l->lock)
93 * l->owner = T1 | HAS_WAITERS;
94 * enqueue(T3)
95 * boost()
96 * unlock(l->lock)
97 * block()
98 * signal(->T2) signal(->T3)
99 * lock(l->lock)
100 * dequeue(T2)
101 * deboost()
102 * unlock(l->lock)
103 * lock(l->lock)
104 * dequeue(T3)
105 * ==> wait list is empty
106 * deboost()
107 * unlock(l->lock)
108 * lock(l->lock)
109 * fixup_rt_mutex_waiters()
110 * if (wait_list_empty(l) {
111 * l->owner = owner
112 * owner = l->owner & ~HAS_WAITERS;
113 * ==> l->owner = T1
114 * }
115 * lock(l->lock)
116 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
117 * if (wait_list_empty(l) {
118 * owner = l->owner & ~HAS_WAITERS;
119 * cmpxchg(l->owner, T1, NULL)
120 * ===> Success (l->owner = NULL)
121 *
122 * l->owner = owner
123 * ==> l->owner = T1
124 * }
125 *
126 * With the check for the waiter bit in place T3 on CPU2 will not
127 * overwrite. All tasks fiddling with the waiters bit are
128 * serialized by l->lock, so nothing else can modify the waiters
129 * bit. If the bit is set then nothing can change l->owner either
130 * so the simple RMW is safe. The cmpxchg() will simply fail if it
131 * happens in the middle of the RMW because the waiters bit is
132 * still set.
133 */
134 owner = READ_ONCE(*p);
135 if (owner & RT_MUTEX_HAS_WAITERS)
136 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
137 }
138
139 /*
140 * We can speed up the acquire/release, if there's no debugging state to be
141 * set up.
142 */
143 #ifndef CONFIG_DEBUG_RT_MUTEXES
144 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
145 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
146
147 /*
148 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
149 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
150 * relaxed semantics suffice.
151 */
mark_rt_mutex_waiters(struct rt_mutex * lock)152 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
153 {
154 unsigned long owner, *p = (unsigned long *) &lock->owner;
155
156 do {
157 owner = *p;
158 } while (cmpxchg_relaxed(p, owner,
159 owner | RT_MUTEX_HAS_WAITERS) != owner);
160 }
161
162 /*
163 * Safe fastpath aware unlock:
164 * 1) Clear the waiters bit
165 * 2) Drop lock->wait_lock
166 * 3) Try to unlock the lock with cmpxchg
167 */
unlock_rt_mutex_safe(struct rt_mutex * lock,unsigned long flags)168 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
169 unsigned long flags)
170 __releases(lock->wait_lock)
171 {
172 struct task_struct *owner = rt_mutex_owner(lock);
173
174 clear_rt_mutex_waiters(lock);
175 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
176 /*
177 * If a new waiter comes in between the unlock and the cmpxchg
178 * we have two situations:
179 *
180 * unlock(wait_lock);
181 * lock(wait_lock);
182 * cmpxchg(p, owner, 0) == owner
183 * mark_rt_mutex_waiters(lock);
184 * acquire(lock);
185 * or:
186 *
187 * unlock(wait_lock);
188 * lock(wait_lock);
189 * mark_rt_mutex_waiters(lock);
190 *
191 * cmpxchg(p, owner, 0) != owner
192 * enqueue_waiter();
193 * unlock(wait_lock);
194 * lock(wait_lock);
195 * wake waiter();
196 * unlock(wait_lock);
197 * lock(wait_lock);
198 * acquire(lock);
199 */
200 return rt_mutex_cmpxchg_release(lock, owner, NULL);
201 }
202
203 #else
204 # define rt_mutex_cmpxchg_acquire(l,c,n) (0)
205 # define rt_mutex_cmpxchg_release(l,c,n) (0)
206
mark_rt_mutex_waiters(struct rt_mutex * lock)207 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
208 {
209 lock->owner = (struct task_struct *)
210 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
211 }
212
213 /*
214 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
215 */
unlock_rt_mutex_safe(struct rt_mutex * lock,unsigned long flags)216 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
217 unsigned long flags)
218 __releases(lock->wait_lock)
219 {
220 lock->owner = NULL;
221 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
222 return true;
223 }
224 #endif
225
226 /*
227 * Only use with rt_mutex_waiter_{less,equal}()
228 */
229 #define task_to_waiter(p) \
230 &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
231
232 static inline int
rt_mutex_waiter_less(struct rt_mutex_waiter * left,struct rt_mutex_waiter * right)233 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
234 struct rt_mutex_waiter *right)
235 {
236 if (left->prio < right->prio)
237 return 1;
238
239 /*
240 * If both waiters have dl_prio(), we check the deadlines of the
241 * associated tasks.
242 * If left waiter has a dl_prio(), and we didn't return 1 above,
243 * then right waiter has a dl_prio() too.
244 */
245 if (dl_prio(left->prio))
246 return dl_time_before(left->deadline, right->deadline);
247
248 return 0;
249 }
250
251 static inline int
rt_mutex_waiter_equal(struct rt_mutex_waiter * left,struct rt_mutex_waiter * right)252 rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
253 struct rt_mutex_waiter *right)
254 {
255 if (left->prio != right->prio)
256 return 0;
257
258 /*
259 * If both waiters have dl_prio(), we check the deadlines of the
260 * associated tasks.
261 * If left waiter has a dl_prio(), and we didn't return 0 above,
262 * then right waiter has a dl_prio() too.
263 */
264 if (dl_prio(left->prio))
265 return left->deadline == right->deadline;
266
267 return 1;
268 }
269
270 static void
rt_mutex_enqueue(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)271 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
272 {
273 struct rb_node **link = &lock->waiters.rb_root.rb_node;
274 struct rb_node *parent = NULL;
275 struct rt_mutex_waiter *entry;
276 bool leftmost = true;
277
278 while (*link) {
279 parent = *link;
280 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
281 if (rt_mutex_waiter_less(waiter, entry)) {
282 link = &parent->rb_left;
283 } else {
284 link = &parent->rb_right;
285 leftmost = false;
286 }
287 }
288
289 rb_link_node(&waiter->tree_entry, parent, link);
290 rb_insert_color_cached(&waiter->tree_entry, &lock->waiters, leftmost);
291 }
292
293 static void
rt_mutex_dequeue(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)294 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
295 {
296 if (RB_EMPTY_NODE(&waiter->tree_entry))
297 return;
298
299 rb_erase_cached(&waiter->tree_entry, &lock->waiters);
300 RB_CLEAR_NODE(&waiter->tree_entry);
301 }
302
303 static void
rt_mutex_enqueue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)304 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
305 {
306 struct rb_node **link = &task->pi_waiters.rb_root.rb_node;
307 struct rb_node *parent = NULL;
308 struct rt_mutex_waiter *entry;
309 bool leftmost = true;
310
311 while (*link) {
312 parent = *link;
313 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
314 if (rt_mutex_waiter_less(waiter, entry)) {
315 link = &parent->rb_left;
316 } else {
317 link = &parent->rb_right;
318 leftmost = false;
319 }
320 }
321
322 rb_link_node(&waiter->pi_tree_entry, parent, link);
323 rb_insert_color_cached(&waiter->pi_tree_entry, &task->pi_waiters, leftmost);
324 }
325
326 static void
rt_mutex_dequeue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)327 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
328 {
329 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
330 return;
331
332 rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
333 RB_CLEAR_NODE(&waiter->pi_tree_entry);
334 }
335
rt_mutex_adjust_prio(struct task_struct * p)336 static void rt_mutex_adjust_prio(struct task_struct *p)
337 {
338 struct task_struct *pi_task = NULL;
339
340 lockdep_assert_held(&p->pi_lock);
341
342 if (task_has_pi_waiters(p))
343 pi_task = task_top_pi_waiter(p)->task;
344
345 rt_mutex_setprio(p, pi_task);
346 }
347
348 /*
349 * Deadlock detection is conditional:
350 *
351 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
352 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
353 *
354 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
355 * conducted independent of the detect argument.
356 *
357 * If the waiter argument is NULL this indicates the deboost path and
358 * deadlock detection is disabled independent of the detect argument
359 * and the config settings.
360 */
rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter * waiter,enum rtmutex_chainwalk chwalk)361 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
362 enum rtmutex_chainwalk chwalk)
363 {
364 /*
365 * This is just a wrapper function for the following call,
366 * because debug_rt_mutex_detect_deadlock() smells like a magic
367 * debug feature and I wanted to keep the cond function in the
368 * main source file along with the comments instead of having
369 * two of the same in the headers.
370 */
371 return debug_rt_mutex_detect_deadlock(waiter, chwalk);
372 }
373
374 /*
375 * Max number of times we'll walk the boosting chain:
376 */
377 int max_lock_depth = 1024;
378
task_blocked_on_lock(struct task_struct * p)379 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
380 {
381 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
382 }
383
384 /*
385 * Adjust the priority chain. Also used for deadlock detection.
386 * Decreases task's usage by one - may thus free the task.
387 *
388 * @task: the task owning the mutex (owner) for which a chain walk is
389 * probably needed
390 * @chwalk: do we have to carry out deadlock detection?
391 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
392 * things for a task that has just got its priority adjusted, and
393 * is waiting on a mutex)
394 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
395 * we dropped its pi_lock. Is never dereferenced, only used for
396 * comparison to detect lock chain changes.
397 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
398 * its priority to the mutex owner (can be NULL in the case
399 * depicted above or if the top waiter is gone away and we are
400 * actually deboosting the owner)
401 * @top_task: the current top waiter
402 *
403 * Returns 0 or -EDEADLK.
404 *
405 * Chain walk basics and protection scope
406 *
407 * [R] refcount on task
408 * [P] task->pi_lock held
409 * [L] rtmutex->wait_lock held
410 *
411 * Step Description Protected by
412 * function arguments:
413 * @task [R]
414 * @orig_lock if != NULL @top_task is blocked on it
415 * @next_lock Unprotected. Cannot be
416 * dereferenced. Only used for
417 * comparison.
418 * @orig_waiter if != NULL @top_task is blocked on it
419 * @top_task current, or in case of proxy
420 * locking protected by calling
421 * code
422 * again:
423 * loop_sanity_check();
424 * retry:
425 * [1] lock(task->pi_lock); [R] acquire [P]
426 * [2] waiter = task->pi_blocked_on; [P]
427 * [3] check_exit_conditions_1(); [P]
428 * [4] lock = waiter->lock; [P]
429 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
430 * unlock(task->pi_lock); release [P]
431 * goto retry;
432 * }
433 * [6] check_exit_conditions_2(); [P] + [L]
434 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
435 * [8] unlock(task->pi_lock); release [P]
436 * put_task_struct(task); release [R]
437 * [9] check_exit_conditions_3(); [L]
438 * [10] task = owner(lock); [L]
439 * get_task_struct(task); [L] acquire [R]
440 * lock(task->pi_lock); [L] acquire [P]
441 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
442 * [12] check_exit_conditions_4(); [P] + [L]
443 * [13] unlock(task->pi_lock); release [P]
444 * unlock(lock->wait_lock); release [L]
445 * goto again;
446 */
rt_mutex_adjust_prio_chain(struct task_struct * task,enum rtmutex_chainwalk chwalk,struct rt_mutex * orig_lock,struct rt_mutex * next_lock,struct rt_mutex_waiter * orig_waiter,struct task_struct * top_task)447 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
448 enum rtmutex_chainwalk chwalk,
449 struct rt_mutex *orig_lock,
450 struct rt_mutex *next_lock,
451 struct rt_mutex_waiter *orig_waiter,
452 struct task_struct *top_task)
453 {
454 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
455 struct rt_mutex_waiter *prerequeue_top_waiter;
456 int ret = 0, depth = 0;
457 struct rt_mutex *lock;
458 bool detect_deadlock;
459 bool requeue = true;
460
461 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
462
463 /*
464 * The (de)boosting is a step by step approach with a lot of
465 * pitfalls. We want this to be preemptible and we want hold a
466 * maximum of two locks per step. So we have to check
467 * carefully whether things change under us.
468 */
469 again:
470 /*
471 * We limit the lock chain length for each invocation.
472 */
473 if (++depth > max_lock_depth) {
474 static int prev_max;
475
476 /*
477 * Print this only once. If the admin changes the limit,
478 * print a new message when reaching the limit again.
479 */
480 if (prev_max != max_lock_depth) {
481 prev_max = max_lock_depth;
482 printk(KERN_WARNING "Maximum lock depth %d reached "
483 "task: %s (%d)\n", max_lock_depth,
484 top_task->comm, task_pid_nr(top_task));
485 }
486 put_task_struct(task);
487
488 return -EDEADLK;
489 }
490
491 /*
492 * We are fully preemptible here and only hold the refcount on
493 * @task. So everything can have changed under us since the
494 * caller or our own code below (goto retry/again) dropped all
495 * locks.
496 */
497 retry:
498 /*
499 * [1] Task cannot go away as we did a get_task() before !
500 */
501 raw_spin_lock_irq(&task->pi_lock);
502
503 /*
504 * [2] Get the waiter on which @task is blocked on.
505 */
506 waiter = task->pi_blocked_on;
507
508 /*
509 * [3] check_exit_conditions_1() protected by task->pi_lock.
510 */
511
512 /*
513 * Check whether the end of the boosting chain has been
514 * reached or the state of the chain has changed while we
515 * dropped the locks.
516 */
517 if (!waiter)
518 goto out_unlock_pi;
519
520 /*
521 * Check the orig_waiter state. After we dropped the locks,
522 * the previous owner of the lock might have released the lock.
523 */
524 if (orig_waiter && !rt_mutex_owner(orig_lock))
525 goto out_unlock_pi;
526
527 /*
528 * We dropped all locks after taking a refcount on @task, so
529 * the task might have moved on in the lock chain or even left
530 * the chain completely and blocks now on an unrelated lock or
531 * on @orig_lock.
532 *
533 * We stored the lock on which @task was blocked in @next_lock,
534 * so we can detect the chain change.
535 */
536 if (next_lock != waiter->lock)
537 goto out_unlock_pi;
538
539 /*
540 * Drop out, when the task has no waiters. Note,
541 * top_waiter can be NULL, when we are in the deboosting
542 * mode!
543 */
544 if (top_waiter) {
545 if (!task_has_pi_waiters(task))
546 goto out_unlock_pi;
547 /*
548 * If deadlock detection is off, we stop here if we
549 * are not the top pi waiter of the task. If deadlock
550 * detection is enabled we continue, but stop the
551 * requeueing in the chain walk.
552 */
553 if (top_waiter != task_top_pi_waiter(task)) {
554 if (!detect_deadlock)
555 goto out_unlock_pi;
556 else
557 requeue = false;
558 }
559 }
560
561 /*
562 * If the waiter priority is the same as the task priority
563 * then there is no further priority adjustment necessary. If
564 * deadlock detection is off, we stop the chain walk. If its
565 * enabled we continue, but stop the requeueing in the chain
566 * walk.
567 */
568 if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
569 if (!detect_deadlock)
570 goto out_unlock_pi;
571 else
572 requeue = false;
573 }
574
575 /*
576 * [4] Get the next lock
577 */
578 lock = waiter->lock;
579 /*
580 * [5] We need to trylock here as we are holding task->pi_lock,
581 * which is the reverse lock order versus the other rtmutex
582 * operations.
583 */
584 if (!raw_spin_trylock(&lock->wait_lock)) {
585 raw_spin_unlock_irq(&task->pi_lock);
586 cpu_relax();
587 goto retry;
588 }
589
590 /*
591 * [6] check_exit_conditions_2() protected by task->pi_lock and
592 * lock->wait_lock.
593 *
594 * Deadlock detection. If the lock is the same as the original
595 * lock which caused us to walk the lock chain or if the
596 * current lock is owned by the task which initiated the chain
597 * walk, we detected a deadlock.
598 */
599 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
600 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
601 raw_spin_unlock(&lock->wait_lock);
602 ret = -EDEADLK;
603 goto out_unlock_pi;
604 }
605
606 /*
607 * If we just follow the lock chain for deadlock detection, no
608 * need to do all the requeue operations. To avoid a truckload
609 * of conditionals around the various places below, just do the
610 * minimum chain walk checks.
611 */
612 if (!requeue) {
613 /*
614 * No requeue[7] here. Just release @task [8]
615 */
616 raw_spin_unlock(&task->pi_lock);
617 put_task_struct(task);
618
619 /*
620 * [9] check_exit_conditions_3 protected by lock->wait_lock.
621 * If there is no owner of the lock, end of chain.
622 */
623 if (!rt_mutex_owner(lock)) {
624 raw_spin_unlock_irq(&lock->wait_lock);
625 return 0;
626 }
627
628 /* [10] Grab the next task, i.e. owner of @lock */
629 task = get_task_struct(rt_mutex_owner(lock));
630 raw_spin_lock(&task->pi_lock);
631
632 /*
633 * No requeue [11] here. We just do deadlock detection.
634 *
635 * [12] Store whether owner is blocked
636 * itself. Decision is made after dropping the locks
637 */
638 next_lock = task_blocked_on_lock(task);
639 /*
640 * Get the top waiter for the next iteration
641 */
642 top_waiter = rt_mutex_top_waiter(lock);
643
644 /* [13] Drop locks */
645 raw_spin_unlock(&task->pi_lock);
646 raw_spin_unlock_irq(&lock->wait_lock);
647
648 /* If owner is not blocked, end of chain. */
649 if (!next_lock)
650 goto out_put_task;
651 goto again;
652 }
653
654 /*
655 * Store the current top waiter before doing the requeue
656 * operation on @lock. We need it for the boost/deboost
657 * decision below.
658 */
659 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
660
661 /* [7] Requeue the waiter in the lock waiter tree. */
662 rt_mutex_dequeue(lock, waiter);
663
664 /*
665 * Update the waiter prio fields now that we're dequeued.
666 *
667 * These values can have changed through either:
668 *
669 * sys_sched_set_scheduler() / sys_sched_setattr()
670 *
671 * or
672 *
673 * DL CBS enforcement advancing the effective deadline.
674 *
675 * Even though pi_waiters also uses these fields, and that tree is only
676 * updated in [11], we can do this here, since we hold [L], which
677 * serializes all pi_waiters access and rb_erase() does not care about
678 * the values of the node being removed.
679 */
680 waiter->prio = task->prio;
681 waiter->deadline = task->dl.deadline;
682
683 rt_mutex_enqueue(lock, waiter);
684
685 /* [8] Release the task */
686 raw_spin_unlock(&task->pi_lock);
687 put_task_struct(task);
688
689 /*
690 * [9] check_exit_conditions_3 protected by lock->wait_lock.
691 *
692 * We must abort the chain walk if there is no lock owner even
693 * in the dead lock detection case, as we have nothing to
694 * follow here. This is the end of the chain we are walking.
695 */
696 if (!rt_mutex_owner(lock)) {
697 /*
698 * If the requeue [7] above changed the top waiter,
699 * then we need to wake the new top waiter up to try
700 * to get the lock.
701 */
702 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
703 wake_up_process(rt_mutex_top_waiter(lock)->task);
704 raw_spin_unlock_irq(&lock->wait_lock);
705 return 0;
706 }
707
708 /* [10] Grab the next task, i.e. the owner of @lock */
709 task = get_task_struct(rt_mutex_owner(lock));
710 raw_spin_lock(&task->pi_lock);
711
712 /* [11] requeue the pi waiters if necessary */
713 if (waiter == rt_mutex_top_waiter(lock)) {
714 /*
715 * The waiter became the new top (highest priority)
716 * waiter on the lock. Replace the previous top waiter
717 * in the owner tasks pi waiters tree with this waiter
718 * and adjust the priority of the owner.
719 */
720 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
721 rt_mutex_enqueue_pi(task, waiter);
722 rt_mutex_adjust_prio(task);
723
724 } else if (prerequeue_top_waiter == waiter) {
725 /*
726 * The waiter was the top waiter on the lock, but is
727 * no longer the top prority waiter. Replace waiter in
728 * the owner tasks pi waiters tree with the new top
729 * (highest priority) waiter and adjust the priority
730 * of the owner.
731 * The new top waiter is stored in @waiter so that
732 * @waiter == @top_waiter evaluates to true below and
733 * we continue to deboost the rest of the chain.
734 */
735 rt_mutex_dequeue_pi(task, waiter);
736 waiter = rt_mutex_top_waiter(lock);
737 rt_mutex_enqueue_pi(task, waiter);
738 rt_mutex_adjust_prio(task);
739 } else {
740 /*
741 * Nothing changed. No need to do any priority
742 * adjustment.
743 */
744 }
745
746 /*
747 * [12] check_exit_conditions_4() protected by task->pi_lock
748 * and lock->wait_lock. The actual decisions are made after we
749 * dropped the locks.
750 *
751 * Check whether the task which owns the current lock is pi
752 * blocked itself. If yes we store a pointer to the lock for
753 * the lock chain change detection above. After we dropped
754 * task->pi_lock next_lock cannot be dereferenced anymore.
755 */
756 next_lock = task_blocked_on_lock(task);
757 /*
758 * Store the top waiter of @lock for the end of chain walk
759 * decision below.
760 */
761 top_waiter = rt_mutex_top_waiter(lock);
762
763 /* [13] Drop the locks */
764 raw_spin_unlock(&task->pi_lock);
765 raw_spin_unlock_irq(&lock->wait_lock);
766
767 /*
768 * Make the actual exit decisions [12], based on the stored
769 * values.
770 *
771 * We reached the end of the lock chain. Stop right here. No
772 * point to go back just to figure that out.
773 */
774 if (!next_lock)
775 goto out_put_task;
776
777 /*
778 * If the current waiter is not the top waiter on the lock,
779 * then we can stop the chain walk here if we are not in full
780 * deadlock detection mode.
781 */
782 if (!detect_deadlock && waiter != top_waiter)
783 goto out_put_task;
784
785 goto again;
786
787 out_unlock_pi:
788 raw_spin_unlock_irq(&task->pi_lock);
789 out_put_task:
790 put_task_struct(task);
791
792 return ret;
793 }
794
795 /*
796 * Try to take an rt-mutex
797 *
798 * Must be called with lock->wait_lock held and interrupts disabled
799 *
800 * @lock: The lock to be acquired.
801 * @task: The task which wants to acquire the lock
802 * @waiter: The waiter that is queued to the lock's wait tree if the
803 * callsite called task_blocked_on_lock(), otherwise NULL
804 */
try_to_take_rt_mutex(struct rt_mutex * lock,struct task_struct * task,struct rt_mutex_waiter * waiter)805 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
806 struct rt_mutex_waiter *waiter)
807 {
808 lockdep_assert_held(&lock->wait_lock);
809
810 /*
811 * Before testing whether we can acquire @lock, we set the
812 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
813 * other tasks which try to modify @lock into the slow path
814 * and they serialize on @lock->wait_lock.
815 *
816 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
817 * as explained at the top of this file if and only if:
818 *
819 * - There is a lock owner. The caller must fixup the
820 * transient state if it does a trylock or leaves the lock
821 * function due to a signal or timeout.
822 *
823 * - @task acquires the lock and there are no other
824 * waiters. This is undone in rt_mutex_set_owner(@task) at
825 * the end of this function.
826 */
827 mark_rt_mutex_waiters(lock);
828
829 /*
830 * If @lock has an owner, give up.
831 */
832 if (rt_mutex_owner(lock))
833 return 0;
834
835 /*
836 * If @waiter != NULL, @task has already enqueued the waiter
837 * into @lock waiter tree. If @waiter == NULL then this is a
838 * trylock attempt.
839 */
840 if (waiter) {
841 /*
842 * If waiter is not the highest priority waiter of
843 * @lock, give up.
844 */
845 if (waiter != rt_mutex_top_waiter(lock))
846 return 0;
847
848 /*
849 * We can acquire the lock. Remove the waiter from the
850 * lock waiters tree.
851 */
852 rt_mutex_dequeue(lock, waiter);
853
854 } else {
855 /*
856 * If the lock has waiters already we check whether @task is
857 * eligible to take over the lock.
858 *
859 * If there are no other waiters, @task can acquire
860 * the lock. @task->pi_blocked_on is NULL, so it does
861 * not need to be dequeued.
862 */
863 if (rt_mutex_has_waiters(lock)) {
864 /*
865 * If @task->prio is greater than or equal to
866 * the top waiter priority (kernel view),
867 * @task lost.
868 */
869 if (!rt_mutex_waiter_less(task_to_waiter(task),
870 rt_mutex_top_waiter(lock)))
871 return 0;
872
873 /*
874 * The current top waiter stays enqueued. We
875 * don't have to change anything in the lock
876 * waiters order.
877 */
878 } else {
879 /*
880 * No waiters. Take the lock without the
881 * pi_lock dance.@task->pi_blocked_on is NULL
882 * and we have no waiters to enqueue in @task
883 * pi waiters tree.
884 */
885 goto takeit;
886 }
887 }
888
889 /*
890 * Clear @task->pi_blocked_on. Requires protection by
891 * @task->pi_lock. Redundant operation for the @waiter == NULL
892 * case, but conditionals are more expensive than a redundant
893 * store.
894 */
895 raw_spin_lock(&task->pi_lock);
896 task->pi_blocked_on = NULL;
897 /*
898 * Finish the lock acquisition. @task is the new owner. If
899 * other waiters exist we have to insert the highest priority
900 * waiter into @task->pi_waiters tree.
901 */
902 if (rt_mutex_has_waiters(lock))
903 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
904 raw_spin_unlock(&task->pi_lock);
905
906 takeit:
907 /* We got the lock. */
908 debug_rt_mutex_lock(lock);
909
910 /*
911 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
912 * are still waiters or clears it.
913 */
914 rt_mutex_set_owner(lock, task);
915
916 return 1;
917 }
918
919 /*
920 * Task blocks on lock.
921 *
922 * Prepare waiter and propagate pi chain
923 *
924 * This must be called with lock->wait_lock held and interrupts disabled
925 */
task_blocks_on_rt_mutex(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct task_struct * task,enum rtmutex_chainwalk chwalk)926 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
927 struct rt_mutex_waiter *waiter,
928 struct task_struct *task,
929 enum rtmutex_chainwalk chwalk)
930 {
931 struct task_struct *owner = rt_mutex_owner(lock);
932 struct rt_mutex_waiter *top_waiter = waiter;
933 struct rt_mutex *next_lock;
934 int chain_walk = 0, res;
935
936 lockdep_assert_held(&lock->wait_lock);
937
938 /*
939 * Early deadlock detection. We really don't want the task to
940 * enqueue on itself just to untangle the mess later. It's not
941 * only an optimization. We drop the locks, so another waiter
942 * can come in before the chain walk detects the deadlock. So
943 * the other will detect the deadlock and return -EDEADLOCK,
944 * which is wrong, as the other waiter is not in a deadlock
945 * situation.
946 */
947 if (owner == task)
948 return -EDEADLK;
949
950 raw_spin_lock(&task->pi_lock);
951 waiter->task = task;
952 waiter->lock = lock;
953 waiter->prio = task->prio;
954 waiter->deadline = task->dl.deadline;
955
956 /* Get the top priority waiter on the lock */
957 if (rt_mutex_has_waiters(lock))
958 top_waiter = rt_mutex_top_waiter(lock);
959 rt_mutex_enqueue(lock, waiter);
960
961 task->pi_blocked_on = waiter;
962
963 raw_spin_unlock(&task->pi_lock);
964
965 if (!owner)
966 return 0;
967
968 raw_spin_lock(&owner->pi_lock);
969 if (waiter == rt_mutex_top_waiter(lock)) {
970 rt_mutex_dequeue_pi(owner, top_waiter);
971 rt_mutex_enqueue_pi(owner, waiter);
972
973 rt_mutex_adjust_prio(owner);
974 if (owner->pi_blocked_on)
975 chain_walk = 1;
976 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
977 chain_walk = 1;
978 }
979
980 /* Store the lock on which owner is blocked or NULL */
981 next_lock = task_blocked_on_lock(owner);
982
983 raw_spin_unlock(&owner->pi_lock);
984 /*
985 * Even if full deadlock detection is on, if the owner is not
986 * blocked itself, we can avoid finding this out in the chain
987 * walk.
988 */
989 if (!chain_walk || !next_lock)
990 return 0;
991
992 /*
993 * The owner can't disappear while holding a lock,
994 * so the owner struct is protected by wait_lock.
995 * Gets dropped in rt_mutex_adjust_prio_chain()!
996 */
997 get_task_struct(owner);
998
999 raw_spin_unlock_irq(&lock->wait_lock);
1000
1001 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1002 next_lock, waiter, task);
1003
1004 raw_spin_lock_irq(&lock->wait_lock);
1005
1006 return res;
1007 }
1008
1009 /*
1010 * Remove the top waiter from the current tasks pi waiter tree and
1011 * queue it up.
1012 *
1013 * Called with lock->wait_lock held and interrupts disabled.
1014 */
mark_wakeup_next_waiter(struct wake_q_head * wake_q,struct rt_mutex * lock)1015 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1016 struct rt_mutex *lock)
1017 {
1018 struct rt_mutex_waiter *waiter;
1019
1020 raw_spin_lock(¤t->pi_lock);
1021
1022 waiter = rt_mutex_top_waiter(lock);
1023
1024 /*
1025 * Remove it from current->pi_waiters and deboost.
1026 *
1027 * We must in fact deboost here in order to ensure we call
1028 * rt_mutex_setprio() to update p->pi_top_task before the
1029 * task unblocks.
1030 */
1031 rt_mutex_dequeue_pi(current, waiter);
1032 rt_mutex_adjust_prio(current);
1033
1034 /*
1035 * As we are waking up the top waiter, and the waiter stays
1036 * queued on the lock until it gets the lock, this lock
1037 * obviously has waiters. Just set the bit here and this has
1038 * the added benefit of forcing all new tasks into the
1039 * slow path making sure no task of lower priority than
1040 * the top waiter can steal this lock.
1041 */
1042 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1043
1044 /*
1045 * We deboosted before waking the top waiter task such that we don't
1046 * run two tasks with the 'same' priority (and ensure the
1047 * p->pi_top_task pointer points to a blocked task). This however can
1048 * lead to priority inversion if we would get preempted after the
1049 * deboost but before waking our donor task, hence the preempt_disable()
1050 * before unlock.
1051 *
1052 * Pairs with preempt_enable() in rt_mutex_postunlock();
1053 */
1054 preempt_disable();
1055 wake_q_add(wake_q, waiter->task);
1056 raw_spin_unlock(¤t->pi_lock);
1057 }
1058
1059 /*
1060 * Remove a waiter from a lock and give up
1061 *
1062 * Must be called with lock->wait_lock held and interrupts disabled. I must
1063 * have just failed to try_to_take_rt_mutex().
1064 */
remove_waiter(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)1065 static void remove_waiter(struct rt_mutex *lock,
1066 struct rt_mutex_waiter *waiter)
1067 {
1068 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1069 struct task_struct *owner = rt_mutex_owner(lock);
1070 struct rt_mutex *next_lock;
1071
1072 lockdep_assert_held(&lock->wait_lock);
1073
1074 raw_spin_lock(¤t->pi_lock);
1075 rt_mutex_dequeue(lock, waiter);
1076 current->pi_blocked_on = NULL;
1077 raw_spin_unlock(¤t->pi_lock);
1078
1079 /*
1080 * Only update priority if the waiter was the highest priority
1081 * waiter of the lock and there is an owner to update.
1082 */
1083 if (!owner || !is_top_waiter)
1084 return;
1085
1086 raw_spin_lock(&owner->pi_lock);
1087
1088 rt_mutex_dequeue_pi(owner, waiter);
1089
1090 if (rt_mutex_has_waiters(lock))
1091 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1092
1093 rt_mutex_adjust_prio(owner);
1094
1095 /* Store the lock on which owner is blocked or NULL */
1096 next_lock = task_blocked_on_lock(owner);
1097
1098 raw_spin_unlock(&owner->pi_lock);
1099
1100 /*
1101 * Don't walk the chain, if the owner task is not blocked
1102 * itself.
1103 */
1104 if (!next_lock)
1105 return;
1106
1107 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1108 get_task_struct(owner);
1109
1110 raw_spin_unlock_irq(&lock->wait_lock);
1111
1112 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1113 next_lock, NULL, current);
1114
1115 raw_spin_lock_irq(&lock->wait_lock);
1116 }
1117
1118 /*
1119 * Recheck the pi chain, in case we got a priority setting
1120 *
1121 * Called from sched_setscheduler
1122 */
rt_mutex_adjust_pi(struct task_struct * task)1123 void rt_mutex_adjust_pi(struct task_struct *task)
1124 {
1125 struct rt_mutex_waiter *waiter;
1126 struct rt_mutex *next_lock;
1127 unsigned long flags;
1128
1129 raw_spin_lock_irqsave(&task->pi_lock, flags);
1130
1131 waiter = task->pi_blocked_on;
1132 if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1133 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1134 return;
1135 }
1136 next_lock = waiter->lock;
1137 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1138
1139 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1140 get_task_struct(task);
1141
1142 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1143 next_lock, NULL, task);
1144 }
1145
rt_mutex_init_waiter(struct rt_mutex_waiter * waiter)1146 void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1147 {
1148 debug_rt_mutex_init_waiter(waiter);
1149 RB_CLEAR_NODE(&waiter->pi_tree_entry);
1150 RB_CLEAR_NODE(&waiter->tree_entry);
1151 waiter->task = NULL;
1152 }
1153
1154 /**
1155 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1156 * @lock: the rt_mutex to take
1157 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1158 * or TASK_UNINTERRUPTIBLE)
1159 * @timeout: the pre-initialized and started timer, or NULL for none
1160 * @waiter: the pre-initialized rt_mutex_waiter
1161 *
1162 * Must be called with lock->wait_lock held and interrupts disabled
1163 */
1164 static int __sched
__rt_mutex_slowlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,struct rt_mutex_waiter * waiter)1165 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1166 struct hrtimer_sleeper *timeout,
1167 struct rt_mutex_waiter *waiter)
1168 {
1169 int ret = 0;
1170
1171 for (;;) {
1172 /* Try to acquire the lock: */
1173 if (try_to_take_rt_mutex(lock, current, waiter))
1174 break;
1175
1176 /*
1177 * TASK_INTERRUPTIBLE checks for signals and
1178 * timeout. Ignored otherwise.
1179 */
1180 if (likely(state == TASK_INTERRUPTIBLE)) {
1181 /* Signal pending? */
1182 if (signal_pending(current))
1183 ret = -EINTR;
1184 if (timeout && !timeout->task)
1185 ret = -ETIMEDOUT;
1186 if (ret)
1187 break;
1188 }
1189
1190 raw_spin_unlock_irq(&lock->wait_lock);
1191
1192 debug_rt_mutex_print_deadlock(waiter);
1193
1194 schedule();
1195
1196 raw_spin_lock_irq(&lock->wait_lock);
1197 set_current_state(state);
1198 }
1199
1200 __set_current_state(TASK_RUNNING);
1201 return ret;
1202 }
1203
rt_mutex_handle_deadlock(int res,int detect_deadlock,struct rt_mutex * lock,struct rt_mutex_waiter * w)1204 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1205 struct rt_mutex *lock,
1206 struct rt_mutex_waiter *w)
1207 {
1208 /*
1209 * If the result is not -EDEADLOCK or the caller requested
1210 * deadlock detection, nothing to do here.
1211 */
1212 if (res != -EDEADLOCK || detect_deadlock)
1213 return;
1214
1215 raw_spin_unlock_irq(&lock->wait_lock);
1216 /*
1217 * Yell lowdly and stop the task right here.
1218 */
1219 rt_mutex_print_deadlock(w);
1220 while (1) {
1221 set_current_state(TASK_INTERRUPTIBLE);
1222 schedule();
1223 }
1224 }
1225
1226 /*
1227 * Slow path lock function:
1228 */
1229 static int __sched
rt_mutex_slowlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk)1230 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1231 struct hrtimer_sleeper *timeout,
1232 enum rtmutex_chainwalk chwalk)
1233 {
1234 struct rt_mutex_waiter waiter;
1235 unsigned long flags;
1236 int ret = 0;
1237
1238 rt_mutex_init_waiter(&waiter);
1239
1240 /*
1241 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1242 * be called in early boot if the cmpxchg() fast path is disabled
1243 * (debug, no architecture support). In this case we will acquire the
1244 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1245 * enable interrupts in that early boot case. So we need to use the
1246 * irqsave/restore variants.
1247 */
1248 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1249
1250 /* Try to acquire the lock again: */
1251 if (try_to_take_rt_mutex(lock, current, NULL)) {
1252 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1253 return 0;
1254 }
1255
1256 set_current_state(state);
1257
1258 /* Setup the timer, when timeout != NULL */
1259 if (unlikely(timeout))
1260 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1261
1262 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1263
1264 if (likely(!ret))
1265 /* sleep on the mutex */
1266 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1267
1268 if (unlikely(ret)) {
1269 __set_current_state(TASK_RUNNING);
1270 remove_waiter(lock, &waiter);
1271 rt_mutex_handle_deadlock(ret, chwalk, lock, &waiter);
1272 }
1273
1274 /*
1275 * try_to_take_rt_mutex() sets the waiter bit
1276 * unconditionally. We might have to fix that up.
1277 */
1278 fixup_rt_mutex_waiters(lock);
1279
1280 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1281
1282 /* Remove pending timer: */
1283 if (unlikely(timeout))
1284 hrtimer_cancel(&timeout->timer);
1285
1286 debug_rt_mutex_free_waiter(&waiter);
1287
1288 return ret;
1289 }
1290
__rt_mutex_slowtrylock(struct rt_mutex * lock)1291 static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1292 {
1293 int ret = try_to_take_rt_mutex(lock, current, NULL);
1294
1295 /*
1296 * try_to_take_rt_mutex() sets the lock waiters bit
1297 * unconditionally. Clean this up.
1298 */
1299 fixup_rt_mutex_waiters(lock);
1300
1301 return ret;
1302 }
1303
1304 /*
1305 * Slow path try-lock function:
1306 */
rt_mutex_slowtrylock(struct rt_mutex * lock)1307 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1308 {
1309 unsigned long flags;
1310 int ret;
1311
1312 /*
1313 * If the lock already has an owner we fail to get the lock.
1314 * This can be done without taking the @lock->wait_lock as
1315 * it is only being read, and this is a trylock anyway.
1316 */
1317 if (rt_mutex_owner(lock))
1318 return 0;
1319
1320 /*
1321 * The mutex has currently no owner. Lock the wait lock and try to
1322 * acquire the lock. We use irqsave here to support early boot calls.
1323 */
1324 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1325
1326 ret = __rt_mutex_slowtrylock(lock);
1327
1328 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1329
1330 return ret;
1331 }
1332
1333 /*
1334 * Slow path to release a rt-mutex.
1335 *
1336 * Return whether the current task needs to call rt_mutex_postunlock().
1337 */
rt_mutex_slowunlock(struct rt_mutex * lock,struct wake_q_head * wake_q)1338 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1339 struct wake_q_head *wake_q)
1340 {
1341 unsigned long flags;
1342
1343 /* irqsave required to support early boot calls */
1344 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1345
1346 debug_rt_mutex_unlock(lock);
1347
1348 /*
1349 * We must be careful here if the fast path is enabled. If we
1350 * have no waiters queued we cannot set owner to NULL here
1351 * because of:
1352 *
1353 * foo->lock->owner = NULL;
1354 * rtmutex_lock(foo->lock); <- fast path
1355 * free = atomic_dec_and_test(foo->refcnt);
1356 * rtmutex_unlock(foo->lock); <- fast path
1357 * if (free)
1358 * kfree(foo);
1359 * raw_spin_unlock(foo->lock->wait_lock);
1360 *
1361 * So for the fastpath enabled kernel:
1362 *
1363 * Nothing can set the waiters bit as long as we hold
1364 * lock->wait_lock. So we do the following sequence:
1365 *
1366 * owner = rt_mutex_owner(lock);
1367 * clear_rt_mutex_waiters(lock);
1368 * raw_spin_unlock(&lock->wait_lock);
1369 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1370 * return;
1371 * goto retry;
1372 *
1373 * The fastpath disabled variant is simple as all access to
1374 * lock->owner is serialized by lock->wait_lock:
1375 *
1376 * lock->owner = NULL;
1377 * raw_spin_unlock(&lock->wait_lock);
1378 */
1379 while (!rt_mutex_has_waiters(lock)) {
1380 /* Drops lock->wait_lock ! */
1381 if (unlock_rt_mutex_safe(lock, flags) == true)
1382 return false;
1383 /* Relock the rtmutex and try again */
1384 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1385 }
1386
1387 /*
1388 * The wakeup next waiter path does not suffer from the above
1389 * race. See the comments there.
1390 *
1391 * Queue the next waiter for wakeup once we release the wait_lock.
1392 */
1393 mark_wakeup_next_waiter(wake_q, lock);
1394 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1395
1396 return true; /* call rt_mutex_postunlock() */
1397 }
1398
1399 /*
1400 * debug aware fast / slowpath lock,trylock,unlock
1401 *
1402 * The atomic acquire/release ops are compiled away, when either the
1403 * architecture does not support cmpxchg or when debugging is enabled.
1404 */
1405 static inline int
rt_mutex_fastlock(struct rt_mutex * lock,int state,int (* slowfn)(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk))1406 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1407 int (*slowfn)(struct rt_mutex *lock, int state,
1408 struct hrtimer_sleeper *timeout,
1409 enum rtmutex_chainwalk chwalk))
1410 {
1411 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1412 return 0;
1413
1414 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1415 }
1416
1417 static inline int
rt_mutex_timed_fastlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk,int (* slowfn)(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk))1418 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1419 struct hrtimer_sleeper *timeout,
1420 enum rtmutex_chainwalk chwalk,
1421 int (*slowfn)(struct rt_mutex *lock, int state,
1422 struct hrtimer_sleeper *timeout,
1423 enum rtmutex_chainwalk chwalk))
1424 {
1425 if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1426 likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1427 return 0;
1428
1429 return slowfn(lock, state, timeout, chwalk);
1430 }
1431
1432 static inline int
rt_mutex_fasttrylock(struct rt_mutex * lock,int (* slowfn)(struct rt_mutex * lock))1433 rt_mutex_fasttrylock(struct rt_mutex *lock,
1434 int (*slowfn)(struct rt_mutex *lock))
1435 {
1436 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1437 return 1;
1438
1439 return slowfn(lock);
1440 }
1441
1442 /*
1443 * Performs the wakeup of the top-waiter and re-enables preemption.
1444 */
rt_mutex_postunlock(struct wake_q_head * wake_q)1445 void rt_mutex_postunlock(struct wake_q_head *wake_q)
1446 {
1447 wake_up_q(wake_q);
1448
1449 /* Pairs with preempt_disable() in rt_mutex_slowunlock() */
1450 preempt_enable();
1451 }
1452
1453 static inline void
rt_mutex_fastunlock(struct rt_mutex * lock,bool (* slowfn)(struct rt_mutex * lock,struct wake_q_head * wqh))1454 rt_mutex_fastunlock(struct rt_mutex *lock,
1455 bool (*slowfn)(struct rt_mutex *lock,
1456 struct wake_q_head *wqh))
1457 {
1458 DEFINE_WAKE_Q(wake_q);
1459
1460 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1461 return;
1462
1463 if (slowfn(lock, &wake_q))
1464 rt_mutex_postunlock(&wake_q);
1465 }
1466
__rt_mutex_lock(struct rt_mutex * lock,unsigned int subclass)1467 static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass)
1468 {
1469 might_sleep();
1470
1471 mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
1472 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1473 }
1474
1475 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1476 /**
1477 * rt_mutex_lock_nested - lock a rt_mutex
1478 *
1479 * @lock: the rt_mutex to be locked
1480 * @subclass: the lockdep subclass
1481 */
rt_mutex_lock_nested(struct rt_mutex * lock,unsigned int subclass)1482 void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
1483 {
1484 __rt_mutex_lock(lock, subclass);
1485 }
1486 EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
1487
1488 #else /* !CONFIG_DEBUG_LOCK_ALLOC */
1489
1490 /**
1491 * rt_mutex_lock - lock a rt_mutex
1492 *
1493 * @lock: the rt_mutex to be locked
1494 */
rt_mutex_lock(struct rt_mutex * lock)1495 void __sched rt_mutex_lock(struct rt_mutex *lock)
1496 {
1497 __rt_mutex_lock(lock, 0);
1498 }
1499 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1500 #endif
1501
1502 /**
1503 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1504 *
1505 * @lock: the rt_mutex to be locked
1506 *
1507 * Returns:
1508 * 0 on success
1509 * -EINTR when interrupted by a signal
1510 */
rt_mutex_lock_interruptible(struct rt_mutex * lock)1511 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1512 {
1513 int ret;
1514
1515 might_sleep();
1516
1517 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1518 ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1519 if (ret)
1520 mutex_release(&lock->dep_map, _RET_IP_);
1521
1522 return ret;
1523 }
1524 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1525
1526 /*
1527 * Futex variant, must not use fastpath.
1528 */
rt_mutex_futex_trylock(struct rt_mutex * lock)1529 int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1530 {
1531 return rt_mutex_slowtrylock(lock);
1532 }
1533
__rt_mutex_futex_trylock(struct rt_mutex * lock)1534 int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1535 {
1536 return __rt_mutex_slowtrylock(lock);
1537 }
1538
1539 /**
1540 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1541 * the timeout structure is provided
1542 * by the caller
1543 *
1544 * @lock: the rt_mutex to be locked
1545 * @timeout: timeout structure or NULL (no timeout)
1546 *
1547 * Returns:
1548 * 0 on success
1549 * -EINTR when interrupted by a signal
1550 * -ETIMEDOUT when the timeout expired
1551 */
1552 int
rt_mutex_timed_lock(struct rt_mutex * lock,struct hrtimer_sleeper * timeout)1553 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1554 {
1555 int ret;
1556
1557 might_sleep();
1558
1559 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1560 ret = rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1561 RT_MUTEX_MIN_CHAINWALK,
1562 rt_mutex_slowlock);
1563 if (ret)
1564 mutex_release(&lock->dep_map, _RET_IP_);
1565
1566 return ret;
1567 }
1568 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1569
1570 /**
1571 * rt_mutex_trylock - try to lock a rt_mutex
1572 *
1573 * @lock: the rt_mutex to be locked
1574 *
1575 * This function can only be called in thread context. It's safe to
1576 * call it from atomic regions, but not from hard interrupt or soft
1577 * interrupt context.
1578 *
1579 * Returns 1 on success and 0 on contention
1580 */
rt_mutex_trylock(struct rt_mutex * lock)1581 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1582 {
1583 int ret;
1584
1585 if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1586 return 0;
1587
1588 ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1589 if (ret)
1590 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1591
1592 return ret;
1593 }
1594 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1595
1596 /**
1597 * rt_mutex_unlock - unlock a rt_mutex
1598 *
1599 * @lock: the rt_mutex to be unlocked
1600 */
rt_mutex_unlock(struct rt_mutex * lock)1601 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1602 {
1603 mutex_release(&lock->dep_map, _RET_IP_);
1604 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1605 }
1606 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1607
1608 /**
1609 * Futex variant, that since futex variants do not use the fast-path, can be
1610 * simple and will not need to retry.
1611 */
__rt_mutex_futex_unlock(struct rt_mutex * lock,struct wake_q_head * wake_q)1612 bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1613 struct wake_q_head *wake_q)
1614 {
1615 lockdep_assert_held(&lock->wait_lock);
1616
1617 debug_rt_mutex_unlock(lock);
1618
1619 if (!rt_mutex_has_waiters(lock)) {
1620 lock->owner = NULL;
1621 return false; /* done */
1622 }
1623
1624 /*
1625 * We've already deboosted, mark_wakeup_next_waiter() will
1626 * retain preempt_disabled when we drop the wait_lock, to
1627 * avoid inversion prior to the wakeup. preempt_disable()
1628 * therein pairs with rt_mutex_postunlock().
1629 */
1630 mark_wakeup_next_waiter(wake_q, lock);
1631
1632 return true; /* call postunlock() */
1633 }
1634
rt_mutex_futex_unlock(struct rt_mutex * lock)1635 void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1636 {
1637 DEFINE_WAKE_Q(wake_q);
1638 unsigned long flags;
1639 bool postunlock;
1640
1641 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1642 postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1643 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1644
1645 if (postunlock)
1646 rt_mutex_postunlock(&wake_q);
1647 }
1648
1649 /**
1650 * rt_mutex_destroy - mark a mutex unusable
1651 * @lock: the mutex to be destroyed
1652 *
1653 * This function marks the mutex uninitialized, and any subsequent
1654 * use of the mutex is forbidden. The mutex must not be locked when
1655 * this function is called.
1656 */
rt_mutex_destroy(struct rt_mutex * lock)1657 void rt_mutex_destroy(struct rt_mutex *lock)
1658 {
1659 WARN_ON(rt_mutex_is_locked(lock));
1660 #ifdef CONFIG_DEBUG_RT_MUTEXES
1661 lock->magic = NULL;
1662 #endif
1663 }
1664 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1665
1666 /**
1667 * __rt_mutex_init - initialize the rt lock
1668 *
1669 * @lock: the rt lock to be initialized
1670 *
1671 * Initialize the rt lock to unlocked state.
1672 *
1673 * Initializing of a locked rt lock is not allowed
1674 */
__rt_mutex_init(struct rt_mutex * lock,const char * name,struct lock_class_key * key)1675 void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1676 struct lock_class_key *key)
1677 {
1678 lock->owner = NULL;
1679 raw_spin_lock_init(&lock->wait_lock);
1680 lock->waiters = RB_ROOT_CACHED;
1681
1682 if (name && key)
1683 debug_rt_mutex_init(lock, name, key);
1684 }
1685 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1686
1687 /**
1688 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1689 * proxy owner
1690 *
1691 * @lock: the rt_mutex to be locked
1692 * @proxy_owner:the task to set as owner
1693 *
1694 * No locking. Caller has to do serializing itself
1695 *
1696 * Special API call for PI-futex support. This initializes the rtmutex and
1697 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1698 * possible at this point because the pi_state which contains the rtmutex
1699 * is not yet visible to other tasks.
1700 */
rt_mutex_init_proxy_locked(struct rt_mutex * lock,struct task_struct * proxy_owner)1701 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1702 struct task_struct *proxy_owner)
1703 {
1704 __rt_mutex_init(lock, NULL, NULL);
1705 debug_rt_mutex_proxy_lock(lock, proxy_owner);
1706 rt_mutex_set_owner(lock, proxy_owner);
1707 }
1708
1709 /**
1710 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1711 *
1712 * @lock: the rt_mutex to be locked
1713 *
1714 * No locking. Caller has to do serializing itself
1715 *
1716 * Special API call for PI-futex support. This merrily cleans up the rtmutex
1717 * (debugging) state. Concurrent operations on this rt_mutex are not
1718 * possible because it belongs to the pi_state which is about to be freed
1719 * and it is not longer visible to other tasks.
1720 */
rt_mutex_proxy_unlock(struct rt_mutex * lock)1721 void rt_mutex_proxy_unlock(struct rt_mutex *lock)
1722 {
1723 debug_rt_mutex_proxy_unlock(lock);
1724 rt_mutex_set_owner(lock, NULL);
1725 }
1726
1727 /**
1728 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1729 * @lock: the rt_mutex to take
1730 * @waiter: the pre-initialized rt_mutex_waiter
1731 * @task: the task to prepare
1732 *
1733 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1734 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1735 *
1736 * NOTE: does _NOT_ remove the @waiter on failure; must either call
1737 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
1738 *
1739 * Returns:
1740 * 0 - task blocked on lock
1741 * 1 - acquired the lock for task, caller should wake it up
1742 * <0 - error
1743 *
1744 * Special API call for PI-futex support.
1745 */
__rt_mutex_start_proxy_lock(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct task_struct * task)1746 int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1747 struct rt_mutex_waiter *waiter,
1748 struct task_struct *task)
1749 {
1750 int ret;
1751
1752 lockdep_assert_held(&lock->wait_lock);
1753
1754 if (try_to_take_rt_mutex(lock, task, NULL))
1755 return 1;
1756
1757 /* We enforce deadlock detection for futexes */
1758 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1759 RT_MUTEX_FULL_CHAINWALK);
1760
1761 if (ret && !rt_mutex_owner(lock)) {
1762 /*
1763 * Reset the return value. We might have
1764 * returned with -EDEADLK and the owner
1765 * released the lock while we were walking the
1766 * pi chain. Let the waiter sort it out.
1767 */
1768 ret = 0;
1769 }
1770
1771 debug_rt_mutex_print_deadlock(waiter);
1772
1773 return ret;
1774 }
1775
1776 /**
1777 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1778 * @lock: the rt_mutex to take
1779 * @waiter: the pre-initialized rt_mutex_waiter
1780 * @task: the task to prepare
1781 *
1782 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1783 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1784 *
1785 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
1786 * on failure.
1787 *
1788 * Returns:
1789 * 0 - task blocked on lock
1790 * 1 - acquired the lock for task, caller should wake it up
1791 * <0 - error
1792 *
1793 * Special API call for PI-futex support.
1794 */
rt_mutex_start_proxy_lock(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct task_struct * task)1795 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1796 struct rt_mutex_waiter *waiter,
1797 struct task_struct *task)
1798 {
1799 int ret;
1800
1801 raw_spin_lock_irq(&lock->wait_lock);
1802 ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1803 if (unlikely(ret))
1804 remove_waiter(lock, waiter);
1805 raw_spin_unlock_irq(&lock->wait_lock);
1806
1807 return ret;
1808 }
1809
1810 /**
1811 * rt_mutex_next_owner - return the next owner of the lock
1812 *
1813 * @lock: the rt lock query
1814 *
1815 * Returns the next owner of the lock or NULL
1816 *
1817 * Caller has to serialize against other accessors to the lock
1818 * itself.
1819 *
1820 * Special API call for PI-futex support
1821 */
rt_mutex_next_owner(struct rt_mutex * lock)1822 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1823 {
1824 if (!rt_mutex_has_waiters(lock))
1825 return NULL;
1826
1827 return rt_mutex_top_waiter(lock)->task;
1828 }
1829
1830 /**
1831 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1832 * @lock: the rt_mutex we were woken on
1833 * @to: the timeout, null if none. hrtimer should already have
1834 * been started.
1835 * @waiter: the pre-initialized rt_mutex_waiter
1836 *
1837 * Wait for the lock acquisition started on our behalf by
1838 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1839 * rt_mutex_cleanup_proxy_lock().
1840 *
1841 * Returns:
1842 * 0 - success
1843 * <0 - error, one of -EINTR, -ETIMEDOUT
1844 *
1845 * Special API call for PI-futex support
1846 */
rt_mutex_wait_proxy_lock(struct rt_mutex * lock,struct hrtimer_sleeper * to,struct rt_mutex_waiter * waiter)1847 int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1848 struct hrtimer_sleeper *to,
1849 struct rt_mutex_waiter *waiter)
1850 {
1851 int ret;
1852
1853 raw_spin_lock_irq(&lock->wait_lock);
1854 /* sleep on the mutex */
1855 set_current_state(TASK_INTERRUPTIBLE);
1856 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1857 /*
1858 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1859 * have to fix that up.
1860 */
1861 fixup_rt_mutex_waiters(lock);
1862 raw_spin_unlock_irq(&lock->wait_lock);
1863
1864 return ret;
1865 }
1866
1867 /**
1868 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1869 * @lock: the rt_mutex we were woken on
1870 * @waiter: the pre-initialized rt_mutex_waiter
1871 *
1872 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
1873 * rt_mutex_wait_proxy_lock().
1874 *
1875 * Unless we acquired the lock; we're still enqueued on the wait-list and can
1876 * in fact still be granted ownership until we're removed. Therefore we can
1877 * find we are in fact the owner and must disregard the
1878 * rt_mutex_wait_proxy_lock() failure.
1879 *
1880 * Returns:
1881 * true - did the cleanup, we done.
1882 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1883 * caller should disregards its return value.
1884 *
1885 * Special API call for PI-futex support
1886 */
rt_mutex_cleanup_proxy_lock(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)1887 bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1888 struct rt_mutex_waiter *waiter)
1889 {
1890 bool cleanup = false;
1891
1892 raw_spin_lock_irq(&lock->wait_lock);
1893 /*
1894 * Do an unconditional try-lock, this deals with the lock stealing
1895 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1896 * sets a NULL owner.
1897 *
1898 * We're not interested in the return value, because the subsequent
1899 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1900 * we will own the lock and it will have removed the waiter. If we
1901 * failed the trylock, we're still not owner and we need to remove
1902 * ourselves.
1903 */
1904 try_to_take_rt_mutex(lock, current, waiter);
1905 /*
1906 * Unless we're the owner; we're still enqueued on the wait_list.
1907 * So check if we became owner, if not, take us off the wait_list.
1908 */
1909 if (rt_mutex_owner(lock) != current) {
1910 remove_waiter(lock, waiter);
1911 cleanup = true;
1912 }
1913 /*
1914 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1915 * have to fix that up.
1916 */
1917 fixup_rt_mutex_waiters(lock);
1918
1919 raw_spin_unlock_irq(&lock->wait_lock);
1920
1921 return cleanup;
1922 }
1923