• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 use rustc_middle::ty::{
2     layout::{LayoutCx, TyAndLayout},
3     TyCtxt,
4 };
5 use rustc_target::abi::*;
6 
7 use std::assert_matches::assert_matches;
8 
9 /// Enforce some basic invariants on layouts.
sanity_check_layout<'tcx>( cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: &TyAndLayout<'tcx>, )10 pub(super) fn sanity_check_layout<'tcx>(
11     cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
12     layout: &TyAndLayout<'tcx>,
13 ) {
14     // Type-level uninhabitedness should always imply ABI uninhabitedness.
15     if layout.ty.is_privately_uninhabited(cx.tcx, cx.param_env) {
16         assert!(layout.abi.is_uninhabited());
17     }
18 
19     if layout.size.bytes() % layout.align.abi.bytes() != 0 {
20         bug!("size is not a multiple of align, in the following layout:\n{layout:#?}");
21     }
22 
23     if !cfg!(debug_assertions) {
24         // Stop here, the rest is kind of expensive.
25         return;
26     }
27 
28     /// Yields non-ZST fields of the type
29     fn non_zst_fields<'tcx, 'a>(
30         cx: &'a LayoutCx<'tcx, TyCtxt<'tcx>>,
31         layout: &'a TyAndLayout<'tcx>,
32     ) -> impl Iterator<Item = (Size, TyAndLayout<'tcx>)> + 'a {
33         (0..layout.layout.fields().count()).filter_map(|i| {
34             let field = layout.field(cx, i);
35             // Also checking `align == 1` here leads to test failures in
36             // `layout/zero-sized-array-union.rs`, where a type has a zero-size field with
37             // alignment 4 that still gets ignored during layout computation (which is okay
38             // since other fields already force alignment 4).
39             let zst = field.is_zst();
40             (!zst).then(|| (layout.fields.offset(i), field))
41         })
42     }
43 
44     fn skip_newtypes<'tcx>(
45         cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
46         layout: &TyAndLayout<'tcx>,
47     ) -> TyAndLayout<'tcx> {
48         if matches!(layout.layout.variants(), Variants::Multiple { .. }) {
49             // Definitely not a newtype of anything.
50             return *layout;
51         }
52         let mut fields = non_zst_fields(cx, layout);
53         let Some(first) = fields.next() else {
54             // No fields here, so this could be a primitive or enum -- either way it's not a newtype around a thing
55             return *layout
56         };
57         if fields.next().is_none() {
58             let (offset, first) = first;
59             if offset == Size::ZERO && first.layout.size() == layout.size {
60                 // This is a newtype, so keep recursing.
61                 // FIXME(RalfJung): I don't think it would be correct to do any checks for
62                 // alignment here, so we don't. Is that correct?
63                 return skip_newtypes(cx, &first);
64             }
65         }
66         // No more newtypes here.
67         *layout
68     }
69 
70     fn check_layout_abi<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: &TyAndLayout<'tcx>) {
71         // Verify the ABI mandated alignment and size.
72         let align = layout.abi.inherent_align(cx).map(|align| align.abi);
73         let size = layout.abi.inherent_size(cx);
74         let Some((align, size)) = align.zip(size) else {
75             assert_matches!(
76                 layout.layout.abi(),
77                 Abi::Uninhabited | Abi::Aggregate { .. },
78                 "ABI unexpectedly missing alignment and/or size in {layout:#?}"
79             );
80             return
81         };
82         assert_eq!(
83             layout.layout.align().abi,
84             align,
85             "alignment mismatch between ABI and layout in {layout:#?}"
86         );
87         assert_eq!(
88             layout.layout.size(),
89             size,
90             "size mismatch between ABI and layout in {layout:#?}"
91         );
92 
93         // Verify per-ABI invariants
94         match layout.layout.abi() {
95             Abi::Scalar(_) => {
96                 // Check that this matches the underlying field.
97                 let inner = skip_newtypes(cx, layout);
98                 assert!(
99                     matches!(inner.layout.abi(), Abi::Scalar(_)),
100                     "`Scalar` type {} is newtype around non-`Scalar` type {}",
101                     layout.ty,
102                     inner.ty
103                 );
104                 match inner.layout.fields() {
105                     FieldsShape::Primitive => {
106                         // Fine.
107                     }
108                     FieldsShape::Union(..) => {
109                         // FIXME: I guess we could also check something here? Like, look at all fields?
110                         return;
111                     }
112                     FieldsShape::Arbitrary { .. } => {
113                         // Should be an enum, the only field is the discriminant.
114                         assert!(
115                             inner.ty.is_enum(),
116                             "`Scalar` layout for non-primitive non-enum type {}",
117                             inner.ty
118                         );
119                         assert_eq!(
120                             inner.layout.fields().count(),
121                             1,
122                             "`Scalar` layout for multiple-field type in {inner:#?}",
123                         );
124                         let offset = inner.layout.fields().offset(0);
125                         let field = inner.field(cx, 0);
126                         // The field should be at the right offset, and match the `scalar` layout.
127                         assert_eq!(
128                             offset,
129                             Size::ZERO,
130                             "`Scalar` field at non-0 offset in {inner:#?}",
131                         );
132                         assert_eq!(field.size, size, "`Scalar` field with bad size in {inner:#?}",);
133                         assert_eq!(
134                             field.align.abi, align,
135                             "`Scalar` field with bad align in {inner:#?}",
136                         );
137                         assert!(
138                             matches!(field.abi, Abi::Scalar(_)),
139                             "`Scalar` field with bad ABI in {inner:#?}",
140                         );
141                     }
142                     _ => {
143                         panic!("`Scalar` layout for non-primitive non-enum type {}", inner.ty);
144                     }
145                 }
146             }
147             Abi::ScalarPair(scalar1, scalar2) => {
148                 // Check that the underlying pair of fields matches.
149                 let inner = skip_newtypes(cx, layout);
150                 assert!(
151                     matches!(inner.layout.abi(), Abi::ScalarPair(..)),
152                     "`ScalarPair` type {} is newtype around non-`ScalarPair` type {}",
153                     layout.ty,
154                     inner.ty
155                 );
156                 if matches!(inner.layout.variants(), Variants::Multiple { .. }) {
157                     // FIXME: ScalarPair for enums is enormously complicated and it is very hard
158                     // to check anything about them.
159                     return;
160                 }
161                 match inner.layout.fields() {
162                     FieldsShape::Arbitrary { .. } => {
163                         // Checked below.
164                     }
165                     FieldsShape::Union(..) => {
166                         // FIXME: I guess we could also check something here? Like, look at all fields?
167                         return;
168                     }
169                     _ => {
170                         panic!("`ScalarPair` layout with unexpected field shape in {inner:#?}");
171                     }
172                 }
173                 let mut fields = non_zst_fields(cx, &inner);
174                 let (offset1, field1) = fields.next().unwrap_or_else(|| {
175                     panic!(
176                         "`ScalarPair` layout for type with not even one non-ZST field: {inner:#?}"
177                     )
178                 });
179                 let (offset2, field2) = fields.next().unwrap_or_else(|| {
180                     panic!(
181                         "`ScalarPair` layout for type with less than two non-ZST fields: {inner:#?}"
182                     )
183                 });
184                 assert_matches!(
185                     fields.next(),
186                     None,
187                     "`ScalarPair` layout for type with at least three non-ZST fields: {inner:#?}"
188                 );
189                 // The fields might be in opposite order.
190                 let (offset1, field1, offset2, field2) = if offset1 <= offset2 {
191                     (offset1, field1, offset2, field2)
192                 } else {
193                     (offset2, field2, offset1, field1)
194                 };
195                 // The fields should be at the right offset, and match the `scalar` layout.
196                 let size1 = scalar1.size(cx);
197                 let align1 = scalar1.align(cx).abi;
198                 let size2 = scalar2.size(cx);
199                 let align2 = scalar2.align(cx).abi;
200                 assert_eq!(
201                     offset1,
202                     Size::ZERO,
203                     "`ScalarPair` first field at non-0 offset in {inner:#?}",
204                 );
205                 assert_eq!(
206                     field1.size, size1,
207                     "`ScalarPair` first field with bad size in {inner:#?}",
208                 );
209                 assert_eq!(
210                     field1.align.abi, align1,
211                     "`ScalarPair` first field with bad align in {inner:#?}",
212                 );
213                 assert_matches!(
214                     field1.abi,
215                     Abi::Scalar(_),
216                     "`ScalarPair` first field with bad ABI in {inner:#?}",
217                 );
218                 let field2_offset = size1.align_to(align2);
219                 assert_eq!(
220                     offset2, field2_offset,
221                     "`ScalarPair` second field at bad offset in {inner:#?}",
222                 );
223                 assert_eq!(
224                     field2.size, size2,
225                     "`ScalarPair` second field with bad size in {inner:#?}",
226                 );
227                 assert_eq!(
228                     field2.align.abi, align2,
229                     "`ScalarPair` second field with bad align in {inner:#?}",
230                 );
231                 assert_matches!(
232                     field2.abi,
233                     Abi::Scalar(_),
234                     "`ScalarPair` second field with bad ABI in {inner:#?}",
235                 );
236             }
237             Abi::Vector { element, .. } => {
238                 assert!(align >= element.align(cx).abi); // just sanity-checking `vector_align`.
239                 // FIXME: Do some kind of check of the inner type, like for Scalar and ScalarPair.
240             }
241             Abi::Uninhabited | Abi::Aggregate { .. } => {} // Nothing to check.
242         }
243     }
244 
245     check_layout_abi(cx, layout);
246 
247     if let Variants::Multiple { variants, .. } = &layout.variants {
248         for variant in variants.iter() {
249             // No nested "multiple".
250             assert!(matches!(variant.variants, Variants::Single { .. }));
251             // Variants should have the same or a smaller size as the full thing,
252             // and same for alignment.
253             if variant.size > layout.size {
254                 bug!(
255                     "Type with size {} bytes has variant with size {} bytes: {layout:#?}",
256                     layout.size.bytes(),
257                     variant.size.bytes(),
258                 )
259             }
260             if variant.align.abi > layout.align.abi {
261                 bug!(
262                     "Type with alignment {} bytes has variant with alignment {} bytes: {layout:#?}",
263                     layout.align.abi.bytes(),
264                     variant.align.abi.bytes(),
265                 )
266             }
267             // Skip empty variants.
268             if variant.size == Size::ZERO
269                 || variant.fields.count() == 0
270                 || variant.abi.is_uninhabited()
271             {
272                 // These are never actually accessed anyway, so we can skip the coherence check
273                 // for them. They also fail that check, since they have
274                 // `Aggregate`/`Uninhabited` ABI even when the main type is
275                 // `Scalar`/`ScalarPair`. (Note that sometimes, variants with fields have size
276                 // 0, and sometimes, variants without fields have non-0 size.)
277                 continue;
278             }
279             // The top-level ABI and the ABI of the variants should be coherent.
280             let scalar_coherent =
281                 |s1: Scalar, s2: Scalar| s1.size(cx) == s2.size(cx) && s1.align(cx) == s2.align(cx);
282             let abi_coherent = match (layout.abi, variant.abi) {
283                 (Abi::Scalar(s1), Abi::Scalar(s2)) => scalar_coherent(s1, s2),
284                 (Abi::ScalarPair(a1, b1), Abi::ScalarPair(a2, b2)) => {
285                     scalar_coherent(a1, a2) && scalar_coherent(b1, b2)
286                 }
287                 (Abi::Uninhabited, _) => true,
288                 (Abi::Aggregate { .. }, _) => true,
289                 _ => false,
290             };
291             if !abi_coherent {
292                 bug!(
293                     "Variant ABI is incompatible with top-level ABI:\nvariant={:#?}\nTop-level: {layout:#?}",
294                     variant
295                 );
296             }
297         }
298     }
299 }
300