• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! A contiguous growable array type with heap-allocated contents, written
2 //! `Vec<T>`.
3 //!
4 //! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
5 //! *O*(1) pop (from the end).
6 //!
7 //! Vectors ensure they never allocate more than `isize::MAX` bytes.
8 //!
9 //! # Examples
10 //!
11 //! You can explicitly create a [`Vec`] with [`Vec::new`]:
12 //!
13 //! ```
14 //! let v: Vec<i32> = Vec::new();
15 //! ```
16 //!
17 //! ...or by using the [`vec!`] macro:
18 //!
19 //! ```
20 //! let v: Vec<i32> = vec![];
21 //!
22 //! let v = vec![1, 2, 3, 4, 5];
23 //!
24 //! let v = vec![0; 10]; // ten zeroes
25 //! ```
26 //!
27 //! You can [`push`] values onto the end of a vector (which will grow the vector
28 //! as needed):
29 //!
30 //! ```
31 //! let mut v = vec![1, 2];
32 //!
33 //! v.push(3);
34 //! ```
35 //!
36 //! Popping values works in much the same way:
37 //!
38 //! ```
39 //! let mut v = vec![1, 2];
40 //!
41 //! let two = v.pop();
42 //! ```
43 //!
44 //! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
45 //!
46 //! ```
47 //! let mut v = vec![1, 2, 3];
48 //! let three = v[2];
49 //! v[1] = v[1] + 5;
50 //! ```
51 //!
52 //! [`push`]: Vec::push
53 
54 #![stable(feature = "rust1", since = "1.0.0")]
55 
56 #[cfg(not(no_global_oom_handling))]
57 use core::cmp;
58 use core::cmp::Ordering;
59 use core::fmt;
60 use core::hash::{Hash, Hasher};
61 use core::iter;
62 use core::marker::PhantomData;
63 use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
64 use core::ops::{self, Index, IndexMut, Range, RangeBounds};
65 use core::ptr::{self, NonNull};
66 use core::slice::{self, SliceIndex};
67 
68 use crate::alloc::{Allocator, Global};
69 use crate::borrow::{Cow, ToOwned};
70 use crate::boxed::Box;
71 use crate::collections::TryReserveError;
72 use crate::raw_vec::RawVec;
73 
74 #[unstable(feature = "extract_if", reason = "recently added", issue = "43244")]
75 pub use self::extract_if::ExtractIf;
76 
77 mod extract_if;
78 
79 #[cfg(not(no_global_oom_handling))]
80 #[stable(feature = "vec_splice", since = "1.21.0")]
81 pub use self::splice::Splice;
82 
83 #[cfg(not(no_global_oom_handling))]
84 mod splice;
85 
86 #[stable(feature = "drain", since = "1.6.0")]
87 pub use self::drain::Drain;
88 
89 mod drain;
90 
91 #[cfg(not(no_global_oom_handling))]
92 mod cow;
93 
94 #[cfg(not(no_global_oom_handling))]
95 pub(crate) use self::in_place_collect::AsVecIntoIter;
96 #[stable(feature = "rust1", since = "1.0.0")]
97 pub use self::into_iter::IntoIter;
98 
99 mod into_iter;
100 
101 #[cfg(not(no_global_oom_handling))]
102 use self::is_zero::IsZero;
103 
104 mod is_zero;
105 
106 #[cfg(not(no_global_oom_handling))]
107 mod in_place_collect;
108 
109 mod partial_eq;
110 
111 #[cfg(not(no_global_oom_handling))]
112 use self::spec_from_elem::SpecFromElem;
113 
114 #[cfg(not(no_global_oom_handling))]
115 mod spec_from_elem;
116 
117 #[cfg(not(no_global_oom_handling))]
118 use self::set_len_on_drop::SetLenOnDrop;
119 
120 #[cfg(not(no_global_oom_handling))]
121 mod set_len_on_drop;
122 
123 #[cfg(not(no_global_oom_handling))]
124 use self::in_place_drop::{InPlaceDrop, InPlaceDstBufDrop};
125 
126 #[cfg(not(no_global_oom_handling))]
127 mod in_place_drop;
128 
129 #[cfg(not(no_global_oom_handling))]
130 use self::spec_from_iter_nested::SpecFromIterNested;
131 
132 #[cfg(not(no_global_oom_handling))]
133 mod spec_from_iter_nested;
134 
135 #[cfg(not(no_global_oom_handling))]
136 use self::spec_from_iter::SpecFromIter;
137 
138 #[cfg(not(no_global_oom_handling))]
139 mod spec_from_iter;
140 
141 #[cfg(not(no_global_oom_handling))]
142 use self::spec_extend::SpecExtend;
143 
144 #[cfg(not(no_global_oom_handling))]
145 mod spec_extend;
146 
147 /// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
148 ///
149 /// # Examples
150 ///
151 /// ```
152 /// let mut vec = Vec::new();
153 /// vec.push(1);
154 /// vec.push(2);
155 ///
156 /// assert_eq!(vec.len(), 2);
157 /// assert_eq!(vec[0], 1);
158 ///
159 /// assert_eq!(vec.pop(), Some(2));
160 /// assert_eq!(vec.len(), 1);
161 ///
162 /// vec[0] = 7;
163 /// assert_eq!(vec[0], 7);
164 ///
165 /// vec.extend([1, 2, 3]);
166 ///
167 /// for x in &vec {
168 ///     println!("{x}");
169 /// }
170 /// assert_eq!(vec, [7, 1, 2, 3]);
171 /// ```
172 ///
173 /// The [`vec!`] macro is provided for convenient initialization:
174 ///
175 /// ```
176 /// let mut vec1 = vec![1, 2, 3];
177 /// vec1.push(4);
178 /// let vec2 = Vec::from([1, 2, 3, 4]);
179 /// assert_eq!(vec1, vec2);
180 /// ```
181 ///
182 /// It can also initialize each element of a `Vec<T>` with a given value.
183 /// This may be more efficient than performing allocation and initialization
184 /// in separate steps, especially when initializing a vector of zeros:
185 ///
186 /// ```
187 /// let vec = vec![0; 5];
188 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
189 ///
190 /// // The following is equivalent, but potentially slower:
191 /// let mut vec = Vec::with_capacity(5);
192 /// vec.resize(5, 0);
193 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
194 /// ```
195 ///
196 /// For more information, see
197 /// [Capacity and Reallocation](#capacity-and-reallocation).
198 ///
199 /// Use a `Vec<T>` as an efficient stack:
200 ///
201 /// ```
202 /// let mut stack = Vec::new();
203 ///
204 /// stack.push(1);
205 /// stack.push(2);
206 /// stack.push(3);
207 ///
208 /// while let Some(top) = stack.pop() {
209 ///     // Prints 3, 2, 1
210 ///     println!("{top}");
211 /// }
212 /// ```
213 ///
214 /// # Indexing
215 ///
216 /// The `Vec` type allows to access values by index, because it implements the
217 /// [`Index`] trait. An example will be more explicit:
218 ///
219 /// ```
220 /// let v = vec![0, 2, 4, 6];
221 /// println!("{}", v[1]); // it will display '2'
222 /// ```
223 ///
224 /// However be careful: if you try to access an index which isn't in the `Vec`,
225 /// your software will panic! You cannot do this:
226 ///
227 /// ```should_panic
228 /// let v = vec![0, 2, 4, 6];
229 /// println!("{}", v[6]); // it will panic!
230 /// ```
231 ///
232 /// Use [`get`] and [`get_mut`] if you want to check whether the index is in
233 /// the `Vec`.
234 ///
235 /// # Slicing
236 ///
237 /// A `Vec` can be mutable. On the other hand, slices are read-only objects.
238 /// To get a [slice][prim@slice], use [`&`]. Example:
239 ///
240 /// ```
241 /// fn read_slice(slice: &[usize]) {
242 ///     // ...
243 /// }
244 ///
245 /// let v = vec![0, 1];
246 /// read_slice(&v);
247 ///
248 /// // ... and that's all!
249 /// // you can also do it like this:
250 /// let u: &[usize] = &v;
251 /// // or like this:
252 /// let u: &[_] = &v;
253 /// ```
254 ///
255 /// In Rust, it's more common to pass slices as arguments rather than vectors
256 /// when you just want to provide read access. The same goes for [`String`] and
257 /// [`&str`].
258 ///
259 /// # Capacity and reallocation
260 ///
261 /// The capacity of a vector is the amount of space allocated for any future
262 /// elements that will be added onto the vector. This is not to be confused with
263 /// the *length* of a vector, which specifies the number of actual elements
264 /// within the vector. If a vector's length exceeds its capacity, its capacity
265 /// will automatically be increased, but its elements will have to be
266 /// reallocated.
267 ///
268 /// For example, a vector with capacity 10 and length 0 would be an empty vector
269 /// with space for 10 more elements. Pushing 10 or fewer elements onto the
270 /// vector will not change its capacity or cause reallocation to occur. However,
271 /// if the vector's length is increased to 11, it will have to reallocate, which
272 /// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
273 /// whenever possible to specify how big the vector is expected to get.
274 ///
275 /// # Guarantees
276 ///
277 /// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
278 /// about its design. This ensures that it's as low-overhead as possible in
279 /// the general case, and can be correctly manipulated in primitive ways
280 /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
281 /// If additional type parameters are added (e.g., to support custom allocators),
282 /// overriding their defaults may change the behavior.
283 ///
284 /// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
285 /// triplet. No more, no less. The order of these fields is completely
286 /// unspecified, and you should use the appropriate methods to modify these.
287 /// The pointer will never be null, so this type is null-pointer-optimized.
288 ///
289 /// However, the pointer might not actually point to allocated memory. In particular,
290 /// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
291 /// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
292 /// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
293 /// types inside a `Vec`, it will not allocate space for them. *Note that in this case
294 /// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
295 /// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
296 /// details are very subtle --- if you intend to allocate memory using a `Vec`
297 /// and use it for something else (either to pass to unsafe code, or to build your
298 /// own memory-backed collection), be sure to deallocate this memory by using
299 /// `from_raw_parts` to recover the `Vec` and then dropping it.
300 ///
301 /// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
302 /// (as defined by the allocator Rust is configured to use by default), and its
303 /// pointer points to [`len`] initialized, contiguous elements in order (what
304 /// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
305 /// logically uninitialized, contiguous elements.
306 ///
307 /// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
308 /// visualized as below. The top part is the `Vec` struct, it contains a
309 /// pointer to the head of the allocation in the heap, length and capacity.
310 /// The bottom part is the allocation on the heap, a contiguous memory block.
311 ///
312 /// ```text
313 ///             ptr      len  capacity
314 ///        +--------+--------+--------+
315 ///        | 0x0123 |      2 |      4 |
316 ///        +--------+--------+--------+
317 ///             |
318 ///             v
319 /// Heap   +--------+--------+--------+--------+
320 ///        |    'a' |    'b' | uninit | uninit |
321 ///        +--------+--------+--------+--------+
322 /// ```
323 ///
324 /// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
325 /// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
326 ///   layout (including the order of fields).
327 ///
328 /// `Vec` will never perform a "small optimization" where elements are actually
329 /// stored on the stack for two reasons:
330 ///
331 /// * It would make it more difficult for unsafe code to correctly manipulate
332 ///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
333 ///   only moved, and it would be more difficult to determine if a `Vec` had
334 ///   actually allocated memory.
335 ///
336 /// * It would penalize the general case, incurring an additional branch
337 ///   on every access.
338 ///
339 /// `Vec` will never automatically shrink itself, even if completely empty. This
340 /// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
341 /// and then filling it back up to the same [`len`] should incur no calls to
342 /// the allocator. If you wish to free up unused memory, use
343 /// [`shrink_to_fit`] or [`shrink_to`].
344 ///
345 /// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
346 /// sufficient. [`push`] and [`insert`] *will* (re)allocate if
347 /// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
348 /// accurate, and can be relied on. It can even be used to manually free the memory
349 /// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
350 /// when not necessary.
351 ///
352 /// `Vec` does not guarantee any particular growth strategy when reallocating
353 /// when full, nor when [`reserve`] is called. The current strategy is basic
354 /// and it may prove desirable to use a non-constant growth factor. Whatever
355 /// strategy is used will of course guarantee *O*(1) amortized [`push`].
356 ///
357 /// `vec![x; n]`, `vec![a, b, c, d]`, and
358 /// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
359 /// with exactly the requested capacity. If <code>[len] == [capacity]</code>,
360 /// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
361 /// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
362 ///
363 /// `Vec` will not specifically overwrite any data that is removed from it,
364 /// but also won't specifically preserve it. Its uninitialized memory is
365 /// scratch space that it may use however it wants. It will generally just do
366 /// whatever is most efficient or otherwise easy to implement. Do not rely on
367 /// removed data to be erased for security purposes. Even if you drop a `Vec`, its
368 /// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
369 /// first, that might not actually happen because the optimizer does not consider
370 /// this a side-effect that must be preserved. There is one case which we will
371 /// not break, however: using `unsafe` code to write to the excess capacity,
372 /// and then increasing the length to match, is always valid.
373 ///
374 /// Currently, `Vec` does not guarantee the order in which elements are dropped.
375 /// The order has changed in the past and may change again.
376 ///
377 /// [`get`]: slice::get
378 /// [`get_mut`]: slice::get_mut
379 /// [`String`]: crate::string::String
380 /// [`&str`]: type@str
381 /// [`shrink_to_fit`]: Vec::shrink_to_fit
382 /// [`shrink_to`]: Vec::shrink_to
383 /// [capacity]: Vec::capacity
384 /// [`capacity`]: Vec::capacity
385 /// [mem::size_of::\<T>]: core::mem::size_of
386 /// [len]: Vec::len
387 /// [`len`]: Vec::len
388 /// [`push`]: Vec::push
389 /// [`insert`]: Vec::insert
390 /// [`reserve`]: Vec::reserve
391 /// [`MaybeUninit`]: core::mem::MaybeUninit
392 /// [owned slice]: Box
393 #[stable(feature = "rust1", since = "1.0.0")]
394 #[cfg_attr(not(test), rustc_diagnostic_item = "Vec")]
395 #[rustc_insignificant_dtor]
396 pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
397     buf: RawVec<T, A>,
398     len: usize,
399 }
400 
401 ////////////////////////////////////////////////////////////////////////////////
402 // Inherent methods
403 ////////////////////////////////////////////////////////////////////////////////
404 
405 impl<T> Vec<T> {
406     /// Constructs a new, empty `Vec<T>`.
407     ///
408     /// The vector will not allocate until elements are pushed onto it.
409     ///
410     /// # Examples
411     ///
412     /// ```
413     /// # #![allow(unused_mut)]
414     /// let mut vec: Vec<i32> = Vec::new();
415     /// ```
416     #[inline]
417     #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
418     #[stable(feature = "rust1", since = "1.0.0")]
419     #[must_use]
new() -> Self420     pub const fn new() -> Self {
421         Vec { buf: RawVec::NEW, len: 0 }
422     }
423 
424     /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
425     ///
426     /// The vector will be able to hold at least `capacity` elements without
427     /// reallocating. This method is allowed to allocate for more elements than
428     /// `capacity`. If `capacity` is 0, the vector will not allocate.
429     ///
430     /// It is important to note that although the returned vector has the
431     /// minimum *capacity* specified, the vector will have a zero *length*. For
432     /// an explanation of the difference between length and capacity, see
433     /// *[Capacity and reallocation]*.
434     ///
435     /// If it is important to know the exact allocated capacity of a `Vec`,
436     /// always use the [`capacity`] method after construction.
437     ///
438     /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
439     /// and the capacity will always be `usize::MAX`.
440     ///
441     /// [Capacity and reallocation]: #capacity-and-reallocation
442     /// [`capacity`]: Vec::capacity
443     ///
444     /// # Panics
445     ///
446     /// Panics if the new capacity exceeds `isize::MAX` bytes.
447     ///
448     /// # Examples
449     ///
450     /// ```
451     /// let mut vec = Vec::with_capacity(10);
452     ///
453     /// // The vector contains no items, even though it has capacity for more
454     /// assert_eq!(vec.len(), 0);
455     /// assert!(vec.capacity() >= 10);
456     ///
457     /// // These are all done without reallocating...
458     /// for i in 0..10 {
459     ///     vec.push(i);
460     /// }
461     /// assert_eq!(vec.len(), 10);
462     /// assert!(vec.capacity() >= 10);
463     ///
464     /// // ...but this may make the vector reallocate
465     /// vec.push(11);
466     /// assert_eq!(vec.len(), 11);
467     /// assert!(vec.capacity() >= 11);
468     ///
469     /// // A vector of a zero-sized type will always over-allocate, since no
470     /// // allocation is necessary
471     /// let vec_units = Vec::<()>::with_capacity(10);
472     /// assert_eq!(vec_units.capacity(), usize::MAX);
473     /// ```
474     #[cfg(not(no_global_oom_handling))]
475     #[inline]
476     #[stable(feature = "rust1", since = "1.0.0")]
477     #[must_use]
with_capacity(capacity: usize) -> Self478     pub fn with_capacity(capacity: usize) -> Self {
479         Self::with_capacity_in(capacity, Global)
480     }
481 
482     /// Creates a `Vec<T>` directly from a pointer, a capacity, and a length.
483     ///
484     /// # Safety
485     ///
486     /// This is highly unsafe, due to the number of invariants that aren't
487     /// checked:
488     ///
489     /// * `ptr` must have been allocated using the global allocator, such as via
490     ///   the [`alloc::alloc`] function.
491     /// * `T` needs to have the same alignment as what `ptr` was allocated with.
492     ///   (`T` having a less strict alignment is not sufficient, the alignment really
493     ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
494     ///   allocated and deallocated with the same layout.)
495     /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
496     ///   to be the same size as the pointer was allocated with. (Because similar to
497     ///   alignment, [`dealloc`] must be called with the same layout `size`.)
498     /// * `length` needs to be less than or equal to `capacity`.
499     /// * The first `length` values must be properly initialized values of type `T`.
500     /// * `capacity` needs to be the capacity that the pointer was allocated with.
501     /// * The allocated size in bytes must be no larger than `isize::MAX`.
502     ///   See the safety documentation of [`pointer::offset`].
503     ///
504     /// These requirements are always upheld by any `ptr` that has been allocated
505     /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
506     /// upheld.
507     ///
508     /// Violating these may cause problems like corrupting the allocator's
509     /// internal data structures. For example it is normally **not** safe
510     /// to build a `Vec<u8>` from a pointer to a C `char` array with length
511     /// `size_t`, doing so is only safe if the array was initially allocated by
512     /// a `Vec` or `String`.
513     /// It's also not safe to build one from a `Vec<u16>` and its length, because
514     /// the allocator cares about the alignment, and these two types have different
515     /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
516     /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
517     /// these issues, it is often preferable to do casting/transmuting using
518     /// [`slice::from_raw_parts`] instead.
519     ///
520     /// The ownership of `ptr` is effectively transferred to the
521     /// `Vec<T>` which may then deallocate, reallocate or change the
522     /// contents of memory pointed to by the pointer at will. Ensure
523     /// that nothing else uses the pointer after calling this
524     /// function.
525     ///
526     /// [`String`]: crate::string::String
527     /// [`alloc::alloc`]: crate::alloc::alloc
528     /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
529     ///
530     /// # Examples
531     ///
532     /// ```
533     /// use std::ptr;
534     /// use std::mem;
535     ///
536     /// let v = vec![1, 2, 3];
537     ///
538     // FIXME Update this when vec_into_raw_parts is stabilized
539     /// // Prevent running `v`'s destructor so we are in complete control
540     /// // of the allocation.
541     /// let mut v = mem::ManuallyDrop::new(v);
542     ///
543     /// // Pull out the various important pieces of information about `v`
544     /// let p = v.as_mut_ptr();
545     /// let len = v.len();
546     /// let cap = v.capacity();
547     ///
548     /// unsafe {
549     ///     // Overwrite memory with 4, 5, 6
550     ///     for i in 0..len {
551     ///         ptr::write(p.add(i), 4 + i);
552     ///     }
553     ///
554     ///     // Put everything back together into a Vec
555     ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
556     ///     assert_eq!(rebuilt, [4, 5, 6]);
557     /// }
558     /// ```
559     ///
560     /// Using memory that was allocated elsewhere:
561     ///
562     /// ```rust
563     /// use std::alloc::{alloc, Layout};
564     ///
565     /// fn main() {
566     ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
567     ///
568     ///     let vec = unsafe {
569     ///         let mem = alloc(layout).cast::<u32>();
570     ///         if mem.is_null() {
571     ///             return;
572     ///         }
573     ///
574     ///         mem.write(1_000_000);
575     ///
576     ///         Vec::from_raw_parts(mem, 1, 16)
577     ///     };
578     ///
579     ///     assert_eq!(vec, &[1_000_000]);
580     ///     assert_eq!(vec.capacity(), 16);
581     /// }
582     /// ```
583     #[inline]
584     #[stable(feature = "rust1", since = "1.0.0")]
from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self585     pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
586         unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
587     }
588 }
589 
590 impl<T, A: Allocator> Vec<T, A> {
591     /// Constructs a new, empty `Vec<T, A>`.
592     ///
593     /// The vector will not allocate until elements are pushed onto it.
594     ///
595     /// # Examples
596     ///
597     /// ```
598     /// #![feature(allocator_api)]
599     ///
600     /// use std::alloc::System;
601     ///
602     /// # #[allow(unused_mut)]
603     /// let mut vec: Vec<i32, _> = Vec::new_in(System);
604     /// ```
605     #[inline]
606     #[unstable(feature = "allocator_api", issue = "32838")]
new_in(alloc: A) -> Self607     pub const fn new_in(alloc: A) -> Self {
608         Vec { buf: RawVec::new_in(alloc), len: 0 }
609     }
610 
611     /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
612     /// with the provided allocator.
613     ///
614     /// The vector will be able to hold at least `capacity` elements without
615     /// reallocating. This method is allowed to allocate for more elements than
616     /// `capacity`. If `capacity` is 0, the vector will not allocate.
617     ///
618     /// It is important to note that although the returned vector has the
619     /// minimum *capacity* specified, the vector will have a zero *length*. For
620     /// an explanation of the difference between length and capacity, see
621     /// *[Capacity and reallocation]*.
622     ///
623     /// If it is important to know the exact allocated capacity of a `Vec`,
624     /// always use the [`capacity`] method after construction.
625     ///
626     /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
627     /// and the capacity will always be `usize::MAX`.
628     ///
629     /// [Capacity and reallocation]: #capacity-and-reallocation
630     /// [`capacity`]: Vec::capacity
631     ///
632     /// # Panics
633     ///
634     /// Panics if the new capacity exceeds `isize::MAX` bytes.
635     ///
636     /// # Examples
637     ///
638     /// ```
639     /// #![feature(allocator_api)]
640     ///
641     /// use std::alloc::System;
642     ///
643     /// let mut vec = Vec::with_capacity_in(10, System);
644     ///
645     /// // The vector contains no items, even though it has capacity for more
646     /// assert_eq!(vec.len(), 0);
647     /// assert!(vec.capacity() >= 10);
648     ///
649     /// // These are all done without reallocating...
650     /// for i in 0..10 {
651     ///     vec.push(i);
652     /// }
653     /// assert_eq!(vec.len(), 10);
654     /// assert!(vec.capacity() >= 10);
655     ///
656     /// // ...but this may make the vector reallocate
657     /// vec.push(11);
658     /// assert_eq!(vec.len(), 11);
659     /// assert!(vec.capacity() >= 11);
660     ///
661     /// // A vector of a zero-sized type will always over-allocate, since no
662     /// // allocation is necessary
663     /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
664     /// assert_eq!(vec_units.capacity(), usize::MAX);
665     /// ```
666     #[cfg(not(no_global_oom_handling))]
667     #[inline]
668     #[unstable(feature = "allocator_api", issue = "32838")]
with_capacity_in(capacity: usize, alloc: A) -> Self669     pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
670         Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
671     }
672 
673     /// Creates a `Vec<T, A>` directly from a pointer, a capacity, a length,
674     /// and an allocator.
675     ///
676     /// # Safety
677     ///
678     /// This is highly unsafe, due to the number of invariants that aren't
679     /// checked:
680     ///
681     /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
682     /// * `T` needs to have the same alignment as what `ptr` was allocated with.
683     ///   (`T` having a less strict alignment is not sufficient, the alignment really
684     ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
685     ///   allocated and deallocated with the same layout.)
686     /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
687     ///   to be the same size as the pointer was allocated with. (Because similar to
688     ///   alignment, [`dealloc`] must be called with the same layout `size`.)
689     /// * `length` needs to be less than or equal to `capacity`.
690     /// * The first `length` values must be properly initialized values of type `T`.
691     /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
692     /// * The allocated size in bytes must be no larger than `isize::MAX`.
693     ///   See the safety documentation of [`pointer::offset`].
694     ///
695     /// These requirements are always upheld by any `ptr` that has been allocated
696     /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
697     /// upheld.
698     ///
699     /// Violating these may cause problems like corrupting the allocator's
700     /// internal data structures. For example it is **not** safe
701     /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
702     /// It's also not safe to build one from a `Vec<u16>` and its length, because
703     /// the allocator cares about the alignment, and these two types have different
704     /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
705     /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
706     ///
707     /// The ownership of `ptr` is effectively transferred to the
708     /// `Vec<T>` which may then deallocate, reallocate or change the
709     /// contents of memory pointed to by the pointer at will. Ensure
710     /// that nothing else uses the pointer after calling this
711     /// function.
712     ///
713     /// [`String`]: crate::string::String
714     /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
715     /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
716     /// [*fit*]: crate::alloc::Allocator#memory-fitting
717     ///
718     /// # Examples
719     ///
720     /// ```
721     /// #![feature(allocator_api)]
722     ///
723     /// use std::alloc::System;
724     ///
725     /// use std::ptr;
726     /// use std::mem;
727     ///
728     /// let mut v = Vec::with_capacity_in(3, System);
729     /// v.push(1);
730     /// v.push(2);
731     /// v.push(3);
732     ///
733     // FIXME Update this when vec_into_raw_parts is stabilized
734     /// // Prevent running `v`'s destructor so we are in complete control
735     /// // of the allocation.
736     /// let mut v = mem::ManuallyDrop::new(v);
737     ///
738     /// // Pull out the various important pieces of information about `v`
739     /// let p = v.as_mut_ptr();
740     /// let len = v.len();
741     /// let cap = v.capacity();
742     /// let alloc = v.allocator();
743     ///
744     /// unsafe {
745     ///     // Overwrite memory with 4, 5, 6
746     ///     for i in 0..len {
747     ///         ptr::write(p.add(i), 4 + i);
748     ///     }
749     ///
750     ///     // Put everything back together into a Vec
751     ///     let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
752     ///     assert_eq!(rebuilt, [4, 5, 6]);
753     /// }
754     /// ```
755     ///
756     /// Using memory that was allocated elsewhere:
757     ///
758     /// ```rust
759     /// #![feature(allocator_api)]
760     ///
761     /// use std::alloc::{AllocError, Allocator, Global, Layout};
762     ///
763     /// fn main() {
764     ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
765     ///
766     ///     let vec = unsafe {
767     ///         let mem = match Global.allocate(layout) {
768     ///             Ok(mem) => mem.cast::<u32>().as_ptr(),
769     ///             Err(AllocError) => return,
770     ///         };
771     ///
772     ///         mem.write(1_000_000);
773     ///
774     ///         Vec::from_raw_parts_in(mem, 1, 16, Global)
775     ///     };
776     ///
777     ///     assert_eq!(vec, &[1_000_000]);
778     ///     assert_eq!(vec.capacity(), 16);
779     /// }
780     /// ```
781     #[inline]
782     #[unstable(feature = "allocator_api", issue = "32838")]
from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self783     pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
784         unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
785     }
786 
787     /// Decomposes a `Vec<T>` into its raw components.
788     ///
789     /// Returns the raw pointer to the underlying data, the length of
790     /// the vector (in elements), and the allocated capacity of the
791     /// data (in elements). These are the same arguments in the same
792     /// order as the arguments to [`from_raw_parts`].
793     ///
794     /// After calling this function, the caller is responsible for the
795     /// memory previously managed by the `Vec`. The only way to do
796     /// this is to convert the raw pointer, length, and capacity back
797     /// into a `Vec` with the [`from_raw_parts`] function, allowing
798     /// the destructor to perform the cleanup.
799     ///
800     /// [`from_raw_parts`]: Vec::from_raw_parts
801     ///
802     /// # Examples
803     ///
804     /// ```
805     /// #![feature(vec_into_raw_parts)]
806     /// let v: Vec<i32> = vec![-1, 0, 1];
807     ///
808     /// let (ptr, len, cap) = v.into_raw_parts();
809     ///
810     /// let rebuilt = unsafe {
811     ///     // We can now make changes to the components, such as
812     ///     // transmuting the raw pointer to a compatible type.
813     ///     let ptr = ptr as *mut u32;
814     ///
815     ///     Vec::from_raw_parts(ptr, len, cap)
816     /// };
817     /// assert_eq!(rebuilt, [4294967295, 0, 1]);
818     /// ```
819     #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
into_raw_parts(self) -> (*mut T, usize, usize)820     pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
821         let mut me = ManuallyDrop::new(self);
822         (me.as_mut_ptr(), me.len(), me.capacity())
823     }
824 
825     /// Decomposes a `Vec<T>` into its raw components.
826     ///
827     /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
828     /// the allocated capacity of the data (in elements), and the allocator. These are the same
829     /// arguments in the same order as the arguments to [`from_raw_parts_in`].
830     ///
831     /// After calling this function, the caller is responsible for the
832     /// memory previously managed by the `Vec`. The only way to do
833     /// this is to convert the raw pointer, length, and capacity back
834     /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
835     /// the destructor to perform the cleanup.
836     ///
837     /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
838     ///
839     /// # Examples
840     ///
841     /// ```
842     /// #![feature(allocator_api, vec_into_raw_parts)]
843     ///
844     /// use std::alloc::System;
845     ///
846     /// let mut v: Vec<i32, System> = Vec::new_in(System);
847     /// v.push(-1);
848     /// v.push(0);
849     /// v.push(1);
850     ///
851     /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
852     ///
853     /// let rebuilt = unsafe {
854     ///     // We can now make changes to the components, such as
855     ///     // transmuting the raw pointer to a compatible type.
856     ///     let ptr = ptr as *mut u32;
857     ///
858     ///     Vec::from_raw_parts_in(ptr, len, cap, alloc)
859     /// };
860     /// assert_eq!(rebuilt, [4294967295, 0, 1]);
861     /// ```
862     #[unstable(feature = "allocator_api", issue = "32838")]
863     // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A)864     pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
865         let mut me = ManuallyDrop::new(self);
866         let len = me.len();
867         let capacity = me.capacity();
868         let ptr = me.as_mut_ptr();
869         let alloc = unsafe { ptr::read(me.allocator()) };
870         (ptr, len, capacity, alloc)
871     }
872 
873     /// Returns the total number of elements the vector can hold without
874     /// reallocating.
875     ///
876     /// # Examples
877     ///
878     /// ```
879     /// let mut vec: Vec<i32> = Vec::with_capacity(10);
880     /// vec.push(42);
881     /// assert!(vec.capacity() >= 10);
882     /// ```
883     #[inline]
884     #[stable(feature = "rust1", since = "1.0.0")]
capacity(&self) -> usize885     pub fn capacity(&self) -> usize {
886         self.buf.capacity()
887     }
888 
889     /// Reserves capacity for at least `additional` more elements to be inserted
890     /// in the given `Vec<T>`. The collection may reserve more space to
891     /// speculatively avoid frequent reallocations. After calling `reserve`,
892     /// capacity will be greater than or equal to `self.len() + additional`.
893     /// Does nothing if capacity is already sufficient.
894     ///
895     /// # Panics
896     ///
897     /// Panics if the new capacity exceeds `isize::MAX` bytes.
898     ///
899     /// # Examples
900     ///
901     /// ```
902     /// let mut vec = vec![1];
903     /// vec.reserve(10);
904     /// assert!(vec.capacity() >= 11);
905     /// ```
906     #[cfg(not(no_global_oom_handling))]
907     #[stable(feature = "rust1", since = "1.0.0")]
reserve(&mut self, additional: usize)908     pub fn reserve(&mut self, additional: usize) {
909         self.buf.reserve(self.len, additional);
910     }
911 
912     /// Reserves the minimum capacity for at least `additional` more elements to
913     /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
914     /// deliberately over-allocate to speculatively avoid frequent allocations.
915     /// After calling `reserve_exact`, capacity will be greater than or equal to
916     /// `self.len() + additional`. Does nothing if the capacity is already
917     /// sufficient.
918     ///
919     /// Note that the allocator may give the collection more space than it
920     /// requests. Therefore, capacity can not be relied upon to be precisely
921     /// minimal. Prefer [`reserve`] if future insertions are expected.
922     ///
923     /// [`reserve`]: Vec::reserve
924     ///
925     /// # Panics
926     ///
927     /// Panics if the new capacity exceeds `isize::MAX` bytes.
928     ///
929     /// # Examples
930     ///
931     /// ```
932     /// let mut vec = vec![1];
933     /// vec.reserve_exact(10);
934     /// assert!(vec.capacity() >= 11);
935     /// ```
936     #[cfg(not(no_global_oom_handling))]
937     #[stable(feature = "rust1", since = "1.0.0")]
reserve_exact(&mut self, additional: usize)938     pub fn reserve_exact(&mut self, additional: usize) {
939         self.buf.reserve_exact(self.len, additional);
940     }
941 
942     /// Tries to reserve capacity for at least `additional` more elements to be inserted
943     /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
944     /// frequent reallocations. After calling `try_reserve`, capacity will be
945     /// greater than or equal to `self.len() + additional` if it returns
946     /// `Ok(())`. Does nothing if capacity is already sufficient. This method
947     /// preserves the contents even if an error occurs.
948     ///
949     /// # Errors
950     ///
951     /// If the capacity overflows, or the allocator reports a failure, then an error
952     /// is returned.
953     ///
954     /// # Examples
955     ///
956     /// ```
957     /// use std::collections::TryReserveError;
958     ///
959     /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
960     ///     let mut output = Vec::new();
961     ///
962     ///     // Pre-reserve the memory, exiting if we can't
963     ///     output.try_reserve(data.len())?;
964     ///
965     ///     // Now we know this can't OOM in the middle of our complex work
966     ///     output.extend(data.iter().map(|&val| {
967     ///         val * 2 + 5 // very complicated
968     ///     }));
969     ///
970     ///     Ok(output)
971     /// }
972     /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
973     /// ```
974     #[stable(feature = "try_reserve", since = "1.57.0")]
try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>975     pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
976         self.buf.try_reserve(self.len, additional)
977     }
978 
979     /// Tries to reserve the minimum capacity for at least `additional`
980     /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
981     /// this will not deliberately over-allocate to speculatively avoid frequent
982     /// allocations. After calling `try_reserve_exact`, capacity will be greater
983     /// than or equal to `self.len() + additional` if it returns `Ok(())`.
984     /// Does nothing if the capacity is already sufficient.
985     ///
986     /// Note that the allocator may give the collection more space than it
987     /// requests. Therefore, capacity can not be relied upon to be precisely
988     /// minimal. Prefer [`try_reserve`] if future insertions are expected.
989     ///
990     /// [`try_reserve`]: Vec::try_reserve
991     ///
992     /// # Errors
993     ///
994     /// If the capacity overflows, or the allocator reports a failure, then an error
995     /// is returned.
996     ///
997     /// # Examples
998     ///
999     /// ```
1000     /// use std::collections::TryReserveError;
1001     ///
1002     /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1003     ///     let mut output = Vec::new();
1004     ///
1005     ///     // Pre-reserve the memory, exiting if we can't
1006     ///     output.try_reserve_exact(data.len())?;
1007     ///
1008     ///     // Now we know this can't OOM in the middle of our complex work
1009     ///     output.extend(data.iter().map(|&val| {
1010     ///         val * 2 + 5 // very complicated
1011     ///     }));
1012     ///
1013     ///     Ok(output)
1014     /// }
1015     /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1016     /// ```
1017     #[stable(feature = "try_reserve", since = "1.57.0")]
try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError>1018     pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1019         self.buf.try_reserve_exact(self.len, additional)
1020     }
1021 
1022     /// Shrinks the capacity of the vector as much as possible.
1023     ///
1024     /// It will drop down as close as possible to the length but the allocator
1025     /// may still inform the vector that there is space for a few more elements.
1026     ///
1027     /// # Examples
1028     ///
1029     /// ```
1030     /// let mut vec = Vec::with_capacity(10);
1031     /// vec.extend([1, 2, 3]);
1032     /// assert!(vec.capacity() >= 10);
1033     /// vec.shrink_to_fit();
1034     /// assert!(vec.capacity() >= 3);
1035     /// ```
1036     #[cfg(not(no_global_oom_handling))]
1037     #[stable(feature = "rust1", since = "1.0.0")]
shrink_to_fit(&mut self)1038     pub fn shrink_to_fit(&mut self) {
1039         // The capacity is never less than the length, and there's nothing to do when
1040         // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1041         // by only calling it with a greater capacity.
1042         if self.capacity() > self.len {
1043             self.buf.shrink_to_fit(self.len);
1044         }
1045     }
1046 
1047     /// Shrinks the capacity of the vector with a lower bound.
1048     ///
1049     /// The capacity will remain at least as large as both the length
1050     /// and the supplied value.
1051     ///
1052     /// If the current capacity is less than the lower limit, this is a no-op.
1053     ///
1054     /// # Examples
1055     ///
1056     /// ```
1057     /// let mut vec = Vec::with_capacity(10);
1058     /// vec.extend([1, 2, 3]);
1059     /// assert!(vec.capacity() >= 10);
1060     /// vec.shrink_to(4);
1061     /// assert!(vec.capacity() >= 4);
1062     /// vec.shrink_to(0);
1063     /// assert!(vec.capacity() >= 3);
1064     /// ```
1065     #[cfg(not(no_global_oom_handling))]
1066     #[stable(feature = "shrink_to", since = "1.56.0")]
shrink_to(&mut self, min_capacity: usize)1067     pub fn shrink_to(&mut self, min_capacity: usize) {
1068         if self.capacity() > min_capacity {
1069             self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1070         }
1071     }
1072 
1073     /// Converts the vector into [`Box<[T]>`][owned slice].
1074     ///
1075     /// If the vector has excess capacity, its items will be moved into a
1076     /// newly-allocated buffer with exactly the right capacity.
1077     ///
1078     /// [owned slice]: Box
1079     ///
1080     /// # Examples
1081     ///
1082     /// ```
1083     /// let v = vec![1, 2, 3];
1084     ///
1085     /// let slice = v.into_boxed_slice();
1086     /// ```
1087     ///
1088     /// Any excess capacity is removed:
1089     ///
1090     /// ```
1091     /// let mut vec = Vec::with_capacity(10);
1092     /// vec.extend([1, 2, 3]);
1093     ///
1094     /// assert!(vec.capacity() >= 10);
1095     /// let slice = vec.into_boxed_slice();
1096     /// assert_eq!(slice.into_vec().capacity(), 3);
1097     /// ```
1098     #[cfg(not(no_global_oom_handling))]
1099     #[stable(feature = "rust1", since = "1.0.0")]
into_boxed_slice(mut self) -> Box<[T], A>1100     pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1101         unsafe {
1102             self.shrink_to_fit();
1103             let me = ManuallyDrop::new(self);
1104             let buf = ptr::read(&me.buf);
1105             let len = me.len();
1106             buf.into_box(len).assume_init()
1107         }
1108     }
1109 
1110     /// Shortens the vector, keeping the first `len` elements and dropping
1111     /// the rest.
1112     ///
1113     /// If `len` is greater than the vector's current length, this has no
1114     /// effect.
1115     ///
1116     /// The [`drain`] method can emulate `truncate`, but causes the excess
1117     /// elements to be returned instead of dropped.
1118     ///
1119     /// Note that this method has no effect on the allocated capacity
1120     /// of the vector.
1121     ///
1122     /// # Examples
1123     ///
1124     /// Truncating a five element vector to two elements:
1125     ///
1126     /// ```
1127     /// let mut vec = vec![1, 2, 3, 4, 5];
1128     /// vec.truncate(2);
1129     /// assert_eq!(vec, [1, 2]);
1130     /// ```
1131     ///
1132     /// No truncation occurs when `len` is greater than the vector's current
1133     /// length:
1134     ///
1135     /// ```
1136     /// let mut vec = vec![1, 2, 3];
1137     /// vec.truncate(8);
1138     /// assert_eq!(vec, [1, 2, 3]);
1139     /// ```
1140     ///
1141     /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1142     /// method.
1143     ///
1144     /// ```
1145     /// let mut vec = vec![1, 2, 3];
1146     /// vec.truncate(0);
1147     /// assert_eq!(vec, []);
1148     /// ```
1149     ///
1150     /// [`clear`]: Vec::clear
1151     /// [`drain`]: Vec::drain
1152     #[stable(feature = "rust1", since = "1.0.0")]
truncate(&mut self, len: usize)1153     pub fn truncate(&mut self, len: usize) {
1154         // This is safe because:
1155         //
1156         // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1157         //   case avoids creating an invalid slice, and
1158         // * the `len` of the vector is shrunk before calling `drop_in_place`,
1159         //   such that no value will be dropped twice in case `drop_in_place`
1160         //   were to panic once (if it panics twice, the program aborts).
1161         unsafe {
1162             // Note: It's intentional that this is `>` and not `>=`.
1163             //       Changing it to `>=` has negative performance
1164             //       implications in some cases. See #78884 for more.
1165             if len > self.len {
1166                 return;
1167             }
1168             let remaining_len = self.len - len;
1169             let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1170             self.len = len;
1171             ptr::drop_in_place(s);
1172         }
1173     }
1174 
1175     /// Extracts a slice containing the entire vector.
1176     ///
1177     /// Equivalent to `&s[..]`.
1178     ///
1179     /// # Examples
1180     ///
1181     /// ```
1182     /// use std::io::{self, Write};
1183     /// let buffer = vec![1, 2, 3, 5, 8];
1184     /// io::sink().write(buffer.as_slice()).unwrap();
1185     /// ```
1186     #[inline]
1187     #[stable(feature = "vec_as_slice", since = "1.7.0")]
as_slice(&self) -> &[T]1188     pub fn as_slice(&self) -> &[T] {
1189         self
1190     }
1191 
1192     /// Extracts a mutable slice of the entire vector.
1193     ///
1194     /// Equivalent to `&mut s[..]`.
1195     ///
1196     /// # Examples
1197     ///
1198     /// ```
1199     /// use std::io::{self, Read};
1200     /// let mut buffer = vec![0; 3];
1201     /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1202     /// ```
1203     #[inline]
1204     #[stable(feature = "vec_as_slice", since = "1.7.0")]
as_mut_slice(&mut self) -> &mut [T]1205     pub fn as_mut_slice(&mut self) -> &mut [T] {
1206         self
1207     }
1208 
1209     /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1210     /// valid for zero sized reads if the vector didn't allocate.
1211     ///
1212     /// The caller must ensure that the vector outlives the pointer this
1213     /// function returns, or else it will end up pointing to garbage.
1214     /// Modifying the vector may cause its buffer to be reallocated,
1215     /// which would also make any pointers to it invalid.
1216     ///
1217     /// The caller must also ensure that the memory the pointer (non-transitively) points to
1218     /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1219     /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1220     ///
1221     /// # Examples
1222     ///
1223     /// ```
1224     /// let x = vec![1, 2, 4];
1225     /// let x_ptr = x.as_ptr();
1226     ///
1227     /// unsafe {
1228     ///     for i in 0..x.len() {
1229     ///         assert_eq!(*x_ptr.add(i), 1 << i);
1230     ///     }
1231     /// }
1232     /// ```
1233     ///
1234     /// [`as_mut_ptr`]: Vec::as_mut_ptr
1235     #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1236     #[inline]
as_ptr(&self) -> *const T1237     pub fn as_ptr(&self) -> *const T {
1238         // We shadow the slice method of the same name to avoid going through
1239         // `deref`, which creates an intermediate reference.
1240         self.buf.ptr()
1241     }
1242 
1243     /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling
1244     /// raw pointer valid for zero sized reads if the vector didn't allocate.
1245     ///
1246     /// The caller must ensure that the vector outlives the pointer this
1247     /// function returns, or else it will end up pointing to garbage.
1248     /// Modifying the vector may cause its buffer to be reallocated,
1249     /// which would also make any pointers to it invalid.
1250     ///
1251     /// # Examples
1252     ///
1253     /// ```
1254     /// // Allocate vector big enough for 4 elements.
1255     /// let size = 4;
1256     /// let mut x: Vec<i32> = Vec::with_capacity(size);
1257     /// let x_ptr = x.as_mut_ptr();
1258     ///
1259     /// // Initialize elements via raw pointer writes, then set length.
1260     /// unsafe {
1261     ///     for i in 0..size {
1262     ///         *x_ptr.add(i) = i as i32;
1263     ///     }
1264     ///     x.set_len(size);
1265     /// }
1266     /// assert_eq!(&*x, &[0, 1, 2, 3]);
1267     /// ```
1268     #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1269     #[inline]
as_mut_ptr(&mut self) -> *mut T1270     pub fn as_mut_ptr(&mut self) -> *mut T {
1271         // We shadow the slice method of the same name to avoid going through
1272         // `deref_mut`, which creates an intermediate reference.
1273         self.buf.ptr()
1274     }
1275 
1276     /// Returns a reference to the underlying allocator.
1277     #[unstable(feature = "allocator_api", issue = "32838")]
1278     #[inline]
allocator(&self) -> &A1279     pub fn allocator(&self) -> &A {
1280         self.buf.allocator()
1281     }
1282 
1283     /// Forces the length of the vector to `new_len`.
1284     ///
1285     /// This is a low-level operation that maintains none of the normal
1286     /// invariants of the type. Normally changing the length of a vector
1287     /// is done using one of the safe operations instead, such as
1288     /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1289     ///
1290     /// [`truncate`]: Vec::truncate
1291     /// [`resize`]: Vec::resize
1292     /// [`extend`]: Extend::extend
1293     /// [`clear`]: Vec::clear
1294     ///
1295     /// # Safety
1296     ///
1297     /// - `new_len` must be less than or equal to [`capacity()`].
1298     /// - The elements at `old_len..new_len` must be initialized.
1299     ///
1300     /// [`capacity()`]: Vec::capacity
1301     ///
1302     /// # Examples
1303     ///
1304     /// This method can be useful for situations in which the vector
1305     /// is serving as a buffer for other code, particularly over FFI:
1306     ///
1307     /// ```no_run
1308     /// # #![allow(dead_code)]
1309     /// # // This is just a minimal skeleton for the doc example;
1310     /// # // don't use this as a starting point for a real library.
1311     /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1312     /// # const Z_OK: i32 = 0;
1313     /// # extern "C" {
1314     /// #     fn deflateGetDictionary(
1315     /// #         strm: *mut std::ffi::c_void,
1316     /// #         dictionary: *mut u8,
1317     /// #         dictLength: *mut usize,
1318     /// #     ) -> i32;
1319     /// # }
1320     /// # impl StreamWrapper {
1321     /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1322     ///     // Per the FFI method's docs, "32768 bytes is always enough".
1323     ///     let mut dict = Vec::with_capacity(32_768);
1324     ///     let mut dict_length = 0;
1325     ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1326     ///     // 1. `dict_length` elements were initialized.
1327     ///     // 2. `dict_length` <= the capacity (32_768)
1328     ///     // which makes `set_len` safe to call.
1329     ///     unsafe {
1330     ///         // Make the FFI call...
1331     ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1332     ///         if r == Z_OK {
1333     ///             // ...and update the length to what was initialized.
1334     ///             dict.set_len(dict_length);
1335     ///             Some(dict)
1336     ///         } else {
1337     ///             None
1338     ///         }
1339     ///     }
1340     /// }
1341     /// # }
1342     /// ```
1343     ///
1344     /// While the following example is sound, there is a memory leak since
1345     /// the inner vectors were not freed prior to the `set_len` call:
1346     ///
1347     /// ```
1348     /// let mut vec = vec![vec![1, 0, 0],
1349     ///                    vec![0, 1, 0],
1350     ///                    vec![0, 0, 1]];
1351     /// // SAFETY:
1352     /// // 1. `old_len..0` is empty so no elements need to be initialized.
1353     /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1354     /// unsafe {
1355     ///     vec.set_len(0);
1356     /// }
1357     /// ```
1358     ///
1359     /// Normally, here, one would use [`clear`] instead to correctly drop
1360     /// the contents and thus not leak memory.
1361     #[inline]
1362     #[stable(feature = "rust1", since = "1.0.0")]
set_len(&mut self, new_len: usize)1363     pub unsafe fn set_len(&mut self, new_len: usize) {
1364         debug_assert!(new_len <= self.capacity());
1365 
1366         self.len = new_len;
1367     }
1368 
1369     /// Removes an element from the vector and returns it.
1370     ///
1371     /// The removed element is replaced by the last element of the vector.
1372     ///
1373     /// This does not preserve ordering, but is *O*(1).
1374     /// If you need to preserve the element order, use [`remove`] instead.
1375     ///
1376     /// [`remove`]: Vec::remove
1377     ///
1378     /// # Panics
1379     ///
1380     /// Panics if `index` is out of bounds.
1381     ///
1382     /// # Examples
1383     ///
1384     /// ```
1385     /// let mut v = vec!["foo", "bar", "baz", "qux"];
1386     ///
1387     /// assert_eq!(v.swap_remove(1), "bar");
1388     /// assert_eq!(v, ["foo", "qux", "baz"]);
1389     ///
1390     /// assert_eq!(v.swap_remove(0), "foo");
1391     /// assert_eq!(v, ["baz", "qux"]);
1392     /// ```
1393     #[inline]
1394     #[stable(feature = "rust1", since = "1.0.0")]
swap_remove(&mut self, index: usize) -> T1395     pub fn swap_remove(&mut self, index: usize) -> T {
1396         #[cold]
1397         #[inline(never)]
1398         fn assert_failed(index: usize, len: usize) -> ! {
1399             panic!("swap_remove index (is {index}) should be < len (is {len})");
1400         }
1401 
1402         let len = self.len();
1403         if index >= len {
1404             assert_failed(index, len);
1405         }
1406         unsafe {
1407             // We replace self[index] with the last element. Note that if the
1408             // bounds check above succeeds there must be a last element (which
1409             // can be self[index] itself).
1410             let value = ptr::read(self.as_ptr().add(index));
1411             let base_ptr = self.as_mut_ptr();
1412             ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
1413             self.set_len(len - 1);
1414             value
1415         }
1416     }
1417 
1418     /// Inserts an element at position `index` within the vector, shifting all
1419     /// elements after it to the right.
1420     ///
1421     /// # Panics
1422     ///
1423     /// Panics if `index > len`.
1424     ///
1425     /// # Examples
1426     ///
1427     /// ```
1428     /// let mut vec = vec![1, 2, 3];
1429     /// vec.insert(1, 4);
1430     /// assert_eq!(vec, [1, 4, 2, 3]);
1431     /// vec.insert(4, 5);
1432     /// assert_eq!(vec, [1, 4, 2, 3, 5]);
1433     /// ```
1434     #[cfg(not(no_global_oom_handling))]
1435     #[stable(feature = "rust1", since = "1.0.0")]
insert(&mut self, index: usize, element: T)1436     pub fn insert(&mut self, index: usize, element: T) {
1437         #[cold]
1438         #[inline(never)]
1439         fn assert_failed(index: usize, len: usize) -> ! {
1440             panic!("insertion index (is {index}) should be <= len (is {len})");
1441         }
1442 
1443         let len = self.len();
1444 
1445         // space for the new element
1446         if len == self.buf.capacity() {
1447             self.reserve(1);
1448         }
1449 
1450         unsafe {
1451             // infallible
1452             // The spot to put the new value
1453             {
1454                 let p = self.as_mut_ptr().add(index);
1455                 if index < len {
1456                     // Shift everything over to make space. (Duplicating the
1457                     // `index`th element into two consecutive places.)
1458                     ptr::copy(p, p.add(1), len - index);
1459                 } else if index == len {
1460                     // No elements need shifting.
1461                 } else {
1462                     assert_failed(index, len);
1463                 }
1464                 // Write it in, overwriting the first copy of the `index`th
1465                 // element.
1466                 ptr::write(p, element);
1467             }
1468             self.set_len(len + 1);
1469         }
1470     }
1471 
1472     /// Removes and returns the element at position `index` within the vector,
1473     /// shifting all elements after it to the left.
1474     ///
1475     /// Note: Because this shifts over the remaining elements, it has a
1476     /// worst-case performance of *O*(*n*). If you don't need the order of elements
1477     /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
1478     /// elements from the beginning of the `Vec`, consider using
1479     /// [`VecDeque::pop_front`] instead.
1480     ///
1481     /// [`swap_remove`]: Vec::swap_remove
1482     /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
1483     ///
1484     /// # Panics
1485     ///
1486     /// Panics if `index` is out of bounds.
1487     ///
1488     /// # Examples
1489     ///
1490     /// ```
1491     /// let mut v = vec![1, 2, 3];
1492     /// assert_eq!(v.remove(1), 2);
1493     /// assert_eq!(v, [1, 3]);
1494     /// ```
1495     #[stable(feature = "rust1", since = "1.0.0")]
1496     #[track_caller]
remove(&mut self, index: usize) -> T1497     pub fn remove(&mut self, index: usize) -> T {
1498         #[cold]
1499         #[inline(never)]
1500         #[track_caller]
1501         fn assert_failed(index: usize, len: usize) -> ! {
1502             panic!("removal index (is {index}) should be < len (is {len})");
1503         }
1504 
1505         let len = self.len();
1506         if index >= len {
1507             assert_failed(index, len);
1508         }
1509         unsafe {
1510             // infallible
1511             let ret;
1512             {
1513                 // the place we are taking from.
1514                 let ptr = self.as_mut_ptr().add(index);
1515                 // copy it out, unsafely having a copy of the value on
1516                 // the stack and in the vector at the same time.
1517                 ret = ptr::read(ptr);
1518 
1519                 // Shift everything down to fill in that spot.
1520                 ptr::copy(ptr.add(1), ptr, len - index - 1);
1521             }
1522             self.set_len(len - 1);
1523             ret
1524         }
1525     }
1526 
1527     /// Retains only the elements specified by the predicate.
1528     ///
1529     /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
1530     /// This method operates in place, visiting each element exactly once in the
1531     /// original order, and preserves the order of the retained elements.
1532     ///
1533     /// # Examples
1534     ///
1535     /// ```
1536     /// let mut vec = vec![1, 2, 3, 4];
1537     /// vec.retain(|&x| x % 2 == 0);
1538     /// assert_eq!(vec, [2, 4]);
1539     /// ```
1540     ///
1541     /// Because the elements are visited exactly once in the original order,
1542     /// external state may be used to decide which elements to keep.
1543     ///
1544     /// ```
1545     /// let mut vec = vec![1, 2, 3, 4, 5];
1546     /// let keep = [false, true, true, false, true];
1547     /// let mut iter = keep.iter();
1548     /// vec.retain(|_| *iter.next().unwrap());
1549     /// assert_eq!(vec, [2, 3, 5]);
1550     /// ```
1551     #[stable(feature = "rust1", since = "1.0.0")]
retain<F>(&mut self, mut f: F) where F: FnMut(&T) -> bool,1552     pub fn retain<F>(&mut self, mut f: F)
1553     where
1554         F: FnMut(&T) -> bool,
1555     {
1556         self.retain_mut(|elem| f(elem));
1557     }
1558 
1559     /// Retains only the elements specified by the predicate, passing a mutable reference to it.
1560     ///
1561     /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
1562     /// This method operates in place, visiting each element exactly once in the
1563     /// original order, and preserves the order of the retained elements.
1564     ///
1565     /// # Examples
1566     ///
1567     /// ```
1568     /// let mut vec = vec![1, 2, 3, 4];
1569     /// vec.retain_mut(|x| if *x <= 3 {
1570     ///     *x += 1;
1571     ///     true
1572     /// } else {
1573     ///     false
1574     /// });
1575     /// assert_eq!(vec, [2, 3, 4]);
1576     /// ```
1577     #[stable(feature = "vec_retain_mut", since = "1.61.0")]
retain_mut<F>(&mut self, mut f: F) where F: FnMut(&mut T) -> bool,1578     pub fn retain_mut<F>(&mut self, mut f: F)
1579     where
1580         F: FnMut(&mut T) -> bool,
1581     {
1582         let original_len = self.len();
1583         // Avoid double drop if the drop guard is not executed,
1584         // since we may make some holes during the process.
1585         unsafe { self.set_len(0) };
1586 
1587         // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
1588         //      |<-              processed len   ->| ^- next to check
1589         //                  |<-  deleted cnt     ->|
1590         //      |<-              original_len                          ->|
1591         // Kept: Elements which predicate returns true on.
1592         // Hole: Moved or dropped element slot.
1593         // Unchecked: Unchecked valid elements.
1594         //
1595         // This drop guard will be invoked when predicate or `drop` of element panicked.
1596         // It shifts unchecked elements to cover holes and `set_len` to the correct length.
1597         // In cases when predicate and `drop` never panick, it will be optimized out.
1598         struct BackshiftOnDrop<'a, T, A: Allocator> {
1599             v: &'a mut Vec<T, A>,
1600             processed_len: usize,
1601             deleted_cnt: usize,
1602             original_len: usize,
1603         }
1604 
1605         impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
1606             fn drop(&mut self) {
1607                 if self.deleted_cnt > 0 {
1608                     // SAFETY: Trailing unchecked items must be valid since we never touch them.
1609                     unsafe {
1610                         ptr::copy(
1611                             self.v.as_ptr().add(self.processed_len),
1612                             self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
1613                             self.original_len - self.processed_len,
1614                         );
1615                     }
1616                 }
1617                 // SAFETY: After filling holes, all items are in contiguous memory.
1618                 unsafe {
1619                     self.v.set_len(self.original_len - self.deleted_cnt);
1620                 }
1621             }
1622         }
1623 
1624         let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
1625 
1626         fn process_loop<F, T, A: Allocator, const DELETED: bool>(
1627             original_len: usize,
1628             f: &mut F,
1629             g: &mut BackshiftOnDrop<'_, T, A>,
1630         ) where
1631             F: FnMut(&mut T) -> bool,
1632         {
1633             while g.processed_len != original_len {
1634                 // SAFETY: Unchecked element must be valid.
1635                 let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
1636                 if !f(cur) {
1637                     // Advance early to avoid double drop if `drop_in_place` panicked.
1638                     g.processed_len += 1;
1639                     g.deleted_cnt += 1;
1640                     // SAFETY: We never touch this element again after dropped.
1641                     unsafe { ptr::drop_in_place(cur) };
1642                     // We already advanced the counter.
1643                     if DELETED {
1644                         continue;
1645                     } else {
1646                         break;
1647                     }
1648                 }
1649                 if DELETED {
1650                     // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
1651                     // We use copy for move, and never touch this element again.
1652                     unsafe {
1653                         let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
1654                         ptr::copy_nonoverlapping(cur, hole_slot, 1);
1655                     }
1656                 }
1657                 g.processed_len += 1;
1658             }
1659         }
1660 
1661         // Stage 1: Nothing was deleted.
1662         process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
1663 
1664         // Stage 2: Some elements were deleted.
1665         process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
1666 
1667         // All item are processed. This can be optimized to `set_len` by LLVM.
1668         drop(g);
1669     }
1670 
1671     /// Removes all but the first of consecutive elements in the vector that resolve to the same
1672     /// key.
1673     ///
1674     /// If the vector is sorted, this removes all duplicates.
1675     ///
1676     /// # Examples
1677     ///
1678     /// ```
1679     /// let mut vec = vec![10, 20, 21, 30, 20];
1680     ///
1681     /// vec.dedup_by_key(|i| *i / 10);
1682     ///
1683     /// assert_eq!(vec, [10, 20, 30, 20]);
1684     /// ```
1685     #[stable(feature = "dedup_by", since = "1.16.0")]
1686     #[inline]
dedup_by_key<F, K>(&mut self, mut key: F) where F: FnMut(&mut T) -> K, K: PartialEq,1687     pub fn dedup_by_key<F, K>(&mut self, mut key: F)
1688     where
1689         F: FnMut(&mut T) -> K,
1690         K: PartialEq,
1691     {
1692         self.dedup_by(|a, b| key(a) == key(b))
1693     }
1694 
1695     /// Removes all but the first of consecutive elements in the vector satisfying a given equality
1696     /// relation.
1697     ///
1698     /// The `same_bucket` function is passed references to two elements from the vector and
1699     /// must determine if the elements compare equal. The elements are passed in opposite order
1700     /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
1701     ///
1702     /// If the vector is sorted, this removes all duplicates.
1703     ///
1704     /// # Examples
1705     ///
1706     /// ```
1707     /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
1708     ///
1709     /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
1710     ///
1711     /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
1712     /// ```
1713     #[stable(feature = "dedup_by", since = "1.16.0")]
dedup_by<F>(&mut self, mut same_bucket: F) where F: FnMut(&mut T, &mut T) -> bool,1714     pub fn dedup_by<F>(&mut self, mut same_bucket: F)
1715     where
1716         F: FnMut(&mut T, &mut T) -> bool,
1717     {
1718         let len = self.len();
1719         if len <= 1 {
1720             return;
1721         }
1722 
1723         /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */
1724         struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
1725             /* Offset of the element we want to check if it is duplicate */
1726             read: usize,
1727 
1728             /* Offset of the place where we want to place the non-duplicate
1729              * when we find it. */
1730             write: usize,
1731 
1732             /* The Vec that would need correction if `same_bucket` panicked */
1733             vec: &'a mut Vec<T, A>,
1734         }
1735 
1736         impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
1737             fn drop(&mut self) {
1738                 /* This code gets executed when `same_bucket` panics */
1739 
1740                 /* SAFETY: invariant guarantees that `read - write`
1741                  * and `len - read` never overflow and that the copy is always
1742                  * in-bounds. */
1743                 unsafe {
1744                     let ptr = self.vec.as_mut_ptr();
1745                     let len = self.vec.len();
1746 
1747                     /* How many items were left when `same_bucket` panicked.
1748                      * Basically vec[read..].len() */
1749                     let items_left = len.wrapping_sub(self.read);
1750 
1751                     /* Pointer to first item in vec[write..write+items_left] slice */
1752                     let dropped_ptr = ptr.add(self.write);
1753                     /* Pointer to first item in vec[read..] slice */
1754                     let valid_ptr = ptr.add(self.read);
1755 
1756                     /* Copy `vec[read..]` to `vec[write..write+items_left]`.
1757                      * The slices can overlap, so `copy_nonoverlapping` cannot be used */
1758                     ptr::copy(valid_ptr, dropped_ptr, items_left);
1759 
1760                     /* How many items have been already dropped
1761                      * Basically vec[read..write].len() */
1762                     let dropped = self.read.wrapping_sub(self.write);
1763 
1764                     self.vec.set_len(len - dropped);
1765                 }
1766             }
1767         }
1768 
1769         let mut gap = FillGapOnDrop { read: 1, write: 1, vec: self };
1770         let ptr = gap.vec.as_mut_ptr();
1771 
1772         /* Drop items while going through Vec, it should be more efficient than
1773          * doing slice partition_dedup + truncate */
1774 
1775         /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
1776          * are always in-bounds and read_ptr never aliases prev_ptr */
1777         unsafe {
1778             while gap.read < len {
1779                 let read_ptr = ptr.add(gap.read);
1780                 let prev_ptr = ptr.add(gap.write.wrapping_sub(1));
1781 
1782                 if same_bucket(&mut *read_ptr, &mut *prev_ptr) {
1783                     // Increase `gap.read` now since the drop may panic.
1784                     gap.read += 1;
1785                     /* We have found duplicate, drop it in-place */
1786                     ptr::drop_in_place(read_ptr);
1787                 } else {
1788                     let write_ptr = ptr.add(gap.write);
1789 
1790                     /* Because `read_ptr` can be equal to `write_ptr`, we either
1791                      * have to use `copy` or conditional `copy_nonoverlapping`.
1792                      * Looks like the first option is faster. */
1793                     ptr::copy(read_ptr, write_ptr, 1);
1794 
1795                     /* We have filled that place, so go further */
1796                     gap.write += 1;
1797                     gap.read += 1;
1798                 }
1799             }
1800 
1801             /* Technically we could let `gap` clean up with its Drop, but
1802              * when `same_bucket` is guaranteed to not panic, this bloats a little
1803              * the codegen, so we just do it manually */
1804             gap.vec.set_len(gap.write);
1805             mem::forget(gap);
1806         }
1807     }
1808 
1809     /// Appends an element to the back of a collection.
1810     ///
1811     /// # Panics
1812     ///
1813     /// Panics if the new capacity exceeds `isize::MAX` bytes.
1814     ///
1815     /// # Examples
1816     ///
1817     /// ```
1818     /// let mut vec = vec![1, 2];
1819     /// vec.push(3);
1820     /// assert_eq!(vec, [1, 2, 3]);
1821     /// ```
1822     #[cfg(not(no_global_oom_handling))]
1823     #[inline]
1824     #[stable(feature = "rust1", since = "1.0.0")]
push(&mut self, value: T)1825     pub fn push(&mut self, value: T) {
1826         // This will panic or abort if we would allocate > isize::MAX bytes
1827         // or if the length increment would overflow for zero-sized types.
1828         if self.len == self.buf.capacity() {
1829             self.buf.reserve_for_push(self.len);
1830         }
1831         unsafe {
1832             let end = self.as_mut_ptr().add(self.len);
1833             ptr::write(end, value);
1834             self.len += 1;
1835         }
1836     }
1837 
1838     /// Appends an element if there is sufficient spare capacity, otherwise an error is returned
1839     /// with the element.
1840     ///
1841     /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
1842     /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
1843     ///
1844     /// [`push`]: Vec::push
1845     /// [`reserve`]: Vec::reserve
1846     /// [`try_reserve`]: Vec::try_reserve
1847     ///
1848     /// # Examples
1849     ///
1850     /// A manual, panic-free alternative to [`FromIterator`]:
1851     ///
1852     /// ```
1853     /// #![feature(vec_push_within_capacity)]
1854     ///
1855     /// use std::collections::TryReserveError;
1856     /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
1857     ///     let mut vec = Vec::new();
1858     ///     for value in iter {
1859     ///         if let Err(value) = vec.push_within_capacity(value) {
1860     ///             vec.try_reserve(1)?;
1861     ///             // this cannot fail, the previous line either returned or added at least 1 free slot
1862     ///             let _ = vec.push_within_capacity(value);
1863     ///         }
1864     ///     }
1865     ///     Ok(vec)
1866     /// }
1867     /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
1868     /// ```
1869     #[inline]
1870     #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
push_within_capacity(&mut self, value: T) -> Result<(), T>1871     pub fn push_within_capacity(&mut self, value: T) -> Result<(), T> {
1872         if self.len == self.buf.capacity() {
1873             return Err(value);
1874         }
1875         unsafe {
1876             let end = self.as_mut_ptr().add(self.len);
1877             ptr::write(end, value);
1878             self.len += 1;
1879         }
1880         Ok(())
1881     }
1882 
1883     /// Removes the last element from a vector and returns it, or [`None`] if it
1884     /// is empty.
1885     ///
1886     /// If you'd like to pop the first element, consider using
1887     /// [`VecDeque::pop_front`] instead.
1888     ///
1889     /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
1890     ///
1891     /// # Examples
1892     ///
1893     /// ```
1894     /// let mut vec = vec![1, 2, 3];
1895     /// assert_eq!(vec.pop(), Some(3));
1896     /// assert_eq!(vec, [1, 2]);
1897     /// ```
1898     #[inline]
1899     #[stable(feature = "rust1", since = "1.0.0")]
pop(&mut self) -> Option<T>1900     pub fn pop(&mut self) -> Option<T> {
1901         if self.len == 0 {
1902             None
1903         } else {
1904             unsafe {
1905                 self.len -= 1;
1906                 Some(ptr::read(self.as_ptr().add(self.len())))
1907             }
1908         }
1909     }
1910 
1911     /// Moves all the elements of `other` into `self`, leaving `other` empty.
1912     ///
1913     /// # Panics
1914     ///
1915     /// Panics if the new capacity exceeds `isize::MAX` bytes.
1916     ///
1917     /// # Examples
1918     ///
1919     /// ```
1920     /// let mut vec = vec![1, 2, 3];
1921     /// let mut vec2 = vec![4, 5, 6];
1922     /// vec.append(&mut vec2);
1923     /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
1924     /// assert_eq!(vec2, []);
1925     /// ```
1926     #[cfg(not(no_global_oom_handling))]
1927     #[inline]
1928     #[stable(feature = "append", since = "1.4.0")]
append(&mut self, other: &mut Self)1929     pub fn append(&mut self, other: &mut Self) {
1930         unsafe {
1931             self.append_elements(other.as_slice() as _);
1932             other.set_len(0);
1933         }
1934     }
1935 
1936     /// Appends elements to `self` from other buffer.
1937     #[cfg(not(no_global_oom_handling))]
1938     #[inline]
append_elements(&mut self, other: *const [T])1939     unsafe fn append_elements(&mut self, other: *const [T]) {
1940         let count = unsafe { (*other).len() };
1941         self.reserve(count);
1942         let len = self.len();
1943         unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
1944         self.len += count;
1945     }
1946 
1947     /// Removes the specified range from the vector in bulk, returning all
1948     /// removed elements as an iterator. If the iterator is dropped before
1949     /// being fully consumed, it drops the remaining removed elements.
1950     ///
1951     /// The returned iterator keeps a mutable borrow on the vector to optimize
1952     /// its implementation.
1953     ///
1954     /// # Panics
1955     ///
1956     /// Panics if the starting point is greater than the end point or if
1957     /// the end point is greater than the length of the vector.
1958     ///
1959     /// # Leaking
1960     ///
1961     /// If the returned iterator goes out of scope without being dropped (due to
1962     /// [`mem::forget`], for example), the vector may have lost and leaked
1963     /// elements arbitrarily, including elements outside the range.
1964     ///
1965     /// # Examples
1966     ///
1967     /// ```
1968     /// let mut v = vec![1, 2, 3];
1969     /// let u: Vec<_> = v.drain(1..).collect();
1970     /// assert_eq!(v, &[1]);
1971     /// assert_eq!(u, &[2, 3]);
1972     ///
1973     /// // A full range clears the vector, like `clear()` does
1974     /// v.drain(..);
1975     /// assert_eq!(v, &[]);
1976     /// ```
1977     #[stable(feature = "drain", since = "1.6.0")]
drain<R>(&mut self, range: R) -> Drain<'_, T, A> where R: RangeBounds<usize>,1978     pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
1979     where
1980         R: RangeBounds<usize>,
1981     {
1982         // Memory safety
1983         //
1984         // When the Drain is first created, it shortens the length of
1985         // the source vector to make sure no uninitialized or moved-from elements
1986         // are accessible at all if the Drain's destructor never gets to run.
1987         //
1988         // Drain will ptr::read out the values to remove.
1989         // When finished, remaining tail of the vec is copied back to cover
1990         // the hole, and the vector length is restored to the new length.
1991         //
1992         let len = self.len();
1993         let Range { start, end } = slice::range(range, ..len);
1994 
1995         unsafe {
1996             // set self.vec length's to start, to be safe in case Drain is leaked
1997             self.set_len(start);
1998             let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
1999             Drain {
2000                 tail_start: end,
2001                 tail_len: len - end,
2002                 iter: range_slice.iter(),
2003                 vec: NonNull::from(self),
2004             }
2005         }
2006     }
2007 
2008     /// Clears the vector, removing all values.
2009     ///
2010     /// Note that this method has no effect on the allocated capacity
2011     /// of the vector.
2012     ///
2013     /// # Examples
2014     ///
2015     /// ```
2016     /// let mut v = vec![1, 2, 3];
2017     ///
2018     /// v.clear();
2019     ///
2020     /// assert!(v.is_empty());
2021     /// ```
2022     #[inline]
2023     #[stable(feature = "rust1", since = "1.0.0")]
clear(&mut self)2024     pub fn clear(&mut self) {
2025         let elems: *mut [T] = self.as_mut_slice();
2026 
2027         // SAFETY:
2028         // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2029         // - Setting `self.len` before calling `drop_in_place` means that,
2030         //   if an element's `Drop` impl panics, the vector's `Drop` impl will
2031         //   do nothing (leaking the rest of the elements) instead of dropping
2032         //   some twice.
2033         unsafe {
2034             self.len = 0;
2035             ptr::drop_in_place(elems);
2036         }
2037     }
2038 
2039     /// Returns the number of elements in the vector, also referred to
2040     /// as its 'length'.
2041     ///
2042     /// # Examples
2043     ///
2044     /// ```
2045     /// let a = vec![1, 2, 3];
2046     /// assert_eq!(a.len(), 3);
2047     /// ```
2048     #[inline]
2049     #[stable(feature = "rust1", since = "1.0.0")]
len(&self) -> usize2050     pub fn len(&self) -> usize {
2051         self.len
2052     }
2053 
2054     /// Returns `true` if the vector contains no elements.
2055     ///
2056     /// # Examples
2057     ///
2058     /// ```
2059     /// let mut v = Vec::new();
2060     /// assert!(v.is_empty());
2061     ///
2062     /// v.push(1);
2063     /// assert!(!v.is_empty());
2064     /// ```
2065     #[stable(feature = "rust1", since = "1.0.0")]
is_empty(&self) -> bool2066     pub fn is_empty(&self) -> bool {
2067         self.len() == 0
2068     }
2069 
2070     /// Splits the collection into two at the given index.
2071     ///
2072     /// Returns a newly allocated vector containing the elements in the range
2073     /// `[at, len)`. After the call, the original vector will be left containing
2074     /// the elements `[0, at)` with its previous capacity unchanged.
2075     ///
2076     /// # Panics
2077     ///
2078     /// Panics if `at > len`.
2079     ///
2080     /// # Examples
2081     ///
2082     /// ```
2083     /// let mut vec = vec![1, 2, 3];
2084     /// let vec2 = vec.split_off(1);
2085     /// assert_eq!(vec, [1]);
2086     /// assert_eq!(vec2, [2, 3]);
2087     /// ```
2088     #[cfg(not(no_global_oom_handling))]
2089     #[inline]
2090     #[must_use = "use `.truncate()` if you don't need the other half"]
2091     #[stable(feature = "split_off", since = "1.4.0")]
split_off(&mut self, at: usize) -> Self where A: Clone,2092     pub fn split_off(&mut self, at: usize) -> Self
2093     where
2094         A: Clone,
2095     {
2096         #[cold]
2097         #[inline(never)]
2098         fn assert_failed(at: usize, len: usize) -> ! {
2099             panic!("`at` split index (is {at}) should be <= len (is {len})");
2100         }
2101 
2102         if at > self.len() {
2103             assert_failed(at, self.len());
2104         }
2105 
2106         if at == 0 {
2107             // the new vector can take over the original buffer and avoid the copy
2108             return mem::replace(
2109                 self,
2110                 Vec::with_capacity_in(self.capacity(), self.allocator().clone()),
2111             );
2112         }
2113 
2114         let other_len = self.len - at;
2115         let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2116 
2117         // Unsafely `set_len` and copy items to `other`.
2118         unsafe {
2119             self.set_len(at);
2120             other.set_len(other_len);
2121 
2122             ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2123         }
2124         other
2125     }
2126 
2127     /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2128     ///
2129     /// If `new_len` is greater than `len`, the `Vec` is extended by the
2130     /// difference, with each additional slot filled with the result of
2131     /// calling the closure `f`. The return values from `f` will end up
2132     /// in the `Vec` in the order they have been generated.
2133     ///
2134     /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2135     ///
2136     /// This method uses a closure to create new values on every push. If
2137     /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
2138     /// want to use the [`Default`] trait to generate values, you can
2139     /// pass [`Default::default`] as the second argument.
2140     ///
2141     /// # Examples
2142     ///
2143     /// ```
2144     /// let mut vec = vec![1, 2, 3];
2145     /// vec.resize_with(5, Default::default);
2146     /// assert_eq!(vec, [1, 2, 3, 0, 0]);
2147     ///
2148     /// let mut vec = vec![];
2149     /// let mut p = 1;
2150     /// vec.resize_with(4, || { p *= 2; p });
2151     /// assert_eq!(vec, [2, 4, 8, 16]);
2152     /// ```
2153     #[cfg(not(no_global_oom_handling))]
2154     #[stable(feature = "vec_resize_with", since = "1.33.0")]
resize_with<F>(&mut self, new_len: usize, f: F) where F: FnMut() -> T,2155     pub fn resize_with<F>(&mut self, new_len: usize, f: F)
2156     where
2157         F: FnMut() -> T,
2158     {
2159         let len = self.len();
2160         if new_len > len {
2161             self.extend_trusted(iter::repeat_with(f).take(new_len - len));
2162         } else {
2163             self.truncate(new_len);
2164         }
2165     }
2166 
2167     /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
2168     /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime
2169     /// `'a`. If the type has only static references, or none at all, then this
2170     /// may be chosen to be `'static`.
2171     ///
2172     /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
2173     /// so the leaked allocation may include unused capacity that is not part
2174     /// of the returned slice.
2175     ///
2176     /// This function is mainly useful for data that lives for the remainder of
2177     /// the program's life. Dropping the returned reference will cause a memory
2178     /// leak.
2179     ///
2180     /// # Examples
2181     ///
2182     /// Simple usage:
2183     ///
2184     /// ```
2185     /// let x = vec![1, 2, 3];
2186     /// let static_ref: &'static mut [usize] = x.leak();
2187     /// static_ref[0] += 1;
2188     /// assert_eq!(static_ref, &[2, 2, 3]);
2189     /// ```
2190     #[stable(feature = "vec_leak", since = "1.47.0")]
2191     #[inline]
leak<'a>(self) -> &'a mut [T] where A: 'a,2192     pub fn leak<'a>(self) -> &'a mut [T]
2193     where
2194         A: 'a,
2195     {
2196         let mut me = ManuallyDrop::new(self);
2197         unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
2198     }
2199 
2200     /// Returns the remaining spare capacity of the vector as a slice of
2201     /// `MaybeUninit<T>`.
2202     ///
2203     /// The returned slice can be used to fill the vector with data (e.g. by
2204     /// reading from a file) before marking the data as initialized using the
2205     /// [`set_len`] method.
2206     ///
2207     /// [`set_len`]: Vec::set_len
2208     ///
2209     /// # Examples
2210     ///
2211     /// ```
2212     /// // Allocate vector big enough for 10 elements.
2213     /// let mut v = Vec::with_capacity(10);
2214     ///
2215     /// // Fill in the first 3 elements.
2216     /// let uninit = v.spare_capacity_mut();
2217     /// uninit[0].write(0);
2218     /// uninit[1].write(1);
2219     /// uninit[2].write(2);
2220     ///
2221     /// // Mark the first 3 elements of the vector as being initialized.
2222     /// unsafe {
2223     ///     v.set_len(3);
2224     /// }
2225     ///
2226     /// assert_eq!(&v, &[0, 1, 2]);
2227     /// ```
2228     #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
2229     #[inline]
spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>]2230     pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
2231         // Note:
2232         // This method is not implemented in terms of `split_at_spare_mut`,
2233         // to prevent invalidation of pointers to the buffer.
2234         unsafe {
2235             slice::from_raw_parts_mut(
2236                 self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
2237                 self.buf.capacity() - self.len,
2238             )
2239         }
2240     }
2241 
2242     /// Returns vector content as a slice of `T`, along with the remaining spare
2243     /// capacity of the vector as a slice of `MaybeUninit<T>`.
2244     ///
2245     /// The returned spare capacity slice can be used to fill the vector with data
2246     /// (e.g. by reading from a file) before marking the data as initialized using
2247     /// the [`set_len`] method.
2248     ///
2249     /// [`set_len`]: Vec::set_len
2250     ///
2251     /// Note that this is a low-level API, which should be used with care for
2252     /// optimization purposes. If you need to append data to a `Vec`
2253     /// you can use [`push`], [`extend`], [`extend_from_slice`],
2254     /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
2255     /// [`resize_with`], depending on your exact needs.
2256     ///
2257     /// [`push`]: Vec::push
2258     /// [`extend`]: Vec::extend
2259     /// [`extend_from_slice`]: Vec::extend_from_slice
2260     /// [`extend_from_within`]: Vec::extend_from_within
2261     /// [`insert`]: Vec::insert
2262     /// [`append`]: Vec::append
2263     /// [`resize`]: Vec::resize
2264     /// [`resize_with`]: Vec::resize_with
2265     ///
2266     /// # Examples
2267     ///
2268     /// ```
2269     /// #![feature(vec_split_at_spare)]
2270     ///
2271     /// let mut v = vec![1, 1, 2];
2272     ///
2273     /// // Reserve additional space big enough for 10 elements.
2274     /// v.reserve(10);
2275     ///
2276     /// let (init, uninit) = v.split_at_spare_mut();
2277     /// let sum = init.iter().copied().sum::<u32>();
2278     ///
2279     /// // Fill in the next 4 elements.
2280     /// uninit[0].write(sum);
2281     /// uninit[1].write(sum * 2);
2282     /// uninit[2].write(sum * 3);
2283     /// uninit[3].write(sum * 4);
2284     ///
2285     /// // Mark the 4 elements of the vector as being initialized.
2286     /// unsafe {
2287     ///     let len = v.len();
2288     ///     v.set_len(len + 4);
2289     /// }
2290     ///
2291     /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
2292     /// ```
2293     #[unstable(feature = "vec_split_at_spare", issue = "81944")]
2294     #[inline]
split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>])2295     pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
2296         // SAFETY:
2297         // - len is ignored and so never changed
2298         let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
2299         (init, spare)
2300     }
2301 
2302     /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
2303     ///
2304     /// This method provides unique access to all vec parts at once in `extend_from_within`.
split_at_spare_mut_with_len( &mut self, ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize)2305     unsafe fn split_at_spare_mut_with_len(
2306         &mut self,
2307     ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
2308         let ptr = self.as_mut_ptr();
2309         // SAFETY:
2310         // - `ptr` is guaranteed to be valid for `self.len` elements
2311         // - but the allocation extends out to `self.buf.capacity()` elements, possibly
2312         // uninitialized
2313         let spare_ptr = unsafe { ptr.add(self.len) };
2314         let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
2315         let spare_len = self.buf.capacity() - self.len;
2316 
2317         // SAFETY:
2318         // - `ptr` is guaranteed to be valid for `self.len` elements
2319         // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
2320         unsafe {
2321             let initialized = slice::from_raw_parts_mut(ptr, self.len);
2322             let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
2323 
2324             (initialized, spare, &mut self.len)
2325         }
2326     }
2327 }
2328 
2329 impl<T: Clone, A: Allocator> Vec<T, A> {
2330     /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2331     ///
2332     /// If `new_len` is greater than `len`, the `Vec` is extended by the
2333     /// difference, with each additional slot filled with `value`.
2334     /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2335     ///
2336     /// This method requires `T` to implement [`Clone`],
2337     /// in order to be able to clone the passed value.
2338     /// If you need more flexibility (or want to rely on [`Default`] instead of
2339     /// [`Clone`]), use [`Vec::resize_with`].
2340     /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2341     ///
2342     /// # Examples
2343     ///
2344     /// ```
2345     /// let mut vec = vec!["hello"];
2346     /// vec.resize(3, "world");
2347     /// assert_eq!(vec, ["hello", "world", "world"]);
2348     ///
2349     /// let mut vec = vec![1, 2, 3, 4];
2350     /// vec.resize(2, 0);
2351     /// assert_eq!(vec, [1, 2]);
2352     /// ```
2353     #[cfg(not(no_global_oom_handling))]
2354     #[stable(feature = "vec_resize", since = "1.5.0")]
resize(&mut self, new_len: usize, value: T)2355     pub fn resize(&mut self, new_len: usize, value: T) {
2356         let len = self.len();
2357 
2358         if new_len > len {
2359             self.extend_with(new_len - len, value)
2360         } else {
2361             self.truncate(new_len);
2362         }
2363     }
2364 
2365     /// Clones and appends all elements in a slice to the `Vec`.
2366     ///
2367     /// Iterates over the slice `other`, clones each element, and then appends
2368     /// it to this `Vec`. The `other` slice is traversed in-order.
2369     ///
2370     /// Note that this function is same as [`extend`] except that it is
2371     /// specialized to work with slices instead. If and when Rust gets
2372     /// specialization this function will likely be deprecated (but still
2373     /// available).
2374     ///
2375     /// # Examples
2376     ///
2377     /// ```
2378     /// let mut vec = vec![1];
2379     /// vec.extend_from_slice(&[2, 3, 4]);
2380     /// assert_eq!(vec, [1, 2, 3, 4]);
2381     /// ```
2382     ///
2383     /// [`extend`]: Vec::extend
2384     #[cfg(not(no_global_oom_handling))]
2385     #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
extend_from_slice(&mut self, other: &[T])2386     pub fn extend_from_slice(&mut self, other: &[T]) {
2387         self.spec_extend(other.iter())
2388     }
2389 
2390     /// Copies elements from `src` range to the end of the vector.
2391     ///
2392     /// # Panics
2393     ///
2394     /// Panics if the starting point is greater than the end point or if
2395     /// the end point is greater than the length of the vector.
2396     ///
2397     /// # Examples
2398     ///
2399     /// ```
2400     /// let mut vec = vec![0, 1, 2, 3, 4];
2401     ///
2402     /// vec.extend_from_within(2..);
2403     /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]);
2404     ///
2405     /// vec.extend_from_within(..2);
2406     /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]);
2407     ///
2408     /// vec.extend_from_within(4..8);
2409     /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]);
2410     /// ```
2411     #[cfg(not(no_global_oom_handling))]
2412     #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
extend_from_within<R>(&mut self, src: R) where R: RangeBounds<usize>,2413     pub fn extend_from_within<R>(&mut self, src: R)
2414     where
2415         R: RangeBounds<usize>,
2416     {
2417         let range = slice::range(src, ..self.len());
2418         self.reserve(range.len());
2419 
2420         // SAFETY:
2421         // - `slice::range` guarantees that the given range is valid for indexing self
2422         unsafe {
2423             self.spec_extend_from_within(range);
2424         }
2425     }
2426 }
2427 
2428 impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
2429     /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
2430     ///
2431     /// # Panics
2432     ///
2433     /// Panics if the length of the resulting vector would overflow a `usize`.
2434     ///
2435     /// This is only possible when flattening a vector of arrays of zero-sized
2436     /// types, and thus tends to be irrelevant in practice. If
2437     /// `size_of::<T>() > 0`, this will never panic.
2438     ///
2439     /// # Examples
2440     ///
2441     /// ```
2442     /// #![feature(slice_flatten)]
2443     ///
2444     /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
2445     /// assert_eq!(vec.pop(), Some([7, 8, 9]));
2446     ///
2447     /// let mut flattened = vec.into_flattened();
2448     /// assert_eq!(flattened.pop(), Some(6));
2449     /// ```
2450     #[unstable(feature = "slice_flatten", issue = "95629")]
into_flattened(self) -> Vec<T, A>2451     pub fn into_flattened(self) -> Vec<T, A> {
2452         let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
2453         let (new_len, new_cap) = if T::IS_ZST {
2454             (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
2455         } else {
2456             // SAFETY:
2457             // - `cap * N` cannot overflow because the allocation is already in
2458             // the address space.
2459             // - Each `[T; N]` has `N` valid elements, so there are `len * N`
2460             // valid elements in the allocation.
2461             unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
2462         };
2463         // SAFETY:
2464         // - `ptr` was allocated by `self`
2465         // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
2466         // - `new_cap` refers to the same sized allocation as `cap` because
2467         // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
2468         // - `len` <= `cap`, so `len * N` <= `cap * N`.
2469         unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
2470     }
2471 }
2472 
2473 impl<T: Clone, A: Allocator> Vec<T, A> {
2474     #[cfg(not(no_global_oom_handling))]
2475     /// Extend the vector by `n` clones of value.
extend_with(&mut self, n: usize, value: T)2476     fn extend_with(&mut self, n: usize, value: T) {
2477         self.reserve(n);
2478 
2479         unsafe {
2480             let mut ptr = self.as_mut_ptr().add(self.len());
2481             // Use SetLenOnDrop to work around bug where compiler
2482             // might not realize the store through `ptr` through self.set_len()
2483             // don't alias.
2484             let mut local_len = SetLenOnDrop::new(&mut self.len);
2485 
2486             // Write all elements except the last one
2487             for _ in 1..n {
2488                 ptr::write(ptr, value.clone());
2489                 ptr = ptr.add(1);
2490                 // Increment the length in every step in case clone() panics
2491                 local_len.increment_len(1);
2492             }
2493 
2494             if n > 0 {
2495                 // We can write the last element directly without cloning needlessly
2496                 ptr::write(ptr, value);
2497                 local_len.increment_len(1);
2498             }
2499 
2500             // len set by scope guard
2501         }
2502     }
2503 }
2504 
2505 impl<T: PartialEq, A: Allocator> Vec<T, A> {
2506     /// Removes consecutive repeated elements in the vector according to the
2507     /// [`PartialEq`] trait implementation.
2508     ///
2509     /// If the vector is sorted, this removes all duplicates.
2510     ///
2511     /// # Examples
2512     ///
2513     /// ```
2514     /// let mut vec = vec![1, 2, 2, 3, 2];
2515     ///
2516     /// vec.dedup();
2517     ///
2518     /// assert_eq!(vec, [1, 2, 3, 2]);
2519     /// ```
2520     #[stable(feature = "rust1", since = "1.0.0")]
2521     #[inline]
dedup(&mut self)2522     pub fn dedup(&mut self) {
2523         self.dedup_by(|a, b| a == b)
2524     }
2525 }
2526 
2527 ////////////////////////////////////////////////////////////////////////////////
2528 // Internal methods and functions
2529 ////////////////////////////////////////////////////////////////////////////////
2530 
2531 #[doc(hidden)]
2532 #[cfg(not(no_global_oom_handling))]
2533 #[stable(feature = "rust1", since = "1.0.0")]
from_elem<T: Clone>(elem: T, n: usize) -> Vec<T>2534 pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
2535     <T as SpecFromElem>::from_elem(elem, n, Global)
2536 }
2537 
2538 #[doc(hidden)]
2539 #[cfg(not(no_global_oom_handling))]
2540 #[unstable(feature = "allocator_api", issue = "32838")]
from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A>2541 pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
2542     <T as SpecFromElem>::from_elem(elem, n, alloc)
2543 }
2544 
2545 trait ExtendFromWithinSpec {
2546     /// # Safety
2547     ///
2548     /// - `src` needs to be valid index
2549     /// - `self.capacity() - self.len()` must be `>= src.len()`
spec_extend_from_within(&mut self, src: Range<usize>)2550     unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
2551 }
2552 
2553 impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
spec_extend_from_within(&mut self, src: Range<usize>)2554     default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2555         // SAFETY:
2556         // - len is increased only after initializing elements
2557         let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
2558 
2559         // SAFETY:
2560         // - caller guarantees that src is a valid index
2561         let to_clone = unsafe { this.get_unchecked(src) };
2562 
2563         iter::zip(to_clone, spare)
2564             .map(|(src, dst)| dst.write(src.clone()))
2565             // Note:
2566             // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
2567             // - len is increased after each element to prevent leaks (see issue #82533)
2568             .for_each(|_| *len += 1);
2569     }
2570 }
2571 
2572 impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
spec_extend_from_within(&mut self, src: Range<usize>)2573     unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2574         let count = src.len();
2575         {
2576             let (init, spare) = self.split_at_spare_mut();
2577 
2578             // SAFETY:
2579             // - caller guarantees that `src` is a valid index
2580             let source = unsafe { init.get_unchecked(src) };
2581 
2582             // SAFETY:
2583             // - Both pointers are created from unique slice references (`&mut [_]`)
2584             //   so they are valid and do not overlap.
2585             // - Elements are :Copy so it's OK to copy them, without doing
2586             //   anything with the original values
2587             // - `count` is equal to the len of `source`, so source is valid for
2588             //   `count` reads
2589             // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
2590             //   is valid for `count` writes
2591             unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
2592         }
2593 
2594         // SAFETY:
2595         // - The elements were just initialized by `copy_nonoverlapping`
2596         self.len += count;
2597     }
2598 }
2599 
2600 ////////////////////////////////////////////////////////////////////////////////
2601 // Common trait implementations for Vec
2602 ////////////////////////////////////////////////////////////////////////////////
2603 
2604 #[stable(feature = "rust1", since = "1.0.0")]
2605 impl<T, A: Allocator> ops::Deref for Vec<T, A> {
2606     type Target = [T];
2607 
2608     #[inline]
deref(&self) -> &[T]2609     fn deref(&self) -> &[T] {
2610         unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
2611     }
2612 }
2613 
2614 #[stable(feature = "rust1", since = "1.0.0")]
2615 impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
2616     #[inline]
deref_mut(&mut self) -> &mut [T]2617     fn deref_mut(&mut self) -> &mut [T] {
2618         unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
2619     }
2620 }
2621 
2622 #[cfg(not(no_global_oom_handling))]
2623 #[stable(feature = "rust1", since = "1.0.0")]
2624 impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
2625     #[cfg(not(test))]
clone(&self) -> Self2626     fn clone(&self) -> Self {
2627         let alloc = self.allocator().clone();
2628         <[T]>::to_vec_in(&**self, alloc)
2629     }
2630 
2631     // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
2632     // required for this method definition, is not available. Instead use the
2633     // `slice::to_vec` function which is only available with cfg(test)
2634     // NB see the slice::hack module in slice.rs for more information
2635     #[cfg(test)]
clone(&self) -> Self2636     fn clone(&self) -> Self {
2637         let alloc = self.allocator().clone();
2638         crate::slice::to_vec(&**self, alloc)
2639     }
2640 
clone_from(&mut self, other: &Self)2641     fn clone_from(&mut self, other: &Self) {
2642         crate::slice::SpecCloneIntoVec::clone_into(other.as_slice(), self);
2643     }
2644 }
2645 
2646 /// The hash of a vector is the same as that of the corresponding slice,
2647 /// as required by the `core::borrow::Borrow` implementation.
2648 ///
2649 /// ```
2650 /// use std::hash::BuildHasher;
2651 ///
2652 /// let b = std::collections::hash_map::RandomState::new();
2653 /// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
2654 /// let s: &[u8] = &[0xa8, 0x3c, 0x09];
2655 /// assert_eq!(b.hash_one(v), b.hash_one(s));
2656 /// ```
2657 #[stable(feature = "rust1", since = "1.0.0")]
2658 impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
2659     #[inline]
hash<H: Hasher>(&self, state: &mut H)2660     fn hash<H: Hasher>(&self, state: &mut H) {
2661         Hash::hash(&**self, state)
2662     }
2663 }
2664 
2665 #[stable(feature = "rust1", since = "1.0.0")]
2666 #[rustc_on_unimplemented(
2667     message = "vector indices are of type `usize` or ranges of `usize`",
2668     label = "vector indices are of type `usize` or ranges of `usize`"
2669 )]
2670 impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
2671     type Output = I::Output;
2672 
2673     #[inline]
index(&self, index: I) -> &Self::Output2674     fn index(&self, index: I) -> &Self::Output {
2675         Index::index(&**self, index)
2676     }
2677 }
2678 
2679 #[stable(feature = "rust1", since = "1.0.0")]
2680 #[rustc_on_unimplemented(
2681     message = "vector indices are of type `usize` or ranges of `usize`",
2682     label = "vector indices are of type `usize` or ranges of `usize`"
2683 )]
2684 impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
2685     #[inline]
index_mut(&mut self, index: I) -> &mut Self::Output2686     fn index_mut(&mut self, index: I) -> &mut Self::Output {
2687         IndexMut::index_mut(&mut **self, index)
2688     }
2689 }
2690 
2691 #[cfg(not(no_global_oom_handling))]
2692 #[stable(feature = "rust1", since = "1.0.0")]
2693 impl<T> FromIterator<T> for Vec<T> {
2694     #[inline]
from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T>2695     fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
2696         <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
2697     }
2698 }
2699 
2700 #[stable(feature = "rust1", since = "1.0.0")]
2701 impl<T, A: Allocator> IntoIterator for Vec<T, A> {
2702     type Item = T;
2703     type IntoIter = IntoIter<T, A>;
2704 
2705     /// Creates a consuming iterator, that is, one that moves each value out of
2706     /// the vector (from start to end). The vector cannot be used after calling
2707     /// this.
2708     ///
2709     /// # Examples
2710     ///
2711     /// ```
2712     /// let v = vec!["a".to_string(), "b".to_string()];
2713     /// let mut v_iter = v.into_iter();
2714     ///
2715     /// let first_element: Option<String> = v_iter.next();
2716     ///
2717     /// assert_eq!(first_element, Some("a".to_string()));
2718     /// assert_eq!(v_iter.next(), Some("b".to_string()));
2719     /// assert_eq!(v_iter.next(), None);
2720     /// ```
2721     #[inline]
into_iter(self) -> Self::IntoIter2722     fn into_iter(self) -> Self::IntoIter {
2723         unsafe {
2724             let mut me = ManuallyDrop::new(self);
2725             let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
2726             let begin = me.as_mut_ptr();
2727             let end = if T::IS_ZST {
2728                 begin.wrapping_byte_add(me.len())
2729             } else {
2730                 begin.add(me.len()) as *const T
2731             };
2732             let cap = me.buf.capacity();
2733             IntoIter {
2734                 buf: NonNull::new_unchecked(begin),
2735                 phantom: PhantomData,
2736                 cap,
2737                 alloc,
2738                 ptr: begin,
2739                 end,
2740             }
2741         }
2742     }
2743 }
2744 
2745 #[stable(feature = "rust1", since = "1.0.0")]
2746 impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
2747     type Item = &'a T;
2748     type IntoIter = slice::Iter<'a, T>;
2749 
into_iter(self) -> Self::IntoIter2750     fn into_iter(self) -> Self::IntoIter {
2751         self.iter()
2752     }
2753 }
2754 
2755 #[stable(feature = "rust1", since = "1.0.0")]
2756 impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
2757     type Item = &'a mut T;
2758     type IntoIter = slice::IterMut<'a, T>;
2759 
into_iter(self) -> Self::IntoIter2760     fn into_iter(self) -> Self::IntoIter {
2761         self.iter_mut()
2762     }
2763 }
2764 
2765 #[cfg(not(no_global_oom_handling))]
2766 #[stable(feature = "rust1", since = "1.0.0")]
2767 impl<T, A: Allocator> Extend<T> for Vec<T, A> {
2768     #[inline]
extend<I: IntoIterator<Item = T>>(&mut self, iter: I)2769     fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
2770         <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
2771     }
2772 
2773     #[inline]
extend_one(&mut self, item: T)2774     fn extend_one(&mut self, item: T) {
2775         self.push(item);
2776     }
2777 
2778     #[inline]
extend_reserve(&mut self, additional: usize)2779     fn extend_reserve(&mut self, additional: usize) {
2780         self.reserve(additional);
2781     }
2782 }
2783 
2784 impl<T, A: Allocator> Vec<T, A> {
2785     // leaf method to which various SpecFrom/SpecExtend implementations delegate when
2786     // they have no further optimizations to apply
2787     #[cfg(not(no_global_oom_handling))]
extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I)2788     fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
2789         // This is the case for a general iterator.
2790         //
2791         // This function should be the moral equivalent of:
2792         //
2793         //      for item in iterator {
2794         //          self.push(item);
2795         //      }
2796         while let Some(element) = iterator.next() {
2797             let len = self.len();
2798             if len == self.capacity() {
2799                 let (lower, _) = iterator.size_hint();
2800                 self.reserve(lower.saturating_add(1));
2801             }
2802             unsafe {
2803                 ptr::write(self.as_mut_ptr().add(len), element);
2804                 // Since next() executes user code which can panic we have to bump the length
2805                 // after each step.
2806                 // NB can't overflow since we would have had to alloc the address space
2807                 self.set_len(len + 1);
2808             }
2809         }
2810     }
2811 
2812     // specific extend for `TrustedLen` iterators, called both by the specializations
2813     // and internal places where resolving specialization makes compilation slower
2814     #[cfg(not(no_global_oom_handling))]
extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>)2815     fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
2816         let (low, high) = iterator.size_hint();
2817         if let Some(additional) = high {
2818             debug_assert_eq!(
2819                 low,
2820                 additional,
2821                 "TrustedLen iterator's size hint is not exact: {:?}",
2822                 (low, high)
2823             );
2824             self.reserve(additional);
2825             unsafe {
2826                 let ptr = self.as_mut_ptr();
2827                 let mut local_len = SetLenOnDrop::new(&mut self.len);
2828                 iterator.for_each(move |element| {
2829                     ptr::write(ptr.add(local_len.current_len()), element);
2830                     // Since the loop executes user code which can panic we have to update
2831                     // the length every step to correctly drop what we've written.
2832                     // NB can't overflow since we would have had to alloc the address space
2833                     local_len.increment_len(1);
2834                 });
2835             }
2836         } else {
2837             // Per TrustedLen contract a `None` upper bound means that the iterator length
2838             // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
2839             // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
2840             // This avoids additional codegen for a fallback code path which would eventually
2841             // panic anyway.
2842             panic!("capacity overflow");
2843         }
2844     }
2845 
2846     /// Creates a splicing iterator that replaces the specified range in the vector
2847     /// with the given `replace_with` iterator and yields the removed items.
2848     /// `replace_with` does not need to be the same length as `range`.
2849     ///
2850     /// `range` is removed even if the iterator is not consumed until the end.
2851     ///
2852     /// It is unspecified how many elements are removed from the vector
2853     /// if the `Splice` value is leaked.
2854     ///
2855     /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
2856     ///
2857     /// This is optimal if:
2858     ///
2859     /// * The tail (elements in the vector after `range`) is empty,
2860     /// * or `replace_with` yields fewer or equal elements than `range`’s length
2861     /// * or the lower bound of its `size_hint()` is exact.
2862     ///
2863     /// Otherwise, a temporary vector is allocated and the tail is moved twice.
2864     ///
2865     /// # Panics
2866     ///
2867     /// Panics if the starting point is greater than the end point or if
2868     /// the end point is greater than the length of the vector.
2869     ///
2870     /// # Examples
2871     ///
2872     /// ```
2873     /// let mut v = vec![1, 2, 3, 4];
2874     /// let new = [7, 8, 9];
2875     /// let u: Vec<_> = v.splice(1..3, new).collect();
2876     /// assert_eq!(v, &[1, 7, 8, 9, 4]);
2877     /// assert_eq!(u, &[2, 3]);
2878     /// ```
2879     #[cfg(not(no_global_oom_handling))]
2880     #[inline]
2881     #[stable(feature = "vec_splice", since = "1.21.0")]
splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A> where R: RangeBounds<usize>, I: IntoIterator<Item = T>,2882     pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
2883     where
2884         R: RangeBounds<usize>,
2885         I: IntoIterator<Item = T>,
2886     {
2887         Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
2888     }
2889 
2890     /// Creates an iterator which uses a closure to determine if an element should be removed.
2891     ///
2892     /// If the closure returns true, then the element is removed and yielded.
2893     /// If the closure returns false, the element will remain in the vector and will not be yielded
2894     /// by the iterator.
2895     ///
2896     /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
2897     /// or the iteration short-circuits, then the remaining elements will be retained.
2898     /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
2899     ///
2900     /// [`retain`]: Vec::retain
2901     ///
2902     /// Using this method is equivalent to the following code:
2903     ///
2904     /// ```
2905     /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
2906     /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
2907     /// let mut i = 0;
2908     /// while i < vec.len() {
2909     ///     if some_predicate(&mut vec[i]) {
2910     ///         let val = vec.remove(i);
2911     ///         // your code here
2912     ///     } else {
2913     ///         i += 1;
2914     ///     }
2915     /// }
2916     ///
2917     /// # assert_eq!(vec, vec![1, 4, 5]);
2918     /// ```
2919     ///
2920     /// But `extract_if` is easier to use. `extract_if` is also more efficient,
2921     /// because it can backshift the elements of the array in bulk.
2922     ///
2923     /// Note that `extract_if` also lets you mutate every element in the filter closure,
2924     /// regardless of whether you choose to keep or remove it.
2925     ///
2926     /// # Examples
2927     ///
2928     /// Splitting an array into evens and odds, reusing the original allocation:
2929     ///
2930     /// ```
2931     /// #![feature(extract_if)]
2932     /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
2933     ///
2934     /// let evens = numbers.extract_if(|x| *x % 2 == 0).collect::<Vec<_>>();
2935     /// let odds = numbers;
2936     ///
2937     /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
2938     /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
2939     /// ```
2940     #[unstable(feature = "extract_if", reason = "recently added", issue = "43244")]
extract_if<F>(&mut self, filter: F) -> ExtractIf<'_, T, F, A> where F: FnMut(&mut T) -> bool,2941     pub fn extract_if<F>(&mut self, filter: F) -> ExtractIf<'_, T, F, A>
2942     where
2943         F: FnMut(&mut T) -> bool,
2944     {
2945         let old_len = self.len();
2946 
2947         // Guard against us getting leaked (leak amplification)
2948         unsafe {
2949             self.set_len(0);
2950         }
2951 
2952         ExtractIf { vec: self, idx: 0, del: 0, old_len, pred: filter }
2953     }
2954 }
2955 
2956 /// Extend implementation that copies elements out of references before pushing them onto the Vec.
2957 ///
2958 /// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
2959 /// append the entire slice at once.
2960 ///
2961 /// [`copy_from_slice`]: slice::copy_from_slice
2962 #[cfg(not(no_global_oom_handling))]
2963 #[stable(feature = "extend_ref", since = "1.2.0")]
2964 impl<'a, T: Copy + 'a, A: Allocator + 'a> Extend<&'a T> for Vec<T, A> {
extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)2965     fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
2966         self.spec_extend(iter.into_iter())
2967     }
2968 
2969     #[inline]
extend_one(&mut self, &item: &'a T)2970     fn extend_one(&mut self, &item: &'a T) {
2971         self.push(item);
2972     }
2973 
2974     #[inline]
extend_reserve(&mut self, additional: usize)2975     fn extend_reserve(&mut self, additional: usize) {
2976         self.reserve(additional);
2977     }
2978 }
2979 
2980 /// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
2981 #[stable(feature = "rust1", since = "1.0.0")]
2982 impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
2983 where
2984     T: PartialOrd,
2985     A1: Allocator,
2986     A2: Allocator,
2987 {
2988     #[inline]
partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering>2989     fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
2990         PartialOrd::partial_cmp(&**self, &**other)
2991     }
2992 }
2993 
2994 #[stable(feature = "rust1", since = "1.0.0")]
2995 impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
2996 
2997 /// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
2998 #[stable(feature = "rust1", since = "1.0.0")]
2999 impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
3000     #[inline]
cmp(&self, other: &Self) -> Ordering3001     fn cmp(&self, other: &Self) -> Ordering {
3002         Ord::cmp(&**self, &**other)
3003     }
3004 }
3005 
3006 #[stable(feature = "rust1", since = "1.0.0")]
3007 unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
drop(&mut self)3008     fn drop(&mut self) {
3009         unsafe {
3010             // use drop for [T]
3011             // use a raw slice to refer to the elements of the vector as weakest necessary type;
3012             // could avoid questions of validity in certain cases
3013             ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
3014         }
3015         // RawVec handles deallocation
3016     }
3017 }
3018 
3019 #[stable(feature = "rust1", since = "1.0.0")]
3020 impl<T> Default for Vec<T> {
3021     /// Creates an empty `Vec<T>`.
3022     ///
3023     /// The vector will not allocate until elements are pushed onto it.
default() -> Vec<T>3024     fn default() -> Vec<T> {
3025         Vec::new()
3026     }
3027 }
3028 
3029 #[stable(feature = "rust1", since = "1.0.0")]
3030 impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result3031     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3032         fmt::Debug::fmt(&**self, f)
3033     }
3034 }
3035 
3036 #[stable(feature = "rust1", since = "1.0.0")]
3037 impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
as_ref(&self) -> &Vec<T, A>3038     fn as_ref(&self) -> &Vec<T, A> {
3039         self
3040     }
3041 }
3042 
3043 #[stable(feature = "vec_as_mut", since = "1.5.0")]
3044 impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
as_mut(&mut self) -> &mut Vec<T, A>3045     fn as_mut(&mut self) -> &mut Vec<T, A> {
3046         self
3047     }
3048 }
3049 
3050 #[stable(feature = "rust1", since = "1.0.0")]
3051 impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
as_ref(&self) -> &[T]3052     fn as_ref(&self) -> &[T] {
3053         self
3054     }
3055 }
3056 
3057 #[stable(feature = "vec_as_mut", since = "1.5.0")]
3058 impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
as_mut(&mut self) -> &mut [T]3059     fn as_mut(&mut self) -> &mut [T] {
3060         self
3061     }
3062 }
3063 
3064 #[cfg(not(no_global_oom_handling))]
3065 #[stable(feature = "rust1", since = "1.0.0")]
3066 impl<T: Clone> From<&[T]> for Vec<T> {
3067     /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3068     ///
3069     /// # Examples
3070     ///
3071     /// ```
3072     /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
3073     /// ```
3074     #[cfg(not(test))]
from(s: &[T]) -> Vec<T>3075     fn from(s: &[T]) -> Vec<T> {
3076         s.to_vec()
3077     }
3078     #[cfg(test)]
from(s: &[T]) -> Vec<T>3079     fn from(s: &[T]) -> Vec<T> {
3080         crate::slice::to_vec(s, Global)
3081     }
3082 }
3083 
3084 #[cfg(not(no_global_oom_handling))]
3085 #[stable(feature = "vec_from_mut", since = "1.19.0")]
3086 impl<T: Clone> From<&mut [T]> for Vec<T> {
3087     /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3088     ///
3089     /// # Examples
3090     ///
3091     /// ```
3092     /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
3093     /// ```
3094     #[cfg(not(test))]
from(s: &mut [T]) -> Vec<T>3095     fn from(s: &mut [T]) -> Vec<T> {
3096         s.to_vec()
3097     }
3098     #[cfg(test)]
from(s: &mut [T]) -> Vec<T>3099     fn from(s: &mut [T]) -> Vec<T> {
3100         crate::slice::to_vec(s, Global)
3101     }
3102 }
3103 
3104 #[cfg(not(no_global_oom_handling))]
3105 #[stable(feature = "vec_from_array", since = "1.44.0")]
3106 impl<T, const N: usize> From<[T; N]> for Vec<T> {
3107     /// Allocate a `Vec<T>` and move `s`'s items into it.
3108     ///
3109     /// # Examples
3110     ///
3111     /// ```
3112     /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
3113     /// ```
3114     #[cfg(not(test))]
from(s: [T; N]) -> Vec<T>3115     fn from(s: [T; N]) -> Vec<T> {
3116         <[T]>::into_vec(Box::new(s))
3117     }
3118 
3119     #[cfg(test)]
from(s: [T; N]) -> Vec<T>3120     fn from(s: [T; N]) -> Vec<T> {
3121         crate::slice::into_vec(Box::new(s))
3122     }
3123 }
3124 
3125 #[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
3126 impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
3127 where
3128     [T]: ToOwned<Owned = Vec<T>>,
3129 {
3130     /// Convert a clone-on-write slice into a vector.
3131     ///
3132     /// If `s` already owns a `Vec<T>`, it will be returned directly.
3133     /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
3134     /// filled by cloning `s`'s items into it.
3135     ///
3136     /// # Examples
3137     ///
3138     /// ```
3139     /// # use std::borrow::Cow;
3140     /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
3141     /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
3142     /// assert_eq!(Vec::from(o), Vec::from(b));
3143     /// ```
from(s: Cow<'a, [T]>) -> Vec<T>3144     fn from(s: Cow<'a, [T]>) -> Vec<T> {
3145         s.into_owned()
3146     }
3147 }
3148 
3149 // note: test pulls in std, which causes errors here
3150 #[cfg(not(test))]
3151 #[stable(feature = "vec_from_box", since = "1.18.0")]
3152 impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
3153     /// Convert a boxed slice into a vector by transferring ownership of
3154     /// the existing heap allocation.
3155     ///
3156     /// # Examples
3157     ///
3158     /// ```
3159     /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
3160     /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
3161     /// ```
from(s: Box<[T], A>) -> Self3162     fn from(s: Box<[T], A>) -> Self {
3163         s.into_vec()
3164     }
3165 }
3166 
3167 // note: test pulls in std, which causes errors here
3168 #[cfg(not(no_global_oom_handling))]
3169 #[cfg(not(test))]
3170 #[stable(feature = "box_from_vec", since = "1.20.0")]
3171 impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
3172     /// Convert a vector into a boxed slice.
3173     ///
3174     /// If `v` has excess capacity, its items will be moved into a
3175     /// newly-allocated buffer with exactly the right capacity.
3176     ///
3177     /// # Examples
3178     ///
3179     /// ```
3180     /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
3181     /// ```
3182     ///
3183     /// Any excess capacity is removed:
3184     /// ```
3185     /// let mut vec = Vec::with_capacity(10);
3186     /// vec.extend([1, 2, 3]);
3187     ///
3188     /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
3189     /// ```
from(v: Vec<T, A>) -> Self3190     fn from(v: Vec<T, A>) -> Self {
3191         v.into_boxed_slice()
3192     }
3193 }
3194 
3195 #[cfg(not(no_global_oom_handling))]
3196 #[stable(feature = "rust1", since = "1.0.0")]
3197 impl From<&str> for Vec<u8> {
3198     /// Allocate a `Vec<u8>` and fill it with a UTF-8 string.
3199     ///
3200     /// # Examples
3201     ///
3202     /// ```
3203     /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
3204     /// ```
from(s: &str) -> Vec<u8>3205     fn from(s: &str) -> Vec<u8> {
3206         From::from(s.as_bytes())
3207     }
3208 }
3209 
3210 #[stable(feature = "array_try_from_vec", since = "1.48.0")]
3211 impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
3212     type Error = Vec<T, A>;
3213 
3214     /// Gets the entire contents of the `Vec<T>` as an array,
3215     /// if its size exactly matches that of the requested array.
3216     ///
3217     /// # Examples
3218     ///
3219     /// ```
3220     /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
3221     /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
3222     /// ```
3223     ///
3224     /// If the length doesn't match, the input comes back in `Err`:
3225     /// ```
3226     /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
3227     /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
3228     /// ```
3229     ///
3230     /// If you're fine with just getting a prefix of the `Vec<T>`,
3231     /// you can call [`.truncate(N)`](Vec::truncate) first.
3232     /// ```
3233     /// let mut v = String::from("hello world").into_bytes();
3234     /// v.sort();
3235     /// v.truncate(2);
3236     /// let [a, b]: [_; 2] = v.try_into().unwrap();
3237     /// assert_eq!(a, b' ');
3238     /// assert_eq!(b, b'd');
3239     /// ```
try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>>3240     fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
3241         if vec.len() != N {
3242             return Err(vec);
3243         }
3244 
3245         // SAFETY: `.set_len(0)` is always sound.
3246         unsafe { vec.set_len(0) };
3247 
3248         // SAFETY: A `Vec`'s pointer is always aligned properly, and
3249         // the alignment the array needs is the same as the items.
3250         // We checked earlier that we have sufficient items.
3251         // The items will not double-drop as the `set_len`
3252         // tells the `Vec` not to also drop them.
3253         let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
3254         Ok(array)
3255     }
3256 }
3257