1 use crate::builder::Builder;
2 use crate::type_::Type;
3 use crate::type_of::LayoutLlvmExt;
4 use crate::value::Value;
5 use rustc_codegen_ssa::mir::operand::OperandRef;
6 use rustc_codegen_ssa::{
7 common::IntPredicate,
8 traits::{BaseTypeMethods, BuilderMethods, ConstMethods, DerivedTypeMethods},
9 };
10 use rustc_middle::ty::layout::{HasTyCtxt, LayoutOf};
11 use rustc_middle::ty::Ty;
12 use rustc_target::abi::{Align, Endian, HasDataLayout, Size};
13
round_pointer_up_to_alignment<'ll>( bx: &mut Builder<'_, 'll, '_>, addr: &'ll Value, align: Align, ptr_ty: &'ll Type, ) -> &'ll Value14 fn round_pointer_up_to_alignment<'ll>(
15 bx: &mut Builder<'_, 'll, '_>,
16 addr: &'ll Value,
17 align: Align,
18 ptr_ty: &'ll Type,
19 ) -> &'ll Value {
20 let mut ptr_as_int = bx.ptrtoint(addr, bx.cx().type_isize());
21 ptr_as_int = bx.add(ptr_as_int, bx.cx().const_i32(align.bytes() as i32 - 1));
22 ptr_as_int = bx.and(ptr_as_int, bx.cx().const_i32(-(align.bytes() as i32)));
23 bx.inttoptr(ptr_as_int, ptr_ty)
24 }
25
emit_direct_ptr_va_arg<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, list: OperandRef<'tcx, &'ll Value>, llty: &'ll Type, size: Size, align: Align, slot_size: Align, allow_higher_align: bool, ) -> (&'ll Value, Align)26 fn emit_direct_ptr_va_arg<'ll, 'tcx>(
27 bx: &mut Builder<'_, 'll, 'tcx>,
28 list: OperandRef<'tcx, &'ll Value>,
29 llty: &'ll Type,
30 size: Size,
31 align: Align,
32 slot_size: Align,
33 allow_higher_align: bool,
34 ) -> (&'ll Value, Align) {
35 let va_list_ty = bx.type_i8p();
36 let va_list_ptr_ty = bx.type_ptr_to(va_list_ty);
37 let va_list_addr = if list.layout.llvm_type(bx.cx) != va_list_ptr_ty {
38 bx.bitcast(list.immediate(), va_list_ptr_ty)
39 } else {
40 list.immediate()
41 };
42
43 let ptr = bx.load(va_list_ty, va_list_addr, bx.tcx().data_layout.pointer_align.abi);
44
45 let (addr, addr_align) = if allow_higher_align && align > slot_size {
46 (round_pointer_up_to_alignment(bx, ptr, align, bx.cx().type_i8p()), align)
47 } else {
48 (ptr, slot_size)
49 };
50
51 let aligned_size = size.align_to(slot_size).bytes() as i32;
52 let full_direct_size = bx.cx().const_i32(aligned_size);
53 let next = bx.inbounds_gep(bx.type_i8(), addr, &[full_direct_size]);
54 bx.store(next, va_list_addr, bx.tcx().data_layout.pointer_align.abi);
55
56 if size.bytes() < slot_size.bytes() && bx.tcx().sess.target.endian == Endian::Big {
57 let adjusted_size = bx.cx().const_i32((slot_size.bytes() - size.bytes()) as i32);
58 let adjusted = bx.inbounds_gep(bx.type_i8(), addr, &[adjusted_size]);
59 (bx.bitcast(adjusted, bx.cx().type_ptr_to(llty)), addr_align)
60 } else {
61 (bx.bitcast(addr, bx.cx().type_ptr_to(llty)), addr_align)
62 }
63 }
64
emit_ptr_va_arg<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, list: OperandRef<'tcx, &'ll Value>, target_ty: Ty<'tcx>, indirect: bool, slot_size: Align, allow_higher_align: bool, ) -> &'ll Value65 fn emit_ptr_va_arg<'ll, 'tcx>(
66 bx: &mut Builder<'_, 'll, 'tcx>,
67 list: OperandRef<'tcx, &'ll Value>,
68 target_ty: Ty<'tcx>,
69 indirect: bool,
70 slot_size: Align,
71 allow_higher_align: bool,
72 ) -> &'ll Value {
73 let layout = bx.cx.layout_of(target_ty);
74 let (llty, size, align) = if indirect {
75 (
76 bx.cx.layout_of(Ty::new_imm_ptr(bx.cx.tcx, target_ty)).llvm_type(bx.cx),
77 bx.cx.data_layout().pointer_size,
78 bx.cx.data_layout().pointer_align,
79 )
80 } else {
81 (layout.llvm_type(bx.cx), layout.size, layout.align)
82 };
83 let (addr, addr_align) =
84 emit_direct_ptr_va_arg(bx, list, llty, size, align.abi, slot_size, allow_higher_align);
85 if indirect {
86 let tmp_ret = bx.load(llty, addr, addr_align);
87 bx.load(bx.cx.layout_of(target_ty).llvm_type(bx.cx), tmp_ret, align.abi)
88 } else {
89 bx.load(llty, addr, addr_align)
90 }
91 }
92
emit_aapcs_va_arg<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, list: OperandRef<'tcx, &'ll Value>, target_ty: Ty<'tcx>, ) -> &'ll Value93 fn emit_aapcs_va_arg<'ll, 'tcx>(
94 bx: &mut Builder<'_, 'll, 'tcx>,
95 list: OperandRef<'tcx, &'ll Value>,
96 target_ty: Ty<'tcx>,
97 ) -> &'ll Value {
98 // Implementation of the AAPCS64 calling convention for va_args see
99 // https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst
100 let va_list_addr = list.immediate();
101 let va_list_layout = list.deref(bx.cx).layout;
102 let va_list_ty = va_list_layout.llvm_type(bx);
103 let layout = bx.cx.layout_of(target_ty);
104
105 let maybe_reg = bx.append_sibling_block("va_arg.maybe_reg");
106 let in_reg = bx.append_sibling_block("va_arg.in_reg");
107 let on_stack = bx.append_sibling_block("va_arg.on_stack");
108 let end = bx.append_sibling_block("va_arg.end");
109 let zero = bx.const_i32(0);
110 let offset_align = Align::from_bytes(4).unwrap();
111
112 let gr_type = target_ty.is_any_ptr() || target_ty.is_integral();
113 let (reg_off, reg_top_index, slot_size) = if gr_type {
114 let gr_offs =
115 bx.struct_gep(va_list_ty, va_list_addr, va_list_layout.llvm_field_index(bx.cx, 3));
116 let nreg = (layout.size.bytes() + 7) / 8;
117 (gr_offs, va_list_layout.llvm_field_index(bx.cx, 1), nreg * 8)
118 } else {
119 let vr_off =
120 bx.struct_gep(va_list_ty, va_list_addr, va_list_layout.llvm_field_index(bx.cx, 4));
121 let nreg = (layout.size.bytes() + 15) / 16;
122 (vr_off, va_list_layout.llvm_field_index(bx.cx, 2), nreg * 16)
123 };
124
125 // if the offset >= 0 then the value will be on the stack
126 let mut reg_off_v = bx.load(bx.type_i32(), reg_off, offset_align);
127 let use_stack = bx.icmp(IntPredicate::IntSGE, reg_off_v, zero);
128 bx.cond_br(use_stack, on_stack, maybe_reg);
129
130 // The value at this point might be in a register, but there is a chance that
131 // it could be on the stack so we have to update the offset and then check
132 // the offset again.
133
134 bx.switch_to_block(maybe_reg);
135 if gr_type && layout.align.abi.bytes() > 8 {
136 reg_off_v = bx.add(reg_off_v, bx.const_i32(15));
137 reg_off_v = bx.and(reg_off_v, bx.const_i32(-16));
138 }
139 let new_reg_off_v = bx.add(reg_off_v, bx.const_i32(slot_size as i32));
140
141 bx.store(new_reg_off_v, reg_off, offset_align);
142
143 // Check to see if we have overflowed the registers as a result of this.
144 // If we have then we need to use the stack for this value
145 let use_stack = bx.icmp(IntPredicate::IntSGT, new_reg_off_v, zero);
146 bx.cond_br(use_stack, on_stack, in_reg);
147
148 bx.switch_to_block(in_reg);
149 let top_type = bx.type_i8p();
150 let top = bx.struct_gep(va_list_ty, va_list_addr, reg_top_index);
151 let top = bx.load(top_type, top, bx.tcx().data_layout.pointer_align.abi);
152
153 // reg_value = *(@top + reg_off_v);
154 let mut reg_addr = bx.gep(bx.type_i8(), top, &[reg_off_v]);
155 if bx.tcx().sess.target.endian == Endian::Big && layout.size.bytes() != slot_size {
156 // On big-endian systems the value is right-aligned in its slot.
157 let offset = bx.const_i32((slot_size - layout.size.bytes()) as i32);
158 reg_addr = bx.gep(bx.type_i8(), reg_addr, &[offset]);
159 }
160 let reg_type = layout.llvm_type(bx);
161 let reg_addr = bx.bitcast(reg_addr, bx.cx.type_ptr_to(reg_type));
162 let reg_value = bx.load(reg_type, reg_addr, layout.align.abi);
163 bx.br(end);
164
165 // On Stack block
166 bx.switch_to_block(on_stack);
167 let stack_value =
168 emit_ptr_va_arg(bx, list, target_ty, false, Align::from_bytes(8).unwrap(), true);
169 bx.br(end);
170
171 bx.switch_to_block(end);
172 let val =
173 bx.phi(layout.immediate_llvm_type(bx), &[reg_value, stack_value], &[in_reg, on_stack]);
174
175 val
176 }
177
emit_s390x_va_arg<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, list: OperandRef<'tcx, &'ll Value>, target_ty: Ty<'tcx>, ) -> &'ll Value178 fn emit_s390x_va_arg<'ll, 'tcx>(
179 bx: &mut Builder<'_, 'll, 'tcx>,
180 list: OperandRef<'tcx, &'ll Value>,
181 target_ty: Ty<'tcx>,
182 ) -> &'ll Value {
183 // Implementation of the s390x ELF ABI calling convention for va_args see
184 // https://github.com/IBM/s390x-abi (chapter 1.2.4)
185 let va_list_addr = list.immediate();
186 let va_list_layout = list.deref(bx.cx).layout;
187 let va_list_ty = va_list_layout.llvm_type(bx);
188 let layout = bx.cx.layout_of(target_ty);
189
190 let in_reg = bx.append_sibling_block("va_arg.in_reg");
191 let in_mem = bx.append_sibling_block("va_arg.in_mem");
192 let end = bx.append_sibling_block("va_arg.end");
193
194 // FIXME: vector ABI not yet supported.
195 let target_ty_size = bx.cx.size_of(target_ty).bytes();
196 let indirect: bool = target_ty_size > 8 || !target_ty_size.is_power_of_two();
197 let unpadded_size = if indirect { 8 } else { target_ty_size };
198 let padded_size = 8;
199 let padding = padded_size - unpadded_size;
200
201 let gpr_type = indirect || !layout.is_single_fp_element(bx.cx);
202 let (max_regs, reg_count_field, reg_save_index, reg_padding) =
203 if gpr_type { (5, 0, 2, padding) } else { (4, 1, 16, 0) };
204
205 // Check whether the value was passed in a register or in memory.
206 let reg_count = bx.struct_gep(
207 va_list_ty,
208 va_list_addr,
209 va_list_layout.llvm_field_index(bx.cx, reg_count_field),
210 );
211 let reg_count_v = bx.load(bx.type_i64(), reg_count, Align::from_bytes(8).unwrap());
212 let use_regs = bx.icmp(IntPredicate::IntULT, reg_count_v, bx.const_u64(max_regs));
213 bx.cond_br(use_regs, in_reg, in_mem);
214
215 // Emit code to load the value if it was passed in a register.
216 bx.switch_to_block(in_reg);
217
218 // Work out the address of the value in the register save area.
219 let reg_ptr =
220 bx.struct_gep(va_list_ty, va_list_addr, va_list_layout.llvm_field_index(bx.cx, 3));
221 let reg_ptr_v = bx.load(bx.type_i8p(), reg_ptr, bx.tcx().data_layout.pointer_align.abi);
222 let scaled_reg_count = bx.mul(reg_count_v, bx.const_u64(8));
223 let reg_off = bx.add(scaled_reg_count, bx.const_u64(reg_save_index * 8 + reg_padding));
224 let reg_addr = bx.gep(bx.type_i8(), reg_ptr_v, &[reg_off]);
225
226 // Update the register count.
227 let new_reg_count_v = bx.add(reg_count_v, bx.const_u64(1));
228 bx.store(new_reg_count_v, reg_count, Align::from_bytes(8).unwrap());
229 bx.br(end);
230
231 // Emit code to load the value if it was passed in memory.
232 bx.switch_to_block(in_mem);
233
234 // Work out the address of the value in the argument overflow area.
235 let arg_ptr =
236 bx.struct_gep(va_list_ty, va_list_addr, va_list_layout.llvm_field_index(bx.cx, 2));
237 let arg_ptr_v = bx.load(bx.type_i8p(), arg_ptr, bx.tcx().data_layout.pointer_align.abi);
238 let arg_off = bx.const_u64(padding);
239 let mem_addr = bx.gep(bx.type_i8(), arg_ptr_v, &[arg_off]);
240
241 // Update the argument overflow area pointer.
242 let arg_size = bx.cx().const_u64(padded_size);
243 let new_arg_ptr_v = bx.inbounds_gep(bx.type_i8(), arg_ptr_v, &[arg_size]);
244 bx.store(new_arg_ptr_v, arg_ptr, bx.tcx().data_layout.pointer_align.abi);
245 bx.br(end);
246
247 // Return the appropriate result.
248 bx.switch_to_block(end);
249 let val_addr = bx.phi(bx.type_i8p(), &[reg_addr, mem_addr], &[in_reg, in_mem]);
250 let val_type = layout.llvm_type(bx);
251 let val_addr = if indirect {
252 let ptr_type = bx.cx.type_ptr_to(val_type);
253 let ptr_addr = bx.bitcast(val_addr, bx.cx.type_ptr_to(ptr_type));
254 bx.load(ptr_type, ptr_addr, bx.tcx().data_layout.pointer_align.abi)
255 } else {
256 bx.bitcast(val_addr, bx.cx.type_ptr_to(val_type))
257 };
258 bx.load(val_type, val_addr, layout.align.abi)
259 }
260
emit_va_arg<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, addr: OperandRef<'tcx, &'ll Value>, target_ty: Ty<'tcx>, ) -> &'ll Value261 pub(super) fn emit_va_arg<'ll, 'tcx>(
262 bx: &mut Builder<'_, 'll, 'tcx>,
263 addr: OperandRef<'tcx, &'ll Value>,
264 target_ty: Ty<'tcx>,
265 ) -> &'ll Value {
266 // Determine the va_arg implementation to use. The LLVM va_arg instruction
267 // is lacking in some instances, so we should only use it as a fallback.
268 let target = &bx.cx.tcx.sess.target;
269 let arch = &bx.cx.tcx.sess.target.arch;
270 match &**arch {
271 // Windows x86
272 "x86" if target.is_like_windows => {
273 emit_ptr_va_arg(bx, addr, target_ty, false, Align::from_bytes(4).unwrap(), false)
274 }
275 // Generic x86
276 "x86" => emit_ptr_va_arg(bx, addr, target_ty, false, Align::from_bytes(4).unwrap(), true),
277 // Windows AArch64
278 "aarch64" if target.is_like_windows => {
279 emit_ptr_va_arg(bx, addr, target_ty, false, Align::from_bytes(8).unwrap(), false)
280 }
281 // macOS / iOS AArch64
282 "aarch64" if target.is_like_osx => {
283 emit_ptr_va_arg(bx, addr, target_ty, false, Align::from_bytes(8).unwrap(), true)
284 }
285 "aarch64" => emit_aapcs_va_arg(bx, addr, target_ty),
286 "s390x" => emit_s390x_va_arg(bx, addr, target_ty),
287 // Windows x86_64
288 "x86_64" if target.is_like_windows => {
289 let target_ty_size = bx.cx.size_of(target_ty).bytes();
290 let indirect: bool = target_ty_size > 8 || !target_ty_size.is_power_of_two();
291 emit_ptr_va_arg(bx, addr, target_ty, indirect, Align::from_bytes(8).unwrap(), false)
292 }
293 // For all other architecture/OS combinations fall back to using
294 // the LLVM va_arg instruction.
295 // https://llvm.org/docs/LangRef.html#va-arg-instruction
296 _ => bx.va_arg(addr.immediate(), bx.cx.layout_of(target_ty).llvm_type(bx.cx)),
297 }
298 }
299