1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kmsan_types.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/syscall_user_dispatch.h>
32 #include <linux/mm_types_task.h>
33 #include <linux/task_io_accounting.h>
34 #include <linux/posix-timers.h>
35 #include <linux/rseq.h>
36 #include <linux/seqlock.h>
37 #include <linux/kcsan.h>
38 #include <linux/rv.h>
39 #include <linux/livepatch_sched.h>
40 #include <asm/kmap_size.h>
41
42 /* task_struct member predeclarations (sorted alphabetically): */
43 struct audit_context;
44 struct bio_list;
45 struct blk_plug;
46 struct bpf_local_storage;
47 struct bpf_run_ctx;
48 struct capture_control;
49 struct cfs_rq;
50 struct fs_struct;
51 struct futex_pi_state;
52 struct io_context;
53 struct io_uring_task;
54 struct mempolicy;
55 struct nameidata;
56 struct nsproxy;
57 struct perf_event_context;
58 struct pid_namespace;
59 struct pipe_inode_info;
60 struct rcu_node;
61 #ifdef CONFIG_RECLAIM_ACCT
62 struct reclaim_acct;
63 #endif
64 struct reclaim_state;
65 struct robust_list_head;
66 struct root_domain;
67 struct rq;
68 struct sched_attr;
69 struct seq_file;
70 struct sighand_struct;
71 struct signal_struct;
72 struct task_delay_info;
73 struct task_group;
74 struct user_event_mm;
75
76 /*
77 * Task state bitmask. NOTE! These bits are also
78 * encoded in fs/proc/array.c: get_task_state().
79 *
80 * We have two separate sets of flags: task->__state
81 * is about runnability, while task->exit_state are
82 * about the task exiting. Confusing, but this way
83 * modifying one set can't modify the other one by
84 * mistake.
85 */
86
87 /* Used in tsk->__state: */
88 #define TASK_RUNNING 0x00000000
89 #define TASK_INTERRUPTIBLE 0x00000001
90 #define TASK_UNINTERRUPTIBLE 0x00000002
91 #define __TASK_STOPPED 0x00000004
92 #define __TASK_TRACED 0x00000008
93 /* Used in tsk->exit_state: */
94 #define EXIT_DEAD 0x00000010
95 #define EXIT_ZOMBIE 0x00000020
96 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
97 /* Used in tsk->__state again: */
98 #define TASK_PARKED 0x00000040
99 #define TASK_DEAD 0x00000080
100 #define TASK_WAKEKILL 0x00000100
101 #define TASK_WAKING 0x00000200
102 #define TASK_NOLOAD 0x00000400
103 #define TASK_NEW 0x00000800
104 #define TASK_RTLOCK_WAIT 0x00001000
105 #define TASK_FREEZABLE 0x00002000
106 #define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
107 #define TASK_FROZEN 0x00008000
108 #define TASK_STATE_MAX 0x00010000
109
110 #define TASK_ANY (TASK_STATE_MAX-1)
111
112 /*
113 * DO NOT ADD ANY NEW USERS !
114 */
115 #define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
116
117 /* Convenience macros for the sake of set_current_state: */
118 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
119 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
120 #define TASK_TRACED __TASK_TRACED
121
122 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
123
124 /* Convenience macros for the sake of wake_up(): */
125 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
126
127 /* get_task_state(): */
128 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
129 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
130 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
131 TASK_PARKED)
132
133 #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
134
135 #define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
136 #define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
137 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
138
139 /*
140 * Special states are those that do not use the normal wait-loop pattern. See
141 * the comment with set_special_state().
142 */
143 #define is_special_task_state(state) \
144 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
145
146 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
147 # define debug_normal_state_change(state_value) \
148 do { \
149 WARN_ON_ONCE(is_special_task_state(state_value)); \
150 current->task_state_change = _THIS_IP_; \
151 } while (0)
152
153 # define debug_special_state_change(state_value) \
154 do { \
155 WARN_ON_ONCE(!is_special_task_state(state_value)); \
156 current->task_state_change = _THIS_IP_; \
157 } while (0)
158
159 # define debug_rtlock_wait_set_state() \
160 do { \
161 current->saved_state_change = current->task_state_change;\
162 current->task_state_change = _THIS_IP_; \
163 } while (0)
164
165 # define debug_rtlock_wait_restore_state() \
166 do { \
167 current->task_state_change = current->saved_state_change;\
168 } while (0)
169
170 #else
171 # define debug_normal_state_change(cond) do { } while (0)
172 # define debug_special_state_change(cond) do { } while (0)
173 # define debug_rtlock_wait_set_state() do { } while (0)
174 # define debug_rtlock_wait_restore_state() do { } while (0)
175 #endif
176
177 /*
178 * set_current_state() includes a barrier so that the write of current->__state
179 * is correctly serialised wrt the caller's subsequent test of whether to
180 * actually sleep:
181 *
182 * for (;;) {
183 * set_current_state(TASK_UNINTERRUPTIBLE);
184 * if (CONDITION)
185 * break;
186 *
187 * schedule();
188 * }
189 * __set_current_state(TASK_RUNNING);
190 *
191 * If the caller does not need such serialisation (because, for instance, the
192 * CONDITION test and condition change and wakeup are under the same lock) then
193 * use __set_current_state().
194 *
195 * The above is typically ordered against the wakeup, which does:
196 *
197 * CONDITION = 1;
198 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
199 *
200 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
201 * accessing p->__state.
202 *
203 * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
204 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
205 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
206 *
207 * However, with slightly different timing the wakeup TASK_RUNNING store can
208 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
209 * a problem either because that will result in one extra go around the loop
210 * and our @cond test will save the day.
211 *
212 * Also see the comments of try_to_wake_up().
213 */
214 #define __set_current_state(state_value) \
215 do { \
216 debug_normal_state_change((state_value)); \
217 WRITE_ONCE(current->__state, (state_value)); \
218 } while (0)
219
220 #define set_current_state(state_value) \
221 do { \
222 debug_normal_state_change((state_value)); \
223 smp_store_mb(current->__state, (state_value)); \
224 } while (0)
225
226 /*
227 * set_special_state() should be used for those states when the blocking task
228 * can not use the regular condition based wait-loop. In that case we must
229 * serialize against wakeups such that any possible in-flight TASK_RUNNING
230 * stores will not collide with our state change.
231 */
232 #define set_special_state(state_value) \
233 do { \
234 unsigned long flags; /* may shadow */ \
235 \
236 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
237 debug_special_state_change((state_value)); \
238 WRITE_ONCE(current->__state, (state_value)); \
239 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
240 } while (0)
241
242 /*
243 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
244 *
245 * RT's spin/rwlock substitutions are state preserving. The state of the
246 * task when blocking on the lock is saved in task_struct::saved_state and
247 * restored after the lock has been acquired. These operations are
248 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
249 * lock related wakeups while the task is blocked on the lock are
250 * redirected to operate on task_struct::saved_state to ensure that these
251 * are not dropped. On restore task_struct::saved_state is set to
252 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
253 *
254 * The lock operation looks like this:
255 *
256 * current_save_and_set_rtlock_wait_state();
257 * for (;;) {
258 * if (try_lock())
259 * break;
260 * raw_spin_unlock_irq(&lock->wait_lock);
261 * schedule_rtlock();
262 * raw_spin_lock_irq(&lock->wait_lock);
263 * set_current_state(TASK_RTLOCK_WAIT);
264 * }
265 * current_restore_rtlock_saved_state();
266 */
267 #define current_save_and_set_rtlock_wait_state() \
268 do { \
269 lockdep_assert_irqs_disabled(); \
270 raw_spin_lock(¤t->pi_lock); \
271 current->saved_state = current->__state; \
272 debug_rtlock_wait_set_state(); \
273 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
274 raw_spin_unlock(¤t->pi_lock); \
275 } while (0);
276
277 #define current_restore_rtlock_saved_state() \
278 do { \
279 lockdep_assert_irqs_disabled(); \
280 raw_spin_lock(¤t->pi_lock); \
281 debug_rtlock_wait_restore_state(); \
282 WRITE_ONCE(current->__state, current->saved_state); \
283 current->saved_state = TASK_RUNNING; \
284 raw_spin_unlock(¤t->pi_lock); \
285 } while (0);
286
287 #define get_current_state() READ_ONCE(current->__state)
288
289 /*
290 * Define the task command name length as enum, then it can be visible to
291 * BPF programs.
292 */
293 enum {
294 TASK_COMM_LEN = 16,
295 };
296 enum task_event {
297 PUT_PREV_TASK = 0,
298 PICK_NEXT_TASK = 1,
299 TASK_WAKE = 2,
300 TASK_MIGRATE = 3,
301 TASK_UPDATE = 4,
302 IRQ_UPDATE = 5,
303 };
304
305 /* Note: this need to be in sync with migrate_type_names array */
306 enum migrate_types {
307 GROUP_TO_RQ,
308 RQ_TO_GROUP,
309 };
310
311 #ifdef CONFIG_CPU_ISOLATION_OPT
312 extern int sched_isolate_count(const cpumask_t *mask, bool include_offline);
313 extern int sched_isolate_cpu(int cpu);
314 extern int sched_unisolate_cpu(int cpu);
315 extern int sched_unisolate_cpu_unlocked(int cpu);
316 #else
sched_isolate_count(const cpumask_t * mask,bool include_offline)317 static inline int sched_isolate_count(const cpumask_t *mask,
318 bool include_offline)
319 {
320 cpumask_t count_mask;
321
322 if (include_offline)
323 cpumask_andnot(&count_mask, mask, cpu_online_mask);
324 else
325 return 0;
326
327 return cpumask_weight(&count_mask);
328 }
329
sched_isolate_cpu(int cpu)330 static inline int sched_isolate_cpu(int cpu)
331 {
332 return 0;
333 }
334
sched_unisolate_cpu(int cpu)335 static inline int sched_unisolate_cpu(int cpu)
336 {
337 return 0;
338 }
339
sched_unisolate_cpu_unlocked(int cpu)340 static inline int sched_unisolate_cpu_unlocked(int cpu)
341 {
342 return 0;
343 }
344 #endif
345
346 extern void scheduler_tick(void);
347
348 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
349
350 extern long schedule_timeout(long timeout);
351 extern long schedule_timeout_interruptible(long timeout);
352 extern long schedule_timeout_killable(long timeout);
353 extern long schedule_timeout_uninterruptible(long timeout);
354 extern long schedule_timeout_idle(long timeout);
355 asmlinkage void schedule(void);
356 extern void schedule_preempt_disabled(void);
357 asmlinkage void preempt_schedule_irq(void);
358 #ifdef CONFIG_PREEMPT_RT
359 extern void schedule_rtlock(void);
360 #endif
361
362 extern int __must_check io_schedule_prepare(void);
363 extern void io_schedule_finish(int token);
364 extern long io_schedule_timeout(long timeout);
365 extern void io_schedule(void);
366
367 /**
368 * struct prev_cputime - snapshot of system and user cputime
369 * @utime: time spent in user mode
370 * @stime: time spent in system mode
371 * @lock: protects the above two fields
372 *
373 * Stores previous user/system time values such that we can guarantee
374 * monotonicity.
375 */
376 struct prev_cputime {
377 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
378 u64 utime;
379 u64 stime;
380 raw_spinlock_t lock;
381 #endif
382 };
383
384 enum vtime_state {
385 /* Task is sleeping or running in a CPU with VTIME inactive: */
386 VTIME_INACTIVE = 0,
387 /* Task is idle */
388 VTIME_IDLE,
389 /* Task runs in kernelspace in a CPU with VTIME active: */
390 VTIME_SYS,
391 /* Task runs in userspace in a CPU with VTIME active: */
392 VTIME_USER,
393 /* Task runs as guests in a CPU with VTIME active: */
394 VTIME_GUEST,
395 };
396
397 struct vtime {
398 seqcount_t seqcount;
399 unsigned long long starttime;
400 enum vtime_state state;
401 unsigned int cpu;
402 u64 utime;
403 u64 stime;
404 u64 gtime;
405 };
406
407 /*
408 * Utilization clamp constraints.
409 * @UCLAMP_MIN: Minimum utilization
410 * @UCLAMP_MAX: Maximum utilization
411 * @UCLAMP_CNT: Utilization clamp constraints count
412 */
413 enum uclamp_id {
414 UCLAMP_MIN = 0,
415 UCLAMP_MAX,
416 UCLAMP_CNT
417 };
418
419 #ifdef CONFIG_SMP
420 extern struct root_domain def_root_domain;
421 extern struct mutex sched_domains_mutex;
422 #endif
423
424 struct sched_param {
425 int sched_priority;
426 };
427
428 struct sched_info {
429 #ifdef CONFIG_SCHED_INFO
430 /* Cumulative counters: */
431
432 /* # of times we have run on this CPU: */
433 unsigned long pcount;
434
435 /* Time spent waiting on a runqueue: */
436 unsigned long long run_delay;
437
438 /* Timestamps: */
439
440 /* When did we last run on a CPU? */
441 unsigned long long last_arrival;
442
443 /* When were we last queued to run? */
444 unsigned long long last_queued;
445
446 #endif /* CONFIG_SCHED_INFO */
447 };
448
449 /*
450 * Integer metrics need fixed point arithmetic, e.g., sched/fair
451 * has a few: load, load_avg, util_avg, freq, and capacity.
452 *
453 * We define a basic fixed point arithmetic range, and then formalize
454 * all these metrics based on that basic range.
455 */
456 # define SCHED_FIXEDPOINT_SHIFT 10
457 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
458
459 /* Increase resolution of cpu_capacity calculations */
460 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
461 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
462
463 struct load_weight {
464 unsigned long weight;
465 u32 inv_weight;
466 };
467
468 /**
469 * struct util_est - Estimation utilization of FAIR tasks
470 * @enqueued: instantaneous estimated utilization of a task/cpu
471 * @ewma: the Exponential Weighted Moving Average (EWMA)
472 * utilization of a task
473 *
474 * Support data structure to track an Exponential Weighted Moving Average
475 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
476 * average each time a task completes an activation. Sample's weight is chosen
477 * so that the EWMA will be relatively insensitive to transient changes to the
478 * task's workload.
479 *
480 * The enqueued attribute has a slightly different meaning for tasks and cpus:
481 * - task: the task's util_avg at last task dequeue time
482 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
483 * Thus, the util_est.enqueued of a task represents the contribution on the
484 * estimated utilization of the CPU where that task is currently enqueued.
485 *
486 * Only for tasks we track a moving average of the past instantaneous
487 * estimated utilization. This allows to absorb sporadic drops in utilization
488 * of an otherwise almost periodic task.
489 *
490 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
491 * updates. When a task is dequeued, its util_est should not be updated if its
492 * util_avg has not been updated in the meantime.
493 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
494 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
495 * for a task) it is safe to use MSB.
496 */
497 struct util_est {
498 unsigned int enqueued;
499 unsigned int ewma;
500 #define UTIL_EST_WEIGHT_SHIFT 2
501 #define UTIL_AVG_UNCHANGED 0x80000000
502 } __attribute__((__aligned__(sizeof(u64))));
503
504 /*
505 * The load/runnable/util_avg accumulates an infinite geometric series
506 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
507 *
508 * [load_avg definition]
509 *
510 * load_avg = runnable% * scale_load_down(load)
511 *
512 * [runnable_avg definition]
513 *
514 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
515 *
516 * [util_avg definition]
517 *
518 * util_avg = running% * SCHED_CAPACITY_SCALE
519 *
520 * where runnable% is the time ratio that a sched_entity is runnable and
521 * running% the time ratio that a sched_entity is running.
522 *
523 * For cfs_rq, they are the aggregated values of all runnable and blocked
524 * sched_entities.
525 *
526 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
527 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
528 * for computing those signals (see update_rq_clock_pelt())
529 *
530 * N.B., the above ratios (runnable% and running%) themselves are in the
531 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
532 * to as large a range as necessary. This is for example reflected by
533 * util_avg's SCHED_CAPACITY_SCALE.
534 *
535 * [Overflow issue]
536 *
537 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
538 * with the highest load (=88761), always runnable on a single cfs_rq,
539 * and should not overflow as the number already hits PID_MAX_LIMIT.
540 *
541 * For all other cases (including 32-bit kernels), struct load_weight's
542 * weight will overflow first before we do, because:
543 *
544 * Max(load_avg) <= Max(load.weight)
545 *
546 * Then it is the load_weight's responsibility to consider overflow
547 * issues.
548 */
549 struct sched_avg {
550 u64 last_update_time;
551 u64 load_sum;
552 u64 runnable_sum;
553 u32 util_sum;
554 u32 period_contrib;
555 unsigned long load_avg;
556 unsigned long runnable_avg;
557 unsigned long util_avg;
558 struct util_est util_est;
559 } ____cacheline_aligned;
560
561 struct sched_statistics {
562 #ifdef CONFIG_SCHEDSTATS
563 u64 wait_start;
564 u64 wait_max;
565 u64 wait_count;
566 u64 wait_sum;
567 u64 iowait_count;
568 u64 iowait_sum;
569
570 u64 sleep_start;
571 u64 sleep_max;
572 s64 sum_sleep_runtime;
573
574 u64 block_start;
575 u64 block_max;
576 s64 sum_block_runtime;
577
578 s64 exec_max;
579 u64 slice_max;
580
581 u64 nr_migrations_cold;
582 u64 nr_failed_migrations_affine;
583 u64 nr_failed_migrations_running;
584 u64 nr_failed_migrations_hot;
585 u64 nr_forced_migrations;
586
587 u64 nr_wakeups;
588 u64 nr_wakeups_sync;
589 u64 nr_wakeups_migrate;
590 u64 nr_wakeups_local;
591 u64 nr_wakeups_remote;
592 u64 nr_wakeups_affine;
593 u64 nr_wakeups_affine_attempts;
594 u64 nr_wakeups_passive;
595 u64 nr_wakeups_idle;
596
597 #ifdef CONFIG_SCHED_CORE
598 u64 core_forceidle_sum;
599 #endif
600 #endif /* CONFIG_SCHEDSTATS */
601 } ____cacheline_aligned;
602
603 struct sched_entity {
604 /* For load-balancing: */
605 struct load_weight load;
606 struct rb_node run_node;
607 u64 deadline;
608 u64 min_deadline;
609
610 struct list_head group_node;
611 unsigned int on_rq;
612
613 u64 exec_start;
614 u64 sum_exec_runtime;
615 u64 prev_sum_exec_runtime;
616 u64 vruntime;
617 s64 vlag;
618 u64 slice;
619
620 u64 nr_migrations;
621
622 #ifdef CONFIG_FAIR_GROUP_SCHED
623 int depth;
624 struct sched_entity *parent;
625 /* rq on which this entity is (to be) queued: */
626 struct cfs_rq *cfs_rq;
627 /* rq "owned" by this entity/group: */
628 struct cfs_rq *my_q;
629 /* cached value of my_q->h_nr_running */
630 unsigned long runnable_weight;
631 #endif
632
633 #ifdef CONFIG_SCHED_LATENCY_NICE
634 int latency_weight;
635 #endif
636
637 #ifdef CONFIG_SMP
638 /*
639 * Per entity load average tracking.
640 *
641 * Put into separate cache line so it does not
642 * collide with read-mostly values above.
643 */
644 struct sched_avg avg;
645 #endif
646 };
647
648 #ifdef CONFIG_SCHED_WALT
649 extern void sched_exit(struct task_struct *p);
650 extern int sched_set_init_task_load(struct task_struct *p, int init_load_pct);
651 extern u32 sched_get_init_task_load(struct task_struct *p);
652 extern void free_task_load_ptrs(struct task_struct *p);
653 #define RAVG_HIST_SIZE_MAX 5
654 struct ravg {
655 /*
656 * 'mark_start' marks the beginning of an event (task waking up, task
657 * starting to execute, task being preempted) within a window
658 *
659 * 'sum' represents how runnable a task has been within current
660 * window. It incorporates both running time and wait time and is
661 * frequency scaled.
662 *
663 * 'sum_history' keeps track of history of 'sum' seen over previous
664 * RAVG_HIST_SIZE windows. Windows where task was entirely sleeping are
665 * ignored.
666 *
667 * 'demand' represents maximum sum seen over previous
668 * sysctl_sched_ravg_hist_size windows. 'demand' could drive frequency
669 * demand for tasks.
670 *
671 * 'curr_window_cpu' represents task's contribution to cpu busy time on
672 * various CPUs in the current window
673 *
674 * 'prev_window_cpu' represents task's contribution to cpu busy time on
675 * various CPUs in the previous window
676 *
677 * 'curr_window' represents the sum of all entries in curr_window_cpu
678 *
679 * 'prev_window' represents the sum of all entries in prev_window_cpu
680 *
681 */
682 u64 mark_start;
683 u32 sum, demand;
684 u32 sum_history[RAVG_HIST_SIZE_MAX];
685 u32 *curr_window_cpu, *prev_window_cpu;
686 u32 curr_window, prev_window;
687 u16 active_windows;
688 u16 demand_scaled;
689 };
690 #else
sched_exit(struct task_struct * p)691 static inline void sched_exit(struct task_struct *p) { }
free_task_load_ptrs(struct task_struct * p)692 static inline void free_task_load_ptrs(struct task_struct *p) { }
693 #endif /* CONFIG_SCHED_WALT */
694
695 struct sched_rt_entity {
696 struct list_head run_list;
697 unsigned long timeout;
698 unsigned long watchdog_stamp;
699 unsigned int time_slice;
700 unsigned short on_rq;
701 unsigned short on_list;
702
703 struct sched_rt_entity *back;
704 #ifdef CONFIG_RT_GROUP_SCHED
705 struct sched_rt_entity *parent;
706 /* rq on which this entity is (to be) queued: */
707 struct rt_rq *rt_rq;
708 /* rq "owned" by this entity/group: */
709 struct rt_rq *my_q;
710 #endif
711 } __randomize_layout;
712
713 struct sched_dl_entity {
714 struct rb_node rb_node;
715
716 /*
717 * Original scheduling parameters. Copied here from sched_attr
718 * during sched_setattr(), they will remain the same until
719 * the next sched_setattr().
720 */
721 u64 dl_runtime; /* Maximum runtime for each instance */
722 u64 dl_deadline; /* Relative deadline of each instance */
723 u64 dl_period; /* Separation of two instances (period) */
724 u64 dl_bw; /* dl_runtime / dl_period */
725 u64 dl_density; /* dl_runtime / dl_deadline */
726
727 /*
728 * Actual scheduling parameters. Initialized with the values above,
729 * they are continuously updated during task execution. Note that
730 * the remaining runtime could be < 0 in case we are in overrun.
731 */
732 s64 runtime; /* Remaining runtime for this instance */
733 u64 deadline; /* Absolute deadline for this instance */
734 unsigned int flags; /* Specifying the scheduler behaviour */
735
736 /*
737 * Some bool flags:
738 *
739 * @dl_throttled tells if we exhausted the runtime. If so, the
740 * task has to wait for a replenishment to be performed at the
741 * next firing of dl_timer.
742 *
743 * @dl_yielded tells if task gave up the CPU before consuming
744 * all its available runtime during the last job.
745 *
746 * @dl_non_contending tells if the task is inactive while still
747 * contributing to the active utilization. In other words, it
748 * indicates if the inactive timer has been armed and its handler
749 * has not been executed yet. This flag is useful to avoid race
750 * conditions between the inactive timer handler and the wakeup
751 * code.
752 *
753 * @dl_overrun tells if the task asked to be informed about runtime
754 * overruns.
755 */
756 unsigned int dl_throttled : 1;
757 unsigned int dl_yielded : 1;
758 unsigned int dl_non_contending : 1;
759 unsigned int dl_overrun : 1;
760
761 /*
762 * Bandwidth enforcement timer. Each -deadline task has its
763 * own bandwidth to be enforced, thus we need one timer per task.
764 */
765 struct hrtimer dl_timer;
766
767 /*
768 * Inactive timer, responsible for decreasing the active utilization
769 * at the "0-lag time". When a -deadline task blocks, it contributes
770 * to GRUB's active utilization until the "0-lag time", hence a
771 * timer is needed to decrease the active utilization at the correct
772 * time.
773 */
774 struct hrtimer inactive_timer;
775
776 #ifdef CONFIG_RT_MUTEXES
777 /*
778 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
779 * pi_se points to the donor, otherwise points to the dl_se it belongs
780 * to (the original one/itself).
781 */
782 struct sched_dl_entity *pi_se;
783 #endif
784 };
785
786 #ifdef CONFIG_UCLAMP_TASK
787 /* Number of utilization clamp buckets (shorter alias) */
788 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
789
790 /*
791 * Utilization clamp for a scheduling entity
792 * @value: clamp value "assigned" to a se
793 * @bucket_id: bucket index corresponding to the "assigned" value
794 * @active: the se is currently refcounted in a rq's bucket
795 * @user_defined: the requested clamp value comes from user-space
796 *
797 * The bucket_id is the index of the clamp bucket matching the clamp value
798 * which is pre-computed and stored to avoid expensive integer divisions from
799 * the fast path.
800 *
801 * The active bit is set whenever a task has got an "effective" value assigned,
802 * which can be different from the clamp value "requested" from user-space.
803 * This allows to know a task is refcounted in the rq's bucket corresponding
804 * to the "effective" bucket_id.
805 *
806 * The user_defined bit is set whenever a task has got a task-specific clamp
807 * value requested from userspace, i.e. the system defaults apply to this task
808 * just as a restriction. This allows to relax default clamps when a less
809 * restrictive task-specific value has been requested, thus allowing to
810 * implement a "nice" semantic. For example, a task running with a 20%
811 * default boost can still drop its own boosting to 0%.
812 */
813 struct uclamp_se {
814 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
815 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
816 unsigned int active : 1;
817 unsigned int user_defined : 1;
818 };
819 #endif /* CONFIG_UCLAMP_TASK */
820
821 union rcu_special {
822 struct {
823 u8 blocked;
824 u8 need_qs;
825 u8 exp_hint; /* Hint for performance. */
826 u8 need_mb; /* Readers need smp_mb(). */
827 } b; /* Bits. */
828 u32 s; /* Set of bits. */
829 };
830
831 enum perf_event_task_context {
832 perf_invalid_context = -1,
833 perf_hw_context = 0,
834 perf_sw_context,
835 perf_nr_task_contexts,
836 };
837
838 struct wake_q_node {
839 struct wake_q_node *next;
840 };
841
842 struct kmap_ctrl {
843 #ifdef CONFIG_KMAP_LOCAL
844 int idx;
845 pte_t pteval[KM_MAX_IDX];
846 #endif
847 };
848
849 struct task_struct {
850 #ifdef CONFIG_THREAD_INFO_IN_TASK
851 /*
852 * For reasons of header soup (see current_thread_info()), this
853 * must be the first element of task_struct.
854 */
855 struct thread_info thread_info;
856 #endif
857 unsigned int __state;
858
859 #ifdef CONFIG_PREEMPT_RT
860 /* saved state for "spinlock sleepers" */
861 unsigned int saved_state;
862 #endif
863
864 /*
865 * This begins the randomizable portion of task_struct. Only
866 * scheduling-critical items should be added above here.
867 */
868 randomized_struct_fields_start
869
870 void *stack;
871 refcount_t usage;
872 /* Per task flags (PF_*), defined further below: */
873 unsigned int flags;
874 unsigned int ptrace;
875
876 #ifdef CONFIG_SMP
877 int on_cpu;
878 struct __call_single_node wake_entry;
879 unsigned int wakee_flips;
880 unsigned long wakee_flip_decay_ts;
881 struct task_struct *last_wakee;
882
883 /*
884 * recent_used_cpu is initially set as the last CPU used by a task
885 * that wakes affine another task. Waker/wakee relationships can
886 * push tasks around a CPU where each wakeup moves to the next one.
887 * Tracking a recently used CPU allows a quick search for a recently
888 * used CPU that may be idle.
889 */
890 int recent_used_cpu;
891 int wake_cpu;
892 #endif
893 int on_rq;
894
895 int prio;
896 int static_prio;
897 int normal_prio;
898 unsigned int rt_priority;
899 #ifdef CONFIG_SCHED_LATENCY_NICE
900 int latency_prio;
901 #endif
902
903 struct sched_entity se;
904 struct sched_rt_entity rt;
905 #ifdef CONFIG_SCHED_WALT
906 struct ravg ravg;
907 /*
908 * 'init_load_pct' represents the initial task load assigned to children
909 * of this task
910 */
911 u32 init_load_pct;
912 u64 last_sleep_ts;
913 #endif
914 struct sched_dl_entity dl;
915 const struct sched_class *sched_class;
916
917 #ifdef CONFIG_SCHED_CORE
918 struct rb_node core_node;
919 unsigned long core_cookie;
920 unsigned int core_occupation;
921 #endif
922
923 #ifdef CONFIG_SCHED_RTG
924 int rtg_depth;
925 struct related_thread_group *grp;
926 struct list_head grp_list;
927 #endif
928
929 #ifdef CONFIG_CGROUP_SCHED
930 struct task_group *sched_task_group;
931 #endif
932
933 #ifdef CONFIG_UCLAMP_TASK
934 /*
935 * Clamp values requested for a scheduling entity.
936 * Must be updated with task_rq_lock() held.
937 */
938 struct uclamp_se uclamp_req[UCLAMP_CNT];
939 /*
940 * Effective clamp values used for a scheduling entity.
941 * Must be updated with task_rq_lock() held.
942 */
943 struct uclamp_se uclamp[UCLAMP_CNT];
944 #endif
945
946 struct sched_statistics stats;
947
948 #ifdef CONFIG_PREEMPT_NOTIFIERS
949 /* List of struct preempt_notifier: */
950 struct hlist_head preempt_notifiers;
951 #endif
952
953 #ifdef CONFIG_BLK_DEV_IO_TRACE
954 unsigned int btrace_seq;
955 #endif
956
957 unsigned int policy;
958 int nr_cpus_allowed;
959 const cpumask_t *cpus_ptr;
960 cpumask_t *user_cpus_ptr;
961 cpumask_t cpus_mask;
962 void *migration_pending;
963 #ifdef CONFIG_SMP
964 unsigned short migration_disabled;
965 #endif
966 unsigned short migration_flags;
967
968 #ifdef CONFIG_PREEMPT_RCU
969 int rcu_read_lock_nesting;
970 union rcu_special rcu_read_unlock_special;
971 struct list_head rcu_node_entry;
972 struct rcu_node *rcu_blocked_node;
973 #endif /* #ifdef CONFIG_PREEMPT_RCU */
974
975 #ifdef CONFIG_TASKS_RCU
976 unsigned long rcu_tasks_nvcsw;
977 u8 rcu_tasks_holdout;
978 u8 rcu_tasks_idx;
979 int rcu_tasks_idle_cpu;
980 struct list_head rcu_tasks_holdout_list;
981 int rcu_tasks_exit_cpu;
982 struct list_head rcu_tasks_exit_list;
983 #endif /* #ifdef CONFIG_TASKS_RCU */
984
985 #ifdef CONFIG_TASKS_TRACE_RCU
986 int trc_reader_nesting;
987 int trc_ipi_to_cpu;
988 union rcu_special trc_reader_special;
989 struct list_head trc_holdout_list;
990 struct list_head trc_blkd_node;
991 int trc_blkd_cpu;
992 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
993
994 struct sched_info sched_info;
995
996 struct list_head tasks;
997 #ifdef CONFIG_SMP
998 struct plist_node pushable_tasks;
999 struct rb_node pushable_dl_tasks;
1000 #endif
1001
1002 struct mm_struct *mm;
1003 struct mm_struct *active_mm;
1004
1005 int exit_state;
1006 int exit_code;
1007 int exit_signal;
1008 /* The signal sent when the parent dies: */
1009 int pdeath_signal;
1010 /* JOBCTL_*, siglock protected: */
1011 unsigned long jobctl;
1012
1013 /* Used for emulating ABI behavior of previous Linux versions: */
1014 unsigned int personality;
1015
1016 /* Scheduler bits, serialized by scheduler locks: */
1017 unsigned sched_reset_on_fork:1;
1018 unsigned sched_contributes_to_load:1;
1019 unsigned sched_migrated:1;
1020 unsigned sched_task_hot:1;
1021
1022 /* Force alignment to the next boundary: */
1023 unsigned :0;
1024
1025 /* Unserialized, strictly 'current' */
1026
1027 /*
1028 * This field must not be in the scheduler word above due to wakelist
1029 * queueing no longer being serialized by p->on_cpu. However:
1030 *
1031 * p->XXX = X; ttwu()
1032 * schedule() if (p->on_rq && ..) // false
1033 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
1034 * deactivate_task() ttwu_queue_wakelist())
1035 * p->on_rq = 0; p->sched_remote_wakeup = Y;
1036 *
1037 * guarantees all stores of 'current' are visible before
1038 * ->sched_remote_wakeup gets used, so it can be in this word.
1039 */
1040 unsigned sched_remote_wakeup:1;
1041
1042 /* Bit to tell LSMs we're in execve(): */
1043 unsigned in_execve:1;
1044 unsigned in_iowait:1;
1045 #ifndef TIF_RESTORE_SIGMASK
1046 unsigned restore_sigmask:1;
1047 #endif
1048 #ifdef CONFIG_MEMCG
1049 unsigned in_user_fault:1;
1050 #endif
1051 #ifdef CONFIG_LRU_GEN
1052 /* whether the LRU algorithm may apply to this access */
1053 unsigned in_lru_fault:1;
1054 #endif
1055 #ifdef CONFIG_COMPAT_BRK
1056 unsigned brk_randomized:1;
1057 #endif
1058 #ifdef CONFIG_CGROUPS
1059 /* disallow userland-initiated cgroup migration */
1060 unsigned no_cgroup_migration:1;
1061 /* task is frozen/stopped (used by the cgroup freezer) */
1062 unsigned frozen:1;
1063 #endif
1064 #ifdef CONFIG_BLK_CGROUP
1065 unsigned use_memdelay:1;
1066 #endif
1067 #ifdef CONFIG_PSI
1068 /* Stalled due to lack of memory */
1069 unsigned in_memstall:1;
1070 #endif
1071 #ifdef CONFIG_PAGE_OWNER
1072 /* Used by page_owner=on to detect recursion in page tracking. */
1073 unsigned in_page_owner:1;
1074 #endif
1075 #ifdef CONFIG_EVENTFD
1076 /* Recursion prevention for eventfd_signal() */
1077 unsigned in_eventfd:1;
1078 #endif
1079 #ifdef CONFIG_IOMMU_SVA
1080 unsigned pasid_activated:1;
1081 #endif
1082 #ifdef CONFIG_CPU_SUP_INTEL
1083 unsigned reported_split_lock:1;
1084 #endif
1085 #ifdef CONFIG_TASK_DELAY_ACCT
1086 /* delay due to memory thrashing */
1087 unsigned in_thrashing:1;
1088 #endif
1089
1090 unsigned long atomic_flags; /* Flags requiring atomic access. */
1091
1092 struct restart_block restart_block;
1093
1094 pid_t pid;
1095 pid_t tgid;
1096
1097 #ifdef CONFIG_STACKPROTECTOR
1098 /* Canary value for the -fstack-protector GCC feature: */
1099 unsigned long stack_canary;
1100 #endif
1101 /*
1102 * Pointers to the (original) parent process, youngest child, younger sibling,
1103 * older sibling, respectively. (p->father can be replaced with
1104 * p->real_parent->pid)
1105 */
1106
1107 /* Real parent process: */
1108 struct task_struct __rcu *real_parent;
1109
1110 /* Recipient of SIGCHLD, wait4() reports: */
1111 struct task_struct __rcu *parent;
1112
1113 /*
1114 * Children/sibling form the list of natural children:
1115 */
1116 struct list_head children;
1117 struct list_head sibling;
1118 struct task_struct *group_leader;
1119
1120 /*
1121 * 'ptraced' is the list of tasks this task is using ptrace() on.
1122 *
1123 * This includes both natural children and PTRACE_ATTACH targets.
1124 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1125 */
1126 struct list_head ptraced;
1127 struct list_head ptrace_entry;
1128
1129 /* PID/PID hash table linkage. */
1130 struct pid *thread_pid;
1131 struct hlist_node pid_links[PIDTYPE_MAX];
1132 struct list_head thread_group;
1133 struct list_head thread_node;
1134
1135 struct completion *vfork_done;
1136
1137 /* CLONE_CHILD_SETTID: */
1138 int __user *set_child_tid;
1139
1140 /* CLONE_CHILD_CLEARTID: */
1141 int __user *clear_child_tid;
1142
1143 /* PF_KTHREAD | PF_IO_WORKER */
1144 void *worker_private;
1145
1146 u64 utime;
1147 u64 stime;
1148 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1149 u64 utimescaled;
1150 u64 stimescaled;
1151 #endif
1152 u64 gtime;
1153 struct prev_cputime prev_cputime;
1154 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1155 struct vtime vtime;
1156 #endif
1157
1158 #ifdef CONFIG_NO_HZ_FULL
1159 atomic_t tick_dep_mask;
1160 #endif
1161 /* Context switch counts: */
1162 unsigned long nvcsw;
1163 unsigned long nivcsw;
1164
1165 /* Monotonic time in nsecs: */
1166 u64 start_time;
1167
1168 /* Boot based time in nsecs: */
1169 u64 start_boottime;
1170
1171 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1172 unsigned long min_flt;
1173 unsigned long maj_flt;
1174
1175 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1176 struct posix_cputimers posix_cputimers;
1177
1178 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1179 struct posix_cputimers_work posix_cputimers_work;
1180 #endif
1181
1182 /* Process credentials: */
1183
1184 /* Tracer's credentials at attach: */
1185 const struct cred __rcu *ptracer_cred;
1186
1187 /* Objective and real subjective task credentials (COW): */
1188 const struct cred __rcu *real_cred;
1189
1190 /* Effective (overridable) subjective task credentials (COW): */
1191 const struct cred __rcu *cred;
1192
1193 #ifdef CONFIG_KEYS
1194 /* Cached requested key. */
1195 struct key *cached_requested_key;
1196 #endif
1197
1198 /*
1199 * executable name, excluding path.
1200 *
1201 * - normally initialized setup_new_exec()
1202 * - access it with [gs]et_task_comm()
1203 * - lock it with task_lock()
1204 */
1205 char comm[TASK_COMM_LEN];
1206
1207 struct nameidata *nameidata;
1208
1209 #ifdef CONFIG_SYSVIPC
1210 struct sysv_sem sysvsem;
1211 struct sysv_shm sysvshm;
1212 #endif
1213 #ifdef CONFIG_DETECT_HUNG_TASK
1214 unsigned long last_switch_count;
1215 unsigned long last_switch_time;
1216 #endif
1217 /* Filesystem information: */
1218 struct fs_struct *fs;
1219
1220 /* Open file information: */
1221 struct files_struct *files;
1222
1223 #ifdef CONFIG_IO_URING
1224 struct io_uring_task *io_uring;
1225 #endif
1226
1227 /* Namespaces: */
1228 struct nsproxy *nsproxy;
1229
1230 /* Signal handlers: */
1231 struct signal_struct *signal;
1232 struct sighand_struct __rcu *sighand;
1233 sigset_t blocked;
1234 sigset_t real_blocked;
1235 /* Restored if set_restore_sigmask() was used: */
1236 sigset_t saved_sigmask;
1237 struct sigpending pending;
1238 unsigned long sas_ss_sp;
1239 size_t sas_ss_size;
1240 unsigned int sas_ss_flags;
1241
1242 struct callback_head *task_works;
1243
1244 #ifdef CONFIG_AUDIT
1245 #ifdef CONFIG_AUDITSYSCALL
1246 struct audit_context *audit_context;
1247 #endif
1248 kuid_t loginuid;
1249 unsigned int sessionid;
1250 #endif
1251 struct seccomp seccomp;
1252 struct syscall_user_dispatch syscall_dispatch;
1253
1254 /* Thread group tracking: */
1255 u64 parent_exec_id;
1256 u64 self_exec_id;
1257
1258 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1259 spinlock_t alloc_lock;
1260
1261 /* Protection of the PI data structures: */
1262 raw_spinlock_t pi_lock;
1263
1264 struct wake_q_node wake_q;
1265
1266 #ifdef CONFIG_RT_MUTEXES
1267 /* PI waiters blocked on a rt_mutex held by this task: */
1268 struct rb_root_cached pi_waiters;
1269 /* Updated under owner's pi_lock and rq lock */
1270 struct task_struct *pi_top_task;
1271 /* Deadlock detection and priority inheritance handling: */
1272 struct rt_mutex_waiter *pi_blocked_on;
1273 #endif
1274
1275 #ifdef CONFIG_DEBUG_MUTEXES
1276 /* Mutex deadlock detection: */
1277 struct mutex_waiter *blocked_on;
1278 #endif
1279
1280 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1281 int non_block_count;
1282 #endif
1283
1284 #ifdef CONFIG_TRACE_IRQFLAGS
1285 struct irqtrace_events irqtrace;
1286 unsigned int hardirq_threaded;
1287 u64 hardirq_chain_key;
1288 int softirqs_enabled;
1289 int softirq_context;
1290 int irq_config;
1291 #endif
1292 #ifdef CONFIG_PREEMPT_RT
1293 int softirq_disable_cnt;
1294 #endif
1295
1296 #ifdef CONFIG_LOCKDEP
1297 # define MAX_LOCK_DEPTH 48UL
1298 u64 curr_chain_key;
1299 int lockdep_depth;
1300 unsigned int lockdep_recursion;
1301 struct held_lock held_locks[MAX_LOCK_DEPTH];
1302 #endif
1303
1304 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1305 unsigned int in_ubsan;
1306 #endif
1307
1308 /* Journalling filesystem info: */
1309 void *journal_info;
1310
1311 /* Stacked block device info: */
1312 struct bio_list *bio_list;
1313
1314 /* Stack plugging: */
1315 struct blk_plug *plug;
1316
1317 /* VM state: */
1318 struct reclaim_state *reclaim_state;
1319
1320 struct io_context *io_context;
1321
1322 #ifdef CONFIG_COMPACTION
1323 struct capture_control *capture_control;
1324 #endif
1325 /* Ptrace state: */
1326 unsigned long ptrace_message;
1327 kernel_siginfo_t *last_siginfo;
1328
1329 struct task_io_accounting ioac;
1330 #ifdef CONFIG_PSI
1331 /* Pressure stall state */
1332 unsigned int psi_flags;
1333 #endif
1334 #ifdef CONFIG_TASK_XACCT
1335 /* Accumulated RSS usage: */
1336 u64 acct_rss_mem1;
1337 /* Accumulated virtual memory usage: */
1338 u64 acct_vm_mem1;
1339 /* stime + utime since last update: */
1340 u64 acct_timexpd;
1341 #endif
1342 #ifdef CONFIG_CPUSETS
1343 /* Protected by ->alloc_lock: */
1344 nodemask_t mems_allowed;
1345 /* Sequence number to catch updates: */
1346 seqcount_spinlock_t mems_allowed_seq;
1347 int cpuset_mem_spread_rotor;
1348 int cpuset_slab_spread_rotor;
1349 #endif
1350 #ifdef CONFIG_CGROUPS
1351 /* Control Group info protected by css_set_lock: */
1352 struct css_set __rcu *cgroups;
1353 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1354 struct list_head cg_list;
1355 #endif
1356 #ifdef CONFIG_X86_CPU_RESCTRL
1357 u32 closid;
1358 u32 rmid;
1359 #endif
1360 #ifdef CONFIG_FUTEX
1361 struct robust_list_head __user *robust_list;
1362 #ifdef CONFIG_COMPAT
1363 struct compat_robust_list_head __user *compat_robust_list;
1364 #endif
1365 struct list_head pi_state_list;
1366 struct futex_pi_state *pi_state_cache;
1367 struct mutex futex_exit_mutex;
1368 unsigned int futex_state;
1369 #endif
1370 #ifdef CONFIG_PERF_EVENTS
1371 struct perf_event_context *perf_event_ctxp;
1372 struct mutex perf_event_mutex;
1373 struct list_head perf_event_list;
1374 #endif
1375 #ifdef CONFIG_DEBUG_PREEMPT
1376 unsigned long preempt_disable_ip;
1377 #endif
1378 #ifdef CONFIG_NUMA
1379 /* Protected by alloc_lock: */
1380 struct mempolicy *mempolicy;
1381 short il_prev;
1382 short pref_node_fork;
1383 #endif
1384 #ifdef CONFIG_NUMA_BALANCING
1385 int numa_scan_seq;
1386 unsigned int numa_scan_period;
1387 unsigned int numa_scan_period_max;
1388 int numa_preferred_nid;
1389 unsigned long numa_migrate_retry;
1390 /* Migration stamp: */
1391 u64 node_stamp;
1392 u64 last_task_numa_placement;
1393 u64 last_sum_exec_runtime;
1394 struct callback_head numa_work;
1395
1396 /*
1397 * This pointer is only modified for current in syscall and
1398 * pagefault context (and for tasks being destroyed), so it can be read
1399 * from any of the following contexts:
1400 * - RCU read-side critical section
1401 * - current->numa_group from everywhere
1402 * - task's runqueue locked, task not running
1403 */
1404 struct numa_group __rcu *numa_group;
1405
1406 /*
1407 * numa_faults is an array split into four regions:
1408 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1409 * in this precise order.
1410 *
1411 * faults_memory: Exponential decaying average of faults on a per-node
1412 * basis. Scheduling placement decisions are made based on these
1413 * counts. The values remain static for the duration of a PTE scan.
1414 * faults_cpu: Track the nodes the process was running on when a NUMA
1415 * hinting fault was incurred.
1416 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1417 * during the current scan window. When the scan completes, the counts
1418 * in faults_memory and faults_cpu decay and these values are copied.
1419 */
1420 unsigned long *numa_faults;
1421 unsigned long total_numa_faults;
1422
1423 /*
1424 * numa_faults_locality tracks if faults recorded during the last
1425 * scan window were remote/local or failed to migrate. The task scan
1426 * period is adapted based on the locality of the faults with different
1427 * weights depending on whether they were shared or private faults
1428 */
1429 unsigned long numa_faults_locality[3];
1430
1431 unsigned long numa_pages_migrated;
1432 #endif /* CONFIG_NUMA_BALANCING */
1433
1434 #ifdef CONFIG_RSEQ
1435 struct rseq __user *rseq;
1436 u32 rseq_len;
1437 u32 rseq_sig;
1438 /*
1439 * RmW on rseq_event_mask must be performed atomically
1440 * with respect to preemption.
1441 */
1442 unsigned long rseq_event_mask;
1443 #endif
1444
1445 #ifdef CONFIG_SCHED_MM_CID
1446 int mm_cid; /* Current cid in mm */
1447 int last_mm_cid; /* Most recent cid in mm */
1448 int migrate_from_cpu;
1449 int mm_cid_active; /* Whether cid bitmap is active */
1450 struct callback_head cid_work;
1451 #endif
1452
1453 struct tlbflush_unmap_batch tlb_ubc;
1454
1455 /* Cache last used pipe for splice(): */
1456 struct pipe_inode_info *splice_pipe;
1457
1458 struct page_frag task_frag;
1459
1460 #ifdef CONFIG_TASK_DELAY_ACCT
1461 struct task_delay_info *delays;
1462 #endif
1463
1464 #ifdef CONFIG_RECLAIM_ACCT
1465 struct reclaim_acct *reclaim_acct;
1466 #endif
1467
1468 #ifdef CONFIG_FAULT_INJECTION
1469 int make_it_fail;
1470 unsigned int fail_nth;
1471 #endif
1472 /*
1473 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1474 * balance_dirty_pages() for a dirty throttling pause:
1475 */
1476 int nr_dirtied;
1477 int nr_dirtied_pause;
1478 /* Start of a write-and-pause period: */
1479 unsigned long dirty_paused_when;
1480
1481 #ifdef CONFIG_LATENCYTOP
1482 int latency_record_count;
1483 struct latency_record latency_record[LT_SAVECOUNT];
1484 #endif
1485 /*
1486 * Time slack values; these are used to round up poll() and
1487 * select() etc timeout values. These are in nanoseconds.
1488 */
1489 u64 timer_slack_ns;
1490 u64 default_timer_slack_ns;
1491
1492 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1493 unsigned int kasan_depth;
1494 #endif
1495
1496 #ifdef CONFIG_KCSAN
1497 struct kcsan_ctx kcsan_ctx;
1498 #ifdef CONFIG_TRACE_IRQFLAGS
1499 struct irqtrace_events kcsan_save_irqtrace;
1500 #endif
1501 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1502 int kcsan_stack_depth;
1503 #endif
1504 #endif
1505
1506 #ifdef CONFIG_KMSAN
1507 struct kmsan_ctx kmsan_ctx;
1508 #endif
1509
1510 #if IS_ENABLED(CONFIG_KUNIT)
1511 struct kunit *kunit_test;
1512 #endif
1513
1514 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1515 /* Index of current stored address in ret_stack: */
1516 int curr_ret_stack;
1517 int curr_ret_depth;
1518
1519 /* Stack of return addresses for return function tracing: */
1520 struct ftrace_ret_stack *ret_stack;
1521
1522 /* Timestamp for last schedule: */
1523 unsigned long long ftrace_timestamp;
1524
1525 /*
1526 * Number of functions that haven't been traced
1527 * because of depth overrun:
1528 */
1529 atomic_t trace_overrun;
1530
1531 /* Pause tracing: */
1532 atomic_t tracing_graph_pause;
1533 #endif
1534
1535 #ifdef CONFIG_TRACING
1536 /* Bitmask and counter of trace recursion: */
1537 unsigned long trace_recursion;
1538 #endif /* CONFIG_TRACING */
1539
1540 #ifdef CONFIG_KCOV
1541 /* See kernel/kcov.c for more details. */
1542
1543 /* Coverage collection mode enabled for this task (0 if disabled): */
1544 unsigned int kcov_mode;
1545
1546 /* Size of the kcov_area: */
1547 unsigned int kcov_size;
1548
1549 /* Buffer for coverage collection: */
1550 void *kcov_area;
1551
1552 /* KCOV descriptor wired with this task or NULL: */
1553 struct kcov *kcov;
1554
1555 /* KCOV common handle for remote coverage collection: */
1556 u64 kcov_handle;
1557
1558 /* KCOV sequence number: */
1559 int kcov_sequence;
1560
1561 /* Collect coverage from softirq context: */
1562 unsigned int kcov_softirq;
1563 #endif
1564
1565 #ifdef CONFIG_MEMCG
1566 struct mem_cgroup *memcg_in_oom;
1567 gfp_t memcg_oom_gfp_mask;
1568 int memcg_oom_order;
1569
1570 /* Number of pages to reclaim on returning to userland: */
1571 unsigned int memcg_nr_pages_over_high;
1572
1573 /* Used by memcontrol for targeted memcg charge: */
1574 struct mem_cgroup *active_memcg;
1575 #endif
1576
1577 #ifdef CONFIG_BLK_CGROUP
1578 struct gendisk *throttle_disk;
1579 #endif
1580
1581 #ifdef CONFIG_UPROBES
1582 struct uprobe_task *utask;
1583 #endif
1584 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1585 unsigned int sequential_io;
1586 unsigned int sequential_io_avg;
1587 #endif
1588 struct kmap_ctrl kmap_ctrl;
1589 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1590 unsigned long task_state_change;
1591 # ifdef CONFIG_PREEMPT_RT
1592 unsigned long saved_state_change;
1593 # endif
1594 #endif
1595 struct rcu_head rcu;
1596 refcount_t rcu_users;
1597 int pagefault_disabled;
1598 #ifdef CONFIG_MMU
1599 struct task_struct *oom_reaper_list;
1600 struct timer_list oom_reaper_timer;
1601 #endif
1602 #ifdef CONFIG_VMAP_STACK
1603 struct vm_struct *stack_vm_area;
1604 #endif
1605 #ifdef CONFIG_THREAD_INFO_IN_TASK
1606 /* A live task holds one reference: */
1607 refcount_t stack_refcount;
1608 #endif
1609 #ifdef CONFIG_LIVEPATCH
1610 int patch_state;
1611 #endif
1612 #ifdef CONFIG_SECURITY
1613 /* Used by LSM modules for access restriction: */
1614 void *security;
1615 #endif
1616 #ifdef CONFIG_BPF_SYSCALL
1617 /* Used by BPF task local storage */
1618 struct bpf_local_storage __rcu *bpf_storage;
1619 /* Used for BPF run context */
1620 struct bpf_run_ctx *bpf_ctx;
1621 #endif
1622
1623 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1624 unsigned long lowest_stack;
1625 unsigned long prev_lowest_stack;
1626 #endif
1627
1628 #ifdef CONFIG_X86_MCE
1629 void __user *mce_vaddr;
1630 __u64 mce_kflags;
1631 u64 mce_addr;
1632 __u64 mce_ripv : 1,
1633 mce_whole_page : 1,
1634 __mce_reserved : 62;
1635 struct callback_head mce_kill_me;
1636 int mce_count;
1637 #endif
1638
1639 #ifdef CONFIG_KRETPROBES
1640 struct llist_head kretprobe_instances;
1641 #endif
1642 #ifdef CONFIG_RETHOOK
1643 struct llist_head rethooks;
1644 #endif
1645
1646 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1647 /*
1648 * If L1D flush is supported on mm context switch
1649 * then we use this callback head to queue kill work
1650 * to kill tasks that are not running on SMT disabled
1651 * cores
1652 */
1653 struct callback_head l1d_flush_kill;
1654 #endif
1655
1656 #ifdef CONFIG_RV
1657 /*
1658 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1659 * If we find justification for more monitors, we can think
1660 * about adding more or developing a dynamic method. So far,
1661 * none of these are justified.
1662 */
1663 union rv_task_monitor rv[RV_PER_TASK_MONITORS];
1664 #endif
1665
1666 #ifdef CONFIG_USER_EVENTS
1667 struct user_event_mm *user_event_mm;
1668 #endif
1669
1670 #ifdef CONFIG_ACCESS_TOKENID
1671 u64 token;
1672 u64 ftoken;
1673 #endif
1674
1675 /*
1676 * New fields for task_struct should be added above here, so that
1677 * they are included in the randomized portion of task_struct.
1678 */
1679 randomized_struct_fields_end
1680
1681 /* CPU-specific state of this task: */
1682 struct thread_struct thread;
1683
1684 /*
1685 * WARNING: on x86, 'thread_struct' contains a variable-sized
1686 * structure. It *MUST* be at the end of 'task_struct'.
1687 *
1688 * Do not put anything below here!
1689 */
1690 };
1691
task_pid(struct task_struct * task)1692 static inline struct pid *task_pid(struct task_struct *task)
1693 {
1694 return task->thread_pid;
1695 }
1696
1697 /*
1698 * the helpers to get the task's different pids as they are seen
1699 * from various namespaces
1700 *
1701 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1702 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1703 * current.
1704 * task_xid_nr_ns() : id seen from the ns specified;
1705 *
1706 * see also pid_nr() etc in include/linux/pid.h
1707 */
1708 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1709
task_pid_nr(struct task_struct * tsk)1710 static inline pid_t task_pid_nr(struct task_struct *tsk)
1711 {
1712 return tsk->pid;
1713 }
1714
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1715 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1716 {
1717 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1718 }
1719
task_pid_vnr(struct task_struct * tsk)1720 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1721 {
1722 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1723 }
1724
1725
task_tgid_nr(struct task_struct * tsk)1726 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1727 {
1728 return tsk->tgid;
1729 }
1730
1731 /**
1732 * pid_alive - check that a task structure is not stale
1733 * @p: Task structure to be checked.
1734 *
1735 * Test if a process is not yet dead (at most zombie state)
1736 * If pid_alive fails, then pointers within the task structure
1737 * can be stale and must not be dereferenced.
1738 *
1739 * Return: 1 if the process is alive. 0 otherwise.
1740 */
pid_alive(const struct task_struct * p)1741 static inline int pid_alive(const struct task_struct *p)
1742 {
1743 return p->thread_pid != NULL;
1744 }
1745
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1746 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1747 {
1748 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1749 }
1750
task_pgrp_vnr(struct task_struct * tsk)1751 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1752 {
1753 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1754 }
1755
1756
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1757 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1758 {
1759 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1760 }
1761
task_session_vnr(struct task_struct * tsk)1762 static inline pid_t task_session_vnr(struct task_struct *tsk)
1763 {
1764 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1765 }
1766
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1767 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1768 {
1769 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1770 }
1771
task_tgid_vnr(struct task_struct * tsk)1772 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1773 {
1774 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1775 }
1776
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1777 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1778 {
1779 pid_t pid = 0;
1780
1781 rcu_read_lock();
1782 if (pid_alive(tsk))
1783 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1784 rcu_read_unlock();
1785
1786 return pid;
1787 }
1788
task_ppid_nr(const struct task_struct * tsk)1789 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1790 {
1791 return task_ppid_nr_ns(tsk, &init_pid_ns);
1792 }
1793
1794 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)1795 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1796 {
1797 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1798 }
1799
1800 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1801 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1802
__task_state_index(unsigned int tsk_state,unsigned int tsk_exit_state)1803 static inline unsigned int __task_state_index(unsigned int tsk_state,
1804 unsigned int tsk_exit_state)
1805 {
1806 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1807
1808 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1809
1810 if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1811 state = TASK_REPORT_IDLE;
1812
1813 /*
1814 * We're lying here, but rather than expose a completely new task state
1815 * to userspace, we can make this appear as if the task has gone through
1816 * a regular rt_mutex_lock() call.
1817 * Report frozen tasks as uninterruptible.
1818 */
1819 if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1820 state = TASK_UNINTERRUPTIBLE;
1821
1822 return fls(state);
1823 }
1824
task_state_index(struct task_struct * tsk)1825 static inline unsigned int task_state_index(struct task_struct *tsk)
1826 {
1827 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1828 }
1829
task_index_to_char(unsigned int state)1830 static inline char task_index_to_char(unsigned int state)
1831 {
1832 static const char state_char[] = "RSDTtXZPI";
1833
1834 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1835
1836 return state_char[state];
1837 }
1838
task_state_to_char(struct task_struct * tsk)1839 static inline char task_state_to_char(struct task_struct *tsk)
1840 {
1841 return task_index_to_char(task_state_index(tsk));
1842 }
1843
1844 /**
1845 * is_global_init - check if a task structure is init. Since init
1846 * is free to have sub-threads we need to check tgid.
1847 * @tsk: Task structure to be checked.
1848 *
1849 * Check if a task structure is the first user space task the kernel created.
1850 *
1851 * Return: 1 if the task structure is init. 0 otherwise.
1852 */
is_global_init(struct task_struct * tsk)1853 static inline int is_global_init(struct task_struct *tsk)
1854 {
1855 return task_tgid_nr(tsk) == 1;
1856 }
1857
1858 extern struct pid *cad_pid;
1859
1860 /*
1861 * Per process flags
1862 */
1863 #define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1864 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1865 #define PF_EXITING 0x00000004 /* Getting shut down */
1866 #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
1867 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1868 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1869 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1870 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1871 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1872 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1873 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1874 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1875 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1876 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1877 #define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */
1878 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1879 #define PF_KCOMPACTD 0x00010000 /* I am kcompactd */
1880 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1881 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1882 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1883 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1884 * I am cleaning dirty pages from some other bdi. */
1885 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1886 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1887 #define PF__HOLE__00800000 0x00800000
1888 #define PF_FROZEN PF__HOLE__00800000 /* Frozen for system suspend */
1889 #define PF__HOLE__01000000 0x01000000
1890 #define PF__HOLE__02000000 0x02000000
1891 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1892 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1893 #define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
1894 #define PF__HOLE__20000000 0x20000000
1895 #define PF__HOLE__40000000 0x40000000
1896 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1897
1898 /*
1899 * Only the _current_ task can read/write to tsk->flags, but other
1900 * tasks can access tsk->flags in readonly mode for example
1901 * with tsk_used_math (like during threaded core dumping).
1902 * There is however an exception to this rule during ptrace
1903 * or during fork: the ptracer task is allowed to write to the
1904 * child->flags of its traced child (same goes for fork, the parent
1905 * can write to the child->flags), because we're guaranteed the
1906 * child is not running and in turn not changing child->flags
1907 * at the same time the parent does it.
1908 */
1909 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1910 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1911 #define clear_used_math() clear_stopped_child_used_math(current)
1912 #define set_used_math() set_stopped_child_used_math(current)
1913
1914 #define conditional_stopped_child_used_math(condition, child) \
1915 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1916
1917 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1918
1919 #define copy_to_stopped_child_used_math(child) \
1920 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1921
1922 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1923 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1924 #define used_math() tsk_used_math(current)
1925
is_percpu_thread(void)1926 static __always_inline bool is_percpu_thread(void)
1927 {
1928 #ifdef CONFIG_SMP
1929 return (current->flags & PF_NO_SETAFFINITY) &&
1930 (current->nr_cpus_allowed == 1);
1931 #else
1932 return true;
1933 #endif
1934 }
1935
1936 /* Per-process atomic flags. */
1937 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1938 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1939 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1940 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1941 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1942 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1943 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1944 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1945
1946 #define TASK_PFA_TEST(name, func) \
1947 static inline bool task_##func(struct task_struct *p) \
1948 { return test_bit(PFA_##name, &p->atomic_flags); }
1949
1950 #define TASK_PFA_SET(name, func) \
1951 static inline void task_set_##func(struct task_struct *p) \
1952 { set_bit(PFA_##name, &p->atomic_flags); }
1953
1954 #define TASK_PFA_CLEAR(name, func) \
1955 static inline void task_clear_##func(struct task_struct *p) \
1956 { clear_bit(PFA_##name, &p->atomic_flags); }
1957
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1958 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1959 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1960
1961 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1962 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1963 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1964
1965 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1966 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1967 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1968
1969 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1970 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1971 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1972
1973 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1974 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1975 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1976
1977 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1978 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1979
1980 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1981 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1982 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1983
1984 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1985 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1986
1987 static inline void
1988 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1989 {
1990 current->flags &= ~flags;
1991 current->flags |= orig_flags & flags;
1992 }
1993
1994 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1995 extern int task_can_attach(struct task_struct *p);
1996 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1997 extern void dl_bw_free(int cpu, u64 dl_bw);
1998 #ifdef CONFIG_SMP
1999
2000 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
2001 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
2002
2003 /**
2004 * set_cpus_allowed_ptr - set CPU affinity mask of a task
2005 * @p: the task
2006 * @new_mask: CPU affinity mask
2007 *
2008 * Return: zero if successful, or a negative error code
2009 */
2010 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
2011 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
2012 extern void release_user_cpus_ptr(struct task_struct *p);
2013 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
2014 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
2015 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
2016 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2017 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2018 {
2019 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)2020 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2021 {
2022 if (!cpumask_test_cpu(0, new_mask))
2023 return -EINVAL;
2024 return 0;
2025 }
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2026 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
2027 {
2028 if (src->user_cpus_ptr)
2029 return -EINVAL;
2030 return 0;
2031 }
release_user_cpus_ptr(struct task_struct * p)2032 static inline void release_user_cpus_ptr(struct task_struct *p)
2033 {
2034 WARN_ON(p->user_cpus_ptr);
2035 }
2036
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)2037 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
2038 {
2039 return 0;
2040 }
2041 #endif
2042
2043 extern int yield_to(struct task_struct *p, bool preempt);
2044 extern void set_user_nice(struct task_struct *p, long nice);
2045 extern int task_prio(const struct task_struct *p);
2046
2047 /**
2048 * task_nice - return the nice value of a given task.
2049 * @p: the task in question.
2050 *
2051 * Return: The nice value [ -20 ... 0 ... 19 ].
2052 */
task_nice(const struct task_struct * p)2053 static inline int task_nice(const struct task_struct *p)
2054 {
2055 return PRIO_TO_NICE((p)->static_prio);
2056 }
2057
2058 extern int can_nice(const struct task_struct *p, const int nice);
2059 extern int task_curr(const struct task_struct *p);
2060 extern int idle_cpu(int cpu);
2061 extern int available_idle_cpu(int cpu);
2062 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
2063 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
2064 extern void sched_set_fifo(struct task_struct *p);
2065 extern void sched_set_fifo_low(struct task_struct *p);
2066 extern void sched_set_normal(struct task_struct *p, int nice);
2067 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
2068 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
2069 extern struct task_struct *idle_task(int cpu);
2070
2071 /**
2072 * is_idle_task - is the specified task an idle task?
2073 * @p: the task in question.
2074 *
2075 * Return: 1 if @p is an idle task. 0 otherwise.
2076 */
is_idle_task(const struct task_struct * p)2077 static __always_inline bool is_idle_task(const struct task_struct *p)
2078 {
2079 return !!(p->flags & PF_IDLE);
2080 }
2081
2082 extern struct task_struct *curr_task(int cpu);
2083 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
2084
2085 void yield(void);
2086
2087 union thread_union {
2088 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
2089 struct task_struct task;
2090 #endif
2091 #ifndef CONFIG_THREAD_INFO_IN_TASK
2092 struct thread_info thread_info;
2093 #endif
2094 unsigned long stack[THREAD_SIZE/sizeof(long)];
2095 };
2096
2097 #ifndef CONFIG_THREAD_INFO_IN_TASK
2098 extern struct thread_info init_thread_info;
2099 #endif
2100
2101 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
2102
2103 #ifdef CONFIG_THREAD_INFO_IN_TASK
2104 # define task_thread_info(task) (&(task)->thread_info)
2105 #elif !defined(__HAVE_THREAD_FUNCTIONS)
2106 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
2107 #endif
2108
2109 /*
2110 * find a task by one of its numerical ids
2111 *
2112 * find_task_by_pid_ns():
2113 * finds a task by its pid in the specified namespace
2114 * find_task_by_vpid():
2115 * finds a task by its virtual pid
2116 *
2117 * see also find_vpid() etc in include/linux/pid.h
2118 */
2119
2120 extern struct task_struct *find_task_by_vpid(pid_t nr);
2121 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
2122
2123 /*
2124 * find a task by its virtual pid and get the task struct
2125 */
2126 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
2127
2128 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2129 extern int wake_up_process(struct task_struct *tsk);
2130 extern void wake_up_new_task(struct task_struct *tsk);
2131
2132 #ifdef CONFIG_SMP
2133 extern void kick_process(struct task_struct *tsk);
2134 #else
kick_process(struct task_struct * tsk)2135 static inline void kick_process(struct task_struct *tsk) { }
2136 #endif
2137
2138 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2139
set_task_comm(struct task_struct * tsk,const char * from)2140 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2141 {
2142 __set_task_comm(tsk, from, false);
2143 }
2144
2145 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
2146 #define get_task_comm(buf, tsk) ({ \
2147 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
2148 __get_task_comm(buf, sizeof(buf), tsk); \
2149 })
2150
2151 #ifdef CONFIG_SMP
scheduler_ipi(void)2152 static __always_inline void scheduler_ipi(void)
2153 {
2154 /*
2155 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2156 * TIF_NEED_RESCHED remotely (for the first time) will also send
2157 * this IPI.
2158 */
2159 preempt_fold_need_resched();
2160 }
2161 #else
scheduler_ipi(void)2162 static inline void scheduler_ipi(void) { }
2163 #endif
2164
2165 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2166
2167 /*
2168 * Set thread flags in other task's structures.
2169 * See asm/thread_info.h for TIF_xxxx flags available:
2170 */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2171 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2172 {
2173 set_ti_thread_flag(task_thread_info(tsk), flag);
2174 }
2175
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2176 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2177 {
2178 clear_ti_thread_flag(task_thread_info(tsk), flag);
2179 }
2180
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)2181 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2182 bool value)
2183 {
2184 update_ti_thread_flag(task_thread_info(tsk), flag, value);
2185 }
2186
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2187 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2188 {
2189 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2190 }
2191
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2192 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2193 {
2194 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2195 }
2196
test_tsk_thread_flag(struct task_struct * tsk,int flag)2197 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2198 {
2199 return test_ti_thread_flag(task_thread_info(tsk), flag);
2200 }
2201
set_tsk_need_resched(struct task_struct * tsk)2202 static inline void set_tsk_need_resched(struct task_struct *tsk)
2203 {
2204 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2205 }
2206
clear_tsk_need_resched(struct task_struct * tsk)2207 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2208 {
2209 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2210 }
2211
test_tsk_need_resched(struct task_struct * tsk)2212 static inline int test_tsk_need_resched(struct task_struct *tsk)
2213 {
2214 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2215 }
2216
2217 /*
2218 * cond_resched() and cond_resched_lock(): latency reduction via
2219 * explicit rescheduling in places that are safe. The return
2220 * value indicates whether a reschedule was done in fact.
2221 * cond_resched_lock() will drop the spinlock before scheduling,
2222 */
2223 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2224 extern int __cond_resched(void);
2225
2226 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2227
2228 void sched_dynamic_klp_enable(void);
2229 void sched_dynamic_klp_disable(void);
2230
2231 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2232
_cond_resched(void)2233 static __always_inline int _cond_resched(void)
2234 {
2235 return static_call_mod(cond_resched)();
2236 }
2237
2238 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2239
2240 extern int dynamic_cond_resched(void);
2241
_cond_resched(void)2242 static __always_inline int _cond_resched(void)
2243 {
2244 return dynamic_cond_resched();
2245 }
2246
2247 #else /* !CONFIG_PREEMPTION */
2248
_cond_resched(void)2249 static inline int _cond_resched(void)
2250 {
2251 klp_sched_try_switch();
2252 return __cond_resched();
2253 }
2254
2255 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2256
2257 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2258
_cond_resched(void)2259 static inline int _cond_resched(void)
2260 {
2261 klp_sched_try_switch();
2262 return 0;
2263 }
2264
2265 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2266
2267 #define cond_resched() ({ \
2268 __might_resched(__FILE__, __LINE__, 0); \
2269 _cond_resched(); \
2270 })
2271
2272 extern int __cond_resched_lock(spinlock_t *lock);
2273 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2274 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2275
2276 #define MIGHT_RESCHED_RCU_SHIFT 8
2277 #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2278
2279 #ifndef CONFIG_PREEMPT_RT
2280 /*
2281 * Non RT kernels have an elevated preempt count due to the held lock,
2282 * but are not allowed to be inside a RCU read side critical section
2283 */
2284 # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2285 #else
2286 /*
2287 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2288 * cond_resched*lock() has to take that into account because it checks for
2289 * preempt_count() and rcu_preempt_depth().
2290 */
2291 # define PREEMPT_LOCK_RESCHED_OFFSETS \
2292 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2293 #endif
2294
2295 #define cond_resched_lock(lock) ({ \
2296 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2297 __cond_resched_lock(lock); \
2298 })
2299
2300 #define cond_resched_rwlock_read(lock) ({ \
2301 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2302 __cond_resched_rwlock_read(lock); \
2303 })
2304
2305 #define cond_resched_rwlock_write(lock) ({ \
2306 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2307 __cond_resched_rwlock_write(lock); \
2308 })
2309
cond_resched_rcu(void)2310 static inline void cond_resched_rcu(void)
2311 {
2312 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2313 rcu_read_unlock();
2314 cond_resched();
2315 rcu_read_lock();
2316 #endif
2317 }
2318
2319 #ifdef CONFIG_PREEMPT_DYNAMIC
2320
2321 extern bool preempt_model_none(void);
2322 extern bool preempt_model_voluntary(void);
2323 extern bool preempt_model_full(void);
2324
2325 #else
2326
preempt_model_none(void)2327 static inline bool preempt_model_none(void)
2328 {
2329 return IS_ENABLED(CONFIG_PREEMPT_NONE);
2330 }
preempt_model_voluntary(void)2331 static inline bool preempt_model_voluntary(void)
2332 {
2333 return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2334 }
preempt_model_full(void)2335 static inline bool preempt_model_full(void)
2336 {
2337 return IS_ENABLED(CONFIG_PREEMPT);
2338 }
2339
2340 #endif
2341
preempt_model_rt(void)2342 static inline bool preempt_model_rt(void)
2343 {
2344 return IS_ENABLED(CONFIG_PREEMPT_RT);
2345 }
2346
2347 /*
2348 * Does the preemption model allow non-cooperative preemption?
2349 *
2350 * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2351 * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2352 * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2353 * PREEMPT_NONE model.
2354 */
preempt_model_preemptible(void)2355 static inline bool preempt_model_preemptible(void)
2356 {
2357 return preempt_model_full() || preempt_model_rt();
2358 }
2359
2360 /*
2361 * Does a critical section need to be broken due to another
2362 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2363 * but a general need for low latency)
2364 */
spin_needbreak(spinlock_t * lock)2365 static inline int spin_needbreak(spinlock_t *lock)
2366 {
2367 #ifdef CONFIG_PREEMPTION
2368 return spin_is_contended(lock);
2369 #else
2370 return 0;
2371 #endif
2372 }
2373
2374 /*
2375 * Check if a rwlock is contended.
2376 * Returns non-zero if there is another task waiting on the rwlock.
2377 * Returns zero if the lock is not contended or the system / underlying
2378 * rwlock implementation does not support contention detection.
2379 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2380 * for low latency.
2381 */
rwlock_needbreak(rwlock_t * lock)2382 static inline int rwlock_needbreak(rwlock_t *lock)
2383 {
2384 #ifdef CONFIG_PREEMPTION
2385 return rwlock_is_contended(lock);
2386 #else
2387 return 0;
2388 #endif
2389 }
2390
need_resched(void)2391 static __always_inline bool need_resched(void)
2392 {
2393 return unlikely(tif_need_resched());
2394 }
2395
2396 /*
2397 * Wrappers for p->thread_info->cpu access. No-op on UP.
2398 */
2399 #ifdef CONFIG_SMP
2400
task_cpu(const struct task_struct * p)2401 static inline unsigned int task_cpu(const struct task_struct *p)
2402 {
2403 return READ_ONCE(task_thread_info(p)->cpu);
2404 }
2405
2406 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2407
2408 #else
2409
task_cpu(const struct task_struct * p)2410 static inline unsigned int task_cpu(const struct task_struct *p)
2411 {
2412 return 0;
2413 }
2414
set_task_cpu(struct task_struct * p,unsigned int cpu)2415 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2416 {
2417 }
2418
2419 #endif /* CONFIG_SMP */
2420
2421 extern bool sched_task_on_rq(struct task_struct *p);
2422 extern unsigned long get_wchan(struct task_struct *p);
2423 extern struct task_struct *cpu_curr_snapshot(int cpu);
2424
2425 /*
2426 * In order to reduce various lock holder preemption latencies provide an
2427 * interface to see if a vCPU is currently running or not.
2428 *
2429 * This allows us to terminate optimistic spin loops and block, analogous to
2430 * the native optimistic spin heuristic of testing if the lock owner task is
2431 * running or not.
2432 */
2433 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2434 static inline bool vcpu_is_preempted(int cpu)
2435 {
2436 return false;
2437 }
2438 #endif
2439
2440 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2441 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2442
2443 #ifndef TASK_SIZE_OF
2444 #define TASK_SIZE_OF(tsk) TASK_SIZE
2445 #endif
2446
2447 #ifdef CONFIG_SMP
owner_on_cpu(struct task_struct * owner)2448 static inline bool owner_on_cpu(struct task_struct *owner)
2449 {
2450 /*
2451 * As lock holder preemption issue, we both skip spinning if
2452 * task is not on cpu or its cpu is preempted
2453 */
2454 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2455 }
2456
2457 /* Returns effective CPU energy utilization, as seen by the scheduler */
2458 unsigned long sched_cpu_util(int cpu);
2459 #endif /* CONFIG_SMP */
2460
2461 #ifdef CONFIG_RSEQ
2462
2463 /*
2464 * Map the event mask on the user-space ABI enum rseq_cs_flags
2465 * for direct mask checks.
2466 */
2467 enum rseq_event_mask_bits {
2468 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2469 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2470 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2471 };
2472
2473 enum rseq_event_mask {
2474 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2475 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2476 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2477 };
2478
rseq_set_notify_resume(struct task_struct * t)2479 static inline void rseq_set_notify_resume(struct task_struct *t)
2480 {
2481 if (t->rseq)
2482 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2483 }
2484
2485 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2486
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2487 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2488 struct pt_regs *regs)
2489 {
2490 if (current->rseq)
2491 __rseq_handle_notify_resume(ksig, regs);
2492 }
2493
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2494 static inline void rseq_signal_deliver(struct ksignal *ksig,
2495 struct pt_regs *regs)
2496 {
2497 preempt_disable();
2498 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
2499 preempt_enable();
2500 rseq_handle_notify_resume(ksig, regs);
2501 }
2502
2503 /* rseq_preempt() requires preemption to be disabled. */
rseq_preempt(struct task_struct * t)2504 static inline void rseq_preempt(struct task_struct *t)
2505 {
2506 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2507 rseq_set_notify_resume(t);
2508 }
2509
2510 /* rseq_migrate() requires preemption to be disabled. */
rseq_migrate(struct task_struct * t)2511 static inline void rseq_migrate(struct task_struct *t)
2512 {
2513 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2514 rseq_set_notify_resume(t);
2515 }
2516
2517 /*
2518 * If parent process has a registered restartable sequences area, the
2519 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2520 */
rseq_fork(struct task_struct * t,unsigned long clone_flags)2521 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2522 {
2523 if (clone_flags & CLONE_VM) {
2524 t->rseq = NULL;
2525 t->rseq_len = 0;
2526 t->rseq_sig = 0;
2527 t->rseq_event_mask = 0;
2528 } else {
2529 t->rseq = current->rseq;
2530 t->rseq_len = current->rseq_len;
2531 t->rseq_sig = current->rseq_sig;
2532 t->rseq_event_mask = current->rseq_event_mask;
2533 }
2534 }
2535
rseq_execve(struct task_struct * t)2536 static inline void rseq_execve(struct task_struct *t)
2537 {
2538 t->rseq = NULL;
2539 t->rseq_len = 0;
2540 t->rseq_sig = 0;
2541 t->rseq_event_mask = 0;
2542 }
2543
2544 #else
2545
rseq_set_notify_resume(struct task_struct * t)2546 static inline void rseq_set_notify_resume(struct task_struct *t)
2547 {
2548 }
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2549 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2550 struct pt_regs *regs)
2551 {
2552 }
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2553 static inline void rseq_signal_deliver(struct ksignal *ksig,
2554 struct pt_regs *regs)
2555 {
2556 }
rseq_preempt(struct task_struct * t)2557 static inline void rseq_preempt(struct task_struct *t)
2558 {
2559 }
rseq_migrate(struct task_struct * t)2560 static inline void rseq_migrate(struct task_struct *t)
2561 {
2562 }
rseq_fork(struct task_struct * t,unsigned long clone_flags)2563 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2564 {
2565 }
rseq_execve(struct task_struct * t)2566 static inline void rseq_execve(struct task_struct *t)
2567 {
2568 }
2569
2570 #endif
2571
2572 #ifdef CONFIG_DEBUG_RSEQ
2573
2574 void rseq_syscall(struct pt_regs *regs);
2575
2576 #else
2577
rseq_syscall(struct pt_regs * regs)2578 static inline void rseq_syscall(struct pt_regs *regs)
2579 {
2580 }
2581
2582 #endif
2583
2584 #ifdef CONFIG_SCHED_CORE
2585 extern void sched_core_free(struct task_struct *tsk);
2586 extern void sched_core_fork(struct task_struct *p);
2587 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2588 unsigned long uaddr);
2589 extern int sched_core_idle_cpu(int cpu);
2590 #else
sched_core_free(struct task_struct * tsk)2591 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2592 static inline void sched_core_fork(struct task_struct *p) { }
sched_core_idle_cpu(int cpu)2593 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2594 #endif
2595
2596 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2597
2598 #endif
2599