• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kmsan_types.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/syscall_user_dispatch.h>
32 #include <linux/mm_types_task.h>
33 #include <linux/task_io_accounting.h>
34 #include <linux/posix-timers.h>
35 #include <linux/rseq.h>
36 #include <linux/seqlock.h>
37 #include <linux/kcsan.h>
38 #include <linux/rv.h>
39 #include <linux/livepatch_sched.h>
40 #include <asm/kmap_size.h>
41 
42 /* task_struct member predeclarations (sorted alphabetically): */
43 struct audit_context;
44 struct bio_list;
45 struct blk_plug;
46 struct bpf_local_storage;
47 struct bpf_run_ctx;
48 struct capture_control;
49 struct cfs_rq;
50 struct fs_struct;
51 struct futex_pi_state;
52 struct io_context;
53 struct io_uring_task;
54 struct mempolicy;
55 struct nameidata;
56 struct nsproxy;
57 struct perf_event_context;
58 struct pid_namespace;
59 struct pipe_inode_info;
60 struct rcu_node;
61 #ifdef CONFIG_RECLAIM_ACCT
62 struct reclaim_acct;
63 #endif
64 struct reclaim_state;
65 struct robust_list_head;
66 struct root_domain;
67 struct rq;
68 struct sched_attr;
69 struct seq_file;
70 struct sighand_struct;
71 struct signal_struct;
72 struct task_delay_info;
73 struct task_group;
74 struct user_event_mm;
75 
76 /*
77  * Task state bitmask. NOTE! These bits are also
78  * encoded in fs/proc/array.c: get_task_state().
79  *
80  * We have two separate sets of flags: task->__state
81  * is about runnability, while task->exit_state are
82  * about the task exiting. Confusing, but this way
83  * modifying one set can't modify the other one by
84  * mistake.
85  */
86 
87 /* Used in tsk->__state: */
88 #define TASK_RUNNING			0x00000000
89 #define TASK_INTERRUPTIBLE		0x00000001
90 #define TASK_UNINTERRUPTIBLE		0x00000002
91 #define __TASK_STOPPED			0x00000004
92 #define __TASK_TRACED			0x00000008
93 /* Used in tsk->exit_state: */
94 #define EXIT_DEAD			0x00000010
95 #define EXIT_ZOMBIE			0x00000020
96 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
97 /* Used in tsk->__state again: */
98 #define TASK_PARKED			0x00000040
99 #define TASK_DEAD			0x00000080
100 #define TASK_WAKEKILL			0x00000100
101 #define TASK_WAKING			0x00000200
102 #define TASK_NOLOAD			0x00000400
103 #define TASK_NEW			0x00000800
104 #define TASK_RTLOCK_WAIT		0x00001000
105 #define TASK_FREEZABLE			0x00002000
106 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
107 #define TASK_FROZEN			0x00008000
108 #define TASK_STATE_MAX			0x00010000
109 
110 #define TASK_ANY			(TASK_STATE_MAX-1)
111 
112 /*
113  * DO NOT ADD ANY NEW USERS !
114  */
115 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
116 
117 /* Convenience macros for the sake of set_current_state: */
118 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
119 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
120 #define TASK_TRACED			__TASK_TRACED
121 
122 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
123 
124 /* Convenience macros for the sake of wake_up(): */
125 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
126 
127 /* get_task_state(): */
128 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
129 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
130 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
131 					 TASK_PARKED)
132 
133 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
134 
135 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
136 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
137 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
138 
139 /*
140  * Special states are those that do not use the normal wait-loop pattern. See
141  * the comment with set_special_state().
142  */
143 #define is_special_task_state(state)				\
144 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
145 
146 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
147 # define debug_normal_state_change(state_value)				\
148 	do {								\
149 		WARN_ON_ONCE(is_special_task_state(state_value));	\
150 		current->task_state_change = _THIS_IP_;			\
151 	} while (0)
152 
153 # define debug_special_state_change(state_value)			\
154 	do {								\
155 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
156 		current->task_state_change = _THIS_IP_;			\
157 	} while (0)
158 
159 # define debug_rtlock_wait_set_state()					\
160 	do {								 \
161 		current->saved_state_change = current->task_state_change;\
162 		current->task_state_change = _THIS_IP_;			 \
163 	} while (0)
164 
165 # define debug_rtlock_wait_restore_state()				\
166 	do {								 \
167 		current->task_state_change = current->saved_state_change;\
168 	} while (0)
169 
170 #else
171 # define debug_normal_state_change(cond)	do { } while (0)
172 # define debug_special_state_change(cond)	do { } while (0)
173 # define debug_rtlock_wait_set_state()		do { } while (0)
174 # define debug_rtlock_wait_restore_state()	do { } while (0)
175 #endif
176 
177 /*
178  * set_current_state() includes a barrier so that the write of current->__state
179  * is correctly serialised wrt the caller's subsequent test of whether to
180  * actually sleep:
181  *
182  *   for (;;) {
183  *	set_current_state(TASK_UNINTERRUPTIBLE);
184  *	if (CONDITION)
185  *	   break;
186  *
187  *	schedule();
188  *   }
189  *   __set_current_state(TASK_RUNNING);
190  *
191  * If the caller does not need such serialisation (because, for instance, the
192  * CONDITION test and condition change and wakeup are under the same lock) then
193  * use __set_current_state().
194  *
195  * The above is typically ordered against the wakeup, which does:
196  *
197  *   CONDITION = 1;
198  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
199  *
200  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
201  * accessing p->__state.
202  *
203  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
204  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
205  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
206  *
207  * However, with slightly different timing the wakeup TASK_RUNNING store can
208  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
209  * a problem either because that will result in one extra go around the loop
210  * and our @cond test will save the day.
211  *
212  * Also see the comments of try_to_wake_up().
213  */
214 #define __set_current_state(state_value)				\
215 	do {								\
216 		debug_normal_state_change((state_value));		\
217 		WRITE_ONCE(current->__state, (state_value));		\
218 	} while (0)
219 
220 #define set_current_state(state_value)					\
221 	do {								\
222 		debug_normal_state_change((state_value));		\
223 		smp_store_mb(current->__state, (state_value));		\
224 	} while (0)
225 
226 /*
227  * set_special_state() should be used for those states when the blocking task
228  * can not use the regular condition based wait-loop. In that case we must
229  * serialize against wakeups such that any possible in-flight TASK_RUNNING
230  * stores will not collide with our state change.
231  */
232 #define set_special_state(state_value)					\
233 	do {								\
234 		unsigned long flags; /* may shadow */			\
235 									\
236 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
237 		debug_special_state_change((state_value));		\
238 		WRITE_ONCE(current->__state, (state_value));		\
239 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
240 	} while (0)
241 
242 /*
243  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
244  *
245  * RT's spin/rwlock substitutions are state preserving. The state of the
246  * task when blocking on the lock is saved in task_struct::saved_state and
247  * restored after the lock has been acquired.  These operations are
248  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
249  * lock related wakeups while the task is blocked on the lock are
250  * redirected to operate on task_struct::saved_state to ensure that these
251  * are not dropped. On restore task_struct::saved_state is set to
252  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
253  *
254  * The lock operation looks like this:
255  *
256  *	current_save_and_set_rtlock_wait_state();
257  *	for (;;) {
258  *		if (try_lock())
259  *			break;
260  *		raw_spin_unlock_irq(&lock->wait_lock);
261  *		schedule_rtlock();
262  *		raw_spin_lock_irq(&lock->wait_lock);
263  *		set_current_state(TASK_RTLOCK_WAIT);
264  *	}
265  *	current_restore_rtlock_saved_state();
266  */
267 #define current_save_and_set_rtlock_wait_state()			\
268 	do {								\
269 		lockdep_assert_irqs_disabled();				\
270 		raw_spin_lock(&current->pi_lock);			\
271 		current->saved_state = current->__state;		\
272 		debug_rtlock_wait_set_state();				\
273 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
274 		raw_spin_unlock(&current->pi_lock);			\
275 	} while (0);
276 
277 #define current_restore_rtlock_saved_state()				\
278 	do {								\
279 		lockdep_assert_irqs_disabled();				\
280 		raw_spin_lock(&current->pi_lock);			\
281 		debug_rtlock_wait_restore_state();			\
282 		WRITE_ONCE(current->__state, current->saved_state);	\
283 		current->saved_state = TASK_RUNNING;			\
284 		raw_spin_unlock(&current->pi_lock);			\
285 	} while (0);
286 
287 #define get_current_state()	READ_ONCE(current->__state)
288 
289 /*
290  * Define the task command name length as enum, then it can be visible to
291  * BPF programs.
292  */
293 enum {
294 	TASK_COMM_LEN = 16,
295 };
296 enum task_event {
297 	PUT_PREV_TASK   = 0,
298 	PICK_NEXT_TASK  = 1,
299 	TASK_WAKE       = 2,
300 	TASK_MIGRATE    = 3,
301 	TASK_UPDATE     = 4,
302 	IRQ_UPDATE      = 5,
303 };
304 
305 /* Note: this need to be in sync with migrate_type_names array */
306 enum migrate_types {
307 	GROUP_TO_RQ,
308 	RQ_TO_GROUP,
309 };
310 
311 #ifdef CONFIG_CPU_ISOLATION_OPT
312 extern int sched_isolate_count(const cpumask_t *mask, bool include_offline);
313 extern int sched_isolate_cpu(int cpu);
314 extern int sched_unisolate_cpu(int cpu);
315 extern int sched_unisolate_cpu_unlocked(int cpu);
316 #else
sched_isolate_count(const cpumask_t * mask,bool include_offline)317 static inline int sched_isolate_count(const cpumask_t *mask,
318 				      bool include_offline)
319 {
320 	cpumask_t count_mask;
321 
322 	if (include_offline)
323 		cpumask_andnot(&count_mask, mask, cpu_online_mask);
324 	else
325 		return 0;
326 
327 	return cpumask_weight(&count_mask);
328 }
329 
sched_isolate_cpu(int cpu)330 static inline int sched_isolate_cpu(int cpu)
331 {
332 	return 0;
333 }
334 
sched_unisolate_cpu(int cpu)335 static inline int sched_unisolate_cpu(int cpu)
336 {
337 	return 0;
338 }
339 
sched_unisolate_cpu_unlocked(int cpu)340 static inline int sched_unisolate_cpu_unlocked(int cpu)
341 {
342 	return 0;
343 }
344 #endif
345 
346 extern void scheduler_tick(void);
347 
348 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
349 
350 extern long schedule_timeout(long timeout);
351 extern long schedule_timeout_interruptible(long timeout);
352 extern long schedule_timeout_killable(long timeout);
353 extern long schedule_timeout_uninterruptible(long timeout);
354 extern long schedule_timeout_idle(long timeout);
355 asmlinkage void schedule(void);
356 extern void schedule_preempt_disabled(void);
357 asmlinkage void preempt_schedule_irq(void);
358 #ifdef CONFIG_PREEMPT_RT
359  extern void schedule_rtlock(void);
360 #endif
361 
362 extern int __must_check io_schedule_prepare(void);
363 extern void io_schedule_finish(int token);
364 extern long io_schedule_timeout(long timeout);
365 extern void io_schedule(void);
366 
367 /**
368  * struct prev_cputime - snapshot of system and user cputime
369  * @utime: time spent in user mode
370  * @stime: time spent in system mode
371  * @lock: protects the above two fields
372  *
373  * Stores previous user/system time values such that we can guarantee
374  * monotonicity.
375  */
376 struct prev_cputime {
377 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
378 	u64				utime;
379 	u64				stime;
380 	raw_spinlock_t			lock;
381 #endif
382 };
383 
384 enum vtime_state {
385 	/* Task is sleeping or running in a CPU with VTIME inactive: */
386 	VTIME_INACTIVE = 0,
387 	/* Task is idle */
388 	VTIME_IDLE,
389 	/* Task runs in kernelspace in a CPU with VTIME active: */
390 	VTIME_SYS,
391 	/* Task runs in userspace in a CPU with VTIME active: */
392 	VTIME_USER,
393 	/* Task runs as guests in a CPU with VTIME active: */
394 	VTIME_GUEST,
395 };
396 
397 struct vtime {
398 	seqcount_t		seqcount;
399 	unsigned long long	starttime;
400 	enum vtime_state	state;
401 	unsigned int		cpu;
402 	u64			utime;
403 	u64			stime;
404 	u64			gtime;
405 };
406 
407 /*
408  * Utilization clamp constraints.
409  * @UCLAMP_MIN:	Minimum utilization
410  * @UCLAMP_MAX:	Maximum utilization
411  * @UCLAMP_CNT:	Utilization clamp constraints count
412  */
413 enum uclamp_id {
414 	UCLAMP_MIN = 0,
415 	UCLAMP_MAX,
416 	UCLAMP_CNT
417 };
418 
419 #ifdef CONFIG_SMP
420 extern struct root_domain def_root_domain;
421 extern struct mutex sched_domains_mutex;
422 #endif
423 
424 struct sched_param {
425 	int sched_priority;
426 };
427 
428 struct sched_info {
429 #ifdef CONFIG_SCHED_INFO
430 	/* Cumulative counters: */
431 
432 	/* # of times we have run on this CPU: */
433 	unsigned long			pcount;
434 
435 	/* Time spent waiting on a runqueue: */
436 	unsigned long long		run_delay;
437 
438 	/* Timestamps: */
439 
440 	/* When did we last run on a CPU? */
441 	unsigned long long		last_arrival;
442 
443 	/* When were we last queued to run? */
444 	unsigned long long		last_queued;
445 
446 #endif /* CONFIG_SCHED_INFO */
447 };
448 
449 /*
450  * Integer metrics need fixed point arithmetic, e.g., sched/fair
451  * has a few: load, load_avg, util_avg, freq, and capacity.
452  *
453  * We define a basic fixed point arithmetic range, and then formalize
454  * all these metrics based on that basic range.
455  */
456 # define SCHED_FIXEDPOINT_SHIFT		10
457 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
458 
459 /* Increase resolution of cpu_capacity calculations */
460 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
461 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
462 
463 struct load_weight {
464 	unsigned long			weight;
465 	u32				inv_weight;
466 };
467 
468 /**
469  * struct util_est - Estimation utilization of FAIR tasks
470  * @enqueued: instantaneous estimated utilization of a task/cpu
471  * @ewma:     the Exponential Weighted Moving Average (EWMA)
472  *            utilization of a task
473  *
474  * Support data structure to track an Exponential Weighted Moving Average
475  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
476  * average each time a task completes an activation. Sample's weight is chosen
477  * so that the EWMA will be relatively insensitive to transient changes to the
478  * task's workload.
479  *
480  * The enqueued attribute has a slightly different meaning for tasks and cpus:
481  * - task:   the task's util_avg at last task dequeue time
482  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
483  * Thus, the util_est.enqueued of a task represents the contribution on the
484  * estimated utilization of the CPU where that task is currently enqueued.
485  *
486  * Only for tasks we track a moving average of the past instantaneous
487  * estimated utilization. This allows to absorb sporadic drops in utilization
488  * of an otherwise almost periodic task.
489  *
490  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
491  * updates. When a task is dequeued, its util_est should not be updated if its
492  * util_avg has not been updated in the meantime.
493  * This information is mapped into the MSB bit of util_est.enqueued at dequeue
494  * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
495  * for a task) it is safe to use MSB.
496  */
497 struct util_est {
498 	unsigned int			enqueued;
499 	unsigned int			ewma;
500 #define UTIL_EST_WEIGHT_SHIFT		2
501 #define UTIL_AVG_UNCHANGED		0x80000000
502 } __attribute__((__aligned__(sizeof(u64))));
503 
504 /*
505  * The load/runnable/util_avg accumulates an infinite geometric series
506  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
507  *
508  * [load_avg definition]
509  *
510  *   load_avg = runnable% * scale_load_down(load)
511  *
512  * [runnable_avg definition]
513  *
514  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
515  *
516  * [util_avg definition]
517  *
518  *   util_avg = running% * SCHED_CAPACITY_SCALE
519  *
520  * where runnable% is the time ratio that a sched_entity is runnable and
521  * running% the time ratio that a sched_entity is running.
522  *
523  * For cfs_rq, they are the aggregated values of all runnable and blocked
524  * sched_entities.
525  *
526  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
527  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
528  * for computing those signals (see update_rq_clock_pelt())
529  *
530  * N.B., the above ratios (runnable% and running%) themselves are in the
531  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
532  * to as large a range as necessary. This is for example reflected by
533  * util_avg's SCHED_CAPACITY_SCALE.
534  *
535  * [Overflow issue]
536  *
537  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
538  * with the highest load (=88761), always runnable on a single cfs_rq,
539  * and should not overflow as the number already hits PID_MAX_LIMIT.
540  *
541  * For all other cases (including 32-bit kernels), struct load_weight's
542  * weight will overflow first before we do, because:
543  *
544  *    Max(load_avg) <= Max(load.weight)
545  *
546  * Then it is the load_weight's responsibility to consider overflow
547  * issues.
548  */
549 struct sched_avg {
550 	u64				last_update_time;
551 	u64				load_sum;
552 	u64				runnable_sum;
553 	u32				util_sum;
554 	u32				period_contrib;
555 	unsigned long			load_avg;
556 	unsigned long			runnable_avg;
557 	unsigned long			util_avg;
558 	struct util_est			util_est;
559 } ____cacheline_aligned;
560 
561 struct sched_statistics {
562 #ifdef CONFIG_SCHEDSTATS
563 	u64				wait_start;
564 	u64				wait_max;
565 	u64				wait_count;
566 	u64				wait_sum;
567 	u64				iowait_count;
568 	u64				iowait_sum;
569 
570 	u64				sleep_start;
571 	u64				sleep_max;
572 	s64				sum_sleep_runtime;
573 
574 	u64				block_start;
575 	u64				block_max;
576 	s64				sum_block_runtime;
577 
578 	s64				exec_max;
579 	u64				slice_max;
580 
581 	u64				nr_migrations_cold;
582 	u64				nr_failed_migrations_affine;
583 	u64				nr_failed_migrations_running;
584 	u64				nr_failed_migrations_hot;
585 	u64				nr_forced_migrations;
586 
587 	u64				nr_wakeups;
588 	u64				nr_wakeups_sync;
589 	u64				nr_wakeups_migrate;
590 	u64				nr_wakeups_local;
591 	u64				nr_wakeups_remote;
592 	u64				nr_wakeups_affine;
593 	u64				nr_wakeups_affine_attempts;
594 	u64				nr_wakeups_passive;
595 	u64				nr_wakeups_idle;
596 
597 #ifdef CONFIG_SCHED_CORE
598 	u64				core_forceidle_sum;
599 #endif
600 #endif /* CONFIG_SCHEDSTATS */
601 } ____cacheline_aligned;
602 
603 struct sched_entity {
604 	/* For load-balancing: */
605 	struct load_weight		load;
606 	struct rb_node			run_node;
607 	u64				deadline;
608 	u64				min_deadline;
609 
610 	struct list_head		group_node;
611 	unsigned int			on_rq;
612 
613 	u64				exec_start;
614 	u64				sum_exec_runtime;
615 	u64				prev_sum_exec_runtime;
616 	u64				vruntime;
617 	s64				vlag;
618 	u64				slice;
619 
620 	u64				nr_migrations;
621 
622 #ifdef CONFIG_FAIR_GROUP_SCHED
623 	int				depth;
624 	struct sched_entity		*parent;
625 	/* rq on which this entity is (to be) queued: */
626 	struct cfs_rq			*cfs_rq;
627 	/* rq "owned" by this entity/group: */
628 	struct cfs_rq			*my_q;
629 	/* cached value of my_q->h_nr_running */
630 	unsigned long			runnable_weight;
631 #endif
632 
633 #ifdef CONFIG_SCHED_LATENCY_NICE
634 	int				latency_weight;
635 #endif
636 
637 #ifdef CONFIG_SMP
638 	/*
639 	 * Per entity load average tracking.
640 	 *
641 	 * Put into separate cache line so it does not
642 	 * collide with read-mostly values above.
643 	 */
644 	struct sched_avg		avg;
645 #endif
646 };
647 
648 #ifdef CONFIG_SCHED_WALT
649 extern void sched_exit(struct task_struct *p);
650 extern int sched_set_init_task_load(struct task_struct *p, int init_load_pct);
651 extern u32 sched_get_init_task_load(struct task_struct *p);
652 extern void free_task_load_ptrs(struct task_struct *p);
653 #define RAVG_HIST_SIZE_MAX  5
654 struct ravg {
655 	/*
656 	 * 'mark_start' marks the beginning of an event (task waking up, task
657 	 * starting to execute, task being preempted) within a window
658 	 *
659 	 * 'sum' represents how runnable a task has been within current
660 	 * window. It incorporates both running time and wait time and is
661 	 * frequency scaled.
662 	 *
663 	 * 'sum_history' keeps track of history of 'sum' seen over previous
664 	 * RAVG_HIST_SIZE windows. Windows where task was entirely sleeping are
665 	 * ignored.
666 	 *
667 	 * 'demand' represents maximum sum seen over previous
668 	 * sysctl_sched_ravg_hist_size windows. 'demand' could drive frequency
669 	 * demand for tasks.
670 	 *
671 	 * 'curr_window_cpu' represents task's contribution to cpu busy time on
672 	 * various CPUs in the current window
673 	 *
674 	 * 'prev_window_cpu' represents task's contribution to cpu busy time on
675 	 * various CPUs in the previous window
676 	 *
677 	 * 'curr_window' represents the sum of all entries in curr_window_cpu
678 	 *
679 	 * 'prev_window' represents the sum of all entries in prev_window_cpu
680 	 *
681 	 */
682 	u64 mark_start;
683 	u32 sum, demand;
684 	u32 sum_history[RAVG_HIST_SIZE_MAX];
685 	u32 *curr_window_cpu, *prev_window_cpu;
686 	u32 curr_window, prev_window;
687 	u16 active_windows;
688 	u16 demand_scaled;
689 };
690 #else
sched_exit(struct task_struct * p)691 static inline void sched_exit(struct task_struct *p) { }
free_task_load_ptrs(struct task_struct * p)692 static inline void free_task_load_ptrs(struct task_struct *p) { }
693 #endif /* CONFIG_SCHED_WALT */
694 
695 struct sched_rt_entity {
696 	struct list_head		run_list;
697 	unsigned long			timeout;
698 	unsigned long			watchdog_stamp;
699 	unsigned int			time_slice;
700 	unsigned short			on_rq;
701 	unsigned short			on_list;
702 
703 	struct sched_rt_entity		*back;
704 #ifdef CONFIG_RT_GROUP_SCHED
705 	struct sched_rt_entity		*parent;
706 	/* rq on which this entity is (to be) queued: */
707 	struct rt_rq			*rt_rq;
708 	/* rq "owned" by this entity/group: */
709 	struct rt_rq			*my_q;
710 #endif
711 } __randomize_layout;
712 
713 struct sched_dl_entity {
714 	struct rb_node			rb_node;
715 
716 	/*
717 	 * Original scheduling parameters. Copied here from sched_attr
718 	 * during sched_setattr(), they will remain the same until
719 	 * the next sched_setattr().
720 	 */
721 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
722 	u64				dl_deadline;	/* Relative deadline of each instance	*/
723 	u64				dl_period;	/* Separation of two instances (period) */
724 	u64				dl_bw;		/* dl_runtime / dl_period		*/
725 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
726 
727 	/*
728 	 * Actual scheduling parameters. Initialized with the values above,
729 	 * they are continuously updated during task execution. Note that
730 	 * the remaining runtime could be < 0 in case we are in overrun.
731 	 */
732 	s64				runtime;	/* Remaining runtime for this instance	*/
733 	u64				deadline;	/* Absolute deadline for this instance	*/
734 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
735 
736 	/*
737 	 * Some bool flags:
738 	 *
739 	 * @dl_throttled tells if we exhausted the runtime. If so, the
740 	 * task has to wait for a replenishment to be performed at the
741 	 * next firing of dl_timer.
742 	 *
743 	 * @dl_yielded tells if task gave up the CPU before consuming
744 	 * all its available runtime during the last job.
745 	 *
746 	 * @dl_non_contending tells if the task is inactive while still
747 	 * contributing to the active utilization. In other words, it
748 	 * indicates if the inactive timer has been armed and its handler
749 	 * has not been executed yet. This flag is useful to avoid race
750 	 * conditions between the inactive timer handler and the wakeup
751 	 * code.
752 	 *
753 	 * @dl_overrun tells if the task asked to be informed about runtime
754 	 * overruns.
755 	 */
756 	unsigned int			dl_throttled      : 1;
757 	unsigned int			dl_yielded        : 1;
758 	unsigned int			dl_non_contending : 1;
759 	unsigned int			dl_overrun	  : 1;
760 
761 	/*
762 	 * Bandwidth enforcement timer. Each -deadline task has its
763 	 * own bandwidth to be enforced, thus we need one timer per task.
764 	 */
765 	struct hrtimer			dl_timer;
766 
767 	/*
768 	 * Inactive timer, responsible for decreasing the active utilization
769 	 * at the "0-lag time". When a -deadline task blocks, it contributes
770 	 * to GRUB's active utilization until the "0-lag time", hence a
771 	 * timer is needed to decrease the active utilization at the correct
772 	 * time.
773 	 */
774 	struct hrtimer inactive_timer;
775 
776 #ifdef CONFIG_RT_MUTEXES
777 	/*
778 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
779 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
780 	 * to (the original one/itself).
781 	 */
782 	struct sched_dl_entity *pi_se;
783 #endif
784 };
785 
786 #ifdef CONFIG_UCLAMP_TASK
787 /* Number of utilization clamp buckets (shorter alias) */
788 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
789 
790 /*
791  * Utilization clamp for a scheduling entity
792  * @value:		clamp value "assigned" to a se
793  * @bucket_id:		bucket index corresponding to the "assigned" value
794  * @active:		the se is currently refcounted in a rq's bucket
795  * @user_defined:	the requested clamp value comes from user-space
796  *
797  * The bucket_id is the index of the clamp bucket matching the clamp value
798  * which is pre-computed and stored to avoid expensive integer divisions from
799  * the fast path.
800  *
801  * The active bit is set whenever a task has got an "effective" value assigned,
802  * which can be different from the clamp value "requested" from user-space.
803  * This allows to know a task is refcounted in the rq's bucket corresponding
804  * to the "effective" bucket_id.
805  *
806  * The user_defined bit is set whenever a task has got a task-specific clamp
807  * value requested from userspace, i.e. the system defaults apply to this task
808  * just as a restriction. This allows to relax default clamps when a less
809  * restrictive task-specific value has been requested, thus allowing to
810  * implement a "nice" semantic. For example, a task running with a 20%
811  * default boost can still drop its own boosting to 0%.
812  */
813 struct uclamp_se {
814 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
815 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
816 	unsigned int active		: 1;
817 	unsigned int user_defined	: 1;
818 };
819 #endif /* CONFIG_UCLAMP_TASK */
820 
821 union rcu_special {
822 	struct {
823 		u8			blocked;
824 		u8			need_qs;
825 		u8			exp_hint; /* Hint for performance. */
826 		u8			need_mb; /* Readers need smp_mb(). */
827 	} b; /* Bits. */
828 	u32 s; /* Set of bits. */
829 };
830 
831 enum perf_event_task_context {
832 	perf_invalid_context = -1,
833 	perf_hw_context = 0,
834 	perf_sw_context,
835 	perf_nr_task_contexts,
836 };
837 
838 struct wake_q_node {
839 	struct wake_q_node *next;
840 };
841 
842 struct kmap_ctrl {
843 #ifdef CONFIG_KMAP_LOCAL
844 	int				idx;
845 	pte_t				pteval[KM_MAX_IDX];
846 #endif
847 };
848 
849 struct task_struct {
850 #ifdef CONFIG_THREAD_INFO_IN_TASK
851 	/*
852 	 * For reasons of header soup (see current_thread_info()), this
853 	 * must be the first element of task_struct.
854 	 */
855 	struct thread_info		thread_info;
856 #endif
857 	unsigned int			__state;
858 
859 #ifdef CONFIG_PREEMPT_RT
860 	/* saved state for "spinlock sleepers" */
861 	unsigned int			saved_state;
862 #endif
863 
864 	/*
865 	 * This begins the randomizable portion of task_struct. Only
866 	 * scheduling-critical items should be added above here.
867 	 */
868 	randomized_struct_fields_start
869 
870 	void				*stack;
871 	refcount_t			usage;
872 	/* Per task flags (PF_*), defined further below: */
873 	unsigned int			flags;
874 	unsigned int			ptrace;
875 
876 #ifdef CONFIG_SMP
877 	int				on_cpu;
878 	struct __call_single_node	wake_entry;
879 	unsigned int			wakee_flips;
880 	unsigned long			wakee_flip_decay_ts;
881 	struct task_struct		*last_wakee;
882 
883 	/*
884 	 * recent_used_cpu is initially set as the last CPU used by a task
885 	 * that wakes affine another task. Waker/wakee relationships can
886 	 * push tasks around a CPU where each wakeup moves to the next one.
887 	 * Tracking a recently used CPU allows a quick search for a recently
888 	 * used CPU that may be idle.
889 	 */
890 	int				recent_used_cpu;
891 	int				wake_cpu;
892 #endif
893 	int				on_rq;
894 
895 	int				prio;
896 	int				static_prio;
897 	int				normal_prio;
898 	unsigned int			rt_priority;
899 #ifdef CONFIG_SCHED_LATENCY_NICE
900 	int				latency_prio;
901 #endif
902 
903 	struct sched_entity		se;
904 	struct sched_rt_entity		rt;
905 #ifdef CONFIG_SCHED_WALT
906 	struct ravg ravg;
907 	/*
908 	 * 'init_load_pct' represents the initial task load assigned to children
909 	 * of this task
910 	 */
911 	u32 init_load_pct;
912 	u64 last_sleep_ts;
913 #endif
914 	struct sched_dl_entity		dl;
915 	const struct sched_class	*sched_class;
916 
917 #ifdef CONFIG_SCHED_CORE
918 	struct rb_node			core_node;
919 	unsigned long			core_cookie;
920 	unsigned int			core_occupation;
921 #endif
922 
923 #ifdef CONFIG_SCHED_RTG
924 	int rtg_depth;
925 	struct related_thread_group	*grp;
926 	struct list_head		grp_list;
927 #endif
928 
929 #ifdef CONFIG_CGROUP_SCHED
930 	struct task_group		*sched_task_group;
931 #endif
932 
933 #ifdef CONFIG_UCLAMP_TASK
934 	/*
935 	 * Clamp values requested for a scheduling entity.
936 	 * Must be updated with task_rq_lock() held.
937 	 */
938 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
939 	/*
940 	 * Effective clamp values used for a scheduling entity.
941 	 * Must be updated with task_rq_lock() held.
942 	 */
943 	struct uclamp_se		uclamp[UCLAMP_CNT];
944 #endif
945 
946 	struct sched_statistics         stats;
947 
948 #ifdef CONFIG_PREEMPT_NOTIFIERS
949 	/* List of struct preempt_notifier: */
950 	struct hlist_head		preempt_notifiers;
951 #endif
952 
953 #ifdef CONFIG_BLK_DEV_IO_TRACE
954 	unsigned int			btrace_seq;
955 #endif
956 
957 	unsigned int			policy;
958 	int				nr_cpus_allowed;
959 	const cpumask_t			*cpus_ptr;
960 	cpumask_t			*user_cpus_ptr;
961 	cpumask_t			cpus_mask;
962 	void				*migration_pending;
963 #ifdef CONFIG_SMP
964 	unsigned short			migration_disabled;
965 #endif
966 	unsigned short			migration_flags;
967 
968 #ifdef CONFIG_PREEMPT_RCU
969 	int				rcu_read_lock_nesting;
970 	union rcu_special		rcu_read_unlock_special;
971 	struct list_head		rcu_node_entry;
972 	struct rcu_node			*rcu_blocked_node;
973 #endif /* #ifdef CONFIG_PREEMPT_RCU */
974 
975 #ifdef CONFIG_TASKS_RCU
976 	unsigned long			rcu_tasks_nvcsw;
977 	u8				rcu_tasks_holdout;
978 	u8				rcu_tasks_idx;
979 	int				rcu_tasks_idle_cpu;
980 	struct list_head		rcu_tasks_holdout_list;
981 	int				rcu_tasks_exit_cpu;
982 	struct list_head		rcu_tasks_exit_list;
983 #endif /* #ifdef CONFIG_TASKS_RCU */
984 
985 #ifdef CONFIG_TASKS_TRACE_RCU
986 	int				trc_reader_nesting;
987 	int				trc_ipi_to_cpu;
988 	union rcu_special		trc_reader_special;
989 	struct list_head		trc_holdout_list;
990 	struct list_head		trc_blkd_node;
991 	int				trc_blkd_cpu;
992 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
993 
994 	struct sched_info		sched_info;
995 
996 	struct list_head		tasks;
997 #ifdef CONFIG_SMP
998 	struct plist_node		pushable_tasks;
999 	struct rb_node			pushable_dl_tasks;
1000 #endif
1001 
1002 	struct mm_struct		*mm;
1003 	struct mm_struct		*active_mm;
1004 
1005 	int				exit_state;
1006 	int				exit_code;
1007 	int				exit_signal;
1008 	/* The signal sent when the parent dies: */
1009 	int				pdeath_signal;
1010 	/* JOBCTL_*, siglock protected: */
1011 	unsigned long			jobctl;
1012 
1013 	/* Used for emulating ABI behavior of previous Linux versions: */
1014 	unsigned int			personality;
1015 
1016 	/* Scheduler bits, serialized by scheduler locks: */
1017 	unsigned			sched_reset_on_fork:1;
1018 	unsigned			sched_contributes_to_load:1;
1019 	unsigned			sched_migrated:1;
1020 	unsigned			sched_task_hot:1;
1021 
1022 	/* Force alignment to the next boundary: */
1023 	unsigned			:0;
1024 
1025 	/* Unserialized, strictly 'current' */
1026 
1027 	/*
1028 	 * This field must not be in the scheduler word above due to wakelist
1029 	 * queueing no longer being serialized by p->on_cpu. However:
1030 	 *
1031 	 * p->XXX = X;			ttwu()
1032 	 * schedule()			  if (p->on_rq && ..) // false
1033 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
1034 	 *   deactivate_task()		      ttwu_queue_wakelist())
1035 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
1036 	 *
1037 	 * guarantees all stores of 'current' are visible before
1038 	 * ->sched_remote_wakeup gets used, so it can be in this word.
1039 	 */
1040 	unsigned			sched_remote_wakeup:1;
1041 
1042 	/* Bit to tell LSMs we're in execve(): */
1043 	unsigned			in_execve:1;
1044 	unsigned			in_iowait:1;
1045 #ifndef TIF_RESTORE_SIGMASK
1046 	unsigned			restore_sigmask:1;
1047 #endif
1048 #ifdef CONFIG_MEMCG
1049 	unsigned			in_user_fault:1;
1050 #endif
1051 #ifdef CONFIG_LRU_GEN
1052 	/* whether the LRU algorithm may apply to this access */
1053 	unsigned			in_lru_fault:1;
1054 #endif
1055 #ifdef CONFIG_COMPAT_BRK
1056 	unsigned			brk_randomized:1;
1057 #endif
1058 #ifdef CONFIG_CGROUPS
1059 	/* disallow userland-initiated cgroup migration */
1060 	unsigned			no_cgroup_migration:1;
1061 	/* task is frozen/stopped (used by the cgroup freezer) */
1062 	unsigned			frozen:1;
1063 #endif
1064 #ifdef CONFIG_BLK_CGROUP
1065 	unsigned			use_memdelay:1;
1066 #endif
1067 #ifdef CONFIG_PSI
1068 	/* Stalled due to lack of memory */
1069 	unsigned			in_memstall:1;
1070 #endif
1071 #ifdef CONFIG_PAGE_OWNER
1072 	/* Used by page_owner=on to detect recursion in page tracking. */
1073 	unsigned			in_page_owner:1;
1074 #endif
1075 #ifdef CONFIG_EVENTFD
1076 	/* Recursion prevention for eventfd_signal() */
1077 	unsigned			in_eventfd:1;
1078 #endif
1079 #ifdef CONFIG_IOMMU_SVA
1080 	unsigned			pasid_activated:1;
1081 #endif
1082 #ifdef	CONFIG_CPU_SUP_INTEL
1083 	unsigned			reported_split_lock:1;
1084 #endif
1085 #ifdef CONFIG_TASK_DELAY_ACCT
1086 	/* delay due to memory thrashing */
1087 	unsigned                        in_thrashing:1;
1088 #endif
1089 
1090 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
1091 
1092 	struct restart_block		restart_block;
1093 
1094 	pid_t				pid;
1095 	pid_t				tgid;
1096 
1097 #ifdef CONFIG_STACKPROTECTOR
1098 	/* Canary value for the -fstack-protector GCC feature: */
1099 	unsigned long			stack_canary;
1100 #endif
1101 	/*
1102 	 * Pointers to the (original) parent process, youngest child, younger sibling,
1103 	 * older sibling, respectively.  (p->father can be replaced with
1104 	 * p->real_parent->pid)
1105 	 */
1106 
1107 	/* Real parent process: */
1108 	struct task_struct __rcu	*real_parent;
1109 
1110 	/* Recipient of SIGCHLD, wait4() reports: */
1111 	struct task_struct __rcu	*parent;
1112 
1113 	/*
1114 	 * Children/sibling form the list of natural children:
1115 	 */
1116 	struct list_head		children;
1117 	struct list_head		sibling;
1118 	struct task_struct		*group_leader;
1119 
1120 	/*
1121 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
1122 	 *
1123 	 * This includes both natural children and PTRACE_ATTACH targets.
1124 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1125 	 */
1126 	struct list_head		ptraced;
1127 	struct list_head		ptrace_entry;
1128 
1129 	/* PID/PID hash table linkage. */
1130 	struct pid			*thread_pid;
1131 	struct hlist_node		pid_links[PIDTYPE_MAX];
1132 	struct list_head		thread_group;
1133 	struct list_head		thread_node;
1134 
1135 	struct completion		*vfork_done;
1136 
1137 	/* CLONE_CHILD_SETTID: */
1138 	int __user			*set_child_tid;
1139 
1140 	/* CLONE_CHILD_CLEARTID: */
1141 	int __user			*clear_child_tid;
1142 
1143 	/* PF_KTHREAD | PF_IO_WORKER */
1144 	void				*worker_private;
1145 
1146 	u64				utime;
1147 	u64				stime;
1148 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1149 	u64				utimescaled;
1150 	u64				stimescaled;
1151 #endif
1152 	u64				gtime;
1153 	struct prev_cputime		prev_cputime;
1154 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1155 	struct vtime			vtime;
1156 #endif
1157 
1158 #ifdef CONFIG_NO_HZ_FULL
1159 	atomic_t			tick_dep_mask;
1160 #endif
1161 	/* Context switch counts: */
1162 	unsigned long			nvcsw;
1163 	unsigned long			nivcsw;
1164 
1165 	/* Monotonic time in nsecs: */
1166 	u64				start_time;
1167 
1168 	/* Boot based time in nsecs: */
1169 	u64				start_boottime;
1170 
1171 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1172 	unsigned long			min_flt;
1173 	unsigned long			maj_flt;
1174 
1175 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1176 	struct posix_cputimers		posix_cputimers;
1177 
1178 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1179 	struct posix_cputimers_work	posix_cputimers_work;
1180 #endif
1181 
1182 	/* Process credentials: */
1183 
1184 	/* Tracer's credentials at attach: */
1185 	const struct cred __rcu		*ptracer_cred;
1186 
1187 	/* Objective and real subjective task credentials (COW): */
1188 	const struct cred __rcu		*real_cred;
1189 
1190 	/* Effective (overridable) subjective task credentials (COW): */
1191 	const struct cred __rcu		*cred;
1192 
1193 #ifdef CONFIG_KEYS
1194 	/* Cached requested key. */
1195 	struct key			*cached_requested_key;
1196 #endif
1197 
1198 	/*
1199 	 * executable name, excluding path.
1200 	 *
1201 	 * - normally initialized setup_new_exec()
1202 	 * - access it with [gs]et_task_comm()
1203 	 * - lock it with task_lock()
1204 	 */
1205 	char				comm[TASK_COMM_LEN];
1206 
1207 	struct nameidata		*nameidata;
1208 
1209 #ifdef CONFIG_SYSVIPC
1210 	struct sysv_sem			sysvsem;
1211 	struct sysv_shm			sysvshm;
1212 #endif
1213 #ifdef CONFIG_DETECT_HUNG_TASK
1214 	unsigned long			last_switch_count;
1215 	unsigned long			last_switch_time;
1216 #endif
1217 	/* Filesystem information: */
1218 	struct fs_struct		*fs;
1219 
1220 	/* Open file information: */
1221 	struct files_struct		*files;
1222 
1223 #ifdef CONFIG_IO_URING
1224 	struct io_uring_task		*io_uring;
1225 #endif
1226 
1227 	/* Namespaces: */
1228 	struct nsproxy			*nsproxy;
1229 
1230 	/* Signal handlers: */
1231 	struct signal_struct		*signal;
1232 	struct sighand_struct __rcu		*sighand;
1233 	sigset_t			blocked;
1234 	sigset_t			real_blocked;
1235 	/* Restored if set_restore_sigmask() was used: */
1236 	sigset_t			saved_sigmask;
1237 	struct sigpending		pending;
1238 	unsigned long			sas_ss_sp;
1239 	size_t				sas_ss_size;
1240 	unsigned int			sas_ss_flags;
1241 
1242 	struct callback_head		*task_works;
1243 
1244 #ifdef CONFIG_AUDIT
1245 #ifdef CONFIG_AUDITSYSCALL
1246 	struct audit_context		*audit_context;
1247 #endif
1248 	kuid_t				loginuid;
1249 	unsigned int			sessionid;
1250 #endif
1251 	struct seccomp			seccomp;
1252 	struct syscall_user_dispatch	syscall_dispatch;
1253 
1254 	/* Thread group tracking: */
1255 	u64				parent_exec_id;
1256 	u64				self_exec_id;
1257 
1258 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1259 	spinlock_t			alloc_lock;
1260 
1261 	/* Protection of the PI data structures: */
1262 	raw_spinlock_t			pi_lock;
1263 
1264 	struct wake_q_node		wake_q;
1265 
1266 #ifdef CONFIG_RT_MUTEXES
1267 	/* PI waiters blocked on a rt_mutex held by this task: */
1268 	struct rb_root_cached		pi_waiters;
1269 	/* Updated under owner's pi_lock and rq lock */
1270 	struct task_struct		*pi_top_task;
1271 	/* Deadlock detection and priority inheritance handling: */
1272 	struct rt_mutex_waiter		*pi_blocked_on;
1273 #endif
1274 
1275 #ifdef CONFIG_DEBUG_MUTEXES
1276 	/* Mutex deadlock detection: */
1277 	struct mutex_waiter		*blocked_on;
1278 #endif
1279 
1280 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1281 	int				non_block_count;
1282 #endif
1283 
1284 #ifdef CONFIG_TRACE_IRQFLAGS
1285 	struct irqtrace_events		irqtrace;
1286 	unsigned int			hardirq_threaded;
1287 	u64				hardirq_chain_key;
1288 	int				softirqs_enabled;
1289 	int				softirq_context;
1290 	int				irq_config;
1291 #endif
1292 #ifdef CONFIG_PREEMPT_RT
1293 	int				softirq_disable_cnt;
1294 #endif
1295 
1296 #ifdef CONFIG_LOCKDEP
1297 # define MAX_LOCK_DEPTH			48UL
1298 	u64				curr_chain_key;
1299 	int				lockdep_depth;
1300 	unsigned int			lockdep_recursion;
1301 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1302 #endif
1303 
1304 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1305 	unsigned int			in_ubsan;
1306 #endif
1307 
1308 	/* Journalling filesystem info: */
1309 	void				*journal_info;
1310 
1311 	/* Stacked block device info: */
1312 	struct bio_list			*bio_list;
1313 
1314 	/* Stack plugging: */
1315 	struct blk_plug			*plug;
1316 
1317 	/* VM state: */
1318 	struct reclaim_state		*reclaim_state;
1319 
1320 	struct io_context		*io_context;
1321 
1322 #ifdef CONFIG_COMPACTION
1323 	struct capture_control		*capture_control;
1324 #endif
1325 	/* Ptrace state: */
1326 	unsigned long			ptrace_message;
1327 	kernel_siginfo_t		*last_siginfo;
1328 
1329 	struct task_io_accounting	ioac;
1330 #ifdef CONFIG_PSI
1331 	/* Pressure stall state */
1332 	unsigned int			psi_flags;
1333 #endif
1334 #ifdef CONFIG_TASK_XACCT
1335 	/* Accumulated RSS usage: */
1336 	u64				acct_rss_mem1;
1337 	/* Accumulated virtual memory usage: */
1338 	u64				acct_vm_mem1;
1339 	/* stime + utime since last update: */
1340 	u64				acct_timexpd;
1341 #endif
1342 #ifdef CONFIG_CPUSETS
1343 	/* Protected by ->alloc_lock: */
1344 	nodemask_t			mems_allowed;
1345 	/* Sequence number to catch updates: */
1346 	seqcount_spinlock_t		mems_allowed_seq;
1347 	int				cpuset_mem_spread_rotor;
1348 	int				cpuset_slab_spread_rotor;
1349 #endif
1350 #ifdef CONFIG_CGROUPS
1351 	/* Control Group info protected by css_set_lock: */
1352 	struct css_set __rcu		*cgroups;
1353 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1354 	struct list_head		cg_list;
1355 #endif
1356 #ifdef CONFIG_X86_CPU_RESCTRL
1357 	u32				closid;
1358 	u32				rmid;
1359 #endif
1360 #ifdef CONFIG_FUTEX
1361 	struct robust_list_head __user	*robust_list;
1362 #ifdef CONFIG_COMPAT
1363 	struct compat_robust_list_head __user *compat_robust_list;
1364 #endif
1365 	struct list_head		pi_state_list;
1366 	struct futex_pi_state		*pi_state_cache;
1367 	struct mutex			futex_exit_mutex;
1368 	unsigned int			futex_state;
1369 #endif
1370 #ifdef CONFIG_PERF_EVENTS
1371 	struct perf_event_context	*perf_event_ctxp;
1372 	struct mutex			perf_event_mutex;
1373 	struct list_head		perf_event_list;
1374 #endif
1375 #ifdef CONFIG_DEBUG_PREEMPT
1376 	unsigned long			preempt_disable_ip;
1377 #endif
1378 #ifdef CONFIG_NUMA
1379 	/* Protected by alloc_lock: */
1380 	struct mempolicy		*mempolicy;
1381 	short				il_prev;
1382 	short				pref_node_fork;
1383 #endif
1384 #ifdef CONFIG_NUMA_BALANCING
1385 	int				numa_scan_seq;
1386 	unsigned int			numa_scan_period;
1387 	unsigned int			numa_scan_period_max;
1388 	int				numa_preferred_nid;
1389 	unsigned long			numa_migrate_retry;
1390 	/* Migration stamp: */
1391 	u64				node_stamp;
1392 	u64				last_task_numa_placement;
1393 	u64				last_sum_exec_runtime;
1394 	struct callback_head		numa_work;
1395 
1396 	/*
1397 	 * This pointer is only modified for current in syscall and
1398 	 * pagefault context (and for tasks being destroyed), so it can be read
1399 	 * from any of the following contexts:
1400 	 *  - RCU read-side critical section
1401 	 *  - current->numa_group from everywhere
1402 	 *  - task's runqueue locked, task not running
1403 	 */
1404 	struct numa_group __rcu		*numa_group;
1405 
1406 	/*
1407 	 * numa_faults is an array split into four regions:
1408 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1409 	 * in this precise order.
1410 	 *
1411 	 * faults_memory: Exponential decaying average of faults on a per-node
1412 	 * basis. Scheduling placement decisions are made based on these
1413 	 * counts. The values remain static for the duration of a PTE scan.
1414 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1415 	 * hinting fault was incurred.
1416 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1417 	 * during the current scan window. When the scan completes, the counts
1418 	 * in faults_memory and faults_cpu decay and these values are copied.
1419 	 */
1420 	unsigned long			*numa_faults;
1421 	unsigned long			total_numa_faults;
1422 
1423 	/*
1424 	 * numa_faults_locality tracks if faults recorded during the last
1425 	 * scan window were remote/local or failed to migrate. The task scan
1426 	 * period is adapted based on the locality of the faults with different
1427 	 * weights depending on whether they were shared or private faults
1428 	 */
1429 	unsigned long			numa_faults_locality[3];
1430 
1431 	unsigned long			numa_pages_migrated;
1432 #endif /* CONFIG_NUMA_BALANCING */
1433 
1434 #ifdef CONFIG_RSEQ
1435 	struct rseq __user *rseq;
1436 	u32 rseq_len;
1437 	u32 rseq_sig;
1438 	/*
1439 	 * RmW on rseq_event_mask must be performed atomically
1440 	 * with respect to preemption.
1441 	 */
1442 	unsigned long rseq_event_mask;
1443 #endif
1444 
1445 #ifdef CONFIG_SCHED_MM_CID
1446 	int				mm_cid;		/* Current cid in mm */
1447 	int				last_mm_cid;	/* Most recent cid in mm */
1448 	int				migrate_from_cpu;
1449 	int				mm_cid_active;	/* Whether cid bitmap is active */
1450 	struct callback_head		cid_work;
1451 #endif
1452 
1453 	struct tlbflush_unmap_batch	tlb_ubc;
1454 
1455 	/* Cache last used pipe for splice(): */
1456 	struct pipe_inode_info		*splice_pipe;
1457 
1458 	struct page_frag		task_frag;
1459 
1460 #ifdef CONFIG_TASK_DELAY_ACCT
1461 	struct task_delay_info		*delays;
1462 #endif
1463 
1464 #ifdef CONFIG_RECLAIM_ACCT
1465 	struct reclaim_acct		*reclaim_acct;
1466 #endif
1467 
1468 #ifdef CONFIG_FAULT_INJECTION
1469 	int				make_it_fail;
1470 	unsigned int			fail_nth;
1471 #endif
1472 	/*
1473 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1474 	 * balance_dirty_pages() for a dirty throttling pause:
1475 	 */
1476 	int				nr_dirtied;
1477 	int				nr_dirtied_pause;
1478 	/* Start of a write-and-pause period: */
1479 	unsigned long			dirty_paused_when;
1480 
1481 #ifdef CONFIG_LATENCYTOP
1482 	int				latency_record_count;
1483 	struct latency_record		latency_record[LT_SAVECOUNT];
1484 #endif
1485 	/*
1486 	 * Time slack values; these are used to round up poll() and
1487 	 * select() etc timeout values. These are in nanoseconds.
1488 	 */
1489 	u64				timer_slack_ns;
1490 	u64				default_timer_slack_ns;
1491 
1492 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1493 	unsigned int			kasan_depth;
1494 #endif
1495 
1496 #ifdef CONFIG_KCSAN
1497 	struct kcsan_ctx		kcsan_ctx;
1498 #ifdef CONFIG_TRACE_IRQFLAGS
1499 	struct irqtrace_events		kcsan_save_irqtrace;
1500 #endif
1501 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1502 	int				kcsan_stack_depth;
1503 #endif
1504 #endif
1505 
1506 #ifdef CONFIG_KMSAN
1507 	struct kmsan_ctx		kmsan_ctx;
1508 #endif
1509 
1510 #if IS_ENABLED(CONFIG_KUNIT)
1511 	struct kunit			*kunit_test;
1512 #endif
1513 
1514 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1515 	/* Index of current stored address in ret_stack: */
1516 	int				curr_ret_stack;
1517 	int				curr_ret_depth;
1518 
1519 	/* Stack of return addresses for return function tracing: */
1520 	struct ftrace_ret_stack		*ret_stack;
1521 
1522 	/* Timestamp for last schedule: */
1523 	unsigned long long		ftrace_timestamp;
1524 
1525 	/*
1526 	 * Number of functions that haven't been traced
1527 	 * because of depth overrun:
1528 	 */
1529 	atomic_t			trace_overrun;
1530 
1531 	/* Pause tracing: */
1532 	atomic_t			tracing_graph_pause;
1533 #endif
1534 
1535 #ifdef CONFIG_TRACING
1536 	/* Bitmask and counter of trace recursion: */
1537 	unsigned long			trace_recursion;
1538 #endif /* CONFIG_TRACING */
1539 
1540 #ifdef CONFIG_KCOV
1541 	/* See kernel/kcov.c for more details. */
1542 
1543 	/* Coverage collection mode enabled for this task (0 if disabled): */
1544 	unsigned int			kcov_mode;
1545 
1546 	/* Size of the kcov_area: */
1547 	unsigned int			kcov_size;
1548 
1549 	/* Buffer for coverage collection: */
1550 	void				*kcov_area;
1551 
1552 	/* KCOV descriptor wired with this task or NULL: */
1553 	struct kcov			*kcov;
1554 
1555 	/* KCOV common handle for remote coverage collection: */
1556 	u64				kcov_handle;
1557 
1558 	/* KCOV sequence number: */
1559 	int				kcov_sequence;
1560 
1561 	/* Collect coverage from softirq context: */
1562 	unsigned int			kcov_softirq;
1563 #endif
1564 
1565 #ifdef CONFIG_MEMCG
1566 	struct mem_cgroup		*memcg_in_oom;
1567 	gfp_t				memcg_oom_gfp_mask;
1568 	int				memcg_oom_order;
1569 
1570 	/* Number of pages to reclaim on returning to userland: */
1571 	unsigned int			memcg_nr_pages_over_high;
1572 
1573 	/* Used by memcontrol for targeted memcg charge: */
1574 	struct mem_cgroup		*active_memcg;
1575 #endif
1576 
1577 #ifdef CONFIG_BLK_CGROUP
1578 	struct gendisk			*throttle_disk;
1579 #endif
1580 
1581 #ifdef CONFIG_UPROBES
1582 	struct uprobe_task		*utask;
1583 #endif
1584 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1585 	unsigned int			sequential_io;
1586 	unsigned int			sequential_io_avg;
1587 #endif
1588 	struct kmap_ctrl		kmap_ctrl;
1589 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1590 	unsigned long			task_state_change;
1591 # ifdef CONFIG_PREEMPT_RT
1592 	unsigned long			saved_state_change;
1593 # endif
1594 #endif
1595 	struct rcu_head			rcu;
1596 	refcount_t			rcu_users;
1597 	int				pagefault_disabled;
1598 #ifdef CONFIG_MMU
1599 	struct task_struct		*oom_reaper_list;
1600 	struct timer_list		oom_reaper_timer;
1601 #endif
1602 #ifdef CONFIG_VMAP_STACK
1603 	struct vm_struct		*stack_vm_area;
1604 #endif
1605 #ifdef CONFIG_THREAD_INFO_IN_TASK
1606 	/* A live task holds one reference: */
1607 	refcount_t			stack_refcount;
1608 #endif
1609 #ifdef CONFIG_LIVEPATCH
1610 	int patch_state;
1611 #endif
1612 #ifdef CONFIG_SECURITY
1613 	/* Used by LSM modules for access restriction: */
1614 	void				*security;
1615 #endif
1616 #ifdef CONFIG_BPF_SYSCALL
1617 	/* Used by BPF task local storage */
1618 	struct bpf_local_storage __rcu	*bpf_storage;
1619 	/* Used for BPF run context */
1620 	struct bpf_run_ctx		*bpf_ctx;
1621 #endif
1622 
1623 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1624 	unsigned long			lowest_stack;
1625 	unsigned long			prev_lowest_stack;
1626 #endif
1627 
1628 #ifdef CONFIG_X86_MCE
1629 	void __user			*mce_vaddr;
1630 	__u64				mce_kflags;
1631 	u64				mce_addr;
1632 	__u64				mce_ripv : 1,
1633 					mce_whole_page : 1,
1634 					__mce_reserved : 62;
1635 	struct callback_head		mce_kill_me;
1636 	int				mce_count;
1637 #endif
1638 
1639 #ifdef CONFIG_KRETPROBES
1640 	struct llist_head               kretprobe_instances;
1641 #endif
1642 #ifdef CONFIG_RETHOOK
1643 	struct llist_head               rethooks;
1644 #endif
1645 
1646 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1647 	/*
1648 	 * If L1D flush is supported on mm context switch
1649 	 * then we use this callback head to queue kill work
1650 	 * to kill tasks that are not running on SMT disabled
1651 	 * cores
1652 	 */
1653 	struct callback_head		l1d_flush_kill;
1654 #endif
1655 
1656 #ifdef CONFIG_RV
1657 	/*
1658 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1659 	 * If we find justification for more monitors, we can think
1660 	 * about adding more or developing a dynamic method. So far,
1661 	 * none of these are justified.
1662 	 */
1663 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1664 #endif
1665 
1666 #ifdef CONFIG_USER_EVENTS
1667 	struct user_event_mm		*user_event_mm;
1668 #endif
1669 
1670 #ifdef CONFIG_ACCESS_TOKENID
1671 	u64				token;
1672 	u64				ftoken;
1673 #endif
1674 
1675 	/*
1676 	 * New fields for task_struct should be added above here, so that
1677 	 * they are included in the randomized portion of task_struct.
1678 	 */
1679 	randomized_struct_fields_end
1680 
1681 	/* CPU-specific state of this task: */
1682 	struct thread_struct		thread;
1683 
1684 	/*
1685 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1686 	 * structure.  It *MUST* be at the end of 'task_struct'.
1687 	 *
1688 	 * Do not put anything below here!
1689 	 */
1690 };
1691 
task_pid(struct task_struct * task)1692 static inline struct pid *task_pid(struct task_struct *task)
1693 {
1694 	return task->thread_pid;
1695 }
1696 
1697 /*
1698  * the helpers to get the task's different pids as they are seen
1699  * from various namespaces
1700  *
1701  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1702  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1703  *                     current.
1704  * task_xid_nr_ns()  : id seen from the ns specified;
1705  *
1706  * see also pid_nr() etc in include/linux/pid.h
1707  */
1708 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1709 
task_pid_nr(struct task_struct * tsk)1710 static inline pid_t task_pid_nr(struct task_struct *tsk)
1711 {
1712 	return tsk->pid;
1713 }
1714 
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1715 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1716 {
1717 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1718 }
1719 
task_pid_vnr(struct task_struct * tsk)1720 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1721 {
1722 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1723 }
1724 
1725 
task_tgid_nr(struct task_struct * tsk)1726 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1727 {
1728 	return tsk->tgid;
1729 }
1730 
1731 /**
1732  * pid_alive - check that a task structure is not stale
1733  * @p: Task structure to be checked.
1734  *
1735  * Test if a process is not yet dead (at most zombie state)
1736  * If pid_alive fails, then pointers within the task structure
1737  * can be stale and must not be dereferenced.
1738  *
1739  * Return: 1 if the process is alive. 0 otherwise.
1740  */
pid_alive(const struct task_struct * p)1741 static inline int pid_alive(const struct task_struct *p)
1742 {
1743 	return p->thread_pid != NULL;
1744 }
1745 
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1746 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1747 {
1748 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1749 }
1750 
task_pgrp_vnr(struct task_struct * tsk)1751 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1752 {
1753 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1754 }
1755 
1756 
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1757 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1758 {
1759 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1760 }
1761 
task_session_vnr(struct task_struct * tsk)1762 static inline pid_t task_session_vnr(struct task_struct *tsk)
1763 {
1764 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1765 }
1766 
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1767 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1768 {
1769 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1770 }
1771 
task_tgid_vnr(struct task_struct * tsk)1772 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1773 {
1774 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1775 }
1776 
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1777 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1778 {
1779 	pid_t pid = 0;
1780 
1781 	rcu_read_lock();
1782 	if (pid_alive(tsk))
1783 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1784 	rcu_read_unlock();
1785 
1786 	return pid;
1787 }
1788 
task_ppid_nr(const struct task_struct * tsk)1789 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1790 {
1791 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1792 }
1793 
1794 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)1795 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1796 {
1797 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1798 }
1799 
1800 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1801 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1802 
__task_state_index(unsigned int tsk_state,unsigned int tsk_exit_state)1803 static inline unsigned int __task_state_index(unsigned int tsk_state,
1804 					      unsigned int tsk_exit_state)
1805 {
1806 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1807 
1808 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1809 
1810 	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1811 		state = TASK_REPORT_IDLE;
1812 
1813 	/*
1814 	 * We're lying here, but rather than expose a completely new task state
1815 	 * to userspace, we can make this appear as if the task has gone through
1816 	 * a regular rt_mutex_lock() call.
1817 	 * Report frozen tasks as uninterruptible.
1818 	 */
1819 	if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1820 		state = TASK_UNINTERRUPTIBLE;
1821 
1822 	return fls(state);
1823 }
1824 
task_state_index(struct task_struct * tsk)1825 static inline unsigned int task_state_index(struct task_struct *tsk)
1826 {
1827 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1828 }
1829 
task_index_to_char(unsigned int state)1830 static inline char task_index_to_char(unsigned int state)
1831 {
1832 	static const char state_char[] = "RSDTtXZPI";
1833 
1834 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1835 
1836 	return state_char[state];
1837 }
1838 
task_state_to_char(struct task_struct * tsk)1839 static inline char task_state_to_char(struct task_struct *tsk)
1840 {
1841 	return task_index_to_char(task_state_index(tsk));
1842 }
1843 
1844 /**
1845  * is_global_init - check if a task structure is init. Since init
1846  * is free to have sub-threads we need to check tgid.
1847  * @tsk: Task structure to be checked.
1848  *
1849  * Check if a task structure is the first user space task the kernel created.
1850  *
1851  * Return: 1 if the task structure is init. 0 otherwise.
1852  */
is_global_init(struct task_struct * tsk)1853 static inline int is_global_init(struct task_struct *tsk)
1854 {
1855 	return task_tgid_nr(tsk) == 1;
1856 }
1857 
1858 extern struct pid *cad_pid;
1859 
1860 /*
1861  * Per process flags
1862  */
1863 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1864 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1865 #define PF_EXITING		0x00000004	/* Getting shut down */
1866 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1867 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1868 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1869 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1870 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1871 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1872 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1873 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1874 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1875 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1876 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1877 #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1878 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1879 #define PF_KCOMPACTD		0x00010000	/* I am kcompactd */
1880 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1881 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1882 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1883 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1884 						 * I am cleaning dirty pages from some other bdi. */
1885 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1886 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1887 #define PF__HOLE__00800000	0x00800000
1888 #define PF_FROZEN		PF__HOLE__00800000	/* Frozen for system suspend */
1889 #define PF__HOLE__01000000	0x01000000
1890 #define PF__HOLE__02000000	0x02000000
1891 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1892 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1893 #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1894 #define PF__HOLE__20000000	0x20000000
1895 #define PF__HOLE__40000000	0x40000000
1896 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1897 
1898 /*
1899  * Only the _current_ task can read/write to tsk->flags, but other
1900  * tasks can access tsk->flags in readonly mode for example
1901  * with tsk_used_math (like during threaded core dumping).
1902  * There is however an exception to this rule during ptrace
1903  * or during fork: the ptracer task is allowed to write to the
1904  * child->flags of its traced child (same goes for fork, the parent
1905  * can write to the child->flags), because we're guaranteed the
1906  * child is not running and in turn not changing child->flags
1907  * at the same time the parent does it.
1908  */
1909 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1910 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1911 #define clear_used_math()			clear_stopped_child_used_math(current)
1912 #define set_used_math()				set_stopped_child_used_math(current)
1913 
1914 #define conditional_stopped_child_used_math(condition, child) \
1915 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1916 
1917 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1918 
1919 #define copy_to_stopped_child_used_math(child) \
1920 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1921 
1922 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1923 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1924 #define used_math()				tsk_used_math(current)
1925 
is_percpu_thread(void)1926 static __always_inline bool is_percpu_thread(void)
1927 {
1928 #ifdef CONFIG_SMP
1929 	return (current->flags & PF_NO_SETAFFINITY) &&
1930 		(current->nr_cpus_allowed  == 1);
1931 #else
1932 	return true;
1933 #endif
1934 }
1935 
1936 /* Per-process atomic flags. */
1937 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1938 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1939 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1940 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1941 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1942 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1943 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1944 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1945 
1946 #define TASK_PFA_TEST(name, func)					\
1947 	static inline bool task_##func(struct task_struct *p)		\
1948 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1949 
1950 #define TASK_PFA_SET(name, func)					\
1951 	static inline void task_set_##func(struct task_struct *p)	\
1952 	{ set_bit(PFA_##name, &p->atomic_flags); }
1953 
1954 #define TASK_PFA_CLEAR(name, func)					\
1955 	static inline void task_clear_##func(struct task_struct *p)	\
1956 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1957 
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1958 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1959 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1960 
1961 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1962 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1963 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1964 
1965 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1966 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1967 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1968 
1969 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1970 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1971 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1972 
1973 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1974 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1975 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1976 
1977 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1978 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1979 
1980 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1981 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1982 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1983 
1984 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1985 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1986 
1987 static inline void
1988 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1989 {
1990 	current->flags &= ~flags;
1991 	current->flags |= orig_flags & flags;
1992 }
1993 
1994 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1995 extern int task_can_attach(struct task_struct *p);
1996 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1997 extern void dl_bw_free(int cpu, u64 dl_bw);
1998 #ifdef CONFIG_SMP
1999 
2000 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
2001 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
2002 
2003 /**
2004  * set_cpus_allowed_ptr - set CPU affinity mask of a task
2005  * @p: the task
2006  * @new_mask: CPU affinity mask
2007  *
2008  * Return: zero if successful, or a negative error code
2009  */
2010 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
2011 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
2012 extern void release_user_cpus_ptr(struct task_struct *p);
2013 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
2014 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
2015 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
2016 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2017 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2018 {
2019 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)2020 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2021 {
2022 	if (!cpumask_test_cpu(0, new_mask))
2023 		return -EINVAL;
2024 	return 0;
2025 }
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2026 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
2027 {
2028 	if (src->user_cpus_ptr)
2029 		return -EINVAL;
2030 	return 0;
2031 }
release_user_cpus_ptr(struct task_struct * p)2032 static inline void release_user_cpus_ptr(struct task_struct *p)
2033 {
2034 	WARN_ON(p->user_cpus_ptr);
2035 }
2036 
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)2037 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
2038 {
2039 	return 0;
2040 }
2041 #endif
2042 
2043 extern int yield_to(struct task_struct *p, bool preempt);
2044 extern void set_user_nice(struct task_struct *p, long nice);
2045 extern int task_prio(const struct task_struct *p);
2046 
2047 /**
2048  * task_nice - return the nice value of a given task.
2049  * @p: the task in question.
2050  *
2051  * Return: The nice value [ -20 ... 0 ... 19 ].
2052  */
task_nice(const struct task_struct * p)2053 static inline int task_nice(const struct task_struct *p)
2054 {
2055 	return PRIO_TO_NICE((p)->static_prio);
2056 }
2057 
2058 extern int can_nice(const struct task_struct *p, const int nice);
2059 extern int task_curr(const struct task_struct *p);
2060 extern int idle_cpu(int cpu);
2061 extern int available_idle_cpu(int cpu);
2062 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
2063 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
2064 extern void sched_set_fifo(struct task_struct *p);
2065 extern void sched_set_fifo_low(struct task_struct *p);
2066 extern void sched_set_normal(struct task_struct *p, int nice);
2067 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
2068 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
2069 extern struct task_struct *idle_task(int cpu);
2070 
2071 /**
2072  * is_idle_task - is the specified task an idle task?
2073  * @p: the task in question.
2074  *
2075  * Return: 1 if @p is an idle task. 0 otherwise.
2076  */
is_idle_task(const struct task_struct * p)2077 static __always_inline bool is_idle_task(const struct task_struct *p)
2078 {
2079 	return !!(p->flags & PF_IDLE);
2080 }
2081 
2082 extern struct task_struct *curr_task(int cpu);
2083 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
2084 
2085 void yield(void);
2086 
2087 union thread_union {
2088 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
2089 	struct task_struct task;
2090 #endif
2091 #ifndef CONFIG_THREAD_INFO_IN_TASK
2092 	struct thread_info thread_info;
2093 #endif
2094 	unsigned long stack[THREAD_SIZE/sizeof(long)];
2095 };
2096 
2097 #ifndef CONFIG_THREAD_INFO_IN_TASK
2098 extern struct thread_info init_thread_info;
2099 #endif
2100 
2101 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
2102 
2103 #ifdef CONFIG_THREAD_INFO_IN_TASK
2104 # define task_thread_info(task)	(&(task)->thread_info)
2105 #elif !defined(__HAVE_THREAD_FUNCTIONS)
2106 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
2107 #endif
2108 
2109 /*
2110  * find a task by one of its numerical ids
2111  *
2112  * find_task_by_pid_ns():
2113  *      finds a task by its pid in the specified namespace
2114  * find_task_by_vpid():
2115  *      finds a task by its virtual pid
2116  *
2117  * see also find_vpid() etc in include/linux/pid.h
2118  */
2119 
2120 extern struct task_struct *find_task_by_vpid(pid_t nr);
2121 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
2122 
2123 /*
2124  * find a task by its virtual pid and get the task struct
2125  */
2126 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
2127 
2128 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2129 extern int wake_up_process(struct task_struct *tsk);
2130 extern void wake_up_new_task(struct task_struct *tsk);
2131 
2132 #ifdef CONFIG_SMP
2133 extern void kick_process(struct task_struct *tsk);
2134 #else
kick_process(struct task_struct * tsk)2135 static inline void kick_process(struct task_struct *tsk) { }
2136 #endif
2137 
2138 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2139 
set_task_comm(struct task_struct * tsk,const char * from)2140 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2141 {
2142 	__set_task_comm(tsk, from, false);
2143 }
2144 
2145 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
2146 #define get_task_comm(buf, tsk) ({			\
2147 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
2148 	__get_task_comm(buf, sizeof(buf), tsk);		\
2149 })
2150 
2151 #ifdef CONFIG_SMP
scheduler_ipi(void)2152 static __always_inline void scheduler_ipi(void)
2153 {
2154 	/*
2155 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2156 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2157 	 * this IPI.
2158 	 */
2159 	preempt_fold_need_resched();
2160 }
2161 #else
scheduler_ipi(void)2162 static inline void scheduler_ipi(void) { }
2163 #endif
2164 
2165 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2166 
2167 /*
2168  * Set thread flags in other task's structures.
2169  * See asm/thread_info.h for TIF_xxxx flags available:
2170  */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2171 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2172 {
2173 	set_ti_thread_flag(task_thread_info(tsk), flag);
2174 }
2175 
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2176 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2177 {
2178 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2179 }
2180 
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)2181 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2182 					  bool value)
2183 {
2184 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2185 }
2186 
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2187 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2188 {
2189 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2190 }
2191 
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2192 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2193 {
2194 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2195 }
2196 
test_tsk_thread_flag(struct task_struct * tsk,int flag)2197 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2198 {
2199 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2200 }
2201 
set_tsk_need_resched(struct task_struct * tsk)2202 static inline void set_tsk_need_resched(struct task_struct *tsk)
2203 {
2204 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2205 }
2206 
clear_tsk_need_resched(struct task_struct * tsk)2207 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2208 {
2209 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2210 }
2211 
test_tsk_need_resched(struct task_struct * tsk)2212 static inline int test_tsk_need_resched(struct task_struct *tsk)
2213 {
2214 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2215 }
2216 
2217 /*
2218  * cond_resched() and cond_resched_lock(): latency reduction via
2219  * explicit rescheduling in places that are safe. The return
2220  * value indicates whether a reschedule was done in fact.
2221  * cond_resched_lock() will drop the spinlock before scheduling,
2222  */
2223 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2224 extern int __cond_resched(void);
2225 
2226 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2227 
2228 void sched_dynamic_klp_enable(void);
2229 void sched_dynamic_klp_disable(void);
2230 
2231 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2232 
_cond_resched(void)2233 static __always_inline int _cond_resched(void)
2234 {
2235 	return static_call_mod(cond_resched)();
2236 }
2237 
2238 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2239 
2240 extern int dynamic_cond_resched(void);
2241 
_cond_resched(void)2242 static __always_inline int _cond_resched(void)
2243 {
2244 	return dynamic_cond_resched();
2245 }
2246 
2247 #else /* !CONFIG_PREEMPTION */
2248 
_cond_resched(void)2249 static inline int _cond_resched(void)
2250 {
2251 	klp_sched_try_switch();
2252 	return __cond_resched();
2253 }
2254 
2255 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2256 
2257 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2258 
_cond_resched(void)2259 static inline int _cond_resched(void)
2260 {
2261 	klp_sched_try_switch();
2262 	return 0;
2263 }
2264 
2265 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2266 
2267 #define cond_resched() ({			\
2268 	__might_resched(__FILE__, __LINE__, 0);	\
2269 	_cond_resched();			\
2270 })
2271 
2272 extern int __cond_resched_lock(spinlock_t *lock);
2273 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2274 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2275 
2276 #define MIGHT_RESCHED_RCU_SHIFT		8
2277 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2278 
2279 #ifndef CONFIG_PREEMPT_RT
2280 /*
2281  * Non RT kernels have an elevated preempt count due to the held lock,
2282  * but are not allowed to be inside a RCU read side critical section
2283  */
2284 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2285 #else
2286 /*
2287  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2288  * cond_resched*lock() has to take that into account because it checks for
2289  * preempt_count() and rcu_preempt_depth().
2290  */
2291 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2292 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2293 #endif
2294 
2295 #define cond_resched_lock(lock) ({						\
2296 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2297 	__cond_resched_lock(lock);						\
2298 })
2299 
2300 #define cond_resched_rwlock_read(lock) ({					\
2301 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2302 	__cond_resched_rwlock_read(lock);					\
2303 })
2304 
2305 #define cond_resched_rwlock_write(lock) ({					\
2306 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2307 	__cond_resched_rwlock_write(lock);					\
2308 })
2309 
cond_resched_rcu(void)2310 static inline void cond_resched_rcu(void)
2311 {
2312 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2313 	rcu_read_unlock();
2314 	cond_resched();
2315 	rcu_read_lock();
2316 #endif
2317 }
2318 
2319 #ifdef CONFIG_PREEMPT_DYNAMIC
2320 
2321 extern bool preempt_model_none(void);
2322 extern bool preempt_model_voluntary(void);
2323 extern bool preempt_model_full(void);
2324 
2325 #else
2326 
preempt_model_none(void)2327 static inline bool preempt_model_none(void)
2328 {
2329 	return IS_ENABLED(CONFIG_PREEMPT_NONE);
2330 }
preempt_model_voluntary(void)2331 static inline bool preempt_model_voluntary(void)
2332 {
2333 	return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2334 }
preempt_model_full(void)2335 static inline bool preempt_model_full(void)
2336 {
2337 	return IS_ENABLED(CONFIG_PREEMPT);
2338 }
2339 
2340 #endif
2341 
preempt_model_rt(void)2342 static inline bool preempt_model_rt(void)
2343 {
2344 	return IS_ENABLED(CONFIG_PREEMPT_RT);
2345 }
2346 
2347 /*
2348  * Does the preemption model allow non-cooperative preemption?
2349  *
2350  * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2351  * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2352  * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2353  * PREEMPT_NONE model.
2354  */
preempt_model_preemptible(void)2355 static inline bool preempt_model_preemptible(void)
2356 {
2357 	return preempt_model_full() || preempt_model_rt();
2358 }
2359 
2360 /*
2361  * Does a critical section need to be broken due to another
2362  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2363  * but a general need for low latency)
2364  */
spin_needbreak(spinlock_t * lock)2365 static inline int spin_needbreak(spinlock_t *lock)
2366 {
2367 #ifdef CONFIG_PREEMPTION
2368 	return spin_is_contended(lock);
2369 #else
2370 	return 0;
2371 #endif
2372 }
2373 
2374 /*
2375  * Check if a rwlock is contended.
2376  * Returns non-zero if there is another task waiting on the rwlock.
2377  * Returns zero if the lock is not contended or the system / underlying
2378  * rwlock implementation does not support contention detection.
2379  * Technically does not depend on CONFIG_PREEMPTION, but a general need
2380  * for low latency.
2381  */
rwlock_needbreak(rwlock_t * lock)2382 static inline int rwlock_needbreak(rwlock_t *lock)
2383 {
2384 #ifdef CONFIG_PREEMPTION
2385 	return rwlock_is_contended(lock);
2386 #else
2387 	return 0;
2388 #endif
2389 }
2390 
need_resched(void)2391 static __always_inline bool need_resched(void)
2392 {
2393 	return unlikely(tif_need_resched());
2394 }
2395 
2396 /*
2397  * Wrappers for p->thread_info->cpu access. No-op on UP.
2398  */
2399 #ifdef CONFIG_SMP
2400 
task_cpu(const struct task_struct * p)2401 static inline unsigned int task_cpu(const struct task_struct *p)
2402 {
2403 	return READ_ONCE(task_thread_info(p)->cpu);
2404 }
2405 
2406 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2407 
2408 #else
2409 
task_cpu(const struct task_struct * p)2410 static inline unsigned int task_cpu(const struct task_struct *p)
2411 {
2412 	return 0;
2413 }
2414 
set_task_cpu(struct task_struct * p,unsigned int cpu)2415 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2416 {
2417 }
2418 
2419 #endif /* CONFIG_SMP */
2420 
2421 extern bool sched_task_on_rq(struct task_struct *p);
2422 extern unsigned long get_wchan(struct task_struct *p);
2423 extern struct task_struct *cpu_curr_snapshot(int cpu);
2424 
2425 /*
2426  * In order to reduce various lock holder preemption latencies provide an
2427  * interface to see if a vCPU is currently running or not.
2428  *
2429  * This allows us to terminate optimistic spin loops and block, analogous to
2430  * the native optimistic spin heuristic of testing if the lock owner task is
2431  * running or not.
2432  */
2433 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2434 static inline bool vcpu_is_preempted(int cpu)
2435 {
2436 	return false;
2437 }
2438 #endif
2439 
2440 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2441 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2442 
2443 #ifndef TASK_SIZE_OF
2444 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2445 #endif
2446 
2447 #ifdef CONFIG_SMP
owner_on_cpu(struct task_struct * owner)2448 static inline bool owner_on_cpu(struct task_struct *owner)
2449 {
2450 	/*
2451 	 * As lock holder preemption issue, we both skip spinning if
2452 	 * task is not on cpu or its cpu is preempted
2453 	 */
2454 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2455 }
2456 
2457 /* Returns effective CPU energy utilization, as seen by the scheduler */
2458 unsigned long sched_cpu_util(int cpu);
2459 #endif /* CONFIG_SMP */
2460 
2461 #ifdef CONFIG_RSEQ
2462 
2463 /*
2464  * Map the event mask on the user-space ABI enum rseq_cs_flags
2465  * for direct mask checks.
2466  */
2467 enum rseq_event_mask_bits {
2468 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2469 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2470 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2471 };
2472 
2473 enum rseq_event_mask {
2474 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2475 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2476 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2477 };
2478 
rseq_set_notify_resume(struct task_struct * t)2479 static inline void rseq_set_notify_resume(struct task_struct *t)
2480 {
2481 	if (t->rseq)
2482 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2483 }
2484 
2485 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2486 
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2487 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2488 					     struct pt_regs *regs)
2489 {
2490 	if (current->rseq)
2491 		__rseq_handle_notify_resume(ksig, regs);
2492 }
2493 
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2494 static inline void rseq_signal_deliver(struct ksignal *ksig,
2495 				       struct pt_regs *regs)
2496 {
2497 	preempt_disable();
2498 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2499 	preempt_enable();
2500 	rseq_handle_notify_resume(ksig, regs);
2501 }
2502 
2503 /* rseq_preempt() requires preemption to be disabled. */
rseq_preempt(struct task_struct * t)2504 static inline void rseq_preempt(struct task_struct *t)
2505 {
2506 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2507 	rseq_set_notify_resume(t);
2508 }
2509 
2510 /* rseq_migrate() requires preemption to be disabled. */
rseq_migrate(struct task_struct * t)2511 static inline void rseq_migrate(struct task_struct *t)
2512 {
2513 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2514 	rseq_set_notify_resume(t);
2515 }
2516 
2517 /*
2518  * If parent process has a registered restartable sequences area, the
2519  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2520  */
rseq_fork(struct task_struct * t,unsigned long clone_flags)2521 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2522 {
2523 	if (clone_flags & CLONE_VM) {
2524 		t->rseq = NULL;
2525 		t->rseq_len = 0;
2526 		t->rseq_sig = 0;
2527 		t->rseq_event_mask = 0;
2528 	} else {
2529 		t->rseq = current->rseq;
2530 		t->rseq_len = current->rseq_len;
2531 		t->rseq_sig = current->rseq_sig;
2532 		t->rseq_event_mask = current->rseq_event_mask;
2533 	}
2534 }
2535 
rseq_execve(struct task_struct * t)2536 static inline void rseq_execve(struct task_struct *t)
2537 {
2538 	t->rseq = NULL;
2539 	t->rseq_len = 0;
2540 	t->rseq_sig = 0;
2541 	t->rseq_event_mask = 0;
2542 }
2543 
2544 #else
2545 
rseq_set_notify_resume(struct task_struct * t)2546 static inline void rseq_set_notify_resume(struct task_struct *t)
2547 {
2548 }
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2549 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2550 					     struct pt_regs *regs)
2551 {
2552 }
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2553 static inline void rseq_signal_deliver(struct ksignal *ksig,
2554 				       struct pt_regs *regs)
2555 {
2556 }
rseq_preempt(struct task_struct * t)2557 static inline void rseq_preempt(struct task_struct *t)
2558 {
2559 }
rseq_migrate(struct task_struct * t)2560 static inline void rseq_migrate(struct task_struct *t)
2561 {
2562 }
rseq_fork(struct task_struct * t,unsigned long clone_flags)2563 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2564 {
2565 }
rseq_execve(struct task_struct * t)2566 static inline void rseq_execve(struct task_struct *t)
2567 {
2568 }
2569 
2570 #endif
2571 
2572 #ifdef CONFIG_DEBUG_RSEQ
2573 
2574 void rseq_syscall(struct pt_regs *regs);
2575 
2576 #else
2577 
rseq_syscall(struct pt_regs * regs)2578 static inline void rseq_syscall(struct pt_regs *regs)
2579 {
2580 }
2581 
2582 #endif
2583 
2584 #ifdef CONFIG_SCHED_CORE
2585 extern void sched_core_free(struct task_struct *tsk);
2586 extern void sched_core_fork(struct task_struct *p);
2587 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2588 				unsigned long uaddr);
2589 extern int sched_core_idle_cpu(int cpu);
2590 #else
sched_core_free(struct task_struct * tsk)2591 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2592 static inline void sched_core_fork(struct task_struct *p) { }
sched_core_idle_cpu(int cpu)2593 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2594 #endif
2595 
2596 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2597 
2598 #endif
2599