1 #![allow(missing_docs, nonstandard_style)]
2
3 use crate::ffi::{CStr, OsStr, OsString};
4 use crate::io::ErrorKind;
5 use crate::mem::MaybeUninit;
6 use crate::os::windows::ffi::{OsStrExt, OsStringExt};
7 use crate::path::PathBuf;
8 use crate::time::Duration;
9
10 pub use self::rand::hashmap_random_keys;
11
12 #[macro_use]
13 pub mod compat;
14
15 pub mod api;
16
17 pub mod alloc;
18 pub mod args;
19 pub mod c;
20 pub mod cmath;
21 pub mod env;
22 pub mod fs;
23 pub mod handle;
24 pub mod io;
25 pub mod locks;
26 pub mod memchr;
27 pub mod net;
28 pub mod os;
29 pub mod os_str;
30 pub mod path;
31 pub mod pipe;
32 pub mod process;
33 pub mod rand;
34 pub mod stdio;
35 pub mod thread;
36 pub mod thread_local_dtor;
37 pub mod thread_local_key;
38 pub mod thread_parking;
39 pub mod time;
40 cfg_if::cfg_if! {
41 if #[cfg(not(target_vendor = "uwp"))] {
42 pub mod stack_overflow;
43 } else {
44 pub mod stack_overflow_uwp;
45 pub use self::stack_overflow_uwp as stack_overflow;
46 }
47 }
48
49 // SAFETY: must be called only once during runtime initialization.
50 // NOTE: this is not guaranteed to run, for example when Rust code is called externally.
init(_argc: isize, _argv: *const *const u8, _sigpipe: u8)51 pub unsafe fn init(_argc: isize, _argv: *const *const u8, _sigpipe: u8) {
52 stack_overflow::init();
53
54 // Normally, `thread::spawn` will call `Thread::set_name` but since this thread already
55 // exists, we have to call it ourselves.
56 thread::Thread::set_name(&CStr::from_bytes_with_nul_unchecked(b"main\0"));
57 }
58
59 // SAFETY: must be called only once during runtime cleanup.
60 // NOTE: this is not guaranteed to run, for example when the program aborts.
cleanup()61 pub unsafe fn cleanup() {
62 net::cleanup();
63 }
64
decode_error_kind(errno: i32) -> ErrorKind65 pub fn decode_error_kind(errno: i32) -> ErrorKind {
66 use ErrorKind::*;
67
68 match errno as c::DWORD {
69 c::ERROR_ACCESS_DENIED => return PermissionDenied,
70 c::ERROR_ALREADY_EXISTS => return AlreadyExists,
71 c::ERROR_FILE_EXISTS => return AlreadyExists,
72 c::ERROR_BROKEN_PIPE => return BrokenPipe,
73 c::ERROR_FILE_NOT_FOUND
74 | c::ERROR_PATH_NOT_FOUND
75 | c::ERROR_INVALID_DRIVE
76 | c::ERROR_BAD_NETPATH
77 | c::ERROR_BAD_NET_NAME => return NotFound,
78 c::ERROR_NO_DATA => return BrokenPipe,
79 c::ERROR_INVALID_NAME | c::ERROR_BAD_PATHNAME => return InvalidFilename,
80 c::ERROR_INVALID_PARAMETER => return InvalidInput,
81 c::ERROR_NOT_ENOUGH_MEMORY | c::ERROR_OUTOFMEMORY => return OutOfMemory,
82 c::ERROR_SEM_TIMEOUT
83 | c::WAIT_TIMEOUT
84 | c::ERROR_DRIVER_CANCEL_TIMEOUT
85 | c::ERROR_OPERATION_ABORTED
86 | c::ERROR_SERVICE_REQUEST_TIMEOUT
87 | c::ERROR_COUNTER_TIMEOUT
88 | c::ERROR_TIMEOUT
89 | c::ERROR_RESOURCE_CALL_TIMED_OUT
90 | c::ERROR_CTX_MODEM_RESPONSE_TIMEOUT
91 | c::ERROR_CTX_CLIENT_QUERY_TIMEOUT
92 | c::FRS_ERR_SYSVOL_POPULATE_TIMEOUT
93 | c::ERROR_DS_TIMELIMIT_EXCEEDED
94 | c::DNS_ERROR_RECORD_TIMED_OUT
95 | c::ERROR_IPSEC_IKE_TIMED_OUT
96 | c::ERROR_RUNLEVEL_SWITCH_TIMEOUT
97 | c::ERROR_RUNLEVEL_SWITCH_AGENT_TIMEOUT => return TimedOut,
98 c::ERROR_CALL_NOT_IMPLEMENTED => return Unsupported,
99 c::ERROR_HOST_UNREACHABLE => return HostUnreachable,
100 c::ERROR_NETWORK_UNREACHABLE => return NetworkUnreachable,
101 c::ERROR_DIRECTORY => return NotADirectory,
102 c::ERROR_DIRECTORY_NOT_SUPPORTED => return IsADirectory,
103 c::ERROR_DIR_NOT_EMPTY => return DirectoryNotEmpty,
104 c::ERROR_WRITE_PROTECT => return ReadOnlyFilesystem,
105 c::ERROR_DISK_FULL | c::ERROR_HANDLE_DISK_FULL => return StorageFull,
106 c::ERROR_SEEK_ON_DEVICE => return NotSeekable,
107 c::ERROR_DISK_QUOTA_EXCEEDED => return FilesystemQuotaExceeded,
108 c::ERROR_FILE_TOO_LARGE => return FileTooLarge,
109 c::ERROR_BUSY => return ResourceBusy,
110 c::ERROR_POSSIBLE_DEADLOCK => return Deadlock,
111 c::ERROR_NOT_SAME_DEVICE => return CrossesDevices,
112 c::ERROR_TOO_MANY_LINKS => return TooManyLinks,
113 c::ERROR_FILENAME_EXCED_RANGE => return InvalidFilename,
114 _ => {}
115 }
116
117 match errno {
118 c::WSAEACCES => PermissionDenied,
119 c::WSAEADDRINUSE => AddrInUse,
120 c::WSAEADDRNOTAVAIL => AddrNotAvailable,
121 c::WSAECONNABORTED => ConnectionAborted,
122 c::WSAECONNREFUSED => ConnectionRefused,
123 c::WSAECONNRESET => ConnectionReset,
124 c::WSAEINVAL => InvalidInput,
125 c::WSAENOTCONN => NotConnected,
126 c::WSAEWOULDBLOCK => WouldBlock,
127 c::WSAETIMEDOUT => TimedOut,
128 c::WSAEHOSTUNREACH => HostUnreachable,
129 c::WSAENETDOWN => NetworkDown,
130 c::WSAENETUNREACH => NetworkUnreachable,
131
132 _ => Uncategorized,
133 }
134 }
135
unrolled_find_u16s(needle: u16, haystack: &[u16]) -> Option<usize>136 pub fn unrolled_find_u16s(needle: u16, haystack: &[u16]) -> Option<usize> {
137 let ptr = haystack.as_ptr();
138 let mut start = &haystack[..];
139
140 // For performance reasons unfold the loop eight times.
141 while start.len() >= 8 {
142 macro_rules! if_return {
143 ($($n:literal,)+) => {
144 $(
145 if start[$n] == needle {
146 return Some(((&start[$n] as *const u16).addr() - ptr.addr()) / 2);
147 }
148 )+
149 }
150 }
151
152 if_return!(0, 1, 2, 3, 4, 5, 6, 7,);
153
154 start = &start[8..];
155 }
156
157 for c in start {
158 if *c == needle {
159 return Some(((c as *const u16).addr() - ptr.addr()) / 2);
160 }
161 }
162 None
163 }
164
to_u16s<S: AsRef<OsStr>>(s: S) -> crate::io::Result<Vec<u16>>165 pub fn to_u16s<S: AsRef<OsStr>>(s: S) -> crate::io::Result<Vec<u16>> {
166 fn inner(s: &OsStr) -> crate::io::Result<Vec<u16>> {
167 // Most paths are ASCII, so reserve capacity for as much as there are bytes
168 // in the OsStr plus one for the null-terminating character. We are not
169 // wasting bytes here as paths created by this function are primarily used
170 // in an ephemeral fashion.
171 let mut maybe_result = Vec::with_capacity(s.len() + 1);
172 maybe_result.extend(s.encode_wide());
173
174 if unrolled_find_u16s(0, &maybe_result).is_some() {
175 return Err(crate::io::const_io_error!(
176 ErrorKind::InvalidInput,
177 "strings passed to WinAPI cannot contain NULs",
178 ));
179 }
180 maybe_result.push(0);
181 Ok(maybe_result)
182 }
183 inner(s.as_ref())
184 }
185
186 // Many Windows APIs follow a pattern of where we hand a buffer and then they
187 // will report back to us how large the buffer should be or how many bytes
188 // currently reside in the buffer. This function is an abstraction over these
189 // functions by making them easier to call.
190 //
191 // The first callback, `f1`, is yielded a (pointer, len) pair which can be
192 // passed to a syscall. The `ptr` is valid for `len` items (u16 in this case).
193 // The closure is expected to return what the syscall returns which will be
194 // interpreted by this function to determine if the syscall needs to be invoked
195 // again (with more buffer space).
196 //
197 // Once the syscall has completed (errors bail out early) the second closure is
198 // yielded the data which has been read from the syscall. The return value
199 // from this closure is then the return value of the function.
fill_utf16_buf<F1, F2, T>(mut f1: F1, f2: F2) -> crate::io::Result<T> where F1: FnMut(*mut u16, c::DWORD) -> c::DWORD, F2: FnOnce(&[u16]) -> T,200 fn fill_utf16_buf<F1, F2, T>(mut f1: F1, f2: F2) -> crate::io::Result<T>
201 where
202 F1: FnMut(*mut u16, c::DWORD) -> c::DWORD,
203 F2: FnOnce(&[u16]) -> T,
204 {
205 // Start off with a stack buf but then spill over to the heap if we end up
206 // needing more space.
207 //
208 // This initial size also works around `GetFullPathNameW` returning
209 // incorrect size hints for some short paths:
210 // https://github.com/dylni/normpath/issues/5
211 let mut stack_buf: [MaybeUninit<u16>; 512] = MaybeUninit::uninit_array();
212 let mut heap_buf: Vec<MaybeUninit<u16>> = Vec::new();
213 unsafe {
214 let mut n = stack_buf.len();
215 loop {
216 let buf = if n <= stack_buf.len() {
217 &mut stack_buf[..]
218 } else {
219 let extra = n - heap_buf.len();
220 heap_buf.reserve(extra);
221 // We used `reserve` and not `reserve_exact`, so in theory we
222 // may have gotten more than requested. If so, we'd like to use
223 // it... so long as we won't cause overflow.
224 n = heap_buf.capacity().min(c::DWORD::MAX as usize);
225 // Safety: MaybeUninit<u16> does not need initialization
226 heap_buf.set_len(n);
227 &mut heap_buf[..]
228 };
229
230 // This function is typically called on windows API functions which
231 // will return the correct length of the string, but these functions
232 // also return the `0` on error. In some cases, however, the
233 // returned "correct length" may actually be 0!
234 //
235 // To handle this case we call `SetLastError` to reset it to 0 and
236 // then check it again if we get the "0 error value". If the "last
237 // error" is still 0 then we interpret it as a 0 length buffer and
238 // not an actual error.
239 c::SetLastError(0);
240 let k = match f1(buf.as_mut_ptr().cast::<u16>(), n as c::DWORD) {
241 0 if c::GetLastError() == 0 => 0,
242 0 => return Err(crate::io::Error::last_os_error()),
243 n => n,
244 } as usize;
245 if k == n && c::GetLastError() == c::ERROR_INSUFFICIENT_BUFFER {
246 n = n.saturating_mul(2).min(c::DWORD::MAX as usize);
247 } else if k > n {
248 n = k;
249 } else if k == n {
250 // It is impossible to reach this point.
251 // On success, k is the returned string length excluding the null.
252 // On failure, k is the required buffer length including the null.
253 // Therefore k never equals n.
254 unreachable!();
255 } else {
256 // Safety: First `k` values are initialized.
257 let slice: &[u16] = MaybeUninit::slice_assume_init_ref(&buf[..k]);
258 return Ok(f2(slice));
259 }
260 }
261 }
262 }
263
os2path(s: &[u16]) -> PathBuf264 fn os2path(s: &[u16]) -> PathBuf {
265 PathBuf::from(OsString::from_wide(s))
266 }
267
truncate_utf16_at_nul(v: &[u16]) -> &[u16]268 pub fn truncate_utf16_at_nul(v: &[u16]) -> &[u16] {
269 match unrolled_find_u16s(0, v) {
270 // don't include the 0
271 Some(i) => &v[..i],
272 None => v,
273 }
274 }
275
276 pub trait IsZero {
is_zero(&self) -> bool277 fn is_zero(&self) -> bool;
278 }
279
280 macro_rules! impl_is_zero {
281 ($($t:ident)*) => ($(impl IsZero for $t {
282 fn is_zero(&self) -> bool {
283 *self == 0
284 }
285 })*)
286 }
287
288 impl_is_zero! { i8 i16 i32 i64 isize u8 u16 u32 u64 usize }
289
cvt<I: IsZero>(i: I) -> crate::io::Result<I>290 pub fn cvt<I: IsZero>(i: I) -> crate::io::Result<I> {
291 if i.is_zero() { Err(crate::io::Error::last_os_error()) } else { Ok(i) }
292 }
293
dur2timeout(dur: Duration) -> c::DWORD294 pub fn dur2timeout(dur: Duration) -> c::DWORD {
295 // Note that a duration is a (u64, u32) (seconds, nanoseconds) pair, and the
296 // timeouts in windows APIs are typically u32 milliseconds. To translate, we
297 // have two pieces to take care of:
298 //
299 // * Nanosecond precision is rounded up
300 // * Greater than u32::MAX milliseconds (50 days) is rounded up to INFINITE
301 // (never time out).
302 dur.as_secs()
303 .checked_mul(1000)
304 .and_then(|ms| ms.checked_add((dur.subsec_nanos() as u64) / 1_000_000))
305 .and_then(|ms| ms.checked_add(if dur.subsec_nanos() % 1_000_000 > 0 { 1 } else { 0 }))
306 .map(|ms| if ms > <c::DWORD>::MAX as u64 { c::INFINITE } else { ms as c::DWORD })
307 .unwrap_or(c::INFINITE)
308 }
309
310 /// Use `__fastfail` to abort the process
311 ///
312 /// This is the same implementation as in libpanic_abort's `__rust_start_panic`. See
313 /// that function for more information on `__fastfail`
314 #[allow(unreachable_code)]
abort_internal() -> !315 pub fn abort_internal() -> ! {
316 #[allow(unused)]
317 const FAST_FAIL_FATAL_APP_EXIT: usize = 7;
318 #[cfg(not(miri))] // inline assembly does not work in Miri
319 unsafe {
320 cfg_if::cfg_if! {
321 if #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] {
322 core::arch::asm!("int $$0x29", in("ecx") FAST_FAIL_FATAL_APP_EXIT);
323 crate::intrinsics::unreachable();
324 } else if #[cfg(all(target_arch = "arm", target_feature = "thumb-mode"))] {
325 core::arch::asm!(".inst 0xDEFB", in("r0") FAST_FAIL_FATAL_APP_EXIT);
326 crate::intrinsics::unreachable();
327 } else if #[cfg(target_arch = "aarch64")] {
328 core::arch::asm!("brk 0xF003", in("x0") FAST_FAIL_FATAL_APP_EXIT);
329 crate::intrinsics::unreachable();
330 }
331 }
332 }
333 crate::intrinsics::abort();
334 }
335
336 /// Align the inner value to 8 bytes.
337 ///
338 /// This is enough for almost all of the buffers we're likely to work with in
339 /// the Windows APIs we use.
340 #[repr(C, align(8))]
341 #[derive(Copy, Clone)]
342 pub(crate) struct Align8<T: ?Sized>(pub T);
343