1 //! See Rustc Dev Guide chapters on [trait-resolution] and [trait-specialization] for more info on
2 //! how this works.
3 //!
4 //! [trait-resolution]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html
5 //! [trait-specialization]: https://rustc-dev-guide.rust-lang.org/traits/specialization.html
6
7 use crate::infer::outlives::env::OutlivesEnvironment;
8 use crate::infer::InferOk;
9 use crate::traits::outlives_bounds::InferCtxtExt as _;
10 use crate::traits::select::IntercrateAmbiguityCause;
11 use crate::traits::util::impl_subject_and_oblig;
12 use crate::traits::SkipLeakCheck;
13 use crate::traits::{
14 self, Obligation, ObligationCause, ObligationCtxt, PredicateObligation, PredicateObligations,
15 SelectionContext,
16 };
17 use rustc_data_structures::fx::FxIndexSet;
18 use rustc_errors::Diagnostic;
19 use rustc_hir::def_id::{DefId, CRATE_DEF_ID, LOCAL_CRATE};
20 use rustc_infer::infer::{DefineOpaqueTypes, InferCtxt, TyCtxtInferExt};
21 use rustc_infer::traits::util;
22 use rustc_middle::traits::specialization_graph::OverlapMode;
23 use rustc_middle::traits::DefiningAnchor;
24 use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams};
25 use rustc_middle::ty::visit::{TypeVisitable, TypeVisitableExt};
26 use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitor};
27 use rustc_span::symbol::sym;
28 use rustc_span::DUMMY_SP;
29 use std::fmt::Debug;
30 use std::iter;
31 use std::ops::ControlFlow;
32
33 use super::query::evaluate_obligation::InferCtxtExt;
34 use super::NormalizeExt;
35
36 /// Whether we do the orphan check relative to this crate or
37 /// to some remote crate.
38 #[derive(Copy, Clone, Debug)]
39 enum InCrate {
40 Local,
41 Remote,
42 }
43
44 #[derive(Debug, Copy, Clone)]
45 pub enum Conflict {
46 Upstream,
47 Downstream,
48 }
49
50 pub struct OverlapResult<'tcx> {
51 pub impl_header: ty::ImplHeader<'tcx>,
52 pub intercrate_ambiguity_causes: FxIndexSet<IntercrateAmbiguityCause>,
53
54 /// `true` if the overlap might've been permitted before the shift
55 /// to universes.
56 pub involves_placeholder: bool,
57 }
58
add_placeholder_note(err: &mut Diagnostic)59 pub fn add_placeholder_note(err: &mut Diagnostic) {
60 err.note(
61 "this behavior recently changed as a result of a bug fix; \
62 see rust-lang/rust#56105 for details",
63 );
64 }
65
66 #[derive(Debug, Clone, Copy)]
67 enum TrackAmbiguityCauses {
68 Yes,
69 No,
70 }
71
72 impl TrackAmbiguityCauses {
is_yes(self) -> bool73 fn is_yes(self) -> bool {
74 match self {
75 TrackAmbiguityCauses::Yes => true,
76 TrackAmbiguityCauses::No => false,
77 }
78 }
79 }
80
81 /// If there are types that satisfy both impls, returns `Some`
82 /// with a suitably-freshened `ImplHeader` with those types
83 /// substituted. Otherwise, returns `None`.
84 #[instrument(skip(tcx, skip_leak_check), level = "debug")]
overlapping_impls( tcx: TyCtxt<'_>, impl1_def_id: DefId, impl2_def_id: DefId, skip_leak_check: SkipLeakCheck, overlap_mode: OverlapMode, ) -> Option<OverlapResult<'_>>85 pub fn overlapping_impls(
86 tcx: TyCtxt<'_>,
87 impl1_def_id: DefId,
88 impl2_def_id: DefId,
89 skip_leak_check: SkipLeakCheck,
90 overlap_mode: OverlapMode,
91 ) -> Option<OverlapResult<'_>> {
92 // Before doing expensive operations like entering an inference context, do
93 // a quick check via fast_reject to tell if the impl headers could possibly
94 // unify.
95 let drcx = DeepRejectCtxt { treat_obligation_params: TreatParams::AsCandidateKey };
96 let impl1_ref = tcx.impl_trait_ref(impl1_def_id);
97 let impl2_ref = tcx.impl_trait_ref(impl2_def_id);
98 let may_overlap = match (impl1_ref, impl2_ref) {
99 (Some(a), Some(b)) => {
100 drcx.substs_refs_may_unify(a.skip_binder().substs, b.skip_binder().substs)
101 }
102 (None, None) => {
103 let self_ty1 = tcx.type_of(impl1_def_id).skip_binder();
104 let self_ty2 = tcx.type_of(impl2_def_id).skip_binder();
105 drcx.types_may_unify(self_ty1, self_ty2)
106 }
107 _ => bug!("unexpected impls: {impl1_def_id:?} {impl2_def_id:?}"),
108 };
109
110 if !may_overlap {
111 // Some types involved are definitely different, so the impls couldn't possibly overlap.
112 debug!("overlapping_impls: fast_reject early-exit");
113 return None;
114 }
115
116 let _overlap_with_bad_diagnostics = overlap(
117 tcx,
118 TrackAmbiguityCauses::No,
119 skip_leak_check,
120 impl1_def_id,
121 impl2_def_id,
122 overlap_mode,
123 )?;
124
125 // In the case where we detect an error, run the check again, but
126 // this time tracking intercrate ambiguity causes for better
127 // diagnostics. (These take time and can lead to false errors.)
128 let overlap = overlap(
129 tcx,
130 TrackAmbiguityCauses::Yes,
131 skip_leak_check,
132 impl1_def_id,
133 impl2_def_id,
134 overlap_mode,
135 )
136 .unwrap();
137 Some(overlap)
138 }
139
with_fresh_ty_vars<'cx, 'tcx>( selcx: &mut SelectionContext<'cx, 'tcx>, param_env: ty::ParamEnv<'tcx>, impl_def_id: DefId, ) -> ty::ImplHeader<'tcx>140 fn with_fresh_ty_vars<'cx, 'tcx>(
141 selcx: &mut SelectionContext<'cx, 'tcx>,
142 param_env: ty::ParamEnv<'tcx>,
143 impl_def_id: DefId,
144 ) -> ty::ImplHeader<'tcx> {
145 let tcx = selcx.tcx();
146 let impl_substs = selcx.infcx.fresh_substs_for_item(DUMMY_SP, impl_def_id);
147
148 let header = ty::ImplHeader {
149 impl_def_id,
150 self_ty: tcx.type_of(impl_def_id).subst(tcx, impl_substs),
151 trait_ref: tcx.impl_trait_ref(impl_def_id).map(|i| i.subst(tcx, impl_substs)),
152 predicates: tcx
153 .predicates_of(impl_def_id)
154 .instantiate(tcx, impl_substs)
155 .iter()
156 .map(|(c, _)| c.as_predicate())
157 .collect(),
158 };
159
160 let InferOk { value: mut header, obligations } =
161 selcx.infcx.at(&ObligationCause::dummy(), param_env).normalize(header);
162
163 header.predicates.extend(obligations.into_iter().map(|o| o.predicate));
164 header
165 }
166
167 /// Can both impl `a` and impl `b` be satisfied by a common type (including
168 /// where-clauses)? If so, returns an `ImplHeader` that unifies the two impls.
169 #[instrument(level = "debug", skip(tcx))]
overlap<'tcx>( tcx: TyCtxt<'tcx>, track_ambiguity_causes: TrackAmbiguityCauses, skip_leak_check: SkipLeakCheck, impl1_def_id: DefId, impl2_def_id: DefId, overlap_mode: OverlapMode, ) -> Option<OverlapResult<'tcx>>170 fn overlap<'tcx>(
171 tcx: TyCtxt<'tcx>,
172 track_ambiguity_causes: TrackAmbiguityCauses,
173 skip_leak_check: SkipLeakCheck,
174 impl1_def_id: DefId,
175 impl2_def_id: DefId,
176 overlap_mode: OverlapMode,
177 ) -> Option<OverlapResult<'tcx>> {
178 if overlap_mode.use_negative_impl() {
179 if impl_intersection_has_negative_obligation(tcx, impl1_def_id, impl2_def_id)
180 || impl_intersection_has_negative_obligation(tcx, impl2_def_id, impl1_def_id)
181 {
182 return None;
183 }
184 }
185
186 let infcx = tcx
187 .infer_ctxt()
188 .with_opaque_type_inference(DefiningAnchor::Bubble)
189 .skip_leak_check(skip_leak_check.is_yes())
190 .intercrate(true)
191 .with_next_trait_solver(tcx.next_trait_solver_in_coherence())
192 .build();
193 let selcx = &mut SelectionContext::new(&infcx);
194 if track_ambiguity_causes.is_yes() {
195 selcx.enable_tracking_intercrate_ambiguity_causes();
196 }
197
198 // For the purposes of this check, we don't bring any placeholder
199 // types into scope; instead, we replace the generic types with
200 // fresh type variables, and hence we do our evaluations in an
201 // empty environment.
202 let param_env = ty::ParamEnv::empty();
203
204 let impl1_header = with_fresh_ty_vars(selcx, param_env, impl1_def_id);
205 let impl2_header = with_fresh_ty_vars(selcx, param_env, impl2_def_id);
206
207 // Equate the headers to find their intersection (the general type, with infer vars,
208 // that may apply both impls).
209 let equate_obligations = equate_impl_headers(selcx.infcx, &impl1_header, &impl2_header)?;
210 debug!("overlap: unification check succeeded");
211
212 if overlap_mode.use_implicit_negative()
213 && impl_intersection_has_impossible_obligation(
214 selcx,
215 param_env,
216 &impl1_header,
217 impl2_header,
218 equate_obligations,
219 )
220 {
221 return None;
222 }
223
224 // We toggle the `leak_check` by using `skip_leak_check` when constructing the
225 // inference context, so this may be a noop.
226 if infcx.leak_check(ty::UniverseIndex::ROOT, None).is_err() {
227 debug!("overlap: leak check failed");
228 return None;
229 }
230
231 let intercrate_ambiguity_causes = selcx.take_intercrate_ambiguity_causes();
232 debug!("overlap: intercrate_ambiguity_causes={:#?}", intercrate_ambiguity_causes);
233 let involves_placeholder = infcx
234 .inner
235 .borrow_mut()
236 .unwrap_region_constraints()
237 .data()
238 .constraints
239 .iter()
240 .any(|c| c.0.involves_placeholders());
241
242 let impl_header = selcx.infcx.resolve_vars_if_possible(impl1_header);
243 Some(OverlapResult { impl_header, intercrate_ambiguity_causes, involves_placeholder })
244 }
245
246 #[instrument(level = "debug", skip(infcx), ret)]
equate_impl_headers<'tcx>( infcx: &InferCtxt<'tcx>, impl1: &ty::ImplHeader<'tcx>, impl2: &ty::ImplHeader<'tcx>, ) -> Option<PredicateObligations<'tcx>>247 fn equate_impl_headers<'tcx>(
248 infcx: &InferCtxt<'tcx>,
249 impl1: &ty::ImplHeader<'tcx>,
250 impl2: &ty::ImplHeader<'tcx>,
251 ) -> Option<PredicateObligations<'tcx>> {
252 let result = match (impl1.trait_ref, impl2.trait_ref) {
253 (Some(impl1_ref), Some(impl2_ref)) => infcx
254 .at(&ObligationCause::dummy(), ty::ParamEnv::empty())
255 .eq(DefineOpaqueTypes::Yes, impl1_ref, impl2_ref),
256 (None, None) => infcx.at(&ObligationCause::dummy(), ty::ParamEnv::empty()).eq(
257 DefineOpaqueTypes::Yes,
258 impl1.self_ty,
259 impl2.self_ty,
260 ),
261 _ => bug!("mk_eq_impl_headers given mismatched impl kinds"),
262 };
263
264 result.map(|infer_ok| infer_ok.obligations).ok()
265 }
266
267 /// Check if both impls can be satisfied by a common type by considering whether
268 /// any of either impl's obligations is not known to hold.
269 ///
270 /// For example, given these two impls:
271 /// `impl From<MyLocalType> for Box<dyn Error>` (in my crate)
272 /// `impl<E> From<E> for Box<dyn Error> where E: Error` (in libstd)
273 ///
274 /// After replacing both impl headers with inference vars (which happens before
275 /// this function is called), we get:
276 /// `Box<dyn Error>: From<MyLocalType>`
277 /// `Box<dyn Error>: From<?E>`
278 ///
279 /// This gives us `?E = MyLocalType`. We then certainly know that `MyLocalType: Error`
280 /// never holds in intercrate mode since a local impl does not exist, and a
281 /// downstream impl cannot be added -- therefore can consider the intersection
282 /// of the two impls above to be empty.
283 ///
284 /// Importantly, this works even if there isn't a `impl !Error for MyLocalType`.
impl_intersection_has_impossible_obligation<'cx, 'tcx>( selcx: &mut SelectionContext<'cx, 'tcx>, param_env: ty::ParamEnv<'tcx>, impl1_header: &ty::ImplHeader<'tcx>, impl2_header: ty::ImplHeader<'tcx>, obligations: PredicateObligations<'tcx>, ) -> bool285 fn impl_intersection_has_impossible_obligation<'cx, 'tcx>(
286 selcx: &mut SelectionContext<'cx, 'tcx>,
287 param_env: ty::ParamEnv<'tcx>,
288 impl1_header: &ty::ImplHeader<'tcx>,
289 impl2_header: ty::ImplHeader<'tcx>,
290 obligations: PredicateObligations<'tcx>,
291 ) -> bool {
292 let infcx = selcx.infcx;
293
294 let obligation_guaranteed_to_fail = move |obligation: &PredicateObligation<'tcx>| {
295 if infcx.next_trait_solver() {
296 infcx.evaluate_obligation(obligation).map_or(false, |result| !result.may_apply())
297 } else {
298 // We use `evaluate_root_obligation` to correctly track
299 // intercrate ambiguity clauses. We do not need this in the
300 // new solver.
301 selcx.evaluate_root_obligation(obligation).map_or(
302 false, // Overflow has occurred, and treat the obligation as possibly holding.
303 |result| !result.may_apply(),
304 )
305 }
306 };
307
308 let opt_failing_obligation = [&impl1_header.predicates, &impl2_header.predicates]
309 .into_iter()
310 .flatten()
311 .map(|&predicate| {
312 Obligation::new(infcx.tcx, ObligationCause::dummy(), param_env, predicate)
313 })
314 .chain(obligations)
315 .find(obligation_guaranteed_to_fail);
316
317 if let Some(failing_obligation) = opt_failing_obligation {
318 debug!("overlap: obligation unsatisfiable {:?}", failing_obligation);
319 true
320 } else {
321 false
322 }
323 }
324
325 /// Check if both impls can be satisfied by a common type by considering whether
326 /// any of first impl's obligations is known not to hold *via a negative predicate*.
327 ///
328 /// For example, given these two impls:
329 /// `struct MyCustomBox<T: ?Sized>(Box<T>);`
330 /// `impl From<&str> for MyCustomBox<dyn Error>` (in my crate)
331 /// `impl<E> From<E> for MyCustomBox<dyn Error> where E: Error` (in my crate)
332 ///
333 /// After replacing the second impl's header with inference vars, we get:
334 /// `MyCustomBox<dyn Error>: From<&str>`
335 /// `MyCustomBox<dyn Error>: From<?E>`
336 ///
337 /// This gives us `?E = &str`. We then try to prove the first impl's predicates
338 /// after negating, giving us `&str: !Error`. This is a negative impl provided by
339 /// libstd, and therefore we can guarantee for certain that libstd will never add
340 /// a positive impl for `&str: Error` (without it being a breaking change).
impl_intersection_has_negative_obligation( tcx: TyCtxt<'_>, impl1_def_id: DefId, impl2_def_id: DefId, ) -> bool341 fn impl_intersection_has_negative_obligation(
342 tcx: TyCtxt<'_>,
343 impl1_def_id: DefId,
344 impl2_def_id: DefId,
345 ) -> bool {
346 debug!("negative_impl(impl1_def_id={:?}, impl2_def_id={:?})", impl1_def_id, impl2_def_id);
347
348 // Create an infcx, taking the predicates of impl1 as assumptions:
349 let infcx = tcx.infer_ctxt().build();
350 // create a parameter environment corresponding to a (placeholder) instantiation of impl1
351 let impl_env = tcx.param_env(impl1_def_id);
352 let subject1 = match traits::fully_normalize(
353 &infcx,
354 ObligationCause::dummy(),
355 impl_env,
356 tcx.impl_subject(impl1_def_id).subst_identity(),
357 ) {
358 Ok(s) => s,
359 Err(err) => {
360 tcx.sess.delay_span_bug(
361 tcx.def_span(impl1_def_id),
362 format!("failed to fully normalize {:?}: {:?}", impl1_def_id, err),
363 );
364 return false;
365 }
366 };
367
368 // Attempt to prove that impl2 applies, given all of the above.
369 let selcx = &mut SelectionContext::new(&infcx);
370 let impl2_substs = infcx.fresh_substs_for_item(DUMMY_SP, impl2_def_id);
371 let (subject2, normalization_obligations) =
372 impl_subject_and_oblig(selcx, impl_env, impl2_def_id, impl2_substs, |_, _| {
373 ObligationCause::dummy()
374 });
375
376 // do the impls unify? If not, then it's not currently possible to prove any
377 // obligations about their intersection.
378 let Ok(InferOk { obligations: equate_obligations, .. }) =
379 infcx.at(&ObligationCause::dummy(), impl_env).eq(DefineOpaqueTypes::No,subject1, subject2)
380 else {
381 debug!("explicit_disjoint: {:?} does not unify with {:?}", subject1, subject2);
382 return false;
383 };
384
385 for obligation in normalization_obligations.into_iter().chain(equate_obligations) {
386 if negative_impl_exists(&infcx, &obligation, impl1_def_id) {
387 debug!("overlap: obligation unsatisfiable {:?}", obligation);
388 return true;
389 }
390 }
391
392 false
393 }
394
395 /// Try to prove that a negative impl exist for the obligation or its supertraits.
396 ///
397 /// If such a negative impl exists, then the obligation definitely must not hold
398 /// due to coherence, even if it's not necessarily "knowable" in this crate. Any
399 /// valid impl downstream would not be able to exist due to the overlapping
400 /// negative impl.
401 #[instrument(level = "debug", skip(infcx))]
negative_impl_exists<'tcx>( infcx: &InferCtxt<'tcx>, o: &PredicateObligation<'tcx>, body_def_id: DefId, ) -> bool402 fn negative_impl_exists<'tcx>(
403 infcx: &InferCtxt<'tcx>,
404 o: &PredicateObligation<'tcx>,
405 body_def_id: DefId,
406 ) -> bool {
407 // Try to prove a negative obligation exists for super predicates
408 for pred in util::elaborate(infcx.tcx, iter::once(o.predicate)) {
409 if prove_negated_obligation(infcx.fork(), &o.with(infcx.tcx, pred), body_def_id) {
410 return true;
411 }
412 }
413
414 false
415 }
416
417 #[instrument(level = "debug", skip(infcx))]
prove_negated_obligation<'tcx>( infcx: InferCtxt<'tcx>, o: &PredicateObligation<'tcx>, body_def_id: DefId, ) -> bool418 fn prove_negated_obligation<'tcx>(
419 infcx: InferCtxt<'tcx>,
420 o: &PredicateObligation<'tcx>,
421 body_def_id: DefId,
422 ) -> bool {
423 let tcx = infcx.tcx;
424
425 let Some(o) = o.flip_polarity(tcx) else {
426 return false;
427 };
428
429 let param_env = o.param_env;
430 let ocx = ObligationCtxt::new(&infcx);
431 ocx.register_obligation(o);
432 let errors = ocx.select_all_or_error();
433 if !errors.is_empty() {
434 return false;
435 }
436
437 let body_def_id = body_def_id.as_local().unwrap_or(CRATE_DEF_ID);
438
439 let ocx = ObligationCtxt::new(&infcx);
440 let Ok(wf_tys) = ocx.assumed_wf_types(param_env, body_def_id)
441 else {
442 return false;
443 };
444
445 let outlives_env = OutlivesEnvironment::with_bounds(
446 param_env,
447 infcx.implied_bounds_tys(param_env, body_def_id, wf_tys),
448 );
449 infcx.resolve_regions(&outlives_env).is_empty()
450 }
451
452 /// Returns whether all impls which would apply to the `trait_ref`
453 /// e.g. `Ty: Trait<Arg>` are already known in the local crate.
454 ///
455 /// This both checks whether any downstream or sibling crates could
456 /// implement it and whether an upstream crate can add this impl
457 /// without breaking backwards compatibility.
458 #[instrument(level = "debug", skip(tcx), ret)]
trait_ref_is_knowable<'tcx>( tcx: TyCtxt<'tcx>, trait_ref: ty::TraitRef<'tcx>, ) -> Result<(), Conflict>459 pub fn trait_ref_is_knowable<'tcx>(
460 tcx: TyCtxt<'tcx>,
461 trait_ref: ty::TraitRef<'tcx>,
462 ) -> Result<(), Conflict> {
463 if Some(trait_ref.def_id) == tcx.lang_items().fn_ptr_trait() {
464 // The only types implementing `FnPtr` are function pointers,
465 // so if there's no impl of `FnPtr` in the current crate,
466 // then such an impl will never be added in the future.
467 return Ok(());
468 }
469
470 if orphan_check_trait_ref(trait_ref, InCrate::Remote).is_ok() {
471 // A downstream or cousin crate is allowed to implement some
472 // substitution of this trait-ref.
473 return Err(Conflict::Downstream);
474 }
475
476 if trait_ref_is_local_or_fundamental(tcx, trait_ref) {
477 // This is a local or fundamental trait, so future-compatibility
478 // is no concern. We know that downstream/cousin crates are not
479 // allowed to implement a substitution of this trait ref, which
480 // means impls could only come from dependencies of this crate,
481 // which we already know about.
482 return Ok(());
483 }
484
485 // This is a remote non-fundamental trait, so if another crate
486 // can be the "final owner" of a substitution of this trait-ref,
487 // they are allowed to implement it future-compatibly.
488 //
489 // However, if we are a final owner, then nobody else can be,
490 // and if we are an intermediate owner, then we don't care
491 // about future-compatibility, which means that we're OK if
492 // we are an owner.
493 if orphan_check_trait_ref(trait_ref, InCrate::Local).is_ok() {
494 Ok(())
495 } else {
496 Err(Conflict::Upstream)
497 }
498 }
499
trait_ref_is_local_or_fundamental<'tcx>( tcx: TyCtxt<'tcx>, trait_ref: ty::TraitRef<'tcx>, ) -> bool500 pub fn trait_ref_is_local_or_fundamental<'tcx>(
501 tcx: TyCtxt<'tcx>,
502 trait_ref: ty::TraitRef<'tcx>,
503 ) -> bool {
504 trait_ref.def_id.krate == LOCAL_CRATE || tcx.has_attr(trait_ref.def_id, sym::fundamental)
505 }
506
507 #[derive(Debug)]
508 pub enum OrphanCheckErr<'tcx> {
509 NonLocalInputType(Vec<(Ty<'tcx>, bool /* Is this the first input type? */)>),
510 UncoveredTy(Ty<'tcx>, Option<Ty<'tcx>>),
511 }
512
513 /// Checks the coherence orphan rules. `impl_def_id` should be the
514 /// `DefId` of a trait impl. To pass, either the trait must be local, or else
515 /// two conditions must be satisfied:
516 ///
517 /// 1. All type parameters in `Self` must be "covered" by some local type constructor.
518 /// 2. Some local type must appear in `Self`.
519 #[instrument(level = "debug", skip(tcx), ret)]
orphan_check(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Result<(), OrphanCheckErr<'_>>520 pub fn orphan_check(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Result<(), OrphanCheckErr<'_>> {
521 // We only except this routine to be invoked on implementations
522 // of a trait, not inherent implementations.
523 let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap().subst_identity();
524 debug!(?trait_ref);
525
526 // If the *trait* is local to the crate, ok.
527 if trait_ref.def_id.is_local() {
528 debug!("trait {:?} is local to current crate", trait_ref.def_id);
529 return Ok(());
530 }
531
532 orphan_check_trait_ref(trait_ref, InCrate::Local)
533 }
534
535 /// Checks whether a trait-ref is potentially implementable by a crate.
536 ///
537 /// The current rule is that a trait-ref orphan checks in a crate C:
538 ///
539 /// 1. Order the parameters in the trait-ref in subst order - Self first,
540 /// others linearly (e.g., `<U as Foo<V, W>>` is U < V < W).
541 /// 2. Of these type parameters, there is at least one type parameter
542 /// in which, walking the type as a tree, you can reach a type local
543 /// to C where all types in-between are fundamental types. Call the
544 /// first such parameter the "local key parameter".
545 /// - e.g., `Box<LocalType>` is OK, because you can visit LocalType
546 /// going through `Box`, which is fundamental.
547 /// - similarly, `FundamentalPair<Vec<()>, Box<LocalType>>` is OK for
548 /// the same reason.
549 /// - but (knowing that `Vec<T>` is non-fundamental, and assuming it's
550 /// not local), `Vec<LocalType>` is bad, because `Vec<->` is between
551 /// the local type and the type parameter.
552 /// 3. Before this local type, no generic type parameter of the impl must
553 /// be reachable through fundamental types.
554 /// - e.g. `impl<T> Trait<LocalType> for Vec<T>` is fine, as `Vec` is not fundamental.
555 /// - while `impl<T> Trait<LocalType> for Box<T>` results in an error, as `T` is
556 /// reachable through the fundamental type `Box`.
557 /// 4. Every type in the local key parameter not known in C, going
558 /// through the parameter's type tree, must appear only as a subtree of
559 /// a type local to C, with only fundamental types between the type
560 /// local to C and the local key parameter.
561 /// - e.g., `Vec<LocalType<T>>>` (or equivalently `Box<Vec<LocalType<T>>>`)
562 /// is bad, because the only local type with `T` as a subtree is
563 /// `LocalType<T>`, and `Vec<->` is between it and the type parameter.
564 /// - similarly, `FundamentalPair<LocalType<T>, T>` is bad, because
565 /// the second occurrence of `T` is not a subtree of *any* local type.
566 /// - however, `LocalType<Vec<T>>` is OK, because `T` is a subtree of
567 /// `LocalType<Vec<T>>`, which is local and has no types between it and
568 /// the type parameter.
569 ///
570 /// The orphan rules actually serve several different purposes:
571 ///
572 /// 1. They enable link-safety - i.e., 2 mutually-unknowing crates (where
573 /// every type local to one crate is unknown in the other) can't implement
574 /// the same trait-ref. This follows because it can be seen that no such
575 /// type can orphan-check in 2 such crates.
576 ///
577 /// To check that a local impl follows the orphan rules, we check it in
578 /// InCrate::Local mode, using type parameters for the "generic" types.
579 ///
580 /// 2. They ground negative reasoning for coherence. If a user wants to
581 /// write both a conditional blanket impl and a specific impl, we need to
582 /// make sure they do not overlap. For example, if we write
583 /// ```ignore (illustrative)
584 /// impl<T> IntoIterator for Vec<T>
585 /// impl<T: Iterator> IntoIterator for T
586 /// ```
587 /// We need to be able to prove that `Vec<$0>: !Iterator` for every type $0.
588 /// We can observe that this holds in the current crate, but we need to make
589 /// sure this will also hold in all unknown crates (both "independent" crates,
590 /// which we need for link-safety, and also child crates, because we don't want
591 /// child crates to get error for impl conflicts in a *dependency*).
592 ///
593 /// For that, we only allow negative reasoning if, for every assignment to the
594 /// inference variables, every unknown crate would get an orphan error if they
595 /// try to implement this trait-ref. To check for this, we use InCrate::Remote
596 /// mode. That is sound because we already know all the impls from known crates.
597 ///
598 /// 3. For non-`#[fundamental]` traits, they guarantee that parent crates can
599 /// add "non-blanket" impls without breaking negative reasoning in dependent
600 /// crates. This is the "rebalancing coherence" (RFC 1023) restriction.
601 ///
602 /// For that, we only a allow crate to perform negative reasoning on
603 /// non-local-non-`#[fundamental]` only if there's a local key parameter as per (2).
604 ///
605 /// Because we never perform negative reasoning generically (coherence does
606 /// not involve type parameters), this can be interpreted as doing the full
607 /// orphan check (using InCrate::Local mode), substituting non-local known
608 /// types for all inference variables.
609 ///
610 /// This allows for crates to future-compatibly add impls as long as they
611 /// can't apply to types with a key parameter in a child crate - applying
612 /// the rules, this basically means that every type parameter in the impl
613 /// must appear behind a non-fundamental type (because this is not a
614 /// type-system requirement, crate owners might also go for "semantic
615 /// future-compatibility" involving things such as sealed traits, but
616 /// the above requirement is sufficient, and is necessary in "open world"
617 /// cases).
618 ///
619 /// Note that this function is never called for types that have both type
620 /// parameters and inference variables.
621 #[instrument(level = "trace", ret)]
orphan_check_trait_ref<'tcx>( trait_ref: ty::TraitRef<'tcx>, in_crate: InCrate, ) -> Result<(), OrphanCheckErr<'tcx>>622 fn orphan_check_trait_ref<'tcx>(
623 trait_ref: ty::TraitRef<'tcx>,
624 in_crate: InCrate,
625 ) -> Result<(), OrphanCheckErr<'tcx>> {
626 if trait_ref.has_infer() && trait_ref.has_param() {
627 bug!(
628 "can't orphan check a trait ref with both params and inference variables {:?}",
629 trait_ref
630 );
631 }
632
633 let mut checker = OrphanChecker::new(in_crate);
634 match trait_ref.visit_with(&mut checker) {
635 ControlFlow::Continue(()) => Err(OrphanCheckErr::NonLocalInputType(checker.non_local_tys)),
636 ControlFlow::Break(OrphanCheckEarlyExit::ParamTy(ty)) => {
637 // Does there exist some local type after the `ParamTy`.
638 checker.search_first_local_ty = true;
639 if let Some(OrphanCheckEarlyExit::LocalTy(local_ty)) =
640 trait_ref.visit_with(&mut checker).break_value()
641 {
642 Err(OrphanCheckErr::UncoveredTy(ty, Some(local_ty)))
643 } else {
644 Err(OrphanCheckErr::UncoveredTy(ty, None))
645 }
646 }
647 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(_)) => Ok(()),
648 }
649 }
650
651 struct OrphanChecker<'tcx> {
652 in_crate: InCrate,
653 in_self_ty: bool,
654 /// Ignore orphan check failures and exclusively search for the first
655 /// local type.
656 search_first_local_ty: bool,
657 non_local_tys: Vec<(Ty<'tcx>, bool)>,
658 }
659
660 impl<'tcx> OrphanChecker<'tcx> {
new(in_crate: InCrate) -> Self661 fn new(in_crate: InCrate) -> Self {
662 OrphanChecker {
663 in_crate,
664 in_self_ty: true,
665 search_first_local_ty: false,
666 non_local_tys: Vec::new(),
667 }
668 }
669
found_non_local_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx>>670 fn found_non_local_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx>> {
671 self.non_local_tys.push((t, self.in_self_ty));
672 ControlFlow::Continue(())
673 }
674
found_param_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx>>675 fn found_param_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx>> {
676 if self.search_first_local_ty {
677 ControlFlow::Continue(())
678 } else {
679 ControlFlow::Break(OrphanCheckEarlyExit::ParamTy(t))
680 }
681 }
682
def_id_is_local(&mut self, def_id: DefId) -> bool683 fn def_id_is_local(&mut self, def_id: DefId) -> bool {
684 match self.in_crate {
685 InCrate::Local => def_id.is_local(),
686 InCrate::Remote => false,
687 }
688 }
689 }
690
691 enum OrphanCheckEarlyExit<'tcx> {
692 ParamTy(Ty<'tcx>),
693 LocalTy(Ty<'tcx>),
694 }
695
696 impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for OrphanChecker<'tcx> {
697 type BreakTy = OrphanCheckEarlyExit<'tcx>;
visit_region(&mut self, _r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy>698 fn visit_region(&mut self, _r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
699 ControlFlow::Continue(())
700 }
701
visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy>702 fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
703 let result = match *ty.kind() {
704 ty::Bool
705 | ty::Char
706 | ty::Int(..)
707 | ty::Uint(..)
708 | ty::Float(..)
709 | ty::Str
710 | ty::FnDef(..)
711 | ty::FnPtr(_)
712 | ty::Array(..)
713 | ty::Slice(..)
714 | ty::RawPtr(..)
715 | ty::Never
716 | ty::Tuple(..)
717 | ty::Alias(ty::Projection | ty::Inherent | ty::Weak, ..) => {
718 self.found_non_local_ty(ty)
719 }
720
721 ty::Param(..) => self.found_param_ty(ty),
722
723 ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) => match self.in_crate {
724 InCrate::Local => self.found_non_local_ty(ty),
725 // The inference variable might be unified with a local
726 // type in that remote crate.
727 InCrate::Remote => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)),
728 },
729
730 // For fundamental types, we just look inside of them.
731 ty::Ref(_, ty, _) => ty.visit_with(self),
732 ty::Adt(def, substs) => {
733 if self.def_id_is_local(def.did()) {
734 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
735 } else if def.is_fundamental() {
736 substs.visit_with(self)
737 } else {
738 self.found_non_local_ty(ty)
739 }
740 }
741 ty::Foreign(def_id) => {
742 if self.def_id_is_local(def_id) {
743 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
744 } else {
745 self.found_non_local_ty(ty)
746 }
747 }
748 ty::Dynamic(tt, ..) => {
749 let principal = tt.principal().map(|p| p.def_id());
750 if principal.is_some_and(|p| self.def_id_is_local(p)) {
751 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
752 } else {
753 self.found_non_local_ty(ty)
754 }
755 }
756 ty::Error(_) => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)),
757 ty::Closure(did, ..) | ty::Generator(did, ..) => {
758 if self.def_id_is_local(did) {
759 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
760 } else {
761 self.found_non_local_ty(ty)
762 }
763 }
764 // This should only be created when checking whether we have to check whether some
765 // auto trait impl applies. There will never be multiple impls, so we can just
766 // act as if it were a local type here.
767 ty::GeneratorWitness(_) | ty::GeneratorWitnessMIR(..) => {
768 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
769 }
770 ty::Alias(ty::Opaque, ..) => {
771 // This merits some explanation.
772 // Normally, opaque types are not involved when performing
773 // coherence checking, since it is illegal to directly
774 // implement a trait on an opaque type. However, we might
775 // end up looking at an opaque type during coherence checking
776 // if an opaque type gets used within another type (e.g. as
777 // the type of a field) when checking for auto trait or `Sized`
778 // impls. This requires us to decide whether or not an opaque
779 // type should be considered 'local' or not.
780 //
781 // We choose to treat all opaque types as non-local, even
782 // those that appear within the same crate. This seems
783 // somewhat surprising at first, but makes sense when
784 // you consider that opaque types are supposed to hide
785 // the underlying type *within the same crate*. When an
786 // opaque type is used from outside the module
787 // where it is declared, it should be impossible to observe
788 // anything about it other than the traits that it implements.
789 //
790 // The alternative would be to look at the underlying type
791 // to determine whether or not the opaque type itself should
792 // be considered local. However, this could make it a breaking change
793 // to switch the underlying ('defining') type from a local type
794 // to a remote type. This would violate the rule that opaque
795 // types should be completely opaque apart from the traits
796 // that they implement, so we don't use this behavior.
797 self.found_non_local_ty(ty)
798 }
799 };
800 // A bit of a hack, the `OrphanChecker` is only used to visit a `TraitRef`, so
801 // the first type we visit is always the self type.
802 self.in_self_ty = false;
803 result
804 }
805
806 /// All possible values for a constant parameter already exist
807 /// in the crate defining the trait, so they are always non-local[^1].
808 ///
809 /// Because there's no way to have an impl where the first local
810 /// generic argument is a constant, we also don't have to fail
811 /// the orphan check when encountering a parameter or a generic constant.
812 ///
813 /// This means that we can completely ignore constants during the orphan check.
814 ///
815 /// See `tests/ui/coherence/const-generics-orphan-check-ok.rs` for examples.
816 ///
817 /// [^1]: This might not hold for function pointers or trait objects in the future.
818 /// As these should be quite rare as const arguments and especially rare as impl
819 /// parameters, allowing uncovered const parameters in impls seems more useful
820 /// than allowing `impl<T> Trait<local_fn_ptr, T> for i32` to compile.
visit_const(&mut self, _c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy>821 fn visit_const(&mut self, _c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
822 ControlFlow::Continue(())
823 }
824 }
825