1 use crate::base::{DummyResult, ExtCtxt, MacResult, TTMacroExpander};
2 use crate::base::{SyntaxExtension, SyntaxExtensionKind};
3 use crate::expand::{ensure_complete_parse, parse_ast_fragment, AstFragment, AstFragmentKind};
4 use crate::mbe;
5 use crate::mbe::diagnostics::{annotate_doc_comment, parse_failure_msg};
6 use crate::mbe::macro_check;
7 use crate::mbe::macro_parser::{Error, ErrorReported, Failure, Success, TtParser};
8 use crate::mbe::macro_parser::{MatchedSeq, MatchedTokenTree, MatcherLoc};
9 use crate::mbe::transcribe::transcribe;
10
11 use rustc_ast as ast;
12 use rustc_ast::token::{self, Delimiter, NonterminalKind, Token, TokenKind, TokenKind::*};
13 use rustc_ast::tokenstream::{DelimSpan, TokenStream, TokenTree};
14 use rustc_ast::{NodeId, DUMMY_NODE_ID};
15 use rustc_ast_pretty::pprust;
16 use rustc_attr::{self as attr, TransparencyError};
17 use rustc_data_structures::fx::{FxHashMap, FxIndexMap};
18 use rustc_errors::{Applicability, ErrorGuaranteed};
19 use rustc_lint_defs::builtin::{
20 RUST_2021_INCOMPATIBLE_OR_PATTERNS, SEMICOLON_IN_EXPRESSIONS_FROM_MACROS,
21 };
22 use rustc_lint_defs::BuiltinLintDiagnostics;
23 use rustc_parse::parser::{Parser, Recovery};
24 use rustc_session::parse::ParseSess;
25 use rustc_session::Session;
26 use rustc_span::edition::Edition;
27 use rustc_span::hygiene::Transparency;
28 use rustc_span::symbol::{kw, sym, Ident, MacroRulesNormalizedIdent};
29 use rustc_span::Span;
30
31 use std::borrow::Cow;
32 use std::collections::hash_map::Entry;
33 use std::{mem, slice};
34
35 use super::diagnostics;
36 use super::macro_parser::{NamedMatches, NamedParseResult};
37
38 pub(crate) struct ParserAnyMacro<'a> {
39 parser: Parser<'a>,
40
41 /// Span of the expansion site of the macro this parser is for
42 site_span: Span,
43 /// The ident of the macro we're parsing
44 macro_ident: Ident,
45 lint_node_id: NodeId,
46 is_trailing_mac: bool,
47 arm_span: Span,
48 /// Whether or not this macro is defined in the current crate
49 is_local: bool,
50 }
51
52 impl<'a> ParserAnyMacro<'a> {
make(mut self: Box<ParserAnyMacro<'a>>, kind: AstFragmentKind) -> AstFragment53 pub(crate) fn make(mut self: Box<ParserAnyMacro<'a>>, kind: AstFragmentKind) -> AstFragment {
54 let ParserAnyMacro {
55 site_span,
56 macro_ident,
57 ref mut parser,
58 lint_node_id,
59 arm_span,
60 is_trailing_mac,
61 is_local,
62 } = *self;
63 let snapshot = &mut parser.create_snapshot_for_diagnostic();
64 let fragment = match parse_ast_fragment(parser, kind) {
65 Ok(f) => f,
66 Err(err) => {
67 diagnostics::emit_frag_parse_err(err, parser, snapshot, site_span, arm_span, kind);
68 return kind.dummy(site_span);
69 }
70 };
71
72 // We allow semicolons at the end of expressions -- e.g., the semicolon in
73 // `macro_rules! m { () => { panic!(); } }` isn't parsed by `.parse_expr()`,
74 // but `m!()` is allowed in expression positions (cf. issue #34706).
75 if kind == AstFragmentKind::Expr && parser.token == token::Semi {
76 if is_local {
77 parser.sess.buffer_lint_with_diagnostic(
78 SEMICOLON_IN_EXPRESSIONS_FROM_MACROS,
79 parser.token.span,
80 lint_node_id,
81 "trailing semicolon in macro used in expression position",
82 BuiltinLintDiagnostics::TrailingMacro(is_trailing_mac, macro_ident),
83 );
84 }
85 parser.bump();
86 }
87
88 // Make sure we don't have any tokens left to parse so we don't silently drop anything.
89 let path = ast::Path::from_ident(macro_ident.with_span_pos(site_span));
90 ensure_complete_parse(parser, &path, kind.name(), site_span);
91 fragment
92 }
93 }
94
95 struct MacroRulesMacroExpander {
96 node_id: NodeId,
97 name: Ident,
98 span: Span,
99 transparency: Transparency,
100 lhses: Vec<Vec<MatcherLoc>>,
101 rhses: Vec<mbe::TokenTree>,
102 valid: bool,
103 }
104
105 impl TTMacroExpander for MacroRulesMacroExpander {
expand<'cx>( &self, cx: &'cx mut ExtCtxt<'_>, sp: Span, input: TokenStream, ) -> Box<dyn MacResult + 'cx>106 fn expand<'cx>(
107 &self,
108 cx: &'cx mut ExtCtxt<'_>,
109 sp: Span,
110 input: TokenStream,
111 ) -> Box<dyn MacResult + 'cx> {
112 if !self.valid {
113 return DummyResult::any(sp);
114 }
115 expand_macro(
116 cx,
117 sp,
118 self.span,
119 self.node_id,
120 self.name,
121 self.transparency,
122 input,
123 &self.lhses,
124 &self.rhses,
125 )
126 }
127 }
128
macro_rules_dummy_expander<'cx>( _: &'cx mut ExtCtxt<'_>, span: Span, _: TokenStream, ) -> Box<dyn MacResult + 'cx>129 fn macro_rules_dummy_expander<'cx>(
130 _: &'cx mut ExtCtxt<'_>,
131 span: Span,
132 _: TokenStream,
133 ) -> Box<dyn MacResult + 'cx> {
134 DummyResult::any(span)
135 }
136
trace_macros_note(cx_expansions: &mut FxIndexMap<Span, Vec<String>>, sp: Span, message: String)137 fn trace_macros_note(cx_expansions: &mut FxIndexMap<Span, Vec<String>>, sp: Span, message: String) {
138 let sp = sp.macro_backtrace().last().map_or(sp, |trace| trace.call_site);
139 cx_expansions.entry(sp).or_default().push(message);
140 }
141
142 pub(super) trait Tracker<'matcher> {
143 /// The contents of `ParseResult::Failure`.
144 type Failure;
145
146 /// Arm failed to match. If the token is `token::Eof`, it indicates an unexpected
147 /// end of macro invocation. Otherwise, it indicates that no rules expected the given token.
148 /// The usize is the approximate position of the token in the input token stream.
build_failure(tok: Token, position: usize, msg: &'static str) -> Self::Failure149 fn build_failure(tok: Token, position: usize, msg: &'static str) -> Self::Failure;
150
151 /// This is called before trying to match next MatcherLoc on the current token.
before_match_loc(&mut self, _parser: &TtParser, _matcher: &'matcher MatcherLoc)152 fn before_match_loc(&mut self, _parser: &TtParser, _matcher: &'matcher MatcherLoc) {}
153
154 /// This is called after an arm has been parsed, either successfully or unsuccessfully. When this is called,
155 /// `before_match_loc` was called at least once (with a `MatcherLoc::Eof`).
after_arm(&mut self, _result: &NamedParseResult<Self::Failure>)156 fn after_arm(&mut self, _result: &NamedParseResult<Self::Failure>) {}
157
158 /// For tracing.
description() -> &'static str159 fn description() -> &'static str;
160
recovery() -> Recovery161 fn recovery() -> Recovery {
162 Recovery::Forbidden
163 }
164 }
165
166 /// A noop tracker that is used in the hot path of the expansion, has zero overhead thanks to monomorphization.
167 pub(super) struct NoopTracker;
168
169 impl<'matcher> Tracker<'matcher> for NoopTracker {
170 type Failure = ();
171
build_failure(_tok: Token, _position: usize, _msg: &'static str) -> Self::Failure172 fn build_failure(_tok: Token, _position: usize, _msg: &'static str) -> Self::Failure {}
173
description() -> &'static str174 fn description() -> &'static str {
175 "none"
176 }
177 }
178
179 /// Expands the rules based macro defined by `lhses` and `rhses` for a given
180 /// input `arg`.
181 #[instrument(skip(cx, transparency, arg, lhses, rhses))]
expand_macro<'cx>( cx: &'cx mut ExtCtxt<'_>, sp: Span, def_span: Span, node_id: NodeId, name: Ident, transparency: Transparency, arg: TokenStream, lhses: &[Vec<MatcherLoc>], rhses: &[mbe::TokenTree], ) -> Box<dyn MacResult + 'cx>182 fn expand_macro<'cx>(
183 cx: &'cx mut ExtCtxt<'_>,
184 sp: Span,
185 def_span: Span,
186 node_id: NodeId,
187 name: Ident,
188 transparency: Transparency,
189 arg: TokenStream,
190 lhses: &[Vec<MatcherLoc>],
191 rhses: &[mbe::TokenTree],
192 ) -> Box<dyn MacResult + 'cx> {
193 let sess = &cx.sess.parse_sess;
194 // Macros defined in the current crate have a real node id,
195 // whereas macros from an external crate have a dummy id.
196 let is_local = node_id != DUMMY_NODE_ID;
197
198 if cx.trace_macros() {
199 let msg = format!("expanding `{}! {{ {} }}`", name, pprust::tts_to_string(&arg));
200 trace_macros_note(&mut cx.expansions, sp, msg);
201 }
202
203 // Track nothing for the best performance.
204 let try_success_result = try_match_macro(sess, name, &arg, lhses, &mut NoopTracker);
205
206 match try_success_result {
207 Ok((i, named_matches)) => {
208 let (rhs, rhs_span): (&mbe::Delimited, DelimSpan) = match &rhses[i] {
209 mbe::TokenTree::Delimited(span, delimited) => (&delimited, *span),
210 _ => cx.span_bug(sp, "malformed macro rhs"),
211 };
212 let arm_span = rhses[i].span();
213
214 // rhs has holes ( `$id` and `$(...)` that need filled)
215 let mut tts = match transcribe(cx, &named_matches, &rhs, rhs_span, transparency) {
216 Ok(tts) => tts,
217 Err(mut err) => {
218 err.emit();
219 return DummyResult::any(arm_span);
220 }
221 };
222
223 // Replace all the tokens for the corresponding positions in the macro, to maintain
224 // proper positions in error reporting, while maintaining the macro_backtrace.
225 if tts.len() == rhs.tts.len() {
226 tts = tts.map_enumerated_owned(|i, mut tt| {
227 let rhs_tt = &rhs.tts[i];
228 let ctxt = tt.span().ctxt();
229 match (&mut tt, rhs_tt) {
230 // preserve the delim spans if able
231 (
232 TokenTree::Delimited(target_sp, ..),
233 mbe::TokenTree::Delimited(source_sp, ..),
234 ) => {
235 target_sp.open = source_sp.open.with_ctxt(ctxt);
236 target_sp.close = source_sp.close.with_ctxt(ctxt);
237 }
238 _ => {
239 let sp = rhs_tt.span().with_ctxt(ctxt);
240 tt.set_span(sp);
241 }
242 }
243 tt
244 });
245 }
246
247 if cx.trace_macros() {
248 let msg = format!("to `{}`", pprust::tts_to_string(&tts));
249 trace_macros_note(&mut cx.expansions, sp, msg);
250 }
251
252 let p = Parser::new(sess, tts, false, None);
253
254 if is_local {
255 cx.resolver.record_macro_rule_usage(node_id, i);
256 }
257
258 // Let the context choose how to interpret the result.
259 // Weird, but useful for X-macros.
260 return Box::new(ParserAnyMacro {
261 parser: p,
262
263 // Pass along the original expansion site and the name of the macro
264 // so we can print a useful error message if the parse of the expanded
265 // macro leaves unparsed tokens.
266 site_span: sp,
267 macro_ident: name,
268 lint_node_id: cx.current_expansion.lint_node_id,
269 is_trailing_mac: cx.current_expansion.is_trailing_mac,
270 arm_span,
271 is_local,
272 });
273 }
274 Err(CanRetry::No(_)) => {
275 debug!("Will not retry matching as an error was emitted already");
276 return DummyResult::any(sp);
277 }
278 Err(CanRetry::Yes) => {
279 // Retry and emit a better error below.
280 }
281 }
282
283 diagnostics::failed_to_match_macro(cx, sp, def_span, name, arg, lhses)
284 }
285
286 pub(super) enum CanRetry {
287 Yes,
288 /// We are not allowed to retry macro expansion as a fatal error has been emitted already.
289 No(ErrorGuaranteed),
290 }
291
292 /// Try expanding the macro. Returns the index of the successful arm and its named_matches if it was successful,
293 /// and nothing if it failed. On failure, it's the callers job to use `track` accordingly to record all errors
294 /// correctly.
295 #[instrument(level = "debug", skip(sess, arg, lhses, track), fields(tracking = %T::description()))]
try_match_macro<'matcher, T: Tracker<'matcher>>( sess: &ParseSess, name: Ident, arg: &TokenStream, lhses: &'matcher [Vec<MatcherLoc>], track: &mut T, ) -> Result<(usize, NamedMatches), CanRetry>296 pub(super) fn try_match_macro<'matcher, T: Tracker<'matcher>>(
297 sess: &ParseSess,
298 name: Ident,
299 arg: &TokenStream,
300 lhses: &'matcher [Vec<MatcherLoc>],
301 track: &mut T,
302 ) -> Result<(usize, NamedMatches), CanRetry> {
303 // We create a base parser that can be used for the "black box" parts.
304 // Every iteration needs a fresh copy of that parser. However, the parser
305 // is not mutated on many of the iterations, particularly when dealing with
306 // macros like this:
307 //
308 // macro_rules! foo {
309 // ("a") => (A);
310 // ("b") => (B);
311 // ("c") => (C);
312 // // ... etc. (maybe hundreds more)
313 // }
314 //
315 // as seen in the `html5ever` benchmark. We use a `Cow` so that the base
316 // parser is only cloned when necessary (upon mutation). Furthermore, we
317 // reinitialize the `Cow` with the base parser at the start of every
318 // iteration, so that any mutated parsers are not reused. This is all quite
319 // hacky, but speeds up the `html5ever` benchmark significantly. (Issue
320 // 68836 suggests a more comprehensive but more complex change to deal with
321 // this situation.)
322 let parser = parser_from_cx(sess, arg.clone(), T::recovery());
323 // Try each arm's matchers.
324 let mut tt_parser = TtParser::new(name);
325 for (i, lhs) in lhses.iter().enumerate() {
326 let _tracing_span = trace_span!("Matching arm", %i);
327
328 // Take a snapshot of the state of pre-expansion gating at this point.
329 // This is used so that if a matcher is not `Success(..)`ful,
330 // then the spans which became gated when parsing the unsuccessful matcher
331 // are not recorded. On the first `Success(..)`ful matcher, the spans are merged.
332 let mut gated_spans_snapshot = mem::take(&mut *sess.gated_spans.spans.borrow_mut());
333
334 let result = tt_parser.parse_tt(&mut Cow::Borrowed(&parser), lhs, track);
335
336 track.after_arm(&result);
337
338 match result {
339 Success(named_matches) => {
340 debug!("Parsed arm successfully");
341 // The matcher was `Success(..)`ful.
342 // Merge the gated spans from parsing the matcher with the preexisting ones.
343 sess.gated_spans.merge(gated_spans_snapshot);
344
345 return Ok((i, named_matches));
346 }
347 Failure(_) => {
348 trace!("Failed to match arm, trying the next one");
349 // Try the next arm.
350 }
351 Error(_, _) => {
352 debug!("Fatal error occurred during matching");
353 // We haven't emitted an error yet, so we can retry.
354 return Err(CanRetry::Yes);
355 }
356 ErrorReported(guarantee) => {
357 debug!("Fatal error occurred and was reported during matching");
358 // An error has been reported already, we cannot retry as that would cause duplicate errors.
359 return Err(CanRetry::No(guarantee));
360 }
361 }
362
363 // The matcher was not `Success(..)`ful.
364 // Restore to the state before snapshotting and maybe try again.
365 mem::swap(&mut gated_spans_snapshot, &mut sess.gated_spans.spans.borrow_mut());
366 }
367
368 Err(CanRetry::Yes)
369 }
370
371 // Note that macro-by-example's input is also matched against a token tree:
372 // $( $lhs:tt => $rhs:tt );+
373 //
374 // Holy self-referential!
375
376 /// Converts a macro item into a syntax extension.
compile_declarative_macro( sess: &Session, def: &ast::Item, edition: Edition, ) -> (SyntaxExtension, Vec<(usize, Span)>)377 pub fn compile_declarative_macro(
378 sess: &Session,
379 def: &ast::Item,
380 edition: Edition,
381 ) -> (SyntaxExtension, Vec<(usize, Span)>) {
382 debug!("compile_declarative_macro: {:?}", def);
383 let mk_syn_ext = |expander| {
384 SyntaxExtension::new(
385 sess,
386 SyntaxExtensionKind::LegacyBang(expander),
387 def.span,
388 Vec::new(),
389 edition,
390 def.ident.name,
391 &def.attrs,
392 )
393 };
394 let dummy_syn_ext = || (mk_syn_ext(Box::new(macro_rules_dummy_expander)), Vec::new());
395
396 let diag = &sess.parse_sess.span_diagnostic;
397 let lhs_nm = Ident::new(sym::lhs, def.span);
398 let rhs_nm = Ident::new(sym::rhs, def.span);
399 let tt_spec = Some(NonterminalKind::TT);
400
401 let macro_def = match &def.kind {
402 ast::ItemKind::MacroDef(def) => def,
403 _ => unreachable!(),
404 };
405 let macro_rules = macro_def.macro_rules;
406
407 // Parse the macro_rules! invocation
408
409 // The pattern that macro_rules matches.
410 // The grammar for macro_rules! is:
411 // $( $lhs:tt => $rhs:tt );+
412 // ...quasiquoting this would be nice.
413 // These spans won't matter, anyways
414 let argument_gram = vec![
415 mbe::TokenTree::Sequence(
416 DelimSpan::dummy(),
417 mbe::SequenceRepetition {
418 tts: vec![
419 mbe::TokenTree::MetaVarDecl(def.span, lhs_nm, tt_spec),
420 mbe::TokenTree::token(token::FatArrow, def.span),
421 mbe::TokenTree::MetaVarDecl(def.span, rhs_nm, tt_spec),
422 ],
423 separator: Some(Token::new(
424 if macro_rules { token::Semi } else { token::Comma },
425 def.span,
426 )),
427 kleene: mbe::KleeneToken::new(mbe::KleeneOp::OneOrMore, def.span),
428 num_captures: 2,
429 },
430 ),
431 // to phase into semicolon-termination instead of semicolon-separation
432 mbe::TokenTree::Sequence(
433 DelimSpan::dummy(),
434 mbe::SequenceRepetition {
435 tts: vec![mbe::TokenTree::token(
436 if macro_rules { token::Semi } else { token::Comma },
437 def.span,
438 )],
439 separator: None,
440 kleene: mbe::KleeneToken::new(mbe::KleeneOp::ZeroOrMore, def.span),
441 num_captures: 0,
442 },
443 ),
444 ];
445 // Convert it into `MatcherLoc` form.
446 let argument_gram = mbe::macro_parser::compute_locs(&argument_gram);
447
448 let create_parser = || {
449 let body = macro_def.body.tokens.clone();
450 Parser::new(&sess.parse_sess, body, true, rustc_parse::MACRO_ARGUMENTS)
451 };
452
453 let parser = create_parser();
454 let mut tt_parser =
455 TtParser::new(Ident::with_dummy_span(if macro_rules { kw::MacroRules } else { kw::Macro }));
456 let argument_map =
457 match tt_parser.parse_tt(&mut Cow::Owned(parser), &argument_gram, &mut NoopTracker) {
458 Success(m) => m,
459 Failure(()) => {
460 // The fast `NoopTracker` doesn't have any info on failure, so we need to retry it with another one
461 // that gives us the information we need.
462 // For this we need to reclone the macro body as the previous parser consumed it.
463 let retry_parser = create_parser();
464
465 let parse_result = tt_parser.parse_tt(
466 &mut Cow::Owned(retry_parser),
467 &argument_gram,
468 &mut diagnostics::FailureForwarder,
469 );
470 let Failure((token, _, msg)) = parse_result else {
471 unreachable!("matcher returned something other than Failure after retry");
472 };
473
474 let s = parse_failure_msg(&token);
475 let sp = token.span.substitute_dummy(def.span);
476 let mut err = sess.parse_sess.span_diagnostic.struct_span_err(sp, s);
477 err.span_label(sp, msg);
478 annotate_doc_comment(&mut err, sess.source_map(), sp);
479 err.emit();
480 return dummy_syn_ext();
481 }
482 Error(sp, msg) => {
483 sess.parse_sess
484 .span_diagnostic
485 .struct_span_err(sp.substitute_dummy(def.span), msg)
486 .emit();
487 return dummy_syn_ext();
488 }
489 ErrorReported(_) => {
490 return dummy_syn_ext();
491 }
492 };
493
494 let mut valid = true;
495
496 // Extract the arguments:
497 let lhses = match &argument_map[&MacroRulesNormalizedIdent::new(lhs_nm)] {
498 MatchedSeq(s) => s
499 .iter()
500 .map(|m| {
501 if let MatchedTokenTree(tt) = m {
502 let tt = mbe::quoted::parse(
503 TokenStream::new(vec![tt.clone()]),
504 true,
505 &sess.parse_sess,
506 def.id,
507 sess.features_untracked(),
508 edition,
509 )
510 .pop()
511 .unwrap();
512 valid &= check_lhs_nt_follows(&sess.parse_sess, &def, &tt);
513 return tt;
514 }
515 sess.parse_sess.span_diagnostic.span_bug(def.span, "wrong-structured lhs")
516 })
517 .collect::<Vec<mbe::TokenTree>>(),
518 _ => sess.parse_sess.span_diagnostic.span_bug(def.span, "wrong-structured lhs"),
519 };
520
521 let rhses = match &argument_map[&MacroRulesNormalizedIdent::new(rhs_nm)] {
522 MatchedSeq(s) => s
523 .iter()
524 .map(|m| {
525 if let MatchedTokenTree(tt) = m {
526 return mbe::quoted::parse(
527 TokenStream::new(vec![tt.clone()]),
528 false,
529 &sess.parse_sess,
530 def.id,
531 sess.features_untracked(),
532 edition,
533 )
534 .pop()
535 .unwrap();
536 }
537 sess.parse_sess.span_diagnostic.span_bug(def.span, "wrong-structured rhs")
538 })
539 .collect::<Vec<mbe::TokenTree>>(),
540 _ => sess.parse_sess.span_diagnostic.span_bug(def.span, "wrong-structured rhs"),
541 };
542
543 for rhs in &rhses {
544 valid &= check_rhs(&sess.parse_sess, rhs);
545 }
546
547 // don't abort iteration early, so that errors for multiple lhses can be reported
548 for lhs in &lhses {
549 valid &= check_lhs_no_empty_seq(&sess.parse_sess, slice::from_ref(lhs));
550 }
551
552 valid &= macro_check::check_meta_variables(&sess.parse_sess, def.id, def.span, &lhses, &rhses);
553
554 let (transparency, transparency_error) = attr::find_transparency(&def.attrs, macro_rules);
555 match transparency_error {
556 Some(TransparencyError::UnknownTransparency(value, span)) => {
557 diag.span_err(span, format!("unknown macro transparency: `{}`", value));
558 }
559 Some(TransparencyError::MultipleTransparencyAttrs(old_span, new_span)) => {
560 diag.span_err(vec![old_span, new_span], "multiple macro transparency attributes");
561 }
562 None => {}
563 }
564
565 // Compute the spans of the macro rules for unused rule linting.
566 // To avoid warning noise, only consider the rules of this
567 // macro for the lint, if all rules are valid.
568 // Also, we are only interested in non-foreign macros.
569 let rule_spans = if valid && def.id != DUMMY_NODE_ID {
570 lhses
571 .iter()
572 .zip(rhses.iter())
573 .enumerate()
574 // If the rhs contains an invocation like compile_error!,
575 // don't consider the rule for the unused rule lint.
576 .filter(|(_idx, (_lhs, rhs))| !has_compile_error_macro(rhs))
577 // We only take the span of the lhs here,
578 // so that the spans of created warnings are smaller.
579 .map(|(idx, (lhs, _rhs))| (idx, lhs.span()))
580 .collect::<Vec<_>>()
581 } else {
582 Vec::new()
583 };
584
585 // Convert the lhses into `MatcherLoc` form, which is better for doing the
586 // actual matching. Unless the matcher is invalid.
587 let lhses = if valid {
588 lhses
589 .iter()
590 .map(|lhs| {
591 // Ignore the delimiters around the matcher.
592 match lhs {
593 mbe::TokenTree::Delimited(_, delimited) => {
594 mbe::macro_parser::compute_locs(&delimited.tts)
595 }
596 _ => sess.parse_sess.span_diagnostic.span_bug(def.span, "malformed macro lhs"),
597 }
598 })
599 .collect()
600 } else {
601 vec![]
602 };
603
604 let expander = Box::new(MacroRulesMacroExpander {
605 name: def.ident,
606 span: def.span,
607 node_id: def.id,
608 transparency,
609 lhses,
610 rhses,
611 valid,
612 });
613 (mk_syn_ext(expander), rule_spans)
614 }
615
check_lhs_nt_follows(sess: &ParseSess, def: &ast::Item, lhs: &mbe::TokenTree) -> bool616 fn check_lhs_nt_follows(sess: &ParseSess, def: &ast::Item, lhs: &mbe::TokenTree) -> bool {
617 // lhs is going to be like TokenTree::Delimited(...), where the
618 // entire lhs is those tts. Or, it can be a "bare sequence", not wrapped in parens.
619 if let mbe::TokenTree::Delimited(_, delimited) = lhs {
620 check_matcher(sess, def, &delimited.tts)
621 } else {
622 let msg = "invalid macro matcher; matchers must be contained in balanced delimiters";
623 sess.span_diagnostic.span_err(lhs.span(), msg);
624 false
625 }
626 // we don't abort on errors on rejection, the driver will do that for us
627 // after parsing/expansion. we can report every error in every macro this way.
628 }
629
is_empty_token_tree(sess: &ParseSess, seq: &mbe::SequenceRepetition) -> bool630 fn is_empty_token_tree(sess: &ParseSess, seq: &mbe::SequenceRepetition) -> bool {
631 if seq.separator.is_some() {
632 false
633 } else {
634 let mut is_empty = true;
635 let mut iter = seq.tts.iter().peekable();
636 while let Some(tt) = iter.next() {
637 match tt {
638 mbe::TokenTree::MetaVarDecl(_, _, Some(NonterminalKind::Vis)) => {}
639 mbe::TokenTree::Token(t @ Token { kind: DocComment(..), .. }) => {
640 let mut now = t;
641 while let Some(&mbe::TokenTree::Token(
642 next @ Token { kind: DocComment(..), .. },
643 )) = iter.peek()
644 {
645 now = next;
646 iter.next();
647 }
648 let span = t.span.to(now.span);
649 sess.span_diagnostic.span_note_without_error(
650 span,
651 "doc comments are ignored in matcher position",
652 );
653 }
654 mbe::TokenTree::Sequence(_, sub_seq)
655 if (sub_seq.kleene.op == mbe::KleeneOp::ZeroOrMore
656 || sub_seq.kleene.op == mbe::KleeneOp::ZeroOrOne) => {}
657 _ => is_empty = false,
658 }
659 }
660 is_empty
661 }
662 }
663
664 /// Checks that the lhs contains no repetition which could match an empty token
665 /// tree, because then the matcher would hang indefinitely.
check_lhs_no_empty_seq(sess: &ParseSess, tts: &[mbe::TokenTree]) -> bool666 fn check_lhs_no_empty_seq(sess: &ParseSess, tts: &[mbe::TokenTree]) -> bool {
667 use mbe::TokenTree;
668 for tt in tts {
669 match tt {
670 TokenTree::Token(..)
671 | TokenTree::MetaVar(..)
672 | TokenTree::MetaVarDecl(..)
673 | TokenTree::MetaVarExpr(..) => (),
674 TokenTree::Delimited(_, del) => {
675 if !check_lhs_no_empty_seq(sess, &del.tts) {
676 return false;
677 }
678 }
679 TokenTree::Sequence(span, seq) => {
680 if is_empty_token_tree(sess, seq) {
681 let sp = span.entire();
682 sess.span_diagnostic.span_err(sp, "repetition matches empty token tree");
683 return false;
684 }
685 if !check_lhs_no_empty_seq(sess, &seq.tts) {
686 return false;
687 }
688 }
689 }
690 }
691
692 true
693 }
694
check_rhs(sess: &ParseSess, rhs: &mbe::TokenTree) -> bool695 fn check_rhs(sess: &ParseSess, rhs: &mbe::TokenTree) -> bool {
696 match *rhs {
697 mbe::TokenTree::Delimited(..) => return true,
698 _ => {
699 sess.span_diagnostic.span_err(rhs.span(), "macro rhs must be delimited");
700 }
701 }
702 false
703 }
704
check_matcher(sess: &ParseSess, def: &ast::Item, matcher: &[mbe::TokenTree]) -> bool705 fn check_matcher(sess: &ParseSess, def: &ast::Item, matcher: &[mbe::TokenTree]) -> bool {
706 let first_sets = FirstSets::new(matcher);
707 let empty_suffix = TokenSet::empty();
708 let err = sess.span_diagnostic.err_count();
709 check_matcher_core(sess, def, &first_sets, matcher, &empty_suffix);
710 err == sess.span_diagnostic.err_count()
711 }
712
has_compile_error_macro(rhs: &mbe::TokenTree) -> bool713 fn has_compile_error_macro(rhs: &mbe::TokenTree) -> bool {
714 match rhs {
715 mbe::TokenTree::Delimited(_sp, d) => {
716 let has_compile_error = d.tts.array_windows::<3>().any(|[ident, bang, args]| {
717 if let mbe::TokenTree::Token(ident) = ident &&
718 let TokenKind::Ident(ident, _) = ident.kind &&
719 ident == sym::compile_error &&
720 let mbe::TokenTree::Token(bang) = bang &&
721 let TokenKind::Not = bang.kind &&
722 let mbe::TokenTree::Delimited(_, del) = args &&
723 del.delim != Delimiter::Invisible
724 {
725 true
726 } else {
727 false
728 }
729 });
730 if has_compile_error { true } else { d.tts.iter().any(has_compile_error_macro) }
731 }
732 _ => false,
733 }
734 }
735
736 // `The FirstSets` for a matcher is a mapping from subsequences in the
737 // matcher to the FIRST set for that subsequence.
738 //
739 // This mapping is partially precomputed via a backwards scan over the
740 // token trees of the matcher, which provides a mapping from each
741 // repetition sequence to its *first* set.
742 //
743 // (Hypothetically, sequences should be uniquely identifiable via their
744 // spans, though perhaps that is false, e.g., for macro-generated macros
745 // that do not try to inject artificial span information. My plan is
746 // to try to catch such cases ahead of time and not include them in
747 // the precomputed mapping.)
748 struct FirstSets<'tt> {
749 // this maps each TokenTree::Sequence `$(tt ...) SEP OP` that is uniquely identified by its
750 // span in the original matcher to the First set for the inner sequence `tt ...`.
751 //
752 // If two sequences have the same span in a matcher, then map that
753 // span to None (invalidating the mapping here and forcing the code to
754 // use a slow path).
755 first: FxHashMap<Span, Option<TokenSet<'tt>>>,
756 }
757
758 impl<'tt> FirstSets<'tt> {
new(tts: &'tt [mbe::TokenTree]) -> FirstSets<'tt>759 fn new(tts: &'tt [mbe::TokenTree]) -> FirstSets<'tt> {
760 use mbe::TokenTree;
761
762 let mut sets = FirstSets { first: FxHashMap::default() };
763 build_recur(&mut sets, tts);
764 return sets;
765
766 // walks backward over `tts`, returning the FIRST for `tts`
767 // and updating `sets` at the same time for all sequence
768 // substructure we find within `tts`.
769 fn build_recur<'tt>(sets: &mut FirstSets<'tt>, tts: &'tt [TokenTree]) -> TokenSet<'tt> {
770 let mut first = TokenSet::empty();
771 for tt in tts.iter().rev() {
772 match tt {
773 TokenTree::Token(..)
774 | TokenTree::MetaVar(..)
775 | TokenTree::MetaVarDecl(..)
776 | TokenTree::MetaVarExpr(..) => {
777 first.replace_with(TtHandle::TtRef(tt));
778 }
779 TokenTree::Delimited(span, delimited) => {
780 build_recur(sets, &delimited.tts);
781 first.replace_with(TtHandle::from_token_kind(
782 token::OpenDelim(delimited.delim),
783 span.open,
784 ));
785 }
786 TokenTree::Sequence(sp, seq_rep) => {
787 let subfirst = build_recur(sets, &seq_rep.tts);
788
789 match sets.first.entry(sp.entire()) {
790 Entry::Vacant(vac) => {
791 vac.insert(Some(subfirst.clone()));
792 }
793 Entry::Occupied(mut occ) => {
794 // if there is already an entry, then a span must have collided.
795 // This should not happen with typical macro_rules macros,
796 // but syntax extensions need not maintain distinct spans,
797 // so distinct syntax trees can be assigned the same span.
798 // In such a case, the map cannot be trusted; so mark this
799 // entry as unusable.
800 occ.insert(None);
801 }
802 }
803
804 // If the sequence contents can be empty, then the first
805 // token could be the separator token itself.
806
807 if let (Some(sep), true) = (&seq_rep.separator, subfirst.maybe_empty) {
808 first.add_one_maybe(TtHandle::from_token(sep.clone()));
809 }
810
811 // Reverse scan: Sequence comes before `first`.
812 if subfirst.maybe_empty
813 || seq_rep.kleene.op == mbe::KleeneOp::ZeroOrMore
814 || seq_rep.kleene.op == mbe::KleeneOp::ZeroOrOne
815 {
816 // If sequence is potentially empty, then
817 // union them (preserving first emptiness).
818 first.add_all(&TokenSet { maybe_empty: true, ..subfirst });
819 } else {
820 // Otherwise, sequence guaranteed
821 // non-empty; replace first.
822 first = subfirst;
823 }
824 }
825 }
826 }
827
828 first
829 }
830 }
831
832 // walks forward over `tts` until all potential FIRST tokens are
833 // identified.
first(&self, tts: &'tt [mbe::TokenTree]) -> TokenSet<'tt>834 fn first(&self, tts: &'tt [mbe::TokenTree]) -> TokenSet<'tt> {
835 use mbe::TokenTree;
836
837 let mut first = TokenSet::empty();
838 for tt in tts.iter() {
839 assert!(first.maybe_empty);
840 match tt {
841 TokenTree::Token(..)
842 | TokenTree::MetaVar(..)
843 | TokenTree::MetaVarDecl(..)
844 | TokenTree::MetaVarExpr(..) => {
845 first.add_one(TtHandle::TtRef(tt));
846 return first;
847 }
848 TokenTree::Delimited(span, delimited) => {
849 first.add_one(TtHandle::from_token_kind(
850 token::OpenDelim(delimited.delim),
851 span.open,
852 ));
853 return first;
854 }
855 TokenTree::Sequence(sp, seq_rep) => {
856 let subfirst_owned;
857 let subfirst = match self.first.get(&sp.entire()) {
858 Some(Some(subfirst)) => subfirst,
859 Some(&None) => {
860 subfirst_owned = self.first(&seq_rep.tts);
861 &subfirst_owned
862 }
863 None => {
864 panic!("We missed a sequence during FirstSets construction");
865 }
866 };
867
868 // If the sequence contents can be empty, then the first
869 // token could be the separator token itself.
870 if let (Some(sep), true) = (&seq_rep.separator, subfirst.maybe_empty) {
871 first.add_one_maybe(TtHandle::from_token(sep.clone()));
872 }
873
874 assert!(first.maybe_empty);
875 first.add_all(subfirst);
876 if subfirst.maybe_empty
877 || seq_rep.kleene.op == mbe::KleeneOp::ZeroOrMore
878 || seq_rep.kleene.op == mbe::KleeneOp::ZeroOrOne
879 {
880 // Continue scanning for more first
881 // tokens, but also make sure we
882 // restore empty-tracking state.
883 first.maybe_empty = true;
884 continue;
885 } else {
886 return first;
887 }
888 }
889 }
890 }
891
892 // we only exit the loop if `tts` was empty or if every
893 // element of `tts` matches the empty sequence.
894 assert!(first.maybe_empty);
895 first
896 }
897 }
898
899 // Most `mbe::TokenTree`s are preexisting in the matcher, but some are defined
900 // implicitly, such as opening/closing delimiters and sequence repetition ops.
901 // This type encapsulates both kinds. It implements `Clone` while avoiding the
902 // need for `mbe::TokenTree` to implement `Clone`.
903 #[derive(Debug)]
904 enum TtHandle<'tt> {
905 /// This is used in most cases.
906 TtRef(&'tt mbe::TokenTree),
907
908 /// This is only used for implicit token trees. The `mbe::TokenTree` *must*
909 /// be `mbe::TokenTree::Token`. No other variants are allowed. We store an
910 /// `mbe::TokenTree` rather than a `Token` so that `get()` can return a
911 /// `&mbe::TokenTree`.
912 Token(mbe::TokenTree),
913 }
914
915 impl<'tt> TtHandle<'tt> {
from_token(tok: Token) -> Self916 fn from_token(tok: Token) -> Self {
917 TtHandle::Token(mbe::TokenTree::Token(tok))
918 }
919
from_token_kind(kind: TokenKind, span: Span) -> Self920 fn from_token_kind(kind: TokenKind, span: Span) -> Self {
921 TtHandle::from_token(Token::new(kind, span))
922 }
923
924 // Get a reference to a token tree.
get(&'tt self) -> &'tt mbe::TokenTree925 fn get(&'tt self) -> &'tt mbe::TokenTree {
926 match self {
927 TtHandle::TtRef(tt) => tt,
928 TtHandle::Token(token_tt) => &token_tt,
929 }
930 }
931 }
932
933 impl<'tt> PartialEq for TtHandle<'tt> {
eq(&self, other: &TtHandle<'tt>) -> bool934 fn eq(&self, other: &TtHandle<'tt>) -> bool {
935 self.get() == other.get()
936 }
937 }
938
939 impl<'tt> Clone for TtHandle<'tt> {
clone(&self) -> Self940 fn clone(&self) -> Self {
941 match self {
942 TtHandle::TtRef(tt) => TtHandle::TtRef(tt),
943
944 // This variant *must* contain a `mbe::TokenTree::Token`, and not
945 // any other variant of `mbe::TokenTree`.
946 TtHandle::Token(mbe::TokenTree::Token(tok)) => {
947 TtHandle::Token(mbe::TokenTree::Token(tok.clone()))
948 }
949
950 _ => unreachable!(),
951 }
952 }
953 }
954
955 // A set of `mbe::TokenTree`s, which may include `TokenTree::Match`s
956 // (for macro-by-example syntactic variables). It also carries the
957 // `maybe_empty` flag; that is true if and only if the matcher can
958 // match an empty token sequence.
959 //
960 // The First set is computed on submatchers like `$($a:expr b),* $(c)* d`,
961 // which has corresponding FIRST = {$a:expr, c, d}.
962 // Likewise, `$($a:expr b),* $(c)+ d` has FIRST = {$a:expr, c}.
963 //
964 // (Notably, we must allow for *-op to occur zero times.)
965 #[derive(Clone, Debug)]
966 struct TokenSet<'tt> {
967 tokens: Vec<TtHandle<'tt>>,
968 maybe_empty: bool,
969 }
970
971 impl<'tt> TokenSet<'tt> {
972 // Returns a set for the empty sequence.
empty() -> Self973 fn empty() -> Self {
974 TokenSet { tokens: Vec::new(), maybe_empty: true }
975 }
976
977 // Returns the set `{ tok }` for the single-token (and thus
978 // non-empty) sequence [tok].
singleton(tt: TtHandle<'tt>) -> Self979 fn singleton(tt: TtHandle<'tt>) -> Self {
980 TokenSet { tokens: vec![tt], maybe_empty: false }
981 }
982
983 // Changes self to be the set `{ tok }`.
984 // Since `tok` is always present, marks self as non-empty.
replace_with(&mut self, tt: TtHandle<'tt>)985 fn replace_with(&mut self, tt: TtHandle<'tt>) {
986 self.tokens.clear();
987 self.tokens.push(tt);
988 self.maybe_empty = false;
989 }
990
991 // Changes self to be the empty set `{}`; meant for use when
992 // the particular token does not matter, but we want to
993 // record that it occurs.
replace_with_irrelevant(&mut self)994 fn replace_with_irrelevant(&mut self) {
995 self.tokens.clear();
996 self.maybe_empty = false;
997 }
998
999 // Adds `tok` to the set for `self`, marking sequence as non-empty.
add_one(&mut self, tt: TtHandle<'tt>)1000 fn add_one(&mut self, tt: TtHandle<'tt>) {
1001 if !self.tokens.contains(&tt) {
1002 self.tokens.push(tt);
1003 }
1004 self.maybe_empty = false;
1005 }
1006
1007 // Adds `tok` to the set for `self`. (Leaves `maybe_empty` flag alone.)
add_one_maybe(&mut self, tt: TtHandle<'tt>)1008 fn add_one_maybe(&mut self, tt: TtHandle<'tt>) {
1009 if !self.tokens.contains(&tt) {
1010 self.tokens.push(tt);
1011 }
1012 }
1013
1014 // Adds all elements of `other` to this.
1015 //
1016 // (Since this is a set, we filter out duplicates.)
1017 //
1018 // If `other` is potentially empty, then preserves the previous
1019 // setting of the empty flag of `self`. If `other` is guaranteed
1020 // non-empty, then `self` is marked non-empty.
add_all(&mut self, other: &Self)1021 fn add_all(&mut self, other: &Self) {
1022 for tt in &other.tokens {
1023 if !self.tokens.contains(tt) {
1024 self.tokens.push(tt.clone());
1025 }
1026 }
1027 if !other.maybe_empty {
1028 self.maybe_empty = false;
1029 }
1030 }
1031 }
1032
1033 // Checks that `matcher` is internally consistent and that it
1034 // can legally be followed by a token `N`, for all `N` in `follow`.
1035 // (If `follow` is empty, then it imposes no constraint on
1036 // the `matcher`.)
1037 //
1038 // Returns the set of NT tokens that could possibly come last in
1039 // `matcher`. (If `matcher` matches the empty sequence, then
1040 // `maybe_empty` will be set to true.)
1041 //
1042 // Requires that `first_sets` is pre-computed for `matcher`;
1043 // see `FirstSets::new`.
check_matcher_core<'tt>( sess: &ParseSess, def: &ast::Item, first_sets: &FirstSets<'tt>, matcher: &'tt [mbe::TokenTree], follow: &TokenSet<'tt>, ) -> TokenSet<'tt>1044 fn check_matcher_core<'tt>(
1045 sess: &ParseSess,
1046 def: &ast::Item,
1047 first_sets: &FirstSets<'tt>,
1048 matcher: &'tt [mbe::TokenTree],
1049 follow: &TokenSet<'tt>,
1050 ) -> TokenSet<'tt> {
1051 use mbe::TokenTree;
1052
1053 let mut last = TokenSet::empty();
1054
1055 // 2. For each token and suffix [T, SUFFIX] in M:
1056 // ensure that T can be followed by SUFFIX, and if SUFFIX may be empty,
1057 // then ensure T can also be followed by any element of FOLLOW.
1058 'each_token: for i in 0..matcher.len() {
1059 let token = &matcher[i];
1060 let suffix = &matcher[i + 1..];
1061
1062 let build_suffix_first = || {
1063 let mut s = first_sets.first(suffix);
1064 if s.maybe_empty {
1065 s.add_all(follow);
1066 }
1067 s
1068 };
1069
1070 // (we build `suffix_first` on demand below; you can tell
1071 // which cases are supposed to fall through by looking for the
1072 // initialization of this variable.)
1073 let suffix_first;
1074
1075 // First, update `last` so that it corresponds to the set
1076 // of NT tokens that might end the sequence `... token`.
1077 match token {
1078 TokenTree::Token(..)
1079 | TokenTree::MetaVar(..)
1080 | TokenTree::MetaVarDecl(..)
1081 | TokenTree::MetaVarExpr(..) => {
1082 if token_can_be_followed_by_any(token) {
1083 // don't need to track tokens that work with any,
1084 last.replace_with_irrelevant();
1085 // ... and don't need to check tokens that can be
1086 // followed by anything against SUFFIX.
1087 continue 'each_token;
1088 } else {
1089 last.replace_with(TtHandle::TtRef(token));
1090 suffix_first = build_suffix_first();
1091 }
1092 }
1093 TokenTree::Delimited(span, d) => {
1094 let my_suffix = TokenSet::singleton(TtHandle::from_token_kind(
1095 token::CloseDelim(d.delim),
1096 span.close,
1097 ));
1098 check_matcher_core(sess, def, first_sets, &d.tts, &my_suffix);
1099 // don't track non NT tokens
1100 last.replace_with_irrelevant();
1101
1102 // also, we don't need to check delimited sequences
1103 // against SUFFIX
1104 continue 'each_token;
1105 }
1106 TokenTree::Sequence(_, seq_rep) => {
1107 suffix_first = build_suffix_first();
1108 // The trick here: when we check the interior, we want
1109 // to include the separator (if any) as a potential
1110 // (but not guaranteed) element of FOLLOW. So in that
1111 // case, we make a temp copy of suffix and stuff
1112 // delimiter in there.
1113 //
1114 // FIXME: Should I first scan suffix_first to see if
1115 // delimiter is already in it before I go through the
1116 // work of cloning it? But then again, this way I may
1117 // get a "tighter" span?
1118 let mut new;
1119 let my_suffix = if let Some(sep) = &seq_rep.separator {
1120 new = suffix_first.clone();
1121 new.add_one_maybe(TtHandle::from_token(sep.clone()));
1122 &new
1123 } else {
1124 &suffix_first
1125 };
1126
1127 // At this point, `suffix_first` is built, and
1128 // `my_suffix` is some TokenSet that we can use
1129 // for checking the interior of `seq_rep`.
1130 let next = check_matcher_core(sess, def, first_sets, &seq_rep.tts, my_suffix);
1131 if next.maybe_empty {
1132 last.add_all(&next);
1133 } else {
1134 last = next;
1135 }
1136
1137 // the recursive call to check_matcher_core already ran the 'each_last
1138 // check below, so we can just keep going forward here.
1139 continue 'each_token;
1140 }
1141 }
1142
1143 // (`suffix_first` guaranteed initialized once reaching here.)
1144
1145 // Now `last` holds the complete set of NT tokens that could
1146 // end the sequence before SUFFIX. Check that every one works with `suffix`.
1147 for tt in &last.tokens {
1148 if let &TokenTree::MetaVarDecl(span, name, Some(kind)) = tt.get() {
1149 for next_token in &suffix_first.tokens {
1150 let next_token = next_token.get();
1151
1152 // Check if the old pat is used and the next token is `|`
1153 // to warn about incompatibility with Rust 2021.
1154 // We only emit this lint if we're parsing the original
1155 // definition of this macro_rules, not while (re)parsing
1156 // the macro when compiling another crate that is using the
1157 // macro. (See #86567.)
1158 // Macros defined in the current crate have a real node id,
1159 // whereas macros from an external crate have a dummy id.
1160 if def.id != DUMMY_NODE_ID
1161 && matches!(kind, NonterminalKind::PatParam { inferred: true })
1162 && matches!(next_token, TokenTree::Token(token) if token.kind == BinOp(token::BinOpToken::Or))
1163 {
1164 // It is suggestion to use pat_param, for example: $x:pat -> $x:pat_param.
1165 let suggestion = quoted_tt_to_string(&TokenTree::MetaVarDecl(
1166 span,
1167 name,
1168 Some(NonterminalKind::PatParam { inferred: false }),
1169 ));
1170 sess.buffer_lint_with_diagnostic(
1171 &RUST_2021_INCOMPATIBLE_OR_PATTERNS,
1172 span,
1173 ast::CRATE_NODE_ID,
1174 "the meaning of the `pat` fragment specifier is changing in Rust 2021, which may affect this macro",
1175 BuiltinLintDiagnostics::OrPatternsBackCompat(span, suggestion),
1176 );
1177 }
1178 match is_in_follow(next_token, kind) {
1179 IsInFollow::Yes => {}
1180 IsInFollow::No(possible) => {
1181 let may_be = if last.tokens.len() == 1 && suffix_first.tokens.len() == 1
1182 {
1183 "is"
1184 } else {
1185 "may be"
1186 };
1187
1188 let sp = next_token.span();
1189 let mut err = sess.span_diagnostic.struct_span_err(
1190 sp,
1191 format!(
1192 "`${name}:{frag}` {may_be} followed by `{next}`, which \
1193 is not allowed for `{frag}` fragments",
1194 name = name,
1195 frag = kind,
1196 next = quoted_tt_to_string(next_token),
1197 may_be = may_be
1198 ),
1199 );
1200 err.span_label(sp, format!("not allowed after `{}` fragments", kind));
1201
1202 if kind == NonterminalKind::PatWithOr
1203 && sess.edition.rust_2021()
1204 && next_token.is_token(&BinOp(token::BinOpToken::Or))
1205 {
1206 let suggestion = quoted_tt_to_string(&TokenTree::MetaVarDecl(
1207 span,
1208 name,
1209 Some(NonterminalKind::PatParam { inferred: false }),
1210 ));
1211 err.span_suggestion(
1212 span,
1213 "try a `pat_param` fragment specifier instead",
1214 suggestion,
1215 Applicability::MaybeIncorrect,
1216 );
1217 }
1218
1219 let msg = "allowed there are: ";
1220 match possible {
1221 &[] => {}
1222 &[t] => {
1223 err.note(format!(
1224 "only {} is allowed after `{}` fragments",
1225 t, kind,
1226 ));
1227 }
1228 ts => {
1229 err.note(format!(
1230 "{}{} or {}",
1231 msg,
1232 ts[..ts.len() - 1].to_vec().join(", "),
1233 ts[ts.len() - 1],
1234 ));
1235 }
1236 }
1237 err.emit();
1238 }
1239 }
1240 }
1241 }
1242 }
1243 }
1244 last
1245 }
1246
token_can_be_followed_by_any(tok: &mbe::TokenTree) -> bool1247 fn token_can_be_followed_by_any(tok: &mbe::TokenTree) -> bool {
1248 if let mbe::TokenTree::MetaVarDecl(_, _, Some(kind)) = *tok {
1249 frag_can_be_followed_by_any(kind)
1250 } else {
1251 // (Non NT's can always be followed by anything in matchers.)
1252 true
1253 }
1254 }
1255
1256 /// Returns `true` if a fragment of type `frag` can be followed by any sort of
1257 /// token. We use this (among other things) as a useful approximation
1258 /// for when `frag` can be followed by a repetition like `$(...)*` or
1259 /// `$(...)+`. In general, these can be a bit tricky to reason about,
1260 /// so we adopt a conservative position that says that any fragment
1261 /// specifier which consumes at most one token tree can be followed by
1262 /// a fragment specifier (indeed, these fragments can be followed by
1263 /// ANYTHING without fear of future compatibility hazards).
frag_can_be_followed_by_any(kind: NonterminalKind) -> bool1264 fn frag_can_be_followed_by_any(kind: NonterminalKind) -> bool {
1265 matches!(
1266 kind,
1267 NonterminalKind::Item // always terminated by `}` or `;`
1268 | NonterminalKind::Block // exactly one token tree
1269 | NonterminalKind::Ident // exactly one token tree
1270 | NonterminalKind::Literal // exactly one token tree
1271 | NonterminalKind::Meta // exactly one token tree
1272 | NonterminalKind::Lifetime // exactly one token tree
1273 | NonterminalKind::TT // exactly one token tree
1274 )
1275 }
1276
1277 enum IsInFollow {
1278 Yes,
1279 No(&'static [&'static str]),
1280 }
1281
1282 /// Returns `true` if `frag` can legally be followed by the token `tok`. For
1283 /// fragments that can consume an unbounded number of tokens, `tok`
1284 /// must be within a well-defined follow set. This is intended to
1285 /// guarantee future compatibility: for example, without this rule, if
1286 /// we expanded `expr` to include a new binary operator, we might
1287 /// break macros that were relying on that binary operator as a
1288 /// separator.
1289 // when changing this do not forget to update doc/book/macros.md!
is_in_follow(tok: &mbe::TokenTree, kind: NonterminalKind) -> IsInFollow1290 fn is_in_follow(tok: &mbe::TokenTree, kind: NonterminalKind) -> IsInFollow {
1291 use mbe::TokenTree;
1292
1293 if let TokenTree::Token(Token { kind: token::CloseDelim(_), .. }) = *tok {
1294 // closing a token tree can never be matched by any fragment;
1295 // iow, we always require that `(` and `)` match, etc.
1296 IsInFollow::Yes
1297 } else {
1298 match kind {
1299 NonterminalKind::Item => {
1300 // since items *must* be followed by either a `;` or a `}`, we can
1301 // accept anything after them
1302 IsInFollow::Yes
1303 }
1304 NonterminalKind::Block => {
1305 // anything can follow block, the braces provide an easy boundary to
1306 // maintain
1307 IsInFollow::Yes
1308 }
1309 NonterminalKind::Stmt | NonterminalKind::Expr => {
1310 const TOKENS: &[&str] = &["`=>`", "`,`", "`;`"];
1311 match tok {
1312 TokenTree::Token(token) => match token.kind {
1313 FatArrow | Comma | Semi => IsInFollow::Yes,
1314 _ => IsInFollow::No(TOKENS),
1315 },
1316 _ => IsInFollow::No(TOKENS),
1317 }
1318 }
1319 NonterminalKind::PatParam { .. } => {
1320 const TOKENS: &[&str] = &["`=>`", "`,`", "`=`", "`|`", "`if`", "`in`"];
1321 match tok {
1322 TokenTree::Token(token) => match token.kind {
1323 FatArrow | Comma | Eq | BinOp(token::Or) => IsInFollow::Yes,
1324 Ident(name, false) if name == kw::If || name == kw::In => IsInFollow::Yes,
1325 _ => IsInFollow::No(TOKENS),
1326 },
1327 _ => IsInFollow::No(TOKENS),
1328 }
1329 }
1330 NonterminalKind::PatWithOr { .. } => {
1331 const TOKENS: &[&str] = &["`=>`", "`,`", "`=`", "`if`", "`in`"];
1332 match tok {
1333 TokenTree::Token(token) => match token.kind {
1334 FatArrow | Comma | Eq => IsInFollow::Yes,
1335 Ident(name, false) if name == kw::If || name == kw::In => IsInFollow::Yes,
1336 _ => IsInFollow::No(TOKENS),
1337 },
1338 _ => IsInFollow::No(TOKENS),
1339 }
1340 }
1341 NonterminalKind::Path | NonterminalKind::Ty => {
1342 const TOKENS: &[&str] = &[
1343 "`{`", "`[`", "`=>`", "`,`", "`>`", "`=`", "`:`", "`;`", "`|`", "`as`",
1344 "`where`",
1345 ];
1346 match tok {
1347 TokenTree::Token(token) => match token.kind {
1348 OpenDelim(Delimiter::Brace)
1349 | OpenDelim(Delimiter::Bracket)
1350 | Comma
1351 | FatArrow
1352 | Colon
1353 | Eq
1354 | Gt
1355 | BinOp(token::Shr)
1356 | Semi
1357 | BinOp(token::Or) => IsInFollow::Yes,
1358 Ident(name, false) if name == kw::As || name == kw::Where => {
1359 IsInFollow::Yes
1360 }
1361 _ => IsInFollow::No(TOKENS),
1362 },
1363 TokenTree::MetaVarDecl(_, _, Some(NonterminalKind::Block)) => IsInFollow::Yes,
1364 _ => IsInFollow::No(TOKENS),
1365 }
1366 }
1367 NonterminalKind::Ident | NonterminalKind::Lifetime => {
1368 // being a single token, idents and lifetimes are harmless
1369 IsInFollow::Yes
1370 }
1371 NonterminalKind::Literal => {
1372 // literals may be of a single token, or two tokens (negative numbers)
1373 IsInFollow::Yes
1374 }
1375 NonterminalKind::Meta | NonterminalKind::TT => {
1376 // being either a single token or a delimited sequence, tt is
1377 // harmless
1378 IsInFollow::Yes
1379 }
1380 NonterminalKind::Vis => {
1381 // Explicitly disallow `priv`, on the off chance it comes back.
1382 const TOKENS: &[&str] = &["`,`", "an ident", "a type"];
1383 match tok {
1384 TokenTree::Token(token) => match token.kind {
1385 Comma => IsInFollow::Yes,
1386 Ident(name, is_raw) if is_raw || name != kw::Priv => IsInFollow::Yes,
1387 _ => {
1388 if token.can_begin_type() {
1389 IsInFollow::Yes
1390 } else {
1391 IsInFollow::No(TOKENS)
1392 }
1393 }
1394 },
1395 TokenTree::MetaVarDecl(
1396 _,
1397 _,
1398 Some(NonterminalKind::Ident | NonterminalKind::Ty | NonterminalKind::Path),
1399 ) => IsInFollow::Yes,
1400 _ => IsInFollow::No(TOKENS),
1401 }
1402 }
1403 }
1404 }
1405 }
1406
quoted_tt_to_string(tt: &mbe::TokenTree) -> String1407 fn quoted_tt_to_string(tt: &mbe::TokenTree) -> String {
1408 match tt {
1409 mbe::TokenTree::Token(token) => pprust::token_to_string(&token).into(),
1410 mbe::TokenTree::MetaVar(_, name) => format!("${}", name),
1411 mbe::TokenTree::MetaVarDecl(_, name, Some(kind)) => format!("${}:{}", name, kind),
1412 mbe::TokenTree::MetaVarDecl(_, name, None) => format!("${}:", name),
1413 _ => panic!(
1414 "{}",
1415 "unexpected mbe::TokenTree::{Sequence or Delimited} \
1416 in follow set checker"
1417 ),
1418 }
1419 }
1420
parser_from_cx(sess: &ParseSess, tts: TokenStream, recovery: Recovery) -> Parser<'_>1421 pub(super) fn parser_from_cx(sess: &ParseSess, tts: TokenStream, recovery: Recovery) -> Parser<'_> {
1422 Parser::new(sess, tts, true, rustc_parse::MACRO_ARGUMENTS).recovery(recovery)
1423 }
1424