• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 #include <linux/iommu.h>
102 #include <linux/tick.h>
103 #ifdef CONFIG_MEM_PURGEABLE
104 #include <linux/mm_purgeable.h>
105 #endif
106 #ifdef CONFIG_RECLAIM_ACCT
107 #include <linux/reclaim_acct.h>
108 #endif
109 
110 #include <asm/pgalloc.h>
111 #include <linux/uaccess.h>
112 #include <asm/mmu_context.h>
113 #include <asm/cacheflush.h>
114 #include <asm/tlbflush.h>
115 
116 #include <trace/events/sched.h>
117 
118 #define CREATE_TRACE_POINTS
119 #include <trace/events/task.h>
120 #include <linux/hck/lite_hck_ced.h>
121 
122 /*
123  * Minimum number of threads to boot the kernel
124  */
125 #define MIN_THREADS 20
126 
127 /*
128  * Maximum number of threads
129  */
130 #define MAX_THREADS FUTEX_TID_MASK
131 
132 /*
133  * Protected counters by write_lock_irq(&tasklist_lock)
134  */
135 unsigned long total_forks;	/* Handle normal Linux uptimes. */
136 int nr_threads;			/* The idle threads do not count.. */
137 
138 static int max_threads;		/* tunable limit on nr_threads */
139 
140 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
141 
142 static const char * const resident_page_types[] = {
143 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
144 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
145 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
146 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
147 };
148 
149 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
150 
151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
152 
153 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)154 int lockdep_tasklist_lock_is_held(void)
155 {
156 	return lockdep_is_held(&tasklist_lock);
157 }
158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
159 #endif /* #ifdef CONFIG_PROVE_RCU */
160 
nr_processes(void)161 int nr_processes(void)
162 {
163 	int cpu;
164 	int total = 0;
165 
166 	for_each_possible_cpu(cpu)
167 		total += per_cpu(process_counts, cpu);
168 
169 	return total;
170 }
171 
arch_release_task_struct(struct task_struct * tsk)172 void __weak arch_release_task_struct(struct task_struct *tsk)
173 {
174 }
175 
176 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
177 static struct kmem_cache *task_struct_cachep;
178 
alloc_task_struct_node(int node)179 static inline struct task_struct *alloc_task_struct_node(int node)
180 {
181 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
182 }
183 
free_task_struct(struct task_struct * tsk)184 static inline void free_task_struct(struct task_struct *tsk)
185 {
186 	kmem_cache_free(task_struct_cachep, tsk);
187 }
188 #endif
189 
190 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
191 
192 /*
193  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
194  * kmemcache based allocator.
195  */
196 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
197 
198 #  ifdef CONFIG_VMAP_STACK
199 /*
200  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
201  * flush.  Try to minimize the number of calls by caching stacks.
202  */
203 #define NR_CACHED_STACKS 2
204 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
205 
206 struct vm_stack {
207 	struct rcu_head rcu;
208 	struct vm_struct *stack_vm_area;
209 };
210 
try_release_thread_stack_to_cache(struct vm_struct * vm)211 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
212 {
213 	unsigned int i;
214 
215 	for (i = 0; i < NR_CACHED_STACKS; i++) {
216 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
217 			continue;
218 		return true;
219 	}
220 	return false;
221 }
222 
thread_stack_free_rcu(struct rcu_head * rh)223 static void thread_stack_free_rcu(struct rcu_head *rh)
224 {
225 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
226 
227 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
228 		return;
229 
230 	vfree(vm_stack);
231 }
232 
thread_stack_delayed_free(struct task_struct * tsk)233 static void thread_stack_delayed_free(struct task_struct *tsk)
234 {
235 	struct vm_stack *vm_stack = tsk->stack;
236 
237 	vm_stack->stack_vm_area = tsk->stack_vm_area;
238 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
239 }
240 
free_vm_stack_cache(unsigned int cpu)241 static int free_vm_stack_cache(unsigned int cpu)
242 {
243 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
244 	int i;
245 
246 	for (i = 0; i < NR_CACHED_STACKS; i++) {
247 		struct vm_struct *vm_stack = cached_vm_stacks[i];
248 
249 		if (!vm_stack)
250 			continue;
251 
252 		vfree(vm_stack->addr);
253 		cached_vm_stacks[i] = NULL;
254 	}
255 
256 	return 0;
257 }
258 
memcg_charge_kernel_stack(struct vm_struct * vm)259 static int memcg_charge_kernel_stack(struct vm_struct *vm)
260 {
261 	int i;
262 	int ret;
263 	int nr_charged = 0;
264 
265 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
266 
267 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
268 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
269 		if (ret)
270 			goto err;
271 		nr_charged++;
272 	}
273 	return 0;
274 err:
275 	for (i = 0; i < nr_charged; i++)
276 		memcg_kmem_uncharge_page(vm->pages[i], 0);
277 	return ret;
278 }
279 
alloc_thread_stack_node(struct task_struct * tsk,int node)280 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
281 {
282 	struct vm_struct *vm;
283 	void *stack;
284 	int i;
285 
286 	for (i = 0; i < NR_CACHED_STACKS; i++) {
287 		struct vm_struct *s;
288 
289 		s = this_cpu_xchg(cached_stacks[i], NULL);
290 
291 		if (!s)
292 			continue;
293 
294 		/* Reset stack metadata. */
295 		kasan_unpoison_range(s->addr, THREAD_SIZE);
296 
297 		stack = kasan_reset_tag(s->addr);
298 
299 		/* Clear stale pointers from reused stack. */
300 		memset(stack, 0, THREAD_SIZE);
301 
302 		if (memcg_charge_kernel_stack(s)) {
303 			vfree(s->addr);
304 			return -ENOMEM;
305 		}
306 
307 		tsk->stack_vm_area = s;
308 		tsk->stack = stack;
309 		return 0;
310 	}
311 
312 	/*
313 	 * Allocated stacks are cached and later reused by new threads,
314 	 * so memcg accounting is performed manually on assigning/releasing
315 	 * stacks to tasks. Drop __GFP_ACCOUNT.
316 	 */
317 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
318 				     VMALLOC_START, VMALLOC_END,
319 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
320 				     PAGE_KERNEL,
321 				     0, node, __builtin_return_address(0));
322 	if (!stack)
323 		return -ENOMEM;
324 
325 	vm = find_vm_area(stack);
326 	if (memcg_charge_kernel_stack(vm)) {
327 		vfree(stack);
328 		return -ENOMEM;
329 	}
330 	/*
331 	 * We can't call find_vm_area() in interrupt context, and
332 	 * free_thread_stack() can be called in interrupt context,
333 	 * so cache the vm_struct.
334 	 */
335 	tsk->stack_vm_area = vm;
336 	stack = kasan_reset_tag(stack);
337 	tsk->stack = stack;
338 	return 0;
339 }
340 
free_thread_stack(struct task_struct * tsk)341 static void free_thread_stack(struct task_struct *tsk)
342 {
343 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
344 		thread_stack_delayed_free(tsk);
345 
346 	tsk->stack = NULL;
347 	tsk->stack_vm_area = NULL;
348 }
349 
350 #  else /* !CONFIG_VMAP_STACK */
351 
thread_stack_free_rcu(struct rcu_head * rh)352 static void thread_stack_free_rcu(struct rcu_head *rh)
353 {
354 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
355 }
356 
thread_stack_delayed_free(struct task_struct * tsk)357 static void thread_stack_delayed_free(struct task_struct *tsk)
358 {
359 	struct rcu_head *rh = tsk->stack;
360 
361 	call_rcu(rh, thread_stack_free_rcu);
362 }
363 
alloc_thread_stack_node(struct task_struct * tsk,int node)364 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
365 {
366 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
367 					     THREAD_SIZE_ORDER);
368 
369 	if (likely(page)) {
370 		tsk->stack = kasan_reset_tag(page_address(page));
371 		return 0;
372 	}
373 	return -ENOMEM;
374 }
375 
free_thread_stack(struct task_struct * tsk)376 static void free_thread_stack(struct task_struct *tsk)
377 {
378 	thread_stack_delayed_free(tsk);
379 	tsk->stack = NULL;
380 }
381 
382 #  endif /* CONFIG_VMAP_STACK */
383 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
384 
385 static struct kmem_cache *thread_stack_cache;
386 
thread_stack_free_rcu(struct rcu_head * rh)387 static void thread_stack_free_rcu(struct rcu_head *rh)
388 {
389 	kmem_cache_free(thread_stack_cache, rh);
390 }
391 
thread_stack_delayed_free(struct task_struct * tsk)392 static void thread_stack_delayed_free(struct task_struct *tsk)
393 {
394 	struct rcu_head *rh = tsk->stack;
395 
396 	call_rcu(rh, thread_stack_free_rcu);
397 }
398 
alloc_thread_stack_node(struct task_struct * tsk,int node)399 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
400 {
401 	unsigned long *stack;
402 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
403 	stack = kasan_reset_tag(stack);
404 	tsk->stack = stack;
405 	return stack ? 0 : -ENOMEM;
406 }
407 
free_thread_stack(struct task_struct * tsk)408 static void free_thread_stack(struct task_struct *tsk)
409 {
410 	thread_stack_delayed_free(tsk);
411 	tsk->stack = NULL;
412 }
413 
thread_stack_cache_init(void)414 void thread_stack_cache_init(void)
415 {
416 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
417 					THREAD_SIZE, THREAD_SIZE, 0, 0,
418 					THREAD_SIZE, NULL);
419 	BUG_ON(thread_stack_cache == NULL);
420 }
421 
422 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
423 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
424 
alloc_thread_stack_node(struct task_struct * tsk,int node)425 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
426 {
427 	unsigned long *stack;
428 
429 	stack = arch_alloc_thread_stack_node(tsk, node);
430 	tsk->stack = stack;
431 	return stack ? 0 : -ENOMEM;
432 }
433 
free_thread_stack(struct task_struct * tsk)434 static void free_thread_stack(struct task_struct *tsk)
435 {
436 	arch_free_thread_stack(tsk);
437 	tsk->stack = NULL;
438 }
439 
440 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
441 
442 /* SLAB cache for signal_struct structures (tsk->signal) */
443 static struct kmem_cache *signal_cachep;
444 
445 /* SLAB cache for sighand_struct structures (tsk->sighand) */
446 struct kmem_cache *sighand_cachep;
447 
448 /* SLAB cache for files_struct structures (tsk->files) */
449 struct kmem_cache *files_cachep;
450 
451 /* SLAB cache for fs_struct structures (tsk->fs) */
452 struct kmem_cache *fs_cachep;
453 
454 /* SLAB cache for vm_area_struct structures */
455 static struct kmem_cache *vm_area_cachep;
456 
457 /* SLAB cache for mm_struct structures (tsk->mm) */
458 static struct kmem_cache *mm_cachep;
459 
460 #ifdef CONFIG_PER_VMA_LOCK
461 
462 /* SLAB cache for vm_area_struct.lock */
463 static struct kmem_cache *vma_lock_cachep;
464 
vma_lock_alloc(struct vm_area_struct * vma)465 static bool vma_lock_alloc(struct vm_area_struct *vma)
466 {
467 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
468 	if (!vma->vm_lock)
469 		return false;
470 
471 	init_rwsem(&vma->vm_lock->lock);
472 	vma->vm_lock_seq = -1;
473 
474 	return true;
475 }
476 
vma_lock_free(struct vm_area_struct * vma)477 static inline void vma_lock_free(struct vm_area_struct *vma)
478 {
479 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
480 }
481 
482 #else /* CONFIG_PER_VMA_LOCK */
483 
vma_lock_alloc(struct vm_area_struct * vma)484 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
vma_lock_free(struct vm_area_struct * vma)485 static inline void vma_lock_free(struct vm_area_struct *vma) {}
486 
487 #endif /* CONFIG_PER_VMA_LOCK */
488 
vm_area_alloc(struct mm_struct * mm)489 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
490 {
491 	struct vm_area_struct *vma;
492 
493 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
494 	if (!vma)
495 		return NULL;
496 
497 	vma_init(vma, mm);
498 	if (!vma_lock_alloc(vma)) {
499 		kmem_cache_free(vm_area_cachep, vma);
500 		return NULL;
501 	}
502 
503 	return vma;
504 }
505 
vm_area_dup(struct vm_area_struct * orig)506 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
507 {
508 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
509 
510 	if (!new)
511 		return NULL;
512 
513 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
514 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
515 	/*
516 	 * orig->shared.rb may be modified concurrently, but the clone
517 	 * will be reinitialized.
518 	 */
519 	data_race(memcpy(new, orig, sizeof(*new)));
520 	if (!vma_lock_alloc(new)) {
521 		kmem_cache_free(vm_area_cachep, new);
522 		return NULL;
523 	}
524 	INIT_LIST_HEAD(&new->anon_vma_chain);
525 	vma_numab_state_init(new);
526 	dup_anon_vma_name(orig, new);
527 
528 	return new;
529 }
530 
__vm_area_free(struct vm_area_struct * vma)531 void __vm_area_free(struct vm_area_struct *vma)
532 {
533 	vma_numab_state_free(vma);
534 	free_anon_vma_name(vma);
535 	vma_lock_free(vma);
536 	kmem_cache_free(vm_area_cachep, vma);
537 }
538 
539 #ifdef CONFIG_PER_VMA_LOCK
vm_area_free_rcu_cb(struct rcu_head * head)540 static void vm_area_free_rcu_cb(struct rcu_head *head)
541 {
542 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
543 						  vm_rcu);
544 
545 	/* The vma should not be locked while being destroyed. */
546 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
547 	__vm_area_free(vma);
548 }
549 #endif
550 
vm_area_free(struct vm_area_struct * vma)551 void vm_area_free(struct vm_area_struct *vma)
552 {
553 #ifdef CONFIG_PER_VMA_LOCK
554 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
555 #else
556 	__vm_area_free(vma);
557 #endif
558 }
559 
account_kernel_stack(struct task_struct * tsk,int account)560 static void account_kernel_stack(struct task_struct *tsk, int account)
561 {
562 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
563 		struct vm_struct *vm = task_stack_vm_area(tsk);
564 		int i;
565 
566 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
567 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
568 					      account * (PAGE_SIZE / 1024));
569 	} else {
570 		void *stack = task_stack_page(tsk);
571 
572 		/* All stack pages are in the same node. */
573 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
574 				      account * (THREAD_SIZE / 1024));
575 	}
576 }
577 
exit_task_stack_account(struct task_struct * tsk)578 void exit_task_stack_account(struct task_struct *tsk)
579 {
580 	account_kernel_stack(tsk, -1);
581 
582 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
583 		struct vm_struct *vm;
584 		int i;
585 
586 		vm = task_stack_vm_area(tsk);
587 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
588 			memcg_kmem_uncharge_page(vm->pages[i], 0);
589 	}
590 }
591 
release_task_stack(struct task_struct * tsk)592 static void release_task_stack(struct task_struct *tsk)
593 {
594 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
595 		return;  /* Better to leak the stack than to free prematurely */
596 
597 	free_thread_stack(tsk);
598 }
599 
600 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)601 void put_task_stack(struct task_struct *tsk)
602 {
603 	if (refcount_dec_and_test(&tsk->stack_refcount))
604 		release_task_stack(tsk);
605 }
606 #endif
607 
free_task(struct task_struct * tsk)608 void free_task(struct task_struct *tsk)
609 {
610 #ifdef CONFIG_SECCOMP
611 	WARN_ON_ONCE(tsk->seccomp.filter);
612 #endif
613 	release_user_cpus_ptr(tsk);
614 	scs_release(tsk);
615 
616 #ifndef CONFIG_THREAD_INFO_IN_TASK
617 	/*
618 	 * The task is finally done with both the stack and thread_info,
619 	 * so free both.
620 	 */
621 	release_task_stack(tsk);
622 #else
623 	/*
624 	 * If the task had a separate stack allocation, it should be gone
625 	 * by now.
626 	 */
627 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
628 #endif
629 	rt_mutex_debug_task_free(tsk);
630 	ftrace_graph_exit_task(tsk);
631 	arch_release_task_struct(tsk);
632 	if (tsk->flags & PF_KTHREAD)
633 		free_kthread_struct(tsk);
634 	bpf_task_storage_free(tsk);
635 	free_task_struct(tsk);
636 }
637 EXPORT_SYMBOL(free_task);
638 
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)639 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
640 {
641 	struct file *exe_file;
642 
643 	exe_file = get_mm_exe_file(oldmm);
644 	RCU_INIT_POINTER(mm->exe_file, exe_file);
645 	/*
646 	 * We depend on the oldmm having properly denied write access to the
647 	 * exe_file already.
648 	 */
649 	if (exe_file && deny_write_access(exe_file))
650 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
651 }
652 
653 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)654 static __latent_entropy int dup_mmap(struct mm_struct *mm,
655 					struct mm_struct *oldmm)
656 {
657 	struct vm_area_struct *mpnt, *tmp;
658 	int retval;
659 	unsigned long charge = 0;
660 	LIST_HEAD(uf);
661 	VMA_ITERATOR(old_vmi, oldmm, 0);
662 	VMA_ITERATOR(vmi, mm, 0);
663 
664 	uprobe_start_dup_mmap();
665 	if (mmap_write_lock_killable(oldmm)) {
666 		retval = -EINTR;
667 		goto fail_uprobe_end;
668 	}
669 	flush_cache_dup_mm(oldmm);
670 	uprobe_dup_mmap(oldmm, mm);
671 	/*
672 	 * Not linked in yet - no deadlock potential:
673 	 */
674 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
675 
676 	/* No ordering required: file already has been exposed. */
677 	dup_mm_exe_file(mm, oldmm);
678 
679 	mm->total_vm = oldmm->total_vm;
680 	mm->data_vm = oldmm->data_vm;
681 	mm->exec_vm = oldmm->exec_vm;
682 	mm->stack_vm = oldmm->stack_vm;
683 
684 	retval = ksm_fork(mm, oldmm);
685 	if (retval)
686 		goto out;
687 	khugepaged_fork(mm, oldmm);
688 
689 	retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
690 	if (retval)
691 		goto out;
692 
693 	mt_clear_in_rcu(vmi.mas.tree);
694 	for_each_vma(old_vmi, mpnt) {
695 		struct file *file;
696 
697 		vma_start_write(mpnt);
698 		if (mpnt->vm_flags & VM_DONTCOPY) {
699 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
700 			continue;
701 		}
702 		charge = 0;
703 		/*
704 		 * Don't duplicate many vmas if we've been oom-killed (for
705 		 * example)
706 		 */
707 		if (fatal_signal_pending(current)) {
708 			retval = -EINTR;
709 			goto loop_out;
710 		}
711 		if (mpnt->vm_flags & VM_ACCOUNT) {
712 			unsigned long len = vma_pages(mpnt);
713 
714 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
715 				goto fail_nomem;
716 			charge = len;
717 		}
718 		tmp = vm_area_dup(mpnt);
719 		if (!tmp)
720 			goto fail_nomem;
721 
722 		/* track_pfn_copy() will later take care of copying internal state. */
723 		if (unlikely(tmp->vm_flags & VM_PFNMAP))
724 			untrack_pfn_clear(tmp);
725 
726 		retval = vma_dup_policy(mpnt, tmp);
727 		if (retval)
728 			goto fail_nomem_policy;
729 		tmp->vm_mm = mm;
730 		retval = dup_userfaultfd(tmp, &uf);
731 		if (retval)
732 			goto fail_nomem_anon_vma_fork;
733 		if (tmp->vm_flags & VM_WIPEONFORK) {
734 			/*
735 			 * VM_WIPEONFORK gets a clean slate in the child.
736 			 * Don't prepare anon_vma until fault since we don't
737 			 * copy page for current vma.
738 			 */
739 			tmp->anon_vma = NULL;
740 		} else if (anon_vma_fork(tmp, mpnt))
741 			goto fail_nomem_anon_vma_fork;
742 		vm_flags_clear(tmp, VM_LOCKED_MASK);
743 		file = tmp->vm_file;
744 		if (file) {
745 			struct address_space *mapping = file->f_mapping;
746 
747 			get_file(file);
748 			i_mmap_lock_write(mapping);
749 			if (tmp->vm_flags & VM_SHARED)
750 				mapping_allow_writable(mapping);
751 			flush_dcache_mmap_lock(mapping);
752 			/* insert tmp into the share list, just after mpnt */
753 			vma_interval_tree_insert_after(tmp, mpnt,
754 					&mapping->i_mmap);
755 			flush_dcache_mmap_unlock(mapping);
756 			i_mmap_unlock_write(mapping);
757 		}
758 
759 		/*
760 		 * Copy/update hugetlb private vma information.
761 		 */
762 		if (is_vm_hugetlb_page(tmp))
763 			hugetlb_dup_vma_private(tmp);
764 
765 		/* Link the vma into the MT */
766 		if (vma_iter_bulk_store(&vmi, tmp))
767 			goto fail_nomem_vmi_store;
768 
769 		mm->map_count++;
770 		if (!(tmp->vm_flags & VM_WIPEONFORK))
771 			retval = copy_page_range(tmp, mpnt);
772 
773 		if (tmp->vm_ops && tmp->vm_ops->open)
774 			tmp->vm_ops->open(tmp);
775 
776 		if (retval)
777 			goto loop_out;
778 	}
779 	/* a new mm has just been created */
780 	retval = arch_dup_mmap(oldmm, mm);
781 loop_out:
782 	vma_iter_free(&vmi);
783 	if (!retval)
784 		mt_set_in_rcu(vmi.mas.tree);
785 out:
786 	mmap_write_unlock(mm);
787 	flush_tlb_mm(oldmm);
788 	mmap_write_unlock(oldmm);
789 	dup_userfaultfd_complete(&uf);
790 fail_uprobe_end:
791 	uprobe_end_dup_mmap();
792 	return retval;
793 
794 fail_nomem_vmi_store:
795 	unlink_anon_vmas(tmp);
796 fail_nomem_anon_vma_fork:
797 	mpol_put(vma_policy(tmp));
798 fail_nomem_policy:
799 	vm_area_free(tmp);
800 fail_nomem:
801 	retval = -ENOMEM;
802 	vm_unacct_memory(charge);
803 	goto loop_out;
804 }
805 
mm_alloc_pgd(struct mm_struct * mm)806 static inline int mm_alloc_pgd(struct mm_struct *mm)
807 {
808 #ifdef CONFIG_MEM_PURGEABLE
809 	mm_init_uxpgd(mm);
810 #endif
811 	mm->pgd = pgd_alloc(mm);
812 	if (unlikely(!mm->pgd))
813 		return -ENOMEM;
814 	return 0;
815 }
816 
mm_free_pgd(struct mm_struct * mm)817 static inline void mm_free_pgd(struct mm_struct *mm)
818 {
819 	pgd_free(mm, mm->pgd);
820 #ifdef CONFIG_MEM_PURGEABLE
821 	mm_clear_uxpgd(mm);
822 #endif
823 }
824 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)825 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
826 {
827 	mmap_write_lock(oldmm);
828 	dup_mm_exe_file(mm, oldmm);
829 	mmap_write_unlock(oldmm);
830 	return 0;
831 }
832 #define mm_alloc_pgd(mm)	(0)
833 #define mm_free_pgd(mm)
834 #endif /* CONFIG_MMU */
835 
check_mm(struct mm_struct * mm)836 static void check_mm(struct mm_struct *mm)
837 {
838 	int i;
839 
840 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
841 			 "Please make sure 'struct resident_page_types[]' is updated as well");
842 
843 	for (i = 0; i < NR_MM_COUNTERS; i++) {
844 		long x = percpu_counter_sum(&mm->rss_stat[i]);
845 
846 		if (unlikely(x))
847 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
848 				 mm, resident_page_types[i], x);
849 	}
850 
851 	if (mm_pgtables_bytes(mm))
852 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
853 				mm_pgtables_bytes(mm));
854 
855 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
856 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
857 #endif
858 }
859 
860 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
861 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
862 
do_check_lazy_tlb(void * arg)863 static void do_check_lazy_tlb(void *arg)
864 {
865 	struct mm_struct *mm = arg;
866 
867 	WARN_ON_ONCE(current->active_mm == mm);
868 }
869 
do_shoot_lazy_tlb(void * arg)870 static void do_shoot_lazy_tlb(void *arg)
871 {
872 	struct mm_struct *mm = arg;
873 
874 	if (current->active_mm == mm) {
875 		WARN_ON_ONCE(current->mm);
876 		current->active_mm = &init_mm;
877 		switch_mm(mm, &init_mm, current);
878 	}
879 }
880 
cleanup_lazy_tlbs(struct mm_struct * mm)881 static void cleanup_lazy_tlbs(struct mm_struct *mm)
882 {
883 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
884 		/*
885 		 * In this case, lazy tlb mms are refounted and would not reach
886 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
887 		 */
888 		return;
889 	}
890 
891 	/*
892 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
893 	 * requires lazy mm users to switch to another mm when the refcount
894 	 * drops to zero, before the mm is freed. This requires IPIs here to
895 	 * switch kernel threads to init_mm.
896 	 *
897 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
898 	 * switch with the final userspace teardown TLB flush which leaves the
899 	 * mm lazy on this CPU but no others, reducing the need for additional
900 	 * IPIs here. There are cases where a final IPI is still required here,
901 	 * such as the final mmdrop being performed on a different CPU than the
902 	 * one exiting, or kernel threads using the mm when userspace exits.
903 	 *
904 	 * IPI overheads have not found to be expensive, but they could be
905 	 * reduced in a number of possible ways, for example (roughly
906 	 * increasing order of complexity):
907 	 * - The last lazy reference created by exit_mm() could instead switch
908 	 *   to init_mm, however it's probable this will run on the same CPU
909 	 *   immediately afterwards, so this may not reduce IPIs much.
910 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
911 	 * - CPUs store active_mm where it can be remotely checked without a
912 	 *   lock, to filter out false-positives in the cpumask.
913 	 * - After mm_users or mm_count reaches zero, switching away from the
914 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
915 	 *   with some batching or delaying of the final IPIs.
916 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
917 	 *   switching to avoid IPIs completely.
918 	 */
919 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
920 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
921 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
922 }
923 
924 /*
925  * Called when the last reference to the mm
926  * is dropped: either by a lazy thread or by
927  * mmput. Free the page directory and the mm.
928  */
__mmdrop(struct mm_struct * mm)929 void __mmdrop(struct mm_struct *mm)
930 {
931 	BUG_ON(mm == &init_mm);
932 	WARN_ON_ONCE(mm == current->mm);
933 
934 	/* Ensure no CPUs are using this as their lazy tlb mm */
935 	cleanup_lazy_tlbs(mm);
936 
937 	WARN_ON_ONCE(mm == current->active_mm);
938 	mm_free_pgd(mm);
939 	destroy_context(mm);
940 	mmu_notifier_subscriptions_destroy(mm);
941 	check_mm(mm);
942 	put_user_ns(mm->user_ns);
943 	mm_pasid_drop(mm);
944 	mm_destroy_cid(mm);
945 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
946 
947 	free_mm(mm);
948 }
949 EXPORT_SYMBOL_GPL(__mmdrop);
950 
mmdrop_async_fn(struct work_struct * work)951 static void mmdrop_async_fn(struct work_struct *work)
952 {
953 	struct mm_struct *mm;
954 
955 	mm = container_of(work, struct mm_struct, async_put_work);
956 	__mmdrop(mm);
957 }
958 
mmdrop_async(struct mm_struct * mm)959 static void mmdrop_async(struct mm_struct *mm)
960 {
961 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
962 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
963 		schedule_work(&mm->async_put_work);
964 	}
965 }
966 
free_signal_struct(struct signal_struct * sig)967 static inline void free_signal_struct(struct signal_struct *sig)
968 {
969 	taskstats_tgid_free(sig);
970 	sched_autogroup_exit(sig);
971 	/*
972 	 * __mmdrop is not safe to call from softirq context on x86 due to
973 	 * pgd_dtor so postpone it to the async context
974 	 */
975 	if (sig->oom_mm)
976 		mmdrop_async(sig->oom_mm);
977 	kmem_cache_free(signal_cachep, sig);
978 }
979 
put_signal_struct(struct signal_struct * sig)980 static inline void put_signal_struct(struct signal_struct *sig)
981 {
982 	if (refcount_dec_and_test(&sig->sigcnt))
983 		free_signal_struct(sig);
984 }
985 
__put_task_struct(struct task_struct * tsk)986 void __put_task_struct(struct task_struct *tsk)
987 {
988 	WARN_ON(!tsk->exit_state);
989 	WARN_ON(refcount_read(&tsk->usage));
990 	WARN_ON(tsk == current);
991 
992 	io_uring_free(tsk);
993 	cgroup_free(tsk);
994 	task_numa_free(tsk, true);
995 	security_task_free(tsk);
996 	exit_creds(tsk);
997 	delayacct_tsk_free(tsk);
998 	put_signal_struct(tsk->signal);
999 	sched_core_free(tsk);
1000 	free_task(tsk);
1001 }
1002 EXPORT_SYMBOL_GPL(__put_task_struct);
1003 
__put_task_struct_rcu_cb(struct rcu_head * rhp)1004 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
1005 {
1006 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
1007 
1008 	__put_task_struct(task);
1009 }
1010 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
1011 
arch_task_cache_init(void)1012 void __init __weak arch_task_cache_init(void) { }
1013 
1014 /*
1015  * set_max_threads
1016  */
set_max_threads(unsigned int max_threads_suggested)1017 static void set_max_threads(unsigned int max_threads_suggested)
1018 {
1019 	u64 threads;
1020 	unsigned long nr_pages = totalram_pages();
1021 
1022 	/*
1023 	 * The number of threads shall be limited such that the thread
1024 	 * structures may only consume a small part of the available memory.
1025 	 */
1026 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1027 		threads = MAX_THREADS;
1028 	else
1029 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1030 				    (u64) THREAD_SIZE * 8UL);
1031 
1032 	if (threads > max_threads_suggested)
1033 		threads = max_threads_suggested;
1034 
1035 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1036 }
1037 
1038 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1039 /* Initialized by the architecture: */
1040 int arch_task_struct_size __read_mostly;
1041 #endif
1042 
1043 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)1044 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1045 {
1046 	/* Fetch thread_struct whitelist for the architecture. */
1047 	arch_thread_struct_whitelist(offset, size);
1048 
1049 	/*
1050 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1051 	 * adjust offset to position of thread_struct in task_struct.
1052 	 */
1053 	if (unlikely(*size == 0))
1054 		*offset = 0;
1055 	else
1056 		*offset += offsetof(struct task_struct, thread);
1057 }
1058 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1059 
fork_init(void)1060 void __init fork_init(void)
1061 {
1062 	int i;
1063 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1064 #ifndef ARCH_MIN_TASKALIGN
1065 #define ARCH_MIN_TASKALIGN	0
1066 #endif
1067 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1068 	unsigned long useroffset, usersize;
1069 
1070 	/* create a slab on which task_structs can be allocated */
1071 	task_struct_whitelist(&useroffset, &usersize);
1072 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1073 			arch_task_struct_size, align,
1074 			SLAB_PANIC|SLAB_ACCOUNT,
1075 			useroffset, usersize, NULL);
1076 #endif
1077 
1078 	/* do the arch specific task caches init */
1079 	arch_task_cache_init();
1080 
1081 	set_max_threads(MAX_THREADS);
1082 
1083 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1084 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1085 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1086 		init_task.signal->rlim[RLIMIT_NPROC];
1087 
1088 	for (i = 0; i < UCOUNT_COUNTS; i++)
1089 		init_user_ns.ucount_max[i] = max_threads/2;
1090 
1091 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1092 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1093 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1094 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1095 
1096 #ifdef CONFIG_VMAP_STACK
1097 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1098 			  NULL, free_vm_stack_cache);
1099 #endif
1100 
1101 	scs_init();
1102 
1103 	lockdep_init_task(&init_task);
1104 	uprobes_init();
1105 }
1106 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1107 int __weak arch_dup_task_struct(struct task_struct *dst,
1108 					       struct task_struct *src)
1109 {
1110 	*dst = *src;
1111 	return 0;
1112 }
1113 
set_task_stack_end_magic(struct task_struct * tsk)1114 void set_task_stack_end_magic(struct task_struct *tsk)
1115 {
1116 	unsigned long *stackend;
1117 
1118 	stackend = end_of_stack(tsk);
1119 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1120 }
1121 
dup_task_struct(struct task_struct * orig,int node)1122 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1123 {
1124 	struct task_struct *tsk;
1125 	int err;
1126 
1127 	if (node == NUMA_NO_NODE)
1128 		node = tsk_fork_get_node(orig);
1129 	tsk = alloc_task_struct_node(node);
1130 	if (!tsk)
1131 		return NULL;
1132 
1133 	err = arch_dup_task_struct(tsk, orig);
1134 	if (err)
1135 		goto free_tsk;
1136 
1137 #ifdef CONFIG_ACCESS_TOKENID
1138 	tsk->token = orig->token;
1139 	tsk->ftoken = 0;
1140 #endif
1141 
1142 	err = alloc_thread_stack_node(tsk, node);
1143 	if (err)
1144 		goto free_tsk;
1145 
1146 #ifdef CONFIG_THREAD_INFO_IN_TASK
1147 	refcount_set(&tsk->stack_refcount, 1);
1148 #endif
1149 	account_kernel_stack(tsk, 1);
1150 
1151 	err = scs_prepare(tsk, node);
1152 	if (err)
1153 		goto free_stack;
1154 
1155 #ifdef CONFIG_SECCOMP
1156 	/*
1157 	 * We must handle setting up seccomp filters once we're under
1158 	 * the sighand lock in case orig has changed between now and
1159 	 * then. Until then, filter must be NULL to avoid messing up
1160 	 * the usage counts on the error path calling free_task.
1161 	 */
1162 	tsk->seccomp.filter = NULL;
1163 #endif
1164 
1165 	setup_thread_stack(tsk, orig);
1166 	clear_user_return_notifier(tsk);
1167 	clear_tsk_need_resched(tsk);
1168 	set_task_stack_end_magic(tsk);
1169 	clear_syscall_work_syscall_user_dispatch(tsk);
1170 
1171 #ifdef CONFIG_STACKPROTECTOR
1172 	tsk->stack_canary = get_random_canary();
1173 #endif
1174 	if (orig->cpus_ptr == &orig->cpus_mask)
1175 		tsk->cpus_ptr = &tsk->cpus_mask;
1176 	dup_user_cpus_ptr(tsk, orig, node);
1177 
1178 	/*
1179 	 * One for the user space visible state that goes away when reaped.
1180 	 * One for the scheduler.
1181 	 */
1182 	refcount_set(&tsk->rcu_users, 2);
1183 	/* One for the rcu users */
1184 	refcount_set(&tsk->usage, 1);
1185 #ifdef CONFIG_BLK_DEV_IO_TRACE
1186 	tsk->btrace_seq = 0;
1187 #endif
1188 	tsk->splice_pipe = NULL;
1189 	tsk->task_frag.page = NULL;
1190 	tsk->wake_q.next = NULL;
1191 	tsk->worker_private = NULL;
1192 
1193 	kcov_task_init(tsk);
1194 	kmsan_task_create(tsk);
1195 	kmap_local_fork(tsk);
1196 
1197 #ifdef CONFIG_FAULT_INJECTION
1198 	tsk->fail_nth = 0;
1199 #endif
1200 
1201 #ifdef CONFIG_BLK_CGROUP
1202 	tsk->throttle_disk = NULL;
1203 	tsk->use_memdelay = 0;
1204 #endif
1205 
1206 #ifdef CONFIG_IOMMU_SVA
1207 	tsk->pasid_activated = 0;
1208 #endif
1209 
1210 #ifdef CONFIG_MEMCG
1211 	tsk->active_memcg = NULL;
1212 #endif
1213 
1214 #ifdef CONFIG_CPU_SUP_INTEL
1215 	tsk->reported_split_lock = 0;
1216 #endif
1217 
1218 #ifdef CONFIG_SCHED_MM_CID
1219 	tsk->mm_cid = -1;
1220 	tsk->last_mm_cid = -1;
1221 	tsk->mm_cid_active = 0;
1222 	tsk->migrate_from_cpu = -1;
1223 #endif
1224 	return tsk;
1225 
1226 free_stack:
1227 	exit_task_stack_account(tsk);
1228 	free_thread_stack(tsk);
1229 free_tsk:
1230 	free_task_struct(tsk);
1231 	return NULL;
1232 }
1233 
1234 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1235 
1236 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1237 
coredump_filter_setup(char * s)1238 static int __init coredump_filter_setup(char *s)
1239 {
1240 	default_dump_filter =
1241 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1242 		MMF_DUMP_FILTER_MASK;
1243 	return 1;
1244 }
1245 
1246 __setup("coredump_filter=", coredump_filter_setup);
1247 
1248 #include <linux/init_task.h>
1249 
mm_init_aio(struct mm_struct * mm)1250 static void mm_init_aio(struct mm_struct *mm)
1251 {
1252 #ifdef CONFIG_AIO
1253 	spin_lock_init(&mm->ioctx_lock);
1254 	mm->ioctx_table = NULL;
1255 #endif
1256 }
1257 
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1258 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1259 					   struct task_struct *p)
1260 {
1261 #ifdef CONFIG_MEMCG
1262 	if (mm->owner == p)
1263 		WRITE_ONCE(mm->owner, NULL);
1264 #endif
1265 }
1266 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1267 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1268 {
1269 #ifdef CONFIG_MEMCG
1270 	mm->owner = p;
1271 #endif
1272 }
1273 
mm_init_uprobes_state(struct mm_struct * mm)1274 static void mm_init_uprobes_state(struct mm_struct *mm)
1275 {
1276 #ifdef CONFIG_UPROBES
1277 	mm->uprobes_state.xol_area = NULL;
1278 #endif
1279 }
1280 
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1281 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1282 	struct user_namespace *user_ns)
1283 {
1284 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1285 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1286 	atomic_set(&mm->mm_users, 1);
1287 	atomic_set(&mm->mm_count, 1);
1288 	seqcount_init(&mm->write_protect_seq);
1289 	mmap_init_lock(mm);
1290 	INIT_LIST_HEAD(&mm->mmlist);
1291 #ifdef CONFIG_PER_VMA_LOCK
1292 	mm->mm_lock_seq = 0;
1293 #endif
1294 	mm_pgtables_bytes_init(mm);
1295 	mm->map_count = 0;
1296 	mm->locked_vm = 0;
1297 	atomic64_set(&mm->pinned_vm, 0);
1298 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1299 	spin_lock_init(&mm->page_table_lock);
1300 	spin_lock_init(&mm->arg_lock);
1301 	mm_init_cpumask(mm);
1302 	mm_init_aio(mm);
1303 	mm_init_owner(mm, p);
1304 	mm_pasid_init(mm);
1305 	RCU_INIT_POINTER(mm->exe_file, NULL);
1306 	mmu_notifier_subscriptions_init(mm);
1307 	init_tlb_flush_pending(mm);
1308 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1309 	mm->pmd_huge_pte = NULL;
1310 #endif
1311 	mm_init_uprobes_state(mm);
1312 	hugetlb_count_init(mm);
1313 
1314 	if (current->mm) {
1315 		mm->flags = mmf_init_flags(current->mm->flags);
1316 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1317 	} else {
1318 		mm->flags = default_dump_filter;
1319 		mm->def_flags = 0;
1320 	}
1321 
1322 	if (mm_alloc_pgd(mm))
1323 		goto fail_nopgd;
1324 
1325 	if (init_new_context(p, mm))
1326 		goto fail_nocontext;
1327 
1328 	if (mm_alloc_cid(mm))
1329 		goto fail_cid;
1330 
1331 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1332 				     NR_MM_COUNTERS))
1333 		goto fail_pcpu;
1334 
1335 	mm->user_ns = get_user_ns(user_ns);
1336 	lru_gen_init_mm(mm);
1337 	return mm;
1338 
1339 fail_pcpu:
1340 	mm_destroy_cid(mm);
1341 fail_cid:
1342 	destroy_context(mm);
1343 fail_nocontext:
1344 	mm_free_pgd(mm);
1345 fail_nopgd:
1346 	free_mm(mm);
1347 	return NULL;
1348 }
1349 
1350 /*
1351  * Allocate and initialize an mm_struct.
1352  */
mm_alloc(void)1353 struct mm_struct *mm_alloc(void)
1354 {
1355 	struct mm_struct *mm;
1356 
1357 	mm = allocate_mm();
1358 	if (!mm)
1359 		return NULL;
1360 
1361 	memset(mm, 0, sizeof(*mm));
1362 	return mm_init(mm, current, current_user_ns());
1363 }
1364 
__mmput(struct mm_struct * mm)1365 static inline void __mmput(struct mm_struct *mm)
1366 {
1367 	VM_BUG_ON(atomic_read(&mm->mm_users));
1368 
1369 	uprobe_clear_state(mm);
1370 	exit_aio(mm);
1371 	ksm_exit(mm);
1372 	khugepaged_exit(mm); /* must run before exit_mmap */
1373 	exit_mmap(mm);
1374 	mm_put_huge_zero_page(mm);
1375 	set_mm_exe_file(mm, NULL);
1376 	if (!list_empty(&mm->mmlist)) {
1377 		spin_lock(&mmlist_lock);
1378 		list_del(&mm->mmlist);
1379 		spin_unlock(&mmlist_lock);
1380 	}
1381 	if (mm->binfmt)
1382 		module_put(mm->binfmt->module);
1383 	lru_gen_del_mm(mm);
1384 	mmdrop(mm);
1385 }
1386 
1387 /*
1388  * Decrement the use count and release all resources for an mm.
1389  */
mmput(struct mm_struct * mm)1390 void mmput(struct mm_struct *mm)
1391 {
1392 	might_sleep();
1393 
1394 	if (atomic_dec_and_test(&mm->mm_users))
1395 		__mmput(mm);
1396 }
1397 EXPORT_SYMBOL_GPL(mmput);
1398 
1399 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1400 static void mmput_async_fn(struct work_struct *work)
1401 {
1402 	struct mm_struct *mm = container_of(work, struct mm_struct,
1403 					    async_put_work);
1404 
1405 	__mmput(mm);
1406 }
1407 
mmput_async(struct mm_struct * mm)1408 void mmput_async(struct mm_struct *mm)
1409 {
1410 	if (atomic_dec_and_test(&mm->mm_users)) {
1411 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1412 		schedule_work(&mm->async_put_work);
1413 	}
1414 }
1415 EXPORT_SYMBOL_GPL(mmput_async);
1416 #endif
1417 
1418 /**
1419  * set_mm_exe_file - change a reference to the mm's executable file
1420  *
1421  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1422  *
1423  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1424  * invocations: in mmput() nobody alive left, in execve it happens before
1425  * the new mm is made visible to anyone.
1426  *
1427  * Can only fail if new_exe_file != NULL.
1428  */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1429 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1430 {
1431 	struct file *old_exe_file;
1432 
1433 	/*
1434 	 * It is safe to dereference the exe_file without RCU as
1435 	 * this function is only called if nobody else can access
1436 	 * this mm -- see comment above for justification.
1437 	 */
1438 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1439 
1440 	if (new_exe_file) {
1441 		/*
1442 		 * We expect the caller (i.e., sys_execve) to already denied
1443 		 * write access, so this is unlikely to fail.
1444 		 */
1445 		if (unlikely(deny_write_access(new_exe_file)))
1446 			return -EACCES;
1447 		get_file(new_exe_file);
1448 	}
1449 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1450 	if (old_exe_file) {
1451 		allow_write_access(old_exe_file);
1452 		fput(old_exe_file);
1453 	}
1454 	return 0;
1455 }
1456 
1457 /**
1458  * replace_mm_exe_file - replace a reference to the mm's executable file
1459  *
1460  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1461  *
1462  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1463  */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1464 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1465 {
1466 	struct vm_area_struct *vma;
1467 	struct file *old_exe_file;
1468 	int ret = 0;
1469 
1470 	/* Forbid mm->exe_file change if old file still mapped. */
1471 	old_exe_file = get_mm_exe_file(mm);
1472 	if (old_exe_file) {
1473 		VMA_ITERATOR(vmi, mm, 0);
1474 		mmap_read_lock(mm);
1475 		for_each_vma(vmi, vma) {
1476 			if (!vma->vm_file)
1477 				continue;
1478 			if (path_equal(&vma->vm_file->f_path,
1479 				       &old_exe_file->f_path)) {
1480 				ret = -EBUSY;
1481 				break;
1482 			}
1483 		}
1484 		mmap_read_unlock(mm);
1485 		fput(old_exe_file);
1486 		if (ret)
1487 			return ret;
1488 	}
1489 
1490 	ret = deny_write_access(new_exe_file);
1491 	if (ret)
1492 		return -EACCES;
1493 	get_file(new_exe_file);
1494 
1495 	/* set the new file */
1496 	mmap_write_lock(mm);
1497 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1498 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1499 	mmap_write_unlock(mm);
1500 
1501 	if (old_exe_file) {
1502 		allow_write_access(old_exe_file);
1503 		fput(old_exe_file);
1504 	}
1505 	return 0;
1506 }
1507 
1508 /**
1509  * get_mm_exe_file - acquire a reference to the mm's executable file
1510  *
1511  * Returns %NULL if mm has no associated executable file.
1512  * User must release file via fput().
1513  */
get_mm_exe_file(struct mm_struct * mm)1514 struct file *get_mm_exe_file(struct mm_struct *mm)
1515 {
1516 	struct file *exe_file;
1517 
1518 	rcu_read_lock();
1519 	exe_file = rcu_dereference(mm->exe_file);
1520 	if (exe_file && !get_file_rcu(exe_file))
1521 		exe_file = NULL;
1522 	rcu_read_unlock();
1523 	return exe_file;
1524 }
1525 
1526 /**
1527  * get_task_exe_file - acquire a reference to the task's executable file
1528  *
1529  * Returns %NULL if task's mm (if any) has no associated executable file or
1530  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1531  * User must release file via fput().
1532  */
get_task_exe_file(struct task_struct * task)1533 struct file *get_task_exe_file(struct task_struct *task)
1534 {
1535 	struct file *exe_file = NULL;
1536 	struct mm_struct *mm;
1537 
1538 	task_lock(task);
1539 	mm = task->mm;
1540 	if (mm) {
1541 		if (!(task->flags & PF_KTHREAD))
1542 			exe_file = get_mm_exe_file(mm);
1543 	}
1544 	task_unlock(task);
1545 	return exe_file;
1546 }
1547 
1548 /**
1549  * get_task_mm - acquire a reference to the task's mm
1550  *
1551  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1552  * this kernel workthread has transiently adopted a user mm with use_mm,
1553  * to do its AIO) is not set and if so returns a reference to it, after
1554  * bumping up the use count.  User must release the mm via mmput()
1555  * after use.  Typically used by /proc and ptrace.
1556  */
get_task_mm(struct task_struct * task)1557 struct mm_struct *get_task_mm(struct task_struct *task)
1558 {
1559 	struct mm_struct *mm;
1560 
1561 	task_lock(task);
1562 	mm = task->mm;
1563 	if (mm) {
1564 		if (task->flags & PF_KTHREAD)
1565 			mm = NULL;
1566 		else
1567 			mmget(mm);
1568 	}
1569 	task_unlock(task);
1570 	return mm;
1571 }
1572 EXPORT_SYMBOL_GPL(get_task_mm);
1573 
mm_access(struct task_struct * task,unsigned int mode)1574 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1575 {
1576 	struct mm_struct *mm;
1577 	int err;
1578 
1579 	err =  down_read_killable(&task->signal->exec_update_lock);
1580 	if (err)
1581 		return ERR_PTR(err);
1582 
1583 	mm = get_task_mm(task);
1584 	if (mm && mm != current->mm &&
1585 			!ptrace_may_access(task, mode)) {
1586 		mmput(mm);
1587 		mm = ERR_PTR(-EACCES);
1588 	}
1589 	up_read(&task->signal->exec_update_lock);
1590 
1591 	return mm;
1592 }
1593 
complete_vfork_done(struct task_struct * tsk)1594 static void complete_vfork_done(struct task_struct *tsk)
1595 {
1596 	struct completion *vfork;
1597 
1598 	task_lock(tsk);
1599 	vfork = tsk->vfork_done;
1600 	if (likely(vfork)) {
1601 		tsk->vfork_done = NULL;
1602 		complete(vfork);
1603 	}
1604 	task_unlock(tsk);
1605 }
1606 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1607 static int wait_for_vfork_done(struct task_struct *child,
1608 				struct completion *vfork)
1609 {
1610 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1611 	int killed;
1612 
1613 	cgroup_enter_frozen();
1614 	killed = wait_for_completion_state(vfork, state);
1615 	cgroup_leave_frozen(false);
1616 
1617 	if (killed) {
1618 		task_lock(child);
1619 		child->vfork_done = NULL;
1620 		task_unlock(child);
1621 	}
1622 
1623 	put_task_struct(child);
1624 	return killed;
1625 }
1626 
1627 /* Please note the differences between mmput and mm_release.
1628  * mmput is called whenever we stop holding onto a mm_struct,
1629  * error success whatever.
1630  *
1631  * mm_release is called after a mm_struct has been removed
1632  * from the current process.
1633  *
1634  * This difference is important for error handling, when we
1635  * only half set up a mm_struct for a new process and need to restore
1636  * the old one.  Because we mmput the new mm_struct before
1637  * restoring the old one. . .
1638  * Eric Biederman 10 January 1998
1639  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1640 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1641 {
1642 	uprobe_free_utask(tsk);
1643 
1644 	/* Get rid of any cached register state */
1645 	deactivate_mm(tsk, mm);
1646 
1647 	/*
1648 	 * Signal userspace if we're not exiting with a core dump
1649 	 * because we want to leave the value intact for debugging
1650 	 * purposes.
1651 	 */
1652 	if (tsk->clear_child_tid) {
1653 		if (atomic_read(&mm->mm_users) > 1) {
1654 			/*
1655 			 * We don't check the error code - if userspace has
1656 			 * not set up a proper pointer then tough luck.
1657 			 */
1658 			put_user(0, tsk->clear_child_tid);
1659 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1660 					1, NULL, NULL, 0, 0);
1661 		}
1662 		tsk->clear_child_tid = NULL;
1663 	}
1664 
1665 	/*
1666 	 * All done, finally we can wake up parent and return this mm to him.
1667 	 * Also kthread_stop() uses this completion for synchronization.
1668 	 */
1669 	if (tsk->vfork_done)
1670 		complete_vfork_done(tsk);
1671 }
1672 
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1673 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1674 {
1675 	futex_exit_release(tsk);
1676 	mm_release(tsk, mm);
1677 }
1678 
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1679 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1680 {
1681 	futex_exec_release(tsk);
1682 	mm_release(tsk, mm);
1683 }
1684 
1685 /**
1686  * dup_mm() - duplicates an existing mm structure
1687  * @tsk: the task_struct with which the new mm will be associated.
1688  * @oldmm: the mm to duplicate.
1689  *
1690  * Allocates a new mm structure and duplicates the provided @oldmm structure
1691  * content into it.
1692  *
1693  * Return: the duplicated mm or NULL on failure.
1694  */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1695 static struct mm_struct *dup_mm(struct task_struct *tsk,
1696 				struct mm_struct *oldmm)
1697 {
1698 	struct mm_struct *mm;
1699 	int err;
1700 
1701 	mm = allocate_mm();
1702 	if (!mm)
1703 		goto fail_nomem;
1704 
1705 	memcpy(mm, oldmm, sizeof(*mm));
1706 
1707 	if (!mm_init(mm, tsk, mm->user_ns))
1708 		goto fail_nomem;
1709 
1710 	err = dup_mmap(mm, oldmm);
1711 	if (err)
1712 		goto free_pt;
1713 
1714 	mm->hiwater_rss = get_mm_rss(mm);
1715 	mm->hiwater_vm = mm->total_vm;
1716 
1717 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1718 		goto free_pt;
1719 
1720 	return mm;
1721 
1722 free_pt:
1723 	/* don't put binfmt in mmput, we haven't got module yet */
1724 	mm->binfmt = NULL;
1725 	mm_init_owner(mm, NULL);
1726 	mmput(mm);
1727 
1728 fail_nomem:
1729 	return NULL;
1730 }
1731 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1732 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1733 {
1734 	struct mm_struct *mm, *oldmm;
1735 
1736 	tsk->min_flt = tsk->maj_flt = 0;
1737 	tsk->nvcsw = tsk->nivcsw = 0;
1738 #ifdef CONFIG_DETECT_HUNG_TASK
1739 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1740 	tsk->last_switch_time = 0;
1741 #endif
1742 
1743 	tsk->mm = NULL;
1744 	tsk->active_mm = NULL;
1745 
1746 	/*
1747 	 * Are we cloning a kernel thread?
1748 	 *
1749 	 * We need to steal a active VM for that..
1750 	 */
1751 	oldmm = current->mm;
1752 	if (!oldmm)
1753 		return 0;
1754 
1755 	if (clone_flags & CLONE_VM) {
1756 		mmget(oldmm);
1757 		mm = oldmm;
1758 	} else {
1759 		mm = dup_mm(tsk, current->mm);
1760 		if (!mm)
1761 			return -ENOMEM;
1762 	}
1763 
1764 	tsk->mm = mm;
1765 	tsk->active_mm = mm;
1766 	sched_mm_cid_fork(tsk);
1767 	return 0;
1768 }
1769 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1770 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1771 {
1772 	struct fs_struct *fs = current->fs;
1773 	if (clone_flags & CLONE_FS) {
1774 		/* tsk->fs is already what we want */
1775 		spin_lock(&fs->lock);
1776 		if (fs->in_exec) {
1777 			spin_unlock(&fs->lock);
1778 			return -EAGAIN;
1779 		}
1780 		fs->users++;
1781 		spin_unlock(&fs->lock);
1782 		return 0;
1783 	}
1784 	tsk->fs = copy_fs_struct(fs);
1785 	if (!tsk->fs)
1786 		return -ENOMEM;
1787 	return 0;
1788 }
1789 
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1790 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1791 		      int no_files)
1792 {
1793 	struct files_struct *oldf, *newf;
1794 
1795 	/*
1796 	 * A background process may not have any files ...
1797 	 */
1798 	oldf = current->files;
1799 	if (!oldf)
1800 		return 0;
1801 
1802 	if (no_files) {
1803 		tsk->files = NULL;
1804 		return 0;
1805 	}
1806 
1807 	if (clone_flags & CLONE_FILES) {
1808 		atomic_inc(&oldf->count);
1809 		return 0;
1810 	}
1811 
1812 	newf = dup_fd(oldf, NULL);
1813 	if (IS_ERR(newf))
1814 		return PTR_ERR(newf);
1815 
1816 	tsk->files = newf;
1817 	return 0;
1818 }
1819 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1820 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1821 {
1822 	struct sighand_struct *sig;
1823 
1824 	if (clone_flags & CLONE_SIGHAND) {
1825 		refcount_inc(&current->sighand->count);
1826 		return 0;
1827 	}
1828 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1829 	RCU_INIT_POINTER(tsk->sighand, sig);
1830 	if (!sig)
1831 		return -ENOMEM;
1832 
1833 	refcount_set(&sig->count, 1);
1834 	spin_lock_irq(&current->sighand->siglock);
1835 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1836 	spin_unlock_irq(&current->sighand->siglock);
1837 
1838 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1839 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1840 		flush_signal_handlers(tsk, 0);
1841 
1842 	return 0;
1843 }
1844 
__cleanup_sighand(struct sighand_struct * sighand)1845 void __cleanup_sighand(struct sighand_struct *sighand)
1846 {
1847 	if (refcount_dec_and_test(&sighand->count)) {
1848 		signalfd_cleanup(sighand);
1849 		/*
1850 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1851 		 * without an RCU grace period, see __lock_task_sighand().
1852 		 */
1853 		kmem_cache_free(sighand_cachep, sighand);
1854 	}
1855 }
1856 
1857 /*
1858  * Initialize POSIX timer handling for a thread group.
1859  */
posix_cpu_timers_init_group(struct signal_struct * sig)1860 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1861 {
1862 	struct posix_cputimers *pct = &sig->posix_cputimers;
1863 	unsigned long cpu_limit;
1864 
1865 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1866 	posix_cputimers_group_init(pct, cpu_limit);
1867 }
1868 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1869 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1870 {
1871 	struct signal_struct *sig;
1872 
1873 	if (clone_flags & CLONE_THREAD)
1874 		return 0;
1875 
1876 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1877 	tsk->signal = sig;
1878 	if (!sig)
1879 		return -ENOMEM;
1880 
1881 	sig->nr_threads = 1;
1882 	sig->quick_threads = 1;
1883 	atomic_set(&sig->live, 1);
1884 	refcount_set(&sig->sigcnt, 1);
1885 
1886 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1887 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1888 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1889 
1890 	init_waitqueue_head(&sig->wait_chldexit);
1891 	sig->curr_target = tsk;
1892 	init_sigpending(&sig->shared_pending);
1893 	INIT_HLIST_HEAD(&sig->multiprocess);
1894 	seqlock_init(&sig->stats_lock);
1895 	prev_cputime_init(&sig->prev_cputime);
1896 
1897 #ifdef CONFIG_POSIX_TIMERS
1898 	INIT_LIST_HEAD(&sig->posix_timers);
1899 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1900 	sig->real_timer.function = it_real_fn;
1901 #endif
1902 
1903 	task_lock(current->group_leader);
1904 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1905 	task_unlock(current->group_leader);
1906 
1907 	posix_cpu_timers_init_group(sig);
1908 
1909 	tty_audit_fork(sig);
1910 	sched_autogroup_fork(sig);
1911 
1912 	sig->oom_score_adj = current->signal->oom_score_adj;
1913 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1914 
1915 	mutex_init(&sig->cred_guard_mutex);
1916 	init_rwsem(&sig->exec_update_lock);
1917 
1918 	return 0;
1919 }
1920 
copy_seccomp(struct task_struct * p)1921 static void copy_seccomp(struct task_struct *p)
1922 {
1923 #ifdef CONFIG_SECCOMP
1924 	/*
1925 	 * Must be called with sighand->lock held, which is common to
1926 	 * all threads in the group. Holding cred_guard_mutex is not
1927 	 * needed because this new task is not yet running and cannot
1928 	 * be racing exec.
1929 	 */
1930 	assert_spin_locked(&current->sighand->siglock);
1931 
1932 	/* Ref-count the new filter user, and assign it. */
1933 	get_seccomp_filter(current);
1934 	p->seccomp = current->seccomp;
1935 
1936 	/*
1937 	 * Explicitly enable no_new_privs here in case it got set
1938 	 * between the task_struct being duplicated and holding the
1939 	 * sighand lock. The seccomp state and nnp must be in sync.
1940 	 */
1941 	if (task_no_new_privs(current))
1942 		task_set_no_new_privs(p);
1943 
1944 	/*
1945 	 * If the parent gained a seccomp mode after copying thread
1946 	 * flags and between before we held the sighand lock, we have
1947 	 * to manually enable the seccomp thread flag here.
1948 	 */
1949 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1950 		set_task_syscall_work(p, SECCOMP);
1951 #endif
1952 }
1953 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1954 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1955 {
1956 	current->clear_child_tid = tidptr;
1957 
1958 	return task_pid_vnr(current);
1959 }
1960 
rt_mutex_init_task(struct task_struct * p)1961 static void rt_mutex_init_task(struct task_struct *p)
1962 {
1963 	raw_spin_lock_init(&p->pi_lock);
1964 #ifdef CONFIG_RT_MUTEXES
1965 	p->pi_waiters = RB_ROOT_CACHED;
1966 	p->pi_top_task = NULL;
1967 	p->pi_blocked_on = NULL;
1968 #endif
1969 }
1970 
init_task_pid_links(struct task_struct * task)1971 static inline void init_task_pid_links(struct task_struct *task)
1972 {
1973 	enum pid_type type;
1974 
1975 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1976 		INIT_HLIST_NODE(&task->pid_links[type]);
1977 }
1978 
1979 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1980 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1981 {
1982 	if (type == PIDTYPE_PID)
1983 		task->thread_pid = pid;
1984 	else
1985 		task->signal->pids[type] = pid;
1986 }
1987 
rcu_copy_process(struct task_struct * p)1988 static inline void rcu_copy_process(struct task_struct *p)
1989 {
1990 #ifdef CONFIG_PREEMPT_RCU
1991 	p->rcu_read_lock_nesting = 0;
1992 	p->rcu_read_unlock_special.s = 0;
1993 	p->rcu_blocked_node = NULL;
1994 	INIT_LIST_HEAD(&p->rcu_node_entry);
1995 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1996 #ifdef CONFIG_TASKS_RCU
1997 	p->rcu_tasks_holdout = false;
1998 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1999 	p->rcu_tasks_idle_cpu = -1;
2000 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
2001 #endif /* #ifdef CONFIG_TASKS_RCU */
2002 #ifdef CONFIG_TASKS_TRACE_RCU
2003 	p->trc_reader_nesting = 0;
2004 	p->trc_reader_special.s = 0;
2005 	INIT_LIST_HEAD(&p->trc_holdout_list);
2006 	INIT_LIST_HEAD(&p->trc_blkd_node);
2007 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
2008 }
2009 
pidfd_pid(const struct file * file)2010 struct pid *pidfd_pid(const struct file *file)
2011 {
2012 	if (file->f_op == &pidfd_fops)
2013 		return file->private_data;
2014 
2015 	return ERR_PTR(-EBADF);
2016 }
2017 
pidfd_release(struct inode * inode,struct file * file)2018 static int pidfd_release(struct inode *inode, struct file *file)
2019 {
2020 	struct pid *pid = file->private_data;
2021 
2022 	file->private_data = NULL;
2023 	put_pid(pid);
2024 	return 0;
2025 }
2026 
2027 #ifdef CONFIG_PROC_FS
2028 /**
2029  * pidfd_show_fdinfo - print information about a pidfd
2030  * @m: proc fdinfo file
2031  * @f: file referencing a pidfd
2032  *
2033  * Pid:
2034  * This function will print the pid that a given pidfd refers to in the
2035  * pid namespace of the procfs instance.
2036  * If the pid namespace of the process is not a descendant of the pid
2037  * namespace of the procfs instance 0 will be shown as its pid. This is
2038  * similar to calling getppid() on a process whose parent is outside of
2039  * its pid namespace.
2040  *
2041  * NSpid:
2042  * If pid namespaces are supported then this function will also print
2043  * the pid of a given pidfd refers to for all descendant pid namespaces
2044  * starting from the current pid namespace of the instance, i.e. the
2045  * Pid field and the first entry in the NSpid field will be identical.
2046  * If the pid namespace of the process is not a descendant of the pid
2047  * namespace of the procfs instance 0 will be shown as its first NSpid
2048  * entry and no others will be shown.
2049  * Note that this differs from the Pid and NSpid fields in
2050  * /proc/<pid>/status where Pid and NSpid are always shown relative to
2051  * the  pid namespace of the procfs instance. The difference becomes
2052  * obvious when sending around a pidfd between pid namespaces from a
2053  * different branch of the tree, i.e. where no ancestral relation is
2054  * present between the pid namespaces:
2055  * - create two new pid namespaces ns1 and ns2 in the initial pid
2056  *   namespace (also take care to create new mount namespaces in the
2057  *   new pid namespace and mount procfs)
2058  * - create a process with a pidfd in ns1
2059  * - send pidfd from ns1 to ns2
2060  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2061  *   have exactly one entry, which is 0
2062  */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)2063 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2064 {
2065 	struct pid *pid = f->private_data;
2066 	struct pid_namespace *ns;
2067 	pid_t nr = -1;
2068 
2069 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2070 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
2071 		nr = pid_nr_ns(pid, ns);
2072 	}
2073 
2074 	seq_put_decimal_ll(m, "Pid:\t", nr);
2075 
2076 #ifdef CONFIG_PID_NS
2077 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2078 	if (nr > 0) {
2079 		int i;
2080 
2081 		/* If nr is non-zero it means that 'pid' is valid and that
2082 		 * ns, i.e. the pid namespace associated with the procfs
2083 		 * instance, is in the pid namespace hierarchy of pid.
2084 		 * Start at one below the already printed level.
2085 		 */
2086 		for (i = ns->level + 1; i <= pid->level; i++)
2087 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2088 	}
2089 #endif
2090 	seq_putc(m, '\n');
2091 }
2092 #endif
2093 
2094 /*
2095  * Poll support for process exit notification.
2096  */
pidfd_poll(struct file * file,struct poll_table_struct * pts)2097 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2098 {
2099 	struct pid *pid = file->private_data;
2100 	__poll_t poll_flags = 0;
2101 
2102 	poll_wait(file, &pid->wait_pidfd, pts);
2103 
2104 	/*
2105 	 * Inform pollers only when the whole thread group exits.
2106 	 * If the thread group leader exits before all other threads in the
2107 	 * group, then poll(2) should block, similar to the wait(2) family.
2108 	 */
2109 	if (thread_group_exited(pid))
2110 		poll_flags = EPOLLIN | EPOLLRDNORM;
2111 
2112 	return poll_flags;
2113 }
2114 
2115 const struct file_operations pidfd_fops = {
2116 	.release = pidfd_release,
2117 	.poll = pidfd_poll,
2118 #ifdef CONFIG_PROC_FS
2119 	.show_fdinfo = pidfd_show_fdinfo,
2120 #endif
2121 };
2122 
2123 /**
2124  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2125  * @pid:   the struct pid for which to create a pidfd
2126  * @flags: flags of the new @pidfd
2127  * @pidfd: the pidfd to return
2128  *
2129  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2130  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2131 
2132  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2133  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2134  * pidfd file are prepared.
2135  *
2136  * If this function returns successfully the caller is responsible to either
2137  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2138  * order to install the pidfd into its file descriptor table or they must use
2139  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2140  * respectively.
2141  *
2142  * This function is useful when a pidfd must already be reserved but there
2143  * might still be points of failure afterwards and the caller wants to ensure
2144  * that no pidfd is leaked into its file descriptor table.
2145  *
2146  * Return: On success, a reserved pidfd is returned from the function and a new
2147  *         pidfd file is returned in the last argument to the function. On
2148  *         error, a negative error code is returned from the function and the
2149  *         last argument remains unchanged.
2150  */
__pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2151 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2152 {
2153 	int pidfd;
2154 	struct file *pidfd_file;
2155 
2156 	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2157 		return -EINVAL;
2158 
2159 	pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2160 	if (pidfd < 0)
2161 		return pidfd;
2162 
2163 	pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2164 					flags | O_RDWR | O_CLOEXEC);
2165 	if (IS_ERR(pidfd_file)) {
2166 		put_unused_fd(pidfd);
2167 		return PTR_ERR(pidfd_file);
2168 	}
2169 	get_pid(pid); /* held by pidfd_file now */
2170 	*ret = pidfd_file;
2171 	return pidfd;
2172 }
2173 
2174 /**
2175  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2176  * @pid:   the struct pid for which to create a pidfd
2177  * @flags: flags of the new @pidfd
2178  * @pidfd: the pidfd to return
2179  *
2180  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2181  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2182  *
2183  * The helper verifies that @pid is used as a thread group leader.
2184  *
2185  * If this function returns successfully the caller is responsible to either
2186  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2187  * order to install the pidfd into its file descriptor table or they must use
2188  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2189  * respectively.
2190  *
2191  * This function is useful when a pidfd must already be reserved but there
2192  * might still be points of failure afterwards and the caller wants to ensure
2193  * that no pidfd is leaked into its file descriptor table.
2194  *
2195  * Return: On success, a reserved pidfd is returned from the function and a new
2196  *         pidfd file is returned in the last argument to the function. On
2197  *         error, a negative error code is returned from the function and the
2198  *         last argument remains unchanged.
2199  */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2200 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2201 {
2202 	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2203 		return -EINVAL;
2204 
2205 	return __pidfd_prepare(pid, flags, ret);
2206 }
2207 
__delayed_free_task(struct rcu_head * rhp)2208 static void __delayed_free_task(struct rcu_head *rhp)
2209 {
2210 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2211 
2212 	free_task(tsk);
2213 }
2214 
delayed_free_task(struct task_struct * tsk)2215 static __always_inline void delayed_free_task(struct task_struct *tsk)
2216 {
2217 	if (IS_ENABLED(CONFIG_MEMCG))
2218 		call_rcu(&tsk->rcu, __delayed_free_task);
2219 	else
2220 		free_task(tsk);
2221 }
2222 
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2223 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2224 {
2225 	/* Skip if kernel thread */
2226 	if (!tsk->mm)
2227 		return;
2228 
2229 	/* Skip if spawning a thread or using vfork */
2230 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2231 		return;
2232 
2233 	/* We need to synchronize with __set_oom_adj */
2234 	mutex_lock(&oom_adj_mutex);
2235 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2236 	/* Update the values in case they were changed after copy_signal */
2237 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2238 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2239 	mutex_unlock(&oom_adj_mutex);
2240 }
2241 
2242 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2243 static void rv_task_fork(struct task_struct *p)
2244 {
2245 	int i;
2246 
2247 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2248 		p->rv[i].da_mon.monitoring = false;
2249 }
2250 #else
2251 #define rv_task_fork(p) do {} while (0)
2252 #endif
2253 
2254 /*
2255  * This creates a new process as a copy of the old one,
2256  * but does not actually start it yet.
2257  *
2258  * It copies the registers, and all the appropriate
2259  * parts of the process environment (as per the clone
2260  * flags). The actual kick-off is left to the caller.
2261  */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2262 __latent_entropy struct task_struct *copy_process(
2263 					struct pid *pid,
2264 					int trace,
2265 					int node,
2266 					struct kernel_clone_args *args)
2267 {
2268 	int pidfd = -1, retval;
2269 	struct task_struct *p;
2270 	struct multiprocess_signals delayed;
2271 	struct file *pidfile = NULL;
2272 	const u64 clone_flags = args->flags;
2273 	struct nsproxy *nsp = current->nsproxy;
2274 
2275 	/*
2276 	 * Don't allow sharing the root directory with processes in a different
2277 	 * namespace
2278 	 */
2279 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2280 		return ERR_PTR(-EINVAL);
2281 
2282 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2283 		return ERR_PTR(-EINVAL);
2284 
2285 	/*
2286 	 * Thread groups must share signals as well, and detached threads
2287 	 * can only be started up within the thread group.
2288 	 */
2289 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2290 		return ERR_PTR(-EINVAL);
2291 
2292 	/*
2293 	 * Shared signal handlers imply shared VM. By way of the above,
2294 	 * thread groups also imply shared VM. Blocking this case allows
2295 	 * for various simplifications in other code.
2296 	 */
2297 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2298 		return ERR_PTR(-EINVAL);
2299 
2300 	/*
2301 	 * Siblings of global init remain as zombies on exit since they are
2302 	 * not reaped by their parent (swapper). To solve this and to avoid
2303 	 * multi-rooted process trees, prevent global and container-inits
2304 	 * from creating siblings.
2305 	 */
2306 	if ((clone_flags & CLONE_PARENT) &&
2307 				current->signal->flags & SIGNAL_UNKILLABLE)
2308 		return ERR_PTR(-EINVAL);
2309 
2310 	/*
2311 	 * If the new process will be in a different pid or user namespace
2312 	 * do not allow it to share a thread group with the forking task.
2313 	 */
2314 	if (clone_flags & CLONE_THREAD) {
2315 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2316 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2317 			return ERR_PTR(-EINVAL);
2318 	}
2319 
2320 	if (clone_flags & CLONE_PIDFD) {
2321 		/*
2322 		 * - CLONE_DETACHED is blocked so that we can potentially
2323 		 *   reuse it later for CLONE_PIDFD.
2324 		 * - CLONE_THREAD is blocked until someone really needs it.
2325 		 */
2326 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2327 			return ERR_PTR(-EINVAL);
2328 	}
2329 
2330 	/*
2331 	 * Force any signals received before this point to be delivered
2332 	 * before the fork happens.  Collect up signals sent to multiple
2333 	 * processes that happen during the fork and delay them so that
2334 	 * they appear to happen after the fork.
2335 	 */
2336 	sigemptyset(&delayed.signal);
2337 	INIT_HLIST_NODE(&delayed.node);
2338 
2339 	spin_lock_irq(&current->sighand->siglock);
2340 	if (!(clone_flags & CLONE_THREAD))
2341 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2342 	recalc_sigpending();
2343 	spin_unlock_irq(&current->sighand->siglock);
2344 	retval = -ERESTARTNOINTR;
2345 	if (task_sigpending(current))
2346 		goto fork_out;
2347 
2348 	retval = -ENOMEM;
2349 	p = dup_task_struct(current, node);
2350 	if (!p)
2351 		goto fork_out;
2352 	p->flags &= ~PF_KTHREAD;
2353 	if (args->kthread)
2354 		p->flags |= PF_KTHREAD;
2355 	if (args->user_worker) {
2356 		/*
2357 		 * Mark us a user worker, and block any signal that isn't
2358 		 * fatal or STOP
2359 		 */
2360 		p->flags |= PF_USER_WORKER;
2361 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2362 	}
2363 	if (args->io_thread)
2364 		p->flags |= PF_IO_WORKER;
2365 
2366 	if (args->name)
2367 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2368 
2369 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2370 	/*
2371 	 * Clear TID on mm_release()?
2372 	 */
2373 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2374 
2375 	ftrace_graph_init_task(p);
2376 
2377 	rt_mutex_init_task(p);
2378 
2379 	lockdep_assert_irqs_enabled();
2380 #ifdef CONFIG_PROVE_LOCKING
2381 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2382 #endif
2383 	retval = copy_creds(p, clone_flags);
2384 	if (retval < 0)
2385 		goto bad_fork_free;
2386 
2387 	retval = -EAGAIN;
2388 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2389 		if (p->real_cred->user != INIT_USER &&
2390 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2391 			goto bad_fork_cleanup_count;
2392 	}
2393 	current->flags &= ~PF_NPROC_EXCEEDED;
2394 
2395 	/*
2396 	 * If multiple threads are within copy_process(), then this check
2397 	 * triggers too late. This doesn't hurt, the check is only there
2398 	 * to stop root fork bombs.
2399 	 */
2400 	retval = -EAGAIN;
2401 	if (data_race(nr_threads >= max_threads))
2402 		goto bad_fork_cleanup_count;
2403 
2404 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2405 #ifdef CONFIG_RECLAIM_ACCT
2406 	reclaimacct_tsk_init(p);
2407 #endif
2408 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2409 	p->flags |= PF_FORKNOEXEC;
2410 	INIT_LIST_HEAD(&p->children);
2411 	INIT_LIST_HEAD(&p->sibling);
2412 	rcu_copy_process(p);
2413 	p->vfork_done = NULL;
2414 	spin_lock_init(&p->alloc_lock);
2415 
2416 	init_sigpending(&p->pending);
2417 
2418 	p->utime = p->stime = p->gtime = 0;
2419 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2420 	p->utimescaled = p->stimescaled = 0;
2421 #endif
2422 	prev_cputime_init(&p->prev_cputime);
2423 
2424 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2425 	seqcount_init(&p->vtime.seqcount);
2426 	p->vtime.starttime = 0;
2427 	p->vtime.state = VTIME_INACTIVE;
2428 #endif
2429 
2430 #ifdef CONFIG_IO_URING
2431 	p->io_uring = NULL;
2432 #endif
2433 
2434 #if defined(SPLIT_RSS_COUNTING)
2435 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2436 #endif
2437 
2438 	p->default_timer_slack_ns = current->timer_slack_ns;
2439 
2440 #ifdef CONFIG_PSI
2441 	p->psi_flags = 0;
2442 #endif
2443 
2444 	task_io_accounting_init(&p->ioac);
2445 	acct_clear_integrals(p);
2446 
2447 	posix_cputimers_init(&p->posix_cputimers);
2448 	tick_dep_init_task(p);
2449 
2450 	p->io_context = NULL;
2451 	audit_set_context(p, NULL);
2452 	cgroup_fork(p);
2453 	if (args->kthread) {
2454 		if (!set_kthread_struct(p))
2455 			goto bad_fork_cleanup_delayacct;
2456 	}
2457 #ifdef CONFIG_NUMA
2458 	p->mempolicy = mpol_dup(p->mempolicy);
2459 	if (IS_ERR(p->mempolicy)) {
2460 		retval = PTR_ERR(p->mempolicy);
2461 		p->mempolicy = NULL;
2462 		goto bad_fork_cleanup_delayacct;
2463 	}
2464 #endif
2465 #ifdef CONFIG_CPUSETS
2466 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2467 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2468 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2469 #endif
2470 #ifdef CONFIG_TRACE_IRQFLAGS
2471 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2472 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2473 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2474 	p->softirqs_enabled		= 1;
2475 	p->softirq_context		= 0;
2476 #endif
2477 
2478 	p->pagefault_disabled = 0;
2479 
2480 #ifdef CONFIG_LOCKDEP
2481 	lockdep_init_task(p);
2482 #endif
2483 
2484 #ifdef CONFIG_DEBUG_MUTEXES
2485 	p->blocked_on = NULL; /* not blocked yet */
2486 #endif
2487 #ifdef CONFIG_BCACHE
2488 	p->sequential_io	= 0;
2489 	p->sequential_io_avg	= 0;
2490 #endif
2491 #ifdef CONFIG_BPF_SYSCALL
2492 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2493 	p->bpf_ctx = NULL;
2494 #endif
2495 
2496 	/* Perform scheduler related setup. Assign this task to a CPU. */
2497 	retval = sched_fork(clone_flags, p);
2498 	if (retval)
2499 		goto bad_fork_cleanup_policy;
2500 
2501 	retval = perf_event_init_task(p, clone_flags);
2502 	if (retval)
2503 		goto bad_fork_cleanup_policy;
2504 	retval = audit_alloc(p);
2505 	if (retval)
2506 		goto bad_fork_cleanup_perf;
2507 	/* copy all the process information */
2508 	shm_init_task(p);
2509 	retval = security_task_alloc(p, clone_flags);
2510 	if (retval)
2511 		goto bad_fork_cleanup_audit;
2512 	retval = copy_semundo(clone_flags, p);
2513 	if (retval)
2514 		goto bad_fork_cleanup_security;
2515 	retval = copy_files(clone_flags, p, args->no_files);
2516 	if (retval)
2517 		goto bad_fork_cleanup_semundo;
2518 	retval = copy_fs(clone_flags, p);
2519 	if (retval)
2520 		goto bad_fork_cleanup_files;
2521 	retval = copy_sighand(clone_flags, p);
2522 	if (retval)
2523 		goto bad_fork_cleanup_fs;
2524 	retval = copy_signal(clone_flags, p);
2525 	if (retval)
2526 		goto bad_fork_cleanup_sighand;
2527 	retval = copy_mm(clone_flags, p);
2528 	if (retval)
2529 		goto bad_fork_cleanup_signal;
2530 	retval = copy_namespaces(clone_flags, p);
2531 	if (retval)
2532 		goto bad_fork_cleanup_mm;
2533 	retval = copy_io(clone_flags, p);
2534 	if (retval)
2535 		goto bad_fork_cleanup_namespaces;
2536 	retval = copy_thread(p, args);
2537 	if (retval)
2538 		goto bad_fork_cleanup_io;
2539 
2540 	stackleak_task_init(p);
2541 
2542 	if (pid != &init_struct_pid) {
2543 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2544 				args->set_tid_size);
2545 		if (IS_ERR(pid)) {
2546 			retval = PTR_ERR(pid);
2547 			goto bad_fork_cleanup_thread;
2548 		}
2549 	}
2550 
2551 	/*
2552 	 * This has to happen after we've potentially unshared the file
2553 	 * descriptor table (so that the pidfd doesn't leak into the child
2554 	 * if the fd table isn't shared).
2555 	 */
2556 	if (clone_flags & CLONE_PIDFD) {
2557 		/* Note that no task has been attached to @pid yet. */
2558 		retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2559 		if (retval < 0)
2560 			goto bad_fork_free_pid;
2561 		pidfd = retval;
2562 
2563 		retval = put_user(pidfd, args->pidfd);
2564 		if (retval)
2565 			goto bad_fork_put_pidfd;
2566 	}
2567 
2568 #ifdef CONFIG_BLOCK
2569 	p->plug = NULL;
2570 #endif
2571 	futex_init_task(p);
2572 
2573 	/*
2574 	 * sigaltstack should be cleared when sharing the same VM
2575 	 */
2576 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2577 		sas_ss_reset(p);
2578 
2579 	/*
2580 	 * Syscall tracing and stepping should be turned off in the
2581 	 * child regardless of CLONE_PTRACE.
2582 	 */
2583 	user_disable_single_step(p);
2584 	clear_task_syscall_work(p, SYSCALL_TRACE);
2585 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2586 	clear_task_syscall_work(p, SYSCALL_EMU);
2587 #endif
2588 	clear_tsk_latency_tracing(p);
2589 
2590 	/* ok, now we should be set up.. */
2591 	p->pid = pid_nr(pid);
2592 	if (clone_flags & CLONE_THREAD) {
2593 		p->group_leader = current->group_leader;
2594 		p->tgid = current->tgid;
2595 	} else {
2596 		p->group_leader = p;
2597 		p->tgid = p->pid;
2598 	}
2599 
2600 	p->nr_dirtied = 0;
2601 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2602 	p->dirty_paused_when = 0;
2603 
2604 	p->pdeath_signal = 0;
2605 	INIT_LIST_HEAD(&p->thread_group);
2606 	p->task_works = NULL;
2607 	clear_posix_cputimers_work(p);
2608 
2609 #ifdef CONFIG_KRETPROBES
2610 	p->kretprobe_instances.first = NULL;
2611 #endif
2612 #ifdef CONFIG_RETHOOK
2613 	p->rethooks.first = NULL;
2614 #endif
2615 
2616 	/*
2617 	 * Ensure that the cgroup subsystem policies allow the new process to be
2618 	 * forked. It should be noted that the new process's css_set can be changed
2619 	 * between here and cgroup_post_fork() if an organisation operation is in
2620 	 * progress.
2621 	 */
2622 	retval = cgroup_can_fork(p, args);
2623 	if (retval)
2624 		goto bad_fork_put_pidfd;
2625 
2626 	/*
2627 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2628 	 * the new task on the correct runqueue. All this *before* the task
2629 	 * becomes visible.
2630 	 *
2631 	 * This isn't part of ->can_fork() because while the re-cloning is
2632 	 * cgroup specific, it unconditionally needs to place the task on a
2633 	 * runqueue.
2634 	 */
2635 	sched_cgroup_fork(p, args);
2636 
2637 	/*
2638 	 * From this point on we must avoid any synchronous user-space
2639 	 * communication until we take the tasklist-lock. In particular, we do
2640 	 * not want user-space to be able to predict the process start-time by
2641 	 * stalling fork(2) after we recorded the start_time but before it is
2642 	 * visible to the system.
2643 	 */
2644 
2645 	p->start_time = ktime_get_ns();
2646 	p->start_boottime = ktime_get_boottime_ns();
2647 
2648 	/*
2649 	 * Make it visible to the rest of the system, but dont wake it up yet.
2650 	 * Need tasklist lock for parent etc handling!
2651 	 */
2652 	write_lock_irq(&tasklist_lock);
2653 
2654 	/* CLONE_PARENT re-uses the old parent */
2655 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2656 		p->real_parent = current->real_parent;
2657 		p->parent_exec_id = current->parent_exec_id;
2658 		if (clone_flags & CLONE_THREAD)
2659 			p->exit_signal = -1;
2660 		else
2661 			p->exit_signal = current->group_leader->exit_signal;
2662 	} else {
2663 		p->real_parent = current;
2664 		p->parent_exec_id = current->self_exec_id;
2665 		p->exit_signal = args->exit_signal;
2666 	}
2667 
2668 	klp_copy_process(p);
2669 
2670 	sched_core_fork(p);
2671 
2672 	spin_lock(&current->sighand->siglock);
2673 
2674 	rv_task_fork(p);
2675 
2676 	rseq_fork(p, clone_flags);
2677 
2678 	/* Don't start children in a dying pid namespace */
2679 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2680 		retval = -ENOMEM;
2681 		goto bad_fork_cancel_cgroup;
2682 	}
2683 
2684 	/* Let kill terminate clone/fork in the middle */
2685 	if (fatal_signal_pending(current)) {
2686 		retval = -EINTR;
2687 		goto bad_fork_cancel_cgroup;
2688 	}
2689 
2690 	/* No more failure paths after this point. */
2691 
2692 	/*
2693 	 * Copy seccomp details explicitly here, in case they were changed
2694 	 * before holding sighand lock.
2695 	 */
2696 	copy_seccomp(p);
2697 
2698 	init_task_pid_links(p);
2699 	if (likely(p->pid)) {
2700 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2701 
2702 		init_task_pid(p, PIDTYPE_PID, pid);
2703 		if (thread_group_leader(p)) {
2704 			init_task_pid(p, PIDTYPE_TGID, pid);
2705 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2706 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2707 
2708 			if (is_child_reaper(pid)) {
2709 				ns_of_pid(pid)->child_reaper = p;
2710 				p->signal->flags |= SIGNAL_UNKILLABLE;
2711 			}
2712 			p->signal->shared_pending.signal = delayed.signal;
2713 			p->signal->tty = tty_kref_get(current->signal->tty);
2714 			/*
2715 			 * Inherit has_child_subreaper flag under the same
2716 			 * tasklist_lock with adding child to the process tree
2717 			 * for propagate_has_child_subreaper optimization.
2718 			 */
2719 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2720 							 p->real_parent->signal->is_child_subreaper;
2721 			list_add_tail(&p->sibling, &p->real_parent->children);
2722 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2723 			attach_pid(p, PIDTYPE_TGID);
2724 			attach_pid(p, PIDTYPE_PGID);
2725 			attach_pid(p, PIDTYPE_SID);
2726 			__this_cpu_inc(process_counts);
2727 		} else {
2728 			current->signal->nr_threads++;
2729 			current->signal->quick_threads++;
2730 			atomic_inc(&current->signal->live);
2731 			refcount_inc(&current->signal->sigcnt);
2732 			task_join_group_stop(p);
2733 			list_add_tail_rcu(&p->thread_group,
2734 					  &p->group_leader->thread_group);
2735 			list_add_tail_rcu(&p->thread_node,
2736 					  &p->signal->thread_head);
2737 		}
2738 		attach_pid(p, PIDTYPE_PID);
2739 		nr_threads++;
2740 	}
2741 	total_forks++;
2742 	hlist_del_init(&delayed.node);
2743 	spin_unlock(&current->sighand->siglock);
2744 	syscall_tracepoint_update(p);
2745 	write_unlock_irq(&tasklist_lock);
2746 
2747 	if (pidfile)
2748 		fd_install(pidfd, pidfile);
2749 
2750 	proc_fork_connector(p);
2751 	sched_post_fork(p);
2752 	cgroup_post_fork(p, args);
2753 	perf_event_fork(p);
2754 
2755 	trace_task_newtask(p, clone_flags);
2756 	uprobe_copy_process(p, clone_flags);
2757 	user_events_fork(p, clone_flags);
2758 
2759 	copy_oom_score_adj(clone_flags, p);
2760 
2761 	return p;
2762 
2763 bad_fork_cancel_cgroup:
2764 	sched_core_free(p);
2765 	spin_unlock(&current->sighand->siglock);
2766 	write_unlock_irq(&tasklist_lock);
2767 	cgroup_cancel_fork(p, args);
2768 bad_fork_put_pidfd:
2769 	if (clone_flags & CLONE_PIDFD) {
2770 		fput(pidfile);
2771 		put_unused_fd(pidfd);
2772 	}
2773 bad_fork_free_pid:
2774 	if (pid != &init_struct_pid)
2775 		free_pid(pid);
2776 bad_fork_cleanup_thread:
2777 	exit_thread(p);
2778 bad_fork_cleanup_io:
2779 	if (p->io_context)
2780 		exit_io_context(p);
2781 bad_fork_cleanup_namespaces:
2782 	exit_task_namespaces(p);
2783 bad_fork_cleanup_mm:
2784 	if (p->mm) {
2785 		mm_clear_owner(p->mm, p);
2786 		mmput(p->mm);
2787 	}
2788 bad_fork_cleanup_signal:
2789 	if (!(clone_flags & CLONE_THREAD))
2790 		free_signal_struct(p->signal);
2791 bad_fork_cleanup_sighand:
2792 	__cleanup_sighand(p->sighand);
2793 bad_fork_cleanup_fs:
2794 	exit_fs(p); /* blocking */
2795 bad_fork_cleanup_files:
2796 	exit_files(p); /* blocking */
2797 bad_fork_cleanup_semundo:
2798 	exit_sem(p);
2799 bad_fork_cleanup_security:
2800 	security_task_free(p);
2801 bad_fork_cleanup_audit:
2802 	audit_free(p);
2803 bad_fork_cleanup_perf:
2804 	perf_event_free_task(p);
2805 bad_fork_cleanup_policy:
2806 	lockdep_free_task(p);
2807 	free_task_load_ptrs(p);
2808 #ifdef CONFIG_NUMA
2809 	mpol_put(p->mempolicy);
2810 #endif
2811 bad_fork_cleanup_delayacct:
2812 	delayacct_tsk_free(p);
2813 bad_fork_cleanup_count:
2814 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2815 	exit_creds(p);
2816 bad_fork_free:
2817 	WRITE_ONCE(p->__state, TASK_DEAD);
2818 	exit_task_stack_account(p);
2819 	put_task_stack(p);
2820 	delayed_free_task(p);
2821 fork_out:
2822 	spin_lock_irq(&current->sighand->siglock);
2823 	hlist_del_init(&delayed.node);
2824 	spin_unlock_irq(&current->sighand->siglock);
2825 	return ERR_PTR(retval);
2826 }
2827 
init_idle_pids(struct task_struct * idle)2828 static inline void init_idle_pids(struct task_struct *idle)
2829 {
2830 	enum pid_type type;
2831 
2832 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2833 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2834 		init_task_pid(idle, type, &init_struct_pid);
2835 	}
2836 }
2837 
idle_dummy(void * dummy)2838 static int idle_dummy(void *dummy)
2839 {
2840 	/* This function is never called */
2841 	return 0;
2842 }
2843 
fork_idle(int cpu)2844 struct task_struct * __init fork_idle(int cpu)
2845 {
2846 	struct task_struct *task;
2847 	struct kernel_clone_args args = {
2848 		.flags		= CLONE_VM,
2849 		.fn		= &idle_dummy,
2850 		.fn_arg		= NULL,
2851 		.kthread	= 1,
2852 		.idle		= 1,
2853 	};
2854 
2855 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2856 	if (!IS_ERR(task)) {
2857 		init_idle_pids(task);
2858 		init_idle(task, cpu);
2859 	}
2860 
2861 	return task;
2862 }
2863 
2864 /*
2865  * This is like kernel_clone(), but shaved down and tailored to just
2866  * creating io_uring workers. It returns a created task, or an error pointer.
2867  * The returned task is inactive, and the caller must fire it up through
2868  * wake_up_new_task(p). All signals are blocked in the created task.
2869  */
create_io_thread(int (* fn)(void *),void * arg,int node)2870 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2871 {
2872 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2873 				CLONE_IO;
2874 	struct kernel_clone_args args = {
2875 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2876 				    CLONE_UNTRACED) & ~CSIGNAL),
2877 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2878 		.fn		= fn,
2879 		.fn_arg		= arg,
2880 		.io_thread	= 1,
2881 		.user_worker	= 1,
2882 	};
2883 
2884 	return copy_process(NULL, 0, node, &args);
2885 }
2886 
2887 /*
2888  *  Ok, this is the main fork-routine.
2889  *
2890  * It copies the process, and if successful kick-starts
2891  * it and waits for it to finish using the VM if required.
2892  *
2893  * args->exit_signal is expected to be checked for sanity by the caller.
2894  */
kernel_clone(struct kernel_clone_args * args)2895 pid_t kernel_clone(struct kernel_clone_args *args)
2896 {
2897 	u64 clone_flags = args->flags;
2898 	struct completion vfork;
2899 	struct pid *pid;
2900 	struct task_struct *p;
2901 	int trace = 0;
2902 	pid_t nr;
2903 
2904 	/*
2905 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2906 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2907 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2908 	 * field in struct clone_args and it still doesn't make sense to have
2909 	 * them both point at the same memory location. Performing this check
2910 	 * here has the advantage that we don't need to have a separate helper
2911 	 * to check for legacy clone().
2912 	 */
2913 	if ((args->flags & CLONE_PIDFD) &&
2914 	    (args->flags & CLONE_PARENT_SETTID) &&
2915 	    (args->pidfd == args->parent_tid))
2916 		return -EINVAL;
2917 
2918 	/*
2919 	 * Determine whether and which event to report to ptracer.  When
2920 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2921 	 * requested, no event is reported; otherwise, report if the event
2922 	 * for the type of forking is enabled.
2923 	 */
2924 	if (!(clone_flags & CLONE_UNTRACED)) {
2925 		if (clone_flags & CLONE_VFORK)
2926 			trace = PTRACE_EVENT_VFORK;
2927 		else if (args->exit_signal != SIGCHLD)
2928 			trace = PTRACE_EVENT_CLONE;
2929 		else
2930 			trace = PTRACE_EVENT_FORK;
2931 
2932 		if (likely(!ptrace_event_enabled(current, trace)))
2933 			trace = 0;
2934 	}
2935 
2936 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2937 	add_latent_entropy();
2938 
2939 	if (IS_ERR(p))
2940 		return PTR_ERR(p);
2941 
2942 	/*
2943 	 * Do this prior waking up the new thread - the thread pointer
2944 	 * might get invalid after that point, if the thread exits quickly.
2945 	 */
2946 	trace_sched_process_fork(current, p);
2947 
2948 	pid = get_task_pid(p, PIDTYPE_PID);
2949 	nr = pid_vnr(pid);
2950 
2951 	if (clone_flags & CLONE_PARENT_SETTID)
2952 		put_user(nr, args->parent_tid);
2953 
2954 	if (clone_flags & CLONE_VFORK) {
2955 		p->vfork_done = &vfork;
2956 		init_completion(&vfork);
2957 		get_task_struct(p);
2958 	}
2959 
2960 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2961 		/* lock the task to synchronize with memcg migration */
2962 		task_lock(p);
2963 		lru_gen_add_mm(p->mm);
2964 		task_unlock(p);
2965 	}
2966 
2967 	CALL_HCK_LITE_HOOK(ced_kernel_clone_lhck, p);
2968 	wake_up_new_task(p);
2969 
2970 	/* forking complete and child started to run, tell ptracer */
2971 	if (unlikely(trace))
2972 		ptrace_event_pid(trace, pid);
2973 
2974 	if (clone_flags & CLONE_VFORK) {
2975 		if (!wait_for_vfork_done(p, &vfork))
2976 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2977 	}
2978 
2979 	put_pid(pid);
2980 	return nr;
2981 }
2982 
2983 /*
2984  * Create a kernel thread.
2985  */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2986 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2987 		    unsigned long flags)
2988 {
2989 	struct kernel_clone_args args = {
2990 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2991 				    CLONE_UNTRACED) & ~CSIGNAL),
2992 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2993 		.fn		= fn,
2994 		.fn_arg		= arg,
2995 		.name		= name,
2996 		.kthread	= 1,
2997 	};
2998 
2999 	return kernel_clone(&args);
3000 }
3001 
3002 /*
3003  * Create a user mode thread.
3004  */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)3005 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
3006 {
3007 	struct kernel_clone_args args = {
3008 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
3009 				    CLONE_UNTRACED) & ~CSIGNAL),
3010 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
3011 		.fn		= fn,
3012 		.fn_arg		= arg,
3013 	};
3014 
3015 	return kernel_clone(&args);
3016 }
3017 
3018 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)3019 SYSCALL_DEFINE0(fork)
3020 {
3021 #ifdef CONFIG_MMU
3022 	struct kernel_clone_args args = {
3023 		.exit_signal = SIGCHLD,
3024 	};
3025 
3026 	return kernel_clone(&args);
3027 #else
3028 	/* can not support in nommu mode */
3029 	return -EINVAL;
3030 #endif
3031 }
3032 #endif
3033 
3034 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)3035 SYSCALL_DEFINE0(vfork)
3036 {
3037 	struct kernel_clone_args args = {
3038 		.flags		= CLONE_VFORK | CLONE_VM,
3039 		.exit_signal	= SIGCHLD,
3040 	};
3041 
3042 	return kernel_clone(&args);
3043 }
3044 #endif
3045 
3046 #ifdef __ARCH_WANT_SYS_CLONE
3047 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)3048 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3049 		 int __user *, parent_tidptr,
3050 		 unsigned long, tls,
3051 		 int __user *, child_tidptr)
3052 #elif defined(CONFIG_CLONE_BACKWARDS2)
3053 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3054 		 int __user *, parent_tidptr,
3055 		 int __user *, child_tidptr,
3056 		 unsigned long, tls)
3057 #elif defined(CONFIG_CLONE_BACKWARDS3)
3058 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3059 		int, stack_size,
3060 		int __user *, parent_tidptr,
3061 		int __user *, child_tidptr,
3062 		unsigned long, tls)
3063 #else
3064 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3065 		 int __user *, parent_tidptr,
3066 		 int __user *, child_tidptr,
3067 		 unsigned long, tls)
3068 #endif
3069 {
3070 	struct kernel_clone_args args = {
3071 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
3072 		.pidfd		= parent_tidptr,
3073 		.child_tid	= child_tidptr,
3074 		.parent_tid	= parent_tidptr,
3075 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
3076 		.stack		= newsp,
3077 		.tls		= tls,
3078 	};
3079 
3080 	return kernel_clone(&args);
3081 }
3082 #endif
3083 
3084 #ifdef __ARCH_WANT_SYS_CLONE3
3085 
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)3086 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3087 					      struct clone_args __user *uargs,
3088 					      size_t usize)
3089 {
3090 	int err;
3091 	struct clone_args args;
3092 	pid_t *kset_tid = kargs->set_tid;
3093 
3094 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3095 		     CLONE_ARGS_SIZE_VER0);
3096 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3097 		     CLONE_ARGS_SIZE_VER1);
3098 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3099 		     CLONE_ARGS_SIZE_VER2);
3100 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3101 
3102 	if (unlikely(usize > PAGE_SIZE))
3103 		return -E2BIG;
3104 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3105 		return -EINVAL;
3106 
3107 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3108 	if (err)
3109 		return err;
3110 
3111 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3112 		return -EINVAL;
3113 
3114 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
3115 		return -EINVAL;
3116 
3117 	if (unlikely(args.set_tid && args.set_tid_size == 0))
3118 		return -EINVAL;
3119 
3120 	/*
3121 	 * Verify that higher 32bits of exit_signal are unset and that
3122 	 * it is a valid signal
3123 	 */
3124 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3125 		     !valid_signal(args.exit_signal)))
3126 		return -EINVAL;
3127 
3128 	if ((args.flags & CLONE_INTO_CGROUP) &&
3129 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3130 		return -EINVAL;
3131 
3132 	*kargs = (struct kernel_clone_args){
3133 		.flags		= args.flags,
3134 		.pidfd		= u64_to_user_ptr(args.pidfd),
3135 		.child_tid	= u64_to_user_ptr(args.child_tid),
3136 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3137 		.exit_signal	= args.exit_signal,
3138 		.stack		= args.stack,
3139 		.stack_size	= args.stack_size,
3140 		.tls		= args.tls,
3141 		.set_tid_size	= args.set_tid_size,
3142 		.cgroup		= args.cgroup,
3143 	};
3144 
3145 	if (args.set_tid &&
3146 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3147 			(kargs->set_tid_size * sizeof(pid_t))))
3148 		return -EFAULT;
3149 
3150 	kargs->set_tid = kset_tid;
3151 
3152 	return 0;
3153 }
3154 
3155 /**
3156  * clone3_stack_valid - check and prepare stack
3157  * @kargs: kernel clone args
3158  *
3159  * Verify that the stack arguments userspace gave us are sane.
3160  * In addition, set the stack direction for userspace since it's easy for us to
3161  * determine.
3162  */
clone3_stack_valid(struct kernel_clone_args * kargs)3163 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3164 {
3165 	if (kargs->stack == 0) {
3166 		if (kargs->stack_size > 0)
3167 			return false;
3168 	} else {
3169 		if (kargs->stack_size == 0)
3170 			return false;
3171 
3172 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3173 			return false;
3174 
3175 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3176 		kargs->stack += kargs->stack_size;
3177 #endif
3178 	}
3179 
3180 	return true;
3181 }
3182 
clone3_args_valid(struct kernel_clone_args * kargs)3183 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3184 {
3185 	/* Verify that no unknown flags are passed along. */
3186 	if (kargs->flags &
3187 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3188 		return false;
3189 
3190 	/*
3191 	 * - make the CLONE_DETACHED bit reusable for clone3
3192 	 * - make the CSIGNAL bits reusable for clone3
3193 	 */
3194 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3195 		return false;
3196 
3197 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3198 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3199 		return false;
3200 
3201 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3202 	    kargs->exit_signal)
3203 		return false;
3204 
3205 	if (!clone3_stack_valid(kargs))
3206 		return false;
3207 
3208 	return true;
3209 }
3210 
3211 /**
3212  * clone3 - create a new process with specific properties
3213  * @uargs: argument structure
3214  * @size:  size of @uargs
3215  *
3216  * clone3() is the extensible successor to clone()/clone2().
3217  * It takes a struct as argument that is versioned by its size.
3218  *
3219  * Return: On success, a positive PID for the child process.
3220  *         On error, a negative errno number.
3221  */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3222 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3223 {
3224 	int err;
3225 
3226 	struct kernel_clone_args kargs;
3227 	pid_t set_tid[MAX_PID_NS_LEVEL];
3228 
3229 	kargs.set_tid = set_tid;
3230 
3231 	err = copy_clone_args_from_user(&kargs, uargs, size);
3232 	if (err)
3233 		return err;
3234 
3235 	if (!clone3_args_valid(&kargs))
3236 		return -EINVAL;
3237 
3238 	return kernel_clone(&kargs);
3239 }
3240 #endif
3241 
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3242 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3243 {
3244 	struct task_struct *leader, *parent, *child;
3245 	int res;
3246 
3247 	read_lock(&tasklist_lock);
3248 	leader = top = top->group_leader;
3249 down:
3250 	for_each_thread(leader, parent) {
3251 		list_for_each_entry(child, &parent->children, sibling) {
3252 			res = visitor(child, data);
3253 			if (res) {
3254 				if (res < 0)
3255 					goto out;
3256 				leader = child;
3257 				goto down;
3258 			}
3259 up:
3260 			;
3261 		}
3262 	}
3263 
3264 	if (leader != top) {
3265 		child = leader;
3266 		parent = child->real_parent;
3267 		leader = parent->group_leader;
3268 		goto up;
3269 	}
3270 out:
3271 	read_unlock(&tasklist_lock);
3272 }
3273 
3274 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3275 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3276 #endif
3277 
sighand_ctor(void * data)3278 static void sighand_ctor(void *data)
3279 {
3280 	struct sighand_struct *sighand = data;
3281 
3282 	spin_lock_init(&sighand->siglock);
3283 	init_waitqueue_head(&sighand->signalfd_wqh);
3284 }
3285 
mm_cache_init(void)3286 void __init mm_cache_init(void)
3287 {
3288 	unsigned int mm_size;
3289 
3290 	/*
3291 	 * The mm_cpumask is located at the end of mm_struct, and is
3292 	 * dynamically sized based on the maximum CPU number this system
3293 	 * can have, taking hotplug into account (nr_cpu_ids).
3294 	 */
3295 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3296 
3297 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3298 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3299 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3300 			offsetof(struct mm_struct, saved_auxv),
3301 			sizeof_field(struct mm_struct, saved_auxv),
3302 			NULL);
3303 }
3304 
proc_caches_init(void)3305 void __init proc_caches_init(void)
3306 {
3307 	sighand_cachep = kmem_cache_create("sighand_cache",
3308 			sizeof(struct sighand_struct), 0,
3309 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3310 			SLAB_ACCOUNT, sighand_ctor);
3311 	signal_cachep = kmem_cache_create("signal_cache",
3312 			sizeof(struct signal_struct), 0,
3313 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3314 			NULL);
3315 	files_cachep = kmem_cache_create("files_cache",
3316 			sizeof(struct files_struct), 0,
3317 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3318 			NULL);
3319 	fs_cachep = kmem_cache_create("fs_cache",
3320 			sizeof(struct fs_struct), 0,
3321 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3322 			NULL);
3323 
3324 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3325 #ifdef CONFIG_PER_VMA_LOCK
3326 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3327 #endif
3328 	mmap_init();
3329 	nsproxy_cache_init();
3330 }
3331 
3332 /*
3333  * Check constraints on flags passed to the unshare system call.
3334  */
check_unshare_flags(unsigned long unshare_flags)3335 static int check_unshare_flags(unsigned long unshare_flags)
3336 {
3337 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3338 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3339 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3340 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3341 				CLONE_NEWTIME))
3342 		return -EINVAL;
3343 	/*
3344 	 * Not implemented, but pretend it works if there is nothing
3345 	 * to unshare.  Note that unsharing the address space or the
3346 	 * signal handlers also need to unshare the signal queues (aka
3347 	 * CLONE_THREAD).
3348 	 */
3349 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3350 		if (!thread_group_empty(current))
3351 			return -EINVAL;
3352 	}
3353 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3354 		if (refcount_read(&current->sighand->count) > 1)
3355 			return -EINVAL;
3356 	}
3357 	if (unshare_flags & CLONE_VM) {
3358 		if (!current_is_single_threaded())
3359 			return -EINVAL;
3360 	}
3361 
3362 	return 0;
3363 }
3364 
3365 /*
3366  * Unshare the filesystem structure if it is being shared
3367  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3368 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3369 {
3370 	struct fs_struct *fs = current->fs;
3371 
3372 	if (!(unshare_flags & CLONE_FS) || !fs)
3373 		return 0;
3374 
3375 	/* don't need lock here; in the worst case we'll do useless copy */
3376 	if (fs->users == 1)
3377 		return 0;
3378 
3379 	*new_fsp = copy_fs_struct(fs);
3380 	if (!*new_fsp)
3381 		return -ENOMEM;
3382 
3383 	return 0;
3384 }
3385 
3386 /*
3387  * Unshare file descriptor table if it is being shared
3388  */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3389 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3390 {
3391 	struct files_struct *fd = current->files;
3392 
3393 	if ((unshare_flags & CLONE_FILES) &&
3394 	    (fd && atomic_read(&fd->count) > 1)) {
3395 		fd = dup_fd(fd, NULL);
3396 		if (IS_ERR(fd))
3397 			return PTR_ERR(fd);
3398 		*new_fdp = fd;
3399 	}
3400 
3401 	return 0;
3402 }
3403 
3404 /*
3405  * unshare allows a process to 'unshare' part of the process
3406  * context which was originally shared using clone.  copy_*
3407  * functions used by kernel_clone() cannot be used here directly
3408  * because they modify an inactive task_struct that is being
3409  * constructed. Here we are modifying the current, active,
3410  * task_struct.
3411  */
ksys_unshare(unsigned long unshare_flags)3412 int ksys_unshare(unsigned long unshare_flags)
3413 {
3414 	struct fs_struct *fs, *new_fs = NULL;
3415 	struct files_struct *new_fd = NULL;
3416 	struct cred *new_cred = NULL;
3417 	struct nsproxy *new_nsproxy = NULL;
3418 	int do_sysvsem = 0;
3419 	int err;
3420 
3421 	/*
3422 	 * If unsharing a user namespace must also unshare the thread group
3423 	 * and unshare the filesystem root and working directories.
3424 	 */
3425 	if (unshare_flags & CLONE_NEWUSER)
3426 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3427 	/*
3428 	 * If unsharing vm, must also unshare signal handlers.
3429 	 */
3430 	if (unshare_flags & CLONE_VM)
3431 		unshare_flags |= CLONE_SIGHAND;
3432 	/*
3433 	 * If unsharing a signal handlers, must also unshare the signal queues.
3434 	 */
3435 	if (unshare_flags & CLONE_SIGHAND)
3436 		unshare_flags |= CLONE_THREAD;
3437 	/*
3438 	 * If unsharing namespace, must also unshare filesystem information.
3439 	 */
3440 	if (unshare_flags & CLONE_NEWNS)
3441 		unshare_flags |= CLONE_FS;
3442 
3443 	err = check_unshare_flags(unshare_flags);
3444 	if (err)
3445 		goto bad_unshare_out;
3446 	/*
3447 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3448 	 * to a new ipc namespace, the semaphore arrays from the old
3449 	 * namespace are unreachable.
3450 	 */
3451 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3452 		do_sysvsem = 1;
3453 	err = unshare_fs(unshare_flags, &new_fs);
3454 	if (err)
3455 		goto bad_unshare_out;
3456 	err = unshare_fd(unshare_flags, &new_fd);
3457 	if (err)
3458 		goto bad_unshare_cleanup_fs;
3459 	err = unshare_userns(unshare_flags, &new_cred);
3460 	if (err)
3461 		goto bad_unshare_cleanup_fd;
3462 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3463 					 new_cred, new_fs);
3464 	if (err)
3465 		goto bad_unshare_cleanup_cred;
3466 
3467 	if (new_cred) {
3468 		err = set_cred_ucounts(new_cred);
3469 		if (err)
3470 			goto bad_unshare_cleanup_cred;
3471 	}
3472 
3473 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3474 		if (do_sysvsem) {
3475 			/*
3476 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3477 			 */
3478 			exit_sem(current);
3479 		}
3480 		if (unshare_flags & CLONE_NEWIPC) {
3481 			/* Orphan segments in old ns (see sem above). */
3482 			exit_shm(current);
3483 			shm_init_task(current);
3484 		}
3485 
3486 		if (new_nsproxy)
3487 			switch_task_namespaces(current, new_nsproxy);
3488 
3489 		task_lock(current);
3490 
3491 		if (new_fs) {
3492 			fs = current->fs;
3493 			spin_lock(&fs->lock);
3494 			current->fs = new_fs;
3495 			if (--fs->users)
3496 				new_fs = NULL;
3497 			else
3498 				new_fs = fs;
3499 			spin_unlock(&fs->lock);
3500 		}
3501 
3502 		if (new_fd)
3503 			swap(current->files, new_fd);
3504 
3505 		task_unlock(current);
3506 
3507 		if (new_cred) {
3508 			/* Install the new user namespace */
3509 			commit_creds(new_cred);
3510 			new_cred = NULL;
3511 		}
3512 	}
3513 
3514 	perf_event_namespaces(current);
3515 
3516 bad_unshare_cleanup_cred:
3517 	if (new_cred)
3518 		put_cred(new_cred);
3519 bad_unshare_cleanup_fd:
3520 	if (new_fd)
3521 		put_files_struct(new_fd);
3522 
3523 bad_unshare_cleanup_fs:
3524 	if (new_fs)
3525 		free_fs_struct(new_fs);
3526 
3527 bad_unshare_out:
3528 	return err;
3529 }
3530 
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3531 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3532 {
3533 	return ksys_unshare(unshare_flags);
3534 }
3535 
3536 /*
3537  *	Helper to unshare the files of the current task.
3538  *	We don't want to expose copy_files internals to
3539  *	the exec layer of the kernel.
3540  */
3541 
unshare_files(void)3542 int unshare_files(void)
3543 {
3544 	struct task_struct *task = current;
3545 	struct files_struct *old, *copy = NULL;
3546 	int error;
3547 
3548 	error = unshare_fd(CLONE_FILES, &copy);
3549 	if (error || !copy)
3550 		return error;
3551 
3552 	old = task->files;
3553 	task_lock(task);
3554 	task->files = copy;
3555 	task_unlock(task);
3556 	put_files_struct(old);
3557 	return 0;
3558 }
3559 
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3560 int sysctl_max_threads(struct ctl_table *table, int write,
3561 		       void *buffer, size_t *lenp, loff_t *ppos)
3562 {
3563 	struct ctl_table t;
3564 	int ret;
3565 	int threads = max_threads;
3566 	int min = 1;
3567 	int max = MAX_THREADS;
3568 
3569 	t = *table;
3570 	t.data = &threads;
3571 	t.extra1 = &min;
3572 	t.extra2 = &max;
3573 
3574 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3575 	if (ret || !write)
3576 		return ret;
3577 
3578 	max_threads = threads;
3579 
3580 	return 0;
3581 }
3582