1 use crate::common::CodegenCx;
2 use crate::coverageinfo;
3 use crate::coverageinfo::map_data::{Counter, CounterExpression};
4 use crate::llvm;
5
6 use llvm::coverageinfo::CounterMappingRegion;
7 use rustc_codegen_ssa::traits::ConstMethods;
8 use rustc_data_structures::fx::FxIndexSet;
9 use rustc_hir::def::DefKind;
10 use rustc_hir::def_id::DefId;
11 use rustc_llvm::RustString;
12 use rustc_middle::bug;
13 use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
14 use rustc_middle::mir::coverage::CodeRegion;
15 use rustc_middle::ty::TyCtxt;
16
17 use std::ffi::CString;
18
19 /// Generates and exports the Coverage Map.
20 ///
21 /// Rust Coverage Map generation supports LLVM Coverage Mapping Format version
22 /// 6 (zero-based encoded as 5), as defined at
23 /// [LLVM Code Coverage Mapping Format](https://github.com/rust-lang/llvm-project/blob/rustc/13.0-2021-09-30/llvm/docs/CoverageMappingFormat.rst#llvm-code-coverage-mapping-format).
24 /// These versions are supported by the LLVM coverage tools (`llvm-profdata` and `llvm-cov`)
25 /// bundled with Rust's fork of LLVM.
26 ///
27 /// Consequently, Rust's bundled version of Clang also generates Coverage Maps compliant with
28 /// the same version. Clang's implementation of Coverage Map generation was referenced when
29 /// implementing this Rust version, and though the format documentation is very explicit and
30 /// detailed, some undocumented details in Clang's implementation (that may or may not be important)
31 /// were also replicated for Rust's Coverage Map.
finalize(cx: &CodegenCx<'_, '_>)32 pub fn finalize(cx: &CodegenCx<'_, '_>) {
33 let tcx = cx.tcx;
34
35 // Ensure the installed version of LLVM supports Coverage Map Version 6
36 // (encoded as a zero-based value: 5), which was introduced with LLVM 13.
37 let version = coverageinfo::mapping_version();
38 assert_eq!(version, 5, "The `CoverageMappingVersion` exposed by `llvm-wrapper` is out of sync");
39
40 debug!("Generating coverage map for CodegenUnit: `{}`", cx.codegen_unit.name());
41
42 // In order to show that unused functions have coverage counts of zero (0), LLVM requires the
43 // functions exist. Generate synthetic functions with a (required) single counter, and add the
44 // MIR `Coverage` code regions to the `function_coverage_map`, before calling
45 // `ctx.take_function_coverage_map()`.
46 if cx.codegen_unit.is_code_coverage_dead_code_cgu() {
47 add_unused_functions(cx);
48 }
49
50 let function_coverage_map = match cx.coverage_context() {
51 Some(ctx) => ctx.take_function_coverage_map(),
52 None => return,
53 };
54
55 if function_coverage_map.is_empty() {
56 // This module has no functions with coverage instrumentation
57 return;
58 }
59
60 let mut mapgen = CoverageMapGenerator::new(tcx);
61
62 // Encode coverage mappings and generate function records
63 let mut function_data = Vec::new();
64 for (instance, function_coverage) in function_coverage_map {
65 debug!("Generate function coverage for {}, {:?}", cx.codegen_unit.name(), instance);
66 let mangled_function_name = tcx.symbol_name(instance).to_string();
67 let source_hash = function_coverage.source_hash();
68 let is_used = function_coverage.is_used();
69 let (expressions, counter_regions) =
70 function_coverage.get_expressions_and_counter_regions();
71
72 let coverage_mapping_buffer = llvm::build_byte_buffer(|coverage_mapping_buffer| {
73 mapgen.write_coverage_mapping(expressions, counter_regions, coverage_mapping_buffer);
74 });
75
76 if coverage_mapping_buffer.is_empty() {
77 if function_coverage.is_used() {
78 bug!(
79 "A used function should have had coverage mapping data but did not: {}",
80 mangled_function_name
81 );
82 } else {
83 debug!("unused function had no coverage mapping data: {}", mangled_function_name);
84 continue;
85 }
86 }
87
88 function_data.push((mangled_function_name, source_hash, is_used, coverage_mapping_buffer));
89 }
90
91 // Encode all filenames referenced by counters/expressions in this module
92 let filenames_buffer = llvm::build_byte_buffer(|filenames_buffer| {
93 coverageinfo::write_filenames_section_to_buffer(&mapgen.filenames, filenames_buffer);
94 });
95
96 let filenames_size = filenames_buffer.len();
97 let filenames_val = cx.const_bytes(&filenames_buffer);
98 let filenames_ref = coverageinfo::hash_bytes(filenames_buffer);
99
100 // Generate the LLVM IR representation of the coverage map and store it in a well-known global
101 let cov_data_val = mapgen.generate_coverage_map(cx, version, filenames_size, filenames_val);
102
103 for (mangled_function_name, source_hash, is_used, coverage_mapping_buffer) in function_data {
104 save_function_record(
105 cx,
106 mangled_function_name,
107 source_hash,
108 filenames_ref,
109 coverage_mapping_buffer,
110 is_used,
111 );
112 }
113
114 // Save the coverage data value to LLVM IR
115 coverageinfo::save_cov_data_to_mod(cx, cov_data_val);
116 }
117
118 struct CoverageMapGenerator {
119 filenames: FxIndexSet<CString>,
120 }
121
122 impl CoverageMapGenerator {
new(tcx: TyCtxt<'_>) -> Self123 fn new(tcx: TyCtxt<'_>) -> Self {
124 let mut filenames = FxIndexSet::default();
125 // LLVM Coverage Mapping Format version 6 (zero-based encoded as 5)
126 // requires setting the first filename to the compilation directory.
127 // Since rustc generates coverage maps with relative paths, the
128 // compilation directory can be combined with the relative paths
129 // to get absolute paths, if needed.
130 let working_dir =
131 tcx.sess.opts.working_dir.remapped_path_if_available().to_string_lossy().to_string();
132 let c_filename =
133 CString::new(working_dir).expect("null error converting filename to C string");
134 filenames.insert(c_filename);
135 Self { filenames }
136 }
137
138 /// Using the `expressions` and `counter_regions` collected for the current function, generate
139 /// the `mapping_regions` and `virtual_file_mapping`, and capture any new filenames. Then use
140 /// LLVM APIs to encode the `virtual_file_mapping`, `expressions`, and `mapping_regions` into
141 /// the given `coverage_mapping` byte buffer, compliant with the LLVM Coverage Mapping format.
write_coverage_mapping<'a>( &mut self, expressions: Vec<CounterExpression>, counter_regions: impl Iterator<Item = (Counter, &'a CodeRegion)>, coverage_mapping_buffer: &RustString, )142 fn write_coverage_mapping<'a>(
143 &mut self,
144 expressions: Vec<CounterExpression>,
145 counter_regions: impl Iterator<Item = (Counter, &'a CodeRegion)>,
146 coverage_mapping_buffer: &RustString,
147 ) {
148 let mut counter_regions = counter_regions.collect::<Vec<_>>();
149 if counter_regions.is_empty() {
150 return;
151 }
152
153 let mut virtual_file_mapping = Vec::new();
154 let mut mapping_regions = Vec::new();
155 let mut current_file_name = None;
156 let mut current_file_id = 0;
157
158 // Convert the list of (Counter, CodeRegion) pairs to an array of `CounterMappingRegion`, sorted
159 // by filename and position. Capture any new files to compute the `CounterMappingRegion`s
160 // `file_id` (indexing files referenced by the current function), and construct the
161 // function-specific `virtual_file_mapping` from `file_id` to its index in the module's
162 // `filenames` array.
163 counter_regions.sort_unstable_by_key(|(_counter, region)| *region);
164 for (counter, region) in counter_regions {
165 let CodeRegion { file_name, start_line, start_col, end_line, end_col } = *region;
166 let same_file = current_file_name.is_some_and(|p| p == file_name);
167 if !same_file {
168 if current_file_name.is_some() {
169 current_file_id += 1;
170 }
171 current_file_name = Some(file_name);
172 let c_filename = CString::new(file_name.to_string())
173 .expect("null error converting filename to C string");
174 debug!(" file_id: {} = '{:?}'", current_file_id, c_filename);
175 let (filenames_index, _) = self.filenames.insert_full(c_filename);
176 virtual_file_mapping.push(filenames_index as u32);
177 }
178 debug!("Adding counter {:?} to map for {:?}", counter, region);
179 mapping_regions.push(CounterMappingRegion::code_region(
180 counter,
181 current_file_id,
182 start_line,
183 start_col,
184 end_line,
185 end_col,
186 ));
187 }
188
189 // Encode and append the current function's coverage mapping data
190 coverageinfo::write_mapping_to_buffer(
191 virtual_file_mapping,
192 expressions,
193 mapping_regions,
194 coverage_mapping_buffer,
195 );
196 }
197
198 /// Construct coverage map header and the array of function records, and combine them into the
199 /// coverage map. Save the coverage map data into the LLVM IR as a static global using a
200 /// specific, well-known section and name.
generate_coverage_map<'ll>( self, cx: &CodegenCx<'ll, '_>, version: u32, filenames_size: usize, filenames_val: &'ll llvm::Value, ) -> &'ll llvm::Value201 fn generate_coverage_map<'ll>(
202 self,
203 cx: &CodegenCx<'ll, '_>,
204 version: u32,
205 filenames_size: usize,
206 filenames_val: &'ll llvm::Value,
207 ) -> &'ll llvm::Value {
208 debug!("cov map: filenames_size = {}, 0-based version = {}", filenames_size, version);
209
210 // Create the coverage data header (Note, fields 0 and 2 are now always zero,
211 // as of `llvm::coverage::CovMapVersion::Version4`.)
212 let zero_was_n_records_val = cx.const_u32(0);
213 let filenames_size_val = cx.const_u32(filenames_size as u32);
214 let zero_was_coverage_size_val = cx.const_u32(0);
215 let version_val = cx.const_u32(version);
216 let cov_data_header_val = cx.const_struct(
217 &[zero_was_n_records_val, filenames_size_val, zero_was_coverage_size_val, version_val],
218 /*packed=*/ false,
219 );
220
221 // Create the complete LLVM coverage data value to add to the LLVM IR
222 cx.const_struct(&[cov_data_header_val, filenames_val], /*packed=*/ false)
223 }
224 }
225
226 /// Construct a function record and combine it with the function's coverage mapping data.
227 /// Save the function record into the LLVM IR as a static global using a
228 /// specific, well-known section and name.
save_function_record( cx: &CodegenCx<'_, '_>, mangled_function_name: String, source_hash: u64, filenames_ref: u64, coverage_mapping_buffer: Vec<u8>, is_used: bool, )229 fn save_function_record(
230 cx: &CodegenCx<'_, '_>,
231 mangled_function_name: String,
232 source_hash: u64,
233 filenames_ref: u64,
234 coverage_mapping_buffer: Vec<u8>,
235 is_used: bool,
236 ) {
237 // Concatenate the encoded coverage mappings
238 let coverage_mapping_size = coverage_mapping_buffer.len();
239 let coverage_mapping_val = cx.const_bytes(&coverage_mapping_buffer);
240
241 let func_name_hash = coverageinfo::hash_str(&mangled_function_name);
242 let func_name_hash_val = cx.const_u64(func_name_hash);
243 let coverage_mapping_size_val = cx.const_u32(coverage_mapping_size as u32);
244 let source_hash_val = cx.const_u64(source_hash);
245 let filenames_ref_val = cx.const_u64(filenames_ref);
246 let func_record_val = cx.const_struct(
247 &[
248 func_name_hash_val,
249 coverage_mapping_size_val,
250 source_hash_val,
251 filenames_ref_val,
252 coverage_mapping_val,
253 ],
254 /*packed=*/ true,
255 );
256
257 coverageinfo::save_func_record_to_mod(cx, func_name_hash, func_record_val, is_used);
258 }
259
260 /// When finalizing the coverage map, `FunctionCoverage` only has the `CodeRegion`s and counters for
261 /// the functions that went through codegen; such as public functions and "used" functions
262 /// (functions referenced by other "used" or public items). Any other functions considered unused,
263 /// or "Unreachable", were still parsed and processed through the MIR stage, but were not
264 /// codegenned. (Note that `-Clink-dead-code` can force some unused code to be codegenned, but
265 /// that flag is known to cause other errors, when combined with `-C instrument-coverage`; and
266 /// `-Clink-dead-code` will not generate code for unused generic functions.)
267 ///
268 /// We can find the unused functions (including generic functions) by the set difference of all MIR
269 /// `DefId`s (`tcx` query `mir_keys`) minus the codegenned `DefId`s (`tcx` query
270 /// `codegened_and_inlined_items`).
271 ///
272 /// These unused functions are then codegen'd in one of the CGUs which is marked as the
273 /// "code coverage dead code cgu" during the partitioning process. This prevents us from generating
274 /// code regions for the same function more than once which can lead to linker errors regarding
275 /// duplicate symbols.
add_unused_functions(cx: &CodegenCx<'_, '_>)276 fn add_unused_functions(cx: &CodegenCx<'_, '_>) {
277 assert!(cx.codegen_unit.is_code_coverage_dead_code_cgu());
278
279 let tcx = cx.tcx;
280
281 let ignore_unused_generics = tcx.sess.instrument_coverage_except_unused_generics();
282
283 let eligible_def_ids: Vec<DefId> = tcx
284 .mir_keys(())
285 .iter()
286 .filter_map(|local_def_id| {
287 let def_id = local_def_id.to_def_id();
288 let kind = tcx.def_kind(def_id);
289 // `mir_keys` will give us `DefId`s for all kinds of things, not
290 // just "functions", like consts, statics, etc. Filter those out.
291 // If `ignore_unused_generics` was specified, filter out any
292 // generic functions from consideration as well.
293 if !matches!(
294 kind,
295 DefKind::Fn | DefKind::AssocFn | DefKind::Closure | DefKind::Generator
296 ) {
297 return None;
298 }
299 if ignore_unused_generics && tcx.generics_of(def_id).requires_monomorphization(tcx) {
300 return None;
301 }
302 Some(local_def_id.to_def_id())
303 })
304 .collect();
305
306 let codegenned_def_ids = tcx.codegened_and_inlined_items(());
307
308 for non_codegenned_def_id in
309 eligible_def_ids.into_iter().filter(|id| !codegenned_def_ids.contains(id))
310 {
311 let codegen_fn_attrs = tcx.codegen_fn_attrs(non_codegenned_def_id);
312
313 // If a function is marked `#[no_coverage]`, then skip generating a
314 // dead code stub for it.
315 if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::NO_COVERAGE) {
316 debug!("skipping unused fn marked #[no_coverage]: {:?}", non_codegenned_def_id);
317 continue;
318 }
319
320 debug!("generating unused fn: {:?}", non_codegenned_def_id);
321 cx.define_unused_fn(non_codegenned_def_id);
322 }
323 }
324