1 use crate::errors::DumpVTableEntries;
2 use crate::traits::{impossible_predicates, is_vtable_safe_method};
3 use rustc_hir::def_id::DefId;
4 use rustc_hir::lang_items::LangItem;
5 use rustc_infer::traits::util::PredicateSet;
6 use rustc_infer::traits::ImplSource;
7 use rustc_middle::query::Providers;
8 use rustc_middle::ty::visit::TypeVisitableExt;
9 use rustc_middle::ty::InternalSubsts;
10 use rustc_middle::ty::{self, GenericParamDefKind, ToPredicate, Ty, TyCtxt, VtblEntry};
11 use rustc_span::{sym, Span};
12 use smallvec::SmallVec;
13
14 use std::fmt::Debug;
15 use std::ops::ControlFlow;
16
17 #[derive(Clone, Debug)]
18 pub enum VtblSegment<'tcx> {
19 MetadataDSA,
20 TraitOwnEntries { trait_ref: ty::PolyTraitRef<'tcx>, emit_vptr: bool },
21 }
22
23 /// Prepare the segments for a vtable
prepare_vtable_segments<'tcx, T>( tcx: TyCtxt<'tcx>, trait_ref: ty::PolyTraitRef<'tcx>, mut segment_visitor: impl FnMut(VtblSegment<'tcx>) -> ControlFlow<T>, ) -> Option<T>24 pub fn prepare_vtable_segments<'tcx, T>(
25 tcx: TyCtxt<'tcx>,
26 trait_ref: ty::PolyTraitRef<'tcx>,
27 mut segment_visitor: impl FnMut(VtblSegment<'tcx>) -> ControlFlow<T>,
28 ) -> Option<T> {
29 // The following constraints holds for the final arrangement.
30 // 1. The whole virtual table of the first direct super trait is included as the
31 // the prefix. If this trait doesn't have any super traits, then this step
32 // consists of the dsa metadata.
33 // 2. Then comes the proper pointer metadata(vptr) and all own methods for all
34 // other super traits except those already included as part of the first
35 // direct super trait virtual table.
36 // 3. finally, the own methods of this trait.
37
38 // This has the advantage that trait upcasting to the first direct super trait on each level
39 // is zero cost, and to another trait includes only replacing the pointer with one level indirection,
40 // while not using too much extra memory.
41
42 // For a single inheritance relationship like this,
43 // D --> C --> B --> A
44 // The resulting vtable will consists of these segments:
45 // DSA, A, B, C, D
46
47 // For a multiple inheritance relationship like this,
48 // D --> C --> A
49 // \-> B
50 // The resulting vtable will consists of these segments:
51 // DSA, A, B, B-vptr, C, D
52
53 // For a diamond inheritance relationship like this,
54 // D --> B --> A
55 // \-> C -/
56 // The resulting vtable will consists of these segments:
57 // DSA, A, B, C, C-vptr, D
58
59 // For a more complex inheritance relationship like this:
60 // O --> G --> C --> A
61 // \ \ \-> B
62 // | |-> F --> D
63 // | \-> E
64 // |-> N --> J --> H
65 // \ \-> I
66 // |-> M --> K
67 // \-> L
68 // The resulting vtable will consists of these segments:
69 // DSA, A, B, B-vptr, C, D, D-vptr, E, E-vptr, F, F-vptr, G,
70 // H, H-vptr, I, I-vptr, J, J-vptr, K, K-vptr, L, L-vptr, M, M-vptr,
71 // N, N-vptr, O
72
73 // emit dsa segment first.
74 if let ControlFlow::Break(v) = (segment_visitor)(VtblSegment::MetadataDSA) {
75 return Some(v);
76 }
77
78 let mut emit_vptr_on_new_entry = false;
79 let mut visited = PredicateSet::new(tcx);
80 let predicate = trait_ref.without_const().to_predicate(tcx);
81 let mut stack: SmallVec<[(ty::PolyTraitRef<'tcx>, _, _); 5]> =
82 smallvec![(trait_ref, emit_vptr_on_new_entry, None)];
83 visited.insert(predicate);
84
85 // the main traversal loop:
86 // basically we want to cut the inheritance directed graph into a few non-overlapping slices of nodes
87 // that each node is emitted after all its descendents have been emitted.
88 // so we convert the directed graph into a tree by skipping all previously visited nodes using a visited set.
89 // this is done on the fly.
90 // Each loop run emits a slice - it starts by find a "childless" unvisited node, backtracking upwards, and it
91 // stops after it finds a node that has a next-sibling node.
92 // This next-sibling node will used as the starting point of next slice.
93
94 // Example:
95 // For a diamond inheritance relationship like this,
96 // D#1 --> B#0 --> A#0
97 // \-> C#1 -/
98
99 // Starting point 0 stack [D]
100 // Loop run #0: Stack after diving in is [D B A], A is "childless"
101 // after this point, all newly visited nodes won't have a vtable that equals to a prefix of this one.
102 // Loop run #0: Emitting the slice [B A] (in reverse order), B has a next-sibling node, so this slice stops here.
103 // Loop run #0: Stack after exiting out is [D C], C is the next starting point.
104 // Loop run #1: Stack after diving in is [D C], C is "childless", since its child A is skipped(already emitted).
105 // Loop run #1: Emitting the slice [D C] (in reverse order). No one has a next-sibling node.
106 // Loop run #1: Stack after exiting out is []. Now the function exits.
107
108 loop {
109 // dive deeper into the stack, recording the path
110 'diving_in: loop {
111 if let Some((inner_most_trait_ref, _, _)) = stack.last() {
112 let inner_most_trait_ref = *inner_most_trait_ref;
113 let mut direct_super_traits_iter = tcx
114 .super_predicates_of(inner_most_trait_ref.def_id())
115 .predicates
116 .into_iter()
117 .filter_map(move |(pred, _)| {
118 pred.subst_supertrait(tcx, &inner_most_trait_ref).as_trait_clause()
119 });
120
121 'diving_in_skip_visited_traits: loop {
122 if let Some(next_super_trait) = direct_super_traits_iter.next() {
123 if visited.insert(next_super_trait.to_predicate(tcx)) {
124 // We're throwing away potential constness of super traits here.
125 // FIXME: handle ~const super traits
126 let next_super_trait = next_super_trait.map_bound(|t| t.trait_ref);
127 stack.push((
128 next_super_trait,
129 emit_vptr_on_new_entry,
130 Some(direct_super_traits_iter),
131 ));
132 break 'diving_in_skip_visited_traits;
133 } else {
134 continue 'diving_in_skip_visited_traits;
135 }
136 } else {
137 break 'diving_in;
138 }
139 }
140 }
141 }
142
143 // Other than the left-most path, vptr should be emitted for each trait.
144 emit_vptr_on_new_entry = true;
145
146 // emit innermost item, move to next sibling and stop there if possible, otherwise jump to outer level.
147 'exiting_out: loop {
148 if let Some((inner_most_trait_ref, emit_vptr, siblings_opt)) = stack.last_mut() {
149 if let ControlFlow::Break(v) = (segment_visitor)(VtblSegment::TraitOwnEntries {
150 trait_ref: *inner_most_trait_ref,
151 emit_vptr: *emit_vptr,
152 }) {
153 return Some(v);
154 }
155
156 'exiting_out_skip_visited_traits: loop {
157 if let Some(siblings) = siblings_opt {
158 if let Some(next_inner_most_trait_ref) = siblings.next() {
159 if visited.insert(next_inner_most_trait_ref.to_predicate(tcx)) {
160 // We're throwing away potential constness of super traits here.
161 // FIXME: handle ~const super traits
162 let next_inner_most_trait_ref =
163 next_inner_most_trait_ref.map_bound(|t| t.trait_ref);
164 *inner_most_trait_ref = next_inner_most_trait_ref;
165 *emit_vptr = emit_vptr_on_new_entry;
166 break 'exiting_out;
167 } else {
168 continue 'exiting_out_skip_visited_traits;
169 }
170 }
171 }
172 stack.pop();
173 continue 'exiting_out;
174 }
175 }
176 // all done
177 return None;
178 }
179 }
180 }
181
dump_vtable_entries<'tcx>( tcx: TyCtxt<'tcx>, sp: Span, trait_ref: ty::PolyTraitRef<'tcx>, entries: &[VtblEntry<'tcx>], )182 fn dump_vtable_entries<'tcx>(
183 tcx: TyCtxt<'tcx>,
184 sp: Span,
185 trait_ref: ty::PolyTraitRef<'tcx>,
186 entries: &[VtblEntry<'tcx>],
187 ) {
188 tcx.sess.emit_err(DumpVTableEntries {
189 span: sp,
190 trait_ref,
191 entries: format!("{:#?}", entries),
192 });
193 }
194
own_existential_vtable_entries(tcx: TyCtxt<'_>, trait_def_id: DefId) -> &[DefId]195 fn own_existential_vtable_entries(tcx: TyCtxt<'_>, trait_def_id: DefId) -> &[DefId] {
196 let trait_methods = tcx
197 .associated_items(trait_def_id)
198 .in_definition_order()
199 .filter(|item| item.kind == ty::AssocKind::Fn);
200 // Now list each method's DefId (for within its trait).
201 let own_entries = trait_methods.filter_map(move |&trait_method| {
202 debug!("own_existential_vtable_entry: trait_method={:?}", trait_method);
203 let def_id = trait_method.def_id;
204
205 // Some methods cannot be called on an object; skip those.
206 if !is_vtable_safe_method(tcx, trait_def_id, trait_method) {
207 debug!("own_existential_vtable_entry: not vtable safe");
208 return None;
209 }
210
211 Some(def_id)
212 });
213
214 tcx.arena.alloc_from_iter(own_entries.into_iter())
215 }
216
217 /// Given a trait `trait_ref`, iterates the vtable entries
218 /// that come from `trait_ref`, including its supertraits.
vtable_entries<'tcx>( tcx: TyCtxt<'tcx>, trait_ref: ty::PolyTraitRef<'tcx>, ) -> &'tcx [VtblEntry<'tcx>]219 fn vtable_entries<'tcx>(
220 tcx: TyCtxt<'tcx>,
221 trait_ref: ty::PolyTraitRef<'tcx>,
222 ) -> &'tcx [VtblEntry<'tcx>] {
223 debug!("vtable_entries({:?})", trait_ref);
224
225 let mut entries = vec![];
226
227 let vtable_segment_callback = |segment| -> ControlFlow<()> {
228 match segment {
229 VtblSegment::MetadataDSA => {
230 entries.extend(TyCtxt::COMMON_VTABLE_ENTRIES);
231 }
232 VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => {
233 let existential_trait_ref = trait_ref
234 .map_bound(|trait_ref| ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref));
235
236 // Lookup the shape of vtable for the trait.
237 let own_existential_entries =
238 tcx.own_existential_vtable_entries(existential_trait_ref.def_id());
239
240 let own_entries = own_existential_entries.iter().copied().map(|def_id| {
241 debug!("vtable_entries: trait_method={:?}", def_id);
242
243 // The method may have some early-bound lifetimes; add regions for those.
244 let substs = trait_ref.map_bound(|trait_ref| {
245 InternalSubsts::for_item(tcx, def_id, |param, _| match param.kind {
246 GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
247 GenericParamDefKind::Type { .. }
248 | GenericParamDefKind::Const { .. } => {
249 trait_ref.substs[param.index as usize]
250 }
251 })
252 });
253
254 // The trait type may have higher-ranked lifetimes in it;
255 // erase them if they appear, so that we get the type
256 // at some particular call site.
257 let substs = tcx
258 .normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), substs);
259
260 // It's possible that the method relies on where-clauses that
261 // do not hold for this particular set of type parameters.
262 // Note that this method could then never be called, so we
263 // do not want to try and codegen it, in that case (see #23435).
264 let predicates = tcx.predicates_of(def_id).instantiate_own(tcx, substs);
265 if impossible_predicates(
266 tcx,
267 predicates.map(|(predicate, _)| predicate).collect(),
268 ) {
269 debug!("vtable_entries: predicates do not hold");
270 return VtblEntry::Vacant;
271 }
272
273 let instance = ty::Instance::resolve_for_vtable(
274 tcx,
275 ty::ParamEnv::reveal_all(),
276 def_id,
277 substs,
278 )
279 .expect("resolution failed during building vtable representation");
280 VtblEntry::Method(instance)
281 });
282
283 entries.extend(own_entries);
284
285 if emit_vptr {
286 entries.push(VtblEntry::TraitVPtr(trait_ref));
287 }
288 }
289 }
290
291 ControlFlow::Continue(())
292 };
293
294 let _ = prepare_vtable_segments(tcx, trait_ref, vtable_segment_callback);
295
296 if tcx.has_attr(trait_ref.def_id(), sym::rustc_dump_vtable) {
297 let sp = tcx.def_span(trait_ref.def_id());
298 dump_vtable_entries(tcx, sp, trait_ref, &entries);
299 }
300
301 tcx.arena.alloc_from_iter(entries.into_iter())
302 }
303
304 /// Find slot base for trait methods within vtable entries of another trait
vtable_trait_first_method_offset<'tcx>( tcx: TyCtxt<'tcx>, key: ( ty::PolyTraitRef<'tcx>, ty::PolyTraitRef<'tcx>, ), ) -> usize305 pub(super) fn vtable_trait_first_method_offset<'tcx>(
306 tcx: TyCtxt<'tcx>,
307 key: (
308 ty::PolyTraitRef<'tcx>, // trait_to_be_found
309 ty::PolyTraitRef<'tcx>, // trait_owning_vtable
310 ),
311 ) -> usize {
312 let (trait_to_be_found, trait_owning_vtable) = key;
313
314 // #90177
315 let trait_to_be_found_erased = tcx.erase_regions(trait_to_be_found);
316
317 let vtable_segment_callback = {
318 let mut vtable_base = 0;
319
320 move |segment| {
321 match segment {
322 VtblSegment::MetadataDSA => {
323 vtable_base += TyCtxt::COMMON_VTABLE_ENTRIES.len();
324 }
325 VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => {
326 if tcx.erase_regions(trait_ref) == trait_to_be_found_erased {
327 return ControlFlow::Break(vtable_base);
328 }
329 vtable_base += count_own_vtable_entries(tcx, trait_ref);
330 if emit_vptr {
331 vtable_base += 1;
332 }
333 }
334 }
335 ControlFlow::Continue(())
336 }
337 };
338
339 if let Some(vtable_base) =
340 prepare_vtable_segments(tcx, trait_owning_vtable, vtable_segment_callback)
341 {
342 vtable_base
343 } else {
344 bug!("Failed to find info for expected trait in vtable");
345 }
346 }
347
348 /// Find slot offset for trait vptr within vtable entries of another trait
vtable_trait_upcasting_coercion_new_vptr_slot<'tcx>( tcx: TyCtxt<'tcx>, key: ( Ty<'tcx>, Ty<'tcx>, ), ) -> Option<usize>349 pub(crate) fn vtable_trait_upcasting_coercion_new_vptr_slot<'tcx>(
350 tcx: TyCtxt<'tcx>,
351 key: (
352 Ty<'tcx>, // trait object type whose trait owning vtable
353 Ty<'tcx>, // trait object for supertrait
354 ),
355 ) -> Option<usize> {
356 let (source, target) = key;
357 assert!(matches!(&source.kind(), &ty::Dynamic(..)) && !source.has_infer());
358 assert!(matches!(&target.kind(), &ty::Dynamic(..)) && !target.has_infer());
359
360 // this has been typecked-before, so diagnostics is not really needed.
361 let unsize_trait_did = tcx.require_lang_item(LangItem::Unsize, None);
362
363 let trait_ref = ty::TraitRef::new(tcx, unsize_trait_did, [source, target]);
364
365 match tcx.codegen_select_candidate((ty::ParamEnv::reveal_all(), trait_ref)) {
366 Ok(ImplSource::TraitUpcasting(implsrc_traitcasting)) => {
367 implsrc_traitcasting.vtable_vptr_slot
368 }
369 otherwise => bug!("expected TraitUpcasting candidate, got {otherwise:?}"),
370 }
371 }
372
373 /// Given a trait `trait_ref`, returns the number of vtable entries
374 /// that come from `trait_ref`, excluding its supertraits. Used in
375 /// computing the vtable base for an upcast trait of a trait object.
count_own_vtable_entries<'tcx>( tcx: TyCtxt<'tcx>, trait_ref: ty::PolyTraitRef<'tcx>, ) -> usize376 pub(crate) fn count_own_vtable_entries<'tcx>(
377 tcx: TyCtxt<'tcx>,
378 trait_ref: ty::PolyTraitRef<'tcx>,
379 ) -> usize {
380 tcx.own_existential_vtable_entries(trait_ref.def_id()).len()
381 }
382
provide(providers: &mut Providers)383 pub(super) fn provide(providers: &mut Providers) {
384 *providers = Providers {
385 own_existential_vtable_entries,
386 vtable_entries,
387 vtable_trait_upcasting_coercion_new_vptr_slot,
388 ..*providers
389 };
390 }
391