| /kernel/linux/linux-5.10/tools/lib/perf/ |
| D | cpumap.c | 15 struct perf_cpu_map *cpus = malloc(sizeof(*cpus) + sizeof(int)); in perf_cpu_map__dummy_new() local 17 if (cpus != NULL) { in perf_cpu_map__dummy_new() 18 cpus->nr = 1; in perf_cpu_map__dummy_new() 19 cpus->map[0] = -1; in perf_cpu_map__dummy_new() 20 refcount_set(&cpus->refcnt, 1); in perf_cpu_map__dummy_new() 23 return cpus; in perf_cpu_map__dummy_new() 50 struct perf_cpu_map *cpus; in cpu_map__default_new() local 57 cpus = malloc(sizeof(*cpus) + nr_cpus * sizeof(int)); in cpu_map__default_new() 58 if (cpus != NULL) { in cpu_map__default_new() 62 cpus->map[i] = i; in cpu_map__default_new() [all …]
|
| D | evlist.c | 42 * We already have cpus for evsel (via PMU sysfs) so in __perf_evlist__propagate_maps() 46 perf_cpu_map__put(evsel->cpus); in __perf_evlist__propagate_maps() 47 evsel->cpus = perf_cpu_map__get(evlist->cpus); in __perf_evlist__propagate_maps() 48 } else if (!evsel->system_wide && perf_cpu_map__empty(evlist->cpus)) { in __perf_evlist__propagate_maps() 49 perf_cpu_map__put(evsel->cpus); in __perf_evlist__propagate_maps() 50 evsel->cpus = perf_cpu_map__get(evlist->cpus); in __perf_evlist__propagate_maps() 51 } else if (evsel->cpus != evsel->own_cpus) { in __perf_evlist__propagate_maps() 52 perf_cpu_map__put(evsel->cpus); in __perf_evlist__propagate_maps() 53 evsel->cpus = perf_cpu_map__get(evsel->own_cpus); in __perf_evlist__propagate_maps() 58 evlist->all_cpus = perf_cpu_map__merge(evlist->all_cpus, evsel->cpus); in __perf_evlist__propagate_maps() [all …]
|
| /kernel/linux/linux-6.6/tools/lib/perf/ |
| D | cpumap.c | 20 RC_STRUCT(perf_cpu_map) *cpus = malloc(sizeof(*cpus) + sizeof(struct perf_cpu) * nr_cpus); in perf_cpu_map__alloc() 23 if (ADD_RC_CHK(result, cpus)) { in perf_cpu_map__alloc() 24 cpus->nr = nr_cpus; in perf_cpu_map__alloc() 25 refcount_set(&cpus->refcnt, 1); in perf_cpu_map__alloc() 32 struct perf_cpu_map *cpus = perf_cpu_map__alloc(1); in perf_cpu_map__dummy_new() local 34 if (cpus) in perf_cpu_map__dummy_new() 35 RC_CHK_ACCESS(cpus)->map[0].cpu = -1; in perf_cpu_map__dummy_new() 37 return cpus; in perf_cpu_map__dummy_new() 71 struct perf_cpu_map *cpus; in cpu_map__default_new() local 78 cpus = perf_cpu_map__alloc(nr_cpus); in cpu_map__default_new() [all …]
|
| /kernel/linux/linux-5.10/drivers/cpuidle/ |
| D | coupled.c | 3 * coupled.c - helper functions to enter the same idle state on multiple cpus 24 * cpus cannot be independently powered down, either due to 31 * shared between the cpus (L2 cache, interrupt controller, and 33 * be tightly controlled on both cpus. 36 * WFI state until all cpus are ready to enter a coupled state, at 38 * cpus at approximately the same time. 40 * Once all cpus are ready to enter idle, they are woken by an smp 42 * cpus will find work to do, and choose not to enter idle. A 43 * final pass is needed to guarantee that all cpus will call the 46 * ready counter matches the number of online coupled cpus. If any [all …]
|
| /kernel/linux/linux-6.6/drivers/cpuidle/ |
| D | coupled.c | 3 * coupled.c - helper functions to enter the same idle state on multiple cpus 24 * cpus cannot be independently powered down, either due to 31 * shared between the cpus (L2 cache, interrupt controller, and 33 * be tightly controlled on both cpus. 36 * WFI state until all cpus are ready to enter a coupled state, at 38 * cpus at approximately the same time. 40 * Once all cpus are ready to enter idle, they are woken by an smp 42 * cpus will find work to do, and choose not to enter idle. A 43 * final pass is needed to guarantee that all cpus will call the 46 * ready counter matches the number of online coupled cpus. If any [all …]
|
| /kernel/linux/linux-6.6/Documentation/timers/ |
| D | no_hz.rst | 19 2. Omit scheduling-clock ticks on idle CPUs (CONFIG_NO_HZ_IDLE=y or 23 3. Omit scheduling-clock ticks on CPUs that are either idle or that 65 Omit Scheduling-Clock Ticks For Idle CPUs 78 scheduling-clock interrupts to idle CPUs, which is critically important 86 idle CPUs. That said, dyntick-idle mode is not free: 104 Omit Scheduling-Clock Ticks For CPUs With Only One Runnable Task 109 Note that omitting scheduling-clock ticks for CPUs with only one runnable 110 task implies also omitting them for idle CPUs. 113 sending scheduling-clock interrupts to CPUs with a single runnable task, 114 and such CPUs are said to be "adaptive-ticks CPUs". This is important [all …]
|
| /kernel/linux/linux-6.6/Documentation/admin-guide/cgroup-v1/ |
| D | cpusets.rst | 31 2.2 Adding/removing cpus 43 Cpusets provide a mechanism for assigning a set of CPUs and Memory 57 include CPUs in its CPU affinity mask, and using the mbind(2) and 60 CPUs or Memory Nodes not in that cpuset. The scheduler will not 67 cpusets and which CPUs and Memory Nodes are assigned to each cpuset, 75 The management of large computer systems, with many processors (CPUs), 113 Cpusets provide a Linux kernel mechanism to constrain which CPUs and 117 CPUs a task may be scheduled (sched_setaffinity) and on which Memory 122 - Cpusets are sets of allowed CPUs and Memory Nodes, known to the 126 - Calls to sched_setaffinity are filtered to just those CPUs [all …]
|
| /kernel/linux/linux-5.10/Documentation/admin-guide/cgroup-v1/ |
| D | cpusets.rst | 31 2.2 Adding/removing cpus 43 Cpusets provide a mechanism for assigning a set of CPUs and Memory 57 include CPUs in its CPU affinity mask, and using the mbind(2) and 60 CPUs or Memory Nodes not in that cpuset. The scheduler will not 67 cpusets and which CPUs and Memory Nodes are assigned to each cpuset, 75 The management of large computer systems, with many processors (CPUs), 113 Cpusets provide a Linux kernel mechanism to constrain which CPUs and 117 CPUs a task may be scheduled (sched_setaffinity) and on which Memory 122 - Cpusets are sets of allowed CPUs and Memory Nodes, known to the 126 - Calls to sched_setaffinity are filtered to just those CPUs [all …]
|
| /kernel/linux/linux-5.10/Documentation/timers/ |
| D | no_hz.rst | 19 2. Omit scheduling-clock ticks on idle CPUs (CONFIG_NO_HZ_IDLE=y or 23 3. Omit scheduling-clock ticks on CPUs that are either idle or that 65 Omit Scheduling-Clock Ticks For Idle CPUs 74 scheduling-clock interrupts to idle CPUs, which is critically important 82 idle CPUs. That said, dyntick-idle mode is not free: 104 Omit Scheduling-Clock Ticks For CPUs With Only One Runnable Task 109 Note that omitting scheduling-clock ticks for CPUs with only one runnable 110 task implies also omitting them for idle CPUs. 113 sending scheduling-clock interrupts to CPUs with a single runnable task, 114 and such CPUs are said to be "adaptive-ticks CPUs". This is important [all …]
|
| /kernel/linux/linux-5.10/tools/perf/tests/ |
| D | openat-syscall-all-cpus.c | 26 struct perf_cpu_map *cpus; in test__openat_syscall_event_on_all_cpus() local 39 cpus = perf_cpu_map__new(NULL); in test__openat_syscall_event_on_all_cpus() 40 if (cpus == NULL) { in test__openat_syscall_event_on_all_cpus() 54 if (evsel__open(evsel, cpus, threads) < 0) { in test__openat_syscall_event_on_all_cpus() 61 for (cpu = 0; cpu < cpus->nr; ++cpu) { in test__openat_syscall_event_on_all_cpus() 66 * without CPU_ALLOC. 1024 cpus in 2010 still seems in test__openat_syscall_event_on_all_cpus() 69 if (cpus->map[cpu] >= CPU_SETSIZE) { in test__openat_syscall_event_on_all_cpus() 70 pr_debug("Ignoring CPU %d\n", cpus->map[cpu]); in test__openat_syscall_event_on_all_cpus() 74 CPU_SET(cpus->map[cpu], &cpu_set); in test__openat_syscall_event_on_all_cpus() 77 cpus->map[cpu], in test__openat_syscall_event_on_all_cpus() [all …]
|
| /kernel/linux/linux-6.6/tools/lib/perf/tests/ |
| D | test-cpumap.c | 16 struct perf_cpu_map *cpus; in test_cpumap() local 24 cpus = perf_cpu_map__dummy_new(); in test_cpumap() 25 if (!cpus) in test_cpumap() 28 perf_cpu_map__get(cpus); in test_cpumap() 29 perf_cpu_map__put(cpus); in test_cpumap() 30 perf_cpu_map__put(cpus); in test_cpumap() 32 cpus = perf_cpu_map__default_new(); in test_cpumap() 33 if (!cpus) in test_cpumap() 36 perf_cpu_map__for_each_cpu(cpu, idx, cpus) in test_cpumap() 39 perf_cpu_map__put(cpus); in test_cpumap()
|
| /kernel/linux/linux-5.10/tools/perf/arch/arm64/util/ |
| D | header.c | 17 static int _get_cpuid(char *buf, size_t sz, struct perf_cpu_map *cpus) in _get_cpuid() argument 26 cpus = perf_cpu_map__get(cpus); in _get_cpuid() 28 for (cpu = 0; cpu < perf_cpu_map__nr(cpus); cpu++) { in _get_cpuid() 33 sysfs, cpus->map[cpu]); in _get_cpuid() 57 perf_cpu_map__put(cpus); in _get_cpuid() 67 struct perf_cpu_map *cpus = perf_cpu_map__new(NULL); in get_cpuid() local 70 if (!cpus) in get_cpuid() 73 ret = _get_cpuid(buf, sz, cpus); in get_cpuid() 75 perf_cpu_map__put(cpus); in get_cpuid() 85 if (!pmu || !pmu->cpus) in get_cpuid_str() [all …]
|
| /kernel/linux/linux-5.10/include/linux/ |
| D | stop_machine.h | 13 * function to be executed on a single or multiple cpus preempting all 14 * other processes and monopolizing those cpus until it finishes. 18 * cpus are online. 105 * stop_machine: freeze the machine on all CPUs and run this function 108 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 120 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus); 123 * stop_machine_cpuslocked: freeze the machine on all CPUs and run this function 126 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 131 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus); 134 const struct cpumask *cpus); [all …]
|
| /kernel/linux/linux-6.6/arch/riscv/kernel/ |
| D | sys_riscv.c | 86 const struct cpumask *cpus) in hwprobe_arch_id() argument 92 for_each_cpu(cpu, cpus) { in hwprobe_arch_id() 126 const struct cpumask *cpus) in hwprobe_isa_ext0() argument 145 for_each_cpu(cpu, cpus) { in hwprobe_isa_ext0() 168 static u64 hwprobe_misaligned(const struct cpumask *cpus) in hwprobe_misaligned() argument 173 for_each_cpu(cpu, cpus) { in hwprobe_misaligned() 192 const struct cpumask *cpus) in hwprobe_one_pair() argument 198 hwprobe_arch_id(pair, cpus); in hwprobe_one_pair() 211 hwprobe_isa_ext0(pair, cpus); in hwprobe_one_pair() 215 pair->value = hwprobe_misaligned(cpus); in hwprobe_one_pair() [all …]
|
| /kernel/linux/linux-6.6/include/linux/ |
| D | stop_machine.h | 13 * function to be executed on a single or multiple cpus preempting all 14 * other processes and monopolizing those cpus until it finishes. 18 * cpus are online. 110 * stop_machine: freeze the machine on all CPUs and run this function 113 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 125 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus); 128 * stop_machine_cpuslocked: freeze the machine on all CPUs and run this function 131 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 136 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus); 144 * Same as above, but instead of every CPU, only the logical CPUs of a [all …]
|
| /kernel/linux/linux-5.10/drivers/clk/sunxi/ |
| D | clk-sun9i-cpus.c | 7 * Allwinner A80 CPUS clock driver 22 * sun9i_a80_cpus_clk_setup() - Setup function for a80 cpus composite clk 55 struct sun9i_a80_cpus_clk *cpus = to_sun9i_a80_cpus_clk(hw); in sun9i_a80_cpus_clk_recalc_rate() local 60 reg = readl(cpus->reg); in sun9i_a80_cpus_clk_recalc_rate() 155 struct sun9i_a80_cpus_clk *cpus = to_sun9i_a80_cpus_clk(hw); in sun9i_a80_cpus_clk_set_rate() local 162 reg = readl(cpus->reg); in sun9i_a80_cpus_clk_set_rate() 170 writel(reg, cpus->reg); in sun9i_a80_cpus_clk_set_rate() 188 struct sun9i_a80_cpus_clk *cpus; in sun9i_a80_cpus_setup() local 193 cpus = kzalloc(sizeof(*cpus), GFP_KERNEL); in sun9i_a80_cpus_setup() 194 if (!cpus) in sun9i_a80_cpus_setup() [all …]
|
| /kernel/linux/linux-6.6/drivers/clk/sunxi/ |
| D | clk-sun9i-cpus.c | 7 * Allwinner A80 CPUS clock driver 22 * sun9i_a80_cpus_clk_setup() - Setup function for a80 cpus composite clk 55 struct sun9i_a80_cpus_clk *cpus = to_sun9i_a80_cpus_clk(hw); in sun9i_a80_cpus_clk_recalc_rate() local 60 reg = readl(cpus->reg); in sun9i_a80_cpus_clk_recalc_rate() 155 struct sun9i_a80_cpus_clk *cpus = to_sun9i_a80_cpus_clk(hw); in sun9i_a80_cpus_clk_set_rate() local 162 reg = readl(cpus->reg); in sun9i_a80_cpus_clk_set_rate() 170 writel(reg, cpus->reg); in sun9i_a80_cpus_clk_set_rate() 188 struct sun9i_a80_cpus_clk *cpus; in sun9i_a80_cpus_setup() local 193 cpus = kzalloc(sizeof(*cpus), GFP_KERNEL); in sun9i_a80_cpus_setup() 194 if (!cpus) in sun9i_a80_cpus_setup() [all …]
|
| /kernel/linux/linux-5.10/tools/lib/perf/tests/ |
| D | test-evlist.c | 30 struct perf_cpu_map *cpus; in test_stat_cpu() local 43 cpus = perf_cpu_map__new(NULL); in test_stat_cpu() 44 __T("failed to create cpus", cpus); in test_stat_cpu() 59 perf_evlist__set_maps(evlist, cpus, NULL); in test_stat_cpu() 65 cpus = perf_evsel__cpus(evsel); in test_stat_cpu() 67 for (idx = 0; idx < perf_cpu_map__nr(cpus); idx++) { in test_stat_cpu() 78 perf_cpu_map__put(cpus); in test_stat_cpu() 200 struct perf_cpu_map *cpus; in test_mmap_thread() local 246 cpus = perf_cpu_map__dummy_new(); in test_mmap_thread() 247 __T("failed to create cpus", cpus); in test_mmap_thread() [all …]
|
| /kernel/linux/linux-6.6/drivers/cpufreq/ |
| D | cpufreq-dt.c | 30 cpumask_var_t cpus; member 50 if (cpumask_test_cpu(cpu, priv->cpus)) in cpufreq_dt_find_data() 129 cpumask_copy(policy->cpus, priv->cpus); in cpufreq_init() 211 if (!zalloc_cpumask_var(&priv->cpus, GFP_KERNEL)) in dt_cpufreq_early_init() 214 cpumask_set_cpu(cpu, priv->cpus); in dt_cpufreq_early_init() 232 ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, priv->cpus); in dt_cpufreq_early_init() 238 * operating-points-v2 not supported, fallback to all CPUs share in dt_cpufreq_early_init() 240 * sharing CPUs. in dt_cpufreq_early_init() 242 if (dev_pm_opp_get_sharing_cpus(cpu_dev, priv->cpus)) in dt_cpufreq_early_init() 247 * Initialize OPP tables for all priv->cpus. They will be shared by in dt_cpufreq_early_init() [all …]
|
| /kernel/linux/linux-5.10/Documentation/admin-guide/ |
| D | cputopology.rst | 41 internal kernel map of CPUs within the same core. 46 human-readable list of CPUs within the same core. 51 internal kernel map of the CPUs sharing the same physical_package_id. 56 human-readable list of CPUs sharing the same physical_package_id. 61 internal kernel map of CPUs within the same die. 65 human-readable list of CPUs within the same die. 137 offline: CPUs that are not online because they have been 139 of CPUs allowed by the kernel configuration (kernel_max 140 above). [~cpu_online_mask + cpus >= NR_CPUS] 142 online: CPUs that are online and being scheduled [cpu_online_mask] [all …]
|
| /kernel/linux/linux-6.6/tools/perf/arch/arm64/util/ |
| D | header.c | 19 static int _get_cpuid(char *buf, size_t sz, struct perf_cpu_map *cpus) in _get_cpuid() argument 28 cpus = perf_cpu_map__get(cpus); in _get_cpuid() 30 for (cpu = 0; cpu < perf_cpu_map__nr(cpus); cpu++) { in _get_cpuid() 35 sysfs, RC_CHK_ACCESS(cpus)->map[cpu].cpu); in _get_cpuid() 54 perf_cpu_map__put(cpus); in _get_cpuid() 60 struct perf_cpu_map *cpus = perf_cpu_map__new(NULL); in get_cpuid() local 63 if (!cpus) in get_cpuid() 66 ret = _get_cpuid(buf, sz, cpus); in get_cpuid() 68 perf_cpu_map__put(cpus); in get_cpuid() 78 if (!pmu || !pmu->cpus) in get_cpuid_str() [all …]
|
| /kernel/linux/linux-6.6/Documentation/scheduler/ |
| D | sched-energy.rst | 9 the impact of its decisions on the energy consumed by CPUs. EAS relies on an 10 Energy Model (EM) of the CPUs to select an energy efficient CPU for each task, 59 In short, EAS changes the way CFS tasks are assigned to CPUs. When it is time 64 knowledge about the platform's topology, which include the 'capacity' of CPUs, 72 differentiate CPUs with different computing throughput. The 'capacity' of a CPU 76 tasks and CPUs computed by the Per-Entity Load Tracking (PELT) mechanism. Thanks 79 energy trade-offs. The capacity of CPUs is provided via arch-specific code 99 Let us consider a platform with 12 CPUs, split in 3 performance domains 102 CPUs: 0 1 2 3 4 5 6 7 8 9 10 11 108 containing 6 CPUs. The two root domains are denoted rd1 and rd2 in the [all …]
|
| /kernel/linux/linux-5.10/Documentation/scheduler/ |
| D | sched-energy.rst | 9 the impact of its decisions on the energy consumed by CPUs. EAS relies on an 10 Energy Model (EM) of the CPUs to select an energy efficient CPU for each task, 59 In short, EAS changes the way CFS tasks are assigned to CPUs. When it is time 64 knowledge about the platform's topology, which include the 'capacity' of CPUs, 72 differentiate CPUs with different computing throughput. The 'capacity' of a CPU 76 tasks and CPUs computed by the Per-Entity Load Tracking (PELT) mechanism. Thanks 79 energy trade-offs. The capacity of CPUs is provided via arch-specific code 99 Let us consider a platform with 12 CPUs, split in 3 performance domains 102 CPUs: 0 1 2 3 4 5 6 7 8 9 10 11 108 containing 6 CPUs. The two root domains are denoted rd1 and rd2 in the [all …]
|
| /kernel/linux/linux-6.6/Documentation/admin-guide/ |
| D | kernel-per-CPU-kthreads.rst | 13 - Documentation/core-api/irq/irq-affinity.rst: Binding interrupts to sets of CPUs. 15 - Documentation/admin-guide/cgroup-v1: Using cgroups to bind tasks to sets of CPUs. 18 of CPUs. 21 call to bind tasks to sets of CPUs. 50 2. Do all eHCA-Infiniband-related work on other CPUs, including 53 provisioned only on selected CPUs. 101 with multiple CPUs, force them all offline before bringing the 102 first one back online. Once you have onlined the CPUs in question, 103 do not offline any other CPUs, because doing so could force the 104 timer back onto one of the CPUs in question. [all …]
|
| /kernel/linux/linux-6.6/tools/testing/selftests/cgroup/ |
| D | test_cpuset_prs.sh | 26 CPUS=$(lscpu | grep "^CPU(s):" | sed -e "s/.*:[[:space:]]*//") 27 [[ $CPUS -lt 8 ]] && skip_test "Test needs at least 8 cpus available!" 102 echo $EXPECTED_VAL > cpuset.cpus.partition 104 ACTUAL_VAL=$(cat cpuset.cpus.partition) 106 echo "cpuset.cpus.partition: expect $EXPECTED_VAL, found $EXPECTED_VAL" 115 ACTUAL_VAL=$(cat cpuset.cpus.effective) 117 echo "cpuset.cpus.effective: expect '$EXPECTED_VAL', found '$EXPECTED_VAL'" 142 echo 2-3 > cpuset.cpus 143 TYPE=$(cat cpuset.cpus.partition) 144 [[ $TYPE = member ]] || echo member > cpuset.cpus.partition [all …]
|