| /third_party/mindspore/mindspore-src/source/docs/api/api_python/nn_probability/ |
| D | mindspore.nn.probability.distribution.Beta.rst | 1 mindspore.nn.probability.distribution.Beta 4 …re.nn.probability.distribution.Beta(concentration1=None, concentration0=None, seed=None, dtype=mst… 6 Beta 分布(Beta Distribution)。 10 f(x, \alpha, \beta) = x^\alpha (1-x)^{\beta - 1} / B(\alpha, \beta) 12 其中 :math:`B` 为 Beta 函数。 15 … - **concentration1** (int, float, list, numpy.ndarray, Tensor) - Beta 分布的alpha。默认值: ``None`` 。 16 … - **concentration0** (int, float, list, numpy.ndarray, Tensor) - Beta 分布的beta。默认值: ``None`` 。 19 - **name** (str) - 分布的名称。默认值: ``'Beta'`` 。 24 - `dtype` 必须是float,因为 Beta 分布是连续的。 33 返回concentration0(也称为 Beta 分布的 beta)。 [all …]
|
| /third_party/rust/rust/tests/ui/associated-type-bounds/ |
| D | fn-apit.rs | 11 fn apit_bound(beta: impl Beta<Gamma: Alpha>) -> usize { in apit_bound() 12 desugared_bound(beta) in apit_bound() 15 fn apit_bound_region(beta: impl Beta<Gamma: 'static>) -> usize { in apit_bound_region() 16 desugared_bound_region(beta) in apit_bound_region() 20 beta: impl Copy + Beta<Gamma: Alpha + 'static + Delta> in apit_bound_multi() 22 desugared_bound_multi(beta) in apit_bound_multi() 26 beta: impl Beta<Gamma: Copy + for<'a> Epsilon<'a>> in apit_bound_region_forall() 28 desugared_bound_region_forall(beta) in apit_bound_region_forall() 32 beta: impl Beta<Gamma: Copy + for<'a> Epsilon<'a, Zeta: Eta>> in apit_bound_region_forall2() 34 desugared_bound_region_forall2(beta) in apit_bound_region_forall2() [all …]
|
| D | fn-dyn-apit.rs | 13 fn dyn_apit_bound(beta: &dyn Beta<Gamma: Alpha>) -> usize { in dyn_apit_bound() 14 desugared_bound(beta) in dyn_apit_bound() 17 fn dyn_apit_bound_region(beta: &dyn Beta<Gamma: 'static>) -> usize { in dyn_apit_bound_region() 18 desugared_bound_region(beta) in dyn_apit_bound_region() 22 beta: &(dyn Beta<Gamma: Alpha + 'static + Delta> + Send) in dyn_apit_bound_multi() 24 desugared_bound_multi(beta) in dyn_apit_bound_multi() 28 beta: &dyn Beta<Gamma: Copy + for<'a> Epsilon<'a>> in dyn_apit_bound_region_forall() 30 desugared_bound_region_forall(beta) in dyn_apit_bound_region_forall() 34 beta: &dyn Beta<Gamma: Copy + for<'a> Epsilon<'a, Zeta: Eta>> in dyn_apit_bound_region_forall2() 36 desugared_bound_region_forall2(beta) in dyn_apit_bound_region_forall2() [all …]
|
| D | fn-wrap-apit.rs | 15 fn wrap_apit_bound(beta: Wrap<impl Beta<Gamma: Alpha>>) -> usize { in wrap_apit_bound() 16 desugared_bound(beta.0) in wrap_apit_bound() 19 fn wrap_apit_bound_region(beta: Wrap<impl Beta<Gamma: 'static>>) -> usize { in wrap_apit_bound_region() 20 desugared_bound_region(beta.0) in wrap_apit_bound_region() 24 beta: Wrap<impl Copy + Beta<Gamma: Alpha + 'static + Delta>> in wrap_apit_bound_multi() 26 desugared_bound_multi(beta.0) in wrap_apit_bound_multi() 30 beta: Wrap<impl Beta<Gamma: Copy + for<'a> Epsilon<'a>>> in wrap_apit_bound_region_forall() 32 desugared_bound_region_forall(beta.0) in wrap_apit_bound_region_forall() 36 beta: Wrap<impl Beta<Gamma: Copy + for<'a> Epsilon<'a, Zeta: Eta>>> in wrap_apit_bound_region_forall2() 38 desugared_bound_region_forall2(beta.0) in wrap_apit_bound_region_forall2() [all …]
|
| D | fn-where.rs | 13 fn where_bound<B>(beta: B) -> usize in where_bound() 15 B: Beta<Gamma: Alpha> in where_bound() 17 desugared_bound(beta) in where_bound() 20 fn where_bound_region<B>(beta: B) -> usize in where_bound_region() 22 B: Beta<Gamma: 'static> in where_bound_region() 24 desugared_bound_region(beta) in where_bound_region() 27 fn where_bound_multi<B>(beta: B) -> usize in where_bound_multi() 29 B: Copy + Beta<Gamma: Alpha + 'static + Delta>, in where_bound_multi() 31 desugared_bound_multi(beta) in where_bound_multi() 36 B: Beta<Gamma: 'a + Epsilon<'a>>, in where_bound_region_specific() [all …]
|
| D | fn-inline.rs | 13 fn inline_bound<B: Beta<Gamma: Alpha>>(beta: B) -> usize { in inline_bound() 14 desugared_bound(beta) in inline_bound() 17 fn inline_bound_region<B: Beta<Gamma: 'static>>(beta: B) -> usize { in inline_bound_region() 18 desugared_bound_region(beta) in inline_bound_region() 21 fn inline_bound_multi<B: Copy + Beta<Gamma: Alpha + 'static + Delta>>( in inline_bound_multi() 22 beta: B in inline_bound_multi() 24 desugared_bound_multi(beta) in inline_bound_multi() 27 fn inline_bound_region_specific<'a, B: Beta<Gamma: 'a + Epsilon<'a>>>( in inline_bound_region_specific() 33 fn inline_bound_region_forall<B: Beta<Gamma: Copy + for<'a> Epsilon<'a>>>( in inline_bound_region_forall() 34 beta: B in inline_bound_region_forall() [all …]
|
| /third_party/mindspore/mindspore-src/source/docs/api/api_python_en/nn_probability_en/ |
| D | mindspore.nn.probability.distribution.Beta.txt | 4 Return concentration0, aka the beta parameter of the Beta distribution. 12 Return concentration1, aka the alpha parameter of the Beta distribution. 23 … - **concentration1** (Tensor) - the alpha parameter of the Beta distribution. Default: ``None`` . 24 … - **concentration0** (Tensor) - the beta parameter of the Beta distribution. Default: ``None`` . 35 - **concentration1_b** (Tensor) - the alpha parameter of the other Beta distribution. 36 - **concentration0_b** (Tensor) - the beta parameter of the other Beta distribution. 37 … - **concentration1** (Tensor) - the alpha parameter of the Beta distribution. Default: ``None`` . 38 … - **concentration0** (Tensor) - the beta parameter of the Beta distribution. Default: ``None`` . 48 … - **concentration1** (Tensor) - the alpha parameter of the Beta distribution. Default: ``None`` . 49 … - **concentration0** (Tensor) - the beta parameter of the Beta distribution. Default: ``None`` . [all …]
|
| /third_party/rust/rust/tests/ui/associated-type-bounds/auxiliary/ |
| D | fn-aux.rs | 7 pub trait Beta { trait 53 impl Beta for BetaType { 58 impl<'a> Beta for &'a BetaType { impl 63 impl Beta for GammaType { 89 pub fn desugared_bound<B>(beta: B) -> usize in desugared_bound() 91 B: Beta, in desugared_bound() 94 let gamma: B::Gamma = beta.gamma(); in desugared_bound() 98 pub fn desugared_bound_region<B>(beta: B) -> usize in desugared_bound_region() 100 B: Beta, in desugared_bound_region() 103 assert_static::<B::Gamma>(beta.gamma()) in desugared_bound_region() [all …]
|
| D | fn-dyn-aux.rs | 7 pub trait Beta { trait 53 impl<T> Beta for &(dyn Beta<Gamma = T> + Send) { implementation 58 impl Beta for BetaType { 63 impl<'a> Beta for &'a BetaType { impl 68 impl Beta for GammaType { 94 pub fn desugared_bound<B: ?Sized>(beta: &B) -> usize in desugared_bound() 96 B: Beta, in desugared_bound() 99 let gamma: B::Gamma = beta.gamma(); in desugared_bound() 103 pub fn desugared_bound_region<B: ?Sized>(beta: &B) -> usize in desugared_bound_region() 105 B: Beta, in desugared_bound_region() [all …]
|
| /third_party/mindspore/mindspore-src/source/mindspore/ccsrc/plugin/device/gpu/kernel/cuda_impl/cuda_ops/ |
| D | smooth_l1_loss_impl.cu | 22 __global__ void SmoothL1LossNoReduce(const int64_t input_size, const float beta, const T *predictio… in SmoothL1LossNoReduce() argument 26 if (value < beta) { in SmoothL1LossNoReduce() 27 loss[i] = 0.5 * value * value / beta; in SmoothL1LossNoReduce() 29 loss[i] = value - (0.5 * beta); in SmoothL1LossNoReduce() 35 __global__ void SmoothL1LossNoReduce(const int64_t input_size, const float beta, const half *predic… in SmoothL1LossNoReduce() argument 39 half h_beta = __float2half(beta); in SmoothL1LossNoReduce() 49 __global__ void SmoothL1LossSum(const int64_t input_size, const float beta, const T *prediction, co… in SmoothL1LossSum() argument 54 if (value < beta) { in SmoothL1LossSum() 55 tmp = 0.5 * value * value / beta; in SmoothL1LossSum() 57 tmp = value - (0.5 * beta); in SmoothL1LossSum() [all …]
|
| D | hamming_window_impl.cu | 21 const float beta, S *output) { in HammingWindowOne() argument 29 …mingWindow(const size_t size, const double N, const double PI, const float alpha, const float beta, in HammingWindow() argument 32 double out = alpha - beta * cos((2 * pos * PI) / (N - 1)); in HammingWindow() 39 cudaError_t HammingWindow(const size_t size, T N, const float alpha, const float beta, const bool p… in HammingWindow() argument 44 … beta, output); in HammingWindow() 47 …<CUDA_BLOCKS(device_id, size), CUDA_THREADS(device_id), 0, cuda_stream>>>(size, N, PI, alpha, beta, in HammingWindow() 54 … const float beta, const bool periodic, half *output, 57 … const float beta, const bool periodic, half *output, 60 … const float beta, const bool periodic, half *output, 63 … const float beta, const bool periodic, half *output, [all …]
|
| D | apply_add_sign_impl.cu | 27 … const S *alpha, const S *sign_decay, const S *beta, const G *gradient) { in ApplyAddSignKernel() argument 29 accumulation[i] = (beta[0] * accumulation[i]) + ((static_cast<T>(1.) - beta[0]) * gradient[i]); in ApplyAddSignKernel() 37 const float *alpha, const float *sign_decay, const float *beta, in ApplyAddSignKernel() argument 41 …(beta[0] * __half2float(accumulation[i])) + ((static_cast<float>(1.) - beta[0]) * __half2float(gra… in ApplyAddSignKernel() 52 const float *alpha, const float *sign_decay, const float *beta, in ApplyAddSignKernel() argument 55 …accumulation[i] = (beta[0] * accumulation[i]) + ((static_cast<float>(1.) - beta[0]) * __half2float… in ApplyAddSignKernel() 64 … const half *alpha, const half *sign_decay, const half *beta, const float *gradient) { in ApplyAddSignKernel() argument 67 …(__half2float(beta[0]) * accumulation[i]) + ((static_cast<float>(1.) - __half2float(beta[0])) * gr… in ApplyAddSignKernel() 76 … const half *alpha, const half *sign_decay, const half *beta, const half *gradient) { in ApplyAddSignKernel() argument 78 accumulation[i] = (__half2float(beta[0]) * accumulation[i]) + in ApplyAddSignKernel() [all …]
|
| D | apply_power_sign_impl.cu | 43 … const S logbase, const S sign_decay, const S beta, const G *gradient) { in ApplyPowerSignKernel() argument 45 accumulation[i] = (beta * accumulation[i]) + ((static_cast<T>(1.) - beta) * gradient[i]); in ApplyPowerSignKernel() 53 const float logbase, const float sign_decay, const float beta, in ApplyPowerSignKernel() argument 57 …(beta * __half2float(accumulation[i])) + ((static_cast<float>(1.) - beta) * __half2float(gradient[… in ApplyPowerSignKernel() 68 const float logbase, const float sign_decay, const float beta, in ApplyPowerSignKernel() argument 71 …accumulation[i] = (beta * accumulation[i]) + ((static_cast<float>(1.) - beta) * __half2float(gradi… in ApplyPowerSignKernel() 80 … const half logbase, const half sign_decay, const half beta, const half *gradient) { in ApplyPowerSignKernel() argument 82 accumulation[i] = (__half2float(beta) * __half2float(accumulation[i])) + in ApplyPowerSignKernel() 83 ((static_cast<float>(1.) - __half2float(beta)) * __half2float(gradient[i])); in ApplyPowerSignKernel() 93 const half logbase, const half sign_decay, const half beta, in ApplyPowerSignKernel() argument [all …]
|
| /third_party/ffmpeg/libavcodec/ |
| D | h264dsp_template.c | 104 …_t *p_pix, ptrdiff_t xstride, ptrdiff_t ystride, int inner_iters, int alpha, int beta, int8_t *tc0) in FUNCC() 111 beta <<= BIT_DEPTH - 8; in FUNCC() 127 FFABS( p1 - p0 ) < beta && in FUNCC() 128 FFABS( q1 - q0 ) < beta ) { in FUNCC() 133 if( FFABS( p2 - p0 ) < beta ) { in FUNCC() 138 if( FFABS( q2 - q0 ) < beta ) { in FUNCC() 152 static void FUNCC(h264_v_loop_filter_luma)(uint8_t *pix, ptrdiff_t stride, int alpha, int beta, int… in FUNCC() 154 FUNCC(h264_loop_filter_luma)(pix, stride, sizeof(pixel), 4, alpha, beta, tc0); in FUNCC() 156 static void FUNCC(h264_h_loop_filter_luma)(uint8_t *pix, ptrdiff_t stride, int alpha, int beta, int… in FUNCC() 158 FUNCC(h264_loop_filter_luma)(pix, sizeof(pixel), stride, 4, alpha, beta, tc0); in FUNCC() [all …]
|
| /third_party/typescript/tests/baselines/reference/ |
| D | moduleOuterQualification.symbols | 5 interface Beta { } 6 >Beta : Symbol(Beta, Decl(moduleOuterQualification.ts, 0, 22)) 11 // .d.ts emit: should be 'extends outer.Beta' 12 export interface Beta extends outer.Beta { } 13 >Beta : Symbol(Beta, Decl(moduleOuterQualification.ts, 2, 16)) 14 >outer.Beta : Symbol(Beta, Decl(moduleOuterQualification.ts, 0, 22)) 16 >Beta : Symbol(Beta, Decl(moduleOuterQualification.ts, 0, 22))
|
| D | library-reference-8.trace.json | 8 …"======== Resolving type reference directive 'beta', containing file '/test/foo.ts', root director… 10 "File '/test/types/beta/package.json' does not exist.", 11 "File '/test/types/beta/index.d.ts' exist - use it as a name resolution result.", 12 "Resolving real path for '/test/types/beta/index.d.ts', result '/test/types/beta/index.d.ts'.", 13 …"======== Type reference directive 'beta' was successfully resolved to '/test/types/beta/index.d.t… 14 …"======== Resolving type reference directive 'beta', containing file '/test/types/alpha/index.d.ts… 16 "File '/test/types/beta/package.json' does not exist according to earlier cached lookups.", 17 "File '/test/types/beta/index.d.ts' exist - use it as a name resolution result.", 18 "Resolving real path for '/test/types/beta/index.d.ts', result '/test/types/beta/index.d.ts'.", 19 …"======== Type reference directive 'beta' was successfully resolved to '/test/types/beta/index.d.t… [all …]
|
| D | library-reference-8.types | 3 /// <reference types="beta" /> 4 var x: string = alpha.a + beta.b; 6 >alpha.a + beta.b : string 10 >beta.b : string 11 >beta : { b: string; } 18 /// <reference types="beta" /> 23 === /test/types/beta/index.d.ts === 25 declare var beta: { b: string }; 26 >beta : { b: string; }
|
| /third_party/mindspore/mindspore-src/source/mindspore/python/mindspore/nn/probability/distribution/ |
| D | beta.py | 15 """Beta Distribution""" 28 class Beta(Distribution): class 30 Beta distribution. 31 …A Beta distributio is a continuous distribution with the range :math:`[0, 1]` and the probability … 34 f(x, \alpha, \beta) = x^\alpha (1-x)^{\beta - 1} / B(\alpha, \beta) 36 Where :math:`B` is the Beta function. 40 also know as alpha of the Beta distribution. Default: ``None`` . 42 beta of the Beta distribution. Default: ``None`` . 45 name (str): The name of the distribution. Default: ``'Beta'`` . 50 - `dtype` must be a float type because Beta distributions are continuous. [all …]
|
| /third_party/mindspore/mindspore-src/source/tests/st/probability/distribution/ |
| D | test_beta.py | 15 """test cases for Beta distribution""" 29 Test class: probability of Beta distribution. 33 self.b = msd.Beta(np.array([3.0]), np.array([1.0]), dtype=dtype.float32) 42 beta_benchmark = stats.beta(np.array([3.0]), np.array([1.0])) 51 Test class: log probability of Beta distribution. 55 self.b = msd.Beta(np.array([3.0]), np.array([1.0]), dtype=dtype.float32) 64 beta_benchmark = stats.beta(np.array([3.0]), np.array([1.0])) 73 Test class: kl_loss of Beta distribution. 77 self.b = msd.Beta(np.array([3.0]), np.array([4.0]), dtype=dtype.float32) 80 return self.b.kl_loss('Beta', x_, y_) [all …]
|
| /third_party/ffmpeg/libavcodec/aarch64/ |
| D | h264dsp_init_aarch64.c | 29 int beta, int8_t *tc0); 31 int beta, int8_t *tc0); 33 int beta); 35 int beta); 37 int beta, int8_t *tc0); 39 int beta, int8_t *tc0); 41 int beta, int8_t *tc0); 43 int alpha, int beta); 45 int alpha, int beta); 47 int alpha, int beta); [all …]
|
| /third_party/rust/rust/src/tools/clippy/book/src/development/infrastructure/ |
| D | release.md | 10 1. [Remerge the `beta` branch](#remerge-the-beta-branch) 11 2. [Update the `beta` branch](#update-the-beta-branch) 21 ## Remerge the `beta` branch 24 to the beta Rust release. The remerge is then necessary, to make sure that the 33 $ git branch master --contains upstream/beta 41 $ git merge upstream/beta 47 `HEAD` of the `beta` branch must exist. In addition to that, no files should be 50 ## Update the `beta` branch 54 First, the Clippy commit of the `beta` branch of the Rust repository has to be 60 $ git checkout upstream/beta [all …]
|
| D | backport.md | 3 Sometimes it is necessary to backport changes to the beta release of Clippy. 8 Backports are done to the `beta` branch of Clippy. Backports to stable Clippy 15 Backports are done on the beta branch of the Clippy repository. 19 $ git checkout beta 30 $ git checkout beta 37 has to be first applied to the Clippy beta branch and then again synced to the 50 After this, you can open a PR to the `beta` branch of the Clippy repository. 58 back to the beta branch of the Rust repository. 62 $ git checkout beta 64 $ git subtree pull -p src/tools/clippy https://github.com/rust-lang/rust-clippy beta [all …]
|
| /third_party/rust/crates/version_check/src/ |
| D | channel.rs | 7 Beta, enumerator 11 /// Release channel: "dev", "nightly", "beta", or "stable". 50 /// let beta = Channel::parse("1.32.0-beta").unwrap(); 51 /// assert!(beta.is_beta()); 62 } else if version.contains("-beta") || version == "beta" { in parse() 63 Some(Channel(Kind::Beta)) in parse() 75 Kind::Beta => "beta", in as_str() 95 /// let beta = Channel::parse("1.32.0-beta").unwrap(); 96 /// assert!(!beta.supports_features()); 104 Kind::Beta | Kind::Stable => false in supports_features() [all …]
|
| /third_party/protobuf/third_party/abseil-cpp/absl/random/ |
| D | beta_distribution.h | 37 // Generate a floating-point variate conforming to a Beta distribution: 38 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 39 // where the params alpha and beta are both strictly positive real values. 42 // to 0 or 1, due to numerical errors when alpha and beta are very different. 44 // Usage note: One usage is that alpha and beta are counts of number of 46 // approximating a beta distribution with a Gaussian distribution with the same 48 // smaller of alpha and beta when the number of trials are sufficiently large, 49 // to quantify how far a beta distribution is from the normal distribution. 59 explicit param_type(result_type alpha, result_type beta) in param_type() argument 60 : alpha_(alpha), beta_(beta) { in param_type() [all …]
|
| /third_party/skia/third_party/externals/abseil-cpp/absl/random/ |
| D | beta_distribution.h | 35 // Generate a floating-point variate conforming to a Beta distribution: 36 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 37 // where the params alpha and beta are both strictly positive real values. 40 // to 0 or 1, due to numerical errors when alpha and beta are very different. 42 // Usage note: One usage is that alpha and beta are counts of number of 44 // approximating a beta distribution with a Gaussian distribution with the same 46 // smaller of alpha and beta when the number of trials are sufficiently large, 47 // to quantify how far a beta distribution is from the normal distribution. 57 explicit param_type(result_type alpha, result_type beta) in param_type() argument 58 : alpha_(alpha), beta_(beta) { in param_type() [all …]
|