| /third_party/mindspore/mindspore-src/source/mindspore/lite/test/ut/nnacl/infer/ |
| D | concat_infer_test.cc | 28 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 29 inputs[0] = new TensorC; in TEST_F() 30 inputs[0]->shape_size_ = 2; in TEST_F() 31 inputs[0]->shape_[0] = 3; in TEST_F() 32 inputs[0]->shape_[1] = 4; in TEST_F() 33 inputs[1] = new TensorC; in TEST_F() 34 inputs[1]->shape_size_ = 2; in TEST_F() 35 inputs[1]->shape_[0] = 3; in TEST_F() 36 inputs[1]->shape_[1] = 4; in TEST_F() 41 …int ret = ConcatInferShape((const TensorC **)inputs.data(), inputs.size(), outputs.data(), outputs… in TEST_F() [all …]
|
| D | reshape_infer_test.cc | 29 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 30 inputs[0] = new TensorC; in TEST_F() 31 inputs[0]->shape_size_ = 2; in TEST_F() 32 inputs[0]->shape_[0] = 2; in TEST_F() 33 inputs[0]->shape_[1] = 3; in TEST_F() 39 …int ret = ReshapeInferShape((const TensorC **)inputs.data(), inputs.size(), outputs.data(), output… in TEST_F() 46 delete inputs[i]; in TEST_F() 55 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 56 inputs[0] = new TensorC; in TEST_F() 57 inputs[0]->shape_size_ = 2; in TEST_F() [all …]
|
| D | depthwise_conv2d_infer_test.cc | 28 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 29 inputs[0] = new TensorC; in TEST_F() 30 inputs[0]->shape_size_ = 4; in TEST_F() 31 inputs[0]->shape_[0] = 5; in TEST_F() 32 inputs[0]->shape_[1] = 4; in TEST_F() 33 inputs[0]->shape_[2] = 4; in TEST_F() 34 inputs[0]->shape_[3] = 6; in TEST_F() 35 inputs[1] = new TensorC; in TEST_F() 36 inputs[1]->shape_size_ = 4; in TEST_F() 37 inputs[1]->shape_[0] = 6; // in channel in TEST_F() [all …]
|
| D | conv2d_infer_test.cc | 28 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 29 inputs[0] = new TensorC; in TEST_F() 30 inputs[0]->shape_size_ = 4; in TEST_F() 31 inputs[0]->shape_[0] = 5; in TEST_F() 32 inputs[0]->shape_[1] = 4; in TEST_F() 33 inputs[0]->shape_[2] = 4; in TEST_F() 34 inputs[0]->shape_[3] = 6; in TEST_F() 35 inputs[1] = new TensorC; in TEST_F() 36 inputs[1]->shape_size_ = 4; in TEST_F() 37 inputs[1]->shape_[0] = 20; in TEST_F() [all …]
|
| D | slice_infer_test.cc | 28 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 29 inputs[0] = new TensorC; in TEST_F() 30 inputs[0]->shape_size_ = 2; in TEST_F() 31 inputs[0]->shape_[0] = 4; in TEST_F() 32 inputs[0]->shape_[1] = 4; in TEST_F() 34 inputs[1] = new TensorC; in TEST_F() 36 inputs.at(1)->shape_size_ = 1; in TEST_F() 37 inputs.at(1)->shape_[0] = 2; in TEST_F() 38 inputs.at(1)->data_ = begin; in TEST_F() 40 inputs[2] = new TensorC; in TEST_F() [all …]
|
| D | arithmetic_infer_test.cc | 28 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 29 inputs[0] = new TensorC; in TEST_F() 30 inputs[0]->shape_size_ = 4; in TEST_F() 31 inputs[0]->shape_[0] = 2; in TEST_F() 32 inputs[0]->shape_[1] = 3; in TEST_F() 33 inputs[0]->shape_[2] = 4; in TEST_F() 34 inputs[0]->shape_[3] = 5; in TEST_F() 35 inputs[1] = new TensorC; in TEST_F() 36 inputs[1]->shape_size_ = 5; in TEST_F() 37 inputs[1]->shape_[0] = 6; in TEST_F() [all …]
|
| D | arithmetic_compare_infer_test.cc | 28 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 29 inputs[0] = new TensorC; in TEST_F() 30 inputs[0]->shape_size_ = 4; in TEST_F() 31 inputs[0]->shape_[0] = 2; in TEST_F() 32 inputs[0]->shape_[1] = 3; in TEST_F() 33 inputs[0]->shape_[2] = 4; in TEST_F() 34 inputs[0]->shape_[3] = 5; in TEST_F() 35 inputs[1] = new TensorC; in TEST_F() 36 inputs[1]->shape_size_ = 5; in TEST_F() 37 inputs[1]->shape_[0] = 6; in TEST_F() [all …]
|
| D | gather_nd_infer_test.cc | 29 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 30 inputs[0] = new TensorC; in TEST_F() 31 inputs[0]->shape_size_ = 3; in TEST_F() 32 inputs[0]->shape_[0] = 3; in TEST_F() 33 inputs[0]->shape_[1] = 2; in TEST_F() 34 inputs[0]->shape_[2] = 3; in TEST_F() 35 inputs[1] = new TensorC; in TEST_F() 36 inputs[1]->shape_size_ = 2; in TEST_F() 37 inputs[1]->shape_[0] = 2; in TEST_F() 38 inputs[1]->shape_[1] = 2; in TEST_F() [all …]
|
| D | resize_infer_test.cc | 28 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 29 inputs[0] = new TensorC; in TEST_F() 30 inputs[0]->shape_size_ = 4; in TEST_F() 31 inputs[0]->shape_[0] = 4; in TEST_F() 32 inputs[0]->shape_[1] = 5; in TEST_F() 33 inputs[0]->shape_[2] = 3; in TEST_F() 34 inputs[0]->shape_[3] = 5; in TEST_F() 35 inputs[0]->format_ = Format_NHWC; in TEST_F() 41 …int ret = ResizeInferShape((const TensorC **)inputs.data(), inputs.size(), outputs.data(), outputs… in TEST_F() 51 delete inputs[i]; in TEST_F() [all …]
|
| D | reduce_infer_test.cc | 28 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 29 inputs[0] = new TensorC; in TEST_F() 30 inputs[0]->shape_size_ = 2; in TEST_F() 31 inputs[0]->shape_[0] = 2; in TEST_F() 32 inputs[0]->shape_[1] = 3; in TEST_F() 33 inputs[1] = new TensorC; in TEST_F() 34 inputs[1]->shape_size_ = {1}; in TEST_F() 35 inputs[1]->shape_[0] = {1}; in TEST_F() 37 inputs[1]->data_ = axes; in TEST_F() 43 …int ret = ReduceInferShape((const TensorC **)inputs.data(), inputs.size(), outputs.data(), outputs… in TEST_F() [all …]
|
| D | matmul_infer_test.cc | 28 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 29 inputs[0] = new TensorC; in TEST_F() 30 inputs[0]->shape_size_ = 2; in TEST_F() 31 inputs[0]->shape_[0] = 4; in TEST_F() 32 inputs[0]->shape_[1] = 3; in TEST_F() 33 inputs[1] = new TensorC; in TEST_F() 34 inputs[1]->shape_size_ = 2; in TEST_F() 35 inputs[1]->shape_[0] = 4; in TEST_F() 36 inputs[1]->shape_[1] = 3; in TEST_F() 42 …int ret = MatmulInferShape((const TensorC **)inputs.data(), inputs.size(), outputs.data(), outputs… in TEST_F() [all …]
|
| D | gather_infer_test.cc | 28 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 29 inputs[0] = new TensorC; in TEST_F() 30 inputs[0]->shape_size_ = 2; in TEST_F() 31 inputs[0]->shape_[0] = 18; in TEST_F() 32 inputs[0]->shape_[1] = 3; in TEST_F() 33 inputs[1] = new TensorC; in TEST_F() 34 inputs[1]->shape_size_ = 3; in TEST_F() 35 inputs[1]->shape_[0] = 2; in TEST_F() 36 inputs[1]->shape_[1] = 3; in TEST_F() 37 inputs[1]->shape_[2] = 2; in TEST_F() [all …]
|
| D | crop_and_resize_infer_test.cc | 27 * inputs[0].shape: [3, 4, 5, 6] 28 * inputs[1].data: null 29 * inputs[3].data: 7, 8 34 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 35 inputs[0] = new TensorC; in TEST_F() 36 inputs[0]->shape_size_ = 4; in TEST_F() 37 inputs[0]->shape_[0] = 3; in TEST_F() 38 inputs[0]->shape_[1] = 4; in TEST_F() 39 inputs[0]->shape_[2] = 5; in TEST_F() 40 inputs[0]->shape_[3] = 6; in TEST_F() [all …]
|
| D | strided_slice_infer_test.cc | 28 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 29 inputs[0] = new TensorC; in TEST_F() 30 inputs[0]->shape_size_ = 3; in TEST_F() 31 inputs[0]->shape_[0] = 3; in TEST_F() 32 inputs[0]->shape_[1] = 3; in TEST_F() 33 inputs[0]->shape_[2] = 3; in TEST_F() 52 …int ret = StridedSliceInferShape((const TensorC **)inputs.data(), inputs.size(), outputs.data(), o… in TEST_F() 61 delete inputs[i]; in TEST_F() 70 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 71 inputs[0] = new TensorC; in TEST_F() [all …]
|
| D | range_infer_test.cc | 30 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 31 inputs[0] = new TensorC; in TEST_F() 32 inputs[0]->shape_size_ = 2; in TEST_F() 33 inputs[0]->shape_[0] = 4; in TEST_F() 34 inputs[0]->shape_[1] = 3; in TEST_F() 41 …int ret = RangeInferShape((const TensorC **)inputs.data(), inputs.size(), outputs.data(), outputs.… in TEST_F() 48 delete inputs[i]; in TEST_F() 57 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 61 inputs[0] = new TensorC; in TEST_F() 62 inputs[0]->shape_size_ = 1; in TEST_F() [all …]
|
| D | deconv2d_infer_test.cc | 28 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 29 inputs[0] = new TensorC; in TEST_F() 30 inputs[0]->shape_size_ = 4; in TEST_F() 31 inputs[0]->shape_[0] = 5; in TEST_F() 32 inputs[0]->shape_[1] = 4; in TEST_F() 33 inputs[0]->shape_[2] = 4; in TEST_F() 34 inputs[0]->shape_[3] = 6; in TEST_F() 35 inputs[0]->format_ = Format_NHWC; in TEST_F() 36 inputs[1] = new TensorC; in TEST_F() 37 inputs[1]->shape_size_ = 4; in TEST_F() [all …]
|
| D | pad_infer_test.cc | 28 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 29 inputs[0] = new TensorC; in TEST_F() 30 inputs[0]->shape_size_ = 2; in TEST_F() 31 inputs[0]->shape_[0] = 2; in TEST_F() 32 inputs[0]->shape_[1] = 3; in TEST_F() 33 inputs[1] = new TensorC; in TEST_F() 35 inputs[1]->data_ = padding_tensor.data(); in TEST_F() 36 inputs[1]->shape_size_ = 2; in TEST_F() 37 inputs[1]->shape_[0] = 1; in TEST_F() 38 inputs[1]->shape_[1] = 4; in TEST_F() [all …]
|
| D | depth_to_space_infer_test.cc | 29 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 30 inputs[0] = new TensorC; in TEST_F() 31 inputs[0]->format_ = Format_NHWC; in TEST_F() 32 inputs[0]->shape_size_ = 4; in TEST_F() 33 inputs[0]->shape_[0] = 1; in TEST_F() 34 inputs[0]->shape_[1] = 1; in TEST_F() 35 inputs[0]->shape_[2] = 1; in TEST_F() 36 inputs[0]->shape_[3] = 12; in TEST_F() 41 …int ret = DepthToSpaceInferShape((const TensorC **)inputs.data(), inputs.size(), outputs.data(), o… in TEST_F() 51 delete inputs[i]; in TEST_F() [all …]
|
| D | gru_infer_test.cc | 28 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 29 inputs[0] = new TensorC; in TEST_F() 30 inputs[0]->shape_size_ = 3; in TEST_F() 31 inputs[0]->shape_[0] = 4; in TEST_F() 32 inputs[0]->shape_[1] = 5; in TEST_F() 33 inputs[0]->shape_[2] = 6; in TEST_F() 34 inputs[0]->data_type_ = kNumberTypeInt32; in TEST_F() 35 inputs[0]->format_ = Format_NHWC; in TEST_F() 36 inputs[1] = new TensorC; in TEST_F() 37 inputs[1]->shape_size_ = 3; in TEST_F() [all …]
|
| D | lsh_projection_infer_test.cc | 28 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 29 inputs[0] = new TensorC; in TEST_F() 30 inputs[0]->shape_size_ = 2; in TEST_F() 31 inputs[0]->shape_[0] = 4; in TEST_F() 32 inputs[0]->shape_[1] = 3; in TEST_F() 33 inputs[0]->data_type_ = kNumberTypeInt32; in TEST_F() 34 inputs[0]->format_ = Format_NHWC; in TEST_F() 35 inputs[1] = new TensorC; in TEST_F() 36 inputs[1]->shape_size_ = 2; in TEST_F() 41 …int ret = LshProjectionInferShape((const TensorC **)inputs.data(), inputs.size(), outputs.data(), … in TEST_F() [all …]
|
| D | squeeze_infer_test.cc | 28 std::vector<TensorC *> inputs(inputs_size, NULL); in TEST_F() local 29 inputs[0] = new TensorC; in TEST_F() 30 inputs[0]->shape_size_ = 5; in TEST_F() 31 inputs[0]->shape_[0] = 2; in TEST_F() 32 inputs[0]->shape_[1] = 1; in TEST_F() 33 inputs[0]->shape_[2] = 3; in TEST_F() 34 inputs[0]->shape_[3] = 1; in TEST_F() 35 inputs[0]->shape_[4] = 4; in TEST_F() 40 …int ret = SqueezeInferShape((const TensorC **)inputs.data(), inputs.size(), outputs.data(), output… in TEST_F() 49 delete inputs[i]; in TEST_F() [all …]
|
| /third_party/mindspore/mindspore-src/source/mindspore/ccsrc/plugin/device/ascend/kernel/opapi/aclnn/ |
| D | fused_infer_attention_score_aclnn_kernel.cc | 29 void FusedInferAttentionScoreAscend::GetWorkSpaceInfo(const std::vector<KernelTensor *> &inputs, in GetWorkSpaceInfo() argument 38 // dynamic inputs in GetWorkSpaceInfo() 39 key_tensors.assign(inputs.begin() + kIndex1, inputs.begin() + kIndex1 + dyn_input_sizes[kIndex1]); in GetWorkSpaceInfo() 40 value_tensors.assign(inputs.begin() + kIndex1 + dyn_input_sizes[kIndex1], in GetWorkSpaceInfo() 41 … inputs.begin() + kIndex1 + dyn_input_sizes[kIndex1] + dyn_input_sizes[kIndex2]); in GetWorkSpaceInfo() 48 auto actual_seq_lengths = inputs[real_input_idx_[kIndex5]]; in GetWorkSpaceInfo() 53 auto actual_seq_lengths_kv = inputs[real_input_idx_[kIndex6]]; in GetWorkSpaceInfo() 58 auto num_heads = transform::ConvertKernelTensor<int64_t>(inputs[real_input_idx_[kIndex17]]); in GetWorkSpaceInfo() 59 …auto scale = static_cast<double>(transform::ConvertKernelTensor<float>(inputs[real_input_idx_[kInd… in GetWorkSpaceInfo() 60 auto pre_tokens = transform::ConvertKernelTensor<int64_t>(inputs[real_input_idx_[kIndex19]]); in GetWorkSpaceInfo() [all …]
|
| D | ffn_ext_aclnn_kernel.cc | 22 void FFNExtAscend::GetWorkSpaceInfo(const std::vector<KernelTensor *> &inputs, in GetWorkSpaceInfo() argument 25 auto activation_imm = transform::ConvertKernelTensor<int64_t>(inputs[kIndex14]); in GetWorkSpaceInfo() 27 auto expertTokens = inputs[kIndex3]; in GetWorkSpaceInfo() 32 innerPrecise_ = transform::ConvertKernelTensor<int64_t>(inputs[kIndex15]); in GetWorkSpaceInfo() 33 …GetWorkspaceForResize(inputs[kIndex0], inputs[kIndex1], inputs[kIndex2], expertTokens_array, input… in GetWorkSpaceInfo() 34 … inputs[kIndex5], inputs[kIndex6], inputs[kIndex7], inputs[kIndex8], inputs[kIndex9], in GetWorkSpaceInfo() 35 … inputs[kIndex10], inputs[kIndex11], inputs[kIndex12], inputs[kIndex13], activation_string, in GetWorkSpaceInfo() 39 bool FFNExtAscend::Launch(const std::vector<KernelTensor *> &inputs, const std::vector<KernelTensor… in Launch() argument 43 auto activation_imm = transform::ConvertKernelTensor<int64_t>(inputs[kIndex14]); in Launch() 46 …op_type_, hash_id_, inputs[kIndex0], inputs[kIndex1], inputs[kIndex2], expertTokens_array, inputs[… in Launch() [all …]
|
| D | flash_attention_score_grad_aclnn_kernel.cc | 23 void FlashAttentionScoreGradAscend::GetWorkSpaceInfo(const std::vector<KernelTensor *> &inputs, in GetWorkSpaceInfo() argument 25 auto prefix = inputs[kIndex12]; in GetWorkSpaceInfo() 31 auto actual_seq_qlen = inputs[kIndex13]; in GetWorkSpaceInfo() 37 auto actual_seq_kvlen = inputs[kIndex14]; in GetWorkSpaceInfo() 43 auto head_num = inputs[kIndex15]; in GetWorkSpaceInfo() 46 auto keep_prob = inputs[kIndex16]; in GetWorkSpaceInfo() 49 auto scale_value = inputs[kIndex17]; in GetWorkSpaceInfo() 52 auto pre_tokens = inputs[kIndex18]; in GetWorkSpaceInfo() 55 auto next_tokens = inputs[kIndex19]; in GetWorkSpaceInfo() 58 auto inner_precise = inputs[kIndex20]; in GetWorkSpaceInfo() [all …]
|
| D | flash_attention_score_grad_aclnn_kernel.h | 36 …void GetWorkSpaceInfo(const std::vector<KernelTensor *> &inputs, const std::vector<KernelTensor *>… 37 …bool Launch(const std::vector<KernelTensor *> &inputs, const std::vector<KernelTensor *> &workspac… 39 bool Init(const std::vector<KernelTensor *> &inputs, const std::vector<KernelTensor *> &outputs) { in Init() argument 44 if (inputs[kIndex7]->dtype_id() == TypeId::kNumberTypeFloat16) { in Init() 53 …auto FAGradGenerate(const std::vector<KernelTensor *> &inputs, const std::vector<KernelTensor *> &… in DEFINE_GET_WORKSPACE_FOR_RESIZE() 54 auto prefix = inputs[kIndex12]; in DEFINE_GET_WORKSPACE_FOR_RESIZE() 60 auto actual_seq_qlen = inputs[kIndex13]; in DEFINE_GET_WORKSPACE_FOR_RESIZE() 66 auto actual_seq_kvlen = inputs[kIndex14]; in DEFINE_GET_WORKSPACE_FOR_RESIZE() 72 auto head_num = inputs[kIndex15]; in DEFINE_GET_WORKSPACE_FOR_RESIZE() 75 auto keep_prob = inputs[kIndex16]; in DEFINE_GET_WORKSPACE_FOR_RESIZE() [all …]
|