| /third_party/mindspore/mindspore-src/source/tests/st/ops/ |
| D | test_func_interpolate.py | 28 …def construct(self, x, size=None, scale_factor=None, align_corners=None, recompute_scale_factor=No… argument 29 … return ops.interpolate(x, size, scale_factor, self.mode, align_corners, recompute_scale_factor) 45 2. 3D scale_factor 62 # 2. 3D(1, 3, 4) scale_factor=0.3 66 scale_factor = 0.3 67 output_3d_2 = net(Tensor(input_3d), scale_factor=scale_factor) 84 2. 4D scale_factor 109 # 2. 4D(1, 3, 3, 5) scale_factor=(1.5, 0.4) 116 scale_factor = (1.5, 0.4) 117 output_4d_2 = net(Tensor(input_4d), scale_factor=scale_factor) [all …]
|
| D | test_func_upsample.py | 28 …def construct(self, x, size=None, scale_factor=None, align_corners=None, recompute_scale_factor=No… argument 29 return ops.upsample(x, size, scale_factor, self.mode, align_corners, recompute_scale_factor) 45 2. 3D scale_factor 62 # 2. 3D(1, 3, 4) scale_factor=0.3 66 scale_factor = 0.3 67 output_3d_2 = net(Tensor(input_3d), scale_factor=scale_factor) 85 3. 4D scale_factor recompute_scale_factor=True 128 # 3. scale_factor=(0.5, 1.5), recompute_scale_factor=True 129 scale_factor = (0.5, 1.5) 135 output_4d_3 = net(Tensor(input_4d), scale_factor=scale_factor, recompute_scale_factor=True)
|
| D | test_ops_upsample_bilinear2d.py | 26 def upsample_bilinear2d_forward_func(x, size=None, scale_factor=None, align_corners=False): argument 27 return mint.nn.functional.interpolate(x, size, scale_factor, "bilinear", align_corners) 31 def upsample_bilinear2d_backward_func(x, size=None, scale_factor=None, align_corners=False): argument 32 return ops.grad(upsample_bilinear2d_forward_func, (0,))(x, size, scale_factor, align_corners)
|
| D | test_ops_upsample_linear1d.py | 26 def upsample_linear1d_forward_func(x, size=None, scale_factor=None, align_corners=False): argument 27 return mint.nn.functional.interpolate(x, size, scale_factor, "linear", align_corners) 31 def upsample_linear1d_backward_func(x, size=None, scale_factor=None, align_corners=False): argument 32 return ops.grad(upsample_linear1d_forward_func, (0,))(x, size, scale_factor, align_corners)
|
| D | test_ops_upsample_trilinear3d.py | 26 def upsample_trilinear3d_forward_func(x, size=None, scale_factor=None, align_corners=False): argument 27 return mint.nn.functional.interpolate(x, size, scale_factor, "trilinear", align_corners) 31 def upsample_trilinear3d_backward_func(x, size=None, scale_factor=None, align_corners=False): argument 32 return ops.grad(upsample_trilinear3d_forward_func, (0,))(x, size, scale_factor, align_corners) 36 def upsample_trilinear3d_grad(gradOut, input_size, output_size, scale_factor): argument 38 return op(gradOut, input_size, output_size, scale_factor)
|
| /third_party/mindspore/mindspore-src/source/mindspore/lite/src/litert/kernel/opencl/cl/ |
| D | resize.cl | 6 int4 in_size, int4 out_size, float2 scale_factor) { 15 int src_x = (int)(X * scale_factor.x); 16 int src_y = (int)(Y * scale_factor.y); 22 int4 in_size, int4 out_size, float2 scale_factor) { 29 int src_x = (int)(X * scale_factor.x); 30 int src_y = (int)(Y * scale_factor.y); 36 int4 out_size, float2 scale_factor) { 45 float scale_x = X * scale_factor.x; 46 float scale_y = Y * scale_factor.y; 61 int4 out_size, float2 scale_factor) { [all …]
|
| /third_party/mindspore/mindspore-src/source/docs/api/api_python/ops/ |
| D | mindspore.ops.func_interpolate.rst | 4 .. py:function:: mindspore.ops.interpolate(input, size=None, scale_factor=None, mode="nearest", ali… 6 按照给定的 `size` 或 `scale_factor` 根据 `mode` 设置的插值方式,对输入 `input` 调整大小。 10 …标大小。如果 `size` 为tuple或list,那么其长度应该和 `input` 去掉 `N, C` 的维度相同。 `size` 和 `scale_factor` 同时只能指定一个。默认值: … 11 …scale_factor** (Union[float, tuple[float], list[float]],可选) - 每个维度的缩放系数。如果 `scale_factor` 为tuple或l… 25 …** (bool, 可选) - 重计算 `scale_factor` 。如果为True,会使用参数 `scale_factor` 计算参数 `size`,最终使用 `size` 的值进行缩放。如果… 32 | mode | input.dim | align_corners | scale_factor | device | 68 - **ValueError** - `size` 和 `scale_factor` 都不为空。 69 - **ValueError** - `size` 和 `scale_factor` 都为空。 71 - **ValueError** - `scale_factor` 为元组或列表类型时长度不等于 `input.ndim - 2` 。 75 - **ValueError** - `scale_factor` 不在对应的支持列表中。
|
| /third_party/mindspore/mindspore-src/source/mindspore/ccsrc/plugin/device/gpu/kernel/cuda_impl/cuda_ops/ |
| D | fft_with_size_impl.cuh | 62 …PORT cudaError_t CalculateFFT(cufftComplex *x_ptr, cufftComplex *y_ptr, const double &scale_factor, 67 … const double &scale_factor, const int &y_elements, cufftHandle cufft_plan, 71 …ORT cudaError_t CalculateIFFT(cufftComplex *x_ptr, cufftComplex *y_ptr, const double &scale_factor, 76 … const double &scale_factor, const int &y_elements, cufftHandle cufft_plan, 81 … const bool &is_onesided, const double &scale_factor, const int &x_elements, 86 … const bool &is_onesided, const double &scale_factor, const int &x_elements, 91 … const bool &is_onesided, const double &scale_factor, const int &x_elements, 96 … const bool &is_onesided, const double &scale_factor, const int &x_elements,
|
| D | fft_with_size_impl.cu | 24 if (scale_factor != 1.0) { \ 25 auto alpha = static_cast<real>(scale_factor); \ 32 cudaError_t CalculateFFT(cufftComplex *x_ptr, cufftComplex *y_ptr, const double &scale_factor, cons… in CalculateFFT() argument 42 …or_t CalculateFFT(cufftDoubleComplex *x_ptr, cufftDoubleComplex *y_ptr, const double &scale_factor, in CalculateFFT() argument 52 cudaError_t CalculateIFFT(cufftComplex *x_ptr, cufftComplex *y_ptr, const double &scale_factor, con… in CalculateIFFT() argument 62 …r_t CalculateIFFT(cufftDoubleComplex *x_ptr, cufftDoubleComplex *y_ptr, const double &scale_factor, in CalculateIFFT() argument 97 const double &scale_factor, const int &x_elements, const int &y_elements, in CalculateRFFT() argument 114 const double &scale_factor, const int &x_elements, const int &y_elements, in CalculateRFFT() argument 131 … const double &scale_factor, const int &x_elements, const int &y_elements, cufftHandle cufft_plan, in CalculateIRFFT() argument 150 const double &scale_factor, const int &x_elements, const int &y_elements, in CalculateIRFFT() argument
|
| /third_party/mindspore/mindspore-src/source/tests/st/nn/ |
| D | test_upsample.py | 35 2. 3D scale_factor 52 # 2. 3D(1, 3, 4) scale_factor=0.3 56 scale_factor = 0.3 57 net = nn.Upsample(mode="area", scale_factor=scale_factor) 76 3. 4D scale_factor recompute_scale_factor=True 120 # 3. scale_factor=(0.5, 1.5), recompute_scale_factor=True 121 scale_factor = (0.5, 1.5) 127 net = nn.Upsample(mode="bilinear", scale_factor=scale_factor, recompute_scale_factor=True)
|
| /third_party/mindspore/mindspore-src/source/mindspore/python/mindspore/train/ |
| D | loss_scale_manager.py | 128 scale_factor (int): Coefficient of increase and decrease. Default: ``2`` . 147 scale_factor=2, argument 154 if scale_factor <= 0: 155 … raise ValueError("The argument 'scale_factor' must be > 0, but got {}".format(scale_factor)) 156 self.scale_factor = scale_factor 157 self.increase_ratio = scale_factor 158 self.decrease_ratio = 1 / scale_factor 213 return nn.DynamicLossScaleUpdateCell(self.loss_scale, self.scale_factor, self.scale_window)
|
| /third_party/mindspore/mindspore-src/source/docs/api/api_python/nn/ |
| D | mindspore.nn.DynamicLossScaleUpdateCell.rst | 4 .. py:class:: mindspore.nn.DynamicLossScaleUpdateCell(loss_scale_value, scale_factor, scale_window) 8 …练步骤中,当出现溢出时,通过计算公式 `loss_scale`/`scale_factor` 减小损失缩放系数。如果连续 `scale_window` 步(step)未溢出,则将通过 `loss_… 14 - **scale_factor** (int) - 增减系数。
|
| /third_party/mindspore/mindspore-src/source/docs/api/api_python/amp/ |
| D | mindspore.amp.DynamicLossScaler.rst | 4 .. py:class:: mindspore.amp.DynamicLossScaler(scale_value, scale_factor, scale_window) 8 …出的情况下,`scale_value` 将会每间隔 `scale_window` 步被扩大 `scale_factor` 倍,若存在溢出情况,则会将 `scale_value` 缩小 `scale… 15 - **scale_factor** (int) - 放大/缩小倍数。
|
| D | mindspore.amp.DynamicLossScaleManager.rst | 4 .. py:class:: mindspore.amp.DynamicLossScaleManager(init_loss_scale=2 ** 24, scale_factor=2, scale_… 10 - **scale_factor** (int) - 放大/缩小倍数。默认值: ``2`` 。
|
| /third_party/ffmpeg/libavcodec/ |
| D | sbc.c | 91 bitneed[ch][sb] = frame->scale_factor[ch][sb]; in ff_sbc_calculate_bits() 97 if (frame->scale_factor[ch][sb] == 0) in ff_sbc_calculate_bits() 101 loudness = frame->scale_factor[ch][sb] - sbc_offset4[sf][sb]; in ff_sbc_calculate_bits() 103 loudness = frame->scale_factor[ch][sb] - sbc_offset8[sf][sb]; in ff_sbc_calculate_bits() 173 bitneed[ch][sb] = frame->scale_factor[ch][sb]; in ff_sbc_calculate_bits() 181 if (frame->scale_factor[ch][sb] == 0) in ff_sbc_calculate_bits() 185 loudness = frame->scale_factor[ch][sb] - sbc_offset4[sf][sb]; in ff_sbc_calculate_bits() 187 loudness = frame->scale_factor[ch][sb] - sbc_offset8[sf][sb]; in ff_sbc_calculate_bits()
|
| D | sbcdsp.c | 271 uint32_t scale_factor[2][8], in sbc_calc_scalefactors() 283 scale_factor[ch][sb] = (31 - SCALE_OUT_BITS) - ff_clz(x); in sbc_calc_scalefactors() 289 uint32_t scale_factor[2][8], in sbc_calc_scalefactors_j() 308 scale_factor[0][sb] = (31 - SCALE_OUT_BITS) - ff_clz(x); in sbc_calc_scalefactors_j() 309 scale_factor[1][sb] = (31 - SCALE_OUT_BITS) - ff_clz(y); in sbc_calc_scalefactors_j() 328 scale_factor[0][sb] = (31 - SCALE_OUT_BITS) - in sbc_calc_scalefactors_j() 330 scale_factor[1][sb] = (31 - SCALE_OUT_BITS) - in sbc_calc_scalefactors_j() 346 if ((scale_factor[0][sb] + scale_factor[1][sb]) > x + y) { in sbc_calc_scalefactors_j() 348 scale_factor[0][sb] = x; in sbc_calc_scalefactors_j() 349 scale_factor[1][sb] = y; in sbc_calc_scalefactors_j()
|
| D | g722dec.c | 67 c->band[0].scale_factor = 8; in g722_decode_init() 68 c->band[1].scale_factor = 2; in g722_decode_init() 115 rlow = av_clip_intp2((c->band[0].scale_factor * quantizer_table[ilow] >> 10) in g722_decode_frame() 120 dhigh = c->band[1].scale_factor * ff_g722_high_inv_quant[ihigh] >> 10; in g722_decode_frame()
|
| D | g722enc.c | 66 c->band[0].scale_factor = 8; in g722_encode_init() 67 c->band[1].scale_factor = 2; in g722_encode_init() 149 int pred = 141 * state->scale_factor >> 8; in encode_high() 161 if (limit > low_quant[8] * state->scale_factor) in encode_low() 163 while (i < 29 && limit > low_quant[i] * state->scale_factor) in encode_low() 220 decoded = av_clip_intp2((cur_node->state.scale_factor * in g722_encode_trellis() 277 dhigh = cur_node->state.scale_factor * in g722_encode_trellis() 329 ff_g722_update_high_predictor(&c->band[1], c->band[1].scale_factor * in encode_byte()
|
| D | sbcenc.c | 149 put_bits(&pb, 4, frame->scale_factor[ch][sb] & 0x0F); in sbc_pack_frame() 151 crc_header[crc_pos >> 3] |= frame->scale_factor[ch][sb] & 0x0F; in sbc_pack_frame() 167 (32 - (frame->scale_factor[ch][sb] + in sbc_pack_frame() 170 (frame->scale_factor[ch][sb] + in sbc_pack_frame() 312 frame->scale_factor, in sbc_encode_frame() 317 frame->scale_factor, in sbc_encode_frame()
|
| D | sbcdsp.h | 70 uint32_t scale_factor[2][8], 74 uint32_t scale_factor[2][8],
|
| /third_party/mindspore/mindspore-src/source/mindspore/python/mindspore/ |
| D | amp.py | 196 ... scale_mul_factor = self.scale_value * self.scale_factor 322 scale_factor (int): The scale factor. 333 >>> loss_scaler = amp.DynamicLossScaler(scale_value=2**10, scale_factor=2, scale_window=1) 343 def __init__(self, scale_value, scale_factor, scale_window): argument 349 self.scale_factor = validator.check_positive_int(scale_factor, "scale_factor") 398 scale_mul_factor = self.scale_value * self.scale_factor 407 ops.maximum(one, self.scale_value / self.scale_factor))
|
| /third_party/ffmpeg/libavfilter/ |
| D | vf_sr.c | 40 int scale_factor; member 54 …{ "scale_factor", "scale factor for SRCNN model", OFFSET(scale_factor), AV_OPT_TYPE_INT, { .i64 = … 107 outlink->w = out_width * ctx->scale_factor; in config_output() 108 outlink->h = out_height * ctx->scale_factor; in config_output()
|
| /third_party/mindspore/mindspore-src/source/mindspore/python/mindspore/nn/wrap/ |
| D | loss_scale.py | 93 In each training step, the loss scaling value will be decreased by `loss_scale`/`scale_factor` 94 …when there is an overflow. And it will be increased by `loss_scale` * `scale_factor` if there is no 102 scale_factor (int): Coefficient of increase and decrease. 136 …>>> manager = nn.DynamicLossScaleUpdateCell(loss_scale_value=2**12, scale_factor=2, scale_window=1… 145 scale_factor, argument 150 self.scale_factor = Tensor(scale_factor, dtype=mstype.float32) 174 …>>> manager = nn.DynamicLossScaleUpdateCell(loss_scale_value=212, scale_factor=2, scale_window=100… 183 …_on_overflow = self.select(overflow_cond, self.max(loss_scale * self.reciprocal(self.scale_factor), 190 scale_mul_res = loss_scale_on_overflow * self.scale_factor 330 …>>> manager = nn.DynamicLossScaleUpdateCell(loss_scale_value=2**12, scale_factor=2, scale_window=1…
|
| /third_party/mindspore/mindspore-src/source/mindspore/python/mindspore/ops/function/ |
| D | nn_func.py | 2214 def _interpolate_scale_factor_convert_size(shape, scale_factor): argument 2216 convert scale_factor to size 2219 y = tuple_to_tensor_(scale_factor, mstype.float32) 2236 def _interpolate_scale_factor_check_with_rank(scale_factor, input_rank): argument 2238 scale_factor rank check 2240 if len(scale_factor) != input_rank - 2: 2242 f"For 'interpolate', 'input' and 'scale_factor' must have the same spatial dimensions, " 2243 f"but got 'input' is {input_rank - 2}D, 'scale_factor' is {len(scale_factor)}D" 2267 def _interpolate_scale_factor_check(scale_factor, mode, rank, supported_dict): argument 2269 scale_factor check [all …]
|
| /third_party/skia/m133/third_party/externals/harfbuzz/src/ |
| D | hb-cairo.cc | 507 unsigned scale_factor = hb_cairo_font_face_get_scale_factor (font_face); in hb_cairo_init_scaled_font() local 508 if (scale_factor) in hb_cairo_init_scaled_font() 513 round (font_matrix.xx * scale_factor), in hb_cairo_init_scaled_font() 514 round (font_matrix.yy * scale_factor)); in hb_cairo_init_scaled_font() 807 * @scale_factor: The scale factor to use. See below 826 * @scale_factor times the xx and yy elements of the scale-matrix 848 unsigned int scale_factor) in hb_cairo_font_face_set_scale_factor() argument 852 (void *) (uintptr_t) scale_factor, in hb_cairo_font_face_set_scale_factor() 922 * the @scale_factor argument.
|