| /third_party/mindspore/mindspore-src/source/mindspore/ccsrc/plugin/device/ascend/kernel/aicpu/aicpu_ops/customize/op_proto/utils/ |
| D | common_shape_fns.h | 33 Shape shape_; 43 * Check whether Shape's rank is at least rank 45 * @param rank expect val of Shape 46 * @param out Output Shape 47 * @return status whether Shape's condition Satisfied 49 graphStatus WithRankAtLeast(const TensorDesc &tensor, int64_t rank, Shape &out, const ge::Operator … 52 * Check whether Shape's rank is at least rank 54 * @param rank expect val of Shape 55 * @param out Output Shape 56 * @return status whether Shape's condition Satisfied [all …]
|
| /third_party/typescript/tests/baselines/reference/ |
| D | typeGuardNarrowsIndexedAccessOfKnownProperty1.types | 30 type Shape = Square | Rectangle | Circle; 31 >Shape : Square | Rectangle | Circle 35 >"0" : { sub: { under: { shape: Shape; };}; } 38 >sub : { under: { shape: Shape;}; } 41 >under : { shape: Shape; } 43 shape: Shape; 44 >shape : Shape 49 function area(s: Shape): number { 50 >area : (s: Shape) => number 51 >s : Shape [all …]
|
| D | mappedTypes2.types | 85 interface Shape { 127 function f0(s1: Shape, s2: Shape) { 128 >f0 : (s1: Shape, s2: Shape) => void 129 >s1 : Shape 130 >s2 : Shape 135 >s1 : Shape 143 >s2 : Shape 151 function f1(shape: Shape) { 152 >f1 : (shape: Shape) => void 153 >shape : Shape [all …]
|
| D | mappedTypes2.js | 37 interface Shape { 58 function f0(s1: Shape, s2: Shape) { argument 63 function f1(shape: Shape) { argument 65 var frozen: Readonly<Shape>; 66 var frozen = freeze(shape); 69 function f2(shape: Shape) { argument 71 var partial: Partial<Shape>; 72 var partial: Partial<Shape> = {}; 75 function f3(shape: Shape) { argument 76 const x = pick(shape, "name", "location"); // { name: string, location: Point } [all …]
|
| /third_party/mindspore/mindspore-src/source/mindspore/core/ops/ops_def/doc/ |
| D | broadcast_to_doc.yaml | 3 Broadcasts input tensor to a given shape. The dim of input shape must be smaller 4 than or equal to that of target shape. Suppose input shape is :math:`(x_1, x_2, ..., x_m)`, 5 … target shape is :math:`(*, y_1, y_2, ..., y_m)`, where :math:`*` means any additional dimension. 12 … value pairs at a specific dim are equal, then that value goes right into that dim of output shape. 13 …With an input shape :math:`(2, 3)`, target shape :math:`(2, 3)` , the inferred output shape is :ma… 17 Case 1: If the value of the target shape in the dimension is -1, the value of the 18 … output shape in the dimension is the value of the corresponding input shape in the dimension. 19 With an input shape :math:`(3, 3)`, target 20 shape :math:`(-1, 3)`, the output shape is :math:`(3, 3)`. 22 Case 2: If the value of target shape in the dimension is not -1, but the corresponding [all …]
|
| /third_party/mindspore/mindspore-src/source/mindspore/core/utils/ |
| D | shape_utils.h | 27 inline std::string ShapeVectorToString(const ShapeVector &shape) { in ShapeVectorToString() argument 29 for (auto &item : shape) { in ShapeVectorToString() 36 inline size_t SizeOf(const ShapeVector &shape) { in SizeOf() argument 38 for (auto dim : shape) { in SizeOf() 40 // For dynamic shape which has negative dimensions, data size should be zero. in SizeOf() 44 MS_EXCEPTION(ValueError) << "The product value of shape (" << ShapeVectorToString(shape) in SizeOf() 52 inline bool IsOneElementShape(const ShapeVector &shape) { in IsOneElementShape() argument 53 if (shape.empty()) { in IsOneElementShape() 55 } else if (shape.size() == 1 && shape[0] == 1) { in IsOneElementShape() 72 inline bool IsDynamicRank(const ShapeVector &shape) { in IsDynamicRank() argument [all …]
|
| /third_party/mindspore/mindspore-src/source/mindspore/ccsrc/plugin/device/gpu/kernel/ |
| D | gpu_kernel.cc | 159 void ShapeNCHW2NHWC(ShapeVector *shape) { in ShapeNCHW2NHWC() argument 160 std::swap((*shape)[kShapeIndex1st], (*shape)[kShapeIndex3rd]); in ShapeNCHW2NHWC() 161 std::swap((*shape)[kShapeIndex2nd], (*shape)[kShapeIndex1st]); in ShapeNCHW2NHWC() 164 void ShapeNCDHW2NDHWC(ShapeVector *shape) { in ShapeNCDHW2NDHWC() argument 165 std::swap((*shape)[kShapeIndex1st], (*shape)[kShapeIndex2nd]); in ShapeNCDHW2NDHWC() 166 std::swap((*shape)[kShapeIndex2nd], (*shape)[kShapeIndex3rd]); in ShapeNCDHW2NDHWC() 167 std::swap((*shape)[kShapeIndex3rd], (*shape)[kShapeIndex4th]); in ShapeNCDHW2NDHWC() 171 void SetDimA(const ShapeVector &shape, int *dimA, size_t len, const std::string &format) { in SetDimA() argument 172 if (shape.size() != len) { in SetDimA() 173 …MS_EXCEPTION(ValueError) << "Invalid size of input shape " << shape.size() << "-D with dimA " << l… in SetDimA() [all …]
|
| /third_party/mindspore/mindspore-src/source/mindspore/lite/src/litert/kernel/opencl/cl/ |
| D | transpose.cl | 6 …transpose_0312_NHWC4(__read_only image2d_t src_data, __write_only image2d_t dst_data, int4 shape) { 10 if (4 * X >= shape.y || Y >= shape.z || 4 * Z >= shape.w) { 13 int H4 = UP_DIV(shape.y, 4); 14 int C4 = UP_DIV(shape.w, 4); 17 if (4 * Z + 1 < shape.w) { 21 if (4 * Z + 2 < shape.w) { 25 if (4 * Z + 3 < shape.w) { 33 if (4 * X + 1 < shape.y) { 36 if (4 * X + 2 < shape.y) { 39 if (4 * X + 3 < shape.y) { [all …]
|
| /third_party/rust/rust/src/tools/rustfmt/src/ |
| D | types.rs | 22 use crate::shape::Shape; 43 shape: Shape, in rewrite_path() argument 58 let fmt_ty = qself.ty.rewrite(context, shape)?; in rewrite_path() 68 let shape = shape.sub_width(3)?; in rewrite_path() localVariable 77 shape, in rewrite_path() 92 shape, in rewrite_path() 103 shape: Shape, in rewrite_path_segments() argument 109 let shape = shape.visual_indent(0); in rewrite_path_segments() localVariable 122 let extra_offset = extra_offset(&buffer, shape); in rewrite_path_segments() 123 let new_shape = shape.shrink_left(extra_offset)?; in rewrite_path_segments() [all …]
|
| D | shape.rs | 143 pub(crate) struct Shape { struct 152 impl Shape { argument 168 pub(crate) fn legacy(width: usize, indent: Indent) -> Shape { in legacy() argument 169 Shape { in legacy() 176 pub(crate) fn indented(indent: Indent, config: &Config) -> Shape { in indented() argument 177 Shape { in indented() 184 pub(crate) fn with_max_width(&self, config: &Config) -> Shape { in with_max_width() argument 185 Shape { in with_max_width() 191 pub(crate) fn visual_indent(&self, extra_width: usize) -> Shape { in visual_indent() argument 193 Shape { in visual_indent() [all …]
|
| /third_party/mindspore/mindspore-src/source/tests/st/ops/cpu/ |
| D | test_arithmetic_op.py | 153 error0 = np.ones(shape=expect0.shape) * 1.0e-5 155 assert output0.shape == expect0.shape 160 error1 = np.ones(shape=expect1.shape) * 1.0e-5 162 assert output1.shape == expect1.shape 167 error2 = np.ones(shape=expect2.shape) * 1.0e-5 169 assert output2.shape == expect2.shape 174 error3 = np.ones(shape=expect3.shape) * 1.0e-5 176 assert output3.shape == expect3.shape 181 error4 = np.ones(shape=expect4.shape) * 1.0e-5 183 assert output4.shape == expect4.shape [all …]
|
| D | test_broadcast_to_op.py | 31 shape = (4, 5, 2, 3, 4, 5, 6) 33 output = P.BroadcastTo(shape)(Tensor(x_np)) 34 expect = np.broadcast_to(x_np, shape) 37 shape = (3, 5, 7, 4, 5, 6) 39 output = P.BroadcastTo(shape)(Tensor(x_np)) 40 expect = np.broadcast_to(x_np, shape) 43 shape = (8, 5, 7, 4, 5, 6) 45 output = P.BroadcastTo(shape)(Tensor(x_np)) 46 expect = np.broadcast_to(x_np, shape) 49 shape = (3, 4, 5, 2, 3, 4, 5, 7) [all …]
|
| D | test_standard_laplace.py | 28 def __init__(self, shape, seed=0, seed2=0): argument 30 self.shape = shape 36 return self.stdlaplace(self.shape) 45 Description: input the shape and random seed, test the output value and shape 46 Expectation: the value and shape of output tensor match the predefined values 50 shape = (5, 6, 8) 51 net = NetStandardLaplace(shape, seed, seed2) 53 assert output.shape == (5, 6, 8) 58 shape = (5, 6, 8) 59 net = NetStandardLaplace(shape, seed, seed2) [all …]
|
| D | test_inplace_op.py | 54 if v.shape[0] == 1: 68 @pytest.mark.parametrize('shape, indice_len', [((10, 4, 3, 2), 4), ((5, 2, 4, 6), 3)]) 71 def test_inplace_add(shape, indice_len, dtype): argument 78 x = np.random.random(shape).astype(dtype) 79 v = np.random.random((indice_len,) + shape[1:]).astype(dtype) 80 indices = np.random.choice(list(range(shape[0])), indice_len, replace=False) 91 @pytest.mark.parametrize('shape', [(10, 4, 3, 2), (5, 2, 4, 6)]) 93 def test_inplace_add_same_indice(shape, dtype): argument 102 x = np.random.random(shape).astype(dtype) 103 v = np.random.random((len(indices),) + shape[1:]).astype(dtype) [all …]
|
| /third_party/mindspore/mindspore-src/source/tests/st/ops/gpu/ |
| D | test_realdiv_op.py | 65 error0 = np.ones(shape=expect0.shape) * 1.0e-5 67 assert output0.shape == expect0.shape 72 error1 = np.ones(shape=expect1.shape) * 1.0e-5 74 assert output1.shape == expect1.shape 79 error2 = np.ones(shape=expect2.shape) * 1.0e-5 81 assert output2.shape == expect2.shape 86 error3 = np.ones(shape=expect3.shape) * 1.0e-5 88 assert output3.shape == expect3.shape 93 error4 = np.ones(shape=expect4.shape) * 1.0e-5 95 assert output4.shape == expect4.shape [all …]
|
| D | test_reduce_sum_op.py | 183 error0 = np.ones(shape=expect0.shape) * 1.0e-5 185 assert output[0].shape == expect0.shape 189 error1 = np.ones(shape=expect1.shape) * 1.0e-5 191 assert output[1].shape == expect1.shape 195 error2 = np.ones(shape=expect2.shape) * 1.0e-5 197 assert output[2].shape == expect2.shape 201 error3 = np.ones(shape=expect3.shape) * 1.0e-5 203 assert output[3].shape == expect3.shape 207 error4 = np.ones(shape=expect4.shape) * 1.0e-5 209 assert output[4].shape == expect4.shape [all …]
|
| D | test_mul_op.py | 64 error0 = np.ones(shape=expect0.shape) * 1.0e-5 66 assert output0.shape == expect0.shape 71 error1 = np.ones(shape=expect1.shape) * 1.0e-5 73 assert output1.shape == expect1.shape 78 error2 = np.ones(shape=expect2.shape) * 1.0e-5 80 assert output2.shape == expect2.shape 85 error3 = np.ones(shape=expect3.shape) * 1.0e-5 87 assert output3.shape == expect3.shape 92 error4 = np.ones(shape=expect4.shape) * 1.0e-5 94 assert output4.shape == expect4.shape [all …]
|
| /third_party/mindspore/mindspore-src/source/tests/st/ops/dynamic_shape/ |
| D | test_binary_cross_entropy_dyn.py | 16 """test BinaryCrossEntropy forward and backward dynamic shape""" 58 Description: test the ops in dynamic shape. 59 Expectation: expect correct shape result. 64 prediction_dyn = Tensor(shape=(None,), dtype=mstype.float32) 65 target_dyn = Tensor(shape=(None,), dtype=mstype.float32) 66 weight_dyn = Tensor(shape=(None,), dtype=mstype.float32) 72 assert loss.asnumpy().shape == prediction.shape 77 assert grad[0].asnumpy().shape == prediction.shape 78 assert grad[1].asnumpy().shape == target.shape 79 assert grad[2].asnumpy().shape == weight.shape [all …]
|
| D | test_nllloss_dyn.py | 16 """test NLLLoss forward and backward dynamic shape""" 64 Description: test the ops in dynamic shape. 65 Expectation: expect correct output shape. 68 logits_dyn = Tensor(shape=[None]*len(logits.shape), dtype=logits.dtype) 69 target_dyn = Tensor(shape=[None]*len(target.shape), dtype=target.dtype) 70 weight_dyn = Tensor(shape=[None]*len(weight.shape), dtype=weight.dtype) 73 assert loss.asnumpy().shape == (logits.shape[0],) 74 assert total_weight.asnumpy().shape == tuple() 79 assert expect_grad[0].asnumpy().shape == logits.asnumpy().shape 80 assert expect_grad[1].asnumpy().shape == target.asnumpy().shape [all …]
|
| /third_party/mindspore/mindspore-src/source/mindspore/python/mindspore/common/ |
| D | sparse_tensor.py | 39 def __init__(self, indices=None, values=None, shape=None, row_tensor=None): argument 46 if not (indices is None and values is None and shape is None): 49 # Init a RowTensor from indices, values and shape 53 RowTensor_.__init__(self, indices, values, shape) 74 """Return RowTensor's shape.""" 82 …When the `values` of a RowTensor has a shape of :math:`(d_0, d_1, ..., d_n)`, then this RowTensor … 83 …represent a subset of a larger dense tensor of shape :math:`(l_0, d_1, ..., d_n)`, where :math:`d_… 90 For example, if indices is [0], values is [[1, 2]], shape is 103 indices (Tensor): A 1-D integer Tensor of shape :math:`(d_0)` . Default: ``None``. 104 … values (Tensor): A Tensor of any dtype of shape :math:`(d_0, d_1, ..., d_n)` . Default: ``None``. [all …]
|
| /third_party/rust/rust/tests/ui/suggestions/ |
| D | suggest-variants.stderr | 1 error[E0599]: no variant named `Squareee` found for enum `Shape` 4 LL | enum Shape { 7 LL | println!("My shape is {:?}", Shape::Squareee { size: 5}); 10 error[E0599]: no variant named `Circl` found for enum `Shape` 13 LL | enum Shape { 16 LL | println!("My shape is {:?}", Shape::Circl { size: 5}); 19 error[E0599]: no variant named `Rombus` found for enum `Shape` 22 LL | enum Shape { 25 LL | println!("My shape is {:?}", Shape::Rombus{ size: 5}); 26 | ^^^^^^ variant not found in `Shape` [all …]
|
| /third_party/mindspore/mindspore-src/source/tests/st/sparse/ |
| D | test_coo.py | 36 Description: Test COOTensor(indices, values, shape) and COOTensor(COOTensor) 70 shape = x.shape 71 return COOTensor(indices, values, shape) 78 shape = x.shape 79 return COOTensor(indices, values, shape) 82 def __init__(self, shape): argument 86 self.shape = shape 89 x = COOTensor(indices, values, self.shape) 94 return x.indices, x.values, x.shape 100 shape = (3, 4) [all …]
|
| /third_party/mindspore/mindspore-src/source/mindspore/ccsrc/frontend/parallel/tensor_layout/ |
| D | shape_util.h | 26 * compute the accumulating product of all the values in shape from left to right, 29 …* given a shape = [d_n-1, d_n-2, ..., d_0](d_i > 0, i=0,1,...,n-1, elements of shape must be large… 33 * shape = [2, 8, 32] 37 Status ShapeToAccumulateProduct(const Shape &shape, Shape *shape_accum); 40 * compute the accumulating product of all the values in shape from right to left, 43 …* given a shape = [d_n-1, d_n-2, ..., d_0](d_i > 0, i=0,1,...,n-1, elements of shape must be large… 47 * shape = [2, 8, 32] 51 Status ShapeToAccumulateProductReverse(const Shape &shape, Shape *shape_accum); 54 * compute the original shape from the accumulating product shape_accum, 59 * then *shape = [accum_n-2/accum_n-1, accum_n-3/accum_n-2, ..., accum_0/accum_1] [all …]
|
| D | shape_util.cc | 25 * shape = [2, 8, 32] 28 Status ShapeToAccumulateProduct(const Shape &shape, Shape *shape_accum) { in ShapeToAccumulateProduct() argument 32 for (auto iter = shape.begin(); iter < shape.end(); ++iter) { in ShapeToAccumulateProduct() 35 MS_LOG(ERROR) << "element of shape should not be zero"; in ShapeToAccumulateProduct() 45 * shape = [2, 8, 32] 49 Status ShapeToAccumulateProductReverse(const Shape &shape, Shape *shape_accum) { in ShapeToAccumulateProductReverse() argument 53 for (auto iter = shape.end() - 1; iter >= shape.begin(); --iter) { in ShapeToAccumulateProductReverse() 56 MS_LOG(ERROR) << "element of shape should not be zero"; in ShapeToAccumulateProductReverse() 67 * shape = [2, 8, 32] 70 Status AccumulateProductToShape(const Shape &shape_accum, Shape *shape) { in AccumulateProductToShape() argument [all …]
|
| /third_party/mindspore/mindspore-src/source/mindspore/core/abstract/ |
| D | dshape.h | 42 /// \brief BaseShape defines the basic virtual class of NoShape and Shape classes. 90 /// \brief Broaden the shape. 93 /// \brief Get shape dimensions of BaseShape object. 95 /// \return Shape dimensions. 100 /// \brief Set shape dimensions of BaseShape object. 102 /// \param[in] shape Dimensions of shape. 103 virtual void SetShapeVector(const ShapeVector &shape) { in SetShapeVector() argument 107 /// \brief Build symbolic shape according to the digital shape. 110 /// \return Symbolic Shape. 116 /// \brief NoShape defines an invalid shape. [all …]
|