1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 //
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file or at
6 // https://developers.google.com/open-source/licenses/bsd
7
8 // Author: kenton@google.com (Kenton Varda)
9 // Based on original Protocol Buffers design by
10 // Sanjay Ghemawat, Jeff Dean, and others.
11
12 #ifndef GOOGLE_PROTOBUF_COMPILER_CPP_HELPERS_H__
13 #define GOOGLE_PROTOBUF_COMPILER_CPP_HELPERS_H__
14
15 #include <iterator>
16 #include <string>
17 #include <tuple>
18 #include <type_traits>
19 #include <vector>
20
21 #include "absl/container/flat_hash_map.h"
22 #include "absl/log/absl_check.h"
23 #include "absl/strings/str_cat.h"
24 #include "absl/strings/str_split.h"
25 #include "absl/strings/string_view.h"
26 #include "absl/types/optional.h"
27 #include "absl/types/span.h"
28 #include "google/protobuf/compiler/code_generator.h"
29 #include "google/protobuf/compiler/cpp/names.h"
30 #include "google/protobuf/compiler/cpp/options.h"
31 #include "google/protobuf/compiler/scc.h"
32 #include "google/protobuf/descriptor.h"
33 #include "google/protobuf/descriptor.pb.h"
34 #include "google/protobuf/generated_message_tctable_impl.h"
35 #include "google/protobuf/io/printer.h"
36
37
38 // Must be included last.
39 #include "google/protobuf/port_def.inc"
40
41 namespace google {
42 namespace protobuf {
43 namespace compiler {
44 namespace cpp {
45 enum class ArenaDtorNeeds { kNone = 0, kOnDemand = 1, kRequired = 2 };
46
ProtobufNamespace(const Options & opts)47 inline absl::string_view ProtobufNamespace(const Options& opts) {
48 // This won't be transformed by copybara, since copybara looks for google::protobuf::.
49 constexpr absl::string_view kGoogle3Ns = "proto2";
50 constexpr absl::string_view kOssNs = "google::protobuf";
51
52 return opts.opensource_runtime ? kOssNs : kGoogle3Ns;
53 }
54
DeprecatedAttribute(const Options &,const FieldDescriptor * d)55 inline std::string DeprecatedAttribute(const Options&,
56 const FieldDescriptor* d) {
57 return d->options().deprecated() ? "[[deprecated]] " : "";
58 }
59
DeprecatedAttribute(const Options &,const EnumValueDescriptor * d)60 inline std::string DeprecatedAttribute(const Options&,
61 const EnumValueDescriptor* d) {
62 return d->options().deprecated() ? "[[deprecated]] " : "";
63 }
64
65 // Commonly-used separator comments. Thick is a line of '=', thin is a line
66 // of '-'.
67 extern const char kThickSeparator[];
68 extern const char kThinSeparator[];
69
70 absl::flat_hash_map<absl::string_view, std::string> MessageVars(
71 const Descriptor* desc);
72
73 // Variables to access message data from the message scope.
74 void SetCommonMessageDataVariables(
75 const Descriptor* descriptor,
76 absl::flat_hash_map<absl::string_view, std::string>* variables);
77
78 absl::flat_hash_map<absl::string_view, std::string> UnknownFieldsVars(
79 const Descriptor* desc, const Options& opts);
80
81 void SetUnknownFieldsVariable(
82 const Descriptor* descriptor, const Options& options,
83 absl::flat_hash_map<absl::string_view, std::string>* variables);
84
85 bool GetBootstrapBasename(const Options& options, absl::string_view basename,
86 std::string* bootstrap_basename);
87 bool MaybeBootstrap(const Options& options, GeneratorContext* generator_context,
88 bool bootstrap_flag, std::string* basename);
89 bool IsBootstrapProto(const Options& options, const FileDescriptor* file);
90
91 // Name space of the proto file. This namespace is such that the string
92 // "<namespace>::some_name" is the correct fully qualified namespace.
93 // This means if the package is empty the namespace is "", and otherwise
94 // the namespace is "::foo::bar::...::baz" without trailing semi-colons.
95 std::string Namespace(const FileDescriptor* d, const Options& options);
96 std::string Namespace(const Descriptor* d, const Options& options);
97 std::string Namespace(const FieldDescriptor* d, const Options& options);
98 std::string Namespace(const EnumDescriptor* d, const Options& options);
99 PROTOC_EXPORT std::string Namespace(const FileDescriptor* d);
100 PROTOC_EXPORT std::string Namespace(const Descriptor* d);
101 PROTOC_EXPORT std::string Namespace(const FieldDescriptor* d);
102 PROTOC_EXPORT std::string Namespace(const EnumDescriptor* d);
103
104 class MessageSCCAnalyzer;
105
106 // Returns true if it's safe to init "field" to zero.
107 bool CanInitializeByZeroing(const FieldDescriptor* field,
108 const Options& options,
109 MessageSCCAnalyzer* scc_analyzer);
110 // Returns true if it's safe to reset "field" to zero.
111 bool CanClearByZeroing(const FieldDescriptor* field);
112 // Determines if swap can be implemented via memcpy.
113 bool HasTrivialSwap(const FieldDescriptor* field, const Options& options,
114 MessageSCCAnalyzer* scc_analyzer);
115
116 PROTOC_EXPORT std::string ClassName(const Descriptor* descriptor);
117 PROTOC_EXPORT std::string ClassName(const EnumDescriptor* enum_descriptor);
118
119 std::string QualifiedClassName(const Descriptor* d, const Options& options);
120 std::string QualifiedClassName(const EnumDescriptor* d, const Options& options);
121
122 PROTOC_EXPORT std::string QualifiedClassName(const Descriptor* d);
123 PROTOC_EXPORT std::string QualifiedClassName(const EnumDescriptor* d);
124
125 // DEPRECATED just use ClassName or QualifiedClassName, a boolean is very
126 // unreadable at the callsite.
127 // Returns the non-nested type name for the given type. If "qualified" is
128 // true, prefix the type with the full namespace. For example, if you had:
129 // package foo.bar;
130 // message Baz { message Moo {} }
131 // Then the qualified ClassName for Moo would be:
132 // ::foo::bar::Baz_Moo
133 // While the non-qualified version would be:
134 // Baz_Moo
ClassName(const Descriptor * descriptor,bool qualified)135 inline std::string ClassName(const Descriptor* descriptor, bool qualified) {
136 return qualified ? QualifiedClassName(descriptor, Options())
137 : ClassName(descriptor);
138 }
139
ClassName(const EnumDescriptor * descriptor,bool qualified)140 inline std::string ClassName(const EnumDescriptor* descriptor, bool qualified) {
141 return qualified ? QualifiedClassName(descriptor, Options())
142 : ClassName(descriptor);
143 }
144
145 // Returns the extension name prefixed with the class name if nested but without
146 // the package name.
147 std::string ExtensionName(const FieldDescriptor* d);
148
149 std::string QualifiedExtensionName(const FieldDescriptor* d,
150 const Options& options);
151 std::string QualifiedExtensionName(const FieldDescriptor* d);
152
153 // Type name of default instance.
154 std::string DefaultInstanceType(const Descriptor* descriptor,
155 const Options& options, bool split = false);
156
157 // Non-qualified name of the default_instance of this message.
158 std::string DefaultInstanceName(const Descriptor* descriptor,
159 const Options& options, bool split = false);
160
161 // Non-qualified name of the default instance pointer. This is used only for
162 // implicit weak fields, where we need an extra indirection.
163 std::string DefaultInstancePtr(const Descriptor* descriptor,
164 const Options& options, bool split = false);
165
166 // Fully qualified name of the default_instance of this message.
167 std::string QualifiedDefaultInstanceName(const Descriptor* descriptor,
168 const Options& options,
169 bool split = false);
170
171 // Fully qualified name of the default instance pointer.
172 std::string QualifiedDefaultInstancePtr(const Descriptor* descriptor,
173 const Options& options,
174 bool split = false);
175
176 // DescriptorTable variable name.
177 std::string DescriptorTableName(const FileDescriptor* file,
178 const Options& options);
179
180 // When declaring symbol externs from another file, this macro will supply the
181 // dllexport needed for the target file, if any.
182 std::string FileDllExport(const FileDescriptor* file, const Options& options);
183
184 // Name of the base class: google::protobuf::Message or google::protobuf::MessageLite.
185 std::string SuperClassName(const Descriptor* descriptor,
186 const Options& options);
187
188 // Adds an underscore if necessary to prevent conflicting with a keyword.
189 std::string ResolveKeyword(absl::string_view name);
190
191 // Get the (unqualified) name that should be used for this field in C++ code.
192 // The name is coerced to lower-case to emulate proto1 behavior. People
193 // should be using lowercase-with-underscores style for proto field names
194 // anyway, so normally this just returns field->name().
195 PROTOC_EXPORT std::string FieldName(const FieldDescriptor* field);
196
197 // Returns the (unqualified) private member name for this field in C++ code.
198 std::string FieldMemberName(const FieldDescriptor* field, bool split);
199
200 // Returns an estimate of the compiler's alignment for the field. This
201 // can't guarantee to be correct because the generated code could be compiled on
202 // different systems with different alignment rules. The estimates below assume
203 // 64-bit pointers.
204 int EstimateAlignmentSize(const FieldDescriptor* field);
205
206 // Returns an estimate of the size of the field. This
207 // can't guarantee to be correct because the generated code could be compiled on
208 // different systems with different alignment rules. The estimates below assume
209 // 64-bit pointers.
210 int EstimateSize(const FieldDescriptor* field);
211
212 // Get the unqualified name that should be used for a field's field
213 // number constant.
214 std::string FieldConstantName(const FieldDescriptor* field);
215
216 // Returns the scope where the field was defined (for extensions, this is
217 // different from the message type to which the field applies).
FieldScope(const FieldDescriptor * field)218 inline const Descriptor* FieldScope(const FieldDescriptor* field) {
219 return field->is_extension() ? field->extension_scope()
220 : field->containing_type();
221 }
222
223 // Returns the fully-qualified type name field->message_type(). Usually this
224 // is just ClassName(field->message_type(), true);
225 std::string FieldMessageTypeName(const FieldDescriptor* field,
226 const Options& options);
227
228 // Get the C++ type name for a primitive type (e.g. "double", "::int32", etc.).
229 const char* PrimitiveTypeName(FieldDescriptor::CppType type);
230 std::string PrimitiveTypeName(const Options& options,
231 FieldDescriptor::CppType type);
232
233 // Get the declared type name in CamelCase format, as is used e.g. for the
234 // methods of WireFormat. For example, TYPE_INT32 becomes "Int32".
235 const char* DeclaredTypeMethodName(FieldDescriptor::Type type);
236
237 // Return the code that evaluates to the number when compiled.
238 std::string Int32ToString(int number);
239
240 // Get code that evaluates to the field's default value.
241 std::string DefaultValue(const Options& options, const FieldDescriptor* field);
242
243 // Compatibility function for callers outside proto2.
244 std::string DefaultValue(const FieldDescriptor* field);
245
246 // Convert a file name into a valid identifier.
247 std::string FilenameIdentifier(absl::string_view filename);
248
249 // For each .proto file generates a unique name. To prevent collisions of
250 // symbols in the global namespace
251 std::string UniqueName(absl::string_view name, absl::string_view filename,
252 const Options& options);
UniqueName(absl::string_view name,const FileDescriptor * d,const Options & options)253 inline std::string UniqueName(absl::string_view name, const FileDescriptor* d,
254 const Options& options) {
255 return UniqueName(name, d->name(), options);
256 }
UniqueName(absl::string_view name,const Descriptor * d,const Options & options)257 inline std::string UniqueName(absl::string_view name, const Descriptor* d,
258 const Options& options) {
259 return UniqueName(name, d->file(), options);
260 }
UniqueName(absl::string_view name,const EnumDescriptor * d,const Options & options)261 inline std::string UniqueName(absl::string_view name, const EnumDescriptor* d,
262 const Options& options) {
263 return UniqueName(name, d->file(), options);
264 }
UniqueName(absl::string_view name,const ServiceDescriptor * d,const Options & options)265 inline std::string UniqueName(absl::string_view name,
266 const ServiceDescriptor* d,
267 const Options& options) {
268 return UniqueName(name, d->file(), options);
269 }
270
271 // Versions for call sites that only support the internal runtime (like proto1
272 // support).
InternalRuntimeOptions()273 inline Options InternalRuntimeOptions() {
274 Options options;
275 options.opensource_runtime = false;
276 return options;
277 }
UniqueName(absl::string_view name,absl::string_view filename)278 inline std::string UniqueName(absl::string_view name,
279 absl::string_view filename) {
280 return UniqueName(name, filename, InternalRuntimeOptions());
281 }
UniqueName(absl::string_view name,const FileDescriptor * d)282 inline std::string UniqueName(absl::string_view name, const FileDescriptor* d) {
283 return UniqueName(name, d->name(), InternalRuntimeOptions());
284 }
UniqueName(absl::string_view name,const Descriptor * d)285 inline std::string UniqueName(absl::string_view name, const Descriptor* d) {
286 return UniqueName(name, d->file(), InternalRuntimeOptions());
287 }
UniqueName(absl::string_view name,const EnumDescriptor * d)288 inline std::string UniqueName(absl::string_view name, const EnumDescriptor* d) {
289 return UniqueName(name, d->file(), InternalRuntimeOptions());
290 }
UniqueName(absl::string_view name,const ServiceDescriptor * d)291 inline std::string UniqueName(absl::string_view name,
292 const ServiceDescriptor* d) {
293 return UniqueName(name, d->file(), InternalRuntimeOptions());
294 }
295
296 // Return the qualified C++ name for a file level symbol.
297 std::string QualifiedFileLevelSymbol(const FileDescriptor* file,
298 absl::string_view name,
299 const Options& options);
300
301 // Escape C++ trigraphs by escaping question marks to \?
302 std::string EscapeTrigraphs(absl::string_view to_escape);
303
304 // Escaped function name to eliminate naming conflict.
305 std::string SafeFunctionName(const Descriptor* descriptor,
306 const FieldDescriptor* field,
307 absl::string_view prefix);
308
309 // Returns the optimize mode for <file>, respecting <options.enforce_lite>.
310 FileOptions_OptimizeMode GetOptimizeFor(const FileDescriptor* file,
311 const Options& options);
312
313 // Determines whether unknown fields will be stored in an UnknownFieldSet or
314 // a string.
UseUnknownFieldSet(const FileDescriptor * file,const Options & options)315 inline bool UseUnknownFieldSet(const FileDescriptor* file,
316 const Options& options) {
317 return GetOptimizeFor(file, options) != FileOptions::LITE_RUNTIME;
318 }
319
IsWeak(const FieldDescriptor * field,const Options & options)320 inline bool IsWeak(const FieldDescriptor* field, const Options& options) {
321 if (field->options().weak()) {
322 ABSL_CHECK(!options.opensource_runtime);
323 return true;
324 }
325 return false;
326 }
327
IsCord(const FieldDescriptor * field)328 inline bool IsCord(const FieldDescriptor* field) {
329 return field->cpp_type() == FieldDescriptor::CPPTYPE_STRING &&
330 internal::cpp::EffectiveStringCType(field) == FieldOptions::CORD;
331 }
332
IsString(const FieldDescriptor * field)333 inline bool IsString(const FieldDescriptor* field) {
334 return field->cpp_type() == FieldDescriptor::CPPTYPE_STRING &&
335 internal::cpp::EffectiveStringCType(field) == FieldOptions::STRING;
336 }
337
IsStringPiece(const FieldDescriptor * field)338 inline bool IsStringPiece(const FieldDescriptor* field) {
339 return field->cpp_type() == FieldDescriptor::CPPTYPE_STRING &&
340 internal::cpp::EffectiveStringCType(field) ==
341 FieldOptions::STRING_PIECE;
342 }
343
344 bool IsProfileDriven(const Options& options);
345
346 // Returns true if `field` is unlikely to be present based on PDProto profile.
347 bool IsRarelyPresent(const FieldDescriptor* field, const Options& options);
348
349 // Returns true if `field` is likely to be present based on PDProto profile.
350 bool IsLikelyPresent(const FieldDescriptor* field, const Options& options);
351
352 float GetPresenceProbability(const FieldDescriptor* field,
353 const Options& options);
354
355 bool IsStringInliningEnabled(const Options& options);
356
357 // Returns true if the provided field is a singular string and can be inlined.
358 bool CanStringBeInlined(const FieldDescriptor* field);
359
360 // Returns true if `field` is a string field that can and should be inlined
361 // based on PDProto profile.
362 bool IsStringInlined(const FieldDescriptor* field, const Options& options);
363
364 // Returns true if `field` should be inlined based on PDProto profile.
365 // Currently we only enable inlining for string fields backed by a std::string
366 // instance, but in the future we may expand this to message types.
IsFieldInlined(const FieldDescriptor * field,const Options & options)367 inline bool IsFieldInlined(const FieldDescriptor* field,
368 const Options& options) {
369 return IsStringInlined(field, options);
370 }
371
372 // Does the given FileDescriptor use lazy fields?
373 bool HasLazyFields(const FileDescriptor* file, const Options& options,
374 MessageSCCAnalyzer* scc_analyzer);
375
376 // Is the given field a supported lazy field?
377 bool IsLazy(const FieldDescriptor* field, const Options& options,
378 MessageSCCAnalyzer* scc_analyzer);
379
380 // Is this an explicit (non-profile driven) lazy field, as denoted by
381 // lazy/unverified_lazy in the descriptor?
IsExplicitLazy(const FieldDescriptor * field)382 inline bool IsExplicitLazy(const FieldDescriptor* field) {
383 if (field->is_map() || field->is_repeated()) {
384 return false;
385 }
386
387 if (field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
388 return false;
389 }
390
391 return field->options().lazy() || field->options().unverified_lazy();
392 }
393
394 internal::field_layout::TransformValidation GetLazyStyle(
395 const FieldDescriptor* field, const Options& options,
396 MessageSCCAnalyzer* scc_analyzer);
397
398 bool IsEagerlyVerifiedLazy(const FieldDescriptor* field, const Options& options,
399 MessageSCCAnalyzer* scc_analyzer);
400
401 bool IsLazilyVerifiedLazy(const FieldDescriptor* field, const Options& options);
402
403 bool ShouldVerify(const Descriptor* descriptor, const Options& options,
404 MessageSCCAnalyzer* scc_analyzer);
405 bool ShouldVerify(const FileDescriptor* file, const Options& options,
406 MessageSCCAnalyzer* scc_analyzer);
407 bool ShouldVerifyRecursively(const FieldDescriptor* field);
408
409 // Indicates whether to use predefined verify methods for a given message. If a
410 // message is "simple" and needs no special verification per field (e.g. message
411 // field, repeated packed, UTF8 string, etc.), we can use either VerifySimple or
412 // VerifySimpleAlwaysCheckInt32 methods as all verification can be done based on
413 // the wire type.
414 //
415 // Otherwise, we need "custom" verify methods tailored to a message to pass
416 // which field needs a special verification; i.e. InternalVerify.
417 enum class VerifySimpleType {
418 kSimpleInt32Never, // Use VerifySimple
419 kSimpleInt32Always, // Use VerifySimpleAlwaysCheckInt32
420 kCustom, // Use InternalVerify and check only for int32
421 kCustomInt32Never, // Use InternalVerify but never check for int32
422 kCustomInt32Always, // Use InternalVerify and always check for int32
423 };
424
425 // Returns VerifySimpleType if messages can be verified by predefined methods.
426 VerifySimpleType ShouldVerifySimple(const Descriptor* descriptor);
427
428
429 // Is the given message being split (go/pdsplit)?
430 bool ShouldSplit(const Descriptor* desc, const Options& options);
431
432 // Is the given field being split out?
433 bool ShouldSplit(const FieldDescriptor* field, const Options& options);
434
435 // Should we generate code that force creating an allocation in the constructor
436 // of the given message?
437 bool ShouldForceAllocationOnConstruction(const Descriptor* desc,
438 const Options& options);
439
440 // Returns true if the message is present based on PDProto profile.
441 bool IsPresentMessage(const Descriptor* descriptor, const Options& options);
442
443 // Returns the most likely present field. Returns nullptr if not profile driven.
444 const FieldDescriptor* FindHottestField(
445 const std::vector<const FieldDescriptor*>& fields, const Options& options);
446
447 // Does the file contain any definitions that need extension_set.h?
448 bool HasExtensionsOrExtendableMessage(const FileDescriptor* file);
449
450 // Does the file have any repeated fields, necessitating the file to include
451 // repeated_field.h? This does not include repeated extensions, since those are
452 // all stored internally in an ExtensionSet, not a separate RepeatedField*.
453 bool HasRepeatedFields(const FileDescriptor* file);
454
455 // Does the file have any string/bytes fields with ctype=STRING_PIECE? This
456 // does not include extensions, since ctype is ignored for extensions.
457 bool HasStringPieceFields(const FileDescriptor* file, const Options& options);
458
459 // Does the file have any string/bytes fields with ctype=CORD? This does not
460 // include extensions, since ctype is ignored for extensions.
461 bool HasCordFields(const FileDescriptor* file, const Options& options);
462
463 // Does the file have any map fields, necessitating the file to include
464 // map_field_inl.h and map.h.
465 bool HasMapFields(const FileDescriptor* file);
466
467 // Does this file have any enum type definitions?
468 bool HasEnumDefinitions(const FileDescriptor* file);
469
470 // Returns true if a message in the file can have v2 table.
471 bool HasV2Table(const FileDescriptor* file);
472
473 // Returns true if a message (descriptor) can have v2 table.
474 bool HasV2Table(const Descriptor* descriptor);
475
476 // Does this file have generated parsing, serialization, and other
477 // standard methods for which reflection-based fallback implementations exist?
HasGeneratedMethods(const FileDescriptor * file,const Options & options)478 inline bool HasGeneratedMethods(const FileDescriptor* file,
479 const Options& options) {
480 return GetOptimizeFor(file, options) != FileOptions::CODE_SIZE;
481 }
482
483 // Do message classes in this file have descriptor and reflection methods?
HasDescriptorMethods(const FileDescriptor * file,const Options & options)484 inline bool HasDescriptorMethods(const FileDescriptor* file,
485 const Options& options) {
486 return GetOptimizeFor(file, options) != FileOptions::LITE_RUNTIME;
487 }
488
489 // Should we generate generic services for this file?
HasGenericServices(const FileDescriptor * file,const Options & options)490 inline bool HasGenericServices(const FileDescriptor* file,
491 const Options& options) {
492 return file->service_count() > 0 &&
493 GetOptimizeFor(file, options) != FileOptions::LITE_RUNTIME &&
494 file->options().cc_generic_services();
495 }
496
IsProto2MessageSet(const Descriptor * descriptor,const Options & options)497 inline bool IsProto2MessageSet(const Descriptor* descriptor,
498 const Options& options) {
499 return !options.opensource_runtime &&
500 options.enforce_mode != EnforceOptimizeMode::kLiteRuntime &&
501 !options.lite_implicit_weak_fields &&
502 descriptor->options().message_set_wire_format() &&
503 descriptor->full_name() == "google.protobuf.bridge.MessageSet";
504 }
505
IsMapEntryMessage(const Descriptor * descriptor)506 inline bool IsMapEntryMessage(const Descriptor* descriptor) {
507 return descriptor->options().map_entry();
508 }
509
510 // Returns true if the field's CPPTYPE is string or message.
511 bool IsStringOrMessage(const FieldDescriptor* field);
512
513 std::string UnderscoresToCamelCase(absl::string_view input,
514 bool cap_next_letter);
515
IsCrossFileMessage(const FieldDescriptor * field)516 inline bool IsCrossFileMessage(const FieldDescriptor* field) {
517 return field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
518 field->message_type()->file() != field->file();
519 }
520
MakeDefaultName(const FieldDescriptor * field)521 inline std::string MakeDefaultName(const FieldDescriptor* field) {
522 return absl::StrCat("_i_give_permission_to_break_this_code_default_",
523 FieldName(field), "_");
524 }
525
526 // Semantically distinct from MakeDefaultName in that it gives the C++ code
527 // referencing a default field from the message scope, rather than just the
528 // variable name.
529 // For example, declarations of default variables should always use just
530 // MakeDefaultName to produce code like:
531 // Type _i_give_permission_to_break_this_code_default_field_;
532 //
533 // Code that references these should use MakeDefaultFieldName, in case the field
534 // exists at some nested level like:
535 // internal_container_._i_give_permission_to_break_this_code_default_field_;
MakeDefaultFieldName(const FieldDescriptor * field)536 inline std::string MakeDefaultFieldName(const FieldDescriptor* field) {
537 return absl::StrCat("Impl_::", MakeDefaultName(field));
538 }
539
MakeVarintCachedSizeName(const FieldDescriptor * field)540 inline std::string MakeVarintCachedSizeName(const FieldDescriptor* field) {
541 return absl::StrCat("_", FieldName(field), "_cached_byte_size_");
542 }
543
544 // Semantically distinct from MakeVarintCachedSizeName in that it gives the C++
545 // code referencing the object from the message scope, rather than just the
546 // variable name.
547 // For example, declarations of default variables should always use just
548 // MakeVarintCachedSizeName to produce code like:
549 // Type _field_cached_byte_size_;
550 //
551 // Code that references these variables should use
552 // MakeVarintCachedSizeFieldName, in case the field exists at some nested level
553 // like:
554 // internal_container_._field_cached_byte_size_;
MakeVarintCachedSizeFieldName(const FieldDescriptor * field,bool split)555 inline std::string MakeVarintCachedSizeFieldName(const FieldDescriptor* field,
556 bool split) {
557 return absl::StrCat("_impl_.", split ? "_split_->" : "", "_",
558 FieldName(field), "_cached_byte_size_");
559 }
560
561 // Note: A lot of libraries detect Any protos based on Descriptor::full_name()
562 // while the two functions below use FileDescriptor::name(). In a sane world the
563 // two approaches should be equivalent. But if you are dealing with descriptors
564 // from untrusted sources, you might need to match semantics across libraries.
565 bool IsAnyMessage(const FileDescriptor* descriptor);
566 bool IsAnyMessage(const Descriptor* descriptor);
567
568 bool IsWellKnownMessage(const FileDescriptor* file);
569
570 enum class GeneratedFileType : int { kPbH, kProtoH, kProtoStaticReflectionH };
571
IncludeGuard(const FileDescriptor * file,GeneratedFileType file_type,const Options & options)572 inline std::string IncludeGuard(const FileDescriptor* file,
573 GeneratedFileType file_type,
574 const Options& options) {
575 // If we are generating a .pb.h file and the proto_h option is enabled, then
576 // the .pb.h gets an extra suffix.
577 std::string extension;
578 switch (file_type) {
579 case GeneratedFileType::kPbH:
580 extension = ".pb.h";
581 break;
582 case GeneratedFileType::kProtoH:
583 extension = ".proto.h";
584 break;
585 case GeneratedFileType::kProtoStaticReflectionH:
586 extension = ".proto.static_reflection.h";
587 }
588 return FilenameIdentifier(absl::StrCat(file->name(), extension));
589 }
590
591 // Returns the OptimizeMode for this file, furthermore it updates a status
592 // bool if has_opt_codesize_extension is non-null. If this status bool is true
593 // it means this file contains an extension that itself is defined as
594 // optimized_for = CODE_SIZE.
595 FileOptions_OptimizeMode GetOptimizeFor(const FileDescriptor* file,
596 const Options& options,
597 bool* has_opt_codesize_extension);
GetOptimizeFor(const FileDescriptor * file,const Options & options)598 inline FileOptions_OptimizeMode GetOptimizeFor(const FileDescriptor* file,
599 const Options& options) {
600 return GetOptimizeFor(file, options, nullptr);
601 }
NeedsEagerDescriptorAssignment(const FileDescriptor * file,const Options & options)602 inline bool NeedsEagerDescriptorAssignment(const FileDescriptor* file,
603 const Options& options) {
604 bool has_opt_codesize_extension;
605 if (GetOptimizeFor(file, options, &has_opt_codesize_extension) ==
606 FileOptions::CODE_SIZE &&
607 has_opt_codesize_extension) {
608 // If this filedescriptor contains an extension from another file which
609 // is optimized_for = CODE_SIZE. We need to be careful in the ordering so
610 // we eagerly build the descriptors in the dependencies before building
611 // the descriptors of this file.
612 return true;
613 } else {
614 // If we have a generated code based parser we never need eager
615 // initialization of descriptors of our deps.
616 return false;
617 }
618 }
619
620 // This orders the messages in a .pb.cc as it's outputted by file.cc
621 void FlattenMessagesInFile(const FileDescriptor* file,
622 std::vector<const Descriptor*>* result);
FlattenMessagesInFile(const FileDescriptor * file)623 inline std::vector<const Descriptor*> FlattenMessagesInFile(
624 const FileDescriptor* file) {
625 std::vector<const Descriptor*> result;
626 FlattenMessagesInFile(file, &result);
627 return result;
628 }
629
630 std::vector<const Descriptor*> TopologicalSortMessagesInFile(
631 const FileDescriptor* file, MessageSCCAnalyzer& scc_analyzer);
632
633 bool HasWeakFields(const Descriptor* desc, const Options& options);
634 bool HasWeakFields(const FileDescriptor* file, const Options& options);
635
636 // Returns true if the "required" restriction check should be ignored for the
637 // given field.
ShouldIgnoreRequiredFieldCheck(const FieldDescriptor * field,const Options & options)638 inline static bool ShouldIgnoreRequiredFieldCheck(const FieldDescriptor* field,
639 const Options& options) {
640 // Do not check "required" for lazily verified lazy fields.
641 return IsLazilyVerifiedLazy(field, options);
642 }
643
644 struct MessageAnalysis {
645 bool is_recursive = false;
646 bool contains_cord = false;
647 bool contains_extension = false;
648 bool contains_required = false;
649 bool contains_weak = false; // Implicit weak as well.
650 };
651
652 // This class is used in FileGenerator, to ensure linear instead of
653 // quadratic performance, if we do this per message we would get O(V*(V+E)).
654 // Logically this is just only used in message.cc, but in the header for
655 // FileGenerator to help share it.
656 class PROTOC_EXPORT MessageSCCAnalyzer {
657 public:
MessageSCCAnalyzer(const Options & options)658 explicit MessageSCCAnalyzer(const Options& options) : options_(options) {}
659
660 MessageAnalysis GetSCCAnalysis(const SCC* scc);
661
HasRequiredFields(const Descriptor * descriptor)662 bool HasRequiredFields(const Descriptor* descriptor) {
663 MessageAnalysis result = GetSCCAnalysis(GetSCC(descriptor));
664 return result.contains_required || result.contains_extension;
665 }
HasWeakField(const Descriptor * descriptor)666 bool HasWeakField(const Descriptor* descriptor) {
667 MessageAnalysis result = GetSCCAnalysis(GetSCC(descriptor));
668 return result.contains_weak;
669 }
GetSCC(const Descriptor * descriptor)670 const SCC* GetSCC(const Descriptor* descriptor) {
671 return analyzer_.GetSCC(descriptor);
672 }
673
674 private:
675 struct DepsGenerator {
operatorDepsGenerator676 std::vector<const Descriptor*> operator()(const Descriptor* desc) const {
677 std::vector<const Descriptor*> deps;
678 for (int i = 0; i < desc->field_count(); i++) {
679 if (desc->field(i)->message_type()) {
680 deps.push_back(desc->field(i)->message_type());
681 }
682 }
683 return deps;
684 }
685 };
686 SCCAnalyzer<DepsGenerator> analyzer_;
687 Options options_;
688 absl::flat_hash_map<const SCC*, MessageAnalysis> analysis_cache_;
689 };
690
691 void ListAllFields(const Descriptor* d,
692 std::vector<const FieldDescriptor*>* fields);
693 void ListAllFields(const FileDescriptor* d,
694 std::vector<const FieldDescriptor*>* fields);
695
696 template <bool do_nested_types, class T>
ForEachField(const Descriptor * d,T && func)697 void ForEachField(const Descriptor* d, T&& func) {
698 if (do_nested_types) {
699 for (int i = 0; i < d->nested_type_count(); i++) {
700 ForEachField<true>(d->nested_type(i), std::forward<T&&>(func));
701 }
702 }
703 for (int i = 0; i < d->extension_count(); i++) {
704 func(d->extension(i));
705 }
706 for (int i = 0; i < d->field_count(); i++) {
707 func(d->field(i));
708 }
709 }
710
711 template <class T>
ForEachField(const FileDescriptor * d,T && func)712 void ForEachField(const FileDescriptor* d, T&& func) {
713 for (int i = 0; i < d->message_type_count(); i++) {
714 ForEachField<true>(d->message_type(i), std::forward<T&&>(func));
715 }
716 for (int i = 0; i < d->extension_count(); i++) {
717 func(d->extension(i));
718 }
719 }
720
721 void ListAllTypesForServices(const FileDescriptor* fd,
722 std::vector<const Descriptor*>* types);
723
724 // Whether this type should use the implicit weak feature for descriptor based
725 // objects.
726 //
727 // This feature allows tree shaking within a single translation unit by
728 // decoupling the messages from the TU-wide `file_default_instances` array.
729 // This way there are no static initializers in the TU pointing to any part of
730 // the generated classes and they can be GC'd by the linker.
731 // Instead of direct use, we have two ways to weakly refer to the default
732 // instances:
733 // - Each default instance is located on its own section, and we use a
734 // `&__start_section_name` pointer to access it. This is a reference that
735 // allows GC to happen. This step is used with dynamic linking.
736 // - We also allow merging all these sections at link time into the
737 // `pb_defaults` section. All surviving messages will be injected back into
738 // the `file_default_instances` when the runtime is initialized. This is
739 // useful when doing static linking and you want to avoid having an unbounded
740 // number of sections.
741 //
742 // Any object that gets GC'd will have a `nullptr` in the respective slot in the
743 // `file_default_instances` array. The runtime will recognize this and will
744 // dynamically generate the object if needed. This logic is in the
745 // `GeneratedMessageFactory::GetPrototype`. It will fall back to a
746 // `DynamicMessage` for the missing objects.
747 // This allows all of reflection to keep working normally, even for types that
748 // were dropped. Note that dropping the _classes_ will not drop the descriptor
749 // information. The messages are still going to be registered in the generated
750 // `DescriptorPool` and will be available via normal `FindMessageTypeByName` and
751 // friends.
752 //
753 // A "pin" is adding dependency edge in the graph for the GC.
754 // The default instance and vtable of a message pin each other. If any one
755 // lives, they both do. This is important. The default instance of the message
756 // pins the vtable trivially by using it. The vtable pins the default instance
757 // by having a StrongPointer into it from any of the virtual functions.
758 //
759 // All parent messages pin their children.
760 // SPEED messages do this implicitly via the TcParseTable, which contain
761 // pointers to the submessages.
762 // CODE_SIZE messages explicitly add a pin via `StrongPointer` somewhere in
763 // their codegen.
764 // LITE messages do not participate at all in this feature.
765 //
766 // For extensions, the identifiers currently pin the extendee. The extended is
767 // assumed to by pinned elsewhere since we already have an instance of it when
768 // we call `.GetExtension` et al. The extension identifier itself is not
769 // automatically pinned, so it has to be used to participate in the graph.
770 // Registration of the extensions do not pin the extended or the extendee. At
771 // registration time we will eagerly create a prototype object if one is
772 // missing to insert in the extension table in ExtensionSet.
773 //
774 // For services, the TU unconditionally pins the request/response objects.
775 // This is the status quo for simplicity to avoid modifying the RPC layer. It
776 // might be improved in the future.
777 bool UsingImplicitWeakDescriptor(const FileDescriptor* file,
778 const Options& options);
779
780 // Generates a strong reference to the message in `desc`, as a statement.
781 std::string StrongReferenceToType(const Descriptor* desc,
782 const Options& options);
783
784 // Generates the section name to be used for a data object when using implicit
785 // weak descriptors. The prefix determines the kind of object and the section it
786 // will be merged into afterwards.
787 // See `UsingImplicitWeakDescriptor` above.
788 std::string WeakDescriptorDataSection(absl::string_view prefix,
789 const Descriptor* descriptor,
790 int index_in_file_messages,
791 const Options& options);
792
793 // Section name to be used for the default instance for implicit weak descriptor
794 // objects. See `UsingImplicitWeakDescriptor` above.
WeakDefaultInstanceSection(const Descriptor * descriptor,int index_in_file_messages,const Options & options)795 inline std::string WeakDefaultInstanceSection(const Descriptor* descriptor,
796 int index_in_file_messages,
797 const Options& options) {
798 return WeakDescriptorDataSection("def", descriptor, index_in_file_messages,
799 options);
800 }
801
802 // Indicates whether we should use implicit weak fields for this file.
803 bool UsingImplicitWeakFields(const FileDescriptor* file,
804 const Options& options);
805
806 // Indicates whether to treat this field as implicitly weak.
807 bool IsImplicitWeakField(const FieldDescriptor* field, const Options& options,
808 MessageSCCAnalyzer* scc_analyzer);
809
SimpleBaseClass(const Descriptor * desc,const Options & options)810 inline std::string SimpleBaseClass(const Descriptor* desc,
811 const Options& options) {
812 // The only base class we have derived from `Message`.
813 if (!HasDescriptorMethods(desc->file(), options)) return "";
814 // We don't use the base class to be able to inject the weak descriptor pins.
815 if (UsingImplicitWeakDescriptor(desc->file(), options)) return "";
816 if (desc->extension_range_count() != 0) return "";
817 // Don't use a simple base class if the field tracking is enabled. This
818 // ensures generating all methods to track.
819 if (options.field_listener_options.inject_field_listener_events) return "";
820 if (desc->field_count() == 0) {
821 return "ZeroFieldsBase";
822 }
823 // TODO: Support additional common message types with only one
824 // or two fields
825 return "";
826 }
827
HasSimpleBaseClass(const Descriptor * desc,const Options & options)828 inline bool HasSimpleBaseClass(const Descriptor* desc, const Options& options) {
829 return !SimpleBaseClass(desc, options).empty();
830 }
831
HasSimpleBaseClasses(const FileDescriptor * file,const Options & options)832 inline bool HasSimpleBaseClasses(const FileDescriptor* file,
833 const Options& options) {
834 return internal::cpp::VisitDescriptorsInFileOrder(
835 file, [&](const Descriptor* desc) {
836 return HasSimpleBaseClass(desc, options);
837 });
838 }
839
840 // Returns true if this message has a _tracker_ field.
HasTracker(const Descriptor * desc,const Options & options)841 inline bool HasTracker(const Descriptor* desc, const Options& options) {
842 return options.field_listener_options.inject_field_listener_events &&
843 desc->file()->options().optimize_for() !=
844 google::protobuf::FileOptions::LITE_RUNTIME &&
845 !IsMapEntryMessage(desc);
846 }
847
848 // Returns true if this message needs an Impl_ struct for it's data.
HasImplData(const Descriptor * desc,const Options & options)849 inline bool HasImplData(const Descriptor* desc, const Options& options) {
850 return !HasSimpleBaseClass(desc, options);
851 }
852
853 // DO NOT USE IN NEW CODE! Use io::Printer directly instead. See b/242326974.
854 //
855 // Formatter is a functor class which acts as a closure around printer and
856 // the variable map. It's much like printer->Print except it supports both named
857 // variables that are substituted using a key value map and direct arguments. In
858 // the format string $1$, $2$, etc... are substituted for the first, second, ...
859 // direct argument respectively in the format call, it accepts both strings and
860 // integers. The implementation verifies all arguments are used and are "first"
861 // used in order of appearance in the argument list. For example,
862 //
863 // Format("return array[$1$];", 3) -> "return array[3];"
864 // Format("array[$2$] = $1$;", "Bla", 3) -> FATAL error (wrong order)
865 // Format("array[$1$] = $2$;", 3, "Bla") -> "array[3] = Bla;"
866 //
867 // The arguments can be used more than once like
868 //
869 // Format("array[$1$] = $2$; // Index = $1$", 3, "Bla") ->
870 // "array[3] = Bla; // Index = 3"
871 //
872 // If you use more arguments use the following style to help the reader,
873 //
874 // Format("int $1$() {\n"
875 // " array[$2$] = $3$;\n"
876 // " return $4$;"
877 // "}\n",
878 // funname, // 1
879 // idx, // 2
880 // varname, // 3
881 // retval); // 4
882 //
883 // but consider using named variables. Named variables like $foo$, with some
884 // identifier foo, are looked up in the map. One additional feature is that
885 // spaces are accepted between the '$' delimiters, $ foo$ will
886 // substitute to " bar" if foo stands for "bar", but in case it's empty
887 // will substitute to "". Hence, for example,
888 //
889 // Format(vars, "$dllexport $void fun();") -> "void fun();"
890 // "__declspec(export) void fun();"
891 //
892 // which is convenient to prevent double, leading or trailing spaces.
893 class PROTOC_EXPORT Formatter {
894 public:
Formatter(io::Printer * printer)895 explicit Formatter(io::Printer* printer) : printer_(printer) {}
Formatter(io::Printer * printer,const absl::flat_hash_map<absl::string_view,std::string> & vars)896 Formatter(io::Printer* printer,
897 const absl::flat_hash_map<absl::string_view, std::string>& vars)
898 : printer_(printer), vars_(vars) {}
899
900 template <typename T>
Set(absl::string_view key,const T & value)901 void Set(absl::string_view key, const T& value) {
902 vars_[key] = ToString(value);
903 }
904
905 template <typename... Args>
operator()906 void operator()(const char* format, const Args&... args) const {
907 printer_->FormatInternal({ToString(args)...}, vars_, format);
908 }
909
Indent()910 void Indent() const { printer_->Indent(); }
Outdent()911 void Outdent() const { printer_->Outdent(); }
printer()912 io::Printer* printer() const { return printer_; }
913
914 class PROTOC_EXPORT ScopedIndenter {
915 public:
ScopedIndenter(Formatter * format)916 explicit ScopedIndenter(Formatter* format) : format_(format) {
917 format_->Indent();
918 }
~ScopedIndenter()919 ~ScopedIndenter() { format_->Outdent(); }
920
921 private:
922 Formatter* format_;
923 };
924
ScopedIndent()925 PROTOBUF_NODISCARD ScopedIndenter ScopedIndent() {
926 return ScopedIndenter(this);
927 }
928 template <typename... Args>
ScopedIndent(const char * format,const Args &&...args)929 PROTOBUF_NODISCARD ScopedIndenter ScopedIndent(const char* format,
930 const Args&&... args) {
931 (*this)(format, static_cast<Args&&>(args)...);
932 return ScopedIndenter(this);
933 }
934
935 private:
936 io::Printer* printer_;
937 absl::flat_hash_map<absl::string_view, std::string> vars_;
938
939 // Convenience overloads to accept different types as arguments.
ToString(absl::string_view s)940 static std::string ToString(absl::string_view s) { return std::string(s); }
941 template <typename I, typename = typename std::enable_if<
942 std::is_integral<I>::value>::type>
ToString(I x)943 static std::string ToString(I x) {
944 return absl::StrCat(x);
945 }
ToString(absl::Hex x)946 static std::string ToString(absl::Hex x) { return absl::StrCat(x); }
ToString(const FieldDescriptor * d)947 static std::string ToString(const FieldDescriptor* d) {
948 return Payload(d, GeneratedCodeInfo::Annotation::NONE);
949 }
ToString(const Descriptor * d)950 static std::string ToString(const Descriptor* d) {
951 return Payload(d, GeneratedCodeInfo::Annotation::NONE);
952 }
ToString(const EnumDescriptor * d)953 static std::string ToString(const EnumDescriptor* d) {
954 return Payload(d, GeneratedCodeInfo::Annotation::NONE);
955 }
ToString(const EnumValueDescriptor * d)956 static std::string ToString(const EnumValueDescriptor* d) {
957 return Payload(d, GeneratedCodeInfo::Annotation::NONE);
958 }
ToString(const OneofDescriptor * d)959 static std::string ToString(const OneofDescriptor* d) {
960 return Payload(d, GeneratedCodeInfo::Annotation::NONE);
961 }
962
ToString(std::tuple<const FieldDescriptor *,GeneratedCodeInfo::Annotation::Semantic> p)963 static std::string ToString(
964 std::tuple<const FieldDescriptor*,
965 GeneratedCodeInfo::Annotation::Semantic>
966 p) {
967 return Payload(std::get<0>(p), std::get<1>(p));
968 }
ToString(std::tuple<const Descriptor *,GeneratedCodeInfo::Annotation::Semantic> p)969 static std::string ToString(
970 std::tuple<const Descriptor*, GeneratedCodeInfo::Annotation::Semantic>
971 p) {
972 return Payload(std::get<0>(p), std::get<1>(p));
973 }
ToString(std::tuple<const EnumDescriptor *,GeneratedCodeInfo::Annotation::Semantic> p)974 static std::string ToString(
975 std::tuple<const EnumDescriptor*, GeneratedCodeInfo::Annotation::Semantic>
976 p) {
977 return Payload(std::get<0>(p), std::get<1>(p));
978 }
ToString(std::tuple<const EnumValueDescriptor *,GeneratedCodeInfo::Annotation::Semantic> p)979 static std::string ToString(
980 std::tuple<const EnumValueDescriptor*,
981 GeneratedCodeInfo::Annotation::Semantic>
982 p) {
983 return Payload(std::get<0>(p), std::get<1>(p));
984 }
ToString(std::tuple<const OneofDescriptor *,GeneratedCodeInfo::Annotation::Semantic> p)985 static std::string ToString(
986 std::tuple<const OneofDescriptor*,
987 GeneratedCodeInfo::Annotation::Semantic>
988 p) {
989 return Payload(std::get<0>(p), std::get<1>(p));
990 }
991
992 template <typename Descriptor>
Payload(const Descriptor * descriptor,GeneratedCodeInfo::Annotation::Semantic semantic)993 static std::string Payload(const Descriptor* descriptor,
994 GeneratedCodeInfo::Annotation::Semantic semantic) {
995 std::vector<int> path;
996 descriptor->GetLocationPath(&path);
997 GeneratedCodeInfo::Annotation annotation;
998 for (int index : path) {
999 annotation.add_path(index);
1000 }
1001 annotation.set_source_file(descriptor->file()->name());
1002 annotation.set_semantic(semantic);
1003 return annotation.SerializeAsString();
1004 }
1005 };
1006
1007 template <typename T>
FieldComment(const T * field,const Options & options)1008 std::string FieldComment(const T* field, const Options& options) {
1009 if (options.strip_nonfunctional_codegen) {
1010 return std::string(field->name());
1011 }
1012 // Print the field's (or oneof's) proto-syntax definition as a comment.
1013 // We don't want to print group bodies so we cut off after the first
1014 // line.
1015 DebugStringOptions debug_options;
1016 debug_options.elide_group_body = true;
1017 debug_options.elide_oneof_body = true;
1018
1019 for (absl::string_view chunk :
1020 absl::StrSplit(field->DebugStringWithOptions(debug_options), '\n')) {
1021 return std::string(chunk);
1022 }
1023
1024 return "<unknown>";
1025 }
1026
1027 template <class T>
PrintFieldComment(const Formatter & format,const T * field,const Options & options)1028 void PrintFieldComment(const Formatter& format, const T* field,
1029 const Options& options) {
1030 format("// $1$\n", FieldComment(field, options));
1031 }
1032
1033 class PROTOC_EXPORT NamespaceOpener {
1034 public:
1035 explicit NamespaceOpener(
1036 io::Printer* p,
1037 io::Printer::SourceLocation loc = io::Printer::SourceLocation::current())
p_(p)1038 : p_(p), loc_(loc) {}
1039
1040 explicit NamespaceOpener(
1041 const Formatter& format,
1042 io::Printer::SourceLocation loc = io::Printer::SourceLocation::current())
1043 : NamespaceOpener(format.printer(), loc) {}
1044
1045 NamespaceOpener(
1046 absl::string_view name, const Formatter& format,
1047 io::Printer::SourceLocation loc = io::Printer::SourceLocation::current())
1048 : NamespaceOpener(name, format.printer(), loc) {}
1049
1050 NamespaceOpener(
1051 absl::string_view name, io::Printer* p,
1052 io::Printer::SourceLocation loc = io::Printer::SourceLocation::current())
NamespaceOpener(p,loc)1053 : NamespaceOpener(p, loc) {
1054 ChangeTo(name, loc);
1055 }
1056
~NamespaceOpener()1057 ~NamespaceOpener() { ChangeTo("", loc_); }
1058
1059 void ChangeTo(
1060 absl::string_view name,
1061 io::Printer::SourceLocation loc = io::Printer::SourceLocation::current());
1062
1063 private:
1064 io::Printer* p_;
1065 io::Printer::SourceLocation loc_;
1066 std::vector<std::string> name_stack_;
1067 };
1068
1069 void GenerateUtf8CheckCodeForString(const FieldDescriptor* field,
1070 const Options& options, bool for_parse,
1071 absl::string_view parameters,
1072 const Formatter& format);
1073
1074 void GenerateUtf8CheckCodeForCord(const FieldDescriptor* field,
1075 const Options& options, bool for_parse,
1076 absl::string_view parameters,
1077 const Formatter& format);
1078
1079 void GenerateUtf8CheckCodeForString(io::Printer* p,
1080 const FieldDescriptor* field,
1081 const Options& options, bool for_parse,
1082 absl::string_view parameters);
1083
1084 void GenerateUtf8CheckCodeForCord(io::Printer* p, const FieldDescriptor* field,
1085 const Options& options, bool for_parse,
1086 absl::string_view parameters);
1087
ShouldGenerateExternSpecializations(const Options & options)1088 inline bool ShouldGenerateExternSpecializations(const Options& options) {
1089 // For OSS we omit the specializations to reduce codegen size.
1090 // Some compilers can't handle that much input in a single translation unit.
1091 // These specializations are just a link size optimization and do not affect
1092 // correctness or performance, so it is ok to omit them.
1093 return !options.opensource_runtime;
1094 }
1095
1096 struct OneOfRangeImpl {
1097 struct Iterator {
1098 using iterator_category = std::forward_iterator_tag;
1099 using value_type = const OneofDescriptor*;
1100 using difference_type = int;
1101
1102 value_type operator*() { return descriptor->oneof_decl(idx); }
1103
1104 friend bool operator==(const Iterator& a, const Iterator& b) {
1105 ABSL_DCHECK(a.descriptor == b.descriptor);
1106 return a.idx == b.idx;
1107 }
1108 friend bool operator!=(const Iterator& a, const Iterator& b) {
1109 return !(a == b);
1110 }
1111
1112 Iterator& operator++() {
1113 idx++;
1114 return *this;
1115 }
1116
1117 int idx;
1118 const Descriptor* descriptor;
1119 };
1120
beginOneOfRangeImpl1121 Iterator begin() const { return {0, descriptor}; }
endOneOfRangeImpl1122 Iterator end() const {
1123 return {descriptor->real_oneof_decl_count(), descriptor};
1124 }
1125
1126 const Descriptor* descriptor;
1127 };
1128
OneOfRange(const Descriptor * desc)1129 inline OneOfRangeImpl OneOfRange(const Descriptor* desc) { return {desc}; }
1130
1131 // Strips ".proto" or ".protodevel" from the end of a filename.
1132 PROTOC_EXPORT std::string StripProto(absl::string_view filename);
1133
1134 bool HasMessageFieldOrExtension(const Descriptor* desc);
1135
1136 // Generates a vector of substitutions for use with Printer::WithVars that
1137 // contains annotated accessor names for a particular field.
1138 //
1139 // Each substitution will be named `absl::StrCat(prefix, "name")`, and will
1140 // be annotated with `field`.
1141 std::vector<io::Printer::Sub> AnnotatedAccessors(
1142 const FieldDescriptor* field, absl::Span<const absl::string_view> prefixes,
1143 absl::optional<google::protobuf::io::AnnotationCollector::Semantic> semantic =
1144 absl::nullopt);
1145
1146 // Check whether `file` represents the .proto file FileDescriptorProto and
1147 // friends. This file needs special handling because it must be usable during
1148 // dynamic initialization.
1149 bool IsFileDescriptorProto(const FileDescriptor* file, const Options& options);
1150
1151 // Determine if we should generate a class for the descriptor.
1152 // Some descriptors, like some map entries, are not represented as a generated
1153 // class.
1154 bool ShouldGenerateClass(const Descriptor* descriptor, const Options& options);
1155
1156
1157 // Determine if we are going to generate a tracker call for OnDeserialize.
1158 // This one is handled specially because we generate the PostLoopHandler for it.
1159 // We don't want to generate a handler if it is going to end up empty.
1160 bool HasOnDeserializeTracker(const Descriptor* descriptor,
1161 const Options& options);
1162
1163 // Determine if we need a PostLoopHandler function to inject into TcParseTable's
1164 // ParseLoop.
1165 // If this returns true, the parse table generation will use
1166 // `&ClassName::PostLoopHandler` which should be a static function of the right
1167 // signature.
1168 bool NeedsPostLoopHandler(const Descriptor* descriptor, const Options& options);
1169
1170 // Priority used for static initializers.
1171 enum InitPriority {
1172 kInitPriority101,
1173 kInitPriority102,
1174 };
1175
1176 } // namespace cpp
1177 } // namespace compiler
1178 } // namespace protobuf
1179 } // namespace google
1180
1181 #include "google/protobuf/port_undef.inc"
1182
1183 #endif // GOOGLE_PROTOBUF_COMPILER_CPP_HELPERS_H__
1184